code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import string def lowerCamelCase ( _UpperCamelCase : str ) -> None: '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): __UpperCAmelCase : List[Any] = """""" for symbol in message: if symbol in string.ascii_uppercase: __UpperCAmelCase : List[Any] = string.ascii_uppercase.find(_UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = num - key if num < 0: __UpperCAmelCase : Optional[int] = num + len(string.ascii_uppercase ) __UpperCAmelCase : List[Any] = translated + string.ascii_uppercase[num] else: __UpperCAmelCase : str = translated + symbol print(f'''Decryption using Key #{key}: {translated}''' ) def lowerCamelCase ( ) -> None: '''simple docstring''' __UpperCAmelCase : List[str] = input("""Encrypted message: """ ) __UpperCAmelCase : List[Any] = message.upper() decrypt(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
139
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore UpperCAmelCase : List[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" UpperCAmelCase : List[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print('\n'.join(upper_files) + '\n') UpperCAmelCase : str = [file for file in filepaths if ' ' in file] if space_files: print(F"{len(space_files)} files contain space characters:") print('\n'.join(space_files) + '\n') UpperCAmelCase : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print('\n'.join(hyphen_files) + '\n') UpperCAmelCase : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print('\n'.join(nodir_files) + '\n') UpperCAmelCase : Optional[int] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
139
1
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __a , unittest.TestCase): '''simple docstring''' __magic_name__ : int = FunnelTokenizer __magic_name__ : List[Any] = FunnelTokenizerFast __magic_name__ : List[str] = True __magic_name__ : int = True def lowercase_ ( self) -> int: """simple docstring""" super().setUp() a_ =[ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a_ =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def lowercase_ ( self , **lowerCAmelCase_) -> List[str]: """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def lowercase_ ( self , **lowerCAmelCase_) -> List[Any]: """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def lowercase_ ( self , lowerCAmelCase_) -> Optional[Any]: """simple docstring""" a_ ="UNwant\u00E9d,running" a_ ="unwanted, running" return input_text, output_text def lowercase_ ( self) -> int: """simple docstring""" a_ =self.tokenizer_class(self.vocab_file) a_ =tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(_UpperCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase) , [7, 4, 5, 1_0, 8, 9]) def lowercase_ ( self) -> Any: """simple docstring""" a_ =self.get_tokenizers(do_lower_case=_UpperCAmelCase) for tokenizer in tokenizers: a_ =tokenizer("UNwant\u00E9d,running") a_ =len(inputs["input_ids"]) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len) a_ =tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running") self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len)
714
'''simple docstring''' from __future__ import annotations def UpperCAmelCase_ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((a_) , (a_)) =extended_euclid(lowercase__ , a % b ) a_ =a // b return (y, x - k * y) def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((a_) , (a_)) =extended_euclid(lowercase__ , lowercase__ ) a_ =na * na a_ =ra * x * na + ra * y * na return (n % m + m) % m def UpperCAmelCase_ ( lowercase__ , lowercase__ ): '''simple docstring''' ((a_) , (a_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: a_ =(b % n + n) % n return b def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' a_ , a_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) a_ =na * na a_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
41
0
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin a_ : Dict = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _snake_case : def __init__( self , a , a=16 , a=13 , a=7 , a=14 , a=10 , a=19 , a=5 , a=4 , a=True , a=16 , a=2 , a=4 , a=4 , a="gelu" , a=0.1 , a=0.1 , a=[1, 2, 3, 4, 5] , a=25 , a=5 , ) -> Optional[int]: SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = prediction_length SCREAMING_SNAKE_CASE = context_length SCREAMING_SNAKE_CASE = cardinality SCREAMING_SNAKE_CASE = num_time_features SCREAMING_SNAKE_CASE = lags_sequence SCREAMING_SNAKE_CASE = embedding_dimension SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = context_length SCREAMING_SNAKE_CASE = prediction_length + label_length SCREAMING_SNAKE_CASE = label_length SCREAMING_SNAKE_CASE = moving_average SCREAMING_SNAKE_CASE = autocorrelation_factor def SCREAMING_SNAKE_CASE__ ( self) -> Dict: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def SCREAMING_SNAKE_CASE__ ( self , a) -> Dict: SCREAMING_SNAKE_CASE = config.context_length + max(config.lags_sequence) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, 1] , config.cardinality[0]) SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, _past_length, config.num_time_features]) SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, _past_length]) SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, _past_length]) > 0.5 # decoder inputs SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features]) SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, config.prediction_length]) SCREAMING_SNAKE_CASE = { 'past_values': past_values, 'static_categorical_features': static_categorical_features, 'past_time_features': past_time_features, 'past_observed_mask': past_observed_mask, 'future_time_features': future_time_features, 'future_values': future_values, } return inputs_dict def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = self.get_config() SCREAMING_SNAKE_CASE = self.prepare_autoformer_inputs_dict(a) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self , a , a) -> Tuple: SCREAMING_SNAKE_CASE = AutoformerModel(config=a).to(a).eval() SCREAMING_SNAKE_CASE = model(**a) SCREAMING_SNAKE_CASE = outputs.encoder_last_hidden_state SCREAMING_SNAKE_CASE = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = model.get_encoder() encoder.save_pretrained(a) SCREAMING_SNAKE_CASE = AutoformerEncoder.from_pretrained(a).to(a) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.create_network_inputs(**a) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...]) SCREAMING_SNAKE_CASE = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) SCREAMING_SNAKE_CASE = encoder(inputs_embeds=a)[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3) SCREAMING_SNAKE_CASE = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1) .unsqueeze(1) .repeat(1 , config.prediction_length , 1) ) SCREAMING_SNAKE_CASE = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) SCREAMING_SNAKE_CASE = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) SCREAMING_SNAKE_CASE = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = model.get_decoder() decoder.save_pretrained(a) SCREAMING_SNAKE_CASE = AutoformerDecoder.from_pretrained(a).to(a) SCREAMING_SNAKE_CASE = decoder( trend=a , inputs_embeds=a , encoder_hidden_states=a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3) @require_torch class _snake_case ( A__ , A__ , unittest.TestCase ): _lowercase : List[Any] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _lowercase : Any = (AutoformerForPrediction,) if is_torch_available() else () _lowercase : Optional[Any] = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _lowercase : Union[str, Any] = False _lowercase : str = False _lowercase : List[Any] = False _lowercase : List[str] = False _lowercase : Optional[Any] = False _lowercase : Optional[Any] = False def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = AutoformerModelTester(self) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=a , has_text_modality=a) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(a) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model_class.from_pretrained(a , output_loading_info=a) self.assertEqual(info['missing_keys'] , []) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*a) @unittest.skip(reason='Model has no tokens embeddings') def SCREAMING_SNAKE_CASE__ ( self) -> int: pass def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = inspect.signature(getattr(a , 'forward')) # The main input is the name of the argument after `self` SCREAMING_SNAKE_CASE = list(model_signature.parameters.keys())[1] self.assertEqual(AutoformerModel.main_input_name , a) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(a) SCREAMING_SNAKE_CASE = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = [ 'past_values', 'past_time_features', 'past_observed_mask', 'static_categorical_features', 'static_real_features', 'future_values', 'future_time_features', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('future_observed_mask') expected_arg_names.extend( [ 'decoder_attention_mask', 'head_mask', 'decoder_head_mask', 'cross_attn_head_mask', 'encoder_outputs', 'past_key_values', 'output_hidden_states', 'output_attentions', 'use_cache', 'return_dict', ]) self.assertListEqual(arg_names[: len(a)] , a) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = getattr(self.model_tester , 'seq_length' , a) SCREAMING_SNAKE_CASE = getattr(self.model_tester , 'decoder_seq_length' , a) SCREAMING_SNAKE_CASE = getattr(self.model_tester , 'encoder_seq_length' , a) SCREAMING_SNAKE_CASE = getattr(self.model_tester , 'd_model' , a) SCREAMING_SNAKE_CASE = getattr(self.model_tester , 'num_attention_heads' , a) SCREAMING_SNAKE_CASE = d_model // num_attention_heads for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(a) model.to(a) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(a , a)) SCREAMING_SNAKE_CASE = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(a) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(a) model.to(a) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(a , a)) SCREAMING_SNAKE_CASE = outputs.encoder_attentions self.assertEqual(len(a) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) SCREAMING_SNAKE_CASE = len(a) SCREAMING_SNAKE_CASE = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(a , a) # decoder attentions SCREAMING_SNAKE_CASE = outputs.decoder_attentions self.assertIsInstance(a , (list, tuple)) self.assertEqual(len(a) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions SCREAMING_SNAKE_CASE = outputs.cross_attentions self.assertIsInstance(a , (list, tuple)) self.assertEqual(len(a) , self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(a) model.to(a) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(a , a)) self.assertEqual(out_len + 2 , len(a)) SCREAMING_SNAKE_CASE = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(a) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: super().test_retain_grad_hidden_states_attentions() def lowerCamelCase__ (_UpperCAmelCase="train-batch.pt"): SCREAMING_SNAKE_CASE = hf_hub_download(repo_id='hf-internal-testing/tourism-monthly-batch' , filename=_UpperCAmelCase , repo_type='dataset') SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location=_UpperCAmelCase) return batch @require_torch @slow class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = AutoformerModel.from_pretrained('huggingface/autoformer-tourism-monthly').to(a) SCREAMING_SNAKE_CASE = prepare_batch() with torch.no_grad(): SCREAMING_SNAKE_CASE = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , future_values=batch['future_values'] , future_time_features=batch['future_time_features'] , )[0] SCREAMING_SNAKE_CASE = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size)) self.assertEqual(output.shape , a) SCREAMING_SNAKE_CASE = torch.tensor( [[0.35_93, -1.33_98, 0.63_30], [0.22_79, 1.53_96, -0.17_92], [0.04_50, 1.32_25, -0.23_35]] , device=a) self.assertTrue(torch.allclose(output[0, :3, :3] , a , atol=a)) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly').to(a) SCREAMING_SNAKE_CASE = prepare_batch('val-batch.pt') with torch.no_grad(): SCREAMING_SNAKE_CASE = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , ).encoder_last_hidden_state SCREAMING_SNAKE_CASE = torch.Size((64, model.config.context_length, model.config.d_model)) self.assertEqual(output.shape , a) SCREAMING_SNAKE_CASE = torch.tensor( [[-0.07_34, -0.90_36, 0.83_58], [4.71_86, 2.41_13, 1.95_81], [1.79_53, 2.35_58, 1.29_70]] , device=a) self.assertTrue(torch.allclose(output[0, :3, :3] , a , atol=a)) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly').to(a) SCREAMING_SNAKE_CASE = prepare_batch('val-batch.pt') with torch.no_grad(): SCREAMING_SNAKE_CASE = model.generate( static_categorical_features=batch['static_categorical_features'] , past_time_features=batch['past_time_features'] , past_values=batch['past_values'] , future_time_features=batch['future_time_features'] , past_observed_mask=batch['past_observed_mask'] , ) SCREAMING_SNAKE_CASE = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length)) self.assertEqual(outputs.sequences.shape , a) SCREAMING_SNAKE_CASE = torch.tensor([31_30.67_63, 40_56.52_93, 70_53.07_86] , device=a) SCREAMING_SNAKE_CASE = outputs.sequences.mean(dim=1) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , a , rtol=1E-1))
73
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ : Optional[Any] = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys a_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
73
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __lowerCAmelCase :Tuple = 16 __lowerCAmelCase :Dict = 32 def A ( UpperCAmelCase , UpperCAmelCase = 16 , UpperCAmelCase = "bert-base-cased" ): _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(UpperCAmelCase ) _snake_case : List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) _snake_case : int = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=UpperCAmelCase , max_length=UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _snake_case : str = datasets.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=UpperCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _snake_case : Tuple = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(UpperCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _snake_case : List[str] = DataLoader( tokenized_datasets["train"] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) _snake_case : List[Any] = DataLoader( tokenized_datasets["validation"] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) return train_dataloader, eval_dataloader def A ( UpperCAmelCase , UpperCAmelCase ): # Initialize accelerator _snake_case : Optional[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _snake_case : Tuple = config["lr"] _snake_case : int = int(config["num_epochs"] ) _snake_case : int = int(config["seed"] ) _snake_case : Optional[Any] = int(config["batch_size"] ) _snake_case : Optional[int] = args.model_name_or_path set_seed(UpperCAmelCase ) _snake_case , _snake_case : Union[str, Any] = get_dataloaders(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _snake_case : Optional[int] = AutoModelForSequenceClassification.from_pretrained(UpperCAmelCase , return_dict=UpperCAmelCase ) # Instantiate optimizer _snake_case : Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _snake_case : int = optimizer_cls(params=model.parameters() , lr=UpperCAmelCase ) if accelerator.state.deepspeed_plugin is not None: _snake_case : Union[str, Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: _snake_case : Tuple = 1 _snake_case : List[str] = (len(UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _snake_case : List[Any] = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase , num_warmup_steps=0 , num_training_steps=UpperCAmelCase , ) else: _snake_case : int = DummyScheduler(UpperCAmelCase , total_num_steps=UpperCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : str = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over _snake_case : Any = 0 # We also need to keep track of the stating epoch so files are named properly _snake_case : Optional[int] = 0 # Now we train the model _snake_case : Optional[Any] = evaluate.load("glue" , "mrpc" ) _snake_case : Optional[Any] = 0 _snake_case : Any = {} for epoch in range(UpperCAmelCase , UpperCAmelCase ): model.train() for step, batch in enumerate(UpperCAmelCase ): _snake_case : List[Any] = model(**UpperCAmelCase ) _snake_case : Optional[Any] = outputs.loss _snake_case : Any = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() _snake_case : Union[str, Any] = 0 for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _snake_case : Dict = model(**UpperCAmelCase ) _snake_case : Tuple = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _snake_case , _snake_case : Optional[Any] = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCAmelCase ) - 1: _snake_case : List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] _snake_case : Dict = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCAmelCase , references=UpperCAmelCase , ) _snake_case : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCAmelCase ) _snake_case : str = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: _snake_case : Tuple = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(UpperCAmelCase , UpperCAmelCase ) def A ( ): _snake_case : Optional[int] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=UpperCAmelCase , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=UpperCAmelCase , ) parser.add_argument( "--output_dir" , type=UpperCAmelCase , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=UpperCAmelCase , default=UpperCAmelCase , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=UpperCAmelCase , default=3 , help="Number of train epochs." , ) _snake_case : Optional[int] = parser.parse_args() _snake_case : Union[str, Any] = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": main()
278
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase :str = logging.get_logger(__name__) __lowerCAmelCase :int = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } __lowerCAmelCase :List[str] = { 'b0': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 2_24, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 2_40, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 14_08, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 2_60, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 15_36, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 3_00, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 17_92, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 3_80, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 20_48, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 4_56, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 23_04, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 5_28, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 25_60, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 6_00, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def A ( UpperCAmelCase ): _snake_case : str = EfficientNetConfig() _snake_case : Optional[int] = CONFIG_MAP[model_name]["hidden_dim"] _snake_case : Tuple = CONFIG_MAP[model_name]["width_coef"] _snake_case : Dict = CONFIG_MAP[model_name]["depth_coef"] _snake_case : List[Any] = CONFIG_MAP[model_name]["image_size"] _snake_case : Tuple = CONFIG_MAP[model_name]["dropout_rate"] _snake_case : str = CONFIG_MAP[model_name]["dw_padding"] _snake_case : Union[str, Any] = "huggingface/label-files" _snake_case : Any = "imagenet-1k-id2label.json" _snake_case : Optional[Any] = 1_000 _snake_case : Optional[Any] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) _snake_case : int = {int(UpperCAmelCase ): v for k, v in idalabel.items()} _snake_case : Optional[int] = idalabel _snake_case : List[Any] = {v: k for k, v in idalabel.items()} return config def A ( ): _snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _snake_case : Optional[int] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im def A ( UpperCAmelCase ): _snake_case : Optional[Any] = CONFIG_MAP[model_name]["image_size"] _snake_case : int = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=UpperCAmelCase , ) return preprocessor def A ( UpperCAmelCase ): _snake_case : Tuple = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] _snake_case : str = sorted(set(UpperCAmelCase ) ) _snake_case : Any = len(UpperCAmelCase ) _snake_case : str = {b: str(UpperCAmelCase ) for b, i in zip(UpperCAmelCase , range(UpperCAmelCase ) )} _snake_case : Optional[int] = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: _snake_case : Optional[int] = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) _snake_case : Union[str, Any] = {} for item in rename_keys: if item[0] in original_param_names: _snake_case : str = "efficientnet." + item[1] _snake_case : List[str] = "classifier.weight" _snake_case : int = "classifier.bias" return key_mapping def A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): for key, value in tf_params.items(): if "normalization" in key: continue _snake_case : Union[str, Any] = key_mapping[key] if "_conv" in key and "kernel" in key: _snake_case : Union[str, Any] = torch.from_numpy(UpperCAmelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: _snake_case : str = torch.from_numpy(UpperCAmelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: _snake_case : Optional[Any] = torch.from_numpy(np.transpose(UpperCAmelCase ) ) else: _snake_case : int = torch.from_numpy(UpperCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(UpperCAmelCase ) @torch.no_grad() def A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _snake_case : Optional[int] = model_classes[model_name]( include_top=UpperCAmelCase , weights="imagenet" , input_tensor=UpperCAmelCase , input_shape=UpperCAmelCase , pooling=UpperCAmelCase , classes=1_000 , classifier_activation="softmax" , ) _snake_case : int = original_model.trainable_variables _snake_case : str = original_model.non_trainable_variables _snake_case : List[Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _snake_case : str = param.numpy() _snake_case : int = list(tf_params.keys() ) # Load HuggingFace model _snake_case : Optional[int] = get_efficientnet_config(UpperCAmelCase ) _snake_case : Dict = EfficientNetForImageClassification(UpperCAmelCase ).eval() _snake_case : int = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) _snake_case : Optional[int] = rename_keys(UpperCAmelCase ) replace_params(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Initialize preprocessor and preprocess input image _snake_case : Optional[Any] = convert_image_processor(UpperCAmelCase ) _snake_case : List[str] = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): _snake_case : Tuple = hf_model(**UpperCAmelCase ) _snake_case : str = outputs.logits.detach().numpy() # Original model inference _snake_case : List[Any] = False _snake_case : Optional[Any] = CONFIG_MAP[model_name]["image_size"] _snake_case : Optional[int] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) _snake_case : List[Any] = image.img_to_array(UpperCAmelCase ) _snake_case : Optional[int] = np.expand_dims(UpperCAmelCase , axis=0 ) _snake_case : int = original_model.predict(UpperCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(UpperCAmelCase ): os.mkdir(UpperCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(UpperCAmelCase ) preprocessor.save_pretrained(UpperCAmelCase ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) _snake_case : Optional[Any] = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(UpperCAmelCase ) hf_model.push_to_hub(UpperCAmelCase ) if __name__ == "__main__": __lowerCAmelCase :Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') __lowerCAmelCase :List[Any] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
278
1
_snake_case : Union[str, Any] = '''Tobias Carryer''' from time import time class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict=int(time() ) ) -> Tuple: # noqa: B008 __lowerCAmelCase = multiplier __lowerCAmelCase = increment __lowerCAmelCase = modulo __lowerCAmelCase = seed def lowercase ( self : Optional[int] ) -> str: __lowerCAmelCase = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. _snake_case : Dict = LinearCongruentialGenerator(1664525, 1013904223, 2 << 31) while True: print(lcg.next_number())
53
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Dict = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } SCREAMING_SNAKE_CASE :Optional[int] = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } SCREAMING_SNAKE_CASE :List[str] = '''</w>''' SCREAMING_SNAKE_CASE :int = '''@@ ''' def _lowerCAmelCase ( lowerCAmelCase_ :int )->int: '''simple docstring''' snake_case_ = set() snake_case_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case_ = char return pairs # Speech2Text2 has no max input length SCREAMING_SNAKE_CASE :Tuple = {'''facebook/s2t-wav2vec2-large-en-de''': 10_24} class __lowerCAmelCase ( a ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any]="<s>" , _lowerCAmelCase : Tuple="<pad>" , _lowerCAmelCase : Union[str, Any]="</s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : List[str]=None , **_lowerCAmelCase : List[str] , ) -> List[str]: """simple docstring""" super().__init__( unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , **_lowerCAmelCase , ) snake_case_ = do_lower_case with open(_lowerCAmelCase , encoding="utf-8" ) as vocab_handle: snake_case_ = json.load(_lowerCAmelCase ) snake_case_ = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) snake_case_ = None snake_case_ = None else: with open(_lowerCAmelCase , encoding="utf-8" ) as merges_handle: snake_case_ = merges_handle.read().split("\n" )[:-1] snake_case_ = [tuple(merge.split()[:2] ) for merge in merges] snake_case_ = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) snake_case_ = {} @property def lowerCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return len(self.decoder ) def lowerCAmelCase__ ( self : Any ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase__ ( self : Union[str, Any] , _lowerCAmelCase : Any ) -> Tuple: """simple docstring""" snake_case_ = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] snake_case_ = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: snake_case_ = min(_lowerCAmelCase , key=lambda _lowerCAmelCase : self.bpe_ranks.get(_lowerCAmelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case_ , snake_case_ = bigram snake_case_ = [] snake_case_ = 0 while i < len(_lowerCAmelCase ): try: snake_case_ = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case_ = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case_ = tuple(_lowerCAmelCase ) snake_case_ = new_word if len(_lowerCAmelCase ) == 1: break else: snake_case_ = get_pairs(_lowerCAmelCase ) snake_case_ = " ".join(_lowerCAmelCase ) if word == "\n " + BPE_TOKEN_MERGES: snake_case_ = "\n" + BPE_TOKEN_MERGES if word.endswith(_lowerCAmelCase ): snake_case_ = word.replace(_lowerCAmelCase , "" ) snake_case_ = word.replace(" " , _lowerCAmelCase ) snake_case_ = word return word def lowerCAmelCase__ ( self : List[Any] , _lowerCAmelCase : List[str] ) -> List[Any]: """simple docstring""" if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding." ) if self.do_lower_case: snake_case_ = text.lower() snake_case_ = text.split() snake_case_ = [] for token in text: if token: split_tokens.extend(list(self.bpe(_lowerCAmelCase ).split(" " ) ) ) return split_tokens def lowerCAmelCase__ ( self : str , _lowerCAmelCase : str ) -> int: """simple docstring""" return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase__ ( self : int , _lowerCAmelCase : int ) -> str: """simple docstring""" snake_case_ = self.decoder.get(_lowerCAmelCase , self.unk_token ) return result def lowerCAmelCase__ ( self : Union[str, Any] , _lowerCAmelCase : List[str] ) -> str: """simple docstring""" snake_case_ = " ".join(_lowerCAmelCase ) # make sure @@ tokens are concatenated snake_case_ = "".join(string.split(_lowerCAmelCase ) ) return string def lowerCAmelCase__ ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + "\n" ) snake_case_ = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case_ = token_index writer.write(" ".join(_lowerCAmelCase ) + "\n" ) index += 1 return (vocab_file, merges_file)
283
0
from __future__ import annotations import math def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> list: if len(_UpperCamelCase ) != 2 or len(a[0] ) != 2 or len(_UpperCamelCase ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) _a = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(_UpperCamelCase ) ) ] def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> str: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(_UpperCamelCase ) ) ] def __snake_case ( _UpperCamelCase ) -> tuple[list, list, list, list]: if len(_UpperCamelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) _a = len(_UpperCamelCase ) _a = matrix_length // 2 _a = [[a[i][j] for j in range(_UpperCamelCase , _UpperCamelCase )] for i in range(_UpperCamelCase )] _a = [ [a[i][j] for j in range(_UpperCamelCase , _UpperCamelCase )] for i in range(_UpperCamelCase , _UpperCamelCase ) ] _a = [[a[i][j] for j in range(_UpperCamelCase )] for i in range(_UpperCamelCase )] _a = [[a[i][j] for j in range(_UpperCamelCase )] for i in range(_UpperCamelCase , _UpperCamelCase )] return top_left, top_right, bot_left, bot_right def __snake_case ( _UpperCamelCase ) -> tuple[int, int]: return len(_UpperCamelCase ), len(matrix[0] ) def __snake_case ( _UpperCamelCase ) -> None: print('''\n'''.join(str(_UpperCamelCase ) for line in matrix ) ) def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> list: if matrix_dimensions(_UpperCamelCase ) == (2, 2): return default_matrix_multiplication(_UpperCamelCase , _UpperCamelCase ) _a , _a , _a , _a = split_matrix(_UpperCamelCase ) _a , _a , _a , _a = split_matrix(_UpperCamelCase ) _a = actual_strassen(_UpperCamelCase , matrix_subtraction(_UpperCamelCase , _UpperCamelCase ) ) _a = actual_strassen(matrix_addition(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) _a = actual_strassen(matrix_addition(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) _a = actual_strassen(_UpperCamelCase , matrix_subtraction(_UpperCamelCase , _UpperCamelCase ) ) _a = actual_strassen(matrix_addition(_UpperCamelCase , _UpperCamelCase ) , matrix_addition(_UpperCamelCase , _UpperCamelCase ) ) _a = actual_strassen(matrix_subtraction(_UpperCamelCase , _UpperCamelCase ) , matrix_addition(_UpperCamelCase , _UpperCamelCase ) ) _a = actual_strassen(matrix_subtraction(_UpperCamelCase , _UpperCamelCase ) , matrix_addition(_UpperCamelCase , _UpperCamelCase ) ) _a = matrix_addition(matrix_subtraction(matrix_addition(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) , _UpperCamelCase ) _a = matrix_addition(_UpperCamelCase , _UpperCamelCase ) _a = matrix_addition(_UpperCamelCase , _UpperCamelCase ) _a = matrix_subtraction(matrix_subtraction(matrix_addition(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) , _UpperCamelCase ) # construct the new matrix from our 4 quadrants _a = [] for i in range(len(_UpperCamelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(_UpperCamelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> list: if matrix_dimensions(_UpperCamelCase )[1] != matrix_dimensions(_UpperCamelCase )[0]: _a = ( '''Unable to multiply these matrices, please check the dimensions.\n''' f"Matrix A: {matrixa}\n" f"Matrix B: {matrixa}" ) raise Exception(_UpperCamelCase ) _a = matrix_dimensions(_UpperCamelCase ) _a = matrix_dimensions(_UpperCamelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] _a = max(*_UpperCamelCase , *_UpperCamelCase ) _a = int(math.pow(2 , math.ceil(math.loga(_UpperCamelCase ) ) ) ) _a = matrixa _a = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , _UpperCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , _UpperCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , _UpperCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) _a = actual_strassen(_UpperCamelCase , _UpperCamelCase ) # Removing the additional zeros for i in range(0 , _UpperCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , _UpperCamelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowerCamelCase :Optional[int] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowerCamelCase :Dict = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
708
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase :List[str] = logging.get_logger(__name__) lowerCamelCase :List[str] = {} class UpperCAmelCase ( __snake_case ): a: str = "llama" a: List[str] = ["past_key_values"] def __init__( self: Tuple , __UpperCamelCase: Optional[Any]=3_2000 , __UpperCamelCase: Optional[int]=4096 , __UpperCamelCase: Union[str, Any]=1_1008 , __UpperCamelCase: str=32 , __UpperCamelCase: List[str]=32 , __UpperCamelCase: Tuple=None , __UpperCamelCase: Dict="silu" , __UpperCamelCase: Any=2048 , __UpperCamelCase: Optional[int]=0.0_2 , __UpperCamelCase: int=1E-6 , __UpperCamelCase: List[Any]=True , __UpperCamelCase: List[str]=0 , __UpperCamelCase: Union[str, Any]=1 , __UpperCamelCase: str=2 , __UpperCamelCase: int=1 , __UpperCamelCase: Optional[Any]=False , __UpperCamelCase: int=None , **__UpperCamelCase: Optional[int] , ): _a = vocab_size _a = max_position_embeddings _a = hidden_size _a = intermediate_size _a = num_hidden_layers _a = num_attention_heads # for backward compatibility if num_key_value_heads is None: _a = num_attention_heads _a = num_key_value_heads _a = hidden_act _a = initializer_range _a = rms_norm_eps _a = pretraining_tp _a = use_cache _a = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , tie_word_embeddings=__UpperCamelCase , **__UpperCamelCase , ) def _A ( self: Any ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}" ) _a = self.rope_scaling.get('''type''' , __UpperCamelCase ) _a = self.rope_scaling.get('''factor''' , __UpperCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__UpperCamelCase , __UpperCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
346
0
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def a (lowerCAmelCase__ ): __a = git.Repo(search_parent_directories=lowerCAmelCase__ ) __a = { """repo_id""": str(lowerCAmelCase__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(lowerCAmelCase__ , """git_log.json""" ) , """w""" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ , indent=4 ) def a (lowerCAmelCase__ ): if params.n_gpu <= 0: __a = 0 __a = -1 __a = True __a = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 __a = int(os.environ["""WORLD_SIZE"""] ) __a = int(os.environ["""N_GPU_NODE"""] ) __a = int(os.environ["""RANK"""] ) # number of nodes / node ID __a = params.world_size // params.n_gpu_per_node __a = params.global_rank // params.n_gpu_per_node __a = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 __a = 1 __a = 0 __a = 0 __a = 0 __a = 1 __a = 1 __a = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __a = params.node_id == 0 and params.local_rank == 0 __a = params.n_nodes > 1 # summary __a = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def a (lowerCAmelCase__ ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
99
"""simple docstring""" from collections.abc import Callable def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): A__ = a A__ = b if function(lowerCAmelCase__ ) == 0: # one of the a or b is a root for the function return a elif function(lowerCAmelCase__ ) == 0: return b elif ( function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: A__ = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(lowerCAmelCase__ ) == 0: return mid elif function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) < 0: A__ = mid else: A__ = mid A__ = start + (end - start) / 2.0 return mid def __lowerCamelCase ( lowerCAmelCase__ ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
260
0
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _UpperCAmelCase : '''simple docstring''' lowercase_ : Optional[Union[str, Path]] = None lowercase_ : bool = False lowercase_ : bool = False lowercase_ : bool = False lowercase_ : Optional[Dict] = None lowercase_ : Optional[str] = None lowercase_ : bool = False lowercase_ : bool = False lowercase_ : bool = False lowercase_ : bool = True lowercase_ : Optional[int] = None lowercase_ : int = 1 lowercase_ : Optional[Union[str, bool]] = None lowercase_ : bool = False lowercase_ : Optional[Dict] = None lowercase_ : Optional[str] = None def lowerCamelCase_ ( self ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(snake_case_ ) for k, v in self.__dict__.items()} )
720
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase_ : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : int = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys lowerCamelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
0
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = "arrow" , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( split=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ :Dict = load_from_cache_file lowerCAmelCase__ :int = file_format lowerCAmelCase__ :int = Spark( df=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , working_dir=__UpperCAmelCase , **__UpperCAmelCase , ) def snake_case ( self ): '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowerCAmelCase__ :Dict = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__UpperCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
93
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _lowerCamelCase = { """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
71
0
def snake_case__ ( UpperCAmelCase : str ): lowerCAmelCase__ :Optional[Any] = 0 for ch in input_str: lowerCAmelCase__ :int = ord(UpperCAmelCase ) lowerCAmelCase__ :List[Any] = pow(2 , UpperCAmelCase ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
717
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _UpperCAmelCase ( _A ): """simple docstring""" A = ['''vqvae'''] def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): '''simple docstring''' super().__init__() self.register_modules(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , mel=_lowerCAmelCase , vqvae=_lowerCAmelCase ) def snake_case_ ( self ): '''simple docstring''' return 50 if isinstance(self.scheduler , _lowerCAmelCase ) else 1_000 @torch.no_grad() def __call__( self , _lowerCAmelCase = 1 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase=True , ): '''simple docstring''' lowerCAmelCase__ :str = steps or self.get_default_steps() self.scheduler.set_timesteps(_lowerCAmelCase ) lowerCAmelCase__ :Dict = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowerCAmelCase__ :Dict = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowerCAmelCase__ :Optional[int] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_lowerCAmelCase , device=self.device , ) lowerCAmelCase__ :Union[str, Any] = noise lowerCAmelCase__ :Any = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_lowerCAmelCase , _lowerCAmelCase ) lowerCAmelCase__ :Dict = self.mel.audio_slice_to_image(_lowerCAmelCase ) lowerCAmelCase__ :List[str] = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) lowerCAmelCase__ :Tuple = (input_image / 255) * 2 - 1 lowerCAmelCase__ :Any = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowerCAmelCase__ :str = self.vqvae.encode(torch.unsqueeze(_lowerCAmelCase , 0 ) ).latent_dist.sample( generator=_lowerCAmelCase )[0] lowerCAmelCase__ :Dict = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowerCAmelCase__ :Dict = self.scheduler.add_noise(_lowerCAmelCase , _lowerCAmelCase , self.scheduler.timesteps[start_step - 1] ) lowerCAmelCase__ :Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowerCAmelCase__ :Dict = int(mask_start_secs * pixels_per_second ) lowerCAmelCase__ :Tuple = int(mask_end_secs * pixels_per_second ) lowerCAmelCase__ :str = self.scheduler.add_noise(_lowerCAmelCase , _lowerCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _lowerCAmelCase ): lowerCAmelCase__ :Optional[Any] = self.unet(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )["sample"] else: lowerCAmelCase__ :Dict = self.unet(_lowerCAmelCase , _lowerCAmelCase )["sample"] if isinstance(self.scheduler , _lowerCAmelCase ): lowerCAmelCase__ :Any = self.scheduler.step( model_output=_lowerCAmelCase , timestep=_lowerCAmelCase , sample=_lowerCAmelCase , eta=_lowerCAmelCase , generator=_lowerCAmelCase , )["prev_sample"] else: lowerCAmelCase__ :List[str] = self.scheduler.step( model_output=_lowerCAmelCase , timestep=_lowerCAmelCase , sample=_lowerCAmelCase , generator=_lowerCAmelCase , )["prev_sample"] if mask is not None: if mask_start > 0: lowerCAmelCase__ :List[Any] = mask[:, step, :, :mask_start] if mask_end > 0: lowerCAmelCase__ :Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowerCAmelCase__ :Any = 1 / self.vqvae.config.scaling_factor * images lowerCAmelCase__ :List[Any] = self.vqvae.decode(_lowerCAmelCase )["sample"] lowerCAmelCase__ :Dict = (images / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase__ :Union[str, Any] = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() lowerCAmelCase__ :Optional[int] = (images * 255).round().astype("uint8" ) lowerCAmelCase__ :Optional[int] = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_lowerCAmelCase , mode="RGB" ).convert("L" ) for _ in images) ) lowerCAmelCase__ :Optional[Any] = [self.mel.image_to_audio(_lowerCAmelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_lowerCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_lowerCAmelCase ) ) @torch.no_grad() def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = 50 ): '''simple docstring''' assert isinstance(self.scheduler , _lowerCAmelCase ) self.scheduler.set_timesteps(_lowerCAmelCase ) lowerCAmelCase__ :Any = np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) lowerCAmelCase__ :Dict = (sample / 255) * 2 - 1 lowerCAmelCase__ :Optional[Any] = torch.Tensor(_lowerCAmelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): lowerCAmelCase__ :List[Any] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowerCAmelCase__ :Any = self.scheduler.alphas_cumprod[t] lowerCAmelCase__ :List[Any] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowerCAmelCase__ :List[str] = 1 - alpha_prod_t lowerCAmelCase__ :List[Any] = self.unet(_lowerCAmelCase , _lowerCAmelCase )["sample"] lowerCAmelCase__ :int = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowerCAmelCase__ :List[Any] = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowerCAmelCase__ :Union[str, Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def snake_case_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[str] = acos(torch.dot(torch.flatten(_lowerCAmelCase ) , torch.flatten(_lowerCAmelCase ) ) / torch.norm(_lowerCAmelCase ) / torch.norm(_lowerCAmelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(_lowerCAmelCase ) + sin(alpha * theta ) * xa / sin(_lowerCAmelCase )
111
0
'''simple docstring''' from datetime import datetime import requests def a_ ( _UpperCAmelCase : str ) -> bytes: __snake_case : Tuple = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' __snake_case : Any = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(_UpperCAmelCase ).content if __name__ == "__main__": A__ : Tuple = input('''Enter Video/IGTV url: ''').strip() A__ : Optional[int] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
286
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = DebertaTokenizer A__ = True A__ = DebertaTokenizerFast def A_ ( self : Optional[int] ) -> str: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case : Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] __snake_case : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __snake_case : int = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __snake_case : Any = {'unk_token': '[UNK]'} __snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__a ) ) def A_ ( self : Optional[int] , **__a : List[Any] ) -> Optional[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def A_ ( self : Optional[int] , __a : Dict ) -> List[str]: '''simple docstring''' __snake_case : Union[str, Any] = 'lower newer' __snake_case : List[Any] = 'lower newer' return input_text, output_text def A_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' __snake_case : str = self.get_tokenizer() __snake_case : List[str] = 'lower newer' __snake_case : Tuple = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] __snake_case : Optional[int] = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __snake_case : str = tokens + [tokenizer.unk_token] __snake_case : Tuple = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def A_ ( self : List[Any] ) -> Dict: '''simple docstring''' __snake_case : List[str] = self.get_tokenizer() __snake_case : List[str] = tokenizer('Hello' , 'World' ) __snake_case : int = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , __a ) @slow def A_ ( self : Dict ) -> str: '''simple docstring''' __snake_case : str = self.tokenizer_class.from_pretrained('microsoft/deberta-base' ) __snake_case : str = tokenizer.encode('sequence builders' , add_special_tokens=__a ) __snake_case : Any = tokenizer.encode('multi-sequence build' , add_special_tokens=__a ) __snake_case : List[Any] = tokenizer.encode( 'sequence builders' , add_special_tokens=__a , add_prefix_space=__a ) __snake_case : Union[str, Any] = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=__a , add_prefix_space=__a ) __snake_case : int = tokenizer.build_inputs_with_special_tokens(__a ) __snake_case : Tuple = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def A_ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' __snake_case : int = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __snake_case : List[Any] = tokenizer_class.from_pretrained('microsoft/deberta-base' ) __snake_case : int = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] __snake_case : Union[str, Any] = tokenizer(__a , padding=__a ) __snake_case : List[str] = [tokenizer.decode(__a , skip_special_tokens=__a ) for seq in encoding['input_ids']] # fmt: off __snake_case : Optional[Any] = { 'input_ids': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __snake_case : int = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , __a ) for expected, decoded in zip(__a , __a ): self.assertEqual(__a , __a )
286
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""", # See all CANINE models at https://huggingface.co/models?filter=canine } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : int = '''canine''' def __init__( self : Union[str, Any] , UpperCAmelCase__ : int=7_6_8 , UpperCAmelCase__ : Dict=1_2 , UpperCAmelCase__ : Optional[int]=1_2 , UpperCAmelCase__ : List[str]=3_0_7_2 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Union[str, Any]=1_6_3_8_4 , UpperCAmelCase__ : int=1_6 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : Dict=1E-12 , UpperCAmelCase__ : List[Any]=0 , UpperCAmelCase__ : List[str]=0XE_0_0_0 , UpperCAmelCase__ : Union[str, Any]=0XE_0_0_1 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=8 , UpperCAmelCase__ : List[str]=1_6_3_8_4 , UpperCAmelCase__ : Union[str, Any]=1_2_8 , **UpperCAmelCase__ : Dict , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = max_position_embeddings lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = type_vocab_size lowerCAmelCase = layer_norm_eps # Character config: lowerCAmelCase = downsampling_rate lowerCAmelCase = upsampling_kernel_size lowerCAmelCase = num_hash_functions lowerCAmelCase = num_hash_buckets lowerCAmelCase = local_transformer_stride
718
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case ={ """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =[ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
513
0
from __future__ import annotations from math import pi def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> dict[str, float]: '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
79
class UpperCAmelCase_ : def __init__( self , _lowerCAmelCase ): # we need a list not a string, so do something to change the type UpperCAmelCase__ : Dict = arr.split(""",""" ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Tuple = [int(self.array[0] )] * len(self.array ) UpperCAmelCase__ : List[str] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): UpperCAmelCase__ : Tuple = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) UpperCAmelCase__ : Union[str, Any] = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Tuple = input("""please input some numbers:""") SCREAMING_SNAKE_CASE__ : Dict = SubArray(whole_array) SCREAMING_SNAKE_CASE__ : Dict = array.solve_sub_array() print(("""the results is:""", re))
79
1
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = FlaxAutoencoderKL @property def __magic_name__ ( self : str ): '''simple docstring''' snake_case__ : Any = 4 snake_case__ : Optional[Any] = 3 snake_case__ : Optional[int] = (3_2, 3_2) snake_case__ : Optional[int] = jax.random.PRNGKey(0 ) snake_case__ : Union[str, Any] = jax.random.uniform(snake_case_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' snake_case__ : Any = { '''block_out_channels''': [3_2, 6_4], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } snake_case__ : Dict = self.dummy_input return init_dict, inputs_dict
502
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' snake_case__ : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case_ , '''width_multiplier''' ) ) class a : """simple docstring""" def __init__( self : List[str] , snake_case_ : Optional[int] , snake_case_ : Dict=1_3 , snake_case_ : Any=6_4 , snake_case_ : Dict=2 , snake_case_ : Optional[int]=3 , snake_case_ : str="swish" , snake_case_ : str=3 , snake_case_ : Union[str, Any]=3_2 , snake_case_ : Optional[Any]=0.1 , snake_case_ : Any=0.0_2 , snake_case_ : int=True , snake_case_ : Tuple=True , snake_case_ : Dict=1_0 , snake_case_ : Optional[int]=None , snake_case_ : str=0.2_5 , snake_case_ : List[Any]=0.0 , snake_case_ : Optional[Any]=0.0 , ): '''simple docstring''' snake_case__ : List[Any] = parent snake_case__ : Dict = batch_size snake_case__ : Dict = image_size snake_case__ : Tuple = patch_size snake_case__ : Tuple = num_channels snake_case__ : Tuple = make_divisible(5_1_2 * width_multiplier , divisor=8 ) snake_case__ : Optional[int] = hidden_act snake_case__ : int = conv_kernel_size snake_case__ : Optional[int] = output_stride snake_case__ : List[Any] = classifier_dropout_prob snake_case__ : int = use_labels snake_case__ : Optional[Any] = is_training snake_case__ : int = num_labels snake_case__ : str = initializer_range snake_case__ : Dict = scope snake_case__ : Tuple = width_multiplier snake_case__ : Optional[Any] = ffn_dropout snake_case__ : Dict = attn_dropout def __magic_name__ ( self : str ): '''simple docstring''' snake_case__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : List[str] = None snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Tuple = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case__ : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__ ( self : List[str] ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __magic_name__ ( self : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] ): '''simple docstring''' snake_case__ : Optional[Any] = MobileViTVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Dict = model(snake_case_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : Optional[Any] ): '''simple docstring''' snake_case__ : Optional[int] = self.num_labels snake_case__ : Optional[Any] = MobileViTVaForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : int = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : int , snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : Any , snake_case_ : List[str] ): '''simple docstring''' snake_case__ : Dict = self.num_labels snake_case__ : Any = MobileViTVaForSemanticSegmentation(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : str = model(snake_case_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) snake_case__ : Optional[int] = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__ ( self : str ): '''simple docstring''' snake_case__ : Dict = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[str] = config_and_inputs snake_case__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def __magic_name__ ( self : int ): '''simple docstring''' snake_case__ : str = MobileViTVaModelTester(self ) snake_case__ : Union[str, Any] = MobileViTVaConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def __magic_name__ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __magic_name__ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __magic_name__ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __magic_name__ ( self : int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __magic_name__ ( self : int ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' pass def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' snake_case__ , snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[int] = model_class(snake_case_ ) snake_case__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Any = [*signature.parameters.keys()] snake_case__ : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case_ ) def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __magic_name__ ( self : List[str] ): '''simple docstring''' def check_hidden_states_output(snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : Tuple ): snake_case__ : Optional[Any] = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): snake_case__ : Tuple = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) snake_case__ : Union[str, Any] = outputs.hidden_states snake_case__ : Any = 5 self.assertEqual(len(snake_case_ ) , snake_case_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. snake_case__ : Dict = 2 for i in range(len(snake_case_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) snake_case__ , snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[str] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : int = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : int ): '''simple docstring''' snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) def __magic_name__ ( self : Any ): '''simple docstring''' snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case_ ) @slow def __magic_name__ ( self : List[Any] ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Any = MobileViTVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _a ( ): """simple docstring""" snake_case__ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def __magic_name__ ( self : Optional[int] ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __magic_name__ ( self : Tuple ): '''simple docstring''' snake_case__ : Tuple = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( snake_case_ ) snake_case__ : Any = self.default_image_processor snake_case__ : Tuple = prepare_img() snake_case__ : str = image_processor(images=snake_case_ , return_tensors='''pt''' ).to(snake_case_ ) # forward pass with torch.no_grad(): snake_case__ : Any = model(**snake_case_ ) # verify the logits snake_case__ : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) snake_case__ : Tuple = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4 ) ) @slow def __magic_name__ ( self : Tuple ): '''simple docstring''' snake_case__ : List[Any] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) snake_case__ : Any = model.to(snake_case_ ) snake_case__ : Tuple = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) snake_case__ : str = prepare_img() snake_case__ : Union[str, Any] = image_processor(images=snake_case_ , return_tensors='''pt''' ).to(snake_case_ ) # forward pass with torch.no_grad(): snake_case__ : Union[str, Any] = model(**snake_case_ ) snake_case__ : Tuple = outputs.logits # verify the logits snake_case__ : Optional[Any] = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , snake_case_ ) snake_case__ : List[Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=snake_case_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case_ , atol=1e-4 ) ) @slow def __magic_name__ ( self : List[Any] ): '''simple docstring''' snake_case__ : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) snake_case__ : List[str] = model.to(snake_case_ ) snake_case__ : Optional[int] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) snake_case__ : str = prepare_img() snake_case__ : str = image_processor(images=snake_case_ , return_tensors='''pt''' ).to(snake_case_ ) # forward pass with torch.no_grad(): snake_case__ : Any = model(**snake_case_ ) snake_case__ : str = outputs.logits.detach().cpu() snake_case__ : int = image_processor.post_process_semantic_segmentation(outputs=snake_case_ , target_sizes=[(5_0, 6_0)] ) snake_case__ : int = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , snake_case_ ) snake_case__ : str = image_processor.post_process_semantic_segmentation(outputs=snake_case_ ) snake_case__ : Any = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , snake_case_ )
502
1
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def UpperCamelCase_ ( ) -> Optional[Any]: a__, a__ : Tuple = 9, 14 # noqa: F841 a__ : int = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] a__ : str = defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) a__ : Union[str, Any] = mst(__a ) a__ : str = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: a__ : List[str] = tuple(answer[:2] ) a__ : Any = tuple(edge[::-1] ) assert edge in result or reverse in result
37
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( UpperCamelCase__ ): def __init__( self: int , *UpperCamelCase_: str , UpperCamelCase_: List[str]=None , UpperCamelCase_: int=None , **UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = eval_examples lowercase__ = post_process_function def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Dataset] = None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "eval" , **UpperCamelCase_: int , ) -> Dict[str, float]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) lowercase__ = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) lowercase__ = gen_kwargs lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) else: lowercase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: List[str]=None , UpperCamelCase_: str = "test" , **UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , '''predict''' ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
43
0
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def lowerCamelCase__ ( SCREAMING_SNAKE_CASE__ ) ->List[str]: _UpperCAmelCase =split_dict._to_yaml_list() assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _UpperCAmelCase =SplitDict._from_yaml_list(_lowerCamelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _UpperCAmelCase =None # the split name of split_dict takes over the name of the split info object _UpperCAmelCase =split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=_lowerCamelCase ), SplitInfo(dataset_name="my_dataset" )] ) def lowerCamelCase__ ( SCREAMING_SNAKE_CASE__ ) ->Any: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files _UpperCAmelCase =asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
721
