code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Optional[int] = AudioLDMPipeline _UpperCamelCase : int = TEXT_TO_AUDIO_PARAMS _UpperCamelCase : Any = TEXT_TO_AUDIO_BATCH_PARAMS _UpperCamelCase : str = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) def snake_case__ ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=(32, 64) , class_embed_type="simple_projection" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=snake_case , ) UpperCamelCase__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case , set_alpha_to_one=snake_case , ) torch.manual_seed(0 ) UpperCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase__ = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) UpperCamelCase__ = ClapTextModelWithProjection(snake_case ) UpperCamelCase__ = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta" , model_max_length=77 ) UpperCamelCase__ = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=snake_case , ) UpperCamelCase__ = SpeechTaHifiGan(snake_case ) UpperCamelCase__ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "vocoder": vocoder, } return components def snake_case__ ( self , snake_case , snake_case=0 ): '''simple docstring''' if str(snake_case ).startswith("mps" ): UpperCamelCase__ = torch.manual_seed(snake_case ) else: UpperCamelCase__ = torch.Generator(device=snake_case ).manual_seed(snake_case ) UpperCamelCase__ = { "prompt": "A hammer hitting a wooden surface", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, } return inputs def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = AudioLDMPipeline(**snake_case ) UpperCamelCase__ = audioldm_pipe.to(snake_case ) audioldm_pipe.set_progress_bar_config(disable=snake_case ) UpperCamelCase__ = self.get_dummy_inputs(snake_case ) UpperCamelCase__ = audioldm_pipe(**snake_case ) UpperCamelCase__ = output.audios[0] assert audio.ndim == 1 assert len(snake_case ) == 256 UpperCamelCase__ = audio[:10] UpperCamelCase__ = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = AudioLDMPipeline(**snake_case ) UpperCamelCase__ = audioldm_pipe.to(snake_case ) UpperCamelCase__ = audioldm_pipe.to(snake_case ) audioldm_pipe.set_progress_bar_config(disable=snake_case ) UpperCamelCase__ = self.get_dummy_inputs(snake_case ) UpperCamelCase__ = 3 * [inputs["prompt"]] # forward UpperCamelCase__ = audioldm_pipe(**snake_case ) UpperCamelCase__ = output.audios[0] UpperCamelCase__ = self.get_dummy_inputs(snake_case ) UpperCamelCase__ = 3 * [inputs.pop("prompt" )] UpperCamelCase__ = audioldm_pipe.tokenizer( snake_case , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case , return_tensors="pt" , ) UpperCamelCase__ = text_inputs["input_ids"].to(snake_case ) UpperCamelCase__ = audioldm_pipe.text_encoder( snake_case , ) UpperCamelCase__ = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCamelCase__ = F.normalize(snake_case , dim=-1 ) UpperCamelCase__ = prompt_embeds # forward UpperCamelCase__ = audioldm_pipe(**snake_case ) UpperCamelCase__ = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = AudioLDMPipeline(**snake_case ) UpperCamelCase__ = audioldm_pipe.to(snake_case ) UpperCamelCase__ = audioldm_pipe.to(snake_case ) audioldm_pipe.set_progress_bar_config(disable=snake_case ) UpperCamelCase__ = self.get_dummy_inputs(snake_case ) UpperCamelCase__ = 3 * ["this is a negative prompt"] UpperCamelCase__ = negative_prompt UpperCamelCase__ = 3 * [inputs["prompt"]] # forward UpperCamelCase__ = audioldm_pipe(**snake_case ) UpperCamelCase__ = output.audios[0] UpperCamelCase__ = self.get_dummy_inputs(snake_case ) UpperCamelCase__ = 3 * [inputs.pop("prompt" )] UpperCamelCase__ = [] for p in [prompt, negative_prompt]: UpperCamelCase__ = audioldm_pipe.tokenizer( snake_case , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case , return_tensors="pt" , ) UpperCamelCase__ = text_inputs["input_ids"].to(snake_case ) UpperCamelCase__ = audioldm_pipe.text_encoder( snake_case , ) UpperCamelCase__ = text_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCamelCase__ = F.normalize(snake_case , dim=-1 ) embeds.append(snake_case ) UpperCamelCase__, UpperCamelCase__ = embeds # forward UpperCamelCase__ = audioldm_pipe(**snake_case ) UpperCamelCase__ = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = PNDMScheduler(skip_prk_steps=snake_case ) UpperCamelCase__ = AudioLDMPipeline(**snake_case ) UpperCamelCase__ = audioldm_pipe.to(snake_case ) audioldm_pipe.set_progress_bar_config(disable=snake_case ) UpperCamelCase__ = self.get_dummy_inputs(snake_case ) UpperCamelCase__ = "egg cracking" UpperCamelCase__ = audioldm_pipe(**snake_case , negative_prompt=snake_case ) UpperCamelCase__ = output.audios[0] assert audio.ndim == 1 assert len(snake_case ) == 256 UpperCamelCase__ = audio[:10] UpperCamelCase__ = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = PNDMScheduler(skip_prk_steps=snake_case ) UpperCamelCase__ = AudioLDMPipeline(**snake_case ) UpperCamelCase__ = audioldm_pipe.to(snake_case ) audioldm_pipe.set_progress_bar_config(disable=snake_case ) UpperCamelCase__ = "A hammer hitting a wooden surface" # test num_waveforms_per_prompt=1 (default) UpperCamelCase__ = audioldm_pipe(snake_case , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts UpperCamelCase__ = 2 UpperCamelCase__ = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt UpperCamelCase__ = 2 UpperCamelCase__ = audioldm_pipe(snake_case , num_inference_steps=2 , num_waveforms_per_prompt=snake_case ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts UpperCamelCase__ = 2 UpperCamelCase__ = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=snake_case ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = AudioLDMPipeline(**snake_case ) UpperCamelCase__ = audioldm_pipe.to(snake_case ) audioldm_pipe.set_progress_bar_config(disable=snake_case ) UpperCamelCase__ = audioldm_pipe.vocoder.config.sampling_rate UpperCamelCase__ = self.get_dummy_inputs(snake_case ) UpperCamelCase__ = audioldm_pipe(audio_length_in_s=0.016 , **snake_case ) UpperCamelCase__ = output.audios[0] assert audio.ndim == 1 assert len(snake_case ) / vocoder_sampling_rate == 0.016 UpperCamelCase__ = audioldm_pipe(audio_length_in_s=0.032 , **snake_case ) UpperCamelCase__ = output.audios[0] assert audio.ndim == 1 assert len(snake_case ) / vocoder_sampling_rate == 0.032 def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = AudioLDMPipeline(**snake_case ) UpperCamelCase__ = audioldm_pipe.to(snake_case ) audioldm_pipe.set_progress_bar_config(disable=snake_case ) UpperCamelCase__ = ["hey"] UpperCamelCase__ = audioldm_pipe(snake_case , num_inference_steps=1 ) UpperCamelCase__ = output.audios.shape assert audio_shape == (1, 256) UpperCamelCase__ = audioldm_pipe.vocoder.config config.model_in_dim *= 2 UpperCamelCase__ = SpeechTaHifiGan(snake_case ).to(snake_case ) UpperCamelCase__ = audioldm_pipe(snake_case , num_inference_steps=1 ) UpperCamelCase__ = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def snake_case__ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case ) def snake_case__ ( self ): '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=snake_case ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def snake_case__ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case ) @slow class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self , snake_case , snake_case="cpu" , snake_case=torch.floataa , snake_case=0 ): '''simple docstring''' UpperCamelCase__ = torch.Generator(device=snake_case ).manual_seed(snake_case ) UpperCamelCase__ = np.random.RandomState(snake_case ).standard_normal((1, 8, 128, 16) ) UpperCamelCase__ = torch.from_numpy(snake_case ).to(device=snake_case , dtype=snake_case ) UpperCamelCase__ = { "prompt": "A hammer hitting a wooden surface", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 2.5, } return inputs def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) UpperCamelCase__ = audioldm_pipe.to(snake_case ) audioldm_pipe.set_progress_bar_config(disable=snake_case ) UpperCamelCase__ = self.get_inputs(snake_case ) UpperCamelCase__ = 25 UpperCamelCase__ = audioldm_pipe(**snake_case ).audios[0] assert audio.ndim == 1 assert len(snake_case ) == 81920 UpperCamelCase__ = audio[77230:77240] UpperCamelCase__ = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) UpperCamelCase__ = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) UpperCamelCase__ = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) UpperCamelCase__ = audioldm_pipe.to(snake_case ) audioldm_pipe.set_progress_bar_config(disable=snake_case ) UpperCamelCase__ = self.get_inputs(snake_case ) UpperCamelCase__ = audioldm_pipe(**snake_case ).audios[0] assert audio.ndim == 1 assert len(snake_case ) == 81920 UpperCamelCase__ = audio[27780:27790] UpperCamelCase__ = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) UpperCamelCase__ = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