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =1 _UpperCAmelCase =3 _UpperCAmelCase =(32, 32) _UpperCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_snake_case ) return image @property def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) _UpperCAmelCase =UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=_snake_case , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) _UpperCAmelCase =AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) _UpperCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) return CLIPTextModel(_snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase ="cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase =self.dummy_cond_unet_upscale _UpperCAmelCase =DDPMScheduler() _UpperCAmelCase =DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase =self.dummy_vae _UpperCAmelCase =self.dummy_text_encoder _UpperCAmelCase =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase =Image.fromarray(np.uinta(_snake_case ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _UpperCAmelCase =StableDiffusionUpscalePipeline( unet=_snake_case , low_res_scheduler=_snake_case , scheduler=_snake_case , vae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , max_noise_level=350 , ) _UpperCAmelCase =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase ="A painting of a squirrel eating a burger" _UpperCAmelCase =torch.Generator(device=_snake_case ).manual_seed(0 ) _UpperCAmelCase =sd_pipe( [prompt] , image=_snake_case , generator=_snake_case , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase =output.images _UpperCAmelCase =torch.Generator(device=_snake_case ).manual_seed(0 ) _UpperCAmelCase =sd_pipe( [prompt] , image=_snake_case , generator=_snake_case , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=_snake_case , )[0] _UpperCAmelCase =image[0, -3:, -3:, -1] _UpperCAmelCase =image_from_tuple[0, -3:, -3:, -1] _UpperCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _UpperCAmelCase =np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase ="cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase =self.dummy_cond_unet_upscale _UpperCAmelCase =DDPMScheduler() _UpperCAmelCase =DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase =self.dummy_vae _UpperCAmelCase =self.dummy_text_encoder _UpperCAmelCase =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase =Image.fromarray(np.uinta(_snake_case ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _UpperCAmelCase =StableDiffusionUpscalePipeline( unet=_snake_case , low_res_scheduler=_snake_case , scheduler=_snake_case , vae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , max_noise_level=350 , ) _UpperCAmelCase =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase ="A painting of a squirrel eating a burger" _UpperCAmelCase =sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase =output.images assert image.shape[0] == 2 _UpperCAmelCase =torch.Generator(device=_snake_case ).manual_seed(0 ) _UpperCAmelCase =sd_pipe( [prompt] , image=_snake_case , generator=_snake_case , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase =output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.dummy_cond_unet_upscale _UpperCAmelCase =DDPMScheduler() _UpperCAmelCase =DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase =self.dummy_vae _UpperCAmelCase =self.dummy_text_encoder _UpperCAmelCase =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase =Image.fromarray(np.uinta(_snake_case ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _UpperCAmelCase =unet.half() _UpperCAmelCase =text_encoder.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase =StableDiffusionUpscalePipeline( unet=_snake_case , low_res_scheduler=_snake_case , scheduler=_snake_case , vae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , max_noise_level=350 , ) _UpperCAmelCase =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase ="A painting of a squirrel eating a burger" _UpperCAmelCase =torch.manual_seed(0 ) _UpperCAmelCase =sd_pipe( [prompt] , image=_snake_case , generator=_snake_case , num_inference_steps=2 , output_type="np" , ).images _UpperCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) _UpperCAmelCase ="stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() _UpperCAmelCase ="a cat sitting on a park bench" _UpperCAmelCase =torch.manual_seed(0 ) _UpperCAmelCase =pipe( prompt=_snake_case , image=_snake_case , generator=_snake_case , output_type="np" , ) _UpperCAmelCase =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) _UpperCAmelCase ="stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( _snake_case , torch_dtype=torch.floataa , ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() _UpperCAmelCase ="a cat sitting on a park bench" _UpperCAmelCase =torch.manual_seed(0 ) _UpperCAmelCase =pipe( prompt=_snake_case , image=_snake_case , generator=_snake_case , output_type="np" , ) _UpperCAmelCase =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def SCREAMING_SNAKE_CASE ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase ="stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( _snake_case , torch_dtype=torch.floataa , ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCAmelCase ="a cat sitting on a park bench" _UpperCAmelCase =torch.manual_seed(0 ) _UpperCAmelCase =pipe( prompt=_snake_case , image=_snake_case , generator=_snake_case , num_inference_steps=5 , output_type="np" , ) _UpperCAmelCase =torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
592
0
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : List[str] = 0 def __A ( self ): _lowerCAmelCase : Any = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(a__ , a__ ) def __A ( self ): with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Tuple = Path(a__ ) / """preprocessor_config.json""" _lowerCAmelCase : List[Any] = Path(a__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(a__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(a__ , """w""" ) ) _lowerCAmelCase : Dict = AutoImageProcessor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def __A ( self ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Union[str, Any] = Path(a__ ) / """preprocessor_config.json""" _lowerCAmelCase : str = Path(a__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(a__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(a__ , """w""" ) ) _lowerCAmelCase : Tuple = AutoImageProcessor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def __A ( self ): with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : str = CLIPConfig() # Create a dummy config file with image_proceesor_type _lowerCAmelCase : List[str] = Path(a__ ) / """preprocessor_config.json""" _lowerCAmelCase : Union[str, Any] = Path(a__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(a__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(a__ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _lowerCAmelCase : str = AutoImageProcessor.from_pretrained(a__ ).to_dict() config_dict.pop("""image_processor_type""" ) _lowerCAmelCase : Dict = CLIPImageProcessor(**a__ ) # save in new folder model_config.save_pretrained(a__ ) config.save_pretrained(a__ ) _lowerCAmelCase : Dict = AutoImageProcessor.from_pretrained(a__ ) # make sure private variable is not incorrectly saved _lowerCAmelCase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(a__ , a__ ) def __A ( self ): with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Optional[Any] = Path(a__ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(a__ , """w""" ) , ) _lowerCAmelCase : List[str] = AutoImageProcessor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def __A ( self ): with self.assertRaisesRegex( a__ , """clip-base is not a local folder and is not a valid model identifier""" ): _lowerCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained("""clip-base""" ) def __A ( self ): with self.assertRaisesRegex( a__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _lowerCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(a__ , revision="""aaaaaa""" ) def __A ( self ): with self.assertRaisesRegex( a__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): _lowerCAmelCase : Any = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __A ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(a__ ): _lowerCAmelCase : List[str] = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(a__ ): _lowerCAmelCase : List[str] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=a__ ) _lowerCAmelCase : int = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=a__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(a__ ) _lowerCAmelCase : int = AutoImageProcessor.from_pretrained(a__ , trust_remote_code=a__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def __A ( self ): try: AutoConfig.register("""custom""" , a__ ) AutoImageProcessor.register(a__ , a__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a__ ): AutoImageProcessor.register(a__ , a__ ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Optional[Any] = Path(a__ ) / """preprocessor_config.json""" _lowerCAmelCase : List[Any] = Path(a__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(a__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(a__ , """w""" ) ) _lowerCAmelCase : Optional[Any] = CustomImageProcessor.from_pretrained(a__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(a__ ) _lowerCAmelCase : str = AutoImageProcessor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __A ( self ): class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = True try: AutoConfig.register("""custom""" , a__ ) AutoImageProcessor.register(a__ , a__ ) # If remote code is not set, the default is to use local _lowerCAmelCase : Dict = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _lowerCAmelCase : Dict = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=a__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _lowerCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=a__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(a__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
213
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): # TODO: is there an appropriate internal test set? _UpperCamelCase : int = "ssube/stable-diffusion-x4-upscaler-onnx" def __A ( self , a__=0 ): _lowerCAmelCase : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(a__ ) ) _lowerCAmelCase : List[Any] = torch.manual_seed(a__ ) _lowerCAmelCase : Any = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**a__ ).images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : List[Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def __A ( self ): _lowerCAmelCase : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Dict = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**a__ ).images _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Any = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __A ( self ): _lowerCAmelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = self.get_dummy_inputs() _lowerCAmelCase : str = pipe(**a__ ).images _lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Any = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __A ( self ): _lowerCAmelCase : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Any = self.get_dummy_inputs() _lowerCAmelCase : str = pipe(**a__ ).images _lowerCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : List[str] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __A ( self ): _lowerCAmelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase : Tuple = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**a__ ).images _lowerCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Dict = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __A ( unittest.TestCase ): @property def __A ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __A ( self ): _lowerCAmelCase : str = ort.SessionOptions() _lowerCAmelCase : Tuple = False return options def __A ( self ): _lowerCAmelCase : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _lowerCAmelCase : Any = init_image.resize((128, 128) ) # using the PNDM scheduler by default _lowerCAmelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = """A fantasy landscape, trending on artstation""" _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : Dict = pipe( prompt=a__ , image=a__ , guidance_scale=7.5 , num_inference_steps=10 , generator=a__ , output_type="""np""" , ) _lowerCAmelCase : List[str] = output.images _lowerCAmelCase : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _lowerCAmelCase : Dict = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def __A ( self ): _lowerCAmelCase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _lowerCAmelCase : Union[str, Any] = init_image.resize((128, 128) ) _lowerCAmelCase : int = LMSDiscreteScheduler.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , subfolder="""scheduler""" ) _lowerCAmelCase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , scheduler=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : List[Any] = """A fantasy landscape, trending on artstation""" _lowerCAmelCase : List[Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe( prompt=a__ , image=a__ , guidance_scale=7.5 , num_inference_steps=20 , generator=a__ , output_type="""np""" , ) _lowerCAmelCase : List[Any] = output.images _lowerCAmelCase : Optional[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _lowerCAmelCase : Optional[Any] = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
213
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer __magic_name__ : Optional[Any] = logging.get_logger(__name__) __magic_name__ : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __magic_name__ : str = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } __magic_name__ : Any = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } __magic_name__ : Any = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class A__ ( __snake_case ): '''simple docstring''' snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = RealmTokenizer def __init__( self : str , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Optional[Any]=True , _SCREAMING_SNAKE_CASE : Tuple="[UNK]" , _SCREAMING_SNAKE_CASE : Optional[int]="[SEP]" , _SCREAMING_SNAKE_CASE : Dict="[PAD]" , _SCREAMING_SNAKE_CASE : Any="[CLS]" , _SCREAMING_SNAKE_CASE : int="[MASK]" , _SCREAMING_SNAKE_CASE : int=True , _SCREAMING_SNAKE_CASE : List[str]=None , **_SCREAMING_SNAKE_CASE : int , ): """simple docstring""" super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('strip_accents' , _SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): UpperCamelCase = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop('type' ) ) UpperCamelCase = do_lower_case UpperCamelCase = strip_accents UpperCamelCase = tokenize_chinese_chars UpperCamelCase = normalizer_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = do_lower_case def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : int ): """simple docstring""" UpperCamelCase = PaddingStrategy.MAX_LENGTH UpperCamelCase = text UpperCamelCase = kwargs.pop('text_pair' , _SCREAMING_SNAKE_CASE ) UpperCamelCase = kwargs.pop('return_tensors' , _SCREAMING_SNAKE_CASE ) UpperCamelCase = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(_SCREAMING_SNAKE_CASE ): if batch_text_pair is not None: UpperCamelCase = batch_text_pair[idx] else: UpperCamelCase = None UpperCamelCase = super().__call__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = encoded_candidates.get('input_ids' ) UpperCamelCase = encoded_candidates.get('attention_mask' ) UpperCamelCase = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(_SCREAMING_SNAKE_CASE ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_SCREAMING_SNAKE_CASE ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = {key: item for key, item in output_data.items() if len(_SCREAMING_SNAKE_CASE ) != 0} return BatchEncoding(_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any]=None ): """simple docstring""" UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self : int , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None ): """simple docstring""" UpperCamelCase = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
705
__magic_name__ : List[str] = tuple[float, float, float] __magic_name__ : Optional[int] = tuple[float, float, float] def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> Vectorad: """simple docstring""" UpperCamelCase = end_pointa[0] - end_pointa[0] UpperCamelCase = end_pointa[1] - end_pointa[1] UpperCamelCase = end_pointa[2] - end_pointa[2] return (x, y, z) def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> Vectorad: """simple docstring""" UpperCamelCase = ab[1] * ac[2] - ab[2] * ac[1] # *i UpperCamelCase = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j UpperCamelCase = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> bool: """simple docstring""" return tuple(round(_UpperCamelCase , _UpperCamelCase) for x in vector) == (0, 0, 0) def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 10) -> bool: """simple docstring""" UpperCamelCase = create_vector(_UpperCamelCase , _UpperCamelCase) UpperCamelCase = create_vector(_UpperCamelCase , _UpperCamelCase) return is_zero_vector(get_ad_vectors_cross(_UpperCamelCase , _UpperCamelCase) , _UpperCamelCase)
410
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : Dict = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __a: Tuple = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __a: Dict = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Optional[int] = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=UpperCAmelCase )[0] @deprecated(UpperCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __UpperCamelCase ( UpperCAmelCase ): print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=UpperCAmelCase ) as bytestream: lowercase__ : int = _readaa(UpperCAmelCase ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) lowercase__ : Optional[Any] = _readaa(UpperCAmelCase ) lowercase__ : List[Any] = _readaa(UpperCAmelCase ) lowercase__ : Any = _readaa(UpperCAmelCase ) lowercase__ : Tuple = bytestream.read(rows * cols * num_images ) lowercase__ : Union[str, Any] = numpy.frombuffer(UpperCAmelCase , dtype=numpy.uinta ) lowercase__ : int = data.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , 1 ) return data @deprecated(UpperCAmelCase , '''Please use tf.one_hot on tensors.''' ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : int = labels_dense.shape[0] lowercase__ : List[Any] = numpy.arange(UpperCAmelCase ) * num_classes lowercase__ : str = numpy.zeros((num_labels, num_classes) ) lowercase__ : int = 1 return labels_one_hot @deprecated(UpperCAmelCase , '''Please use tf.data to implement this functionality.''' ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=10 ): print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=UpperCAmelCase ) as bytestream: lowercase__ : Tuple = _readaa(UpperCAmelCase ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) lowercase__ : int = _readaa(UpperCAmelCase ) lowercase__ : Union[str, Any] = bytestream.read(UpperCAmelCase ) lowercase__ : str = numpy.frombuffer(UpperCAmelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(UpperCAmelCase , UpperCAmelCase ) return labels class UpperCAmelCase : '''simple docstring''' @deprecated( __lowerCAmelCase , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=dtypes.floataa , __lowerCAmelCase=True , __lowerCAmelCase=None , ) -> Any: lowercase__ , lowercase__ : str = random_seed.get_seed(__lowerCAmelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowercase__ : List[str] = dtypes.as_dtype(__lowerCAmelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: lowercase__ : str = 10000 lowercase__ : Any = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F"""images.shape: {images.shape} labels.shape: {labels.shape}""" lowercase__ : Any = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowercase__ : Optional[int] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowercase__ : List[Any] = images.astype(numpy.floataa ) lowercase__ : Any = numpy.multiply(__lowerCAmelCase , 1.0 / 2_5_5.0 ) lowercase__ : int = images lowercase__ : int = labels lowercase__ : Any = 0 lowercase__ : int = 0 @property def _lowerCAmelCase( self ) -> str: return self._images @property def _lowerCAmelCase( self ) -> Tuple: return self._labels @property def _lowerCAmelCase( self ) -> Tuple: return self._num_examples @property def _lowerCAmelCase( self ) -> Tuple: return self._epochs_completed def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=True ) -> List[str]: if fake_data: lowercase__ : Optional[int] = [1] * 784 lowercase__ : Tuple = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__lowerCAmelCase )], [fake_label for _ in range(__lowerCAmelCase )], ) lowercase__ : Optional[int] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowercase__ : Any = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCAmelCase ) lowercase__ : Optional[Any] = self.images[perma] lowercase__ : str = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowercase__ : Optional[int] = self._num_examples - start lowercase__ : Any = self._images[start : self._num_examples] lowercase__ : List[str] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowercase__ : Tuple = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCAmelCase ) lowercase__ : Optional[int] = self.images[perm] lowercase__ : List[Any] = self.labels[perm] # Start next epoch lowercase__ : List[Any] = 0 lowercase__ : Optional[Any] = batch_size - rest_num_examples lowercase__ : str = self._index_in_epoch lowercase__ : List[str] = self._images[start:end] lowercase__ : str = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowercase__ : Optional[Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(UpperCAmelCase , '''Please write your own downloading logic.''' ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if not gfile.Exists(UpperCAmelCase ): gfile.MakeDirs(UpperCAmelCase ) lowercase__ : List[str] = os.path.join(UpperCAmelCase , UpperCAmelCase ) if not gfile.Exists(UpperCAmelCase ): urllib.request.urlretrieve(UpperCAmelCase , UpperCAmelCase ) # noqa: S310 with gfile.GFile(UpperCAmelCase ) as f: lowercase__ : Tuple = f.size() print('''Successfully downloaded''' , UpperCAmelCase , UpperCAmelCase , '''bytes.''' ) return filepath @deprecated( UpperCAmelCase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=dtypes.floataa , UpperCAmelCase=True , UpperCAmelCase=5000 , UpperCAmelCase=None , UpperCAmelCase=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=UpperCAmelCase , one_hot=UpperCAmelCase , dtype=UpperCAmelCase , seed=UpperCAmelCase ) lowercase__ : Any = fake() lowercase__ : Optional[int] = fake() lowercase__ : Optional[int] = fake() return _Datasets(train=UpperCAmelCase , validation=UpperCAmelCase , test=UpperCAmelCase ) if not source_url: # empty string check lowercase__ : Tuple = DEFAULT_SOURCE_URL lowercase__ : Tuple = '''train-images-idx3-ubyte.gz''' lowercase__ : List[str] = '''train-labels-idx1-ubyte.gz''' lowercase__ : Optional[int] = '''t10k-images-idx3-ubyte.gz''' lowercase__ : str = '''t10k-labels-idx1-ubyte.gz''' lowercase__ : Optional[Any] = _maybe_download( UpperCAmelCase , UpperCAmelCase , source_url + train_images_file ) with gfile.Open(UpperCAmelCase , '''rb''' ) as f: lowercase__ : Optional[int] = _extract_images(UpperCAmelCase ) lowercase__ : Optional[Any] = _maybe_download( UpperCAmelCase , UpperCAmelCase , source_url + train_labels_file ) with gfile.Open(UpperCAmelCase , '''rb''' ) as f: lowercase__ : Union[str, Any] = _extract_labels(UpperCAmelCase , one_hot=UpperCAmelCase ) lowercase__ : Any = _maybe_download( UpperCAmelCase , UpperCAmelCase , source_url + test_images_file ) with gfile.Open(UpperCAmelCase , '''rb''' ) as f: lowercase__ : Tuple = _extract_images(UpperCAmelCase ) lowercase__ : Optional[int] = _maybe_download( UpperCAmelCase , UpperCAmelCase , source_url + test_labels_file ) with gfile.Open(UpperCAmelCase , '''rb''' ) as f: lowercase__ : Tuple = _extract_labels(UpperCAmelCase , one_hot=UpperCAmelCase ) if not 0 <= validation_size <= len(UpperCAmelCase ): lowercase__ : Optional[int] = ( '''Validation size should be between 0 and ''' F"""{len(UpperCAmelCase )}. Received: {validation_size}.""" ) raise ValueError(UpperCAmelCase ) lowercase__ : Optional[int] = train_images[:validation_size] lowercase__ : List[str] = train_labels[:validation_size] lowercase__ : Tuple = train_images[validation_size:] lowercase__ : Optional[int] = train_labels[validation_size:] lowercase__ : List[str] = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} lowercase__ : str = _DataSet(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) lowercase__ : int = _DataSet(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) lowercase__ : List[Any] = _DataSet(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) return _Datasets(train=UpperCAmelCase , validation=UpperCAmelCase , test=UpperCAmelCase )
152
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : int ) -> Tuple: debug_launcher(test_script.main ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Union[str, Any]: debug_launcher(test_ops.main )
17
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "x" , _lowerCamelCase = 10**-10 , _lowerCamelCase = 1 , ): A : str = symbols(_lowerCamelCase ) A : int = lambdify(_lowerCamelCase , _lowerCamelCase ) A : List[str] = lambdify(_lowerCamelCase , diff(_lowerCamelCase , _lowerCamelCase ) ) A : Optional[int] = starting_point while True: if diff_function(_lowerCamelCase ) != 0: A : Optional[Any] = prev_guess - multiplicity * func(_lowerCamelCase ) / diff_function( _lowerCamelCase ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess A : int = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
17
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class a ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=True , snake_case_=None , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=True , snake_case_=1 / 255 , snake_case_=True , ): '''simple docstring''' __UpperCAmelCase: List[str] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __UpperCAmelCase: Tuple = parent __UpperCAmelCase: List[str] = batch_size __UpperCAmelCase: List[str] = num_channels __UpperCAmelCase: Union[str, Any] = min_resolution __UpperCAmelCase: Optional[int] = max_resolution __UpperCAmelCase: Dict = do_resize __UpperCAmelCase: Any = size __UpperCAmelCase: Optional[int] = do_normalize __UpperCAmelCase: Any = image_mean __UpperCAmelCase: List[Any] = image_std __UpperCAmelCase: Any = do_rescale __UpperCAmelCase: int = rescale_factor __UpperCAmelCase: Any = do_pad def lowercase_ ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self , snake_case_ , snake_case_=False ): '''simple docstring''' if not batched: __UpperCAmelCase: Union[str, Any] = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __UpperCAmelCase, __UpperCAmelCase: Dict = image.size else: __UpperCAmelCase, __UpperCAmelCase: List[Any] = image.shape[1], image.shape[2] if w < h: __UpperCAmelCase: str = int(self.size["""shortest_edge"""] * h / w ) __UpperCAmelCase: List[str] = self.size["""shortest_edge"""] elif w > h: __UpperCAmelCase: List[Any] = self.size["""shortest_edge"""] __UpperCAmelCase: Any = int(self.size["""shortest_edge"""] * w / h ) else: __UpperCAmelCase: Optional[Any] = self.size["""shortest_edge"""] __UpperCAmelCase: Dict = self.size["""shortest_edge"""] else: __UpperCAmelCase: Union[str, Any] = [] for image in image_inputs: __UpperCAmelCase, __UpperCAmelCase: Union[str, Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __UpperCAmelCase: str = max(snake_case_ , key=lambda snake_case_ : item[0] )[0] __UpperCAmelCase: Any = max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a ( __lowerCAmelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = ConditionalDetrImageProcessor if is_vision_available() else None def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Any = ConditionalDetrImageProcessingTester(self ) @property def lowercase_ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , snake_case_ ) __UpperCAmelCase: str = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=snake_case_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , snake_case_ ) def lowercase_ ( self ): '''simple docstring''' pass def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase: int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __UpperCAmelCase: int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __UpperCAmelCase, __UpperCAmelCase: str = self.image_processor_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase, __UpperCAmelCase: Tuple = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __UpperCAmelCase: Optional[int] = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __UpperCAmelCase: Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __UpperCAmelCase, __UpperCAmelCase: List[Any] = self.image_processor_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase: List[str] = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values __UpperCAmelCase, __UpperCAmelCase: Dict = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __UpperCAmelCase: Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __UpperCAmelCase, __UpperCAmelCase: List[Any] = self.image_processor_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase: Any = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values __UpperCAmelCase, __UpperCAmelCase: List[str] = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __UpperCAmelCase: List[str] = json.loads(f.read() ) __UpperCAmelCase: Optional[Any] = {"""image_id""": 3_9769, """annotations""": target} # encode them __UpperCAmelCase: Tuple = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" ) __UpperCAmelCase: int = image_processing(images=snake_case_ , annotations=snake_case_ , return_tensors="""pt""" ) # verify pixel values __UpperCAmelCase: Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , snake_case_ ) __UpperCAmelCase: Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , snake_case_ , atol=1e-4 ) ) # verify area __UpperCAmelCase: str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , snake_case_ ) ) # verify boxes __UpperCAmelCase: int = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , snake_case_ ) __UpperCAmelCase: List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , snake_case_ , atol=1e-3 ) ) # verify image_id __UpperCAmelCase: Dict = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , snake_case_ ) ) # verify is_crowd __UpperCAmelCase: int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , snake_case_ ) ) # verify class_labels __UpperCAmelCase: List[str] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , snake_case_ ) ) # verify orig_size __UpperCAmelCase: Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , snake_case_ ) ) # verify size __UpperCAmelCase: Dict = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , snake_case_ ) ) @slow def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __UpperCAmelCase: Any = json.loads(f.read() ) __UpperCAmelCase: str = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __UpperCAmelCase: Union[str, Any] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __UpperCAmelCase: int = ConditionalDetrImageProcessor(format="""coco_panoptic""" ) __UpperCAmelCase: Dict = image_processing(images=snake_case_ , annotations=snake_case_ , masks_path=snake_case_ , return_tensors="""pt""" ) # verify pixel values __UpperCAmelCase: List[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , snake_case_ ) __UpperCAmelCase: Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , snake_case_ , atol=1e-4 ) ) # verify area __UpperCAmelCase: List[Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , snake_case_ ) ) # verify boxes __UpperCAmelCase: int = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , snake_case_ ) __UpperCAmelCase: Optional[Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , snake_case_ , atol=1e-3 ) ) # verify image_id __UpperCAmelCase: Optional[int] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , snake_case_ ) ) # verify is_crowd __UpperCAmelCase: Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , snake_case_ ) ) # verify class_labels __UpperCAmelCase: Dict = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , snake_case_ ) ) # verify masks __UpperCAmelCase: List[Any] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , snake_case_ ) # verify orig_size __UpperCAmelCase: Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , snake_case_ ) ) # verify size __UpperCAmelCase: int = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , snake_case_ ) )
523
'''simple docstring''' import argparse import json from tqdm import tqdm def UpperCamelCase__ ( ) -> Optional[Any]: __UpperCAmelCase: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--src_path""" , type=_lowercase , default="""biencoder-nq-dev.json""" , help="""Path to raw DPR training data""" , ) parser.add_argument( """--evaluation_set""" , type=_lowercase , help="""where to store parsed evaluation_set file""" , ) parser.add_argument( """--gold_data_path""" , type=_lowercase , help="""where to store parsed gold_data_path file""" , ) __UpperCAmelCase: Optional[int] = parser.parse_args() with open(args.src_path , """r""" ) as src_file, open(args.evaluation_set , """w""" ) as eval_file, open( args.gold_data_path , """w""" ) as gold_file: __UpperCAmelCase: List[Any] = json.load(_lowercase ) for dpr_record in tqdm(_lowercase ): __UpperCAmelCase: Tuple = dpr_record["""question"""] __UpperCAmelCase: str = [context["""title"""] for context in dpr_record["""positive_ctxs"""]] eval_file.write(question + """\n""" ) gold_file.write("""\t""".join(_lowercase ) + """\n""" ) if __name__ == "__main__": main()
523
1
from jiwer import compute_measures import datasets snake_case__ : List[Any] = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' snake_case__ : Tuple = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' snake_case__ : Any = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", ] , ) def SCREAMING_SNAKE_CASE ( self , _snake_case=None , _snake_case=None , _snake_case=False ): if concatenate_texts: return compute_measures(_snake_case , _snake_case )["wer"] else: _UpperCAmelCase =0 _UpperCAmelCase =0 for prediction, reference in zip(_snake_case , _snake_case ): _UpperCAmelCase =compute_measures(_snake_case , _snake_case ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
592
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position snake_case__ : List[Any] = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip snake_case__ : Optional[Any] = concatenate_datasets snake_case__ : str = DownloadConfig snake_case__ : Optional[int] = DownloadManager snake_case__ : List[Any] = DownloadMode snake_case__ : List[str] = DownloadConfig snake_case__ : List[str] = DownloadMode snake_case__ : List[Any] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
592
1
"""simple docstring""" from math import pi, sqrt def lowerCamelCase__ ( __snake_case ) -> float: """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) if num > 171.5: raise OverflowError('''math range error''' ) elif num - int(__snake_case ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(__snake_case ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowerCamelCase__ ( ) -> None: """simple docstring""" assert gamma(0.5 ) == sqrt(__snake_case ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _a = 1.0 while num: _a = float(input("""Gamma of: """)) print(F"""gamma({num}) = {gamma(num)}""") print("""\nEnter 0 to exit...""")
19
"""simple docstring""" from itertools import product def __magic_name__ ( UpperCamelCase : int , UpperCamelCase : int ) -> list[int]: a__ = sides_number a__ = max_face_number * dice_number a__ = [0] * (max_total + 1) a__ = 1 a__ = range(UpperCamelCase , max_face_number + 1 ) for dice_numbers in product(UpperCamelCase , repeat=UpperCamelCase ): a__ = sum(UpperCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def __magic_name__ ( ) -> float: a__ = total_frequency_distribution( sides_number=4 , dice_number=9 ) a__ = total_frequency_distribution( sides_number=6 , dice_number=6 ) a__ = 0 a__ = 9 a__ = 4 * 9 a__ = 6 for peter_total in range(UpperCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) a__ = (4**9) * (6**6) a__ = peter_wins_count / total_games_number a__ = round(UpperCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
273
0
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a_ ( UpperCamelCase_ ): _snake_case = (KDPMaDiscreteScheduler,) _snake_case = 10 def SCREAMING_SNAKE_CASE__ (self , **__a) -> List[str]: """simple docstring""" __snake_case : Any = { 'num_train_timesteps': 1_1_0_0, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**__a) return config def SCREAMING_SNAKE_CASE__ (self) -> List[str]: """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__a) def SCREAMING_SNAKE_CASE__ (self) -> List[str]: """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02]): self.check_over_configs(beta_start=__a , beta_end=__a) def SCREAMING_SNAKE_CASE__ (self) -> Tuple: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a) def SCREAMING_SNAKE_CASE__ (self) -> Optional[int]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a) def SCREAMING_SNAKE_CASE__ (self) -> List[str]: """simple docstring""" __snake_case : List[Any] = self.scheduler_classes[0] __snake_case : Optional[int] = self.get_scheduler_config(prediction_type='v_prediction') __snake_case : str = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) __snake_case : str = self.dummy_model() __snake_case : Any = self.dummy_sample_deter * scheduler.init_noise_sigma __snake_case : Dict = sample.to(__a) for i, t in enumerate(scheduler.timesteps): __snake_case : Any = scheduler.scale_model_input(__a , __a) __snake_case : str = model(__a , __a) __snake_case : int = scheduler.step(__a , __a , __a) __snake_case : Tuple = output.prev_sample __snake_case : Optional[Any] = torch.sum(torch.abs(__a)) __snake_case : List[str] = torch.mean(torch.abs(__a)) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_934E-07) < 1E-2 assert abs(result_mean.item() - 6.1_112E-10) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_428_650_170_972E-07) < 1E-2 assert abs(result_mean.item() - 0.0_002) < 1E-3 def SCREAMING_SNAKE_CASE__ (self) -> List[Any]: """simple docstring""" if torch_device == "mps": return __snake_case : str = self.scheduler_classes[0] __snake_case : int = self.get_scheduler_config() __snake_case : Optional[int] = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps) __snake_case : List[Any] = self.dummy_model() __snake_case : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma __snake_case : Tuple = sample.to(__a) for i, t in enumerate(scheduler.timesteps): __snake_case : Tuple = scheduler.scale_model_input(__a , __a) __snake_case : Dict = model(__a , __a) __snake_case : Dict = scheduler.step(__a , __a , __a) __snake_case : Optional[int] = output.prev_sample __snake_case : str = torch.sum(torch.abs(__a)) __snake_case : Tuple = torch.mean(torch.abs(__a)) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125) < 1E-2 assert abs(result_mean.item() - 0.0_266) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125) < 1E-2 assert abs(result_mean.item() - 0.0_266) < 1E-3 def SCREAMING_SNAKE_CASE__ (self) -> Optional[Any]: """simple docstring""" if torch_device == "mps": return __snake_case : Dict = self.scheduler_classes[0] __snake_case : str = self.get_scheduler_config() __snake_case : Dict = scheduler_class(**__a) scheduler.set_timesteps(self.num_inference_steps , device=__a) __snake_case : str = self.dummy_model() __snake_case : Tuple = self.dummy_sample_deter.to(__a) * scheduler.init_noise_sigma for t in scheduler.timesteps: __snake_case : Optional[Any] = scheduler.scale_model_input(__a , __a) __snake_case : str = model(__a , __a) __snake_case : str = scheduler.step(__a , __a , __a) __snake_case : Optional[Any] = output.prev_sample __snake_case : int = torch.sum(torch.abs(__a)) __snake_case : Dict = torch.mean(torch.abs(__a)) if str(__a).startswith('cpu'): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125) < 1E-2 assert abs(result_mean.item() - 0.0_266) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125) < 1E-2 assert abs(result_mean.item() - 0.0_266) < 1E-3
705
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
61
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Tuple , __A :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = data def __iter__( self :Union[str, Any] ) -> int: """simple docstring""" for element in self.data: yield element def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int=True ): SCREAMING_SNAKE_CASE__ = Accelerator(even_batches=UpperCamelCase__ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Accelerator , UpperCamelCase__: int , UpperCamelCase__: int , UpperCamelCase__: bool = False ): if iterable: SCREAMING_SNAKE_CASE__ = DummyIterableDataset(torch.as_tensor(range(UpperCamelCase__ ) ) ) else: SCREAMING_SNAKE_CASE__ = TensorDataset(torch.as_tensor(range(UpperCamelCase__ ) ) ) SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ ) return dl def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Accelerator , UpperCamelCase__: int , UpperCamelCase__: int , UpperCamelCase__: List[int] , UpperCamelCase__: List[int] , ): SCREAMING_SNAKE_CASE__ = create_dataloader(accelerator=UpperCamelCase__ , dataset_size=UpperCamelCase__ , batch_size=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( UpperCamelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( UpperCamelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = create_accelerator(even_batches=UpperCamelCase__ ) verify_dataloader_batch_sizes( UpperCamelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( UpperCamelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = create_accelerator(even_batches=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = create_dataloader(UpperCamelCase__ , dataset_size=3 , batch_size=1 ) SCREAMING_SNAKE_CASE__ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = ddp_model(batch[0].float() ) SCREAMING_SNAKE_CASE__ = output.sum() loss.backward() batch_idxs.append(UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ): with warnings.catch_warnings(record=UpperCamelCase__ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , UpperCamelCase__ ) assert "only supported for multi-GPU" in str(w[-1].message ) def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = create_accelerator(even_batches=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = create_dataloader(UpperCamelCase__ , dataset_size=3 , batch_size=1 ) SCREAMING_SNAKE_CASE__ = create_dataloader(UpperCamelCase__ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = train_dl.batch_sampler.even_batches SCREAMING_SNAKE_CASE__ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = create_accelerator(even_batches=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ ) create_dataloader(UpperCamelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = create_dataloader(UpperCamelCase__ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = create_accelerator() SCREAMING_SNAKE_CASE__ = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ ) create_dataloader(UpperCamelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCamelCase__ ) with warnings.catch_warnings(record=UpperCamelCase__ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCamelCase__ ): pass assert issubclass(w[-1].category , UpperCamelCase__ ) assert "only supported for map-style datasets" in str(w[-1].message ) def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) SCREAMING_SNAKE_CASE__ = accelerator.state.distributed_type SCREAMING_SNAKE_CASE__ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = original_state if __name__ == "__main__": main()
6
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class snake_case ( _snake_case ): '''simple docstring''' UpperCamelCase__ : torch.FloatTensor class snake_case ( _snake_case , _snake_case ): '''simple docstring''' @register_to_config def __init__( self : Tuple , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 3 , lowerCamelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCamelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCamelCase_ : Tuple[int] = (64,) , lowerCamelCase_ : int = 1 , lowerCamelCase_ : str = "silu" , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 32 , lowerCamelCase_ : int = 256 , lowerCamelCase_ : int = 32 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : float = 0.18215 , lowerCamelCase_ : str = "group" , ) ->str: '''simple docstring''' super().__init__() # pass init params to Encoder UpperCAmelCase__ = Encoder( in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , down_block_types=lowerCamelCase_ , block_out_channels=lowerCamelCase_ , layers_per_block=lowerCamelCase_ , act_fn=lowerCamelCase_ , norm_num_groups=lowerCamelCase_ , double_z=lowerCamelCase_ , ) UpperCAmelCase__ = vq_embed_dim if vq_embed_dim is not None else latent_channels UpperCAmelCase__ = nn.Convad(lowerCamelCase_ , lowerCamelCase_ , 1 ) UpperCAmelCase__ = VectorQuantizer(lowerCamelCase_ , lowerCamelCase_ , beta=0.25 , remap=lowerCamelCase_ , sane_index_shape=lowerCamelCase_ ) UpperCAmelCase__ = nn.Convad(lowerCamelCase_ , lowerCamelCase_ , 1 ) # pass init params to Decoder UpperCAmelCase__ = Decoder( in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , up_block_types=lowerCamelCase_ , block_out_channels=lowerCamelCase_ , layers_per_block=lowerCamelCase_ , act_fn=lowerCamelCase_ , norm_num_groups=lowerCamelCase_ , norm_type=lowerCamelCase_ , ) @apply_forward_hook def UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : bool = True ) ->VQEncoderOutput: '''simple docstring''' UpperCAmelCase__ = self.encoder(lowerCamelCase_ ) UpperCAmelCase__ = self.quant_conv(lowerCamelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCamelCase_ ) @apply_forward_hook def UpperCAmelCase ( self : int , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = True ) ->Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if not force_not_quantize: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.quantize(lowerCamelCase_ ) else: UpperCAmelCase__ = h UpperCAmelCase__ = self.post_quant_conv(lowerCamelCase_ ) UpperCAmelCase__ = self.decoder(lowerCamelCase_ , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase_ ) def UpperCAmelCase ( self : Any , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : bool = True ) ->Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' UpperCAmelCase__ = sample UpperCAmelCase__ = self.encode(lowerCamelCase_ ).latents UpperCAmelCase__ = self.decode(lowerCamelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase_ )
392
0
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __a = logging.get_logger(__name__) @dataclass class lowercase__: """simple docstring""" a :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) a :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) a :int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a :bool = field( default=UpperCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _lowercase ( self : Optional[Any] ) -> Any: lowercase_ = self.task_name.lower() class lowercase__( UpperCAmelCase ): """simple docstring""" a :Tuple = 'train' a :Optional[int] = 'dev' a :Optional[int] = 'test' class lowercase__( UpperCAmelCase ): """simple docstring""" a :GlueDataTrainingArguments a :str a :List[InputFeatures] def __init__( self : Any , SCREAMING_SNAKE_CASE_ : GlueDataTrainingArguments , SCREAMING_SNAKE_CASE_ : PreTrainedTokenizerBase , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Union[str, Split] = Split.train , SCREAMING_SNAKE_CASE_ : Optional[str] = None , ) -> str: warnings.warn( '''This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' , SCREAMING_SNAKE_CASE_ , ) lowercase_ = args lowercase_ = glue_processors[args.task_name]() lowercase_ = glue_output_modes[args.task_name] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): try: lowercase_ = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) # Load data features from cache or dataset file lowercase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) lowercase_ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase_ , lowercase_ = label_list[2], label_list[1] lowercase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase_ = cached_features_file + '''.lock''' with FileLock(SCREAMING_SNAKE_CASE_ ): if os.path.exists(SCREAMING_SNAKE_CASE_ ) and not args.overwrite_cache: lowercase_ = time.time() lowercase_ = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: lowercase_ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowercase_ = self.processor.get_test_examples(args.data_dir ) else: lowercase_ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowercase_ = examples[:limit_length] lowercase_ = glue_convert_examples_to_features( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , max_length=args.max_seq_length , label_list=SCREAMING_SNAKE_CASE_ , output_mode=self.output_mode , ) lowercase_ = time.time() torch.save(self.features , SCREAMING_SNAKE_CASE_ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : int ) -> Tuple: return len(self.features ) def __getitem__( self : Dict , SCREAMING_SNAKE_CASE_ : int ) -> InputFeatures: return self.features[i] def _lowercase ( self : Any ) -> List[Any]: return self.label_list
409
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class lowercase__( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Dict ) -> int: lowercase_ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Optional[int] ) -> str: lowercase_ = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Tuple ) -> Tuple: lowercase_ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Optional[Any] ) -> List[Any]: lowercase_ = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Optional[Any] ) -> List[str]: lowercase_ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Any ) -> Optional[Any]: lowercase_ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] lowercase_ = '''fp16''' self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : List[Any] ) -> int: lowercase_ = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] lowercase_ = '''fp16''' self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Any ) -> int: # pass variant but use the non-variant filenames lowercase_ = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] lowercase_ = '''fp16''' self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : str ) -> List[str]: lowercase_ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ = '''fp16''' self.assertFalse(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Union[str, Any] ) -> Tuple: lowercase_ = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] lowercase_ = '''fp16''' self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Dict ) -> Any: # pass variant but use the non-variant filenames lowercase_ = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] lowercase_ = '''fp16''' self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: lowercase_ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] lowercase_ = '''fp16''' self.assertFalse(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) )
409
1
'''simple docstring''' import socket def __A ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : Dict = socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) _UpperCamelCase : Tuple = socket.gethostname() _UpperCamelCase : str = 1_2_3_1_2 sock.connect((host, port) ) sock.send(B"Hello server!" ) with open("Received_file" ,"wb" ) as out_file: print("File opened" ) print("Receiving data..." ) while True: _UpperCamelCase : int = sock.recv(1_0_2_4 ) if not data: break out_file.write(UpperCAmelCase ) print("Successfully received the file" ) sock.close() print("Connection closed" ) if __name__ == "__main__": main()
435
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase_ : Dict = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , lowercase__ : Tuple , lowercase__ : Tuple=7 , lowercase__ : Any=3 , lowercase__ : Optional[Any]=18 , lowercase__ : int=30 , lowercase__ : Dict=400 , lowercase__ : List[Any]=None , lowercase__ : List[str]=True , lowercase__ : Optional[Any]=True , lowercase__ : Tuple=None , ) ->List[str]: '''simple docstring''' _UpperCamelCase : Dict = size if size is not None else {"height": 20, "width": 20} _UpperCamelCase : Optional[int] = parent _UpperCamelCase : str = batch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : Union[str, Any] = image_size _UpperCamelCase : Tuple = min_resolution _UpperCamelCase : Tuple = max_resolution _UpperCamelCase : List[Any] = size _UpperCamelCase : Dict = do_normalize _UpperCamelCase : Tuple = do_convert_rgb _UpperCamelCase : str = [512, 1_024, 2_048, 4_096] _UpperCamelCase : Optional[int] = patch_size if patch_size is not None else {"height": 16, "width": 16} def snake_case__ ( self : int ) ->Any: '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def snake_case__ ( self : Optional[int] ) ->Tuple: '''simple docstring''' _UpperCamelCase : str = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _UpperCamelCase : Optional[int] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = PixaStructImageProcessor if is_vision_available() else None def snake_case__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCamelCase : Any = PixaStructImageProcessingTester(self ) @property def snake_case__ ( self : Any ) ->Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : int ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowercase__ , "do_convert_rgb" ) ) def snake_case__ ( self : int ) ->Tuple: '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.image_processor_tester.prepare_dummy_image() _UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) _UpperCamelCase : int = 2_048 _UpperCamelCase : List[Any] = image_processor(lowercase__ , return_tensors="pt" , max_patches=lowercase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_6_0_6 ) , atol=1e-3 , rtol=1e-3 ) ) def snake_case__ ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input _UpperCamelCase : Tuple = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCamelCase : Tuple = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowercase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCamelCase : List[str] = image_processor( lowercase__ , return_tensors="pt" , max_patches=lowercase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def snake_case__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input _UpperCamelCase : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _UpperCamelCase : List[str] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowercase__ ): _UpperCamelCase : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowercase__ ).flattened_patches _UpperCamelCase : List[Any] = "Hello" _UpperCamelCase : List[str] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowercase__ , header_text=lowercase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCamelCase : Tuple = image_processor( lowercase__ , return_tensors="pt" , max_patches=lowercase__ , header_text=lowercase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def snake_case__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray ) _UpperCamelCase : Union[str, Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCamelCase : Dict = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowercase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCamelCase : Union[str, Any] = image_processor( lowercase__ , return_tensors="pt" , max_patches=lowercase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def snake_case__ ( self : List[str] ) ->Dict: '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor ) # Test not batched input _UpperCamelCase : Optional[int] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCamelCase : Tuple = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowercase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCamelCase : Any = image_processor( lowercase__ , return_tensors="pt" , max_patches=lowercase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = PixaStructImageProcessor if is_vision_available() else None def snake_case__ ( self : Optional[Any] ) ->List[Any]: '''simple docstring''' _UpperCamelCase : int = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCamelCase : Optional[int] = 3 @property def snake_case__ ( self : Tuple ) ->List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Optional[int] ) ->Tuple: '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowercase__ , "do_convert_rgb" ) ) def snake_case__ ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input _UpperCamelCase : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCamelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowercase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCamelCase : Tuple = image_processor( lowercase__ , return_tensors="pt" , max_patches=lowercase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
435
1
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , __magic_name__ , __magic_name__ = True , __magic_name__ = None , __magic_name__ = 32 , __magic_name__ = True , __magic_name__ = 1 / 255 , __magic_name__ = True , __magic_name__ = True , __magic_name__ = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , __magic_name__ = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , __magic_name__ = True , __magic_name__=7 , __magic_name__=30 , __magic_name__=400 , __magic_name__=3 , ): """simple docstring""" A_ : Optional[Any] = parent A_ : List[str] = do_resize A_ : str = size if size is not None else {"""shortest_edge""": 288} A_ : Optional[int] = size_divisor A_ : int = do_rescale A_ : str = rescale_factor A_ : str = do_normalize A_ : List[str] = do_center_crop A_ : List[Any] = image_mean A_ : Dict = image_std A_ : int = do_pad A_ : Dict = batch_size A_ : Dict = num_channels A_ : List[str] = min_resolution A_ : str = max_resolution def UpperCAmelCase ( self ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase ( self , __magic_name__ , __magic_name__=False ): """simple docstring""" if not batched: A_ : List[str] = self.size["""shortest_edge"""] A_ : Optional[int] = image_inputs[0] if isinstance(__a , Image.Image ): A_ : Dict = image.size else: A_ : str = image.shape[1], image.shape[2] A_ : Dict = size / min(__a , __a ) if h < w: A_ : List[Any] = size, scale * w else: A_ : int = scale * h, size A_ : Any = int((1333 / 800) * size ) if max(__a , __a ) > max_size: A_ : Union[str, Any] = max_size / max(__a , __a ) A_ : Any = newh * scale A_ : Dict = neww * scale A_ : Union[str, Any] = int(newh + 0.5 ), int(neww + 0.5 ) A_ : Optional[Any] = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: A_ : List[str] = [] for image in image_inputs: A_ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : List[Any] = max(__a , key=lambda __magic_name__ : item[0] )[0] A_ : str = max(__a , key=lambda __magic_name__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __UpperCAmelCase( __lowercase , unittest.TestCase ): """simple docstring""" __magic_name__ = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase ( self ): """simple docstring""" A_ : List[str] = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ): """simple docstring""" A_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , '''image_mean''' ) ) self.assertTrue(hasattr(__a , '''image_std''' ) ) self.assertTrue(hasattr(__a , '''do_normalize''' ) ) self.assertTrue(hasattr(__a , '''do_resize''' ) ) self.assertTrue(hasattr(__a , '''size''' ) ) self.assertTrue(hasattr(__a , '''size_divisor''' ) ) def UpperCAmelCase ( self ): """simple docstring""" pass def UpperCAmelCase ( self ): """simple docstring""" A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values A_ : str = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : Dict = image_processing(__a , return_tensors='''pt''' ).pixel_values A_ : List[Any] = self.image_processor_tester.get_expected_values(__a , batched=__a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self ): """simple docstring""" A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values A_ : Union[str, Any] = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : List[str] = image_processing(__a , return_tensors='''pt''' ).pixel_values A_ : int = self.image_processor_tester.get_expected_values(__a , batched=__a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self ): """simple docstring""" A_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input A_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values A_ : Dict = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : Optional[int] = image_processing(__a , return_tensors='''pt''' ).pixel_values A_ : Any = self.image_processor_tester.get_expected_values(__a , batched=__a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
720
import os from collections.abc import Iterator def a__ ( a = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(a ): A_ : List[Any] = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(a )[1] in (".py", ".ipynb"): yield os.path.join(a , a ).lstrip('''./''' ) def a__ ( a ) -> int: return f"""{i * ' '}*""" if i else "\n##" def a__ ( a , a ) -> str: A_ : Optional[int] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(a ) or old_parts[i] != new_part) and new_part: print(f"""{md_prefix(a )} {new_part.replace('_' , ' ' ).title()}""" ) return new_path def a__ ( a = "." ) -> None: A_ : List[str] = '''''' for filepath in sorted(good_file_paths(a ) ): A_ , A_ : List[Any] = os.path.split(a ) if filepath != old_path: A_ : Dict = print_path(a , a ) A_ : Any = (filepath.count(os.sep ) + 1) if filepath else 0 A_ : Dict = f"""{filepath}/{filename}""".replace(''' ''' , '''%20''' ) A_ : Optional[int] = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(f"""{md_prefix(a )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('.')
236
0
def UpperCAmelCase_ ( ) -> list[list[int]]: return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] lowerCamelCase__ : List[Any] = generate_large_matrix() lowerCamelCase__ : List[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None: assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE_ = (left + right) // 2 SCREAMING_SNAKE_CASE_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE_ = mid + 1 else: SCREAMING_SNAKE_CASE_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def UpperCAmelCase_ ( ) -> None: from timeit import timeit print('Running benchmarks' ) SCREAMING_SNAKE_CASE_ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
31
from sklearn.metrics import recall_score import datasets UpperCamelCase_ = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" UpperCamelCase_ = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" UpperCamelCase_ = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def UpperCAmelCase__ ( self : Dict ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def UpperCAmelCase__ ( self : Dict , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Union[str, Any]=None , snake_case__ : int=1 , snake_case__ : List[str]="binary" , snake_case__ : Tuple=None , snake_case__ : Dict="warn" , ): """simple docstring""" __lowerCAmelCase = recall_score( snake_case__ , snake_case__ , labels=snake_case__ , pos_label=snake_case__ , average=snake_case__ , sample_weight=snake_case__ , zero_division=snake_case__ , ) return {"recall": float(snake_case__ ) if score.size == 1 else score}
611
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a_ : Any = logging.get_logger(__name__) def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = DPTConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE = 10_24 SCREAMING_SNAKE_CASE = 40_96 SCREAMING_SNAKE_CASE = 24 SCREAMING_SNAKE_CASE = 16 SCREAMING_SNAKE_CASE = [5, 11, 17, 23] SCREAMING_SNAKE_CASE = [2_56, 5_12, 10_24, 10_24] SCREAMING_SNAKE_CASE = (1, 3_84, 3_84) if "ade" in checkpoint_url: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = 1_50 SCREAMING_SNAKE_CASE = 'huggingface/label-files' SCREAMING_SNAKE_CASE = 'ade20k-id2label.json' SCREAMING_SNAKE_CASE = json.load(open(cached_download(hf_hub_url(_UpperCamelCase , _UpperCamelCase , repo_type='dataset' ) ) , 'r' ) ) SCREAMING_SNAKE_CASE = {int(_UpperCamelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = [1, 1_50, 4_80, 4_80] return config, expected_shape def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): SCREAMING_SNAKE_CASE = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: SCREAMING_SNAKE_CASE = name.replace('patch_embed' , 'patch_embeddings' ) if "pos_embed" in name: SCREAMING_SNAKE_CASE = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: SCREAMING_SNAKE_CASE = name.replace('proj' , 'projection' ) if "blocks" in name: SCREAMING_SNAKE_CASE = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name: SCREAMING_SNAKE_CASE = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: SCREAMING_SNAKE_CASE = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: SCREAMING_SNAKE_CASE = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: SCREAMING_SNAKE_CASE = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: SCREAMING_SNAKE_CASE = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: SCREAMING_SNAKE_CASE = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: SCREAMING_SNAKE_CASE = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: SCREAMING_SNAKE_CASE = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: SCREAMING_SNAKE_CASE = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 SCREAMING_SNAKE_CASE = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: SCREAMING_SNAKE_CASE = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: SCREAMING_SNAKE_CASE = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: SCREAMING_SNAKE_CASE = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: SCREAMING_SNAKE_CASE = name.replace('conv1' , 'convolution1' ) if "conv2" in name: SCREAMING_SNAKE_CASE = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: SCREAMING_SNAKE_CASE = name.replace('pretrained' , 'dpt' ) if "bn" in name: SCREAMING_SNAKE_CASE = name.replace('bn' , 'batch_norm' ) if "head" in name: SCREAMING_SNAKE_CASE = name.replace('head' , 'head.head' ) if "encoder.norm" in name: SCREAMING_SNAKE_CASE = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: SCREAMING_SNAKE_CASE = name.replace('auxlayer' , 'auxiliary_head.head' ) return name def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : Optional[Any] ) -> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) SCREAMING_SNAKE_CASE = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[: config.hidden_size, :] SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_dpt_config(_UpperCamelCase ) # load original state_dict from URL SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location='cpu' ) # remove certain keys remove_ignore_keys_(_UpperCamelCase ) # rename keys for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE = state_dict.pop(_UpperCamelCase ) SCREAMING_SNAKE_CASE = val # read in qkv matrices read_in_q_k_v(_UpperCamelCase , _UpperCamelCase ) # load HuggingFace model SCREAMING_SNAKE_CASE = DPTForSemanticSegmentation(_UpperCamelCase ) if 'ade' in checkpoint_url else DPTForDepthEstimation(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() # Check outputs on an image SCREAMING_SNAKE_CASE = 4_80 if 'ade' in checkpoint_url else 3_84 SCREAMING_SNAKE_CASE = DPTImageProcessor(size=_UpperCamelCase ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(_UpperCamelCase , return_tensors='pt' ) # forward pass SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ).logits if 'ade' in checkpoint_url else model(**_UpperCamelCase ).predicted_depth # Assert logits SCREAMING_SNAKE_CASE = torch.tensor([[6.31_99, 6.36_29, 6.41_48], [6.38_50, 6.36_15, 6.41_66], [6.35_19, 6.31_76, 6.35_75]] ) if "ade" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[4.04_80, 4.24_20, 4.43_60], [4.31_24, 4.56_93, 4.82_61], [4.57_68, 4.89_65, 5.21_63]] ) assert outputs.shape == torch.Size(_UpperCamelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , _UpperCamelCase , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _UpperCamelCase ) ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_UpperCamelCase ) if push_to_hub: print('Pushing model to hub...' ) model.push_to_hub( repo_path_or_name=Path(_UpperCamelCase , _UpperCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_UpperCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_UpperCamelCase , _UpperCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_UpperCamelCase , ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) a_ : Any = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
673
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
673
1
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = MgpstrTokenizer __UpperCAmelCase = False __UpperCAmelCase = {} __UpperCAmelCase = False def _a ( self) -> Optional[Any]: super().setUp() # fmt: off __snake_case = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __snake_case = dict(zip(lowercase_ , range(len(lowercase_)))) __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(lowercase_) + '\n') def _a ( self , **lowercase_) -> Union[str, Any]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowercase_) def _a ( self , lowercase_) -> Optional[int]: __snake_case = 'tester' __snake_case = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.') def _a ( self) -> Optional[int]: pass def _a ( self) -> Dict: __snake_case = self.get_tokenizers(do_lower_case=lowercase_) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): __snake_case = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token}) __snake_case = tokenizer.encode([special_token] , add_special_tokens=lowercase_) self.assertEqual(len(lowercase_) , 1) __snake_case = tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_) self.assertTrue(special_token not in decoded) def _a ( self) -> Union[str, Any]: __snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): __snake_case , __snake_case = self.get_input_output_texts(lowercase_) __snake_case = tokenizer.tokenize(lowercase_) __snake_case = tokenizer.convert_tokens_to_ids(lowercase_) __snake_case = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_) self.assertListEqual(lowercase_ , lowercase_) __snake_case = tokenizer.convert_ids_to_tokens(lowercase_) self.assertNotEqual(len(lowercase_) , 0) __snake_case = tokenizer.decode(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) self.assertEqual(text_a.replace(' ' , '') , lowercase_) @unittest.skip('MGP-STR tokenizer only handles one sequence.') def _a ( self) -> Optional[int]: pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer') def _a ( self) -> Optional[Any]: pass
313
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = ['''image_processor''', '''tokenizer'''] __UpperCAmelCase = '''ViltImageProcessor''' __UpperCAmelCase = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , lowercase_=None , lowercase_=None , **lowercase_) -> List[Any]: __snake_case = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase_ , ) __snake_case = kwargs.pop('feature_extractor') __snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(lowercase_ , lowercase_) __snake_case = self.image_processor def __call__( self , lowercase_ , lowercase_ = None , lowercase_ = True , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = True , lowercase_ = None , **lowercase_ , ) -> BatchEncoding: __snake_case = self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # add pixel_values + pixel_mask __snake_case = self.image_processor(lowercase_ , return_tensors=lowercase_) encoding.update(lowercase_) return encoding def _a ( self , *lowercase_ , **lowercase_) -> Optional[Any]: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def _a ( self , *lowercase_ , **lowercase_) -> Dict: return self.tokenizer.decode(*lowercase_ , **lowercase_) @property def _a ( self) -> Tuple: __snake_case = self.tokenizer.model_input_names __snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def _a ( self) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase_ , ) return self.image_processor_class @property def _a ( self) -> List[str]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase_ , ) return self.image_processor
313
1
"""simple docstring""" def _lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ) -> str: '''simple docstring''' __A : list[list[str]] = [[] for _ in range(_SCREAMING_SNAKE_CASE )] __A : Any = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(_SCREAMING_SNAKE_CASE ) <= key: return input_string for position, character in enumerate(_SCREAMING_SNAKE_CASE ): __A : Optional[Any] = position % (lowest * 2) # puts it in bounds __A : Optional[Any] = min(_SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(_SCREAMING_SNAKE_CASE ) __A : Optional[int] = [''.join(_SCREAMING_SNAKE_CASE ) for row in temp_grid] __A : Optional[Any] = ''.join(_SCREAMING_SNAKE_CASE ) return output_string def _lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ) -> str: '''simple docstring''' __A : List[Any] = [] __A : List[Any] = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string __A : list[list[str]] = [[] for _ in range(_SCREAMING_SNAKE_CASE )] # generates template for position in range(len(_SCREAMING_SNAKE_CASE ) ): __A : str = position % (lowest * 2) # puts it in bounds __A : Tuple = min(_SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) __A : Tuple = 0 for row in temp_grid: # fills in the characters __A : Any = input_string[counter : counter + len(_SCREAMING_SNAKE_CASE )] grid.append(list(_SCREAMING_SNAKE_CASE ) ) counter += len(_SCREAMING_SNAKE_CASE ) __A : Optional[Any] = '' # reads as zigzag for position in range(len(_SCREAMING_SNAKE_CASE ) ): __A : Optional[int] = position % (lowest * 2) # puts it in bounds __A : int = min(_SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def _lowercase ( _SCREAMING_SNAKE_CASE : str ) -> dict[int, str]: '''simple docstring''' __A : int = {} for key_guess in range(1 , len(_SCREAMING_SNAKE_CASE ) ): # tries every key __A : List[Any] = decrypt(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": import doctest doctest.testmod()
237
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase : List[str] =logging.get_logger(__name__) lowerCamelCase : str ={'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCamelCase : Tuple ={ '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } lowerCamelCase : Optional[int] ={ '''camembert-base''': 5_12, } lowerCamelCase : Dict ='''▁''' class __snake_case( A_ ): '''simple docstring''' _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self , __lowerCamelCase , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=["<s>NOTUSED", "</s>NOTUSED"] , __lowerCamelCase = None , **__lowerCamelCase , ): '''simple docstring''' __A : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token __A : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) __A : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) __A : Union[str, Any] = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __A : str = {'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3} __A : str = len(self.fairseq_tokens_to_ids ) __A : List[str] = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __A : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _a ( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] __A : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _a ( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' __A : int = [self.sep_token_id] __A : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _a ( self ): '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def _a ( self ): '''simple docstring''' __A : int = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self , __lowerCamelCase ): '''simple docstring''' return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def _a ( self , __lowerCamelCase ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(__lowerCamelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(__lowerCamelCase ) def _a ( self , __lowerCamelCase ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _a ( self , __lowerCamelCase ): '''simple docstring''' __A : Tuple = [] __A : Optional[int] = '' __A : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token __A : Optional[Any] = True __A : List[Any] = [] else: current_sub_tokens.append(__lowerCamelCase ) __A : List[str] = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def __getstate__( self ): '''simple docstring''' __A : Optional[int] = self.__dict__.copy() __A : List[Any] = None return state def __setstate__( self , __lowerCamelCase ): '''simple docstring''' __A : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __A : Dict = {} __A : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __A : str = os.path.join( __lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , 'wb' ) as fi: __A : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
237
1
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def lowerCAmelCase_ ( _lowercase : Any) -> List[str]: """simple docstring""" return {key.lstrip("""-"""): value for key, value in zip(unknown_args[::2] , unknown_args[1::2])} def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" a__ : Optional[int] = ArgumentParser( """HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=a__) a__ : Optional[int] = parser.add_subparsers(help="""datasets-cli command helpers""") set_verbosity_info() # Register commands ConvertCommand.register_subcommand(a__) EnvironmentCommand.register_subcommand(a__) TestCommand.register_subcommand(a__) RunBeamCommand.register_subcommand(a__) DummyDataCommand.register_subcommand(a__) # Parse args a__ , a__ : List[Any] = parser.parse_known_args() if not hasattr(a__ , """func"""): parser.print_help() exit(1) a__ : List[str] = parse_unknown_args(a__) # Run a__ : Any = args.func(a__ , **a__) service.run() if __name__ == "__main__": main()
136
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig A : Any = logging.get_logger(__name__) class __A: def __init__( self , _snake_case , _snake_case ) -> int: '''simple docstring''' __a = question_encoder __a = generator __a = self.question_encoder def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' if os.path.isfile(_snake_case ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(_snake_case , exist_ok=_snake_case ) __a = os.path.join(_snake_case , '''question_encoder_tokenizer''' ) __a = os.path.join(_snake_case , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(_snake_case ) self.generator.save_pretrained(_snake_case ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , _snake_case , **_snake_case ) -> List[Any]: '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer __a = kwargs.pop('''config''' , _snake_case ) if config is None: __a = RagConfig.from_pretrained(_snake_case ) __a = AutoTokenizer.from_pretrained( _snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) __a = AutoTokenizer.from_pretrained( _snake_case , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=_snake_case , generator=_snake_case ) def __call__( self , *_snake_case , **_snake_case ) -> int: '''simple docstring''' return self.current_tokenizer(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> str: '''simple docstring''' return self.generator.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' return self.generator.decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = self.question_encoder def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = self.generator def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = "longest" , _snake_case = None , _snake_case = True , **_snake_case , ) -> BatchEncoding: '''simple docstring''' warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _snake_case , ) if max_length is None: __a = self.current_tokenizer.model_max_length __a = self( _snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __a = self.current_tokenizer.model_max_length __a = self( text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , ) __a = labels['''input_ids'''] return model_inputs
219
0
import string def UpperCamelCase ( snake_case__ : str ): '''simple docstring''' __snake_case :Any = """""" for i in sequence: __snake_case :List[Any] = ord(snake_case__ ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def UpperCamelCase ( snake_case__ : str ): '''simple docstring''' __snake_case :Dict = string.ascii_letters __snake_case :List[Any] = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(snake_case__ )] if c in letters else c for c in sequence ) def UpperCamelCase ( ): '''simple docstring''' from timeit import timeit print("""Running performance benchmarks...""" ) __snake_case :List[Any] = """from string import printable ; from __main__ import atbash, atbash_slow""" print(f'''> atbash_slow(): {timeit('atbash_slow(printable)' ,setup=snake_case__ )} seconds''' ) print(f'''> atbash(): {timeit('atbash(printable)' ,setup=snake_case__ )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
291
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCamelCase ( snake_case__ : str ,snake_case__ : Dict ,snake_case__ : List[str] ): '''simple docstring''' __snake_case :Tuple = 1.5 __snake_case :Any = int(factor * num_class_images ) __snake_case :List[str] = ClipClient( url="""https://knn.laion.ai/knn-service""" ,indice_name="""laion_400m""" ,num_images=snake_case__ ,aesthetic_weight=0.1 ) os.makedirs(f'''{class_data_dir}/images''' ,exist_ok=snake_case__ ) if len(list(Path(f'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: __snake_case :Optional[Any] = client.query(text=snake_case__ ) if len(snake_case__ ) >= factor * num_class_images or num_images > 1e4: break else: __snake_case :Tuple = int(factor * num_images ) __snake_case :Any = ClipClient( url="""https://knn.laion.ai/knn-service""" ,indice_name="""laion_400m""" ,num_images=snake_case__ ,aesthetic_weight=0.1 ,) __snake_case :Dict = 0 __snake_case :Tuple = 0 __snake_case :Dict = tqdm(desc="""downloading real regularization images""" ,total=snake_case__ ) with open(f'''{class_data_dir}/caption.txt''' ,"""w""" ) as fa, open(f'''{class_data_dir}/urls.txt''' ,"""w""" ) as fa, open( f'''{class_data_dir}/images.txt''' ,"""w""" ) as fa: while total < num_class_images: __snake_case :List[Any] = class_images[count] count += 1 try: __snake_case :str = requests.get(images["""url"""] ) if img.status_code == 200: __snake_case :Any = Image.open(BytesIO(img.content ) ) with open(f'''{class_data_dir}/images/{total}.jpg''' ,"""wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(f'''{class_data_dir}/images/{total}.jpg''' + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCamelCase ( ): '''simple docstring''' __snake_case :List[str] = argparse.ArgumentParser("""""" ,add_help=snake_case__ ) parser.add_argument("""--class_prompt""" ,help="""text prompt to retrieve images""" ,required=snake_case__ ,type=snake_case__ ) parser.add_argument("""--class_data_dir""" ,help="""path to save images""" ,required=snake_case__ ,type=snake_case__ ) parser.add_argument("""--num_class_images""" ,help="""number of images to download""" ,default=200 ,type=snake_case__ ) return parser.parse_args() if __name__ == "__main__": lowerCamelCase__ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
291
1
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __a ( _lowerCAmelCase ): UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : Optional[torch.FloatTensor] = None def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_=0.999 , UpperCAmelCase_="cosine" , )-> Dict: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCAmelCase_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCAmelCase_ ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) UpperCamelCase = [] for i in range(UpperCAmelCase_ ): UpperCamelCase = i / num_diffusion_timesteps UpperCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCAmelCase_ ) / alpha_bar_fn(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) return torch.tensor(UpperCAmelCase_ , dtype=torch.floataa ) class __a ( _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self : Optional[int] , UpperCAmelCase_ : int = 1_000 , UpperCAmelCase_ : str = "fixed_small_log" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[float] = 1.0 , UpperCAmelCase_ : str = "epsilon" , UpperCAmelCase_ : str = "squaredcos_cap_v2" , )-> Optional[Any]: """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) UpperCamelCase = betas_for_alpha_bar(UpperCAmelCase_ ) UpperCamelCase = 1.0 - self.betas UpperCamelCase = torch.cumprod(self.alphas , dim=0 ) UpperCamelCase = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCamelCase = 1.0 # setable values UpperCamelCase = None UpperCamelCase = torch.from_numpy(np.arange(0 , UpperCAmelCase_ )[::-1].copy() ) UpperCamelCase = variance_type def _SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Optional[int] = None )-> torch.FloatTensor: """simple docstring""" return sample def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, torch.device] = None )-> Optional[int]: """simple docstring""" UpperCamelCase = num_inference_steps UpperCamelCase = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCamelCase = (np.arange(0 , UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCamelCase = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=None )-> Union[str, Any]: """simple docstring""" if prev_timestep is None: UpperCamelCase = t - 1 UpperCamelCase = self.alphas_cumprod[t] UpperCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCamelCase = 1 - alpha_prod_t UpperCamelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCamelCase = self.betas[t] else: UpperCamelCase = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCamelCase = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCamelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCamelCase = torch.log(torch.clamp(UpperCAmelCase_ , min=1e-20 ) ) UpperCamelCase = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCamelCase = variance.log() UpperCamelCase = beta.log() UpperCamelCase = (predicted_variance + 1) / 2 UpperCamelCase = frac * max_log + (1 - frac) * min_log return variance def _SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : int , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : bool = True , )-> Union[UnCLIPSchedulerOutput, Tuple]: """simple docstring""" UpperCamelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCamelCase , UpperCamelCase = torch.split(UpperCAmelCase_ , sample.shape[1] , dim=1 ) else: UpperCamelCase = None # 1. compute alphas, betas if prev_timestep is None: UpperCamelCase = t - 1 UpperCamelCase = self.alphas_cumprod[t] UpperCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCamelCase = 1 - alpha_prod_t UpperCamelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCamelCase = self.betas[t] UpperCamelCase = self.alphas[t] else: UpperCamelCase = 1 - alpha_prod_t / alpha_prod_t_prev UpperCamelCase = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCamelCase = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCamelCase = torch.clamp( UpperCAmelCase_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCamelCase = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCamelCase = 0 if t > 0: UpperCamelCase = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase_ , device=model_output.device ) UpperCamelCase = self._get_variance( UpperCAmelCase_ , predicted_variance=UpperCAmelCase_ , prev_timestep=UpperCAmelCase_ , ) if self.variance_type == "fixed_small_log": UpperCamelCase = variance elif self.variance_type == "learned_range": UpperCamelCase = (0.5 * variance).exp() else: raise ValueError( f"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`" " for the UnCLIPScheduler." ) UpperCamelCase = variance * variance_noise UpperCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase_ , pred_original_sample=UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : torch.IntTensor , )-> torch.FloatTensor: """simple docstring""" # Make sure alphas_cumprod and timestep have same device and dtype as original_samples UpperCamelCase = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCamelCase = timesteps.to(original_samples.device ) UpperCamelCase = alphas_cumprod[timesteps] ** 0.5 UpperCamelCase = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCamelCase = sqrt_alpha_prod.unsqueeze(-1 ) UpperCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCamelCase = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCamelCase = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
554
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __a ( _lowerCAmelCase ): def __init__( self : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Any )-> None: """simple docstring""" warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
554
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class UpperCamelCase( _a ): snake_case_ : torch.FloatTensor snake_case_ : torch.FloatTensor snake_case_ : Optional[torch.FloatTensor] = None class UpperCamelCase( _a , _a ): snake_case_ : List[Any] = 2 @register_to_config def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : float = 0.02 , SCREAMING_SNAKE_CASE : float = 1_0_0 , SCREAMING_SNAKE_CASE : float = 1.007 , SCREAMING_SNAKE_CASE : float = 8_0 , SCREAMING_SNAKE_CASE : float = 0.05 , SCREAMING_SNAKE_CASE : float = 5_0 , ) -> int: '''simple docstring''' __snake_case = sigma_max # setable values __snake_case = None __snake_case = None __snake_case = None # sigma(t_i) def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : Optional[int] = None ) -> torch.FloatTensor: '''simple docstring''' return sample def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, torch.device] = None ) -> Any: '''simple docstring''' __snake_case = num_inference_steps __snake_case = np.arange(0 , self.num_inference_steps )[::-1].copy() __snake_case = torch.from_numpy(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) __snake_case = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __snake_case = torch.tensor(SCREAMING_SNAKE_CASE , dtype=torch.floataa , device=SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: __snake_case = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: __snake_case = 0 # sample eps ~ N(0, S_noise^2 * I) __snake_case = self.config.s_noise * randn_tensor(sample.shape , generator=SCREAMING_SNAKE_CASE ).to(sample.device ) __snake_case = sigma + gamma * sigma __snake_case = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' __snake_case = sample_hat + sigma_hat * model_output __snake_case = (sample_hat - pred_original_sample) / sigma_hat __snake_case = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE , derivative=SCREAMING_SNAKE_CASE , pred_original_sample=SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' __snake_case = sample_prev + sigma_prev * model_output __snake_case = (sample_prev - pred_original_sample) / sigma_prev __snake_case = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE , derivative=SCREAMING_SNAKE_CASE , pred_original_sample=SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: '''simple docstring''' raise NotImplementedError()
473
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase: def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any]=1_3 , SCREAMING_SNAKE_CASE : Optional[Any]=6_4 , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , SCREAMING_SNAKE_CASE : Union[str, Any]=3 , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Any=3_2 , SCREAMING_SNAKE_CASE : Any=5 , SCREAMING_SNAKE_CASE : List[Any]=4 , SCREAMING_SNAKE_CASE : Optional[int]=3_7 , SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE : Dict=0.1 , SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE : Optional[int]=1_0 , SCREAMING_SNAKE_CASE : int=0.02 , SCREAMING_SNAKE_CASE : Dict=[1, 1_6, 4, 4] , SCREAMING_SNAKE_CASE : List[str]=None , ) -> int: '''simple docstring''' __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = scope __snake_case = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __snake_case = (self.image_size // 3_2) ** 2 __snake_case = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int: '''simple docstring''' __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [4, 8, 1_6, 3_2], "num_groups": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str ) -> int: '''simple docstring''' __snake_case = ViTHybridModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() __snake_case = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: '''simple docstring''' __snake_case = self.type_sequence_label_size __snake_case = ViTHybridForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() __snake_case = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> str: '''simple docstring''' __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase( _a , _a , unittest.TestCase ): snake_case_ : Union[str, Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () snake_case_ : str = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) snake_case_ : Tuple = False snake_case_ : Optional[Any] = False snake_case_ : Dict = False def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> int: '''simple docstring''' __snake_case = ViTHybridModelTester(self ) __snake_case = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int: '''simple docstring''' __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[Any]: '''simple docstring''' __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(SCREAMING_SNAKE_CASE ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Dict: '''simple docstring''' __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]: '''simple docstring''' __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]: '''simple docstring''' __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __snake_case = model_class(config=SCREAMING_SNAKE_CASE ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ) -> Tuple: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = ViTHybridModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( ) -> List[str]: '''simple docstring''' __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCamelCase( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ) -> str: '''simple docstring''' __snake_case = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( SCREAMING_SNAKE_CASE ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __snake_case = model(**SCREAMING_SNAKE_CASE ) # verify the logits __snake_case = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) __snake_case = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow @require_accelerate def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' __snake_case = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384" ) __snake_case = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384" , device_map="auto" ) __snake_case = prepare_img() __snake_case = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ) __snake_case = model(**SCREAMING_SNAKE_CASE ) __snake_case = outputs.logits # model predicts one of the 1000 ImageNet classes __snake_case = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , "tabby, tabby cat" )
473
1
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCamelCase_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=9_9 , __lowerCAmelCase=3_2 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=4 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.1 , __lowerCAmelCase=True , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_6 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ): """simple docstring""" __magic_name__ :str = parent __magic_name__ :Dict = batch_size __magic_name__ :List[Any] = seq_length __magic_name__ :int = is_training __magic_name__ :Optional[int] = use_input_mask __magic_name__ :Tuple = use_token_type_ids __magic_name__ :Optional[Any] = use_labels __magic_name__ :Tuple = vocab_size __magic_name__ :List[str] = hidden_size __magic_name__ :str = num_hidden_layers __magic_name__ :int = num_attention_heads __magic_name__ :Tuple = intermediate_multiple_size __magic_name__ :int = hidden_act __magic_name__ :Optional[int] = hidden_dropout __magic_name__ :Optional[Any] = attention_dropout __magic_name__ :Optional[Any] = weight_tying __magic_name__ :str = max_position_embeddings __magic_name__ :Any = type_vocab_size __magic_name__ :Optional[int] = type_sequence_label_size __magic_name__ :List[str] = initializer_range __magic_name__ :Dict = num_labels __magic_name__ :Optional[Any] = num_choices __magic_name__ :List[Any] = scope def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ :Optional[Any] = None if self.use_input_mask: __magic_name__ :Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ :List[str] = None if self.use_labels: __magic_name__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ :Dict = self.get_config() return config, input_ids, input_mask, token_labels def A ( self ): """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ :List[Any] = self.prepare_config_and_inputs() __magic_name__ :Union[str, Any] = True return config, input_ids, input_mask, token_labels def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :str = GPTNeoXJapaneseModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :Tuple = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) __magic_name__ :Dict = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :str = True __magic_name__ :Union[str, Any] = GPTNeoXJapaneseModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :Any = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :str = GPTNeoXJapaneseForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :List[Any] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[Any] = True __magic_name__ :Dict = GPTNeoXJapaneseForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # first forward pass __magic_name__ :List[str] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , use_cache=__lowerCAmelCase ) __magic_name__ :Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __magic_name__ :str = ids_tensor((self.batch_size, 3) , config.vocab_size ) __magic_name__ :Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __magic_name__ :List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) __magic_name__ :Optional[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __magic_name__ :Tuple = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) __magic_name__ :int = output_from_no_past['''hidden_states'''][0] __magic_name__ :Dict = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , )['''hidden_states'''][0] # select random slice __magic_name__ :int = ids_tensor((1,) , output_from_past.shape[-1] ).item() __magic_name__ :Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __magic_name__ :Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ :Optional[int] = config_and_inputs __magic_name__ :Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): a__ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () a__ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () a__ = ( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False def A ( self ): """simple docstring""" __magic_name__ :int = GPTNeoXJapaneseModelTester(self ) __magic_name__ :Union[str, Any] = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def A ( self ): """simple docstring""" self.config_tester.run_common_tests() def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ :int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A ( self ): """simple docstring""" # This regression test was failing with PyTorch < 1.3 __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ :int = self.model_tester.prepare_config_and_inputs_for_decoder() __magic_name__ :List[str] = None self.model_tester.create_and_check_model_as_decoder(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__lowerCAmelCase ) @slow def A ( self ): """simple docstring""" __magic_name__ :Any = '''abeja/gpt-neox-japanese-2.7b''' __magic_name__ :Union[str, Any] = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] __magic_name__ :Union[str, Any] = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] __magic_name__ :Optional[int] = GPTNeoXJapaneseTokenizer.from_pretrained(__lowerCAmelCase ) __magic_name__ :Union[str, Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(__lowerCAmelCase ) __magic_name__ :Optional[Any] = [] for prompt in prompts: __magic_name__ :Optional[int] = tokenizer(__lowerCAmelCase , return_tensors='''pt''' ).input_ids __magic_name__ :List[Any] = model.generate(__lowerCAmelCase , max_length=5_0 ) __magic_name__ :Dict = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) predicted_outputs += generated_string self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : int = "distilbert" a : Union[str, Any] = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__(self ,_lowerCamelCase=30522 ,_lowerCamelCase=512 ,_lowerCamelCase=False ,_lowerCamelCase=6 ,_lowerCamelCase=12 ,_lowerCamelCase=768 ,_lowerCamelCase=4 * 768 ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.2 ,_lowerCamelCase=0 ,**_lowerCamelCase ,) -> Tuple: '''simple docstring''' __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = sinusoidal_pos_embds __lowercase = n_layers __lowercase = n_heads __lowercase = dim __lowercase = hidden_dim __lowercase = dropout __lowercase = attention_dropout __lowercase = activation __lowercase = initializer_range __lowercase = qa_dropout __lowercase = seq_classif_dropout super().__init__(**_lowerCamelCase ,pad_token_id=_lowerCamelCase ) class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' @property def _UpperCAmelCase (self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowercase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
502
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE__ : Tuple = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : str = ['YolosFeatureExtractor'] SCREAMING_SNAKE_CASE__ : int = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : str = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
711
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker SCREAMING_SNAKE_CASE__ : Dict = """CompVis/stable-diffusion-v1-1""" SCREAMING_SNAKE_CASE__ : Dict = """CompVis/stable-diffusion-v1-2""" SCREAMING_SNAKE_CASE__ : Tuple = """CompVis/stable-diffusion-v1-3""" SCREAMING_SNAKE_CASE__ : str = """CompVis/stable-diffusion-v1-4""" class __lowerCAmelCase ( _UpperCamelCase ): def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case = True , ) -> Any: """simple docstring""" super()._init_() a__ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(snake_case ) a__ : Optional[Any] = StableDiffusionPipeline.from_pretrained(snake_case ) a__ : Optional[Any] = StableDiffusionPipeline.from_pretrained(snake_case ) a__ : int = StableDiffusionPipeline( vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , safety_checker=snake_case , feature_extractor=snake_case , requires_safety_checker=snake_case , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def _snake_case ( self ) -> Dict[str, Any]: """simple docstring""" return {k: getattr(self , snake_case ) for k in self.config.keys() if not k.startswith("_" )} def _snake_case ( self , snake_case = "auto" ) -> Optional[Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory a__ : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case ) def _snake_case ( self ) -> Tuple: """simple docstring""" self.enable_attention_slicing(snake_case ) @torch.no_grad() def _snake_case ( self , snake_case , snake_case = 512 , snake_case = 512 , snake_case = 50 , snake_case = 7.5 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = None , snake_case = None , snake_case = "pil" , snake_case = True , snake_case = None , snake_case = 1 , **snake_case , ) -> Optional[int]: """simple docstring""" return self.pipea( prompt=snake_case , height=snake_case , width=snake_case , num_inference_steps=snake_case , guidance_scale=snake_case , negative_prompt=snake_case , num_images_per_prompt=snake_case , eta=snake_case , generator=snake_case , latents=snake_case , output_type=snake_case , return_dict=snake_case , callback=snake_case , callback_steps=snake_case , **snake_case , ) @torch.no_grad() def _snake_case ( self , snake_case , snake_case = 512 , snake_case = 512 , snake_case = 50 , snake_case = 7.5 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = None , snake_case = None , snake_case = "pil" , snake_case = True , snake_case = None , snake_case = 1 , **snake_case , ) -> Dict: """simple docstring""" return self.pipea( prompt=snake_case , height=snake_case , width=snake_case , num_inference_steps=snake_case , guidance_scale=snake_case , negative_prompt=snake_case , num_images_per_prompt=snake_case , eta=snake_case , generator=snake_case , latents=snake_case , output_type=snake_case , return_dict=snake_case , callback=snake_case , callback_steps=snake_case , **snake_case , ) @torch.no_grad() def _snake_case ( self , snake_case , snake_case = 512 , snake_case = 512 , snake_case = 50 , snake_case = 7.5 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = None , snake_case = None , snake_case = "pil" , snake_case = True , snake_case = None , snake_case = 1 , **snake_case , ) -> Union[str, Any]: """simple docstring""" return self.pipea( prompt=snake_case , height=snake_case , width=snake_case , num_inference_steps=snake_case , guidance_scale=snake_case , negative_prompt=snake_case , num_images_per_prompt=snake_case , eta=snake_case , generator=snake_case , latents=snake_case , output_type=snake_case , return_dict=snake_case , callback=snake_case , callback_steps=snake_case , **snake_case , ) @torch.no_grad() def _snake_case ( self , snake_case , snake_case = 512 , snake_case = 512 , snake_case = 50 , snake_case = 7.5 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = None , snake_case = None , snake_case = "pil" , snake_case = True , snake_case = None , snake_case = 1 , **snake_case , ) -> Dict: """simple docstring""" return self.pipea( prompt=snake_case , height=snake_case , width=snake_case , num_inference_steps=snake_case , guidance_scale=snake_case , negative_prompt=snake_case , num_images_per_prompt=snake_case , eta=snake_case , generator=snake_case , latents=snake_case , output_type=snake_case , return_dict=snake_case , callback=snake_case , callback_steps=snake_case , **snake_case , ) @torch.no_grad() def _snake_case ( self , snake_case , snake_case = 512 , snake_case = 512 , snake_case = 50 , snake_case = 7.5 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = None , snake_case = None , snake_case = "pil" , snake_case = True , snake_case = None , snake_case = 1 , **snake_case , ) -> Dict: """simple docstring""" a__ : Any = "cuda" if torch.cuda.is_available() else "cpu" self.to(snake_case ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 a__ : Any = self.textaimg_sda_a( prompt=snake_case , height=snake_case , width=snake_case , num_inference_steps=snake_case , guidance_scale=snake_case , negative_prompt=snake_case , num_images_per_prompt=snake_case , eta=snake_case , generator=snake_case , latents=snake_case , output_type=snake_case , return_dict=snake_case , callback=snake_case , callback_steps=snake_case , **snake_case , ) # Get first result from Stable Diffusion Checkpoint v1.2 a__ : List[Any] = self.textaimg_sda_a( prompt=snake_case , height=snake_case , width=snake_case , num_inference_steps=snake_case , guidance_scale=snake_case , negative_prompt=snake_case , num_images_per_prompt=snake_case , eta=snake_case , generator=snake_case , latents=snake_case , output_type=snake_case , return_dict=snake_case , callback=snake_case , callback_steps=snake_case , **snake_case , ) # Get first result from Stable Diffusion Checkpoint v1.3 a__ : Optional[Any] = self.textaimg_sda_a( prompt=snake_case , height=snake_case , width=snake_case , num_inference_steps=snake_case , guidance_scale=snake_case , negative_prompt=snake_case , num_images_per_prompt=snake_case , eta=snake_case , generator=snake_case , latents=snake_case , output_type=snake_case , return_dict=snake_case , callback=snake_case , callback_steps=snake_case , **snake_case , ) # Get first result from Stable Diffusion Checkpoint v1.4 a__ : Dict = self.textaimg_sda_a( prompt=snake_case , height=snake_case , width=snake_case , num_inference_steps=snake_case , guidance_scale=snake_case , negative_prompt=snake_case , num_images_per_prompt=snake_case , eta=snake_case , generator=snake_case , latents=snake_case , output_type=snake_case , return_dict=snake_case , callback=snake_case , callback_steps=snake_case , **snake_case , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
629
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ): model.train() A_ : List[Any] = model(__lowerCamelCase ) A_ : Any = F.mse_loss(__lowerCamelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): set_seed(42 ) A_ : str = RegressionModel() A_ : List[str] = deepcopy(__lowerCamelCase ) A_ : Tuple = RegressionDataset(length=80 ) A_ : List[str] = DataLoader(__lowerCamelCase , batch_size=16 ) model.to(accelerator.device ) if sched: A_ : Optional[Any] = AdamW(params=model.parameters() , lr=1e-3 ) A_ : str = AdamW(params=ddp_model.parameters() , lr=1e-3 ) A_ : List[Any] = LambdaLR(__lowerCamelCase , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.6_5 ) A_ : Tuple = LambdaLR(__lowerCamelCase , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.6_5 ) # Make a copy of `model` if sched: A_ : Dict = accelerator.prepare(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: A_ : Dict = accelerator.prepare(__lowerCamelCase , __lowerCamelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): # Test when on a single CPU or GPU that the context manager does nothing A_ : Optional[int] = get_training_setup(__lowerCamelCase ) # Use a single batch A_ : Tuple = next(iter(__lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model A_ : Any = accelerator.gather((ddp_input, ddp_target) ) A_ : List[Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__lowerCamelCase ): step_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: # Sync grads step_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) A_ : Union[str, Any] = ddp_input[torch.randperm(len(__lowerCamelCase ) )] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): # Test on distributed setup that context manager behaves properly A_ : List[str] = get_training_setup(__lowerCamelCase ) # Use a single batch A_ : Tuple = next(iter(__lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model A_ : List[Any] = accelerator.gather((ddp_input, ddp_target) ) A_ : Optional[int] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__lowerCamelCase ): step_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: # Sync grads step_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) A_ : Union[str, Any] = ddp_input[torch.randperm(len(__lowerCamelCase ) )] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ): A_ : str = Accelerator( split_batches=__lowerCamelCase , dispatch_batches=__lowerCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly A_ : Tuple = get_training_setup(__lowerCamelCase ) for iteration, batch in enumerate(__lowerCamelCase ): A_ : Union[str, Any] = batch.values() # Gather the distributed inputs and targs for the base model A_ : Optional[int] = accelerator.gather((ddp_input, ddp_target) ) A_ : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__lowerCamelCase ): step_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__lowerCamelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) A_ : Optional[Any] = ddp_input[torch.randperm(len(__lowerCamelCase ) )] GradientState._reset_state() def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ): A_ : str = Accelerator( split_batches=__lowerCamelCase , dispatch_batches=__lowerCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly A_ : Dict = get_training_setup(__lowerCamelCase , __lowerCamelCase ) for iteration, batch in enumerate(__lowerCamelCase ): A_ : int = batch.values() # Gather the distributed inputs and targs for the base model A_ : Dict = accelerator.gather((ddp_input, ddp_target) ) A_ : Optional[int] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__lowerCamelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__lowerCamelCase ): step_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' A_ : List[Any] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__lowerCamelCase )) if accelerator.num_processes > 1: check_model_parameters(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def _SCREAMING_SNAKE_CASE ( ): A_ : str = Accelerator() A_ : int = RegressionDataset(length=80 ) A_ : Union[str, Any] = DataLoader(__lowerCamelCase , batch_size=16 ) A_ : int = RegressionDataset(length=96 ) A_ : List[str] = DataLoader(__lowerCamelCase , batch_size=16 ) A_ : Any = accelerator.prepare(__lowerCamelCase , __lowerCamelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCamelCase ) if iteration < len(__lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCamelCase ) if batch_num < len(__lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _SCREAMING_SNAKE_CASE ( ): A_ : Tuple = Accelerator() A_ : List[str] = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(__lowerCamelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(__lowerCamelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(__lowerCamelCase , __lowerCamelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(__lowerCamelCase , __lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
590
from __future__ import annotations from collections import Counter from random import random class lowerCAmelCase__: '''simple docstring''' def __init__( self ) -> List[str]: _SCREAMING_SNAKE_CASE : int = {} def UpperCamelCase_ ( self , __lowerCamelCase ) -> None: _SCREAMING_SNAKE_CASE : List[Any] = {} def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> None: if nodea not in self.connections: self.add_node(__lowerCamelCase ) if nodea not in self.connections: self.add_node(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = probability def UpperCamelCase_ ( self ) -> list[str]: return list(self.connections ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = 0 _SCREAMING_SNAKE_CASE : Optional[int] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = Counter(graph.get_nodes() ) _SCREAMING_SNAKE_CASE : Union[str, Any] = start for _ in range(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = graph.transition(__lowerCamelCase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
249
0
import baseaa def UpperCAmelCase ( _lowerCamelCase : str ): '''simple docstring''' return baseaa.baaencode(string.encode("utf-8" ) ) def UpperCAmelCase ( _lowerCamelCase : bytes ): '''simple docstring''' return baseaa.baadecode(_lowerCamelCase ).decode("utf-8" ) if __name__ == "__main__": __lowercase :Optional[Any] = "Hello World!" __lowercase :Any = baseaa_encode(test) print(encoded) __lowercase :Dict = baseaa_decode(encoded) print(decoded)
26
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowercase :List[Any] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" ) config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" ) config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" ) config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" ) config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" ) config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" ) def UpperCAmelCase ( _lowerCamelCase : str ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : Tuple ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE__ : List[str] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict ): '''simple docstring''' if exitstatus == 5: SCREAMING_SNAKE_CASE__ : List[str] = 0 # Doctest custom flag to ignore output. __lowercase :Optional[Any] = doctest.register_optionflag("IGNORE_RESULT") __lowercase :Dict = doctest.OutputChecker class _a ( lowercase__ ): """simple docstring""" def A_ ( self : Dict , a : List[str] , a : Dict , a : int ) ->Optional[Any]: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , a , a , a ) __lowercase :Any = CustomOutputChecker __lowercase :Any = HfDoctestModule __lowercase :int = HfDocTestParser
26
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case ( unittest.TestCase ): '''simple docstring''' def lowercase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = (32, 32) SCREAMING_SNAKE_CASE__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A_ ) return image @property def lowercase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=A_ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def lowercase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def lowercase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) return CLIPTextModel(A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE__ = DDPMScheduler() SCREAMING_SNAKE_CASE__ = DDIMScheduler(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE__ = self.dummy_vae SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(A_ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=3_50 , ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) SCREAMING_SNAKE_CASE__ = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ = torch.Generator(device=A_ ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , image=A_ , generator=A_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = torch.Generator(device=A_ ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , image=A_ , generator=A_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=A_ , )[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) SCREAMING_SNAKE_CASE__ = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE__ = DDPMScheduler() SCREAMING_SNAKE_CASE__ = DDIMScheduler(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE__ = self.dummy_vae SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(A_ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=3_50 , ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) SCREAMING_SNAKE_CASE__ = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ = output.images assert image.shape[0] == 2 SCREAMING_SNAKE_CASE__ = torch.Generator(device=A_ ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , image=A_ , generator=A_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE__ = DDPMScheduler() SCREAMING_SNAKE_CASE__ = DDIMScheduler(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE__ = self.dummy_vae SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(A_ ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 SCREAMING_SNAKE_CASE__ = unet.half() SCREAMING_SNAKE_CASE__ = text_encoder.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=3_50 , ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) SCREAMING_SNAKE_CASE__ = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sd_pipe( [prompt] , image=A_ , generator=A_ , num_inference_steps=2 , output_type='''np''' , ).images SCREAMING_SNAKE_CASE__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def lowercase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) SCREAMING_SNAKE_CASE__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) SCREAMING_SNAKE_CASE__ = '''stabilityai/stable-diffusion-x4-upscaler''' SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline.from_pretrained(A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ = '''a cat sitting on a park bench''' SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe( prompt=A_ , image=A_ , generator=A_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) SCREAMING_SNAKE_CASE__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) SCREAMING_SNAKE_CASE__ = '''stabilityai/stable-diffusion-x4-upscaler''' SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline.from_pretrained( A_ , torch_dtype=torch.floataa , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ = '''a cat sitting on a park bench''' SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe( prompt=A_ , image=A_ , generator=A_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowercase_ ( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) SCREAMING_SNAKE_CASE__ = '''stabilityai/stable-diffusion-x4-upscaler''' SCREAMING_SNAKE_CASE__ = StableDiffusionUpscalePipeline.from_pretrained( A_ , torch_dtype=torch.floataa , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ = '''a cat sitting on a park bench''' SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe( prompt=A_ , image=A_ , generator=A_ , num_inference_steps=5 , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
100
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) __lowerCamelCase = logging.getLogger(__name__) __lowerCamelCase = {"facebook/bart-base": BartForConditionalGeneration} __lowerCamelCase = {"facebook/bart-base": BartTokenizer} def lowercase ( ) -> List[str]: __magic_name__ = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=__UpperCamelCase , default=__UpperCamelCase , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=__UpperCamelCase , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=__UpperCamelCase , default=__UpperCamelCase , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=__UpperCamelCase , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__UpperCamelCase , ) parser.add_argument( '''--config_name''' , type=__UpperCamelCase , default=__UpperCamelCase , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=__UpperCamelCase , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=__UpperCamelCase , default=__UpperCamelCase , help='''Where to store the final ONNX file.''' ) __magic_name__ = parser.parse_args() return args def lowercase ( __UpperCamelCase , __UpperCamelCase="cpu" ) -> int: __magic_name__ = model_dict[model_name].from_pretrained(__UpperCamelCase ).to(__UpperCamelCase ) __magic_name__ = tokenizer_dict[model_name].from_pretrained(__UpperCamelCase ) if model_name in ["facebook/bart-base"]: __magic_name__ = 0 __magic_name__ = None __magic_name__ = 0 return huggingface_model, tokenizer def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: model.eval() __magic_name__ = None __magic_name__ = torch.jit.script(BARTBeamSearchGenerator(__UpperCamelCase ) ) with torch.no_grad(): __magic_name__ = '''My friends are cool but they eat too many carbs.''' __magic_name__ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='''pt''' ).to(model.device ) __magic_name__ = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=__UpperCamelCase , max_length=__UpperCamelCase , early_stopping=__UpperCamelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( __UpperCamelCase , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , __UpperCamelCase , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=__UpperCamelCase , ) logger.info('''Model exported to {}'''.format(__UpperCamelCase ) ) __magic_name__ = remove_dup_initializers(os.path.abspath(__UpperCamelCase ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(__UpperCamelCase ) ) __magic_name__ = onnxruntime.InferenceSession(__UpperCamelCase ) __magic_name__ = ort_sess.run( __UpperCamelCase , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(__UpperCamelCase ), '''max_length''': np.array(__UpperCamelCase ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def lowercase ( ) -> Any: __magic_name__ = parse_args() __magic_name__ = 5 __magic_name__ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() __magic_name__ = torch.device(args.device ) __magic_name__ , __magic_name__ = load_model_tokenizer(args.model_name_or_path , __UpperCamelCase ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(__UpperCamelCase ) if args.max_length: __magic_name__ = args.max_length if args.num_beams: __magic_name__ = args.num_beams if args.output_file_path: __magic_name__ = args.output_file_path else: __magic_name__ = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
490
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class snake_case ( __lowercase ): UpperCAmelCase__ = '''gpt_neo''' UpperCAmelCase__ = ['''past_key_values'''] UpperCAmelCase__ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__(self , SCREAMING_SNAKE_CASE_=5_02_57 , SCREAMING_SNAKE_CASE_=20_48 , SCREAMING_SNAKE_CASE_=20_48 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=[[["global", "local"], 12]] , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=2_56 , SCREAMING_SNAKE_CASE_="gelu_new" , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1e-5 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=5_02_56 , SCREAMING_SNAKE_CASE_=5_02_56 , **SCREAMING_SNAKE_CASE_ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_layers SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = window_size SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = resid_dropout SCREAMING_SNAKE_CASE_ = embed_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = classifier_dropout SCREAMING_SNAKE_CASE_ = layer_norm_epsilon SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = attention_types SCREAMING_SNAKE_CASE_ = self.expand_attention_types_params(SCREAMING_SNAKE_CASE_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.attention_layers)` == `config.num_layers` ''' f'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' f'`config.num_layers = {self.num_layers}`. ' '''`config.attention_layers` is prepared using `config.attention_types`. ''' '''Please verify the value of `config.attention_types` argument.''' ) super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @staticmethod def _lowercase (SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _lowerCamelCase ( __a, __a, __a, __a ): import torch SCREAMING_SNAKE_CASE_ = input.size() SCREAMING_SNAKE_CASE_ = len(__a ) SCREAMING_SNAKE_CASE_ = shape[dimension] SCREAMING_SNAKE_CASE_ = torch.arange(0, __a, __a ) SCREAMING_SNAKE_CASE_ = torch.div(sizedim - size, __a, rounding_mode='''floor''' ) + 1 SCREAMING_SNAKE_CASE_ = torch.arange(__a ) + low_indices[:min_length][:, None] SCREAMING_SNAKE_CASE_ = [slice(__a )] * rank SCREAMING_SNAKE_CASE_ = indices SCREAMING_SNAKE_CASE_ = input[s] SCREAMING_SNAKE_CASE_ = list(range(0, rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__a ) def _lowerCamelCase ( __a, __a ): import torch SCREAMING_SNAKE_CASE_ = torch.arange(1, __a ) SCREAMING_SNAKE_CASE_ = torch.remainder(__a, __a ) SCREAMING_SNAKE_CASE_ = remainders == 0 SCREAMING_SNAKE_CASE_ = candidates[divisor_indices] SCREAMING_SNAKE_CASE_ = torch.max(__a ) return largest_divisor, torch.div(__a, __a, rounding_mode='''floor''' ) class snake_case ( __lowercase ): @property def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='''inputs''' ) SCREAMING_SNAKE_CASE_ = {0: '''batch''', 1: '''past_sequence + sequence'''} else: SCREAMING_SNAKE_CASE_ = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _lowercase (self ): """simple docstring""" return self._config.num_heads def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = super(SCREAMING_SNAKE_CASE_ , self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , seq_length=SCREAMING_SNAKE_CASE_ , is_pair=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE_ = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE_ = seqlen + 2 SCREAMING_SNAKE_CASE_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE_ = [ (torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE_ = common_inputs['''attention_mask'''] if self.use_past: SCREAMING_SNAKE_CASE_ = ordered_inputs['''attention_mask'''].dtype SCREAMING_SNAKE_CASE_ = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )] , dim=1 ) return ordered_inputs @property def _lowercase (self ): """simple docstring""" return 13
706
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case ( __lowercase , unittest.TestCase ): UpperCAmelCase__ = KandinskyVaaControlnetPipeline UpperCAmelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] UpperCAmelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] UpperCAmelCase__ = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCAmelCase__ = False @property def _lowercase (self ): """simple docstring""" return 32 @property def _lowercase (self ): """simple docstring""" return 32 @property def _lowercase (self ): """simple docstring""" return self.time_input_dim @property def _lowercase (self ): """simple docstring""" return self.time_input_dim * 4 @property def _lowercase (self ): """simple docstring""" return 1_00 @property def _lowercase (self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE_ = UNetaDConditionModel(**SCREAMING_SNAKE_CASE_ ) return model @property def _lowercase (self ): """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _lowercase (self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = VQModel(**self.dummy_movq_kwargs ) return model def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.dummy_unet SCREAMING_SNAKE_CASE_ = self.dummy_movq SCREAMING_SNAKE_CASE_ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='''linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=SCREAMING_SNAKE_CASE_ , ) SCREAMING_SNAKE_CASE_ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( SCREAMING_SNAKE_CASE_ ) # create hint SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) if str(SCREAMING_SNAKE_CASE_ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE_ = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: SCREAMING_SNAKE_CASE_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = '''cpu''' SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) , return_dict=SCREAMING_SNAKE_CASE_ , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ = np.array( [0.6_95_98_26, 0.86_82_79, 0.7_55_80_92, 0.68_76_94_67, 0.85_80_58_04, 0.65_97_74_96, 0.44_88_53_02, 0.5_95_91_11, 0.4_25_15_95] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def _lowercase (self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) SCREAMING_SNAKE_CASE_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) SCREAMING_SNAKE_CASE_ = torch.from_numpy(np.array(SCREAMING_SNAKE_CASE_ ) ).float() / 2_55.0 SCREAMING_SNAKE_CASE_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) SCREAMING_SNAKE_CASE_ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ = pipeline.to(SCREAMING_SNAKE_CASE_ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = '''A robot, 4k photo''' SCREAMING_SNAKE_CASE_ = torch.Generator(device='''cuda''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = pipe_prior( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE_ = torch.Generator(device='''cuda''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipeline( image_embeds=SCREAMING_SNAKE_CASE_ , negative_image_embeds=SCREAMING_SNAKE_CASE_ , hint=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=1_00 , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
628
0
import fire from utils import calculate_rouge, save_json def __SCREAMING_SNAKE_CASE ( a__ : Any ,a__ : Tuple ,a__ : Any=None ,**a__ : Dict ) -> Optional[Any]: __A : int = [x.strip() for x in open(a__ ).readlines()] __A : List[str] = [x.strip() for x in open(a__ ).readlines()][: len(a__ )] __A : List[Any] = calculate_rouge(a__ ,a__ ,**a__ ) if save_path is not None: save_json(a__ ,a__ ,indent=a__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
17
UpperCAmelCase_ : dict[tuple[int, int, int], int] = {} def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ,a__ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __A : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __A : Dict = _calculate(days - 1 ,a__ ,late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __A : List[str] = _calculate(days - 1 ,absent + 1 ,0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __A : int = _calculate(days - 1 ,a__ ,0 ) __A : Optional[int] = state_late + state_absent + state_ontime __A : Tuple = prizestrings return prizestrings def __SCREAMING_SNAKE_CASE ( a__ : int = 30 ) -> int: return _calculate(a__ ,absent=0 ,late=0 ) if __name__ == "__main__": print(solution())
17
1
def _A ( __magic_name__ = 1000 ): return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
611
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowerCAmelCase : def __init__( self :List[str] , _lowercase :Optional[Any] , _lowercase :str=13 , _lowercase :Tuple=7 , _lowercase :Any=True , _lowercase :Optional[int]=True , _lowercase :Optional[Any]=True , _lowercase :Optional[int]=True , _lowercase :str=99 , _lowercase :Optional[int]=64 , _lowercase :Optional[int]=32 , _lowercase :Union[str, Any]=5 , _lowercase :Optional[int]=4 , _lowercase :Any=37 , _lowercase :Optional[int]="gelu" , _lowercase :Optional[int]=0.1 , _lowercase :str=0.1 , _lowercase :Union[str, Any]=5_12 , _lowercase :Optional[int]=16 , _lowercase :int=2 , _lowercase :Tuple=0.02 , _lowercase :Optional[Any]=3 , _lowercase :Dict=4 , _lowercase :List[Any]=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = embedding_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self :str , _lowercase :Tuple , _lowercase :Tuple , _lowercase :Tuple , _lowercase :Dict , _lowercase :Optional[Any] , _lowercase :int , _lowercase :List[Any] ): '''simple docstring''' lowercase__ = MegatronBertModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase ) lowercase__ = model(_lowercase , token_type_ids=_lowercase ) lowercase__ = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase ( self :Any , _lowercase :Dict , _lowercase :Union[str, Any] , _lowercase :Optional[int] , _lowercase :Any , _lowercase :List[str] , _lowercase :Any , _lowercase :int ): '''simple docstring''' lowercase__ = MegatronBertForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self :Dict , _lowercase :str , _lowercase :Optional[Any] , _lowercase :Optional[Any] , _lowercase :List[Any] , _lowercase :Union[str, Any] , _lowercase :Optional[int] , _lowercase :List[str] ): '''simple docstring''' lowercase__ = MegatronBertForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self :Any , _lowercase :int , _lowercase :Tuple , _lowercase :Optional[int] , _lowercase :Dict , _lowercase :Dict , _lowercase :Optional[int] , _lowercase :Dict ): '''simple docstring''' lowercase__ = MegatronBertForNextSentencePrediction(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCAmelCase ( self :str , _lowercase :int , _lowercase :Union[str, Any] , _lowercase :str , _lowercase :List[Any] , _lowercase :List[Any] , _lowercase :Dict , _lowercase :List[str] ): '''simple docstring''' lowercase__ = MegatronBertForPreTraining(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , next_sentence_label=_lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCAmelCase ( self :str , _lowercase :Optional[Any] , _lowercase :Tuple , _lowercase :int , _lowercase :List[Any] , _lowercase :List[Any] , _lowercase :Any , _lowercase :Any ): '''simple docstring''' lowercase__ = MegatronBertForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self :str , _lowercase :str , _lowercase :Any , _lowercase :Dict , _lowercase :Optional[Any] , _lowercase :int , _lowercase :int , _lowercase :Optional[Any] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = MegatronBertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self :List[Any] , _lowercase :List[str] , _lowercase :List[str] , _lowercase :List[Any] , _lowercase :List[Any] , _lowercase :List[Any] , _lowercase :List[Any] , _lowercase :Optional[Any] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = MegatronBertForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self :Optional[Any] , _lowercase :Union[str, Any] , _lowercase :List[str] , _lowercase :int , _lowercase :int , _lowercase :List[Any] , _lowercase :List[Any] , _lowercase :Tuple ): '''simple docstring''' lowercase__ = self.num_choices lowercase__ = MegatronBertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self :List[str] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): __lowerCamelCase = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) __lowerCamelCase = ( { 'feature-extraction': MegatronBertModel, 'fill-mask': MegatronBertForMaskedLM, 'question-answering': MegatronBertForQuestionAnswering, 'text-classification': MegatronBertForSequenceClassification, 'text-generation': MegatronBertForCausalLM, 'token-classification': MegatronBertForTokenClassification, 'zero-shot': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase = True # test_resize_embeddings = False __lowerCamelCase = False def UpperCAmelCase ( self :str , _lowercase :Tuple , _lowercase :str , _lowercase :int=False ): '''simple docstring''' lowercase__ = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class in get_values(_lowercase ): lowercase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowercase ) lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = MegatronBertModelTester(self ) lowercase__ = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def UpperCAmelCase ( self :Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_lowercase ) def UpperCAmelCase ( self :Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_lowercase ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_lowercase ) def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_lowercase ) def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_lowercase ) def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_lowercase ) def UpperCAmelCase ( self :Dict ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_lowercase ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_lowercase ) def _A ( __magic_name__ ): return torch.tensor( __magic_name__ , dtype=torch.long , device=__magic_name__ , ) _snake_case = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow @unittest.skip("Model is not available." ) def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = "nvidia/megatron-bert-uncased-345m" if "MYDIR" in os.environ: lowercase__ = os.path.join(os.environ["MYDIR"] , _lowercase ) lowercase__ = MegatronBertModel.from_pretrained(_lowercase ) model.to(_lowercase ) model.half() lowercase__ = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): lowercase__ = model(_lowercase )[0] lowercase__ = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , _lowercase ) lowercase__ = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): lowercase__ = output[0, ii, jj] lowercase__ = expected[3 * ii + jj] lowercase__ = "ii={} jj={} a={} b={}".format(_lowercase , _lowercase , _lowercase , _lowercase ) self.assertTrue(math.isclose(_lowercase , _lowercase , rel_tol=_lowercase , abs_tol=_lowercase ) , msg=_lowercase )
611
1
from __future__ import annotations def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ , lowerCAmelCase__ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) lowerCAmelCase__ = result + left + right return input_list def _A ( lowerCAmelCase_ : list ): """simple docstring""" if len(lowerCAmelCase_ ) <= 1: return input_list lowerCAmelCase__ = list(lowerCAmelCase_ ) # iteration for two-way merging lowerCAmelCase__ = 2 while p <= len(lowerCAmelCase_ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCAmelCase_ ) , lowerCAmelCase_ ): lowerCAmelCase__ = i lowerCAmelCase__ = i + p - 1 lowerCAmelCase__ = (low + high + 1) // 2 lowerCAmelCase__ = merge(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # final merge of last two parts if p * 2 >= len(lowerCAmelCase_ ): lowerCAmelCase__ = i lowerCAmelCase__ = merge(lowerCAmelCase_ , 0 , lowerCAmelCase_ , len(lowerCAmelCase_ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": UpperCamelCase = input('Enter numbers separated by a comma:\n').strip() if user_input == "": UpperCamelCase = [] else: UpperCamelCase = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
61
lowerCAmelCase__ = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def _UpperCAmelCase (UpperCamelCase__ : int ): _A : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowerCAmelCase__ = [None] * 10_00_00_00 lowerCAmelCase__ = True lowerCAmelCase__ = False def _UpperCAmelCase (UpperCamelCase__ : int ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _A : Union[str, Any] = chain(next_number(UpperCamelCase__ ) ) _A : Optional[int] = number_chain while number < 10000000: _A : Optional[Any] = number_chain number *= 10 return number_chain def _UpperCAmelCase (UpperCamelCase__ : int = 10000000 ): for i in range(1 , UpperCamelCase__ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution() = }")
503
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __a = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowercase ( __snake_case ): UpperCamelCase = ['''pixel_values'''] def __init__( self : List[str] , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 2_5_5 , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : bool = True , **__lowerCamelCase : Optional[Any] , ) -> None: """simple docstring""" super().__init__(**__lowerCamelCase ) UpperCAmelCase = size if size is not None else {"""shortest_edge""": 2_2_4} UpperCAmelCase = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} UpperCAmelCase = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase , param_name="""crop_size""" ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = resample UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase = do_convert_rgb def _lowercase ( self : Dict , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Tuple , ) -> np.ndarray: """simple docstring""" UpperCAmelCase = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase = get_resize_output_image_size(__lowerCamelCase , size=size["""shortest_edge"""] , default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _lowercase ( self : Any , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Optional[int] , ) -> np.ndarray: """simple docstring""" UpperCAmelCase = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__lowerCamelCase , size=(size["""height"""], size["""width"""]) , data_format=__lowerCamelCase , **__lowerCamelCase ) def _lowercase ( self : Optional[int] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[int, float] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Dict , ) -> List[Any]: """simple docstring""" return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _lowercase ( self : Optional[Any] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Dict , ) -> np.ndarray: """simple docstring""" return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _lowercase ( self : str , __lowerCamelCase : ImageInput , __lowerCamelCase : bool = None , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = None , __lowerCamelCase : bool = None , __lowerCamelCase : int = None , __lowerCamelCase : bool = None , __lowerCamelCase : float = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **__lowerCamelCase : Dict , ) -> PIL.Image.Image: """simple docstring""" UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(__lowerCamelCase , param_name="""size""" , default_to_square=__lowerCamelCase ) UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(__lowerCamelCase , param_name="""crop_size""" , default_to_square=__lowerCamelCase ) UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase = [convert_to_rgb(__lowerCamelCase ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_center_crop: UpperCAmelCase = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images] UpperCAmelCase = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] UpperCAmelCase = {"""pixel_values""": images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
719
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class __lowercase ( __snake_case ): UpperCamelCase = '''nllb-moe''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , __lowerCamelCase : Optional[Any]=1_2_8_1_1_2 , __lowerCamelCase : Dict=1_0_2_4 , __lowerCamelCase : Optional[int]=1_2 , __lowerCamelCase : Union[str, Any]=4_0_9_6 , __lowerCamelCase : List[str]=1_6 , __lowerCamelCase : List[str]=1_2 , __lowerCamelCase : int=4_0_9_6 , __lowerCamelCase : Tuple=1_6 , __lowerCamelCase : str=0.05 , __lowerCamelCase : List[str]=0.05 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : str="relu" , __lowerCamelCase : Dict=1_0_2_4 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Any=False , __lowerCamelCase : Tuple="float32" , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[int]=1_2_8 , __lowerCamelCase : List[str]=6_4 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : str=0.001 , __lowerCamelCase : Optional[int]=0.001 , __lowerCamelCase : Tuple="all" , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : List[str]=1.0 , __lowerCamelCase : Dict=0.2 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Dict=2 , __lowerCamelCase : int=False , **__lowerCamelCase : str , ) -> int: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = router_z_loss_coef UpperCAmelCase = router_aux_loss_coef UpperCAmelCase = decoder_sparse_step UpperCAmelCase = encoder_sparse_step UpperCAmelCase = num_experts UpperCAmelCase = expert_capacity UpperCAmelCase = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) UpperCAmelCase = router_dtype UpperCAmelCase = router_ignore_padding_tokens UpperCAmelCase = batch_prioritized_routing UpperCAmelCase = second_expert_policy UpperCAmelCase = normalize_router_prob_before_dropping UpperCAmelCase = moe_eval_capacity_token_fraction UpperCAmelCase = moe_token_dropout UpperCAmelCase = output_router_logits super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , )
627
0
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = ["""input_values""", """attention_mask"""] def __init__( self , __A = 1 , __A = 16000 , __A = 0.0 , __A = False , __A = 80 , __A = 16 , __A = 64 , __A = "hann_window" , __A = 1.0 , __A = 80 , __A = 7600 , __A = 1E-10 , __A = 2 , __A = True , **__A , ): super().__init__(feature_size=__A , sampling_rate=__A , padding_value=__A , **__A ) __a = do_normalize __a = return_attention_mask __a = num_mel_bins __a = hop_length __a = win_length __a = win_function __a = frame_signal_scale __a = fmin __a = fmax __a = mel_floor __a = reduction_factor __a = win_length * sampling_rate // 1000 __a = hop_length * sampling_rate // 1000 __a = optimal_fft_length(self.sample_size ) __a = (self.n_fft // 2) + 1 __a = window_function(window_length=self.sample_size , name=self.win_function , periodic=__A ) __a = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="""slaney""" , mel_scale="""slaney""" , ) if frame_signal_scale != 1.0: warnings.warn( """The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" , __A , ) if reduction_factor != 2.0: warnings.warn( """The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" , __A , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def snake_case_ ( __A , __A , __A = 0.0 ): if attention_mask is not None: __a = np.array(__A , np.intaa ) __a = [] for vector, length in zip(__A , attention_mask.sum(-1 ) ): __a = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: __a = padding_value normed_input_values.append(__A ) else: __a = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def snake_case_ ( self , __A , ): __a = spectrogram( __A , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="""log10""" , ) return log_mel_spec.T def __call__( self , __A = None , __A = None , __A = False , __A = None , __A = False , __A = None , __A = None , __A = None , __A = None , **__A , ): if audio is None and audio_target is None: raise ValueError("""You must provide either `audio` or `audio_target` values.""" ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if audio is not None: __a = self._process_audio( __A , __A , __A , __A , __A , __A , __A , __A , **__A , ) else: __a = None if audio_target is not None: __a = self._process_audio( __A , __A , __A , __A , __A , __A , __A , __A , **__A , ) if inputs is None: return inputs_target else: __a = inputs_target["""input_values"""] __a = inputs_target.get("""attention_mask""" ) if decoder_attention_mask is not None: __a = decoder_attention_mask return inputs def snake_case_ ( self , __A , __A = False , __A = False , __A = None , __A = False , __A = None , __A = None , __A = None , **__A , ): __a = isinstance(__A , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __a = is_batched_numpy or ( isinstance(__A , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __a = [np.asarray(__A , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(__A , np.ndarray ): __a = np.asarray(__A , dtype=np.floataa ) elif isinstance(__A , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): __a = speech.astype(np.floataa ) # always return batch if not is_batched: __a = [speech] # needed to make pad() work on spectrogram inputs __a = self.feature_size # convert into correct format for padding if is_target: __a = [self._extract_mel_features(__A ) for waveform in speech] __a = BatchFeature({"""input_values""": features} ) __a = self.num_mel_bins else: __a = BatchFeature({"""input_values""": speech} ) __a = self.pad( __A , padding=__A , max_length=__A , truncation=__A , pad_to_multiple_of=__A , return_attention_mask=__A , **__A , ) __a = feature_size_hack # convert input values to correct format __a = padded_inputs["""input_values"""] if not isinstance(input_values[0] , np.ndarray ): __a = [np.asarray(__A , dtype=np.floataa ) for array in input_values] elif ( not isinstance(__A , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): __a = [array.astype(np.floataa ) for array in input_values] elif isinstance(__A , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): __a = input_values.astype(np.floataa ) # convert attention_mask to correct format __a = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: __a = [np.asarray(__A , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: __a = ( attention_mask if self._get_padding_strategies(__A , max_length=__A ) is not PaddingStrategy.DO_NOT_PAD else None ) __a = self.zero_mean_unit_var_norm( padded_inputs["""input_values"""] , attention_mask=__A , padding_value=self.padding_value ) if return_tensors is not None: __a = padded_inputs.convert_to_tensors(__A ) return padded_inputs def snake_case_ ( self ): __a = super().to_dict() # Don't serialize these as they are derived from the other properties. __a = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""] for name in names: if name in output: del output[name] return output
99
'''simple docstring''' from __future__ import annotations a_ : int = list[list[int]] # assigning initial values to the grid a_ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution a_ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def a_ ( __snake_case : Matrix , __snake_case : int , __snake_case : int , __snake_case : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def a_ ( __snake_case : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def a_ ( __snake_case : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(__snake_case ): lowerCamelCase_, lowerCamelCase_ =location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__snake_case , __snake_case , __snake_case , __snake_case ): lowerCamelCase_ =digit if sudoku(__snake_case ) is not None: return grid lowerCamelCase_ =0 return None def a_ ( __snake_case : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(__snake_case , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") a_ : Union[str, Any] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
676
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A: def __init__( self, A, A=2, A=True, A=False, A=10, A=3, A=32 * 8, A=32 * 8, A=4, A=64, ): """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = is_training _UpperCamelCase = use_auxiliary_loss _UpperCamelCase = num_queries _UpperCamelCase = num_channels _UpperCamelCase = min_size _UpperCamelCase = max_size _UpperCamelCase = num_labels _UpperCamelCase = hidden_dim _UpperCamelCase = hidden_dim def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( A ) _UpperCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size], device=A ) _UpperCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=A ) > 0.5 ).float() _UpperCamelCase = (torch.rand((self.batch_size, self.num_labels), device=A ) > 0.5).long() _UpperCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim, ) _UpperCamelCase = self.num_queries _UpperCamelCase = self.num_labels _UpperCamelCase = [1, 1, 1, 1] _UpperCamelCase = self.num_channels _UpperCamelCase = 64 _UpperCamelCase = 128 _UpperCamelCase = self.hidden_dim _UpperCamelCase = self.hidden_dim _UpperCamelCase = self.hidden_dim return config def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def _UpperCamelCase ( self, A, A ): """simple docstring""" _UpperCamelCase = output.encoder_hidden_states _UpperCamelCase = output.pixel_decoder_hidden_states _UpperCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(A ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A ), config.decoder_layers ) def _UpperCamelCase ( self, A, A, A, A=False ): """simple docstring""" with torch.no_grad(): _UpperCamelCase = MaskaFormerModel(config=A ) model.to(A ) model.eval() _UpperCamelCase = model(pixel_values=A, pixel_mask=A ) _UpperCamelCase = model(A, output_hidden_states=A ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_dim), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(A, A ) def _UpperCamelCase ( self, A, A, A, A, A ): """simple docstring""" _UpperCamelCase = MaskaFormerForUniversalSegmentation(config=A ) model.to(A ) model.eval() def comm_check_on_output(A ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _UpperCamelCase = model(pixel_values=A, pixel_mask=A ) _UpperCamelCase = model(A ) comm_check_on_output(A ) _UpperCamelCase = model( pixel_values=A, pixel_mask=A, mask_labels=A, class_labels=A ) comm_check_on_output(A ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape, torch.Size([1] ) ) @require_torch class __A( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __A = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __A = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} __A = False __A = False __A = False __A = False def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = MaskaFormerModelTester(self ) _UpperCamelCase = ConfigTester(self, config_class=A, has_text_modality=A ) def _UpperCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A, **A, output_hidden_states=A ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*A ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def _UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def _UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def _UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def _UpperCamelCase ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def _UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _UpperCamelCase ( self ): """simple docstring""" pass def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(A ) _UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1], A ) @slow def _UpperCamelCase ( self ): """simple docstring""" for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _UpperCamelCase = MaskaFormerModel.from_pretrained(A ) self.assertIsNotNone(A ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = (self.model_tester.min_size,) * 2 _UpperCamelCase = { '''pixel_values''': torch.randn((2, 3, *size), device=A ), '''mask_labels''': torch.randn((2, 10, *size), device=A ), '''class_labels''': torch.zeros(2, 10, device=A ).long(), } _UpperCamelCase = self.model_tester.get_config() _UpperCamelCase = MaskaFormerForUniversalSegmentation(A ).to(A ) _UpperCamelCase = model(**A ) self.assertTrue(outputs.loss is not None ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A, **A, output_hidden_states=A ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(A ).to(A ) _UpperCamelCase = model(**A, output_attentions=A ) self.assertTrue(outputs.attentions is not None ) def _UpperCamelCase ( self ): """simple docstring""" if not self.model_tester.is_training: return _UpperCamelCase = self.all_model_classes[1] _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs() _UpperCamelCase = model_class(A ) model.to(A ) model.train() _UpperCamelCase = model(A, mask_labels=A, class_labels=A ).loss loss.backward() def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = self.all_model_classes[1] _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs() _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = model_class(A ).to(A ) model.train() _UpperCamelCase = model(A, mask_labels=A, class_labels=A ) _UpperCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _UpperCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _UpperCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _UpperCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=A ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowercase : Tuple = 1e-4 def SCREAMING_SNAKE_CASE ( ): _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __A( unittest.TestCase ): @cached_property def _UpperCamelCase ( self ): """simple docstring""" return "facebook/mask2former-swin-small-coco-instance" @cached_property def _UpperCamelCase ( self ): """simple docstring""" return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(A ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(A, return_tensors='''pt''' ).to(A ) _UpperCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A, (1, 3, 384, 384) ) with torch.no_grad(): _UpperCamelCase = model(**A ) _UpperCamelCase = torch.tensor( [[-0.2_790, -1.0_717, -1.1_668], [-0.5_128, -0.3_128, -0.4_987], [-0.5_832, 0.1_971, -0.0_197]] ).to(A ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3], A, atol=A ) ) _UpperCamelCase = torch.tensor( [[0.8_973, 1.1_847, 1.1_776], [1.1_934, 1.5_040, 1.5_128], [1.1_153, 1.4_486, 1.4_951]] ).to(A ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3], A, atol=A ) ) _UpperCamelCase = torch.tensor( [[2.1_152, 1.7_000, -0.8_603], [1.5_808, 1.8_004, -0.9_353], [1.6_043, 1.7_495, -0.5_999]] ).to(A ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3], A, atol=A ) ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A ).eval() _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(A, return_tensors='''pt''' ).to(A ) _UpperCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A, (1, 3, 384, 384) ) with torch.no_grad(): _UpperCamelCase = model(**A ) # masks_queries_logits _UpperCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _UpperCamelCase = [ [-8.7_839, -9.0_056, -8.8_121], [-7.4_104, -7.0_313, -6.5_401], [-6.6_105, -6.3_427, -6.4_675], ] _UpperCamelCase = torch.tensor(A ).to(A ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], A, atol=A ) ) # class_queries_logits _UpperCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape, (1, model.config.num_queries, model.config.num_labels + 1) ) _UpperCamelCase = torch.tensor( [ [1.8_324, -8.0_835, -4.1_922], [0.8_450, -9.0_050, -3.6_053], [0.3_045, -7.7_293, -3.0_275], ] ).to(A ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], A, atol=A ) ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A ).eval() _UpperCamelCase = self.default_image_processor _UpperCamelCase = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )], segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )], return_tensors='''pt''', ) _UpperCamelCase = inputs['''pixel_values'''].to(A ) _UpperCamelCase = [el.to(A ) for el in inputs['''mask_labels''']] _UpperCamelCase = [el.to(A ) for el in inputs['''class_labels''']] with torch.no_grad(): _UpperCamelCase = model(**A ) self.assertTrue(outputs.loss is not None )
105
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __A( unittest.TestCase ): def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = mock.Mock() _UpperCamelCase = 500 _UpperCamelCase = {} _UpperCamelCase = HTTPError _UpperCamelCase = {} # Download this model to make sure it's in the cache. _UpperCamelCase = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''', return_value=A ) as mock_head: _UpperCamelCase = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = mock.Mock() _UpperCamelCase = 500 _UpperCamelCase = {} _UpperCamelCase = HTTPError _UpperCamelCase = {} # Download this model to make sure it's in the cache. _UpperCamelCase = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''', return_value=A ) as mock_head: _UpperCamelCase = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # This check we did call the fake head request mock_head.assert_called() def _UpperCamelCase ( self ): """simple docstring""" try: _UpperCamelCase = tempfile.mktemp() with open(A, '''wb''' ) as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', A ) _UpperCamelCase = AlbertTokenizer.from_pretrained(A ) finally: os.remove(A ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json''' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''', '''wb''' ) as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''', A ) _UpperCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size, 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''' ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' ) @is_staging_test class __A( unittest.TestCase ): __A = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def _UpperCamelCase ( cls ): """simple docstring""" _UpperCamelCase = TOKEN HfFolder.save_token(A ) @classmethod def _UpperCamelCase ( cls ): """simple docstring""" try: delete_repo(token=cls._token, repo_id='''test-tokenizer''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''valid_org/test-tokenizer-org''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''test-dynamic-tokenizer''' ) except HTTPError: pass def _UpperCamelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase = os.path.join(A, '''vocab.txt''' ) with open(A, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) _UpperCamelCase = BertTokenizer(A ) tokenizer.push_to_hub('''test-tokenizer''', use_auth_token=self._token ) _UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) # Reset repo delete_repo(token=self._token, repo_id='''test-tokenizer''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A, repo_id='''test-tokenizer''', push_to_hub=A, use_auth_token=self._token ) _UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) def _UpperCamelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase = os.path.join(A, '''vocab.txt''' ) with open(A, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) _UpperCamelCase = BertTokenizer(A ) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''', use_auth_token=self._token ) _UpperCamelCase = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) # Reset repo delete_repo(token=self._token, repo_id='''valid_org/test-tokenizer-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( A, repo_id='''valid_org/test-tokenizer-org''', push_to_hub=A, use_auth_token=self._token ) _UpperCamelCase = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) @require_tokenizers def _UpperCamelCase ( self ): """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase = os.path.join(A, '''vocab.txt''' ) with open(A, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) _UpperCamelCase = CustomTokenizer(A ) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''', use_auth_token=self._token ) _UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''', trust_remote_code=A ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, '''CustomTokenizer''' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase = os.path.join(A, '''vocab.txt''' ) with open(A, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) _UpperCamelCase = BertTokenizerFast.from_pretrained(A ) bert_tokenizer.save_pretrained(A ) _UpperCamelCase = CustomTokenizerFast.from_pretrained(A ) tokenizer.push_to_hub('''test-dynamic-tokenizer''', use_auth_token=self._token ) _UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''', trust_remote_code=A ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, '''CustomTokenizerFast''' ) _UpperCamelCase = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''', use_fast=A, trust_remote_code=A ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, '''CustomTokenizer''' ) class __A( unittest.TestCase ): def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = Trie() trie.add('''Hello 友達''' ) self.assertEqual(trie.data, {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) trie.add('''Hello''' ) trie.data self.assertEqual(trie.data, {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ), ['''[CLS] This is a extra_id_100'''] ) trie.add('''[CLS]''' ) trie.add('''extra_id_1''' ) trie.add('''extra_id_100''' ) self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ), ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = Trie() trie.add('''A''' ) self.assertEqual(trie.split('''ABC''' ), ['''A''', '''BC'''] ) self.assertEqual(trie.split('''BCA''' ), ['''BC''', '''A'''] ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = Trie() trie.add('''TOKEN]''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ), ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = Trie() trie.add('''A''' ) trie.add('''P''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ), ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = Trie() trie.add('''AB''' ) trie.add('''B''' ) trie.add('''C''' ) self.assertEqual(trie.split('''ABC''' ), ['''AB''', '''C'''] ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = Trie() trie.add('''ABC''' ) trie.add('''B''' ) trie.add('''CD''' ) self.assertEqual(trie.split('''ABCD''' ), ['''ABC''', '''D'''] ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = Trie() _UpperCamelCase = trie.cut_text('''ABC''', [0, 0, 2, 1, 2, 3] ) self.assertEqual(A, ['''AB''', '''C'''] )
105
1
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowercase = False try: _lowercase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase = None , _lowercase = [] ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = choices _lowerCAmelCase = prompt if sys.platform == "win32": _lowerCAmelCase = """*""" else: _lowerCAmelCase = """➔ """ def _lowercase ( self , _lowercase , _lowercase = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowercase ) else: forceWrite(self.choices[index] , _lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(_lowercase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _lowercase ( self , _lowercase , _lowercase = 1 ): """simple docstring""" _lowerCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def _lowercase ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def _lowercase ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = int(chr(self.current_selection ) ) _lowerCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowercase ) else: return else: return def _lowercase ( self , _lowercase = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _lowerCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase = int(builtins.input() ) except ValueError: _lowerCAmelCase = default_choice else: _lowerCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_lowercase , """\n""" ) return choice
5
'''simple docstring''' from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class A : def __init__( self , SCREAMING_SNAKE_CASE , ) -> int: """simple docstring""" A : str = parent A : Optional[int] = 13 A : Union[str, Any] = 7 A : Optional[Any] = 30 A : Optional[int] = self.seq_length + self.mem_len A : int = 15 A : Any = True A : Union[str, Any] = True A : Optional[int] = 99 A : Any = [10, 50, 80] A : Any = 32 A : Any = 32 A : Any = 4 A : Any = 8 A : Optional[int] = 128 A : Union[str, Any] = 2 A : List[str] = 2 A : Optional[Any] = None A : int = 1 A : str = 0 A : Optional[int] = 3 A : Union[str, Any] = self.vocab_size - 1 A : str = 0.01 def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : List[str] = None if self.use_labels: A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Optional[Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" random.seed(self.seed ) tf.random.set_seed(self.seed ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : int = TFTransfoXLModel(SCREAMING_SNAKE_CASE ) A, A : int = model(SCREAMING_SNAKE_CASE ).to_tuple() A : Union[str, Any] = {'''input_ids''': input_ids_a, '''mems''': mems_a} A, A : Any = model(SCREAMING_SNAKE_CASE ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : Tuple = TFTransfoXLLMHeadModel(SCREAMING_SNAKE_CASE ) A, A : Optional[int] = model(SCREAMING_SNAKE_CASE ).to_tuple() A : Tuple = {'''input_ids''': input_ids_a, '''labels''': lm_labels} A, A : Dict = model(SCREAMING_SNAKE_CASE ).to_tuple() A, A : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() A : Union[str, Any] = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} A, A : List[Any] = model(SCREAMING_SNAKE_CASE ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : List[Any] = TFTransfoXLForSequenceClassification(SCREAMING_SNAKE_CASE ) A : Optional[Any] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : List[Any] = self.prepare_config_and_inputs() ((A), (A), (A), (A)) : Dict = config_and_inputs A : List[str] = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class A ( __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __magic_name__ = () if is_tf_available() else () __magic_name__ = ( { '''feature-extraction''': TFTransfoXLModel, '''text-classification''': TFTransfoXLForSequenceClassification, '''text-generation''': TFTransfoXLLMHeadModel, '''zero-shot''': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : str = TFTransfoXLModelTester(self ) A : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , d_embed=37 ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" self.model_tester.set_seed() A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" self.model_tester.set_seed() A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A, A : int = self.model_tester.prepare_config_and_inputs_for_common() A : int = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: A : int = model_class(SCREAMING_SNAKE_CASE ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: A : List[Any] = model.get_output_embeddings() assert isinstance(SCREAMING_SNAKE_CASE , tf.keras.layers.Layer ) A : List[Any] = model.get_bias() assert name is None else: A : int = model.get_output_embeddings() assert x is None A : List[Any] = model.get_bias() assert name is None def __lowerCAmelCase ( self ) -> int: """simple docstring""" pass @slow def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : Union[str, Any] = TFTransfoXLModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" pass @require_tf class A ( unittest.TestCase ): @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : List[str] = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off A : List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off A : str = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> A : Optional[Any] = model.generate(SCREAMING_SNAKE_CASE , max_length=200 , do_sample=SCREAMING_SNAKE_CASE ) self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE )
634
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = KandinskyVaaInpaintPipeline __UpperCAmelCase = ["""image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] __UpperCAmelCase = [ """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] __UpperCAmelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __UpperCAmelCase = False @property def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' return 3_2 @property def __magic_name__ ( self : int ): '''simple docstring''' return 3_2 @property def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim @property def __magic_name__ ( self : List[str] ): '''simple docstring''' return self.time_input_dim * 4 @property def __magic_name__ ( self : List[str] ): '''simple docstring''' return 1_0_0 @property def __magic_name__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) snake_case__ : int = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } snake_case__ : Any = UNetaDConditionModel(**snake_case_ ) return model @property def __magic_name__ ( self : Dict ): '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) snake_case__ : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def __magic_name__ ( self : Optional[int] ): '''simple docstring''' snake_case__ : Optional[Any] = self.dummy_unet snake_case__ : Tuple = self.dummy_movq snake_case__ : Union[str, Any] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=snake_case_ , ) snake_case__ : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __magic_name__ ( self : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : List[str]=0 ): '''simple docstring''' snake_case__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) snake_case__ : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case_ ) # create init_image snake_case__ : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) snake_case__ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ : Dict = Image.fromarray(np.uinta(snake_case_ ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask snake_case__ : Tuple = np.ones((6_4, 6_4) , dtype=np.floataa ) snake_case__ : Optional[Any] = 0 if str(snake_case_ ).startswith('''mps''' ): snake_case__ : Optional[int] = torch.manual_seed(snake_case_ ) else: snake_case__ : Any = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) snake_case__ : List[str] = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __magic_name__ ( self : Dict ): '''simple docstring''' snake_case__ : Union[str, Any] = '''cpu''' snake_case__ : int = self.get_dummy_components() snake_case__ : Any = self.pipeline_class(**snake_case_ ) snake_case__ : List[str] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Optional[Any] = pipe(**self.get_dummy_inputs(snake_case_ ) ) snake_case__ : int = output.images snake_case__ : Optional[Any] = pipe( **self.get_dummy_inputs(snake_case_ ) , return_dict=snake_case_ , )[0] snake_case__ : Tuple = image[0, -3:, -3:, -1] snake_case__ : Any = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) snake_case__ : Tuple = np.array( [0.5_0_7_7_5_9_0_3, 0.4_9_5_2_7_1_9_5, 0.4_8_8_2_4_5_4_3, 0.5_0_1_9_2_2_3_7, 0.4_8_6_4_4_9_0_6, 0.4_9_3_7_3_8_1_4, 0.4_7_8_0_5_9_8, 0.4_7_2_3_4_8_2_7, 0.4_8_3_2_7_8_4_8] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __magic_name__ ( self : Optional[int] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" def __magic_name__ ( self : Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : Any ): '''simple docstring''' snake_case__ : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' ) snake_case__ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) snake_case__ : Optional[Any] = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) snake_case__ : Tuple = 0 snake_case__ : Tuple = '''a hat''' snake_case__ : str = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case_ ) snake_case__ : Any = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa ) snake_case__ : Dict = pipeline.to(snake_case_ ) pipeline.set_progress_bar_config(disable=snake_case_ ) snake_case__ : List[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case__ , snake_case__ : List[str] = pipe_prior( snake_case_ , generator=snake_case_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() snake_case__ : Optional[Any] = pipeline( image=snake_case_ , mask_image=snake_case_ , image_embeds=snake_case_ , negative_image_embeds=snake_case_ , generator=snake_case_ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) snake_case__ : Dict = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(snake_case_ , snake_case_ )
502
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Dict = logging.get_logger(__name__) lowerCAmelCase__ : Tuple = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = """ctrl""" __UpperCAmelCase = ["""past_key_values"""] __UpperCAmelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Tuple , snake_case_ : Dict=2_4_6_5_3_4 , snake_case_ : Optional[int]=2_5_6 , snake_case_ : Dict=1_2_8_0 , snake_case_ : Union[str, Any]=8_1_9_2 , snake_case_ : Any=4_8 , snake_case_ : List[Any]=1_6 , snake_case_ : Optional[Any]=0.1 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Optional[Any]=1e-6 , snake_case_ : List[Any]=0.0_2 , snake_case_ : Dict=True , **snake_case_ : List[Any] , ): '''simple docstring''' snake_case__ : Any = vocab_size snake_case__ : int = n_positions snake_case__ : Optional[int] = n_embd snake_case__ : str = n_layer snake_case__ : Any = n_head snake_case__ : str = dff snake_case__ : Any = resid_pdrop snake_case__ : Tuple = embd_pdrop snake_case__ : List[str] = layer_norm_epsilon snake_case__ : int = initializer_range snake_case__ : Optional[int] = use_cache super().__init__(**snake_case_ )
502
1
"""simple docstring""" import sys from collections import defaultdict class _lowerCAmelCase : """simple docstring""" def __init__( self ): '''simple docstring''' lowerCAmelCase__ :str = [] def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' return self.node_position[vertex] def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = pos def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowerCAmelCase__ :Optional[Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowerCAmelCase__ :List[str] = 2 * start + 1 else: lowerCAmelCase__ :Optional[Any] = 2 * start + 2 if heap[smallest_child] < heap[start]: lowerCAmelCase__ :Dict = heap[smallest_child], positions[smallest_child] lowerCAmelCase__ :Any = ( heap[start], positions[start], ) lowerCAmelCase__ :Optional[int] = temp, tempa lowerCAmelCase__ :Optional[int] = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = position[index] while index != 0: lowerCAmelCase__ :List[Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: lowerCAmelCase__ :Optional[Any] = heap[parent] lowerCAmelCase__ :Union[str, Any] = position[parent] self.set_position(position[parent] , snake_case_ ) else: lowerCAmelCase__ :Optional[Any] = val lowerCAmelCase__ :Optional[int] = temp self.set_position(snake_case_ , snake_case_ ) break lowerCAmelCase__ :Any = parent else: lowerCAmelCase__ :Any = val lowerCAmelCase__ :List[Any] = temp self.set_position(snake_case_ , 0 ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[Any] = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = positions[0] lowerCAmelCase__ :str = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def __A (_SCREAMING_SNAKE_CASE ) ->Optional[Any]: """simple docstring""" lowerCAmelCase__ :Optional[int] = Heap() lowerCAmelCase__ :Optional[int] = [0] * len(__lowerCAmelCase ) lowerCAmelCase__ :Optional[Any] = [-1] * len(__lowerCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowerCAmelCase__ :Optional[Any] = [] # Heap of Distance of vertices from their neighboring vertex lowerCAmelCase__ :Tuple = [] for vertex in range(len(__lowerCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(__lowerCAmelCase ) heap.node_position.append(__lowerCAmelCase ) lowerCAmelCase__ :str = [] lowerCAmelCase__ :Optional[int] = 1 lowerCAmelCase__ :int = sys.maxsize for neighbor, distance in adjacency_list[0]: lowerCAmelCase__ :str = 0 lowerCAmelCase__ :Optional[Any] = distance heap.heapify(__lowerCAmelCase , __lowerCAmelCase ) for _ in range(1 , len(__lowerCAmelCase ) ): lowerCAmelCase__ :Optional[int] = heap.delete_minimum(__lowerCAmelCase , __lowerCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowerCAmelCase__ :Dict = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__lowerCAmelCase )] ): lowerCAmelCase__ :Tuple = distance heap.bottom_to_top( __lowerCAmelCase , heap.get_position(__lowerCAmelCase ) , __lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase__ :Dict = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("""Enter number of edges: """).strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
93
'''simple docstring''' def _a ( __lowerCAmelCase : str ): """simple docstring""" snake_case__ : str = len(__lowerCAmelCase ) snake_case__ : Optional[Any] = sum(__lowerCAmelCase ) snake_case__ : Any = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): snake_case__ : Dict = True for i in range(1 , s + 1 ): snake_case__ : Dict = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): snake_case__ : Tuple = dp[i][j - 1] if arr[i - 1] <= j: snake_case__ : str = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: snake_case__ : Union[str, Any] = s - 2 * j break return diff
347
0
from random import shuffle import tensorflow as tf from numpy import array def __UpperCAmelCase ( __a : str ,__a : List[str] ) -> Tuple: """simple docstring""" _a : List[str] = int(__a ) assert noofclusters < len(__a ) # Find out the dimensionality _a : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors _a : Dict = list(range(len(__a ) ) ) shuffle(__a ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _a : str = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _a : Optional[Any] = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _a : Any = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(__a ) ] ##These nodes will assign the centroid Variables the appropriate ##values _a : Any = tf.placeholder('''float64''' ,[dim] ) _a : Optional[int] = [] for centroid in centroids: cent_assigns.append(tf.assign(__a ,__a ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _a : Dict = [tf.Variable(0 ) for i in range(len(__a ) )] ##These nodes will assign an assignment Variable the appropriate ##value _a : Optional[Any] = tf.placeholder('''int32''' ) _a : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(__a ,__a ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _a : Optional[Any] = tf.placeholder('''float''' ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _a : Union[str, Any] = tf.reduce_mean(__a ,0 ) ##Node for computing Euclidean distances # Placeholders for input _a : str = tf.placeholder('''float''' ,[dim] ) _a : List[Any] = tf.placeholder('''float''' ,[dim] ) _a : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__a ,__a ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _a : Optional[int] = tf.placeholder('''float''' ,[noofclusters] ) _a : List[Any] = tf.argmin(__a ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _a : Optional[Any] = tf.initialize_all_variables() # Initialize all variables sess.run(__a ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _a : Union[str, Any] = 100 for _ in range(__a ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__a ) ): _a : Dict = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _a : Union[str, Any] = [ sess.run(__a ,feed_dict={va: vect, va: sess.run(__a )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _a : Optional[Any] = sess.run( __a ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__a ): # Collect all the vectors assigned to this cluster _a : List[str] = [ vectors[i] for i in range(len(__a ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _a : Union[str, Any] = sess.run( __a ,feed_dict={mean_input: array(__a )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments _a : List[str] = sess.run(__a ) _a : Optional[int] = sess.run(__a ) return centroids, assignments
578
import functools def __UpperCAmelCase ( __a : str ,__a : str ) -> int: """simple docstring""" _a : List[str] = len(__a ) _a : int = len(__a ) @functools.cache def min_distance(__a : int ,__a : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa _a : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 ,__a ) ,1 + min_distance(__a ,indexa + 1 ) ,diff + min_distance(indexa + 1 ,indexa + 1 ) ,) return min_distance(0 ,0 ) if __name__ == "__main__": import doctest doctest.testmod()
578
1
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=14 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=0.0_2 , ) -> int: __magic_name__ : List[str] = parent __magic_name__ : Optional[Any] = batch_size __magic_name__ : Any = seq_length __magic_name__ : str = is_training __magic_name__ : List[str] = use_input_mask __magic_name__ : Union[str, Any] = use_token_type_ids __magic_name__ : List[str] = use_labels __magic_name__ : Union[str, Any] = vocab_size __magic_name__ : Union[str, Any] = hidden_size __magic_name__ : List[Any] = rotary_dim __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : Union[str, Any] = num_attention_heads __magic_name__ : Union[str, Any] = intermediate_size __magic_name__ : Optional[Any] = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : Optional[int] = attention_probs_dropout_prob __magic_name__ : Any = max_position_embeddings __magic_name__ : List[Any] = initializer_range __magic_name__ : Optional[int] = None __magic_name__ : List[Any] = vocab_size - 1 __magic_name__ : Any = vocab_size - 1 __magic_name__ : List[Any] = vocab_size - 1 def __magic_name__ ( self ) -> List[str]: __magic_name__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Any = None if self.use_input_mask: __magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def __magic_name__ ( self ) -> str: __magic_name__ : str = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : int = config_and_inputs __magic_name__ : Any = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = 20 __magic_name__ : Dict = model_class_name(lowerCAmelCase__ ) __magic_name__ : Optional[int] = model.init_cache(input_ids.shape[0] , lowerCAmelCase__ ) __magic_name__ : List[str] = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __magic_name__ : List[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __magic_name__ : Optional[Any] = model( input_ids[:, :-1] , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , ) __magic_name__ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) __magic_name__ : str = model( input_ids[:, -1:] , attention_mask=lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCAmelCase__ , ) __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) __magic_name__ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: __magic_name__ : Any = 20 __magic_name__ : Tuple = model_class_name(lowerCAmelCase__ ) __magic_name__ : int = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __magic_name__ : Union[str, Any] = model.init_cache(input_ids.shape[0] , lowerCAmelCase__ ) __magic_name__ : Dict = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __magic_name__ : Dict = model( input_ids[:, :-1] , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , ) __magic_name__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) __magic_name__ : Union[str, Any] = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , ) __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) __magic_name__ : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : List[Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowercase__ : List[str] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : List[str] = FlaxGPTJModelTester(self ) def __magic_name__ ( self ) -> List[str]: for model_class_name in self.all_model_classes: __magic_name__ ,__magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: __magic_name__ ,__magic_name__ ,__magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @tooslow def __magic_name__ ( self ) -> int: __magic_name__ : Any = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) __magic_name__ : Optional[Any] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) __magic_name__ : int = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) __magic_name__ : str = False __magic_name__ : str = model.config.eos_token_id __magic_name__ : Optional[int] = jax.jit(model.generate ) __magic_name__ : Tuple = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences __magic_name__ : List[Any] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) __magic_name__ : Any = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @is_pt_flax_cross_test def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __magic_name__ : str = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __magic_name__ : str = model_class.__name__[4:] # Skip the "Flax" at the beginning __magic_name__ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ ,__magic_name__ : int = pt_inputs["""input_ids"""].shape __magic_name__ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCAmelCase__ ): __magic_name__ : str = 0 __magic_name__ : Dict = 1 __magic_name__ : str = 0 __magic_name__ : Any = 1 __magic_name__ : Union[str, Any] = pt_model_class(lowerCAmelCase__ ).eval() __magic_name__ : Dict = model_class(lowerCAmelCase__ , dtype=jnp.floataa ) __magic_name__ : int = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ ) __magic_name__ : List[str] = fx_state with torch.no_grad(): __magic_name__ : Dict = pt_model(**lowerCAmelCase__ ).to_tuple() __magic_name__ : str = fx_model(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase__ ) __magic_name__ : str = model_class.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ ) __magic_name__ : List[str] = fx_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual( len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __magic_name__ : Dict = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __magic_name__ : Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning __magic_name__ : str = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[str] = pt_model_class(lowerCAmelCase__ ).eval() __magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ , dtype=jnp.floataa ) __magic_name__ : Optional[int] = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params ) __magic_name__ ,__magic_name__ : Union[str, Any] = pt_inputs["""input_ids"""].shape __magic_name__ : List[str] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCAmelCase__ ): __magic_name__ : str = 0 __magic_name__ : Dict = 1 __magic_name__ : List[Any] = 0 __magic_name__ : int = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __magic_name__ : int = pt_model(**lowerCAmelCase__ ).to_tuple() __magic_name__ : Tuple = fx_model(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase__ ) __magic_name__ : List[Any] = pt_model_class.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ ) with torch.no_grad(): __magic_name__ : Tuple = pt_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual( len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def __magic_name__ ( self ) -> int: for model_class_name in self.all_model_classes: __magic_name__ : Tuple = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) __magic_name__ : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ )
324
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=_lowerCAmelCase ) class snake_case__ ( _lowerCAmelCase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowercase__ : str = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowercase__ : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) lowercase__ : ClassVar[Features] = Features({'''labels''': ClassLabel} ) lowercase__ : str = "text" lowercase__ : str = "labels" def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , lowerCAmelCase__ ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) __magic_name__ : Union[str, Any] = copy.deepcopy(self ) __magic_name__ : Optional[int] = self.label_schema.copy() __magic_name__ : Union[str, Any] = features[self.label_column] __magic_name__ : int = label_schema return task_template @property def __magic_name__ ( self ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
324
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml A_ = NewType("DataClass", Any) A_ = NewType("DataClassType", Any) def A_ ( snake_case ): if isinstance(snake_case , snake_case ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Any = {str(snake_case ): choice for choice in choices} return lambda snake_case : str_to_choice.get(snake_case , snake_case ) def A_ ( *, snake_case = None , snake_case = None , snake_case = dataclasses.MISSING , snake_case = dataclasses.MISSING , snake_case = None , **snake_case , ): if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls SCREAMING_SNAKE_CASE:str = {} if aliases is not None: SCREAMING_SNAKE_CASE:Optional[int] = aliases if help is not None: SCREAMING_SNAKE_CASE:Optional[Any] = help return dataclasses.field(metadata=snake_case , default=snake_case , default_factory=snake_case , **snake_case ) class _snake_case ( _a ): _A : Iterable[DataClassType] def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : Union[DataClassType, Iterable[DataClassType]] ,**SCREAMING_SNAKE_CASE__ : Dict ): # To make the default appear when using --help if "formatter_class" not in kwargs: SCREAMING_SNAKE_CASE:List[Any] = ArgumentDefaultsHelpFormatter super().__init__(**SCREAMING_SNAKE_CASE__ ) if dataclasses.is_dataclass(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE:Union[str, Any] = [dataclass_types] SCREAMING_SNAKE_CASE:Optional[int] = list(SCREAMING_SNAKE_CASE__ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(SCREAMING_SNAKE_CASE__ ) @staticmethod def __UpperCamelCase ( SCREAMING_SNAKE_CASE__ : ArgumentParser ,SCREAMING_SNAKE_CASE__ : dataclasses.Field ): SCREAMING_SNAKE_CASE:Dict = F'''--{field.name}''' SCREAMING_SNAKE_CASE:Any = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type ,SCREAMING_SNAKE_CASE__ ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) SCREAMING_SNAKE_CASE:Any = kwargs.pop("aliases" ,[] ) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE:Union[str, Any] = [aliases] SCREAMING_SNAKE_CASE:Dict = getattr(field.type ,"__origin__" ,field.type ) if origin_type is Union or (hasattr(SCREAMING_SNAKE_CASE__ ,"UnionType" ) and isinstance(SCREAMING_SNAKE_CASE__ ,types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(SCREAMING_SNAKE_CASE__ ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." F''' Problem encountered in field \'{field.name}\'.''' ) if type(SCREAMING_SNAKE_CASE__ ) not in field.type.__args__: # filter `str` in Union SCREAMING_SNAKE_CASE:Tuple = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] SCREAMING_SNAKE_CASE:Tuple = getattr(field.type ,"__origin__" ,field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) SCREAMING_SNAKE_CASE:int = ( field.type.__args__[0] if isinstance(SCREAMING_SNAKE_CASE__ ,field.type.__args__[1] ) else field.type.__args__[1] ) SCREAMING_SNAKE_CASE:Tuple = getattr(field.type ,"__origin__" ,field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) SCREAMING_SNAKE_CASE:Optional[int] = {} if origin_type is Literal or (isinstance(field.type ,SCREAMING_SNAKE_CASE__ ) and issubclass(field.type ,SCREAMING_SNAKE_CASE__ )): if origin_type is Literal: SCREAMING_SNAKE_CASE:Tuple = field.type.__args__ else: SCREAMING_SNAKE_CASE:int = [x.value for x in field.type] SCREAMING_SNAKE_CASE:Optional[int] = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE:Optional[int] = field.default else: SCREAMING_SNAKE_CASE:List[str] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument SCREAMING_SNAKE_CASE:Tuple = copy(SCREAMING_SNAKE_CASE__ ) # Hack because type=bool in argparse does not behave as we want. SCREAMING_SNAKE_CASE:str = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. SCREAMING_SNAKE_CASE:Tuple = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way SCREAMING_SNAKE_CASE:Union[str, Any] = default # This tells argparse we accept 0 or 1 value after --field_name SCREAMING_SNAKE_CASE:Dict = "?" # This is the value that will get picked if we do --field_name (without value) SCREAMING_SNAKE_CASE:List[Any] = True elif isclass(SCREAMING_SNAKE_CASE__ ) and issubclass(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE:Any = field.type.__args__[0] SCREAMING_SNAKE_CASE:Optional[int] = "+" if field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE:List[str] = field.default_factory() elif field.default is dataclasses.MISSING: SCREAMING_SNAKE_CASE:int = True else: SCREAMING_SNAKE_CASE:Tuple = field.type if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE:Any = field.default elif field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE:Tuple = field.default_factory() else: SCREAMING_SNAKE_CASE:int = True parser.add_argument(SCREAMING_SNAKE_CASE__ ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): SCREAMING_SNAKE_CASE:Tuple = False parser.add_argument(F'''--no_{field.name}''' ,action="store_false" ,dest=field.name ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : DataClassType ): if hasattr(SCREAMING_SNAKE_CASE__ ,"_argument_group_name" ): SCREAMING_SNAKE_CASE:Any = self.add_argument_group(dtype._argument_group_name ) else: SCREAMING_SNAKE_CASE:Union[str, Any] = self try: SCREAMING_SNAKE_CASE:Dict[str, type] = get_type_hints(SCREAMING_SNAKE_CASE__ ) except NameError: raise RuntimeError( F'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE:Dict = ".".join(map(SCREAMING_SNAKE_CASE__ ,sys.version_info[:3] ) ) raise RuntimeError( F'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(SCREAMING_SNAKE_CASE__ ): if not field.init: continue SCREAMING_SNAKE_CASE:Union[str, Any] = type_hints[field.name] self._parse_dataclass_field(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : str=None ,SCREAMING_SNAKE_CASE__ : Tuple=False ,SCREAMING_SNAKE_CASE__ : List[Any]=True ,SCREAMING_SNAKE_CASE__ : Optional[Any]=None ,SCREAMING_SNAKE_CASE__ : Tuple=None ,): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): SCREAMING_SNAKE_CASE:Optional[int] = [] if args_filename: args_files.append(Path(SCREAMING_SNAKE_CASE__ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values SCREAMING_SNAKE_CASE:Optional[Any] = ArgumentParser() args_file_parser.add_argument(SCREAMING_SNAKE_CASE__ ,type=SCREAMING_SNAKE_CASE__ ,action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) SCREAMING_SNAKE_CASE:Optional[int] = args_file_parser.parse_known_args(args=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[str] = vars(SCREAMING_SNAKE_CASE__ ).get(args_file_flag.lstrip("-" ) ,SCREAMING_SNAKE_CASE__ ) if cmd_args_file_paths: args_files.extend([Path(SCREAMING_SNAKE_CASE__ ) for p in cmd_args_file_paths] ) SCREAMING_SNAKE_CASE:List[Any] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last SCREAMING_SNAKE_CASE:Optional[int] = file_args + args if args is not None else file_args + sys.argv[1:] SCREAMING_SNAKE_CASE:List[str] = self.parse_known_args(args=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:int = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE:Union[str, Any] = {f.name for f in dataclasses.fields(SCREAMING_SNAKE_CASE__ ) if f.init} SCREAMING_SNAKE_CASE:Optional[int] = {k: v for k, v in vars(SCREAMING_SNAKE_CASE__ ).items() if k in keys} for k in keys: delattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[Any] = dtype(**SCREAMING_SNAKE_CASE__ ) outputs.append(SCREAMING_SNAKE_CASE__ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(SCREAMING_SNAKE_CASE__ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def __UpperCamelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Dict[str, Any] ,SCREAMING_SNAKE_CASE__ : bool = False ): SCREAMING_SNAKE_CASE:Optional[Any] = set(args.keys() ) SCREAMING_SNAKE_CASE:Optional[int] = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE:Any = {f.name for f in dataclasses.fields(SCREAMING_SNAKE_CASE__ ) if f.init} SCREAMING_SNAKE_CASE:Union[str, Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) SCREAMING_SNAKE_CASE:str = dtype(**SCREAMING_SNAKE_CASE__ ) outputs.append(SCREAMING_SNAKE_CASE__ ) if not allow_extra_keys and unused_keys: raise ValueError(F'''Some keys are not used by the HfArgumentParser: {sorted(SCREAMING_SNAKE_CASE__ )}''' ) return tuple(SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : bool = False ): with open(Path(SCREAMING_SNAKE_CASE__ ) ,encoding="utf-8" ) as open_json_file: SCREAMING_SNAKE_CASE:List[Any] = json.loads(open_json_file.read() ) SCREAMING_SNAKE_CASE:Dict = self.parse_dict(SCREAMING_SNAKE_CASE__ ,allow_extra_keys=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : bool = False ): SCREAMING_SNAKE_CASE:Any = self.parse_dict(yaml.safe_load(Path(SCREAMING_SNAKE_CASE__ ).read_text() ) ,allow_extra_keys=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
700
'''simple docstring''' import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } A_ = logging.get_logger(__name__) class _snake_case ( _a ): _A : List[Any] = '''mask2former''' _A : str = ['''swin'''] _A : Tuple = {'''hidden_size''': '''hidden_dim'''} def __init__( self : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[Dict] = None ,SCREAMING_SNAKE_CASE__ : int = 256 ,SCREAMING_SNAKE_CASE__ : int = 256 ,SCREAMING_SNAKE_CASE__ : int = 256 ,SCREAMING_SNAKE_CASE__ : int = 1_024 ,SCREAMING_SNAKE_CASE__ : str = "relu" ,SCREAMING_SNAKE_CASE__ : int = 6 ,SCREAMING_SNAKE_CASE__ : int = 10 ,SCREAMING_SNAKE_CASE__ : int = 8 ,SCREAMING_SNAKE_CASE__ : float = 0.0 ,SCREAMING_SNAKE_CASE__ : int = 2_048 ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : int = 4 ,SCREAMING_SNAKE_CASE__ : int = 255 ,SCREAMING_SNAKE_CASE__ : int = 100 ,SCREAMING_SNAKE_CASE__ : float = 0.1 ,SCREAMING_SNAKE_CASE__ : float = 2.0 ,SCREAMING_SNAKE_CASE__ : float = 5.0 ,SCREAMING_SNAKE_CASE__ : float = 5.0 ,SCREAMING_SNAKE_CASE__ : int = 12_544 ,SCREAMING_SNAKE_CASE__ : float = 3.0 ,SCREAMING_SNAKE_CASE__ : float = 0.75 ,SCREAMING_SNAKE_CASE__ : float = 0.02 ,SCREAMING_SNAKE_CASE__ : float = 1.0 ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : List[int] = [4, 8, 16, 32] ,SCREAMING_SNAKE_CASE__ : bool = None ,**SCREAMING_SNAKE_CASE__ : Dict ,): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) SCREAMING_SNAKE_CASE:Union[str, Any] = CONFIG_MAPPING["swin"]( image_size=224 ,in_channels=3 ,patch_size=4 ,embed_dim=96 ,depths=[2, 2, 18, 2] ,num_heads=[3, 6, 12, 24] ,window_size=7 ,drop_path_rate=0.3 ,use_absolute_embeddings=SCREAMING_SNAKE_CASE__ ,out_features=["stage1", "stage2", "stage3", "stage4"] ,) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE:Any = backbone_config.pop("model_type" ) SCREAMING_SNAKE_CASE:List[str] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE:List[str] = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {",".join(self.backbones_supported )}''' ) SCREAMING_SNAKE_CASE:List[str] = backbone_config SCREAMING_SNAKE_CASE:Union[str, Any] = feature_size SCREAMING_SNAKE_CASE:Union[str, Any] = mask_feature_size SCREAMING_SNAKE_CASE:str = hidden_dim SCREAMING_SNAKE_CASE:Optional[int] = encoder_feedforward_dim SCREAMING_SNAKE_CASE:Tuple = activation_function SCREAMING_SNAKE_CASE:Optional[int] = encoder_layers SCREAMING_SNAKE_CASE:List[Any] = decoder_layers SCREAMING_SNAKE_CASE:Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE:Dict = dropout SCREAMING_SNAKE_CASE:List[str] = dim_feedforward SCREAMING_SNAKE_CASE:int = pre_norm SCREAMING_SNAKE_CASE:Union[str, Any] = enforce_input_projection SCREAMING_SNAKE_CASE:Any = common_stride SCREAMING_SNAKE_CASE:int = ignore_value SCREAMING_SNAKE_CASE:List[Any] = num_queries SCREAMING_SNAKE_CASE:Dict = no_object_weight SCREAMING_SNAKE_CASE:str = class_weight SCREAMING_SNAKE_CASE:Tuple = mask_weight SCREAMING_SNAKE_CASE:Optional[int] = dice_weight SCREAMING_SNAKE_CASE:int = train_num_points SCREAMING_SNAKE_CASE:str = oversample_ratio SCREAMING_SNAKE_CASE:str = importance_sample_ratio SCREAMING_SNAKE_CASE:str = init_std SCREAMING_SNAKE_CASE:Any = init_xavier_std SCREAMING_SNAKE_CASE:List[Any] = use_auxiliary_loss SCREAMING_SNAKE_CASE:Union[str, Any] = feature_strides SCREAMING_SNAKE_CASE:Union[str, Any] = output_auxiliary_logits SCREAMING_SNAKE_CASE:Dict = decoder_layers super().__init__(**SCREAMING_SNAKE_CASE__ ) @classmethod def __UpperCamelCase ( cls : Tuple ,SCREAMING_SNAKE_CASE__ : PretrainedConfig ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return cls( backbone_config=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) def __UpperCamelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE:Union[str, Any] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE:str = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE:List[str] = self.__class__.model_type return output
465
0
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A ( __UpperCamelCase ) -> List[str]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X20000 and cp <= 0X2a6df) # or (cp >= 0X2a700 and cp <= 0X2b73f) # or (cp >= 0X2b740 and cp <= 0X2b81f) # or (cp >= 0X2b820 and cp <= 0X2ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2f800 and cp <= 0X2fa1f) # ): # return True return False def A ( __UpperCamelCase ) -> str: # word like '180' or '身高' or '神' for char in word: A__ = ord(__UpperCamelCase ) if not _is_chinese_char(__UpperCamelCase ): return 0 return 1 def A ( __UpperCamelCase ) -> str: A__ = set() for token in tokens: A__ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase ) if chinese_word: word_set.add(__UpperCamelCase ) A__ = list(__UpperCamelCase ) return word_list def A ( __UpperCamelCase , __UpperCamelCase ) -> str: if not chinese_word_set: return bert_tokens A__ = max([len(__UpperCamelCase ) for w in chinese_word_set] ) A__ = bert_tokens A__ , A__ = 0, len(__UpperCamelCase ) while start < end: A__ = True if is_chinese(bert_word[start] ): A__ = min(end - start , __UpperCamelCase ) for i in range(__UpperCamelCase , 1 , -1 ): A__ = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): A__ = '##' + bert_word[j] A__ = start + i A__ = False break if single_word: start += 1 return bert_word def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: A__ = [] for i in range(0 , len(__UpperCamelCase ) , 100 ): A__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['cws'] ).cws A__ = [get_chinese_word(__UpperCamelCase ) for r in res] ltp_res.extend(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A__ = [] for i in range(0 , len(__UpperCamelCase ) , 100 ): A__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__UpperCamelCase , truncation=__UpperCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A__ = [] for input_ids, chinese_word in zip(__UpperCamelCase , __UpperCamelCase ): A__ = [] for id in input_ids: A__ = bert_tokenizer._convert_id_to_token(__UpperCamelCase ) input_tokens.append(__UpperCamelCase ) A__ = add_sub_symbol(__UpperCamelCase , __UpperCamelCase ) A__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__UpperCamelCase ): if token[:2] == "##": A__ = token[2:] # save chinese tokens' pos if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ): ref_id.append(__UpperCamelCase ) ref_ids.append(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) return ref_ids def A ( __UpperCamelCase ) -> List[str]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , 'r' , encoding='utf-8' ) as f: A__ = f.readlines() A__ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A__ = LTP(args.ltp ) # faster in GPU device A__ = BertTokenizer.from_pretrained(args.bert ) A__ = prepare_ref(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: A__ = [json.dumps(__UpperCamelCase ) + '\n' for ref in ref_ids] f.writelines(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() main(args)
9
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging a__ : Any = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : Any , UpperCAmelCase__ : Union[str, Any]=None , **UpperCAmelCase__ : Union[str, Any] ) -> Any: warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." , UpperCAmelCase__ , ) super().__init__(args=UpperCAmelCase__ , **UpperCAmelCase__ )
682
0
import qiskit def lowerCAmelCase ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register UpperCAmelCase__ = qiskit.QuantumCircuit(_lowerCAmelCase , _lowerCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator UpperCAmelCase__ = qiskit.execute(_lowerCAmelCase , _lowerCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : int = single_qubit_measure(2, 2) print(F'''Total count for various states are: {counts}''')
364
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = BigBirdConfig.from_json_file(_lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: UpperCAmelCase__ = BigBirdForQuestionAnswering(_lowerCAmelCase ) else: UpperCAmelCase__ = BigBirdForPreTraining(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(_lowerCAmelCase , _lowerCAmelCase , is_trivia_qa=_lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) _lowerCAmelCase : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
364
1
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase ( UpperCamelCase_ ): def __init__( self : Dict , a__ : Dict , a__ : int=13 , a__ : Union[str, Any]=7 , a__ : Tuple=True , a__ : Any=True , a__ : int=True , a__ : Any=True , a__ : Any=99 , a__ : str=32 , a__ : Optional[Any]=5 , a__ : Tuple=4 , a__ : Any=37 , a__ : Any="gelu" , a__ : int=0.1 , a__ : Any=0.1 , a__ : Optional[int]=512 , a__ : Optional[Any]=16 , a__ : Optional[int]=2 , a__ : Tuple=0.02 , a__ : Optional[Any]=False , a__ : Optional[Any]=True , a__ : Optional[Any]="None" , a__ : List[str]=3 , a__ : Union[str, Any]=4 , a__ : List[Any]=None , ): '''simple docstring''' lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : Dict = seq_length lowerCAmelCase__ : List[str] = is_training lowerCAmelCase__ : Dict = use_input_mask lowerCAmelCase__ : List[str] = use_token_type_ids lowerCAmelCase__ : Tuple = use_labels lowerCAmelCase__ : Optional[int] = vocab_size lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : List[str] = num_hidden_layers lowerCAmelCase__ : Tuple = num_attention_heads lowerCAmelCase__ : Any = intermediate_size lowerCAmelCase__ : List[str] = hidden_act lowerCAmelCase__ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ : Dict = attention_probs_dropout_prob lowerCAmelCase__ : Optional[Any] = max_position_embeddings lowerCAmelCase__ : Tuple = type_vocab_size lowerCAmelCase__ : Dict = type_sequence_label_size lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : Tuple = num_labels lowerCAmelCase__ : List[str] = num_choices lowerCAmelCase__ : Union[str, Any] = relative_attention lowerCAmelCase__ : int = position_biased_input lowerCAmelCase__ : Dict = pos_att_type lowerCAmelCase__ : Optional[Any] = scope def _A ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : str = None if self.use_input_mask: lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase__ : Dict = None if self.use_token_type_ids: lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : int = None lowerCAmelCase__ : int = None lowerCAmelCase__ : Optional[Any] = None if self.use_labels: lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A ( self : Optional[Any] ): '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _A ( self : int ): '''simple docstring''' lowerCAmelCase__ : Any = self.get_config() lowerCAmelCase__ : int = 300 return config def _A ( self : List[Any] , a__ : Dict ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _A ( self : Tuple , a__ : Optional[Any] , a__ : int , a__ : Tuple , a__ : Any , a__ : List[Any] , a__ : str , a__ : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = DebertaModel(config=a__ ) model.to(a__ ) model.eval() lowerCAmelCase__ : List[str] = model(a__ , attention_mask=a__ , token_type_ids=a__ )[0] lowerCAmelCase__ : List[str] = model(a__ , token_type_ids=a__ )[0] lowerCAmelCase__ : Tuple = model(a__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _A ( self : Optional[Any] , a__ : Tuple , a__ : int , a__ : Union[str, Any] , a__ : List[Any] , a__ : str , a__ : Tuple , a__ : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = DebertaForMaskedLM(config=a__ ) model.to(a__ ) model.eval() lowerCAmelCase__ : Any = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : Optional[Any] , a__ : Any , a__ : int , a__ : Optional[int] , a__ : int , a__ : Optional[int] , a__ : Tuple , a__ : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.num_labels lowerCAmelCase__ : Tuple = DebertaForSequenceClassification(a__ ) model.to(a__ ) model.eval() lowerCAmelCase__ : Union[str, Any] = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(a__ ) def _A ( self : List[str] , a__ : Any , a__ : List[str] , a__ : Dict , a__ : str , a__ : int , a__ : List[Any] , a__ : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.num_labels lowerCAmelCase__ : List[Any] = DebertaForTokenClassification(config=a__ ) model.to(a__ ) model.eval() lowerCAmelCase__ : Tuple = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self : Optional[int] , a__ : List[str] , a__ : Dict , a__ : int , a__ : Any , a__ : Dict , a__ : List[str] , a__ : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = DebertaForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() lowerCAmelCase__ : Any = model( a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Optional[Any] = config_and_inputs lowerCAmelCase__ : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): A_ : Optional[Any] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) A_ : int = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) A_ : Dict = True A_ : Any = False A_ : Optional[int] = False A_ : Optional[Any] = False A_ : List[Any] = False def _A ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = DebertaModelTester(self ) lowerCAmelCase__ : int = ConfigTester(self , config_class=a__ , hidden_size=37 ) def _A ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def _A ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*a__ ) def _A ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*a__ ) def _A ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*a__ ) def _A ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*a__ ) def _A ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*a__ ) @slow def _A ( self : Optional[int] ): '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : str = DebertaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def _A ( self : List[Any] ): '''simple docstring''' pass @slow def _A ( self : str ): '''simple docstring''' lowerCAmelCase__ : Dict = DebertaModel.from_pretrained("microsoft/deberta-base" ) lowerCAmelCase__ : Any = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) lowerCAmelCase__ : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(a__ , attention_mask=a__ )[0] # compare the actual values for a slice. lowerCAmelCase__ : List[str] = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a__ , atol=1e-4 ) , F'''{output[:, 1:4, 1:4]}''' )
378
'''simple docstring''' import warnings from functools import wraps from typing import Callable def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" @wraps(lowerCamelCase_ ) def _inner_fn(*lowerCamelCase_ , **lowerCamelCase_ ): warnings.warn( (f'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , lowerCamelCase_ , ) return fn(*lowerCamelCase_ , **lowerCamelCase_ ) return _inner_fn
378
1
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase ) class _lowerCamelCase (__lowerCamelCase ): def __init__( self : List[str] , **lowerCamelCase_ : Dict ) -> List[str]: """simple docstring""" super().__init__(**lowerCamelCase_ ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self : Optional[int] , lowerCamelCase_ : Union[np.ndarray, bytes, str] , **lowerCamelCase_ : Dict ) -> str: """simple docstring""" return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , **lowerCamelCase_ : str ) -> List[Any]: """simple docstring""" _lowercase : Optional[Any] = {} if "candidate_labels" in kwargs: _lowercase : Dict = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _lowercase : List[Any] = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Optional[Any]="This is a sound of {}." ) -> List[str]: """simple docstring""" if isinstance(lowerCamelCase_ , lowerCamelCase_ ): if audio.startswith('http://' ) or audio.startswith('https://' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowercase : Tuple = requests.get(lowerCamelCase_ ).content else: with open(lowerCamelCase_ , 'rb' ) as f: _lowercase : str = f.read() if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _lowercase : int = ffmpeg_read(lowerCamelCase_ , self.feature_extractor.sampling_rate ) if not isinstance(lowerCamelCase_ , np.ndarray ): raise ValueError('We expect a numpy ndarray as input' ) if len(audio.shape ) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' ) _lowercase : str = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='pt' ) _lowercase : str = candidate_labels _lowercase : List[str] = [hypothesis_template.format(lowerCamelCase_ ) for x in candidate_labels] _lowercase : str = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_ ) _lowercase : Tuple = [text_inputs] return inputs def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Optional[Any] ) -> Tuple: """simple docstring""" _lowercase : Any = model_inputs.pop('candidate_labels' ) _lowercase : Tuple = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , lowerCamelCase_ ): _lowercase : Optional[int] = text_inputs[0] else: # Batching case. _lowercase : List[Any] = text_inputs[0][0] _lowercase : List[str] = self.model(**lowerCamelCase_ , **lowerCamelCase_ ) _lowercase : Dict = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Dict ) -> int: """simple docstring""" _lowercase : str = model_outputs.pop('candidate_labels' ) _lowercase : Optional[Any] = model_outputs['logits'][0] if self.framework == "pt": _lowercase : Optional[int] = logits.softmax(dim=0 ) _lowercase : Any = probs.tolist() else: raise ValueError('`tf` framework not supported.' ) _lowercase : List[Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_ ) , key=lambda lowerCamelCase_ : -x[0] ) ] return result
721
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration SCREAMING_SNAKE_CASE = pytest.mark.integration SCREAMING_SNAKE_CASE = {'comet'} SCREAMING_SNAKE_CASE = importlib.util.find_spec('fairseq') is not None SCREAMING_SNAKE_CASE = {'code_eval'} SCREAMING_SNAKE_CASE = os.name == 'nt' SCREAMING_SNAKE_CASE = {'bertscore', 'frugalscore', 'perplexity'} SCREAMING_SNAKE_CASE = importlib.util.find_spec('transformers') is not None def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" @wraps(__UpperCAmelCase ) def wrapper(self ,__UpperCAmelCase ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"' ) else: test_case(self ,__UpperCAmelCase ) return wrapper def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" @wraps(__UpperCAmelCase ) def wrapper(self ,__UpperCAmelCase ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"' ) else: test_case(self ,__UpperCAmelCase ) return wrapper def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" @wraps(__UpperCAmelCase ) def wrapper(self ,__UpperCAmelCase ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"' ) else: test_case(self ,__UpperCAmelCase ) return wrapper def __lowerCAmelCase( ): """simple docstring""" _lowercase : int = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @local class _lowerCamelCase (parameterized.TestCase ): _snake_case = {} _snake_case = None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : List[str] ): """simple docstring""" _lowercase : Optional[Any] = '[...]' _lowercase : str = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , lowerCamelCase_ ) ).module_path ) _lowercase : Dict = datasets.load.import_main_class(metric_module.__name__ , dataset=lowerCamelCase_ ) # check parameters _lowercase : Optional[int] = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(lowerCamelCase_ , metric_module.__name__ ): with self.use_local_metrics(): try: _lowercase : Optional[Any] = doctest.testmod(lowerCamelCase_ , verbose=lowerCamelCase_ , raise_on_error=lowerCamelCase_ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Dict ): """simple docstring""" _lowercase : Optional[Any] = '[...]' _lowercase : Dict = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , lowerCamelCase_ ) ).module_path ) # run doctest with self.use_local_metrics(): _lowercase : str = doctest.testmod(lowerCamelCase_ , verbose=lowerCamelCase_ , raise_on_error=lowerCamelCase_ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : str ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](lowerCamelCase_ ): yield else: yield @contextmanager def __UpperCAmelCase ( self : Dict ): """simple docstring""" def load_local_metric(lowerCamelCase_ : Optional[Any] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Optional[int] ): return load_metric(os.path.join('metrics' , lowerCamelCase_ ) , *lowerCamelCase_ , **lowerCamelCase_ ) with patch('datasets.load_metric' ) as mock_load_metric: _lowercase : str = load_local_metric yield @classmethod def __UpperCAmelCase ( cls : Tuple , lowerCamelCase_ : Tuple ): """simple docstring""" def wrapper(lowerCamelCase_ : int ): _lowercase : Any = contextmanager(lowerCamelCase_ ) _lowercase : Any = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' ,'' ,'' ) # handle pytest cli flags class _lowerCamelCase (__lowerCamelCase ): def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): """simple docstring""" assert len(input_dict['input_ids'] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: _lowercase : Dict = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" import torch def bert_cos_score_idf(__UpperCAmelCase ,__UpperCAmelCase ,*__UpperCAmelCase ,**__UpperCAmelCase ): return torch.tensor([[1.0, 1.0, 1.0]] * len(__UpperCAmelCase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: _lowercase : Tuple = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" def load_from_checkpoint(__UpperCAmelCase ): class _lowerCamelCase : def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : str , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : List[str] ): """simple docstring""" assert len(lowerCamelCase_ ) == 2 _lowercase : Union[str, Any] = [0.19, 0.92] return scores, sum(lowerCamelCase_ ) / len(lowerCamelCase_ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: _lowercase : Dict = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: _lowercase : str = load_from_checkpoint yield def __lowerCAmelCase( ): """simple docstring""" _lowercase : Tuple = load_metric(os.path.join('metrics' ,'seqeval' ) ) _lowercase : int = 'ERROR' _lowercase : Union[str, Any] = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(__UpperCAmelCase ,match=re.escape(__UpperCAmelCase ) ): metric.compute(predictions=[] ,references=[] ,scheme=__UpperCAmelCase )
283
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['LayoutLMv3FeatureExtractor'] UpperCamelCase = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
473
"""simple docstring""" from __future__ import annotations def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :tuple[int, int] , _SCREAMING_SNAKE_CASE :int ) -> list[tuple[int, int]]: a_ , a_ : Optional[int] = position a_ : Optional[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] a_ : List[str] = [] for position in positions: a_ , a_ : List[Any] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_SCREAMING_SNAKE_CASE ) return permissible_positions def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :list[list[int]] ) -> bool: return not any(elem == 0 for row in board for elem in row ) def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :list[list[int]] , _SCREAMING_SNAKE_CASE :tuple[int, int] , _SCREAMING_SNAKE_CASE :int ) -> bool: if is_complete(_SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ): a_ , a_ : int = position if board[y][x] == 0: a_ : Any = curr + 1 if open_knight_tour_helper(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , curr + 1 ): return True a_ : Optional[Any] = 0 return False def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :int ) -> list[list[int]]: a_ : int = [[0 for i in range(_SCREAMING_SNAKE_CASE )] for j in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): a_ : Optional[int] = 1 if open_knight_tour_helper(_SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board a_ : Dict = 0 a_ : Union[str, Any] = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
473
1
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _UpperCamelCase : str =logging.get_logger(__name__) # General docstring _UpperCamelCase : List[Any] ='RegNetConfig' # Base docstring _UpperCamelCase : Dict ='facebook/regnet-y-040' _UpperCamelCase : Any =[1, 1088, 7, 7] # Image classification docstring _UpperCamelCase : Any ='facebook/regnet-y-040' _UpperCamelCase : Optional[Any] ='tabby, tabby cat' _UpperCamelCase : Optional[Any] =[ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase__ ( nn.Module ): def __init__( self ,A__ ,A__ ,A__ = 3 ,A__ = 1 ,A__ = 1 ,A__ = "relu" ,): super().__init__() _A : Union[str, Any] = nn.Convad( A__ ,A__ ,kernel_size=A__ ,stride=A__ ,padding=kernel_size // 2 ,groups=A__ ,bias=A__ ,) _A : str = nn.BatchNormad(A__ ) _A : int = ACTaFN[activation] if activation is not None else nn.Identity() def A__ ( self ,A__ ): _A : Optional[Any] = self.convolution(A__ ) _A : Tuple = self.normalization(A__ ) _A : Optional[int] = self.activation(A__ ) return hidden_state class UpperCAmelCase__ ( nn.Module ): def __init__( self ,A__ ): super().__init__() _A : int = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) _A : List[str] = config.num_channels def A__ ( self ,A__ ): _A : Any = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) _A : Optional[int] = self.embedder(A__ ) return hidden_state class UpperCAmelCase__ ( nn.Module ): def __init__( self ,A__ ,A__ ,A__ = 2 ): super().__init__() _A : Tuple = nn.Convad(A__ ,A__ ,kernel_size=1 ,stride=A__ ,bias=A__ ) _A : List[Any] = nn.BatchNormad(A__ ) def A__ ( self ,A__ ): _A : List[Any] = self.convolution(A__ ) _A : str = self.normalization(A__ ) return hidden_state class UpperCAmelCase__ ( nn.Module ): def __init__( self ,A__ ,A__ ): super().__init__() _A : List[Any] = nn.AdaptiveAvgPoolad((1, 1) ) _A : str = nn.Sequential( nn.Convad(A__ ,A__ ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(A__ ,A__ ,kernel_size=1 ) ,nn.Sigmoid() ,) def A__ ( self ,A__ ): # b c h w -> b c 1 1 _A : Union[str, Any] = self.pooler(A__ ) _A : Dict = self.attention(A__ ) _A : str = hidden_state * attention return hidden_state class UpperCAmelCase__ ( nn.Module ): def __init__( self ,A__ ,A__ ,A__ ,A__ = 1 ): super().__init__() _A : Optional[int] = in_channels != out_channels or stride != 1 _A : Dict = max(1 ,out_channels // config.groups_width ) _A : Tuple = ( RegNetShortCut(A__ ,A__ ,stride=A__ ) if should_apply_shortcut else nn.Identity() ) _A : int = nn.Sequential( RegNetConvLayer(A__ ,A__ ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(A__ ,A__ ,stride=A__ ,groups=A__ ,activation=config.hidden_act ) ,RegNetConvLayer(A__ ,A__ ,kernel_size=1 ,activation=A__ ) ,) _A : Tuple = ACTaFN[config.hidden_act] def A__ ( self ,A__ ): _A : List[str] = hidden_state _A : Union[str, Any] = self.layer(A__ ) _A : str = self.shortcut(A__ ) hidden_state += residual _A : List[str] = self.activation(A__ ) return hidden_state class UpperCAmelCase__ ( nn.Module ): def __init__( self ,A__ ,A__ ,A__ ,A__ = 1 ): super().__init__() _A : Optional[Any] = in_channels != out_channels or stride != 1 _A : List[Any] = max(1 ,out_channels // config.groups_width ) _A : List[str] = ( RegNetShortCut(A__ ,A__ ,stride=A__ ) if should_apply_shortcut else nn.Identity() ) _A : Union[str, Any] = nn.Sequential( RegNetConvLayer(A__ ,A__ ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(A__ ,A__ ,stride=A__ ,groups=A__ ,activation=config.hidden_act ) ,RegNetSELayer(A__ ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(A__ ,A__ ,kernel_size=1 ,activation=A__ ) ,) _A : Tuple = ACTaFN[config.hidden_act] def A__ ( self ,A__ ): _A : List[Any] = hidden_state _A : int = self.layer(A__ ) _A : List[Any] = self.shortcut(A__ ) hidden_state += residual _A : Tuple = self.activation(A__ ) return hidden_state class UpperCAmelCase__ ( nn.Module ): def __init__( self ,A__ ,A__ ,A__ ,A__ = 2 ,A__ = 2 ,): super().__init__() _A : Dict = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer _A : List[str] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( A__ ,A__ ,A__ ,stride=A__ ,) ,*[layer(A__ ,A__ ,A__ ) for _ in range(depth - 1 )] ,) def A__ ( self ,A__ ): _A : Union[str, Any] = self.layers(A__ ) return hidden_state class UpperCAmelCase__ ( nn.Module ): def __init__( self ,A__ ): super().__init__() _A : int = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( A__ ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) _A : List[Any] = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(A__ ,config.depths[1:] ): self.stages.append(RegNetStage(A__ ,A__ ,A__ ,depth=A__ ) ) def A__ ( self ,A__ ,A__ = False ,A__ = True ): _A : str = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _A : Optional[Any] = hidden_states + (hidden_state,) _A : Optional[Any] = stage_module(A__ ) if output_hidden_states: _A : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=A__ ,hidden_states=A__ ) class UpperCAmelCase__ ( __snake_case ): __snake_case : Any = RegNetConfig __snake_case : int = "regnet" __snake_case : Optional[int] = "pixel_values" __snake_case : Tuple = True def A__ ( self ,A__ ): if isinstance(A__ ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(A__ ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def A__ ( self ,A__ ,A__=False ): if isinstance(A__ ,A__ ): _A : Optional[int] = value _UpperCamelCase : List[str] =R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _UpperCamelCase : Union[str, Any] =R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , __snake_case , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class UpperCAmelCase__ ( __snake_case ): def __init__( self ,A__ ): super().__init__(A__ ) _A : str = config _A : Tuple = RegNetEmbeddings(A__ ) _A : str = RegNetEncoder(A__ ) _A : int = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=A__ ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def A__ ( self ,A__ ,A__ = None ,A__ = None ): _A : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _A : str = return_dict if return_dict is not None else self.config.use_return_dict _A : Optional[Any] = self.embedder(A__ ) _A : Union[str, Any] = self.encoder( A__ ,output_hidden_states=A__ ,return_dict=A__ ) _A : str = encoder_outputs[0] _A : Tuple = self.pooler(A__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A__ ,pooler_output=A__ ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __snake_case , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class UpperCAmelCase__ ( __snake_case ): def __init__( self ,A__ ): super().__init__(A__ ) _A : Union[str, Any] = config.num_labels _A : Optional[Any] = RegNetModel(A__ ) # classification head _A : str = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=A__ ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def A__ ( self ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,): _A : Tuple = return_dict if return_dict is not None else self.config.use_return_dict _A : List[str] = self.regnet(A__ ,output_hidden_states=A__ ,return_dict=A__ ) _A : List[str] = outputs.pooler_output if return_dict else outputs[1] _A : Dict = self.classifier(A__ ) _A : Optional[Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _A : str = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _A : List[str] = '''single_label_classification''' else: _A : Optional[Any] = '''multi_label_classification''' if self.config.problem_type == "regression": _A : List[str] = MSELoss() if self.num_labels == 1: _A : Tuple = loss_fct(logits.squeeze() ,labels.squeeze() ) else: _A : Tuple = loss_fct(A__ ,A__ ) elif self.config.problem_type == "single_label_classification": _A : int = CrossEntropyLoss() _A : List[Any] = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _A : Any = BCEWithLogitsLoss() _A : List[str] = loss_fct(A__ ,A__ ) if not return_dict: _A : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=A__ ,logits=A__ ,hidden_states=outputs.hidden_states )
707
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class UpperCAmelCase__ ( __snake_case ): __snake_case : Optional[Any] = "M-CLIP" def __init__( self ,A__=1024 ,A__=768 ,**A__ ): _A : Tuple = transformerDimSize _A : Optional[Any] = imageDimSize super().__init__(**A__ ) class UpperCAmelCase__ ( __snake_case ): __snake_case : int = MCLIPConfig def __init__( self ,A__ ,*A__ ,**A__ ): super().__init__(A__ ,*A__ ,**A__ ) _A : Optional[int] = XLMRobertaModel(A__ ) _A : Tuple = torch.nn.Linear( in_features=config.transformerDimensions ,out_features=config.numDims ) def A__ ( self ,A__ ,A__ ): _A : str = self.transformer(input_ids=A__ ,attention_mask=A__ )[0] _A : str = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(A__ ), embs
332
0
def __lowerCAmelCase ( A_ : int ) -> int: if not isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(snake_case_ ) if number < 1: __UpperCAmelCase = F'''Input value of [number={number}] must be > 0''' raise ValueError(snake_case_ ) __UpperCAmelCase = 1 for i in range(1 , snake_case_ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
221
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): a__ : int = AutoencoderKL a__ : Optional[Any] = """sample""" a__ : Union[str, Any] = 1e-2 @property def _lowercase (self : Optional[int] ): UpperCAmelCase_ = 4 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes ).to(__a ) return {"sample": image} @property def _lowercase (self : Any ): return (3, 32, 32) @property def _lowercase (self : Dict ): return (3, 32, 32) def _lowercase (self : int ): UpperCAmelCase_ = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict def _lowercase (self : int ): pass def _lowercase (self : int ): pass @unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" ) def _lowercase (self : List[Any] ): # enable deterministic behavior for gradient checkpointing UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = self.model_class(**__a ) model.to(__a ) assert not model.is_gradient_checkpointing and model.training UpperCAmelCase_ = model(**__a ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() UpperCAmelCase_ = torch.randn_like(__a ) UpperCAmelCase_ = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing UpperCAmelCase_ = self.model_class(**__a ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(__a ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training UpperCAmelCase_ = model_a(**__a ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() UpperCAmelCase_ = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) UpperCAmelCase_ = dict(model.named_parameters() ) UpperCAmelCase_ = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def _lowercase (self : Any ): UpperCAmelCase_ , UpperCAmelCase_ = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=__a ) self.assertIsNotNone(__a ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(__a ) UpperCAmelCase_ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _lowercase (self : List[str] ): UpperCAmelCase_ = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) UpperCAmelCase_ = model.to(__a ) model.eval() if torch_device == "mps": UpperCAmelCase_ = torch.manual_seed(0 ) else: UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase_ = image.to(__a ) with torch.no_grad(): UpperCAmelCase_ = model(__a , sample_posterior=__a , generator=__a ).sample UpperCAmelCase_ = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": UpperCAmelCase_ = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": UpperCAmelCase_ = torch.tensor( [-0.13_52, 0.08_78, 0.04_19, -0.08_18, -0.10_69, 0.06_88, -0.14_58, -0.44_46, -0.00_26] ) else: UpperCAmelCase_ = torch.tensor( [-0.24_21, 0.46_42, 0.25_07, -0.04_38, 0.06_82, 0.31_60, -0.20_18, -0.07_27, 0.24_85] ) self.assertTrue(torch_all_close(__a , __a , rtol=1E-2 ) ) @slow class __A ( unittest.TestCase ): def _lowercase (self : Dict , __a : Dict , __a : int ): return f"""gaussian_noise_s={seed}_shape={"_".join([str(__a ) for s in shape] )}.npy""" def _lowercase (self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : Optional[Any] , __a : Optional[Any]=0 , __a : str=(4, 3, 512, 512) , __a : List[str]=False ): UpperCAmelCase_ = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ = torch.from_numpy(load_hf_numpy(self.get_file_format(__a , __a ) ) ).to(__a ).to(__a ) return image def _lowercase (self : List[Any] , __a : Union[str, Any]="CompVis/stable-diffusion-v1-4" , __a : List[Any]=False ): UpperCAmelCase_ = "fp16" if fpaa else None UpperCAmelCase_ = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ = AutoencoderKL.from_pretrained( __a , subfolder="vae" , torch_dtype=__a , revision=__a , ) model.to(__a ).eval() return model def _lowercase (self : List[Any] , __a : List[Any]=0 ): if torch_device == "mps": return torch.manual_seed(__a ) return torch.Generator(device=__a ).manual_seed(__a ) @parameterized.expand( [ # fmt: off [33, [-0.16_03, 0.98_78, -0.04_95, -0.07_90, -0.27_09, 0.83_75, -0.20_60, -0.08_24], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]], [47, [-0.23_76, 0.11_68, 0.13_32, -0.48_40, -0.25_08, -0.07_91, -0.04_93, -0.40_89], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]], # fmt: on ] ) def _lowercase (self : List[Any] , __a : Dict , __a : Optional[int] , __a : List[str] ): UpperCAmelCase_ = self.get_sd_vae_model() UpperCAmelCase_ = self.get_sd_image(__a ) UpperCAmelCase_ = self.get_generator(__a ) with torch.no_grad(): UpperCAmelCase_ = model(__a , generator=__a , sample_posterior=__a ).sample assert sample.shape == image.shape UpperCAmelCase_ = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(__a , __a , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.05_13, 0.02_89, 1.37_99, 0.21_66, -0.25_73, -0.08_71, 0.51_03, -0.09_99]], [47, [-0.41_28, -0.13_20, -0.37_04, 0.19_65, -0.41_16, -0.23_32, -0.33_40, 0.22_47]], # fmt: on ] ) @require_torch_gpu def _lowercase (self : Dict , __a : Optional[int] , __a : int ): UpperCAmelCase_ = self.get_sd_vae_model(fpaa=__a ) UpperCAmelCase_ = self.get_sd_image(__a , fpaa=__a ) UpperCAmelCase_ = self.get_generator(__a ) with torch.no_grad(): UpperCAmelCase_ = model(__a , generator=__a , sample_posterior=__a ).sample assert sample.shape == image.shape UpperCAmelCase_ = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ = torch.tensor(__a ) assert torch_all_close(__a , __a , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.16_09, 0.98_66, -0.04_87, -0.07_77, -0.27_16, 0.83_68, -0.20_55, -0.08_14], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]], [47, [-0.23_77, 0.11_47, 0.13_33, -0.48_41, -0.25_06, -0.08_05, -0.04_91, -0.40_85], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]], # fmt: on ] ) def _lowercase (self : str , __a : int , __a : Union[str, Any] , __a : List[Any] ): UpperCAmelCase_ = self.get_sd_vae_model() UpperCAmelCase_ = self.get_sd_image(__a ) with torch.no_grad(): UpperCAmelCase_ = model(__a ).sample assert sample.shape == image.shape UpperCAmelCase_ = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(__a , __a , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.20_51, -0.18_03, -0.23_11, -0.21_14, -0.32_92, -0.35_74, -0.29_53, -0.33_23]], [37, [-0.26_32, -0.26_25, -0.21_99, -0.27_41, -0.45_39, -0.49_90, -0.37_20, -0.49_25]], # fmt: on ] ) @require_torch_gpu def _lowercase (self : int , __a : int , __a : int ): UpperCAmelCase_ = self.get_sd_vae_model() UpperCAmelCase_ = self.get_sd_image(__a , shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase_ = model.decode(__a ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase_ = sample[-1, -2:, :2, -2:].flatten().cpu() UpperCAmelCase_ = torch.tensor(__a ) assert torch_all_close(__a , __a , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.03_69, 0.02_07, -0.07_76, -0.06_82, -0.17_47, -0.19_30, -0.14_65, -0.20_39]], [16, [-0.16_28, -0.21_34, -0.27_47, -0.26_42, -0.37_74, -0.44_04, -0.36_87, -0.42_77]], # fmt: on ] ) @require_torch_gpu def _lowercase (self : Union[str, Any] , __a : List[str] , __a : Optional[Any] ): UpperCAmelCase_ = self.get_sd_vae_model(fpaa=__a ) UpperCAmelCase_ = self.get_sd_image(__a , shape=(3, 4, 64, 64) , fpaa=__a ) with torch.no_grad(): UpperCAmelCase_ = model.decode(__a ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase_ = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ = torch.tensor(__a ) assert torch_all_close(__a , __a , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _lowercase (self : List[str] , __a : int ): UpperCAmelCase_ = self.get_sd_vae_model(fpaa=__a ) UpperCAmelCase_ = self.get_sd_image(__a , shape=(3, 4, 64, 64) , fpaa=__a ) with torch.no_grad(): UpperCAmelCase_ = model.decode(__a ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ = model.decode(__a ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(__a , __a , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _lowercase (self : Union[str, Any] , __a : Dict ): UpperCAmelCase_ = self.get_sd_vae_model() UpperCAmelCase_ = self.get_sd_image(__a , shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase_ = model.decode(__a ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ = model.decode(__a ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(__a , __a , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.30_01, 0.09_18, -2.69_84, -3.97_20, -3.20_99, -5.03_53, 1.73_38, -0.20_65, 3.42_67]], [47, [-1.50_30, -4.38_71, -6.03_55, -9.11_57, -1.66_61, -2.78_53, 2.16_07, -5.08_23, 2.56_33]], # fmt: on ] ) def _lowercase (self : Tuple , __a : List[Any] , __a : List[Any] ): UpperCAmelCase_ = self.get_sd_vae_model() UpperCAmelCase_ = self.get_sd_image(__a ) UpperCAmelCase_ = self.get_generator(__a ) with torch.no_grad(): UpperCAmelCase_ = model.encode(__a ).latent_dist UpperCAmelCase_ = dist.sample(generator=__a ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] UpperCAmelCase_ = sample[0, -1, -3:, -3:].flatten().cpu() UpperCAmelCase_ = torch.tensor(__a ) UpperCAmelCase_ = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(__a , __a , atol=__a )
78
0
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ : list[int] , lowercase__ : int ) -> list[list[int]]: '''simple docstring''' lowerCAmelCase_ :list[list[int]] = [] lowerCAmelCase_ :list[int] = [] lowerCAmelCase_ :Dict = 0 lowerCAmelCase_ :Any = sum(lowercase__ ) create_state_space_tree(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) return result def _snake_case ( lowercase__ : list[int] , lowercase__ : int , lowercase__ : int , lowercase__ : list[int] , lowercase__ : list[list[int]] , lowercase__ : int , ) -> None: '''simple docstring''' if sum(lowercase__ ) > max_sum or (remaining_nums_sum + sum(lowercase__ )) < max_sum: return if sum(lowercase__ ) == max_sum: result.append(lowercase__ ) return for index in range(lowercase__ , len(lowercase__ ) ): create_state_space_tree( lowercase__ , lowercase__ , index + 1 , [*path, nums[index]] , lowercase__ , remaining_nums_sum - nums[index] , ) __UpperCAmelCase = [3, 34, 4, 12, 5, 2] __UpperCAmelCase = 9 __UpperCAmelCase = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
256
"""simple docstring""" import math from numpy import inf from scipy.integrate import quad def _snake_case ( lowercase__ : float ) -> float: '''simple docstring''' if num <= 0: raise ValueError("""math domain error""" ) return quad(lowercase__ , 0 , lowercase__ , args=(lowercase__) )[0] def _snake_case ( lowercase__ : float , lowercase__ : float ) -> float: '''simple docstring''' return math.pow(lowercase__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
256
1
def lowerCamelCase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list ) -> float: '''simple docstring''' _validate_point(__lowercase ) _validate_point(__lowercase ) if len(__lowercase ) != len(__lowercase ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(__lowercase , __lowercase ) ) ) def lowerCamelCase_ ( lowerCAmelCase__ : list[float] ) -> None: '''simple docstring''' if point: if isinstance(__lowercase , __lowercase ): for item in point: if not isinstance(__lowercase , (int, float) ): A = ( 'Expected a list of numbers as input, found ' F'''{type(__lowercase ).__name__}''' ) raise TypeError(__lowercase ) else: A = F'''Expected a list of numbers as input, found {type(__lowercase ).__name__}''' raise TypeError(__lowercase ) else: raise ValueError('Missing an input' ) def lowerCamelCase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list ) -> float: '''simple docstring''' _validate_point(__lowercase ) _validate_point(__lowercase ) if len(__lowercase ) != len(__lowercase ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(__lowercase , __lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
106
def _SCREAMING_SNAKE_CASE ( __lowercase : str ) -> str: """simple docstring""" __A = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _SCREAMING_SNAKE_CASE ( __lowercase : str ) -> dict[str, str]: """simple docstring""" __A = [chr(i + 6_5 ) for i in range(2_6 )] # Remove duplicate characters from key __A = remove_duplicates(key.upper() ) __A = len(__lowercase ) # First fill cipher with key characters __A = {alphabet[i]: char for i, char in enumerate(__lowercase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__lowercase ) , 2_6 ): __A = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __A = alphabet[i - offset] __A = char return cipher_alphabet def _SCREAMING_SNAKE_CASE ( __lowercase : str , __lowercase : dict[str, str] ) -> str: """simple docstring""" return "".join(cipher_map.get(__lowercase , __lowercase ) for ch in message.upper() ) def _SCREAMING_SNAKE_CASE ( __lowercase : str , __lowercase : dict[str, str] ) -> str: """simple docstring""" __A = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__lowercase , __lowercase ) for ch in message.upper() ) def _SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" __A = input("""Enter message to encode or decode: """ ).strip() __A = input("""Enter keyword: """ ).strip() __A = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: __A = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) __A = create_cipher_map(__lowercase ) print(func(__lowercase , __lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
637
0
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def A_ ( self : Tuple , __a : float ) -> float: '''simple docstring''' return 0.0 def a_ ( _UpperCAmelCase : np.ndarray ,_UpperCAmelCase : int ) -> tuple[int | float, int | float]: __snake_case : Any = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) __snake_case : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def a_ ( _UpperCAmelCase : FilterType ,_UpperCAmelCase : int ) -> None: __snake_case : Any = 5_12 __snake_case : Tuple = [1] + [0] * (size - 1) __snake_case : Optional[Any] = [filter_type.process(_UpperCAmelCase ) for item in inputs] __snake_case : List[str] = [0] * (samplerate - size) # zero-padding outputs += filler __snake_case : Optional[Any] = np.abs(np.fft.fft(_UpperCAmelCase ) ) __snake_case : Any = 20 * np.logaa(_UpperCAmelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 ,samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) # Display within reasonable bounds __snake_case : List[Any] = get_bounds(_UpperCAmelCase ,_UpperCAmelCase ) plt.ylim(max([-80, bounds[0]] ) ,min([80, bounds[1]] ) ) plt.ylabel('Gain (dB)' ) plt.plot(_UpperCAmelCase ) plt.show() def a_ ( _UpperCAmelCase : FilterType ,_UpperCAmelCase : int ) -> None: __snake_case : List[Any] = 5_12 __snake_case : List[Any] = [1] + [0] * (size - 1) __snake_case : Dict = [filter_type.process(_UpperCAmelCase ) for item in inputs] __snake_case : Tuple = [0] * (samplerate - size) # zero-padding outputs += filler __snake_case : List[Any] = np.angle(np.fft.fft(_UpperCAmelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 ,samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) plt.ylim(-2 * pi ,2 * pi ) plt.ylabel('Phase shift (Radians)' ) plt.plot(np.unwrap(_UpperCAmelCase ,-2 * pi ) ) plt.show()
711
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests A__ : List[str] = open # noqa: we just need to have a builtin inside this module to test it properly
124
0
def _a ( lowercase__ : str , lowercase__ : bool = False ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE__ : Any = f'''Expected string as input, found {type(lowercase__ )}''' raise ValueError(lowercase__ ) if not isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = f'''Expected boolean as use_pascal parameter, found {type(lowercase__ )}''' raise ValueError(lowercase__ ) SCREAMING_SNAKE_CASE__ : Any = input_str.split('_' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 if use_pascal else 1 SCREAMING_SNAKE_CASE__ : int = words[start_index:] SCREAMING_SNAKE_CASE__ : Dict = [word[0].upper() + word[1:] for word in words_to_capitalize] SCREAMING_SNAKE_CASE__ : List[str] = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
85
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _a ( lowercase__ : int = 3 ): '''simple docstring''' if isinstance(lowercase__ , lowercase__ ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(lowercase__ ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) SCREAMING_SNAKE_CASE__ : Tuple = QuantumRegister(lowercase__ , 'qr' ) SCREAMING_SNAKE_CASE__ : int = ClassicalRegister(lowercase__ , 'cr' ) SCREAMING_SNAKE_CASE__ : Tuple = QuantumCircuit(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE__ : Tuple = number_of_qubits for i in range(lowercase__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(lowercase__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , lowercase__ , lowercase__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(lowercase__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(lowercase__ , lowercase__ ) # simulate with 10000 shots SCREAMING_SNAKE_CASE__ : Optional[int] = Aer.get_backend('qasm_simulator' ) SCREAMING_SNAKE_CASE__ : Tuple = execute(lowercase__ , lowercase__ , shots=1_00_00 ) return job.result().get_counts(lowercase__ ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
85
1
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class _snake_case ( a_ ): SCREAMING_SNAKE_CASE : Tuple = ComputeEnvironment.AMAZON_SAGEMAKER SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Optional[int] = '''ml.p3.2xlarge''' SCREAMING_SNAKE_CASE : Optional[Any] = '''accelerate_sagemaker_execution_role''' SCREAMING_SNAKE_CASE : int = '''hf-sm''' SCREAMING_SNAKE_CASE : Optional[int] = '''us-east-1''' SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Union[str, Any] = '''accelerate-sagemaker-1''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''1.6''' SCREAMING_SNAKE_CASE : int = '''4.4''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''train.py''' SCREAMING_SNAKE_CASE : Dict = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] SCREAMING_SNAKE_CASE : str = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class _snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['model_name_or_path'] , _SCREAMING_SNAKE_CASE ) assert isinstance(converted_args['do_train'] , _SCREAMING_SNAKE_CASE ) assert isinstance(converted_args['epochs'] , _SCREAMING_SNAKE_CASE ) assert isinstance(converted_args['learning_rate'] , _SCREAMING_SNAKE_CASE ) assert isinstance(converted_args['max_steps'] , _SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
514
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : Any = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Tuple = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys _UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
514
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case_ : int = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = ['DeiTFeatureExtractor'] snake_case_ : Optional[int] = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys snake_case_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
212
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Optional[Any] = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys snake_case_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
212
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _A : Optional[Any] = logging.get_logger(__name__) _A : Dict = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def UpperCamelCase_ ( snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : Any , snake_case_ : Union[str, Any] ) -> Tuple: '''simple docstring''' for attribute in key.split(""".""" ): __lowerCAmelCase = getattr(snake_case_ , snake_case_ ) if weight_type is not None: __lowerCAmelCase = getattr(snake_case_ , snake_case_ ).shape else: __lowerCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def UpperCamelCase_ ( snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : Optional[Any] ) -> int: '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == """group""" , ) __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCAmelCase = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(snake_case_ )[0].split(""".""" )[-2] __lowerCAmelCase = mapped_key.replace("""*""" , snake_case_ ) if "weight_g" in name: __lowerCAmelCase = """weight_g""" elif "weight_v" in name: __lowerCAmelCase = """weight_v""" elif "weight" in name: __lowerCAmelCase = """weight""" elif "bias" in name: __lowerCAmelCase = """bias""" else: __lowerCAmelCase = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase_ ( snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : int ) -> int: '''simple docstring''' __lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] __lowerCAmelCase = name.split(""".""" ) __lowerCAmelCase = int(items[0] ) __lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCAmelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCAmelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowerCAmelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCAmelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def UpperCamelCase_ ( snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : Dict=True ) -> List[str]: '''simple docstring''' if config_path is not None: __lowerCAmelCase = HubertConfig.from_pretrained(snake_case_ ) else: __lowerCAmelCase = HubertConfig() if is_finetuned: if dict_path: __lowerCAmelCase = Dictionary.load(snake_case_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowerCAmelCase = target_dict.pad_index __lowerCAmelCase = target_dict.bos_index __lowerCAmelCase = target_dict.eos_index __lowerCAmelCase = len(target_dict.symbols ) __lowerCAmelCase = os.path.join(snake_case_ , """vocab.json""" ) if not os.path.isdir(snake_case_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(snake_case_ ) ) return os.makedirs(snake_case_ , exist_ok=snake_case_ ) with open(snake_case_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , snake_case_ ) __lowerCAmelCase = WavaVecaCTCTokenizer( snake_case_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=snake_case_ , ) __lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False __lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=snake_case_ , return_attention_mask=snake_case_ , ) __lowerCAmelCase = WavaVecaProcessor(feature_extractor=snake_case_ , tokenizer=snake_case_ ) processor.save_pretrained(snake_case_ ) __lowerCAmelCase = HubertForCTC(snake_case_ ) else: __lowerCAmelCase = HubertModel(snake_case_ ) if is_finetuned: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __lowerCAmelCase = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ , snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": _A : Any = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _A : str = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : list , snake_case_ : int , snake_case_ : int = 0 , snake_case_ : int = 0 ) -> int: '''simple docstring''' __lowerCAmelCase = right or len(snake_case_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(snake_case_ , snake_case_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
330
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase ( a_ ): __UpperCAmelCase = ['''image_processor''', '''tokenizer'''] __UpperCAmelCase = '''BridgeTowerImageProcessor''' __UpperCAmelCase = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , lowercase_ , lowercase_) -> Optional[int]: super().__init__(lowercase_ , lowercase_) def __call__( self , lowercase_ , lowercase_ = None , lowercase_ = True , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = True , lowercase_ = None , **lowercase_ , ) -> Tuple: __snake_case = self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # add pixel_values + pixel_mask __snake_case = self.image_processor( lowercase_ , return_tensors=lowercase_ , do_normalize=lowercase_ , do_center_crop=lowercase_ , **lowercase_) encoding.update(lowercase_) return encoding def _a ( self , *lowercase_ , **lowercase_) -> List[str]: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def _a ( self , *lowercase_ , **lowercase_) -> Optional[int]: return self.tokenizer.decode(*lowercase_ , **lowercase_) @property def _a ( self) -> Optional[Any]: __snake_case = self.tokenizer.model_input_names __snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
313
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase : """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any]=13 , SCREAMING_SNAKE_CASE : Any=7 , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : List[str]=False , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : str=99 , SCREAMING_SNAKE_CASE : Tuple=32 , SCREAMING_SNAKE_CASE : Dict=5 , SCREAMING_SNAKE_CASE : Optional[int]=4 , SCREAMING_SNAKE_CASE : int=37 , SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE : Tuple=0.1 , SCREAMING_SNAKE_CASE : List[str]=512 , SCREAMING_SNAKE_CASE : Optional[int]=16 , SCREAMING_SNAKE_CASE : str=2 , SCREAMING_SNAKE_CASE : str=0.02 , SCREAMING_SNAKE_CASE : Tuple=3 , SCREAMING_SNAKE_CASE : Dict=4 , SCREAMING_SNAKE_CASE : Optional[Any]=None , ): _A : Optional[int] = parent _A : List[Any] = batch_size _A : int = seq_length _A : List[str] = is_training _A : str = use_input_mask _A : Any = use_token_type_ids _A : List[str] = use_labels _A : Optional[Any] = vocab_size _A : Tuple = hidden_size _A : Dict = num_hidden_layers _A : int = num_attention_heads _A : Union[str, Any] = intermediate_size _A : str = hidden_act _A : Tuple = hidden_dropout_prob _A : Tuple = attention_probs_dropout_prob _A : Tuple = max_position_embeddings _A : Any = type_vocab_size _A : Optional[int] = type_sequence_label_size _A : Any = initializer_range _A : Tuple = num_labels _A : List[str] = num_choices _A : Any = scope def A ( self : Union[str, Any]): _A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _A : Optional[Any] = None if self.use_input_mask: _A : str = random_attention_mask([self.batch_size, self.seq_length]) _A : Dict = None if self.use_token_type_ids: _A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _A : Optional[int] = None _A : Tuple = None _A : Optional[int] = None if self.use_labels: _A : str = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _A : int = ids_tensor([self.batch_size] , self.num_choices) _A : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : List[Any]): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def A ( self : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int): _A : str = BioGptModel(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Optional[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE) _A : Optional[int] = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A ( self : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str , ): _A : int = BioGptForCausalLM(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Optional[int] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , *SCREAMING_SNAKE_CASE : List[Any]): _A : int = BioGptModel(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() # create attention mask _A : Any = torch.ones(input_ids.shape , dtype=torch.long , device=SCREAMING_SNAKE_CASE) _A : List[Any] = self.seq_length // 2 _A : Any = 0 # first forward pass _A , _A : Union[str, Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE).to_tuple() # create hypothetical next token and extent to next_input_ids _A : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids _A : Any = ids_tensor((1,) , SCREAMING_SNAKE_CASE).item() + 1 _A : List[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) _A : int = random_other_next_tokens # append to next input_ids and attn_mask _A : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1) _A : Dict = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=SCREAMING_SNAKE_CASE)] , dim=1 , ) # get two different outputs _A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE)['last_hidden_state'] _A : List[Any] = model(SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE)['last_hidden_state'] # select random slice _A : List[Any] = ids_tensor((1,) , output_from_past.shape[-1]).item() _A : str = output_from_no_past[:, -1, random_slice_idx].detach() _A : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3)) def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , *SCREAMING_SNAKE_CASE : List[Any]): _A : int = BioGptModel(config=SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE).eval() _A : Any = torch.ones(input_ids.shape , dtype=torch.long , device=SCREAMING_SNAKE_CASE) # first forward pass _A : Tuple = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE) _A , _A : str = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _A : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size) _A : List[str] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and _A : Any = torch.cat([input_ids, next_tokens] , dim=-1) _A : Tuple = torch.cat([attention_mask, next_attn_mask] , dim=-1) _A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE)['last_hidden_state'] _A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE)[ 'last_hidden_state' ] # select random slice _A : Dict = ids_tensor((1,) , output_from_past.shape[-1]).item() _A : int = output_from_no_past[:, -3:, random_slice_idx].detach() _A : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3)) def A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] , *SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str]=False): _A : List[str] = BioGptForCausalLM(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) if gradient_checkpointing: model.gradient_checkpointing_enable() _A : Dict = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A ( self : List[Any] , SCREAMING_SNAKE_CASE : Any , *SCREAMING_SNAKE_CASE : List[Any]): _A : Optional[Any] = BioGptModel(SCREAMING_SNAKE_CASE) _A : List[str] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.001) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.01) def A ( self : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , *SCREAMING_SNAKE_CASE : Optional[Any]): _A : List[Any] = self.num_labels _A : List[str] = BioGptForTokenClassification(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Optional[int] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A ( self : Dict): _A : str = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : int = config_and_inputs _A : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" a = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) a = (BioGptForCausalLM,) if is_torch_available() else () a = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) a = False def A ( self : Dict): _A : Optional[int] = BioGptModelTester(self) _A : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37) def A ( self : Dict): self.config_tester.run_common_tests() def A ( self : str): _A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE) def A ( self : List[Any]): _A : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A : Dict = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE) def A ( self : str): _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*SCREAMING_SNAKE_CASE) def A ( self : Optional[Any]): _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*SCREAMING_SNAKE_CASE , gradient_checkpointing=SCREAMING_SNAKE_CASE) def A ( self : Optional[int]): _A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*SCREAMING_SNAKE_CASE) def A ( self : List[Any]): _A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*SCREAMING_SNAKE_CASE) def A ( self : Optional[Any]): _A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*SCREAMING_SNAKE_CASE) @slow def A ( self : List[Any]): _A : int = BioGptForCausalLM.from_pretrained('microsoft/biogpt') model.to(SCREAMING_SNAKE_CASE) _A : Tuple = BioGptTokenizer.from_pretrained('microsoft/biogpt') _A : Optional[Any] = 'left' # Define PAD Token = EOS Token = 50256 _A : Tuple = tokenizer.eos_token _A : str = model.config.eos_token_id # use different length sentences to test batching _A : Dict = [ 'Hello, my dog is a little', 'Today, I', ] _A : int = tokenizer(SCREAMING_SNAKE_CASE , return_tensors='pt' , padding=SCREAMING_SNAKE_CASE) _A : List[str] = inputs['input_ids'].to(SCREAMING_SNAKE_CASE) _A : Dict = model.generate( input_ids=SCREAMING_SNAKE_CASE , attention_mask=inputs['attention_mask'].to(SCREAMING_SNAKE_CASE) , ) _A : Tuple = tokenizer(sentences[0] , return_tensors='pt').input_ids.to(SCREAMING_SNAKE_CASE) _A : Dict = model.generate(input_ids=SCREAMING_SNAKE_CASE) _A : List[str] = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() _A : Any = tokenizer(sentences[1] , return_tensors='pt').input_ids.to(SCREAMING_SNAKE_CASE) _A : Union[str, Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE , max_length=model.config.max_length - num_paddings) _A : Dict = tokenizer.batch_decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE) _A : str = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE) _A : List[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE) _A : List[str] = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) self.assertListEqual(SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence]) @slow def A ( self : int): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Union[str, Any] = BioGptModel.from_pretrained(SCREAMING_SNAKE_CASE) self.assertIsNotNone(SCREAMING_SNAKE_CASE) def A ( self : Optional[Any]): _A , _A : Dict = self.model_tester.prepare_config_and_inputs_for_common() _A : int = 3 _A : Dict = input_dict['input_ids'] _A : Dict = input_ids.ne(1).to(SCREAMING_SNAKE_CASE) _A : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) _A : List[Any] = BioGptForSequenceClassification(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : List[str] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A ( self : Any): _A , _A : Dict = self.model_tester.prepare_config_and_inputs_for_common() _A : Union[str, Any] = 3 _A : Optional[int] = 'multi_label_classification' _A : str = input_dict['input_ids'] _A : int = input_ids.ne(1).to(SCREAMING_SNAKE_CASE) _A : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) _A : Optional[int] = BioGptForSequenceClassification(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Tuple = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A ( self : str): _A : List[Any] = BioGptForCausalLM.from_pretrained('microsoft/biogpt') _A : Dict = torch.tensor([[2, 4805, 9, 656, 21]]) _A : Optional[Any] = model(SCREAMING_SNAKE_CASE)[0] _A : Optional[Any] = 42384 _A : int = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE) _A : str = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4)) @slow def A ( self : Optional[int]): _A : Dict = BioGptTokenizer.from_pretrained('microsoft/biogpt') _A : Any = BioGptForCausalLM.from_pretrained('microsoft/biogpt') model.to(SCREAMING_SNAKE_CASE) torch.manual_seed(0) _A : List[Any] = tokenizer('COVID-19 is' , return_tensors='pt').to(SCREAMING_SNAKE_CASE) _A : Optional[int] = model.generate( **SCREAMING_SNAKE_CASE , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=SCREAMING_SNAKE_CASE , ) _A : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE) _A : List[str] = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
128
0
import csv import tweepy # Twitter API credentials UpperCAmelCase_ = """""" UpperCAmelCase_ = """""" UpperCAmelCase_ = """""" UpperCAmelCase_ = """""" def __magic_name__ ( lowercase ) -> None: """simple docstring""" lowercase_ : Optional[Any] = tweepy.OAuthHandler(lowercase , lowercase ) auth.set_access_token(lowercase , lowercase ) lowercase_ : Dict = tweepy.API(lowercase ) # initialize a list to hold all the tweepy Tweets lowercase_ : int = [] # make initial request for most recent tweets (200 is the maximum allowed count) lowercase_ : str = api.user_timeline(screen_name=lowercase , count=200 ) # save most recent tweets alltweets.extend(lowercase ) # save the id of the oldest tweet less one lowercase_ : Union[str, Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase ) > 0: print(f"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates lowercase_ : List[Any] = api.user_timeline( screen_name=lowercase , count=200 , max_id=lowercase ) # save most recent tweets alltweets.extend(lowercase ) # update the id of the oldest tweet less one lowercase_ : Union[str, Any] = alltweets[-1].id - 1 print(f"""...{len(lowercase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv lowercase_ : Optional[Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f"""new_{screen_name}_tweets.csv""" , """w""" ) as f: lowercase_ : Optional[Any] = csv.writer(lowercase ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(lowercase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
436
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def __magic_name__ ( lowercase="" ) -> str: """simple docstring""" lowercase_ : Dict = tempfile.mkdtemp() return os.path.join(lowercase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ) -> str: """simple docstring""" lowercase_ : Dict = torch.rand(12, dtype=torch.floataa ) - 0.5 lowercase_ : Union[str, Any] = AgentAudio(snake_case__ ) lowercase_ : Optional[int] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case__, agent_type.to_raw(), atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(snake_case__ ) ) # Ensure that the file contains the same value as the original tensor lowercase_ , lowercase_ : Any = sf.read(snake_case__ ) self.assertTrue(torch.allclose(snake_case__, torch.tensor(snake_case__ ), atol=1E-4 ) ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" lowercase_ : Dict = torch.rand(12, dtype=torch.floataa ) - 0.5 lowercase_ : List[str] = get_new_path(suffix=""".wav""" ) sf.write(snake_case__, snake_case__, 1_60_00 ) lowercase_ : int = AgentAudio(snake_case__ ) self.assertTrue(torch.allclose(snake_case__, agent_type.to_raw(), atol=1E-4 ) ) self.assertEqual(agent_type.to_string(), snake_case__ ) @require_vision @require_torch class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ) -> List[str]: """simple docstring""" lowercase_ : int = torch.randint(0, 2_56, (64, 64, 3) ) lowercase_ : Dict = AgentImage(snake_case__ ) lowercase_ : Optional[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case__, agent_type._tensor, atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw(), Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" lowercase_ : int = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" lowercase_ : Optional[Any] = Image.open(snake_case__ ) lowercase_ : List[str] = AgentImage(snake_case__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" lowercase_ : int = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" lowercase_ : Optional[int] = Image.open(snake_case__ ) lowercase_ : List[Any] = AgentImage(snake_case__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ) -> Any: """simple docstring""" lowercase_ : Optional[int] = """Hey!""" lowercase_ : Tuple = AgentText(snake_case__ ) self.assertEqual(snake_case__, agent_type.to_string() ) self.assertEqual(snake_case__, agent_type.to_raw() ) self.assertEqual(snake_case__, snake_case__ )
436
1
def UpperCAmelCase ( a_ = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" __A = set() # Replace all the whitespace in our sentence __A = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(a_ ) == 2_6 def UpperCAmelCase ( a_ = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" __A = [False] * 2_6 for char in input_str: if char.islower(): __A = True elif char.isupper(): __A = True return all(a_ ) def UpperCAmelCase ( a_ = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def UpperCAmelCase ( ) -> None: """simple docstring""" from timeit import timeit __A = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=a_ ) ) print(timeit("is_pangram_faster()" , setup=a_ ) ) print(timeit("is_pangram_fastest()" , setup=a_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
55
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> float: if principal <= 0: raise Exception("Principal borrowed must be > 0" ) if rate_per_annum < 0: raise Exception("Rate of interest must be >= 0" ) if years_to_repay <= 0 or not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise Exception("Years to repay must be an integer > 0" ) # Yearly rate is divided by 12 to get monthly rate __lowerCAmelCase: str = rate_per_annum / 1_2 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __lowerCAmelCase: Optional[Any] = years_to_repay * 1_2 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
346
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): lowerCamelCase =KandinskyVaaControlnetPipeline lowerCamelCase =['''image_embeds''', '''negative_image_embeds''', '''hint'''] lowerCamelCase =['''image_embeds''', '''negative_image_embeds''', '''hint'''] lowerCamelCase =[ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowerCamelCase =False @property def lowercase_( self : Tuple ): """simple docstring""" return 32 @property def lowercase_( self : Any ): """simple docstring""" return 32 @property def lowercase_( self : str ): """simple docstring""" return self.time_input_dim @property def lowercase_( self : Union[str, Any] ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase_( self : List[str] ): """simple docstring""" return 1_00 @property def lowercase_( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) __A : str = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __A : int = UNetaDConditionModel(**lowerCamelCase ) return model @property def lowercase_( self : Tuple ): """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowercase_( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) __A : int = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_( self : Tuple ): """simple docstring""" __A : Optional[int] = self.dummy_unet __A : List[str] = self.dummy_movq __A : List[str] = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCamelCase , set_alpha_to_one=lowerCamelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=lowerCamelCase , ) __A : Union[str, Any] = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase_( self : Optional[int] , lowerCamelCase : str , lowerCamelCase : List[Any]=0 ): """simple docstring""" __A : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) __A : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCamelCase ) # create hint __A : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if str(lowerCamelCase ).startswith("""mps""" ): __A : Optional[Any] = torch.manual_seed(lowerCamelCase ) else: __A : Optional[Any] = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __A : str = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def lowercase_( self : Dict ): """simple docstring""" __A : str = """cpu""" __A : str = self.get_dummy_components() __A : str = self.pipeline_class(**lowerCamelCase ) __A : Dict = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __A : int = pipe(**self.get_dummy_inputs(lowerCamelCase ) ) __A : List[str] = output.images __A : Optional[Any] = pipe( **self.get_dummy_inputs(lowerCamelCase ) , return_dict=lowerCamelCase , )[0] __A : Dict = image[0, -3:, -3:, -1] __A : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __A : List[str] = np.array( [0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __A ( unittest.TestCase ): def lowercase_( self : List[str] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_( self : Optional[Any] ): """simple docstring""" __A : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) __A : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) __A : Union[str, Any] = torch.from_numpy(np.array(lowerCamelCase ) ).float() / 255.0 __A : Dict = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __A : Any = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase ) __A : Optional[int] = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) __A : Union[str, Any] = pipeline.to(lowerCamelCase ) pipeline.set_progress_bar_config(disable=lowerCamelCase ) __A : Any = """A robot, 4k photo""" __A : List[str] = torch.Generator(device="""cuda""" ).manual_seed(0 ) __A : Optional[Any] = pipe_prior( lowerCamelCase , generator=lowerCamelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __A : Optional[Any] = torch.Generator(device="""cuda""" ).manual_seed(0 ) __A : Optional[int] = pipeline( image_embeds=lowerCamelCase , negative_image_embeds=lowerCamelCase , hint=lowerCamelCase , generator=lowerCamelCase , num_inference_steps=1_00 , output_type="""np""" , ) __A : int = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase )
720
'''simple docstring''' def A_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool = False ) -> bool: """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis __A : Optional[int] = [ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] __A : Optional[int] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(__SCREAMING_SNAKE_CASE , 1 ): if n < _p: # then we have our last prime to check __A : Union[str, Any] = primes[:idx] break __A , __A : int = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: __A : int = False for r in range(__SCREAMING_SNAKE_CASE ): __A : Optional[Any] = pow(__SCREAMING_SNAKE_CASE , d * 2**r , __SCREAMING_SNAKE_CASE ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): __A : Optional[int] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def A_ ( ) -> None: """simple docstring""" assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
499
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig __a = logging.get_logger(__name__) # General docstring __a = 'RegNetConfig' # Base docstring __a = 'facebook/regnet-y-040' __a = [1, 1_088, 7, 7] # Image classification docstring __a = 'facebook/regnet-y-040' __a = 'tabby, tabby cat' __a = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __a( nn.Module ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 3 ,_SCREAMING_SNAKE_CASE = 1 ,_SCREAMING_SNAKE_CASE = 1 ,_SCREAMING_SNAKE_CASE = "relu" ,) -> Dict: super().__init__() UpperCAmelCase_ : List[Any] = nn.Convad( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,kernel_size=_SCREAMING_SNAKE_CASE ,stride=_SCREAMING_SNAKE_CASE ,padding=kernel_size // 2 ,groups=_SCREAMING_SNAKE_CASE ,bias=_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : List[str] = nn.BatchNormad(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = ACTaFN[activation] if activation is not None else nn.Identity() def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ : List[str] = self.convolution(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = self.normalization(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class __a( nn.Module ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ) -> int: super().__init__() UpperCAmelCase_ : Optional[int] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) UpperCAmelCase_ : Optional[int] = config.num_channels def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ : Dict = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) UpperCAmelCase_ : Union[str, Any] = self.embedder(_SCREAMING_SNAKE_CASE ) return hidden_state class __a( nn.Module ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 2 ) -> List[Any]: super().__init__() UpperCAmelCase_ : int = nn.Convad(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,kernel_size=1 ,stride=_SCREAMING_SNAKE_CASE ,bias=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = nn.BatchNormad(_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Tensor: UpperCAmelCase_ : List[str] = self.convolution(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = self.normalization(_SCREAMING_SNAKE_CASE ) return hidden_state class __a( nn.Module ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[Any]: super().__init__() UpperCAmelCase_ : str = nn.AdaptiveAvgPoolad((1, 1) ) UpperCAmelCase_ : int = nn.Sequential( nn.Convad(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,kernel_size=1 ) ,nn.Sigmoid() ,) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: # b c h w -> b c 1 1 UpperCAmelCase_ : int = self.pooler(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = self.attention(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = hidden_state * attention return hidden_state class __a( nn.Module ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 1 ) -> Union[str, Any]: super().__init__() UpperCAmelCase_ : str = in_channels != out_channels or stride != 1 UpperCAmelCase_ : Optional[int] = max(1 ,out_channels // config.groups_width ) UpperCAmelCase_ : int = ( RegNetShortCut(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,stride=_SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) UpperCAmelCase_ : Dict = nn.Sequential( RegNetConvLayer(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,stride=_SCREAMING_SNAKE_CASE ,groups=_SCREAMING_SNAKE_CASE ,activation=config.hidden_act ) ,RegNetConvLayer(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,kernel_size=1 ,activation=_SCREAMING_SNAKE_CASE ) ,) UpperCAmelCase_ : List[str] = ACTaFN[config.hidden_act] def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ : int = hidden_state UpperCAmelCase_ : Optional[Any] = self.layer(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = self.shortcut(_SCREAMING_SNAKE_CASE ) hidden_state += residual UpperCAmelCase_ : Optional[int] = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class __a( nn.Module ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 1 ) -> Any: super().__init__() UpperCAmelCase_ : Optional[int] = in_channels != out_channels or stride != 1 UpperCAmelCase_ : Dict = max(1 ,out_channels // config.groups_width ) UpperCAmelCase_ : List[Any] = ( RegNetShortCut(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,stride=_SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) UpperCAmelCase_ : List[str] = nn.Sequential( RegNetConvLayer(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,stride=_SCREAMING_SNAKE_CASE ,groups=_SCREAMING_SNAKE_CASE ,activation=config.hidden_act ) ,RegNetSELayer(_SCREAMING_SNAKE_CASE ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,kernel_size=1 ,activation=_SCREAMING_SNAKE_CASE ) ,) UpperCAmelCase_ : List[str] = ACTaFN[config.hidden_act] def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ : Dict = hidden_state UpperCAmelCase_ : Union[str, Any] = self.layer(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = self.shortcut(_SCREAMING_SNAKE_CASE ) hidden_state += residual UpperCAmelCase_ : Optional[int] = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class __a( nn.Module ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 2 ,_SCREAMING_SNAKE_CASE = 2 ,) -> Optional[int]: super().__init__() UpperCAmelCase_ : Dict = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer UpperCAmelCase_ : Dict = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,stride=_SCREAMING_SNAKE_CASE ,) ,*[layer(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) for _ in range(depth - 1 )] ,) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ : int = self.layers(_SCREAMING_SNAKE_CASE ) return hidden_state class __a( nn.Module ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: super().__init__() UpperCAmelCase_ : Tuple = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _SCREAMING_SNAKE_CASE ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) UpperCAmelCase_ : Optional[int] = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_SCREAMING_SNAKE_CASE ,config.depths[1:] ): self.stages.append(RegNetStage(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,depth=_SCREAMING_SNAKE_CASE ) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = True ) -> BaseModelOutputWithNoAttention: UpperCAmelCase_ : Union[str, Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCAmelCase_ : Any = hidden_states + (hidden_state,) UpperCAmelCase_ : Dict = stage_module(_SCREAMING_SNAKE_CASE ) if output_hidden_states: UpperCAmelCase_ : Dict = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_SCREAMING_SNAKE_CASE ,hidden_states=_SCREAMING_SNAKE_CASE ) class __a( _a ): """simple docstring""" lowerCAmelCase = RegNetConfig lowerCAmelCase = '''regnet''' lowerCAmelCase = '''pixel_values''' lowerCAmelCase = True def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> str: if isinstance(_SCREAMING_SNAKE_CASE ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_SCREAMING_SNAKE_CASE ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=False ) -> Dict: if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[Any] = value __a = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __a = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , _a , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __a( _a ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: super().__init__(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = config UpperCAmelCase_ : List[Any] = RegNetEmbeddings(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = RegNetEncoder(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_SCREAMING_SNAKE_CASE ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ) -> BaseModelOutputWithPoolingAndNoAttention: UpperCAmelCase_ : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_ : Any = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ : int = self.embedder(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = self.encoder( _SCREAMING_SNAKE_CASE ,output_hidden_states=_SCREAMING_SNAKE_CASE ,return_dict=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = encoder_outputs[0] UpperCAmelCase_ : Optional[int] = self.pooler(_SCREAMING_SNAKE_CASE ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_SCREAMING_SNAKE_CASE ,pooler_output=_SCREAMING_SNAKE_CASE ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , _a , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __a( _a ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ) -> str: super().__init__(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = config.num_labels UpperCAmelCase_ : Optional[int] = RegNetModel(_SCREAMING_SNAKE_CASE ) # classification head UpperCAmelCase_ : Any = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_SCREAMING_SNAKE_CASE ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def a__ ( self ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,) -> ImageClassifierOutputWithNoAttention: UpperCAmelCase_ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ : Optional[Any] = self.regnet(_SCREAMING_SNAKE_CASE ,output_hidden_states=_SCREAMING_SNAKE_CASE ,return_dict=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase_ : int = self.classifier(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCAmelCase_ : Optional[int] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCAmelCase_ : List[str] = '''single_label_classification''' else: UpperCAmelCase_ : Union[str, Any] = '''multi_label_classification''' if self.config.problem_type == "regression": UpperCAmelCase_ : str = MSELoss() if self.num_labels == 1: UpperCAmelCase_ : str = loss_fct(logits.squeeze() ,labels.squeeze() ) else: UpperCAmelCase_ : Optional[Any] = loss_fct(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) elif self.config.problem_type == "single_label_classification": UpperCAmelCase_ : str = CrossEntropyLoss() UpperCAmelCase_ : int = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCAmelCase_ : List[Any] = BCEWithLogitsLoss() UpperCAmelCase_ : Any = loss_fct(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) if not return_dict: UpperCAmelCase_ : int = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_SCREAMING_SNAKE_CASE ,logits=_SCREAMING_SNAKE_CASE ,hidden_states=outputs.hidden_states )
30
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __a = logging.get_logger(__name__) __a = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class __a( _a ): """simple docstring""" lowerCAmelCase = '''imagegpt''' lowerCAmelCase = ['''past_key_values'''] lowerCAmelCase = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self ,_SCREAMING_SNAKE_CASE=512 + 1 ,_SCREAMING_SNAKE_CASE=32 * 32 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=24 ,_SCREAMING_SNAKE_CASE=8 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE="quick_gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=1e-5 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,**_SCREAMING_SNAKE_CASE ,) -> Optional[int]: UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : Union[str, Any] = n_positions UpperCAmelCase_ : Union[str, Any] = n_embd UpperCAmelCase_ : Any = n_layer UpperCAmelCase_ : Optional[Any] = n_head UpperCAmelCase_ : Union[str, Any] = n_inner UpperCAmelCase_ : List[Any] = activation_function UpperCAmelCase_ : List[str] = resid_pdrop UpperCAmelCase_ : str = embd_pdrop UpperCAmelCase_ : Optional[Any] = attn_pdrop UpperCAmelCase_ : Dict = layer_norm_epsilon UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Dict = scale_attn_weights UpperCAmelCase_ : Any = use_cache UpperCAmelCase_ : List[str] = scale_attn_by_inverse_layer_idx UpperCAmelCase_ : Tuple = reorder_and_upcast_attn UpperCAmelCase_ : int = tie_word_embeddings super().__init__(tie_word_embeddings=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) class __a( _a ): """simple docstring""" @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 1 ,_SCREAMING_SNAKE_CASE = -1 ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = 3 ,_SCREAMING_SNAKE_CASE = 32 ,_SCREAMING_SNAKE_CASE = 32 ,) -> Mapping[str, Any]: UpperCAmelCase_ : Any = self._generate_dummy_images(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = dict(preprocessor(images=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ) ) return inputs
30
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase__ : str = logging.get_logger(__name__) lowercase__ : Optional[Any] = "▁" lowercase__ : Optional[Any] = {"vocab_file": "sentencepiece.bpe.model"} lowercase__ : int = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } lowercase__ : List[str] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : str , __lowercase : int , __lowercase : Optional[Any]="<s>" , __lowercase : Dict="</s>" , __lowercase : Optional[Any]="</s>" , __lowercase : int="<s>" , __lowercase : Dict="<unk>" , __lowercase : Optional[int]="<pad>" , __lowercase : Any="<mask>" , __lowercase : Optional[Dict[str, Any]] = None , **__lowercase : Dict , ): """simple docstring""" snake_case_ = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowercase ) ) snake_case_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token snake_case_ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case_ = 1 snake_case_ = len(self.sp_model ) + self.fairseq_offset snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ): """simple docstring""" snake_case_ = self.__dict__.copy() snake_case_ = None snake_case_ = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[int] , __lowercase : Optional[Any] ): """simple docstring""" snake_case_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case__ ( self : Union[str, Any] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self : Dict , __lowercase : List[int] , __lowercase : Optional[List[int]] = None , __lowercase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1] def snake_case__ ( self : Union[str, Any] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case__ ( self : Union[str, Any] ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def snake_case__ ( self : str ): """simple docstring""" snake_case_ = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case__ ( self : Union[str, Any] , __lowercase : str ): """simple docstring""" return self.sp_model.encode(__lowercase , out_type=__lowercase ) def snake_case__ ( self : str , __lowercase : Union[str, Any] ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ = self.sp_model.PieceToId(__lowercase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case__ ( self : Optional[int] , __lowercase : str ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case__ ( self : List[str] , __lowercase : int ): """simple docstring""" snake_case_ = "".join(__lowercase ).replace(__lowercase , " " ).strip() return out_string def snake_case__ ( self : str , __lowercase : str , __lowercase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__lowercase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return snake_case_ = os.path.join( __lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase , "wb" ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (out_vocab_file,)
139
from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Tuple , *__lowercase : Optional[Any] , **__lowercase : str ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[int] , *__lowercase : List[Any] , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[Any] , *__lowercase : Union[str, Any] , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Dict , *__lowercase : int , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : List[str] , *__lowercase : Optional[int] , **__lowercase : List[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Dict , *__lowercase : str , **__lowercase : Any ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[Any] , *__lowercase : List[str] , **__lowercase : Tuple ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : int , *__lowercase : List[Any] , **__lowercase : str ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[int] , *__lowercase : Optional[Any] , **__lowercase : int ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : List[Any] , *__lowercase : List[Any] , **__lowercase : List[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : List[Any] , *__lowercase : Any , **__lowercase : Dict ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : int , *__lowercase : List[str] , **__lowercase : str ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : int , *__lowercase : Tuple , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[int] , *__lowercase : Dict , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : str , *__lowercase : Tuple , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : List[Any] , *__lowercase : int , **__lowercase : Tuple ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : List[str] , *__lowercase : List[str] , **__lowercase : Any ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Any , *__lowercase : Any , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Any , *__lowercase : int , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[Any] , *__lowercase : Any , **__lowercase : List[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Dict , *__lowercase : Dict , **__lowercase : Any ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Dict , *__lowercase : Union[str, Any] , **__lowercase : Any ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[int] , *__lowercase : List[str] , **__lowercase : Optional[int] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[Any] , *__lowercase : Optional[int] , **__lowercase : Union[str, Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : List[Any] , *__lowercase : str , **__lowercase : Any ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[int] , *__lowercase : List[str] , **__lowercase : str ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Tuple , *__lowercase : int , **__lowercase : Any ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[Any] , *__lowercase : List[Any] , **__lowercase : List[str] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[int] , *__lowercase : Union[str, Any] , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Tuple , *__lowercase : Union[str, Any] , **__lowercase : List[str] ): """simple docstring""" requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[int] , *__lowercase : str , **__lowercase : Tuple ): """simple docstring""" requires_backends(self , ["sentencepiece"] )
139
1
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : List[str] ) -> int: debug_launcher(test_script.main ) def snake_case_ ( self : Optional[Any] ) -> str: debug_launcher(test_ops.main )
2
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __a ( _lowerCAmelCase ): @slow @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Dict: """simple docstring""" UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) UpperCamelCase = BertTokenizer.from_pretrained("bert-base-uncased" ) UpperCamelCase = bertabert.config.encoder.vocab_size UpperCamelCase = tokenizer.sep_token_id UpperCamelCase = tokenizer.cls_token_id UpperCamelCase = 128 UpperCamelCase = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) UpperCamelCase = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) UpperCamelCase = train_dataset.select(range(32 ) ) UpperCamelCase = val_dataset.select(range(16 ) ) UpperCamelCase = 4 def _map_to_encoder_decoder_inputs(UpperCAmelCase_ : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCamelCase = tokenizer(batch["article"] , padding="max_length" , truncation=UpperCAmelCase_ , max_length=512 ) UpperCamelCase = tokenizer(batch["highlights"] , padding="max_length" , truncation=UpperCAmelCase_ , max_length=128 ) UpperCamelCase = inputs.input_ids UpperCamelCase = inputs.attention_mask UpperCamelCase = outputs.input_ids UpperCamelCase = outputs.input_ids.copy() UpperCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] UpperCamelCase = outputs.attention_mask assert all(len(UpperCAmelCase_ ) == 512 for x in inputs.input_ids ) assert all(len(UpperCAmelCase_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(UpperCAmelCase_ : Any ): UpperCamelCase = pred.label_ids UpperCamelCase = pred.predictions # all unnecessary tokens are removed UpperCamelCase = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) UpperCamelCase = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(UpperCAmelCase_ ) )] ) / len(UpperCAmelCase_ ) return {"accuracy": accuracy} # map train dataset UpperCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset UpperCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = SeqaSeqTrainingArguments( output_dir=UpperCAmelCase_ , per_device_train_batch_size=UpperCAmelCase_ , per_device_eval_batch_size=UpperCAmelCase_ , predict_with_generate=UpperCAmelCase_ , evaluation_strategy="steps" , do_train=UpperCAmelCase_ , do_eval=UpperCAmelCase_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCamelCase = SeqaSeqTrainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , compute_metrics=_compute_metrics , train_dataset=UpperCAmelCase_ , eval_dataset=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , ) # start training trainer.train()
554
0
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase__ ( _snake_case): def __init__( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int]=13 , UpperCamelCase__ : Optional[Any]=7 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : int=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Optional[int]=99 , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : List[str]=5 , UpperCamelCase__ : int=4 , UpperCamelCase__ : Optional[Any]=37 , UpperCamelCase__ : List[Any]="gelu" , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : Optional[Any]=512 , UpperCamelCase__ : Optional[int]=16 , UpperCamelCase__ : str=2 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : int=False , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Any="None" , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : List[str]=4 , UpperCamelCase__ : Union[str, Any]=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : List[Any] = batch_size SCREAMING_SNAKE_CASE : Tuple = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : Dict = use_input_mask SCREAMING_SNAKE_CASE : int = use_token_type_ids SCREAMING_SNAKE_CASE : Any = use_labels SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Any = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = num_labels SCREAMING_SNAKE_CASE : List[str] = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = relative_attention SCREAMING_SNAKE_CASE : Optional[Any] = position_biased_input SCREAMING_SNAKE_CASE : Dict = pos_att_type SCREAMING_SNAKE_CASE : List[Any] = scope def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE : List[str] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : Optional[int] ): '''simple docstring''' return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __A ( self : List[Any] , UpperCamelCase__ : List[str] ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __A ( self : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = DebertaVaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ )[0] SCREAMING_SNAKE_CASE : int = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ )[0] SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCamelCase__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __A ( self : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = DebertaVaForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Any = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = DebertaVaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(UpperCamelCase__ ) def __A ( self : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.num_labels SCREAMING_SNAKE_CASE : Tuple = DebertaVaForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Any = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = DebertaVaForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = DebertaVaForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : List[Any] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase__ ( _snake_case , _snake_case , unittest.TestCase): UpperCamelCase_ = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase_ = ( { 'feature-extraction': DebertaVaModel, 'fill-mask': DebertaVaForMaskedLM, 'question-answering': DebertaVaForQuestionAnswering, 'text-classification': DebertaVaForSequenceClassification, 'token-classification': DebertaVaForTokenClassification, 'zero-shot': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ = True UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = DebertaVaModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def __A ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*UpperCamelCase__ ) def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*UpperCamelCase__ ) def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*UpperCamelCase__ ) def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*UpperCamelCase__ ) def __A ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*UpperCamelCase__ ) def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*UpperCamelCase__ ) @slow def __A ( self : Tuple ): '''simple docstring''' for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Any = DebertaVaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase): @unittest.skip(reason='''Model not available yet''' ) def __A ( self : Dict ): '''simple docstring''' pass @slow def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' ) SCREAMING_SNAKE_CASE : Dict = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1E-4 ) , f"""{output[:, 1:4, 1:4]}""" )
713
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""")) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""") @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ]) class lowercase__ ( unittest.TestCase): def __A ( self : Any ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=UpperCamelCase__ , ) assert hasattr(self , '''env''' ) def __A ( self : str , UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = f"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings SCREAMING_SNAKE_CASE : Any = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=UpperCamelCase__ , instance_count=UpperCamelCase__ , instance_type=self.instance_type , debugger_hook_config=UpperCamelCase__ , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=UpperCamelCase__ , py_version='''py36''' , ) def __A ( self : Optional[Any] , UpperCamelCase__ : List[str] ): '''simple docstring''' TrainingJobAnalytics(UpperCamelCase__ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def __A ( self : Tuple , UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.create_estimator(UpperCamelCase__ ) # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE : List[str] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) SCREAMING_SNAKE_CASE : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE : List[Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , UpperCamelCase__ )
34
0
"""simple docstring""" import collections import os import re from pathlib import Path _lowerCAmelCase = 'src/transformers' # Matches is_xxx_available() _lowerCAmelCase = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} _lowerCAmelCase = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _lowerCAmelCase = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available _lowerCAmelCase = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") _lowerCAmelCase = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _lowerCAmelCase = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", _lowerCAmelCase = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], _lowerCAmelCase = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo _lowerCAmelCase = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: _lowerCAmelCase = re.compile(r'^\s*try:') # Catches a line with else: _lowerCAmelCase = re.compile(r'^\s*else:') def UpperCamelCase ( _A ) -> Union[str, Any]: if _re_test_backend.search(UpperCamelCase_ ) is None: return None lowercase : Optional[int] = [b[0] for b in _re_backend.findall(UpperCamelCase_ )] backends.sort() return "_and_".join(UpperCamelCase_ ) def UpperCamelCase ( _A ) -> Dict: with open(UpperCamelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase : Dict = f.readlines() lowercase : Union[str, Any] = 0 while line_index < len(UpperCamelCase_ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure lowercase : Dict = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: lowercase : str = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCamelCase_ ): lowercase : int = _re_one_line_import_struct.search(UpperCamelCase_ ).groups()[0] lowercase : Any = re.findall(r"""\[([^\]]+)\]""" , UpperCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue lowercase : Dict = _re_import_struct_key_value.search(UpperCamelCase_ ) if single_line_import_search is not None: lowercase : Union[str, Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 lowercase : Any = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. lowercase : List[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): lowercase : int = lines[line_index] if _re_import_struct_add_one.search(UpperCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(UpperCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCamelCase_ ) is not None: lowercase : Union[str, Any] = _re_import_struct_add_many.search(UpperCamelCase_ ).groups()[0].split(""", """ ) lowercase : Optional[int] = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_between_brackets.search(UpperCamelCase_ ) is not None: lowercase : List[str] = _re_between_brackets.search(UpperCamelCase_ ).groups()[0].split(""", """ ) lowercase : Any = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_quote_object.search(UpperCamelCase_ ) is not None: objects.append(_re_quote_object.search(UpperCamelCase_ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 lowercase : Tuple = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowercase : Optional[int] = [] while ( line_index < len(UpperCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): lowercase : List[Any] = lines[line_index] lowercase : Tuple = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 lowercase : Dict = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(UpperCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. lowercase : List[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase : str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): lowercase : Dict = lines[line_index] lowercase : Any = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 lowercase : Dict = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCamelCase ( _A , _A ) -> int: def find_duplicates(_A ): return [k for k, v in collections.Counter(UpperCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowercase : str = [] for key in import_dict_objects.keys(): lowercase : str = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) lowercase : Union[str, Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowercase : int = '''base imports''' if key == '''none''' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def UpperCamelCase ( ) -> List[Any]: lowercase : Dict = [] for root, _, files in os.walk(UpperCamelCase_ ): if "__init__.py" in files: lowercase : str = os.path.join(UpperCamelCase_ , """__init__.py""" ) lowercase : Optional[Any] = parse_init(UpperCamelCase_ ) if objects is not None: lowercase : int = analyze_results(*UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: lowercase : Optional[int] = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("""\n""".join(UpperCamelCase_ ) ) if len(UpperCamelCase_ ) > 0: raise ValueError("""\n\n""".join(UpperCamelCase_ ) ) def UpperCamelCase ( ) -> List[str]: lowercase : Dict = [] for path, directories, files in os.walk(UpperCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(UpperCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCamelCase_ ) / folder).glob("""*.py""" ) ) ) == 0: continue lowercase : Optional[int] = str((Path(UpperCamelCase_ ) / folder).relative_to(UpperCamelCase_ ) ) lowercase : Union[str, Any] = short_path.replace(os.path.sep , """.""" ) submodules.append(UpperCamelCase_ ) for fname in files: if fname == "__init__.py": continue lowercase : Union[str, Any] = str((Path(UpperCamelCase_ ) / fname).relative_to(UpperCamelCase_ ) ) lowercase : Tuple = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(UpperCamelCase_ ) return submodules _lowerCAmelCase = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def UpperCamelCase ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import lowercase : List[Any] = direct_transformers_import(UpperCamelCase_ ) lowercase : List[Any] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(UpperCamelCase_ , """__init__.py""" ) , """r""" ) as f: lowercase : Any = f.read() import_structure_keys.update(set(re.findall(r"""import_structure\[\"([^\"]*)\"\]""" , UpperCamelCase_ ) ) ) lowercase : Tuple = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(UpperCamelCase_ ) > 0: lowercase : List[Any] = '''\n'''.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F"""{list_of_modules}\n""" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
264
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCAmelCase : List[Any] = pytest.mark.integration @require_faiss class lowerCamelCase ( SCREAMING_SNAKE_CASE ): def snake_case_ ( self : Tuple ) -> Tuple: _a : Tuple = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(__snake_case ) for x in np.arange(30 ).tolist()]} ) return dset def snake_case_ ( self : Optional[Any] ) -> str: import faiss _a : Dataset = self._create_dummy_dataset() _a : Optional[Any] = dset.map( lambda __snake_case , __snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__snake_case , keep_in_memory=__snake_case ) _a : List[Any] = dset.add_faiss_index('''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) _a , _a : Union[str, Any] = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) dset.drop_index('''vecs''' ) def snake_case_ ( self : Optional[Any] ) -> str: import faiss _a : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) _a , _a : int = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def snake_case_ ( self : List[Any] ) -> List[str]: import faiss _a : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__snake_case ) as tmp_file: dset.save_faiss_index('''vecs''' , tmp_file.name ) dset.load_faiss_index('''vecs2''' , tmp_file.name ) os.unlink(tmp_file.name ) _a , _a : Dict = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def snake_case_ ( self : Dict ) -> int: _a : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(__snake_case , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) ) def snake_case_ ( self : List[str] ) -> Dict: from elasticsearch import Elasticsearch _a : Dataset = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: _a : int = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 30 ) _a : Dict = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}} _a : List[Any] = Elasticsearch() dset.add_elasticsearch_index('''filename''' , es_client=__snake_case ) _a , _a : Any = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) @require_faiss class lowerCamelCase ( SCREAMING_SNAKE_CASE ): def snake_case_ ( self : str ) -> Any: import faiss _a : List[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query _a : Union[str, Any] = np.zeros(5 , dtype=np.floataa ) _a : Optional[Any] = 1 _a , _a : Optional[int] = index.search(__snake_case ) self.assertRaises(__snake_case , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries _a : Optional[int] = np.eye(5 , dtype=np.floataa )[::-1] _a , _a : Any = index.search_batch(__snake_case ) self.assertRaises(__snake_case , index.search_batch , queries[0] ) _a : Dict = [scores[0] for scores in total_scores] _a : Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(__snake_case ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __snake_case ) def snake_case_ ( self : List[str] ) -> int: import faiss _a : List[str] = FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) _a : Union[str, Any] = FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__snake_case ): _a : Optional[Any] = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) ) def snake_case_ ( self : Union[str, Any] ) -> Union[str, Any]: import faiss _a : Tuple = faiss.IndexFlat(5 ) _a : Optional[Any] = FaissIndex(custom_index=__snake_case ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def snake_case_ ( self : Union[str, Any] ) -> Tuple: import faiss _a : List[str] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__snake_case ) as tmp_file: index.save(tmp_file.name ) _a : int = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) _a : List[Any] = np.zeros(5 , dtype=np.floataa ) _a : List[Any] = 1 _a , _a : List[str] = index.search(__snake_case ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase_ ( UpperCamelCase_ ): import faiss _a : List[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) _a : Optional[int] = '''index.faiss''' _a : List[Any] = f"""mock://{index_name}""" index.save(UpperCamelCase_ , storage_options=mockfs.storage_options ) _a : str = FaissIndex.load(UpperCamelCase_ , storage_options=mockfs.storage_options ) _a : Union[str, Any] = np.zeros(5 , dtype=np.floataa ) _a : Dict = 1 _a , _a : List[Any] = index.search(UpperCamelCase_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCamelCase ( SCREAMING_SNAKE_CASE ): def snake_case_ ( self : Any ) -> str: from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: _a : List[Any] = Elasticsearch() _a : int = {'''acknowledged''': True} _a : Tuple = ElasticSearchIndex(es_client=__snake_case ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query _a : Any = '''foo''' _a : Union[str, Any] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} _a , _a : Union[str, Any] = index.search(__snake_case ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout _a : List[str] = '''foo''' _a : Optional[int] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} _a , _a : str = index.search(__snake_case , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries _a : Union[str, Any] = ['''foo''', '''bar''', '''foobar'''] _a : int = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} _a , _a : Any = index.search_batch(__snake_case ) _a : Optional[Any] = [scores[0] for scores in total_scores] _a : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , __snake_case ) # batched queries with timeout _a : Any = ['''foo''', '''bar''', '''foobar'''] _a : List[str] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} _a , _a : List[str] = index.search_batch(__snake_case , request_timeout=30 ) _a : Optional[Any] = [scores[0] for scores in total_scores] _a : str = [indices[0] for indices in total_indices] self.assertGreater(np.min(__snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , __snake_case )
471
0
'''simple docstring''' def snake_case_ ( __snake_case : list[int]) -> list[int]: lowerCAmelCase_ = len(__snake_case) for i in range(__snake_case): for j in range(i + 1 , __snake_case): if numbers[j] < numbers[i]: lowerCAmelCase_ ,lowerCAmelCase_ = numbers[j], numbers[i] return numbers if __name__ == "__main__": A_ : str =input('''Enter numbers separated by a comma:\n''').strip() A_ : Dict =[int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
606
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu A_ : Tuple =[ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def snake_case_ ( __snake_case : List[Any] , __snake_case : List[Any]=None , __snake_case : Dict=None , __snake_case : Dict=None) -> Dict: lowerCAmelCase_ = True while ask_again: lowerCAmelCase_ = input(__snake_case) try: if default is not None and len(__snake_case) == 0: return default return convert_value(__snake_case) if convert_value is not None else result except Exception: if error_message is not None: print(__snake_case) def snake_case_ ( __snake_case : Union[str, Any] , __snake_case : int=[] , __snake_case : Any=None , __snake_case : List[str]=0) -> str: lowerCAmelCase_ = BulletMenu(__snake_case , __snake_case) lowerCAmelCase_ = menu.run(default_choice=__snake_case) return convert_value(__snake_case) if convert_value is not None else result def snake_case_ ( __snake_case : Tuple) -> Any: lowerCAmelCase_ = int(__snake_case) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value]) def snake_case_ ( __snake_case : List[str]) -> Union[str, Any]: lowerCAmelCase_ = int(__snake_case) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value]) def snake_case_ ( __snake_case : Tuple) -> int: lowerCAmelCase_ = int(__snake_case) return DynamoBackend(DYNAMO_BACKENDS[value]).value def snake_case_ ( __snake_case : Optional[int]) -> str: lowerCAmelCase_ = int(__snake_case) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value]) def snake_case_ ( __snake_case : int) -> Optional[Any]: lowerCAmelCase_ = int(__snake_case) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value]) def snake_case_ ( __snake_case : List[str]) -> Optional[Any]: return {"yes": True, "no": False}[value.lower()] class __UpperCAmelCase ( argparse.RawDescriptionHelpFormatter ): def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = super()._format_usage(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
606
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: __UpperCAmelCase : Dict = mf_knapsack(i - 1 , __snake_case , __snake_case , __snake_case ) else: __UpperCAmelCase : Union[str, Any] = max( mf_knapsack(i - 1 , __snake_case , __snake_case , __snake_case ) , mf_knapsack(i - 1 , __snake_case , __snake_case , j - wt[i - 1] ) + val[i - 1] , ) __UpperCAmelCase : List[Any] = val return f[i][j] def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" __UpperCAmelCase : Tuple = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: __UpperCAmelCase : List[str] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: __UpperCAmelCase : Union[str, Any] = dp[i - 1][w_] return dp[n][w_], dp def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" if not (isinstance(__snake_case , (list, tuple) ) and isinstance(__snake_case , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) __UpperCAmelCase : int = len(__snake_case ) if num_items != len(__snake_case ): __UpperCAmelCase : List[Any] = ( """The number of weights must be the same as the number of values.\n""" f"""But got {num_items} weights and {len(__snake_case )} values""" ) raise ValueError(__snake_case ) for i in range(__snake_case ): if not isinstance(wt[i] , __snake_case ): __UpperCAmelCase : List[Any] = ( """All weights must be integers but got weight of """ f"""type {type(wt[i] )} at index {i}""" ) raise TypeError(__snake_case ) __UpperCAmelCase : int = knapsack(__snake_case , __snake_case , __snake_case , __snake_case ) __UpperCAmelCase : set = set() _construct_solution(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) return optimal_val, example_optional_set def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: """simple docstring""" if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(__snake_case , __snake_case , i - 1 , __snake_case , __snake_case ) else: optimal_set.add(__snake_case ) _construct_solution(__snake_case , __snake_case , i - 1 , j - wt[i - 1] , __snake_case ) if __name__ == "__main__": _a : Optional[int] = [3, 2, 4, 4] _a : Tuple = [4, 3, 2, 3] _a : Any = 4 _a : int = 6 _a : Tuple = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _a , _a : Union[str, Any] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _a , _a : Optional[int] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
168
"""simple docstring""" def _snake_case ( __snake_case : list[list[int]] , __snake_case : int , __snake_case : int , __snake_case : list[int] ): """simple docstring""" if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def _snake_case ( __snake_case : list[list[int]] , __snake_case : list[int] , __snake_case : int ): """simple docstring""" if curr_ind == len(__snake_case ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(__snake_case ) ): if valid_connection(__snake_case , __snake_case , __snake_case , __snake_case ): # Insert current vertex into path as next transition _lowerCamelCase : List[str] = next_ver # Validate created path if util_hamilton_cycle(__snake_case , __snake_case , curr_ind + 1 ): return True # Backtrack _lowerCamelCase : Tuple = -1 return False def _snake_case ( __snake_case : list[list[int]] , __snake_case : int = 0 ): """simple docstring""" _lowerCamelCase : Any = [-1] * (len(__snake_case ) + 1) # initialize start and end of path with starting index _lowerCamelCase : Optional[int] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(__snake_case , __snake_case , 1 ) else []
88
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class lowerCamelCase__( snake_case_ ): UpperCamelCase : int = "openai/whisper-base" UpperCamelCase : Any = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) UpperCamelCase : List[str] = "transcriber" UpperCamelCase : List[Any] = WhisperProcessor UpperCamelCase : Any = WhisperForConditionalGeneration UpperCamelCase : Any = ["audio"] UpperCamelCase : List[Any] = ["text"] def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" return self.pre_processor(__UpperCAmelCase , return_tensors="""pt""" ).input_features def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" return self.model.generate(inputs=__UpperCAmelCase ) def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" return self.pre_processor.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )[0]
339
'''simple docstring''' from __future__ import annotations def lowercase__ ( __UpperCamelCase : str , __UpperCamelCase : list[str] | None = None ): '''simple docstring''' __lowercase = word_bank or [] # create a table __lowercase = len(__UpperCamelCase ) + 1 __lowercase = [] for _ in range(__UpperCamelCase ): table.append([] ) # seed value __lowercase = [[]] # because empty string has empty combination # iterate through the indices for i in range(__UpperCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__UpperCamelCase )] == word: __lowercase = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__UpperCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__UpperCamelCase )]: combination.reverse() return table[len(__UpperCamelCase )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
339
1
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : str ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) UpperCAmelCase = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) model.to(UpperCamelCase__ ) from datasets import load_dataset UpperCAmelCase = load_dataset("nielsr/rvlcdip-demo" ) UpperCAmelCase = dataset["train"][0]["image"].convert("RGB" ) UpperCAmelCase = image_processor(UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**UpperCamelCase__ ) UpperCAmelCase = outputs.logits UpperCAmelCase = torch.Size((1, 16) ) self.assertEqual(logits.shape , UpperCamelCase__ ) UpperCAmelCase = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=UpperCamelCase__ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
323
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
230
0
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor lowercase : Tuple = logging.getLogger(__name__) lowercase : Optional[int] = 50 # max width of layer names lowercase : List[Any] = 70 # max width of quantizer names def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> List[Any]: '''simple docstring''' __UpperCamelCase : Optional[int] = parser.add_argument_group("quant_trainer arguments") group.add_argument("--wprec" , type=_lowerCamelCase , default=8 , help="weight precision") group.add_argument("--aprec" , type=_lowerCamelCase , default=8 , help="activation precision") group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling") group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers") group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers") group.add_argument("--quant-disable-keyword" , type=_lowerCamelCase , nargs="+" , help="disable quantizers by keyword") group.add_argument("--quant-disable-layer-module" , type=_lowerCamelCase , help="disable quantizers by keyword under layer.") group.add_argument("--quant-enable-layer-module" , type=_lowerCamelCase , help="enable quantizers by keyword under layer") group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use") group.add_argument("--percentile" , default=_lowerCamelCase , type=_lowerCamelCase , help="percentile for PercentileCalibrator") group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv") group.add_argument("--clip-gelu" , metavar="N" , type=_lowerCamelCase , help="clip gelu output maximum value to N") group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str]) -> Dict: '''simple docstring''' if args.calibrator == "max": __UpperCamelCase : Optional[int] = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator") __UpperCamelCase : List[Any] = "histogram" elif args.calibrator == "mse": __UpperCamelCase : Optional[int] = "histogram" else: raise ValueError(F'Invalid calibrator {args.calibrator}') __UpperCamelCase : str = QuantDescriptor(num_bits=args.aprec , calib_method=_lowerCamelCase) __UpperCamelCase : Optional[int] = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,))) quant_nn.QuantLinear.set_default_quant_desc_input(_lowerCamelCase) quant_nn.QuantLinear.set_default_quant_desc_weight(_lowerCamelCase) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : int=False , _lowerCamelCase : List[Any]=False) -> int: '''simple docstring''' logger.info("Configuring Model for Quantization") logger.info(F'using quantization package {pytorch_quantization.__file__}') if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_lowerCamelCase , ["embeddings"] , which="weight" , _disabled=_lowerCamelCase) if args.quant_disable: set_quantizer_by_name(_lowerCamelCase , [""] , _disabled=_lowerCamelCase) if args.quant_disable_keyword: set_quantizer_by_name(_lowerCamelCase , args.quant_disable_keyword , _disabled=_lowerCamelCase) if args.quant_disable_layer_module: set_quantizer_by_name(_lowerCamelCase , [R"layer.\d+." + args.quant_disable_layer_module] , _disabled=_lowerCamelCase) if args.quant_enable_layer_module: set_quantizer_by_name(_lowerCamelCase , [R"layer.\d+." + args.quant_enable_layer_module] , _disabled=_lowerCamelCase) if args.recalibrate_weights: recalibrate_weights(_lowerCamelCase) if args.fuse_qkv: fuse_qkv(_lowerCamelCase , _lowerCamelCase) if args.clip_gelu: clip_gelu(_lowerCamelCase , args.clip_gelu) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_lowerCamelCase) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> Optional[Any]: '''simple docstring''' logger.info("Enabling Calibration") for name, module in model.named_modules(): if name.endswith("_quantizer"): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'{name:80}: {module}') def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]) -> Dict: '''simple docstring''' logger.info("Loading calibrated amax") for name, module in model.named_modules(): if name.endswith("_quantizer"): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_lowerCamelCase) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int]) -> str: '''simple docstring''' def fusea(_lowerCamelCase : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : str): for mod in [qq, qk, qv]: if not hasattr(_lowerCamelCase , "_amax"): print(" WARNING: NO AMAX BUFFER") return __UpperCamelCase : Tuple = qq._amax.detach().item() __UpperCamelCase : int = qk._amax.detach().item() __UpperCamelCase : Union[str, Any] = qv._amax.detach().item() __UpperCamelCase : Tuple = max(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) qq._amax.fill_(_lowerCamelCase) qk._amax.fill_(_lowerCamelCase) qv._amax.fill_(_lowerCamelCase) logger.info(F' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}') for name, mod in model.named_modules(): if name.endswith(".attention.self"): logger.info(F'FUSE_QKV: {name:{name_width}}') fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple) -> Tuple: '''simple docstring''' for name, mod in model.named_modules(): if name.endswith(".output.dense") and not name.endswith("attention.output.dense"): __UpperCamelCase : Tuple = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_lowerCamelCase) __UpperCamelCase : Tuple = mod._input_quantizer._amax.data.detach().item() logger.info(F'CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}') def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str]) -> Dict: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_lowerCamelCase , "_weight_quantizer") and mod._weight_quantizer.axis is not None: __UpperCamelCase : str = mod.weight.shape[0] __UpperCamelCase : int = mod._weight_quantizer._amax.detach() __UpperCamelCase : Any = torch.ones(_lowerCamelCase , dtype=amax.dtype , device=amax.device) * amax print(F'expanding {name} {amax} -> {mod._weight_quantizer._amax}') def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any]) -> int: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_lowerCamelCase , "_weight_quantizer"): if not hasattr(mod.weight_quantizer , "_amax"): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER") continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) __UpperCamelCase : List[str] = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis) __UpperCamelCase : Optional[Any] = set(range(len(mod.weight.size()))) - axis_set __UpperCamelCase : str = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_lowerCamelCase , keepdims=_lowerCamelCase).detach() logger.info(F'RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}') __UpperCamelCase : Dict = amax def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]=25 , _lowerCamelCase : List[Any]=180 , _lowerCamelCase : str=None) -> Any: '''simple docstring''' if ignore is None: __UpperCamelCase : List[Any] = [] elif not isinstance(_lowerCamelCase , _lowerCamelCase): __UpperCamelCase : int = [ignore] __UpperCamelCase : Union[str, Any] = 0 for name, mod in model.named_modules(): if not hasattr(_lowerCamelCase , "weight"): continue __UpperCamelCase : int = max(_lowerCamelCase , len(_lowerCamelCase)) for name, mod in model.named_modules(): __UpperCamelCase : Tuple = getattr(_lowerCamelCase , "_input_quantizer" , _lowerCamelCase) __UpperCamelCase : int = getattr(_lowerCamelCase , "_weight_quantizer" , _lowerCamelCase) if not hasattr(_lowerCamelCase , "weight"): continue if type(_lowerCamelCase) in ignore: continue if [True for s in ignore if type(_lowerCamelCase) is str and s in name]: continue __UpperCamelCase : List[str] = F'Act:{input_q.extra_repr()}' __UpperCamelCase : Union[str, Any] = F'Wgt:{weight_q.extra_repr()}' __UpperCamelCase : Optional[Any] = F'{name:{name_width}} {act_str} {wgt_str}' if len(_lowerCamelCase) <= line_width: logger.info(_lowerCamelCase) else: logger.info(F'{name:{name_width}} {act_str}') logger.info(F'{" ":{name_width}} {wgt_str}') def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> Tuple: '''simple docstring''' __UpperCamelCase : int = 0 for name, mod in model.named_modules(): if isinstance(_lowerCamelCase , pytorch_quantization.nn.TensorQuantizer): print(F'{name:80} {mod}') count += 1 print(F'{count} TensorQuantizers found in model') def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : str) -> Dict: '''simple docstring''' __UpperCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if quantizer_mod is not None: assert hasattr(_lowerCamelCase , _lowerCamelCase) setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: logger.warning(F'{name} has no {quantizer}') def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]="both" , **_lowerCamelCase : Dict) -> Any: '''simple docstring''' __UpperCamelCase : str = F'Warning: changing {which} quantizers of {name:{qname_width}}' for k, v in kwargs.items(): s += F' {k}={v}' if which in ["input", "both"]: set_quantizer(_lowerCamelCase , _lowerCamelCase , "_input_quantizer" , _lowerCamelCase , _lowerCamelCase) if which in ["weight", "both"]: set_quantizer(_lowerCamelCase , _lowerCamelCase , "_weight_quantizer" , _lowerCamelCase , _lowerCamelCase) logger.info(_lowerCamelCase) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int , **_lowerCamelCase : List[Any]) -> Optional[Any]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_lowerCamelCase , "_input_quantizer") or hasattr(_lowerCamelCase , "_weight_quantizer"): for n in names: if re.search(_lowerCamelCase , _lowerCamelCase): set_quantizers(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase) elif name.endswith("_quantizer"): for n in names: if re.search(_lowerCamelCase , _lowerCamelCase): __UpperCamelCase : Optional[int] = F'Warning: changing {name:{name_width}}' for k, v in kwargs.items(): s += F' {k}={v}' setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) logger.info(_lowerCamelCase)
94
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : List[str] = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class lowerCamelCase__ ( __lowercase , __lowercase): '''simple docstring''' _A = 'nat' _A = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self :Optional[Any] , a :Any=4 , a :Any=3 , a :int=6_4 , a :Dict=[3, 4, 6, 5] , a :Dict=[2, 4, 8, 1_6] , a :Optional[Any]=7 , a :Any=3.0 , a :Optional[int]=True , a :int=0.0 , a :Union[str, Any]=0.0 , a :List[Any]=0.1 , a :str="gelu" , a :Union[str, Any]=0.02 , a :Tuple=1E-5 , a :str=0.0 , a :Optional[int]=None , a :Dict=None , **a :Optional[Any] , ) -> int: super().__init__(**a ) __UpperCamelCase : Any = patch_size __UpperCamelCase : str = num_channels __UpperCamelCase : List[Any] = embed_dim __UpperCamelCase : str = depths __UpperCamelCase : str = len(a ) __UpperCamelCase : Optional[Any] = num_heads __UpperCamelCase : Dict = kernel_size __UpperCamelCase : Union[str, Any] = mlp_ratio __UpperCamelCase : Union[str, Any] = qkv_bias __UpperCamelCase : List[str] = hidden_dropout_prob __UpperCamelCase : Any = attention_probs_dropout_prob __UpperCamelCase : Any = drop_path_rate __UpperCamelCase : Any = hidden_act __UpperCamelCase : Tuple = layer_norm_eps __UpperCamelCase : Dict = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCamelCase : int = int(embed_dim * 2 ** (len(a ) - 1) ) __UpperCamelCase : List[Any] = layer_scale_init_value __UpperCamelCase : Optional[Any] = ["stem"] + [f'stage{idx}' for idx in range(1 , len(a ) + 1 )] __UpperCamelCase , __UpperCamelCase : Any = get_aligned_output_features_output_indices( out_features=a , out_indices=a , stage_names=self.stage_names )
94
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __A (unittest.TestCase ): def __init__( self , UpperCamelCase_ , UpperCamelCase_=7 , UpperCamelCase_=3 , UpperCamelCase_=18 , UpperCamelCase_=30 , UpperCamelCase_=4_00 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , ): __UpperCAmelCase : List[str] = size if size is not None else {"shortest_edge": 20} __UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else {"height": 18, "width": 18} __UpperCAmelCase : Dict = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Tuple = num_channels __UpperCAmelCase : Any = image_size __UpperCAmelCase : Optional[int] = min_resolution __UpperCAmelCase : Tuple = max_resolution __UpperCAmelCase : List[Any] = do_resize __UpperCAmelCase : Optional[int] = size __UpperCAmelCase : Optional[int] = do_center_crop __UpperCAmelCase : int = crop_size __UpperCAmelCase : Union[str, Any] = do_flip_channel_order def _snake_case ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __A (__UpperCAmelCase , unittest.TestCase ): snake_case :Optional[Any] = MobileViTImageProcessor if is_vision_available() else None def _snake_case ( self ): __UpperCAmelCase : Any = MobileViTImageProcessingTester(self ) @property def _snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ): __UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase__ , "size" ) ) self.assertTrue(hasattr(lowerCamelCase__ , "do_center_crop" ) ) self.assertTrue(hasattr(lowerCamelCase__ , "center_crop" ) ) self.assertTrue(hasattr(lowerCamelCase__ , "do_flip_channel_order" ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) __UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _snake_case ( self ): pass def _snake_case ( self ): __UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input __UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __UpperCAmelCase : str = image_processing(lowerCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _snake_case ( self ): __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input __UpperCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __UpperCAmelCase : Dict = image_processing(lowerCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input __UpperCAmelCase : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __UpperCAmelCase : List[Any] = image_processing(lowerCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
168
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") __A = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) __A = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) __A = BeautifulSoup(res.text, "html.parser") __A = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(F'''https://google.com{link.get("href")}''')
325
0
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE_ ( __SCREAMING_SNAKE_CASE): '''simple docstring''' __magic_name__ : Union[str, Any] = ['''image_processor''', '''tokenizer'''] __magic_name__ : List[Any] = '''Pix2StructImageProcessor''' __magic_name__ : Any = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self , lowerCamelCase__ , lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' snake_case__ : Tuple = False super().__init__(_a , _a) def __call__( self , lowerCamelCase__=None , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 2_048 , lowerCamelCase__ = 0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = True , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> str: '''simple docstring''' if images is None and text is None: raise ValueError("You have to specify either images or text.") # Get only text if images is None and not self.image_processor.is_vqa: snake_case__ : str = self.tokenizer snake_case__ : List[Any] = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values snake_case__ : Optional[int] = self.image_processor( _a , return_tensors=_a , max_patches=_a , **_a) else: # add pixel_values and bbox snake_case__ : List[str] = self.image_processor( _a , return_tensors=_a , max_patches=_a , header_text=_a , **_a) if text is not None and not self.image_processor.is_vqa: snake_case__ : Optional[Any] = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) if "attention_mask" in text_encoding: snake_case__ : Union[str, Any] = text_encoding.pop("attention_mask") if "input_ids" in text_encoding: snake_case__ : Tuple = text_encoding.pop("input_ids") else: snake_case__ : Tuple = None if text_encoding is not None: encoding_image_processor.update(_a) return encoding_image_processor def UpperCAmelCase ( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*_a , **_a) def UpperCAmelCase ( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' return self.tokenizer.decode(*_a , **_a) @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' snake_case__ : Optional[int] = self.tokenizer.model_input_names snake_case__ : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
705
"""simple docstring""" import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def A__ ( _UpperCAmelCase : int , _UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' snake_case__ : Optional[int] = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg" snake_case__ : List[Any] = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert("RGB" ) snake_case__ : List[str] = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3) , (0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1) ), ] ) snake_case__ : Any = transform(_UpperCAmelCase ).unsqueeze(0 ).to(_UpperCAmelCase ) return image def A__ ( _UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' if "visual_encoder" in key: snake_case__ : Any = re.sub("visual_encoder*" , "vision_model.encoder" , _UpperCAmelCase ) if "blocks" in key: snake_case__ : List[Any] = re.sub(r"blocks" , "layers" , _UpperCAmelCase ) if "attn" in key: snake_case__ : Optional[Any] = re.sub(r"attn" , "self_attn" , _UpperCAmelCase ) if "norm1" in key: snake_case__ : List[str] = re.sub(r"norm1" , "layer_norm1" , _UpperCAmelCase ) if "norm2" in key: snake_case__ : Union[str, Any] = re.sub(r"norm2" , "layer_norm2" , _UpperCAmelCase ) if "encoder.norm" in key: snake_case__ : List[Any] = re.sub(r"encoder.norm" , "post_layernorm" , _UpperCAmelCase ) if "encoder.patch_embed.proj" in key: snake_case__ : List[str] = re.sub(r"encoder.patch_embed.proj" , "embeddings.patch_embedding" , _UpperCAmelCase ) if "encoder.pos_embed" in key: snake_case__ : List[Any] = re.sub(r"encoder.pos_embed" , "embeddings.position_embedding" , _UpperCAmelCase ) if "encoder.cls_token" in key: snake_case__ : Optional[Any] = re.sub(r"encoder.cls_token" , "embeddings.class_embedding" , _UpperCAmelCase ) if "self_attn" in key: snake_case__ : Optional[Any] = re.sub(r"self_attn.proj" , "self_attn.projection" , _UpperCAmelCase ) return key @torch.no_grad() def A__ ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict=None ) -> int: '''simple docstring''' if config_path is not None: snake_case__ : List[Any] = BlipConfig.from_pretrained(_UpperCAmelCase ) else: snake_case__ : Optional[int] = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} ) snake_case__ : Tuple = BlipForConditionalGeneration(_UpperCAmelCase ).eval() snake_case__ : Optional[int] = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth" snake_case__ : Optional[Any] = blip_decoder(pretrained=_UpperCAmelCase , image_size=3_84 , vit="base" ) snake_case__ : str = pt_model.eval() snake_case__ : Any = pt_model.state_dict() for key in modified_state_dict.copy(): snake_case__ : Optional[int] = modified_state_dict.pop(_UpperCAmelCase ) snake_case__ : List[Any] = rename_key(_UpperCAmelCase ) snake_case__ : List[str] = value hf_model.load_state_dict(_UpperCAmelCase ) snake_case__ : str = 3_84 snake_case__ : Dict = load_demo_image(image_size=_UpperCAmelCase , device="cpu" ) snake_case__ : int = BertTokenizer.from_pretrained("bert-base-uncased" ) snake_case__ : int = tokenizer(["a picture of"] ).input_ids snake_case__ : List[str] = hf_model.generate(_UpperCAmelCase , _UpperCAmelCase ) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] snake_case__ : Tuple = hf_model.generate(_UpperCAmelCase ) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(_UpperCAmelCase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' snake_case__ : Optional[int] = ( "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth" ) snake_case__ : str = blip_vqa(pretrained=_UpperCAmelCase , image_size=_UpperCAmelCase , vit="base" ) vqa_model.eval() snake_case__ : Union[str, Any] = vqa_model.state_dict() for key in modified_state_dict.copy(): snake_case__ : str = modified_state_dict.pop(_UpperCAmelCase ) snake_case__ : Any = rename_key(_UpperCAmelCase ) snake_case__ : Optional[Any] = value snake_case__ : Union[str, Any] = BlipForQuestionAnswering(_UpperCAmelCase ) hf_vqa_model.load_state_dict(_UpperCAmelCase ) snake_case__ : List[Any] = ["How many dogs are in this image?"] snake_case__ : Optional[Any] = tokenizer(_UpperCAmelCase , return_tensors="pt" ).input_ids snake_case__ : List[Any] = hf_vqa_model.generate(_UpperCAmelCase , _UpperCAmelCase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa" ) snake_case__ : List[str] = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth" snake_case__ : Optional[int] = blip_itm(pretrained=_UpperCAmelCase , image_size=_UpperCAmelCase , vit="base" ) itm_model.eval() snake_case__ : str = itm_model.state_dict() for key in modified_state_dict.copy(): snake_case__ : Tuple = modified_state_dict.pop(_UpperCAmelCase ) snake_case__ : Optional[Any] = rename_key(_UpperCAmelCase ) snake_case__ : List[str] = value snake_case__ : Any = BlipForImageTextRetrieval(_UpperCAmelCase ) snake_case__ : Union[str, Any] = ["A picture of a woman with a dog sitting in a beach"] snake_case__ : Optional[Any] = tokenizer( _UpperCAmelCase , return_tensors="pt" , padding="max_length" , truncation=_UpperCAmelCase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(_UpperCAmelCase ) hf_itm_model.eval() snake_case__ : List[str] = hf_itm_model(_UpperCAmelCase , _UpperCAmelCase , use_itm_head=_UpperCAmelCase ) snake_case__ : List[Any] = hf_itm_model(_UpperCAmelCase , _UpperCAmelCase , use_itm_head=_UpperCAmelCase ) assert out[0].item() == 0.2_1_1_0_6_8_7_4_9_4_2_7_7_9_5_4 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5_6_9_8_8_4_5_3_8_6_5_0_5_1_2_7 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm" ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowercase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
150
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A_ : """simple docstring""" def __init__( self : str ,__A : Any ,__A : Optional[int]=3 ,__A : List[str]=32 ,__A : Optional[int]=3 ,__A : Optional[Any]=10 ,__A : Any=[8, 16, 32, 64] ,__A : Optional[int]=[1, 1, 2, 1] ,__A : int=True ,__A : Dict=True ,__A : List[str]="relu" ,__A : List[Any]=3 ,__A : Optional[Any]=None ,__A : Any=["stage2", "stage3", "stage4"] ,__A : str=[2, 3, 4] ,__A : Optional[int]=1 ,) -> List[Any]: _lowercase = parent _lowercase = batch_size _lowercase = image_size _lowercase = num_channels _lowercase = embeddings_size _lowercase = hidden_sizes _lowercase = depths _lowercase = is_training _lowercase = use_labels _lowercase = hidden_act _lowercase = num_labels _lowercase = scope _lowercase = len(__A ) _lowercase = out_features _lowercase = out_indices _lowercase = num_groups def __UpperCAmelCase ( self : Any ) -> Optional[int]: _lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase = None if self.use_labels: _lowercase = ids_tensor([self.batch_size] ,self.num_labels ) _lowercase = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self : Tuple ) -> List[str]: return BitConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,out_features=self.out_features ,out_indices=self.out_indices ,num_groups=self.num_groups ,) def __UpperCAmelCase ( self : List[str] ,__A : int ,__A : Union[str, Any] ,__A : int ) -> List[Any]: _lowercase = BitModel(config=__A ) model.to(__A ) model.eval() _lowercase = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __UpperCAmelCase ( self : List[str] ,__A : List[Any] ,__A : Optional[Any] ,__A : str ) -> Union[str, Any]: _lowercase = self.num_labels _lowercase = BitForImageClassification(__A ) model.to(__A ) model.eval() _lowercase = model(__A ,labels=__A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : str ,__A : List[str] ,__A : Optional[Any] ,__A : int ) -> List[Any]: _lowercase = BitBackbone(config=__A ) model.to(__A ) model.eval() _lowercase = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None _lowercase = None _lowercase = BitBackbone(config=__A ) model.to(__A ) model.eval() _lowercase = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def __UpperCAmelCase ( self : Tuple ) -> List[Any]: _lowercase = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase = config_and_inputs _lowercase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Dict = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Any = False def __UpperCAmelCase ( self : Optional[int] ) -> Dict: _lowercase = BitModelTester(self ) _lowercase = ConfigTester(self ,config_class=__A ,has_text_modality=__A ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self : Tuple ) -> Tuple: return @unittest.skip(reason='Bit does not output attentions' ) def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def __UpperCAmelCase ( self : str ) -> Dict: pass def __UpperCAmelCase ( self : Tuple ) -> List[Any]: _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase = model_class(__A ) _lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase = [*signature.parameters.keys()] _lowercase = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__A ) def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __UpperCAmelCase ( self : int ) -> List[str]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase = model_class(config=__A ) for name, module in model.named_modules(): if isinstance(__A ,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) self.assertTrue( torch.all(module.bias == 0 ) ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) def __UpperCAmelCase ( self : Any ) -> Optional[int]: def check_hidden_states_output(__A : str ,__A : List[str] ,__A : int ): _lowercase = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowercase = model(**self._prepare_for_class(__A ,__A ) ) _lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowercase = self.model_tester.num_stages self.assertEqual(len(__A ) ,expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() _lowercase = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowercase = layer_type _lowercase = True check_hidden_states_output(__A ,__A ,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase = True check_hidden_states_output(__A ,__A ,__A ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def __UpperCAmelCase ( self : Dict ) -> Tuple: pass def __UpperCAmelCase ( self : Any ) -> List[Any]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def __UpperCAmelCase ( self : Dict ) -> Optional[int]: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase = BitModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: _lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): """simple docstring""" @cached_property def __UpperCAmelCase ( self : Tuple ) -> Dict: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self : str ) -> Any: _lowercase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__A ) _lowercase = self.default_image_processor _lowercase = prepare_img() _lowercase = image_processor(images=__A ,return_tensors='pt' ).to(__A ) # forward pass with torch.no_grad(): _lowercase = model(**__A ) # verify the logits _lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,__A ) _lowercase = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__A ,atol=1e-4 ) ) @require_torch class A_ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = (BitBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Optional[Any] = BitConfig SCREAMING_SNAKE_CASE_ : Optional[int] = False def __UpperCAmelCase ( self : List[Any] ) -> Tuple: _lowercase = BitModelTester(self )
67
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
67
1
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''' , [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ] , ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Any = tmp_path_factory.mktemp('''dset_infos_dir''' ) if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''' ) if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''''' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''' ) as f: f.write('''{"default": {"dataset_size": 42}}''' ) lowerCamelCase_ : Tuple = DatasetInfosDict.from_directory(__UpperCAmelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( '''dataset_info''' , [ DatasetInfo(), DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ), ] , ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Dict = str(__UpperCAmelCase ) dataset_info.write_to_directory(__UpperCAmelCase ) lowerCamelCase_ : List[Any] = DatasetInfo.from_directory(__UpperCAmelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__UpperCAmelCase , '''dataset_info.json''' ) ) def __snake_case (): """simple docstring""" lowerCamelCase_ : Union[str, Any] = DatasetInfo( description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) lowerCamelCase_ : str = dataset_info._to_yaml_dict() assert sorted(__UpperCAmelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCamelCase_ : List[str] = yaml.safe_dump(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = yaml.safe_load(__UpperCAmelCase ) assert dataset_info_yaml_dict == reloaded def __snake_case (): """simple docstring""" lowerCamelCase_ : Union[str, Any] = DatasetInfo() lowerCamelCase_ : Any = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''' , [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()} ), DatasetInfosDict({'''my_config_name''': DatasetInfo()} ), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ) } ), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=42 ), '''v2''': DatasetInfo(dataset_size=1337 ), } ), ] , ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : str = str(__UpperCAmelCase ) dataset_infos_dict.write_to_directory(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = DatasetInfosDict.from_directory(__UpperCAmelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCamelCase_ : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCamelCase_ : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__UpperCAmelCase , '''README.md''' ) )
705
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __snake_case (__UpperCAmelCase ): """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Optional[Any] = create_tensor(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = gather(__UpperCAmelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Dict = [state.process_index] lowerCamelCase_ : str = gather_object(__UpperCAmelCase ) assert len(__UpperCAmelCase ) == state.num_processes, F"""{gathered_obj}, {len(__UpperCAmelCase )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), F"""{gathered_obj} != {list(range(state.num_processes ) )}""" def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Union[str, Any] = create_tensor(__UpperCAmelCase ) lowerCamelCase_ : List[Any] = broadcast(__UpperCAmelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __snake_case (__UpperCAmelCase ): """simple docstring""" # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: lowerCamelCase_ : int = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowerCamelCase_ : Optional[Any] = torch.arange(state.num_processes ).to(state.device ) lowerCamelCase_ : Any = pad_across_processes(__UpperCAmelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __snake_case (__UpperCAmelCase ): """simple docstring""" # For now runs on only two processes if state.num_processes != 2: return lowerCamelCase_ : Dict = create_tensor(__UpperCAmelCase ) lowerCamelCase_ : List[Any] = reduce(__UpperCAmelCase , '''sum''' ) lowerCamelCase_ : str = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ), F"""{reduced_tensor} != {truth_tensor}""" def __snake_case (__UpperCAmelCase ): """simple docstring""" # For now runs on only two processes if state.num_processes != 2: return lowerCamelCase_ : Optional[int] = create_tensor(__UpperCAmelCase ) lowerCamelCase_ : Any = reduce(__UpperCAmelCase , '''mean''' ) lowerCamelCase_ : Any = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ), F"""{reduced_tensor} != {truth_tensor}""" def __snake_case (__UpperCAmelCase ): """simple docstring""" # For xla_spawn (TPUs) main() def __snake_case (): """simple docstring""" lowerCamelCase_ : int = PartialState() state.print(F"""State: {state}""" ) state.print('''testing gather''' ) test_gather(__UpperCAmelCase ) state.print('''testing gather_object''' ) test_gather_object(__UpperCAmelCase ) state.print('''testing broadcast''' ) test_broadcast(__UpperCAmelCase ) state.print('''testing pad_across_processes''' ) test_pad_across_processes(__UpperCAmelCase ) state.print('''testing reduce_sum''' ) test_reduce_sum(__UpperCAmelCase ) state.print('''testing reduce_mean''' ) test_reduce_mean(__UpperCAmelCase ) if __name__ == "__main__": main()
418
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase__ : Tuple =logging.get_logger(__name__) lowerCAmelCase__ : List[str] ={ 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCAmelCase_ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase__ : Optional[int] = '''detr''' UpperCamelCase__ : Optional[int] = ['''past_key_values'''] UpperCamelCase__ : int = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _A=True , _A=None , _A=3 , _A=100 , _A=6 , _A=2_048 , _A=8 , _A=6 , _A=2_048 , _A=8 , _A=0.0 , _A=0.0 , _A=True , _A="relu" , _A=256 , _A=0.1 , _A=0.0 , _A=0.0 , _A=0.0_2 , _A=1.0 , _A=False , _A="sine" , _A="resnet50" , _A=True , _A=False , _A=1 , _A=5 , _A=2 , _A=1 , _A=1 , _A=5 , _A=2 , _A=0.1 , **_A , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING["resnet"](out_features=['stage4'] ) elif isinstance(_A , _A ): __SCREAMING_SNAKE_CASE = backbone_config.get('model_type' ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] __SCREAMING_SNAKE_CASE = config_class.from_dict(_A ) # set timm attributes to None __SCREAMING_SNAKE_CASE = None, None, None __SCREAMING_SNAKE_CASE = use_timm_backbone __SCREAMING_SNAKE_CASE = backbone_config __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = num_queries __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = init_xavier_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = decoder_layerdrop __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = auxiliary_loss __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = backbone __SCREAMING_SNAKE_CASE = use_pretrained_backbone __SCREAMING_SNAKE_CASE = dilation # Hungarian matcher __SCREAMING_SNAKE_CASE = class_cost __SCREAMING_SNAKE_CASE = bbox_cost __SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients __SCREAMING_SNAKE_CASE = mask_loss_coefficient __SCREAMING_SNAKE_CASE = dice_loss_coefficient __SCREAMING_SNAKE_CASE = bbox_loss_coefficient __SCREAMING_SNAKE_CASE = giou_loss_coefficient __SCREAMING_SNAKE_CASE = eos_coefficient super().__init__(is_encoder_decoder=_A , **_A ) @property def _A ( self ): '''simple docstring''' return self.encoder_attention_heads @property def _A ( self ): '''simple docstring''' return self.d_model @classmethod def _A ( cls , _A , **_A ): '''simple docstring''' return cls(backbone_config=_A , **_A ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output class UpperCAmelCase_ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = version.parse('''1.11''' ) @property def _A ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def _A ( self ): '''simple docstring''' return 1e-5 @property def _A ( self ): '''simple docstring''' return 12
148
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def A ( _A, _A, _A=None, _A=None ): """simple docstring""" if attention_mask is None: snake_case_ :List[str] = tf.cast(tf.math.not_equal(_A, config.pad_token_id ), tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __lowerCAmelCase : '''simple docstring''' a__ = OPTConfig a__ = {} a__ = 'gelu' def __init__( self , a , a=13 , a=7 , a=True , a=False , a=99 , a=16 , a=2 , a=4 , a=4 , a="gelu" , a=0.1 , a=0.1 , a=20 , a=2 , a=1 , a=0 , a=16 , a=16 , ): """simple docstring""" snake_case_ :Dict = parent snake_case_ :Tuple = batch_size snake_case_ :int = seq_length snake_case_ :List[Any] = is_training snake_case_ :Tuple = use_labels snake_case_ :List[str] = vocab_size snake_case_ :Dict = hidden_size snake_case_ :Union[str, Any] = num_hidden_layers snake_case_ :Any = num_attention_heads snake_case_ :List[str] = intermediate_size snake_case_ :int = hidden_act snake_case_ :Dict = hidden_dropout_prob snake_case_ :Any = attention_probs_dropout_prob snake_case_ :str = max_position_embeddings snake_case_ :Tuple = eos_token_id snake_case_ :Optional[int] = pad_token_id snake_case_ :Optional[int] = bos_token_id snake_case_ :Any = embed_dim snake_case_ :Any = word_embed_proj_dim snake_case_ :Tuple = False def _a ( self ): """simple docstring""" snake_case_ :Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ :List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ :Optional[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ :Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=a , **self.config_updates , ) snake_case_ :List[Any] = prepare_opt_inputs_dict(a , a ) return config, inputs_dict def _a ( self , a , a ): """simple docstring""" snake_case_ :Union[str, Any] = TFOPTModel(config=a ) snake_case_ :Union[str, Any] = inputs_dict["input_ids"] snake_case_ :Tuple = input_ids[:1, :] snake_case_ :Union[str, Any] = inputs_dict["attention_mask"][:1, :] snake_case_ :Union[str, Any] = 1 # first forward pass snake_case_ :int = model(a , attention_mask=a , use_cache=a ) snake_case_ , snake_case_ :List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ :List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ :Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case_ :List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case_ :List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case_ :List[str] = model(a , attention_mask=a )[0] snake_case_ :int = model(a , attention_mask=a , past_key_values=a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case_ :List[str] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case_ :List[Any] = output_from_no_past[:, -3:, random_slice_idx] snake_case_ :Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a , a , rtol=1e-3 ) @require_tf class __lowerCAmelCase (__UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): '''simple docstring''' a__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () a__ = (TFOPTForCausalLM,) if is_tf_available() else () a__ = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) a__ = False a__ = False a__ = False a__ = 10 def _a ( self ): """simple docstring""" snake_case_ :Union[str, Any] = TFOPTModelTester(self ) snake_case_ :Tuple = ConfigTester(self , config_class=a ) def _a ( self ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self ): """simple docstring""" snake_case_ :Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a ) def _a ( self ): """simple docstring""" snake_case_ , snake_case_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(a , a ): if hasattr(a , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(a , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings snake_case_ :str = model_class(config=a ) snake_case_ :List[str] = _get_word_embedding_weight(a , model.get_input_embeddings() ) snake_case_ :Optional[Any] = _get_word_embedding_weight(a , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(a ) snake_case_ :Tuple = _get_word_embedding_weight(a , model.get_input_embeddings() ) snake_case_ :Tuple = _get_word_embedding_weight(a , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. snake_case_ :str = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , a ) # check that weights remain the same after resizing snake_case_ :List[str] = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: snake_case_ :List[Any] = False self.assertTrue(a ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , a ) snake_case_ :List[Any] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: snake_case_ :Optional[Any] = False self.assertTrue(a ) def A ( _A ): """simple docstring""" return tf.constant(_A, dtype=tf.intaa ) @require_tf class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' a__ = 99 def _a ( self ): """simple docstring""" snake_case_ :Any = tf.ones((4, 1) , dtype=tf.intaa ) * 2 snake_case_ :Any = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) snake_case_ :List[str] = input_ids.shape[0] snake_case_ :Union[str, Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' @slow def _a ( self ): """simple docstring""" snake_case_ :int = TFOPTModel.from_pretrained("facebook/opt-350m" ) snake_case_ :List[Any] = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) snake_case_ :str = tf.not_equal(a , model.config.pad_token_id ) with tf.GradientTape(): snake_case_ :Dict = model(input_ids=a , attention_mask=a ).last_hidden_state snake_case_ :Optional[int] = (1, 11, 5_12) self.assertEqual(output.shape , a ) snake_case_ :Union[str, Any] = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , a , atol=4e-3 ) ) snake_case_ :Optional[int] = tf.function(a , jit_compile=a ) snake_case_ :Optional[int] = xla_generate(a , a )[0] self.assertTrue(np.allclose(output[:, :3, :3] , a , atol=4e-2 ) ) @require_tf @slow class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def _a ( self ): """simple docstring""" super().setUp() snake_case_ :List[str] = "facebook/opt-350m" def _a ( self ): """simple docstring""" snake_case_ :Optional[Any] = TFOPTForCausalLM.from_pretrained(self.path_model ) snake_case_ :List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) snake_case_ :Tuple = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False snake_case_ :Optional[Any] = tokenizer(a , return_tensors="tf" , padding=a , add_special_tokens=a ) snake_case_ :Optional[Any] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) snake_case_ :int = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(a , a , atol=1e-4 ) ) snake_case_ :int = tf.function(a , jit_compile=a ) snake_case_ :List[str] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(a , a , atol=1e-4 ) ) @require_tf @slow class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' @property def _a ( self ): """simple docstring""" return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _a ( self ): """simple docstring""" snake_case_ :int = "facebook/opt-125m" snake_case_ :List[str] = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] snake_case_ :Tuple = [] snake_case_ :Optional[int] = GPTaTokenizer.from_pretrained(a ) snake_case_ :List[str] = TFOPTForCausalLM.from_pretrained(a ) for prompt in self.prompts: snake_case_ :Dict = tokenizer(a , return_tensors="tf" ).input_ids snake_case_ :str = model.generate(a , max_length=10 ) snake_case_ :Optional[Any] = tokenizer.batch_decode(a , skip_special_tokens=a ) predicted_outputs += generated_string self.assertListEqual(a , a ) def _a ( self ): """simple docstring""" snake_case_ :Optional[int] = "facebook/opt-350m" snake_case_ :Tuple = GPTaTokenizer.from_pretrained(a ) snake_case_ :Tuple = TFOPTForCausalLM.from_pretrained(a ) snake_case_ :List[str] = "left" # use different length sentences to test batching snake_case_ :Dict = [ "Hello, my dog is a little", "Today, I", ] snake_case_ :int = tokenizer(a , return_tensors="tf" , padding=a ) snake_case_ :Dict = inputs["input_ids"] snake_case_ :List[Any] = model.generate(input_ids=a , attention_mask=inputs["attention_mask"] ) snake_case_ :str = tokenizer(sentences[0] , return_tensors="tf" ).input_ids snake_case_ :Any = model.generate(input_ids=a ) snake_case_ :List[Any] = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) snake_case_ :List[str] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids snake_case_ :Union[str, Any] = model.generate(input_ids=a , max_length=model.config.max_length - num_paddings ) snake_case_ :Union[str, Any] = tokenizer.batch_decode(a , skip_special_tokens=a ) snake_case_ :int = tokenizer.decode(output_non_padded[0] , skip_special_tokens=a ) snake_case_ :Optional[int] = tokenizer.decode(output_padded[0] , skip_special_tokens=a ) snake_case_ :str = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(a , a ) self.assertListEqual(a , [non_padded_sentence, padded_sentence] ) def _a ( self ): """simple docstring""" snake_case_ :Tuple = "facebook/opt-350m" snake_case_ :int = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] snake_case_ :str = [] snake_case_ :Tuple = GPTaTokenizer.from_pretrained(a ) snake_case_ :Any = TFOPTForCausalLM.from_pretrained(a ) for prompt in self.prompts: snake_case_ :Any = tokenizer(a , return_tensors="tf" ).input_ids snake_case_ :List[str] = model.generate(a , max_length=10 ) snake_case_ :str = tokenizer.batch_decode(a , skip_special_tokens=a ) predicted_outputs += generated_string self.assertListEqual(a , a )
584
0
'''simple docstring''' from math import pi def __magic_name__( lowerCamelCase, lowerCamelCase): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(9_0, 1_0))
715
'''simple docstring''' import requests from bsa import BeautifulSoup def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = BeautifulSoup(requests.get(lowerCamelCase, params=lowerCamelCase).content, '''html.parser''') __lowerCAmelCase = soup.find('''div''', attrs={'''class''': '''gs_ri'''}) __lowerCAmelCase = div.find('''div''', attrs={'''class''': '''gs_fl'''}).find_all('''a''') return anchors[2].get_text() if __name__ == "__main__": _UpperCAmelCase : Union[str, Any] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 3_0, """pages""": """3979-3990""", """year""": 2_0_1_8, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
474
0
'''simple docstring''' from __future__ import annotations import math def _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" __magic_name__ : str = str(UpperCamelCase__ ) __magic_name__ : Any = [n] for i in range(1 , len(UpperCamelCase__ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" if len(str(UpperCamelCase__ ) ) > 3: if not is_prime(int(str(UpperCamelCase__ )[-3:] ) ) or not is_prime(int(str(UpperCamelCase__ )[:3] ) ): return False return True def _UpperCamelCase ( UpperCamelCase__ = 11 ): """simple docstring""" __magic_name__ : list[int] = [] __magic_name__ : Optional[int] = 13 while len(UpperCamelCase__ ) != count: if validate(UpperCamelCase__ ): __magic_name__ : List[str] = list_truncated_nums(UpperCamelCase__ ) if all(is_prime(UpperCamelCase__ ) for i in list_nums ): list_truncated_primes.append(UpperCamelCase__ ) num += 2 return list_truncated_primes def _UpperCamelCase ( ): """simple docstring""" return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f"{sum(compute_truncated_primes(11)) = }")
436
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class _snake_case ( snake_case_ ): '''simple docstring''' __snake_case = "t5" __snake_case = ["past_key_values"] __snake_case = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self: Optional[int] , __UpperCamelCase: Any=3_2128 , __UpperCamelCase: Any=512 , __UpperCamelCase: Optional[Any]=64 , __UpperCamelCase: Any=2048 , __UpperCamelCase: List[Any]=6 , __UpperCamelCase: Union[str, Any]=None , __UpperCamelCase: List[str]=8 , __UpperCamelCase: Tuple=32 , __UpperCamelCase: Optional[Any]=128 , __UpperCamelCase: List[Any]=0.1 , __UpperCamelCase: Dict=1E-6 , __UpperCamelCase: int=1.0 , __UpperCamelCase: Optional[int]="relu" , __UpperCamelCase: int=True , __UpperCamelCase: str=True , __UpperCamelCase: List[Any]=0 , __UpperCamelCase: Any=1 , **__UpperCamelCase: Union[str, Any] , ) -> Optional[int]: __magic_name__ : List[Any] = vocab_size __magic_name__ : Any = d_model __magic_name__ : List[str] = d_kv __magic_name__ : List[Any] = d_ff __magic_name__ : Optional[int] = num_layers __magic_name__ : Union[str, Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __magic_name__ : str = num_heads __magic_name__ : Any = relative_attention_num_buckets __magic_name__ : List[str] = relative_attention_max_distance __magic_name__ : int = dropout_rate __magic_name__ : Optional[Any] = layer_norm_epsilon __magic_name__ : Tuple = initializer_factor __magic_name__ : int = feed_forward_proj __magic_name__ : Optional[int] = use_cache __magic_name__ : Any = self.feed_forward_proj.split("-" ) __magic_name__ : Any = act_info[-1] __magic_name__ : Dict = act_info[0] == "gated" if len(__UpperCamelCase ) > 1 and act_info[0] != "gated" or len(__UpperCamelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __magic_name__ : List[str] = "gelu_new" super().__init__( pad_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase , ) class _snake_case ( snake_case_ ): '''simple docstring''' @property def lowerCAmelCase__ ( self: List[Any] ) -> Mapping[str, Mapping[int, str]]: __magic_name__ : str = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: __magic_name__ : Union[str, Any] = "past_encoder_sequence + sequence" __magic_name__ : List[Any] = {0: "batch"} __magic_name__ : Dict = {0: "batch", 1: "past_decoder_sequence + sequence"} else: __magic_name__ : int = {0: "batch", 1: "decoder_sequence"} __magic_name__ : List[Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__UpperCamelCase , direction="inputs" ) return common_inputs @property def lowerCAmelCase__ ( self: Optional[int] ) -> int: return 13
436
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def lowerCamelCase ( UpperCAmelCase_ : Tuple )-> Dict: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: a =k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) if k.startswith("""encoder""" ): a =k.replace(""".attn""" , """.self_attn""" ) a =k.replace("""norm1""" , """self_attn_layer_norm""" ) a =k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): a =k.replace("""norm1""" , """self_attn_layer_norm""" ) a =k.replace("""norm2""" , """encoder_attn_layer_norm""" ) a =k.replace("""norm3""" , """final_layer_norm""" ) return k def lowerCamelCase ( UpperCAmelCase_ : Any )-> int: """simple docstring""" a =[ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: a =sd.pop(UpperCAmelCase_ ) a =k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd a =v _lowerCamelCase = ['''START'''] @torch.no_grad() def lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] )-> List[Any]: """simple docstring""" a =torch.load(UpperCAmelCase_ , map_location="""cpu""" ) a =model["""model"""] a =BlenderbotConfig.from_json_file(UpperCAmelCase_ ) a =BlenderbotForConditionalGeneration(UpperCAmelCase_ ) a =m.model.state_dict().keys() a =[] a ={} for k, v in sd.items(): if k in IGNORE_KEYS: continue a =rename_state_dict_key(UpperCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: a =v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase_ ) m.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) m.half() m.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) _lowerCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
321
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(UpperCAmelCase_ , i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int )-> int: """simple docstring""" a =_distribute_shards(**UpperCAmelCase_ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any )-> Any: """simple docstring""" a =_split_gen_kwargs(UpperCAmelCase_ , UpperCAmelCase_ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] )-> int: """simple docstring""" if expected is RuntimeError: with pytest.raises(UpperCAmelCase_ ): _number_of_shards_in_gen_kwargs(UpperCAmelCase_ ) else: a =_number_of_shards_in_gen_kwargs(UpperCAmelCase_ ) assert out == expected
321
1
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> str: return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict ) -> Dict: __lowerCamelCase : str = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue __lowerCamelCase : int = key.replace('heads.cmd.mim_head.cls.predictions' , 'mmm_image_head' ) __lowerCamelCase : List[Any] = key.replace('heads.cmd.mlm_head.cls.predictions' , 'mmm_text_head' ) __lowerCamelCase : List[str] = key.replace('heads.cmd.itm_head.cls' , 'itm_head' ) __lowerCamelCase : int = key.replace('heads.cmd.itm_head.pooler' , 'itm_head.pooler' ) __lowerCamelCase : Union[str, Any] = key.replace('heads.cmd.clip_head.logit_scale' , 'flava.logit_scale' ) __lowerCamelCase : Any = key.replace('heads.fairseq_mlm.cls.predictions' , 'mlm_head' ) __lowerCamelCase : str = key.replace('heads.imagenet.mim_head.cls.predictions' , 'mim_head' ) __lowerCamelCase : Optional[Any] = key.replace('mm_text_projection' , 'flava.text_to_mm_projection' ) __lowerCamelCase : int = key.replace('mm_image_projection' , 'flava.image_to_mm_projection' ) __lowerCamelCase : Union[str, Any] = key.replace('image_encoder.module' , 'flava.image_model' ) __lowerCamelCase : List[Any] = key.replace('text_encoder.module' , 'flava.text_model' ) __lowerCamelCase : Union[str, Any] = key.replace('mm_encoder.module.encoder.cls_token' , 'flava.multimodal_model.cls_token' ) __lowerCamelCase : Any = key.replace('mm_encoder.module' , 'flava.multimodal_model' ) __lowerCamelCase : Optional[Any] = key.replace('text_projection' , 'flava.text_projection' ) __lowerCamelCase : Union[str, Any] = key.replace('image_projection' , 'flava.image_projection' ) __lowerCamelCase : Dict = value.float() for key, value in codebook_state_dict.items(): __lowerCamelCase : Union[str, Any] = value return upgrade @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any=None ) -> Optional[int]: if config_path is not None: __lowerCamelCase : Optional[Any] = FlavaConfig.from_pretrained(_lowerCAmelCase ) else: __lowerCamelCase : List[Any] = FlavaConfig() __lowerCamelCase : Union[str, Any] = FlavaForPreTraining(_lowerCAmelCase ).eval() __lowerCamelCase : List[Any] = convert_dalle_checkpoint(_lowerCAmelCase , _lowerCAmelCase , save_checkpoint=_lowerCAmelCase ) if os.path.exists(_lowerCAmelCase ): __lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location='cpu' ) else: __lowerCamelCase : Tuple = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location='cpu' ) __lowerCamelCase : Union[str, Any] = upgrade_state_dict(_lowerCAmelCase , _lowerCAmelCase ) hf_model.load_state_dict(_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = hf_model.state_dict() __lowerCamelCase : Dict = count_parameters(_lowerCAmelCase ) __lowerCamelCase : Tuple = count_parameters(_lowerCAmelCase ) + count_parameters(_lowerCAmelCase ) assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) hf_model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": A__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") A__ : Tuple = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
13
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = CodeGenTokenizer lowerCAmelCase_ = CodeGenTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'add_prefix_space': True} lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCamelCase : Any = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Tuple = {"unk_token": "<unk>"} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Tuple ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Union[str, Any],**__A : int ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Dict ): _lowerCamelCase : Optional[Any] = "lower newer" _lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = CodeGenTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Any ): if not self.test_rust_tokenizer: return _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = "lower newer" # Testing tokenization _lowerCamelCase : List[Any] = tokenizer.tokenize(__A,add_prefix_space=__A ) _lowerCamelCase : str = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids without special tokens _lowerCamelCase : str = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) # Testing conversion to ids with special tokens _lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=__A ) _lowerCamelCase : Union[str, Any] = tokenizer.encode(__A,add_prefix_space=__A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) # Testing the unknown token _lowerCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Tuple,*__A : Any,**__A : Any ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase_ ( self : int,__A : Optional[int]=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__A,**__A ) # Simple input _lowerCamelCase : Dict = "This is a simple input" _lowerCamelCase : Any = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Tuple = ("This is a simple input", "This is a pair") _lowerCamelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Simple input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) # Pair input self.assertRaises(__A,tokenizer_r.encode,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises(__A,tokenizer_r.encode_plus,__A,max_length=__A,padding="max_length" ) # Pair input self.assertRaises( __A,tokenizer_r.batch_encode_plus,__A,max_length=__A,padding="max_length",) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input _lowerCamelCase : Tuple = "This is a simple input" _lowerCamelCase : Dict = ["This is a simple input looooooooong", "This is a simple input"] _lowerCamelCase : Dict = ("This is a simple input", "This is a pair") _lowerCamelCase : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCamelCase : Dict = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__A,padding="max_length",max_length=3_0,return_tensors="np" ) _lowerCamelCase : int = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) _lowerCamelCase : List[Any] = tokenizer(*__A,padding="max_length",max_length=6_0,return_tensors="np" ) _lowerCamelCase : Tuple = tokenizer(__A,padding=__A,truncate=__A,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = "$$$" _lowerCamelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname,bos_token=__A,add_bos_token=__A ) _lowerCamelCase : List[str] = "This is a simple input" _lowerCamelCase : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Union[str, Any] = tokenizer.bos_token_id _lowerCamelCase : Any = tokenizer(__A ) _lowerCamelCase : List[str] = tokenizer(__A ) self.assertEqual(out_s.input_ids[0],__A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : int = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],__A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) _lowerCamelCase : Optional[Any] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" _lowerCamelCase : Dict = "\nif len_a > len_b: result = a\nelse: result = b" _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] _lowerCamelCase : List[Any] = tokenizer.decode(__A,truncate_before_pattern=__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): pass
44
0
import os import sys import unittest __lowerCamelCase : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __lowerCamelCase : Union[str, Any] = os.path.join(git_repo_path, '''src''', '''transformers''') __lowerCamelCase : int = ''' {0} = None ''' __lowerCamelCase : List[Any] = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) ''' __lowerCamelCase : Union[str, Any] = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' class __snake_case ( unittest.TestCase ): def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" ) self.assertIsNone(_lowercase ) SCREAMING_SNAKE_CASE__ = find_backend(""" if not is_tokenizers_available():""" ) self.assertEqual(_lowercase , """tokenizers""" ) SCREAMING_SNAKE_CASE__ = find_backend(""" if not is_tensorflow_text_available():""" ) self.assertEqual(_lowercase , """tensorflow_text""" ) SCREAMING_SNAKE_CASE__ = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" ) self.assertEqual(_lowercase , """sentencepiece_and_tokenizers""" ) SCREAMING_SNAKE_CASE__ = find_backend( """ if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" ) self.assertEqual(_lowercase , """sentencepiece_and_tensorflow_text""" ) SCREAMING_SNAKE_CASE__ = find_backend( """ if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" ) self.assertEqual(_lowercase , """sentencepiece_and_tokenizers_and_vision""" ) def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , _lowercase ) self.assertIn("""tensorflow_text""" , _lowercase ) self.assertIn("""sentencepiece_and_tokenizers""" , _lowercase ) # Likewise, we can't assert on the exact content of a key self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertModel""" , objects["""tf"""] ) self.assertIn("""FlaxBertModel""" , objects["""flax"""] ) self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertTokenizer""" , objects["""tensorflow_text"""] ) self.assertIn("""convert_slow_tokenizer""" , objects["""sentencepiece_and_tokenizers"""] ) def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = create_dummy_object("""CONSTANT""" , """'torch'""" ) self.assertEqual(_lowercase , """\nCONSTANT = None\n""" ) SCREAMING_SNAKE_CASE__ = create_dummy_object("""function""" , """'torch'""" ) self.assertEqual( _lowercase , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) SCREAMING_SNAKE_CASE__ = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') """ SCREAMING_SNAKE_CASE__ = create_dummy_object("""FakeClass""" , """'torch'""" ) self.assertEqual(_lowercase , _lowercase ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) """ SCREAMING_SNAKE_CASE__ = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] , _lowercase )
379
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : str = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = "nllb-moe" lowerCAmelCase_ = ["past_key_values"] lowerCAmelCase_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , _lowercase : Tuple=12_81_12 , _lowercase : List[Any]=10_24 , _lowercase : Any=12 , _lowercase : List[Any]=40_96 , _lowercase : str=16 , _lowercase : str=12 , _lowercase : Optional[int]=40_96 , _lowercase : List[Any]=16 , _lowercase : str=0.05 , _lowercase : Tuple=0.05 , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : Optional[Any]="relu" , _lowercase : str=10_24 , _lowercase : Tuple=0.1 , _lowercase : int=0.1 , _lowercase : Dict=0.0 , _lowercase : List[str]=0.02 , _lowercase : int=2 , _lowercase : Optional[Any]=True , _lowercase : List[Any]=False , _lowercase : List[str]="float32" , _lowercase : Optional[Any]=False , _lowercase : str=1_28 , _lowercase : int=64 , _lowercase : Optional[int]=4 , _lowercase : List[str]=4 , _lowercase : Union[str, Any]=0.0_01 , _lowercase : List[Any]=0.0_01 , _lowercase : List[str]="all" , _lowercase : Optional[Any]=False , _lowercase : int=False , _lowercase : Tuple=1.0 , _lowercase : Optional[int]=0.2 , _lowercase : Optional[int]=1 , _lowercase : List[Any]=0 , _lowercase : List[Any]=2 , _lowercase : int=False , **_lowercase : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = d_model SCREAMING_SNAKE_CASE__ = encoder_ffn_dim SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = encoder_attention_heads SCREAMING_SNAKE_CASE__ = decoder_ffn_dim SCREAMING_SNAKE_CASE__ = decoder_layers SCREAMING_SNAKE_CASE__ = decoder_attention_heads SCREAMING_SNAKE_CASE__ = dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = activation_dropout SCREAMING_SNAKE_CASE__ = activation_function SCREAMING_SNAKE_CASE__ = init_std SCREAMING_SNAKE_CASE__ = encoder_layerdrop SCREAMING_SNAKE_CASE__ = decoder_layerdrop SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE__ = router_z_loss_coef SCREAMING_SNAKE_CASE__ = router_aux_loss_coef SCREAMING_SNAKE_CASE__ = decoder_sparse_step SCREAMING_SNAKE_CASE__ = encoder_sparse_step SCREAMING_SNAKE_CASE__ = num_experts SCREAMING_SNAKE_CASE__ = expert_capacity SCREAMING_SNAKE_CASE__ = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) SCREAMING_SNAKE_CASE__ = router_dtype SCREAMING_SNAKE_CASE__ = router_ignore_padding_tokens SCREAMING_SNAKE_CASE__ = batch_prioritized_routing SCREAMING_SNAKE_CASE__ = second_expert_policy SCREAMING_SNAKE_CASE__ = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE__ = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE__ = moe_token_dropout SCREAMING_SNAKE_CASE__ = output_router_logits super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , **_lowercase , )
379
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : Tuple = { "configuration_xmod": [ "XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP", "XmodConfig", "XmodOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Dict = [ "XMOD_PRETRAINED_MODEL_ARCHIVE_LIST", "XmodForCausalLM", "XmodForMaskedLM", "XmodForMultipleChoice", "XmodForQuestionAnswering", "XmodForSequenceClassification", "XmodForTokenClassification", "XmodModel", "XmodPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
205
def lowercase ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if not numbers: return 0 if not isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) or not all( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = numbers[0] for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): # update the maximum and minimum subarray products SCREAMING_SNAKE_CASE_ = numbers[i] if number < 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = min_till_now, max_till_now SCREAMING_SNAKE_CASE_ = max(SCREAMING_SNAKE_CASE , max_till_now * number ) SCREAMING_SNAKE_CASE_ = min(SCREAMING_SNAKE_CASE , min_till_now * number ) # update the maximum product found till now SCREAMING_SNAKE_CASE_ = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return max_prod
205
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class a__ ( unittest.TestCase ): __lowerCAmelCase = ViTImageProcessor if is_vision_available() else None @property def __magic_name__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ): lowercase : List[str] = (3, 32, 128) lowercase : Any = tempfile.mkdtemp() # fmt: off lowercase : int = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on lowercase : int = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase__ ) + "\n" ) lowercase : Optional[int] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } lowercase : Optional[Any] = os.path.join(self.tmpdirname , lowercase__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowercase__ , lowercase__ ) def __magic_name__ ( self , **_a ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __magic_name__ ( self , **_a ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase__ ) def __magic_name__ ( self ): shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ): lowercase : Any = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) lowercase : str = Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) return image_input def __magic_name__ ( self ): lowercase : Union[str, Any] = self.get_tokenizer() lowercase : Any = self.get_image_processor() lowercase : List[Any] = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) processor.save_pretrained(self.tmpdirname ) lowercase : Any = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase__ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , lowercase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase__ ) def __magic_name__ ( self ): lowercase : List[Any] = self.get_tokenizer() lowercase : Any = self.get_image_processor() lowercase : Optional[Any] = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) processor.save_pretrained(self.tmpdirname ) lowercase : List[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase : Optional[Any] = self.get_image_processor(do_normalize=lowercase__ , padding_value=1.0 ) lowercase : Dict = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowercase__ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , lowercase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase__ ) def __magic_name__ ( self ): lowercase : List[str] = self.get_image_processor() lowercase : int = self.get_tokenizer() lowercase : int = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) lowercase : Any = self.prepare_image_inputs() lowercase : Optional[int] = image_processor(lowercase__ , return_tensors="np" ) lowercase : Union[str, Any] = processor(images=lowercase__ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __magic_name__ ( self ): lowercase : List[str] = self.get_image_processor() lowercase : Tuple = self.get_tokenizer() lowercase : List[str] = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) lowercase : Any = """test""" lowercase : str = processor(text=lowercase__ ) lowercase : Optional[Any] = tokenizer(lowercase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __magic_name__ ( self ): lowercase : List[str] = self.get_image_processor() lowercase : Dict = self.get_tokenizer() lowercase : List[Any] = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) lowercase : Union[str, Any] = """test""" lowercase : Union[str, Any] = self.prepare_image_inputs() lowercase : Tuple = processor(text=lowercase__ , images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(lowercase__ ): processor() def __magic_name__ ( self ): lowercase : Optional[Any] = self.get_image_processor() lowercase : Union[str, Any] = self.get_tokenizer() lowercase : Union[str, Any] = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) lowercase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase : str = processor.char_decode(lowercase__ ) lowercase : List[str] = tokenizer.batch_decode(lowercase__ ) lowercase : Optional[Any] = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(lowercase__ , lowercase__ ) def __magic_name__ ( self ): lowercase : Optional[Any] = self.get_image_processor() lowercase : List[Any] = self.get_tokenizer() lowercase : str = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) lowercase : List[str] = None lowercase : Optional[int] = self.prepare_image_inputs() lowercase : Optional[Any] = processor(text=lowercase__ , images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __magic_name__ ( self ): lowercase : List[Any] = self.get_image_processor() lowercase : List[str] = self.get_tokenizer() lowercase : Tuple = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) lowercase : Union[str, Any] = torch.randn(1 , 27 , 38 ) lowercase : Tuple = torch.randn(1 , 27 , 50_257 ) lowercase : str = torch.randn(1 , 27 , 30_522 ) lowercase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
704
"""simple docstring""" _A : List[Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/""" def __magic_name__ ( __snake_case : bytes ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(__snake_case , __snake_case ): lowercase : Dict = f"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(__snake_case ) lowercase : int = "".join(bin(__snake_case )[2:].zfill(8 ) for byte in data ) lowercase : Dict = len(__snake_case ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase : List[str] = B"=" * ((6 - len(__snake_case ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(__snake_case ) % 6) else: lowercase : Optional[int] = B"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(__snake_case ) , 6 ) ).encode() + padding ) def __magic_name__ ( __snake_case : str ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(__snake_case , __snake_case ) and not isinstance(__snake_case , __snake_case ): lowercase : Any = ( "argument should be a bytes-like object or ASCII string, " f"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(__snake_case ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(__snake_case , __snake_case ): try: lowercase : Optional[Any] = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) lowercase : Optional[Any] = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(__snake_case ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase : Union[str, Any] = encoded_data[:-padding] lowercase : Tuple = "".join( bin(B64_CHARSET.index(__snake_case ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase : Any = "".join( bin(B64_CHARSET.index(__snake_case ) )[2:].zfill(6 ) for char in encoded_data ) lowercase : str = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(__snake_case ) , 8 ) ] return bytes(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
518
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class __a ( _snake_case ): __UpperCamelCase : List[str] = 'wavlm' def __init__( self : List[Any] ,lowerCamelCase : List[str]=32 ,lowerCamelCase : Any=768 ,lowerCamelCase : Optional[int]=12 ,lowerCamelCase : Union[str, Any]=12 ,lowerCamelCase : List[str]=3072 ,lowerCamelCase : List[str]="gelu" ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Dict=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Dict=0.0 ,lowerCamelCase : int=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Dict=0.02 ,lowerCamelCase : Optional[int]=1E-5 ,lowerCamelCase : int="group" ,lowerCamelCase : Tuple="gelu" ,lowerCamelCase : Optional[Any]=(512, 512, 512, 512, 512, 512, 512) ,lowerCamelCase : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) ,lowerCamelCase : List[Any]=(10, 3, 3, 3, 3, 2, 2) ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : Tuple=128 ,lowerCamelCase : Union[str, Any]=16 ,lowerCamelCase : int=320 ,lowerCamelCase : Dict=800 ,lowerCamelCase : int=False ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : List[Any]=0.05 ,lowerCamelCase : Dict=10 ,lowerCamelCase : Optional[int]=2 ,lowerCamelCase : List[str]=0.0 ,lowerCamelCase : Optional[int]=10 ,lowerCamelCase : str=320 ,lowerCamelCase : Dict=2 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Dict=100 ,lowerCamelCase : Optional[Any]=256 ,lowerCamelCase : Optional[int]=256 ,lowerCamelCase : Dict=0.1 ,lowerCamelCase : List[str]="mean" ,lowerCamelCase : Dict=False ,lowerCamelCase : int=False ,lowerCamelCase : Tuple=256 ,lowerCamelCase : str=(512, 512, 512, 512, 1500) ,lowerCamelCase : List[Any]=(5, 3, 3, 1, 1) ,lowerCamelCase : List[Any]=(1, 2, 3, 1, 1) ,lowerCamelCase : str=512 ,lowerCamelCase : Optional[Any]=80 ,lowerCamelCase : Optional[int]=0 ,lowerCamelCase : Dict=1 ,lowerCamelCase : Any=2 ,lowerCamelCase : List[str]=False ,lowerCamelCase : Optional[Any]=3 ,lowerCamelCase : int=2 ,lowerCamelCase : int=3 ,lowerCamelCase : List[Any]=None ,**lowerCamelCase : str ,): '''simple docstring''' super().__init__(**lowerCamelCase ,pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = feat_extract_norm __SCREAMING_SNAKE_CASE = feat_extract_activation __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = conv_bias __SCREAMING_SNAKE_CASE = num_buckets __SCREAMING_SNAKE_CASE = max_bucket_distance __SCREAMING_SNAKE_CASE = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE = len(self.conv_dim ) __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = feat_proj_dropout __SCREAMING_SNAKE_CASE = final_dropout __SCREAMING_SNAKE_CASE = layerdrop __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_ctc_classes __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = do_stable_layer_norm __SCREAMING_SNAKE_CASE = use_weighted_layer_sum __SCREAMING_SNAKE_CASE = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE = apply_spec_augment __SCREAMING_SNAKE_CASE = mask_time_prob __SCREAMING_SNAKE_CASE = mask_time_length __SCREAMING_SNAKE_CASE = mask_time_min_masks __SCREAMING_SNAKE_CASE = mask_feature_prob __SCREAMING_SNAKE_CASE = mask_feature_length # parameters for pretraining with codevector quantized representations __SCREAMING_SNAKE_CASE = num_codevectors_per_group __SCREAMING_SNAKE_CASE = num_codevector_groups __SCREAMING_SNAKE_CASE = contrastive_logits_temperature __SCREAMING_SNAKE_CASE = num_negatives __SCREAMING_SNAKE_CASE = codevector_dim __SCREAMING_SNAKE_CASE = proj_codevector_dim __SCREAMING_SNAKE_CASE = diversity_loss_weight # ctc loss __SCREAMING_SNAKE_CASE = ctc_loss_reduction __SCREAMING_SNAKE_CASE = ctc_zero_infinity # adapter __SCREAMING_SNAKE_CASE = add_adapter __SCREAMING_SNAKE_CASE = adapter_kernel_size __SCREAMING_SNAKE_CASE = adapter_stride __SCREAMING_SNAKE_CASE = num_adapter_layers __SCREAMING_SNAKE_CASE = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __SCREAMING_SNAKE_CASE = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = xvector_output_dim @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return functools.reduce(operator.mul ,self.conv_stride ,1 )
109
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor __UpperCamelCase : List[str] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE( a_ ): def __init__( self: Dict , *UpperCamelCase: Any , **UpperCamelCase: List[str] ) -> None: warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
328
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a :str = logging.get_logger(__name__) a :Any = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[Any] = """convbert""" def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-1_2 , _a=1 , _a=0 , _a=2 , _a=768 , _a=2 , _a=9 , _a=1 , _a=None , **_a , ) -> Dict: """simple docstring""" super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a , ) SCREAMING_SNAKE_CASE__ : Optional[int] = vocab_size SCREAMING_SNAKE_CASE__ : Dict = hidden_size SCREAMING_SNAKE_CASE__ : Dict = num_hidden_layers SCREAMING_SNAKE_CASE__ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE__ : int = intermediate_size SCREAMING_SNAKE_CASE__ : str = hidden_act SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : int = max_position_embeddings SCREAMING_SNAKE_CASE__ : List[str] = type_vocab_size SCREAMING_SNAKE_CASE__ : str = initializer_range SCREAMING_SNAKE_CASE__ : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE__ : Union[str, Any] = embedding_size SCREAMING_SNAKE_CASE__ : str = head_ratio SCREAMING_SNAKE_CASE__ : Union[str, Any] = conv_kernel_size SCREAMING_SNAKE_CASE__ : int = num_groups SCREAMING_SNAKE_CASE__ : Union[str, Any] = classifier_dropout class __a (UpperCamelCase_): '''simple docstring''' @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE__ : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
715
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: a :Optional[int] = None a :Optional[Any] = logging.get_logger(__name__) a :Optional[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} a :Union[str, Any] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } a :Any = { "facebook/nllb-large-en-ro": 1_024, "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off a :Tuple = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE :List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE :str = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE :int = ["""input_ids""", """attention_mask"""] _SCREAMING_SNAKE_CASE :Tuple = NllbTokenizer _SCREAMING_SNAKE_CASE :List[int] = [] _SCREAMING_SNAKE_CASE :List[int] = [] def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , _a=False , **_a , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token SCREAMING_SNAKE_CASE__ : Optional[int] = legacy_behaviour super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , legacy_behaviour=_a , **_a , ) SCREAMING_SNAKE_CASE__ : Optional[int] = vocab_file SCREAMING_SNAKE_CASE__ : str = False if not self.vocab_file else True SCREAMING_SNAKE_CASE__ : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) SCREAMING_SNAKE_CASE__ : List[str] = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE__ : Dict = src_lang if src_lang is not None else """eng_Latn""" SCREAMING_SNAKE_CASE__ : List[str] = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE__ : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _a ( self ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def _a ( self , _a ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , _a , _a = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self , _a , _a = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a ( self , _a , _a , _a , _a , **_a ) -> Tuple: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) SCREAMING_SNAKE_CASE__ : Dict = src_lang SCREAMING_SNAKE_CASE__ : Dict = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.convert_tokens_to_ids(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = tgt_lang_id return inputs def _a ( self , _a , _a = "eng_Latn" , _a = None , _a = "fra_Latn" , **_a , ) -> BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = src_lang SCREAMING_SNAKE_CASE__ : Dict = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def _a ( self ) -> Optional[Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ) -> str: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , _a ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.convert_tokens_to_ids(_a ) if self.legacy_behaviour: SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Dict = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE__ : Dict = [self.cur_lang_code] SCREAMING_SNAKE_CASE__ : Dict = [self.eos_token_id] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ : int = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE__ : int = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _a ( self , _a ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.convert_tokens_to_ids(_a ) if self.legacy_behaviour: SCREAMING_SNAKE_CASE__ : List[Any] = [] SCREAMING_SNAKE_CASE__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE__ : Optional[int] = [self.cur_lang_code] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.eos_token_id] SCREAMING_SNAKE_CASE__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE__ : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _a ( self , _a , _a = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return SCREAMING_SNAKE_CASE__ : Dict = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
12
0
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowercase (__lowerCamelCase , unittest.TestCase ): _lowerCamelCase = DebertaTokenizer _lowerCamelCase = True _lowerCamelCase = DebertaTokenizerFast def __UpperCamelCase ( self : str): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] UpperCamelCase__ : int = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCamelCase__ : Optional[int] = {'unk_token': '[UNK]'} UpperCamelCase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) def __UpperCamelCase ( self : str , **UpperCAmelCase_ : Dict): kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : List[Any]): UpperCamelCase__ : Optional[int] = 'lower newer' UpperCamelCase__ : Optional[Any] = 'lower newer' return input_text, output_text def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Tuple = self.get_tokenizer() UpperCamelCase__ : Dict = 'lower newer' UpperCamelCase__ : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] UpperCamelCase__ : List[str] = tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Dict = tokens + [tokenizer.unk_token] UpperCamelCase__ : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : str = tokenizer('Hello' , 'World') UpperCamelCase__ : int = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , UpperCAmelCase_) @slow def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : List[str] = self.tokenizer_class.from_pretrained('microsoft/deberta-base') UpperCamelCase__ : Dict = tokenizer.encode('sequence builders' , add_special_tokens=UpperCAmelCase_) UpperCamelCase__ : List[str] = tokenizer.encode('multi-sequence build' , add_special_tokens=UpperCAmelCase_) UpperCamelCase__ : Any = tokenizer.encode( 'sequence builders' , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_) UpperCamelCase__ : int = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_) UpperCamelCase__ : List[Any] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Tuple = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class) for tokenizer_class in tokenizer_classes: UpperCamelCase__ : Dict = tokenizer_class.from_pretrained('microsoft/deberta-base') UpperCamelCase__ : List[Any] = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] UpperCamelCase__ : Union[str, Any] = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_) UpperCamelCase__ : List[Any] = [tokenizer.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_) for seq in encoding['input_ids']] # fmt: off UpperCamelCase__ : Optional[Any] = { 'input_ids': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase__ : str = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , UpperCAmelCase_) for expected, decoded in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_)
596
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''blenderbot-small''' _lowerCamelCase = ['''past_key_values'''] _lowerCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Tuple , UpperCAmelCase_ : str=50_265 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : str=8 , UpperCAmelCase_ : Dict=2_048 , UpperCAmelCase_ : Optional[int]=16 , UpperCAmelCase_ : str=8 , UpperCAmelCase_ : Any=2_048 , UpperCAmelCase_ : List[Any]=16 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=1 , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Union[str, Any]=2 , **UpperCAmelCase_ : Union[str, Any] , ): UpperCamelCase__ : List[str] = vocab_size UpperCamelCase__ : Optional[Any] = max_position_embeddings UpperCamelCase__ : Optional[int] = d_model UpperCamelCase__ : int = encoder_ffn_dim UpperCamelCase__ : int = encoder_layers UpperCamelCase__ : List[Any] = encoder_attention_heads UpperCamelCase__ : Optional[Any] = decoder_ffn_dim UpperCamelCase__ : Optional[Any] = decoder_layers UpperCamelCase__ : Dict = decoder_attention_heads UpperCamelCase__ : List[str] = dropout UpperCamelCase__ : List[Any] = attention_dropout UpperCamelCase__ : int = activation_dropout UpperCamelCase__ : Optional[Any] = activation_function UpperCamelCase__ : Any = init_std UpperCamelCase__ : Optional[Any] = encoder_layerdrop UpperCamelCase__ : List[Any] = decoder_layerdrop UpperCamelCase__ : int = use_cache UpperCamelCase__ : List[Any] = encoder_layers UpperCamelCase__ : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , forced_eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) class __lowercase (__lowerCamelCase ): @property def __UpperCamelCase ( self : List[Any]): if self.task in ["default", "seq2seq-lm"]: UpperCamelCase__ : List[Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: UpperCamelCase__ : Union[str, Any] = {0: 'batch'} UpperCamelCase__ : int = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: UpperCamelCase__ : Tuple = {0: 'batch', 1: 'decoder_sequence'} UpperCamelCase__ : Dict = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase_ , direction='inputs') elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase__ : Union[str, Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: UpperCamelCase__, UpperCamelCase__ : List[Any] = self.num_layers for i in range(UpperCAmelCase_): UpperCamelCase__ : List[Any] = {0: 'batch', 2: 'past_sequence + sequence'} UpperCamelCase__ : Optional[Any] = {0: 'batch', 2: 'past_sequence + sequence'} else: UpperCamelCase__ : Tuple = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ]) return common_inputs @property def __UpperCamelCase ( self : Optional[int]): if self.task in ["default", "seq2seq-lm"]: UpperCamelCase__ : Union[str, Any] = super().outputs else: UpperCamelCase__ : Union[str, Any] = super(UpperCAmelCase_ , self).outputs if self.use_past: UpperCamelCase__, UpperCamelCase__ : int = self.num_layers for i in range(UpperCAmelCase_): UpperCamelCase__ : List[str] = {0: 'batch', 2: 'past_sequence + sequence'} UpperCamelCase__ : Optional[int] = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ): UpperCamelCase__ : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # Generate decoder inputs UpperCamelCase__ : str = seq_length if not self.use_past else 1 UpperCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Optional[int] = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} UpperCamelCase__ : Optional[int] = dict(**UpperCAmelCase_ , **UpperCAmelCase_) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch UpperCamelCase__, UpperCamelCase__ : Any = common_inputs['input_ids'].shape UpperCamelCase__ : List[Any] = common_inputs['decoder_input_ids'].shape[1] UpperCamelCase__, UpperCamelCase__ : Any = self.num_attention_heads UpperCamelCase__ : Tuple = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase__ : List[str] = decoder_seq_length + 3 UpperCamelCase__ : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase__ : int = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(UpperCAmelCase_ , UpperCAmelCase_)] , dim=1) UpperCamelCase__ : int = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase__, UpperCamelCase__ : Dict = self.num_layers UpperCamelCase__ : Dict = min(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = max(UpperCAmelCase_ , UpperCAmelCase_) - min_num_layers UpperCamelCase__ : int = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCAmelCase_): common_inputs["past_key_values"].append( ( torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_), )) # TODO: test this. UpperCamelCase__ : Tuple = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCAmelCase_ , UpperCAmelCase_): common_inputs["past_key_values"].append((torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_))) return common_inputs def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ): UpperCamelCase__ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch UpperCamelCase__, UpperCamelCase__ : Optional[Any] = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCamelCase__ : List[Any] = seqlen + 2 UpperCamelCase__, UpperCamelCase__ : Optional[Any] = self.num_layers UpperCamelCase__, UpperCamelCase__ : Tuple = self.num_attention_heads UpperCamelCase__ : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase__ : Optional[Any] = common_inputs['attention_mask'].dtype UpperCamelCase__ : Union[str, Any] = torch.cat( [common_inputs['attention_mask'], torch.ones(UpperCAmelCase_ , UpperCAmelCase_ , dtype=UpperCAmelCase_)] , dim=1) UpperCamelCase__ : Union[str, Any] = [ (torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_)) for _ in range(UpperCAmelCase_) ] return common_inputs def __UpperCamelCase ( self : int , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase__ : Optional[Any] = compute_effective_axis_dimension( UpperCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase__ : List[Any] = tokenizer.num_special_tokens_to_add(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = compute_effective_axis_dimension( UpperCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase_) # Generate dummy inputs according to compute batch and sequence UpperCamelCase__ : List[str] = [' '.join([tokenizer.unk_token]) * seq_length] * batch_size UpperCamelCase__ : List[Any] = dict(tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_)) return common_inputs def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: UpperCamelCase__ : List[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_) elif self.task == "causal-lm": UpperCamelCase__ : List[str] = self._generate_dummy_inputs_for_causal_lm( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_) else: UpperCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_) return common_inputs def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str]): if self.task in ["default", "seq2seq-lm"]: UpperCamelCase__ : Any = super()._flatten_past_key_values_(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) else: UpperCamelCase__ : Optional[Any] = super(UpperCAmelCase_ , self)._flatten_past_key_values_( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
596
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __SCREAMING_SNAKE_CASE : Optional[Any] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" a_: List[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a_: int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a_: Dict = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a_: Tuple = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] ): _lowerCAmelCase =ZeroShotClassificationPipeline( model=lowerCamelCase_ , tokenizer=lowerCamelCase_ , candidate_labels=["""polics""", """health"""] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def lowerCAmelCase__ ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Any ): _lowerCAmelCase =classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics""" ) self.assertEqual(lowerCamelCase_ , {"""sequence""": ANY(lowerCamelCase_ ), """labels""": [ANY(lowerCamelCase_ )], """scores""": [ANY(lowerCamelCase_ )]} ) # No kwarg _lowerCAmelCase =classifier("""Who are you voting for in 2020?""" , ["""politics"""] ) self.assertEqual(lowerCamelCase_ , {"""sequence""": ANY(lowerCamelCase_ ), """labels""": [ANY(lowerCamelCase_ )], """scores""": [ANY(lowerCamelCase_ )]} ) _lowerCAmelCase =classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics"""] ) self.assertEqual(lowerCamelCase_ , {"""sequence""": ANY(lowerCamelCase_ ), """labels""": [ANY(lowerCamelCase_ )], """scores""": [ANY(lowerCamelCase_ )]} ) _lowerCAmelCase =classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics, public health""" ) self.assertEqual( lowerCamelCase_ , {"""sequence""": ANY(lowerCamelCase_ ), """labels""": [ANY(lowerCamelCase_ ), ANY(lowerCamelCase_ )], """scores""": [ANY(lowerCamelCase_ ), ANY(lowerCamelCase_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) _lowerCAmelCase =classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health"""] ) self.assertEqual( lowerCamelCase_ , {"""sequence""": ANY(lowerCamelCase_ ), """labels""": [ANY(lowerCamelCase_ ), ANY(lowerCamelCase_ )], """scores""": [ANY(lowerCamelCase_ ), ANY(lowerCamelCase_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) _lowerCAmelCase =classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""This text is about {}""" ) self.assertEqual(lowerCamelCase_ , {"""sequence""": ANY(lowerCamelCase_ ), """labels""": [ANY(lowerCamelCase_ )], """scores""": [ANY(lowerCamelCase_ )]} ) # https://github.com/huggingface/transformers/issues/13846 _lowerCAmelCase =classifier(["""I am happy"""] , ["""positive""", """negative"""] ) self.assertEqual( lowerCamelCase_ , [ {"""sequence""": ANY(lowerCamelCase_ ), """labels""": [ANY(lowerCamelCase_ ), ANY(lowerCamelCase_ )], """scores""": [ANY(lowerCamelCase_ ), ANY(lowerCamelCase_ )]} for i in range(1 ) ] , ) _lowerCAmelCase =classifier(["""I am happy""", """I am sad"""] , ["""positive""", """negative"""] ) self.assertEqual( lowerCamelCase_ , [ {"""sequence""": ANY(lowerCamelCase_ ), """labels""": [ANY(lowerCamelCase_ ), ANY(lowerCamelCase_ )], """scores""": [ANY(lowerCamelCase_ ), ANY(lowerCamelCase_ )]} for i in range(2 ) ] , ) with self.assertRaises(lowerCamelCase_ ): classifier("""""" , candidate_labels="""politics""" ) with self.assertRaises(lowerCamelCase_ ): classifier(lowerCamelCase_ , candidate_labels="""politics""" ) with self.assertRaises(lowerCamelCase_ ): classifier("""Who are you voting for in 2020?""" , candidate_labels="""""" ) with self.assertRaises(lowerCamelCase_ ): classifier("""Who are you voting for in 2020?""" , candidate_labels=lowerCamelCase_ ) with self.assertRaises(lowerCamelCase_ ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""Not formatting template""" , ) with self.assertRaises(lowerCamelCase_ ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template=lowerCamelCase_ , ) self.run_entailment_id(lowerCamelCase_ ) def lowerCAmelCase__ ( self : str , lowerCamelCase_ : Pipeline ): _lowerCAmelCase =zero_shot_classifier.model.config _lowerCAmelCase =config.labelaid _lowerCAmelCase =zero_shot_classifier.entailment_id _lowerCAmelCase ={"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _lowerCAmelCase ={"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _lowerCAmelCase ={"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _lowerCAmelCase ={"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _lowerCAmelCase =original_labelaid self.assertEqual(lowerCamelCase_ , zero_shot_classifier.entailment_id ) @require_torch def lowerCAmelCase__ ( self : Tuple ): _lowerCAmelCase =pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 100 , candidate_labels=["""politics""", """public health""", """science"""] ) @require_torch def lowerCAmelCase__ ( self : List[str] ): _lowerCAmelCase =pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) _lowerCAmelCase =zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } , ) @require_tf def lowerCAmelCase__ ( self : Optional[Any] ): _lowerCAmelCase =pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""tf""" , ) _lowerCAmelCase =zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } , ) @slow @require_torch def lowerCAmelCase__ ( self : List[Any] ): _lowerCAmelCase =pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""pt""" ) _lowerCAmelCase =zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } , ) _lowerCAmelCase =zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=lowerCamelCase_ , ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def lowerCAmelCase__ ( self : Any ): _lowerCAmelCase =pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""tf""" ) _lowerCAmelCase =zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } , ) _lowerCAmelCase =zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=lowerCamelCase_ , ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } , )
149
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) # TODO Update this __SCREAMING_SNAKE_CASE : int = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class __lowerCamelCase ( lowerCamelCase_ ): """simple docstring""" a_: Any = """esm""" def __init__( self : Dict , lowerCamelCase_ : Any=None , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Tuple=768 , lowerCamelCase_ : List[str]=12 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Optional[Any]=3072 , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : int=0.1 , lowerCamelCase_ : List[Any]=1026 , lowerCamelCase_ : List[str]=0.02 , lowerCamelCase_ : str=1e-12 , lowerCamelCase_ : int="absolute" , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : Any=False , lowerCamelCase_ : Dict=False , lowerCamelCase_ : Any=None , lowerCamelCase_ : Union[str, Any]=None , **lowerCamelCase_ : Union[str, Any] , ): super().__init__(pad_token_id=lowerCamelCase_ , mask_token_id=lowerCamelCase_ , **lowerCamelCase_ ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =emb_layer_norm_before _lowerCAmelCase =token_dropout _lowerCAmelCase =is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) _lowerCAmelCase =EsmFoldConfig() elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): _lowerCAmelCase =EsmFoldConfig(**lowerCamelCase_ ) _lowerCAmelCase =esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) _lowerCAmelCase =get_default_vocab_list() else: _lowerCAmelCase =vocab_list else: _lowerCAmelCase =None _lowerCAmelCase =None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , lowerCamelCase_ ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def lowerCAmelCase__ ( self : Tuple ): _lowerCAmelCase =super().to_dict() if isinstance(self.esmfold_config , lowerCamelCase_ ): _lowerCAmelCase =self.esmfold_config.to_dict() return output @dataclass class __lowerCamelCase : """simple docstring""" a_: str = None a_: bool = True a_: bool = False a_: bool = False a_: bool = False a_: float = 0 a_: bool = True a_: bool = False a_: int = 1_28 a_: "TrunkConfig" = None def lowerCAmelCase__ ( self : str ): if self.trunk is None: _lowerCAmelCase =TrunkConfig() elif isinstance(self.trunk , lowerCamelCase_ ): _lowerCAmelCase =TrunkConfig(**self.trunk ) def lowerCAmelCase__ ( self : str ): _lowerCAmelCase =asdict(self ) _lowerCAmelCase =self.trunk.to_dict() return output @dataclass class __lowerCamelCase : """simple docstring""" a_: int = 48 a_: int = 10_24 a_: int = 1_28 a_: int = 32 a_: int = 32 a_: int = 32 a_: float = 0 a_: float = 0 a_: bool = False a_: int = 4 a_: Optional[int] = 1_28 a_: "StructureModuleConfig" = None def lowerCAmelCase__ ( self : Optional[Any] ): if self.structure_module is None: _lowerCAmelCase =StructureModuleConfig() elif isinstance(self.structure_module , lowerCamelCase_ ): _lowerCAmelCase =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowerCAmelCase =self.sequence_state_dim // self.sequence_head_width _lowerCAmelCase =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(F"`dropout` should not be greater than 0.4, got {self.dropout}." ) def lowerCAmelCase__ ( self : Any ): _lowerCAmelCase =asdict(self ) _lowerCAmelCase =self.structure_module.to_dict() return output @dataclass class __lowerCamelCase : """simple docstring""" a_: int = 3_84 a_: int = 1_28 a_: int = 16 a_: int = 1_28 a_: int = 12 a_: int = 4 a_: int = 8 a_: float = 0.1 a_: int = 8 a_: int = 1 a_: int = 2 a_: int = 7 a_: int = 10 a_: float = 1e-8 a_: float = 1e5 def lowerCAmelCase__ ( self : int ): return asdict(self ) def snake_case_ ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
149
1
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class _UpperCamelCase : '''simple docstring''' def __init__( self , a_ , a_ , a_ , a_ , a_ , a_=0.2 , a_=0.2 ) -> List[str]: lowercase : Any = bp_numa lowercase : Tuple = bp_numa lowercase : Optional[Any] = bp_numa lowercase : Union[str, Any] = conva_get[:2] lowercase : Dict = conva_get[2] lowercase : List[Any] = size_pa lowercase : Any = rate_w lowercase : List[Any] = rate_t lowercase : List[Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase : Optional[Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowercase : Optional[Any] = -2 * np.random.rand(self.num_bpa ) + 1 lowercase : Optional[Any] = -2 * np.random.rand(self.num_bpa ) + 1 def a__ ( self , a_ ) -> Optional[Any]: # save model dict with pickle lowercase : Any = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(a_ , "wb" ) as f: pickle.dump(a_ , a_ ) print(F'''Model saved: {save_path}''' ) @classmethod def a__ ( cls , a_ ) -> Tuple: # read saved model with open(a_ , "rb" ) as f: lowercase : Any = pickle.load(a_ ) # noqa: S301 lowercase : Optional[Any] = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) lowercase : List[Any] = model_dic.get("size_pooling1" ) lowercase : str = model_dic.get("num_bp1" ) lowercase : List[Any] = model_dic.get("num_bp2" ) lowercase : List[Any] = model_dic.get("num_bp3" ) lowercase : Tuple = model_dic.get("rate_weight" ) lowercase : List[str] = model_dic.get("rate_thre" ) # create model instance lowercase : Optional[Any] = CNN(a_ , a_ , a_ , a_ , a_ , a_ , a_ ) # modify model parameter lowercase : int = model_dic.get("w_conv1" ) lowercase : Optional[int] = model_dic.get("wkj" ) lowercase : Tuple = model_dic.get("vji" ) lowercase : str = model_dic.get("thre_conv1" ) lowercase : Optional[Any] = model_dic.get("thre_bp2" ) lowercase : Any = model_dic.get("thre_bp3" ) return conv_ins def a__ ( self , a_ ) -> Any: return 1 / (1 + np.exp(-1 * x )) def a__ ( self , a_ ) -> Union[str, Any]: return round(a_ , 3 ) def a__ ( self , a_ , a_ , a_ , a_ , a_ ) -> List[Any]: # convolution process lowercase : int = convs[0] lowercase : int = convs[1] lowercase : Dict = np.shape(a_ )[0] # get the data slice of original image data, data_focus lowercase : List[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , a_ ): for j_focus in range(0 , size_data - size_conv + 1 , a_ ): lowercase : str = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(a_ ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase : str = [] lowercase : Optional[int] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(a_ ): lowercase : Dict = [] for i_focus in range(len(a_ ) ): lowercase : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(a_ ) ) lowercase : Union[str, Any] = np.asmatrix(a_ ).reshape( a_ , a_ ) data_featuremap.append(a_ ) # expanding the data slice to One dimenssion lowercase : Optional[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(a_ ) ) lowercase : Tuple = np.asarray(a_ ) return focus_list, data_featuremap def a__ ( self , a_ , a_ , a_="average_pool" ) -> Dict: # pooling process lowercase : Union[str, Any] = len(featuremaps[0] ) lowercase : str = int(size_map / size_pooling ) lowercase : Tuple = [] for i_map in range(len(a_ ) ): lowercase : str = featuremaps[i_map] lowercase : Any = [] for i_focus in range(0 , a_ , a_ ): for j_focus in range(0 , a_ , a_ ): lowercase : List[str] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(a_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(a_ ) ) lowercase : List[str] = np.asmatrix(a_ ).reshape(a_ , a_ ) featuremap_pooled.append(a_ ) return featuremap_pooled def a__ ( self , a_ ) -> List[str]: # expanding three dimension data to one dimension list lowercase : Dict = [] for i in range(len(a_ ) ): lowercase : Any = np.shape(data[i] ) lowercase : str = data[i].reshape(1 , shapes[0] * shapes[1] ) lowercase : Union[str, Any] = data_listed.getA().tolist()[0] data_expanded.extend(a_ ) lowercase : int = np.asarray(a_ ) return data_expanded def a__ ( self , a_ ) -> Dict: # expanding matrix to one dimension list lowercase : int = np.asarray(a_ ) lowercase : str = np.shape(a_ ) lowercase : Union[str, Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def a__ ( self , a_ , a_ , a_ , a_ , a_ ) -> List[str]: lowercase : List[Any] = [] lowercase : Optional[int] = 0 for i_map in range(a_ ): lowercase : Dict = np.ones((size_map, size_map) ) for i in range(0 , a_ , a_ ): for j in range(0 , a_ , a_ ): lowercase : Dict = pd_pool[ i_pool ] lowercase : Union[str, Any] = i_pool + 1 lowercase : Optional[int] = np.multiply( a_ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(a_ ) return pd_all def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_=bool ) -> Tuple: # model traning print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(a_ )) ) print((" - - Shape: Teach_Data ", np.shape(a_ )) ) lowercase : int = 0 lowercase : int = [] lowercase : Union[str, Any] = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: lowercase : Tuple = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(a_ ) ): # print('------------Learning Image: %d--------------'%p) lowercase : List[Any] = np.asmatrix(datas_train[p] ) lowercase : Optional[int] = np.asarray(datas_teach[p] ) lowercase , lowercase : List[str] = self.convolute( a_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase : Optional[int] = self.pooling(a_ , self.size_poolinga ) lowercase : Tuple = np.shape(a_ ) lowercase : List[Any] = self._expand(a_ ) lowercase : Tuple = data_bp_input lowercase : Union[str, Any] = np.dot(a_ , self.vji.T ) - self.thre_bpa lowercase : Any = self.sig(a_ ) lowercase : int = np.dot(a_ , self.wkj.T ) - self.thre_bpa lowercase : Tuple = self.sig(a_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase : Optional[int] = np.multiply( (data_teach - bp_outa) , np.multiply(a_ , (1 - bp_outa) ) ) lowercase : int = np.multiply( np.dot(a_ , self.wkj ) , np.multiply(a_ , (1 - bp_outa) ) ) lowercase : Union[str, Any] = np.dot(a_ , self.vji ) lowercase : List[str] = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase : Tuple = pd_conva_pooled.T.getA().tolist() lowercase : List[Any] = self._calculate_gradient_from_pool( a_ , a_ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase : Tuple = self._expand_mat(pd_conva_all[k_conv] ) lowercase : Union[str, Any] = self.rate_weight * np.dot(a_ , a_ ) lowercase : List[str] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase : Union[str, Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase : Dict = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase : Optional[Any] = self.thre_bpa - pd_k_all * self.rate_thre lowercase : List[str] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase : Optional[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase : Dict = rp + 1 lowercase : Optional[int] = error_count / patterns all_mse.append(a_ ) def draw_error(): lowercase : List[Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(a_ , "+-" ) plt.plot(a_ , "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(a_ , alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def a__ ( self , a_ ) -> Optional[Any]: # model predict lowercase : List[Any] = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(a_ )) ) for p in range(len(a_ ) ): lowercase : Optional[int] = np.asmatrix(datas_test[p] ) lowercase , lowercase : Optional[int] = self.convolute( a_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase : Optional[Any] = self.pooling(a_ , self.size_poolinga ) lowercase : Any = self._expand(a_ ) lowercase : Optional[int] = data_bp_input lowercase : Optional[int] = bp_outa * self.vji.T - self.thre_bpa lowercase : List[Any] = self.sig(a_ ) lowercase : List[str] = bp_outa * self.wkj.T - self.thre_bpa lowercase : Union[str, Any] = self.sig(a_ ) produce_out.extend(bp_outa.getA().tolist() ) lowercase : List[str] = [list(map(self.do_round , a_ ) ) for each in produce_out] return np.asarray(a_ ) def a__ ( self , a_ ) -> Union[str, Any]: # return the data of image after convoluting process so we can check it out lowercase : Optional[Any] = np.asmatrix(a_ ) lowercase , lowercase : Optional[int] = self.convolute( a_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase : Tuple = self.pooling(a_ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
372
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCAmelCase : List[str] = re.compile("""[^A-Za-z_0-9]""") # parameters used in DuplicationIndex lowerCAmelCase : Union[str, Any] = 1_0 lowerCAmelCase : Optional[Any] = 2_5_6 def _A ( A ) -> Optional[MinHash]: if len(A ) < MIN_NUM_TOKENS: return None lowercase : List[Any] = MinHash(num_perm=A ) for token in set(A ): min_hash.update(token.encode() ) return min_hash def _A ( A ) -> Set[str]: return {t for t in NON_ALPHA.split(A ) if len(t.strip() ) > 0} class _UpperCamelCase : '''simple docstring''' def __init__( self , *, a_ = 0.85 , ) -> List[str]: lowercase : Any = duplication_jaccard_threshold lowercase : str = NUM_PERM lowercase : Union[str, Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowercase : Any = defaultdict(a_ ) def a__ ( self , a_ , a_ ) -> None: lowercase : Dict = self._index.query(a_ ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(a_ , a_ ) if len(a_ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(a_ ) break else: self._duplicate_clusters[close_duplicates[0]].add(a_ ) def a__ ( self ) -> List[List[Dict]]: lowercase : str = [] for base, duplicates in self._duplicate_clusters.items(): lowercase : str = [base] + list(a_ ) # reformat the cluster to be a list of dict lowercase : Optional[Any] = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(a_ ) return duplicate_clusters def a__ ( self , a_ ) -> None: lowercase : Tuple = self.get_duplicate_clusters() with open(a_ , "w" ) as f: json.dump(a_ , a_ ) def _A ( A ) -> Dict: lowercase , lowercase : List[str] = element lowercase : int = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _A ( A ) -> Any: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash ,ThreadedIterator(A ,max_queue_size=1_0_0_0_0 ) ,chunksize=1_0_0 ,): if data is not None: yield data def _A ( A ,A ) -> List[str]: lowercase : Dict = DuplicationIndex(duplication_jaccard_threshold=A ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(A ) ) ,max_queue_size=1_0_0 ) ): di.add(A ,A ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _A ( A ,A ) -> float: lowercase : int = get_tokens(A ) lowercase : Dict = get_tokens(A ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCAmelCase : List[str] = None def _A ( A ,A ) -> Union[str, Any]: lowercase : int = [] for elementa in cluster: lowercase : Any = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: lowercase : Optional[int] = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(A ,A ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowercase : List[Any] = 1 extremes.append(A ) return extremes def _A ( A ,A ,A ) -> Optional[Any]: global _shared_dataset lowercase : Dict = dataset lowercase : int = [] lowercase : int = partial(_find_cluster_extremes_shared ,jaccard_threshold=A ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( A ,A ,) ,total=len(A ) ,): extremes_list.append(A ) return extremes_list def _A ( A ,A = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: lowercase : Dict = make_duplicate_clusters(A ,A ) lowercase : List[str] = {x["base_index"] for cluster in duplicate_clusters for x in cluster} lowercase : Any = {} lowercase : int = find_extremes(A ,A ,A ) for extremes in extremes_clusters: for element in extremes: lowercase : str = element lowercase : str = duplicate_indices - set(extreme_dict.keys() ) lowercase : Any = dataset.filter(lambda A ,A : idx not in remove_indices ,with_indices=A ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowercase : List[str] = element["base_index"] in extreme_dict if element["is_extreme"]: lowercase : str = extreme_dict[element["base_index"]]["copies"] print(F'''Original dataset size: {len(A )}''' ) print(F'''Number of duplicate clusters: {len(A )}''' ) print(F'''Files in duplicate cluster: {len(A )}''' ) print(F'''Unique files in duplicate cluster: {len(A )}''' ) print(F'''Filtered dataset size: {len(A )}''' ) return ds_filter, duplicate_clusters
372
1
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class a__( lowerCamelCase__ ): lowercase__ = (CMStochasticIterativeScheduler,) lowercase__ = 10 def lowercase_ ( self : Optional[int] , **__snake_case : Optional[Any] ): a : Optional[Any] = { 'num_train_timesteps': 2_01, 'sigma_min': 0.002, 'sigma_max': 80.0, } config.update(**__snake_case ) return config def lowercase_ ( self : Optional[Any] ): a : str = 10 a : List[str] = self.get_scheduler_config() a : Optional[Any] = self.scheduler_classes[0](**__snake_case ) scheduler.set_timesteps(__snake_case ) a : List[str] = scheduler.timesteps[0] a : Dict = scheduler.timesteps[1] a : Optional[int] = self.dummy_sample a : Tuple = 0.1 * sample a : Any = scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample a : int = scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase_ ( self : Tuple ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__snake_case ) def lowercase_ ( self : Any ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__snake_case ) def lowercase_ ( self : Dict ): a : int = self.scheduler_classes[0] a : Optional[int] = self.get_scheduler_config() a : Optional[int] = scheduler_class(**__snake_case ) a : Union[str, Any] = 1 scheduler.set_timesteps(__snake_case ) a : Dict = scheduler.timesteps a : Dict = torch.manual_seed(0 ) a : Union[str, Any] = self.dummy_model() a : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__snake_case ): # 1. scale model input a : Tuple = scheduler.scale_model_input(__snake_case , __snake_case ) # 2. predict noise residual a : Optional[int] = model(__snake_case , __snake_case ) # 3. predict previous sample x_t-1 a : Any = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ).prev_sample a : Dict = pred_prev_sample a : Optional[Any] = torch.sum(torch.abs(__snake_case ) ) a : Optional[Any] = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def lowercase_ ( self : List[str] ): a : Union[str, Any] = self.scheduler_classes[0] a : Dict = self.get_scheduler_config() a : Optional[int] = scheduler_class(**__snake_case ) a : int = [1_06, 0] scheduler.set_timesteps(timesteps=__snake_case ) a : Optional[Any] = scheduler.timesteps a : str = torch.manual_seed(0 ) a : Union[str, Any] = self.dummy_model() a : str = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input a : str = scheduler.scale_model_input(__snake_case , __snake_case ) # 2. predict noise residual a : Dict = model(__snake_case , __snake_case ) # 3. predict previous sample x_t-1 a : str = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ).prev_sample a : Tuple = pred_prev_sample a : str = torch.sum(torch.abs(__snake_case ) ) a : Tuple = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def lowercase_ ( self : List[Any] ): a : List[str] = self.scheduler_classes[0] a : Optional[int] = self.get_scheduler_config() a : Any = scheduler_class(**__snake_case ) a : Optional[int] = [39, 30, 12, 15, 0] with self.assertRaises(__snake_case , msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=__snake_case ) def lowercase_ ( self : List[str] ): a : List[Any] = self.scheduler_classes[0] a : List[str] = self.get_scheduler_config() a : Optional[Any] = scheduler_class(**__snake_case ) a : Union[str, Any] = [39, 30, 12, 1, 0] a : Optional[Any] = len(__snake_case ) with self.assertRaises(__snake_case , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=__snake_case , timesteps=__snake_case ) def lowercase_ ( self : Tuple ): a : Tuple = self.scheduler_classes[0] a : Tuple = self.get_scheduler_config() a : Union[str, Any] = scheduler_class(**__snake_case ) a : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( __snake_case , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=__snake_case )
195
'''simple docstring''' class a__: def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : Any , __snake_case : Tuple ): a : List[str] = name a : Dict = value a : List[str] = weight def __repr__( self : int ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowercase_ ( self : Optional[int] ): return self.value def lowercase_ ( self : List[str] ): return self.name def lowercase_ ( self : int ): return self.weight def lowercase_ ( self : List[str] ): return self.value / self.weight def lowerCamelCase__ ( _A , _A , _A ): a : Optional[int] = [] for i in range(len(_A ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def lowerCamelCase__ ( _A , _A , _A ): a : Optional[Any] = sorted(_A , key=_A , reverse=_A ) a : Optional[int] = [] a , a : str = 0.0, 0.0 for i in range(len(_A ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def lowerCamelCase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
195
1