551
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def UpperCamelCase_( _A :Tuple , _A :str )-> int: # ===== initialization ===== UpperCamelCase__ = Mock() UpperCamelCase__ = conn, Mock() UpperCamelCase__ = iter([1, None] ) UpperCamelCase__ = lambda _A : next(_A ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=_A ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
551
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE__:Tuple = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Tuple = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Tuple = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Tuple = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys SCREAMING_SNAKE_CASE__:Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
67
"""simple docstring""" from __future__ import annotations def _lowerCamelCase( a , a , a ): if len(a ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(a ) or left < -len(a ) or right >= len(a ) or right < -len(a ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] __a = (left + right) >> 1 # the middle __a = find_max(a , a , a ) # find max in range[left, mid] __a = find_max(a , mid + 1 , a ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
67
1
# Lint as: python3 import itertools import os import re _lowercase : int =re.compile(r"""([A-Z]+)([A-Z][a-z])""") _lowercase : int =re.compile(r"""([a-z\d])([A-Z])""") _lowercase : List[str] =re.compile(r"""(?<!_)_(?!_)""") _lowercase : str =re.compile(r"""(_{2,})""") _lowercase : Optional[Any] =R'^\w+(\.\w+)*$' _lowercase : Optional[Any] =R'<>:/\|?*' def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): lowerCamelCase_ : Union[str, Any] = _uppercase_uppercase_re.sub(r'\1_\2' ,_lowerCamelCase ) lowerCamelCase_ : Any = _lowercase_uppercase_re.sub(r'\1_\2' ,_lowerCamelCase ) return name.lower() def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): lowerCamelCase_ : str = _single_underscore_re.split(_lowerCamelCase ) lowerCamelCase_ : List[str] = [_multiple_underscores_re.split(_lowerCamelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_lowerCamelCase ) if n != '' ) def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): if os.path.basename(_lowerCamelCase ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ): if os.path.basename(_lowerCamelCase ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re ,_lowerCamelCase ): raise ValueError(F"Split name should match \'{_split_re}\'\' but got \'{split}\'." ) return F"{filename_prefix_for_name(_lowerCamelCase )}-{split}" def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ): lowerCamelCase_ : Tuple = filename_prefix_for_split(_lowerCamelCase ,_lowerCamelCase ) if filetype_suffix: prefix += F".{filetype_suffix}" lowerCamelCase_ : Optional[int] = os.path.join(_lowerCamelCase ,_lowerCamelCase ) return F"{filepath}*" def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=None ): lowerCamelCase_ : Optional[int] = filename_prefix_for_split(_lowerCamelCase ,_lowerCamelCase ) lowerCamelCase_ : Optional[Any] = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if shard_lengths: lowerCamelCase_ : str = len(_lowerCamelCase ) lowerCamelCase_ : int = [F"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(_lowerCamelCase )] if filetype_suffix: lowerCamelCase_ : str = [filename + F".{filetype_suffix}" for filename in filenames] return filenames else: lowerCamelCase_ : List[Any] = prefix if filetype_suffix: filename += F".{filetype_suffix}" return [filename]
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : int = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ['ConditionalDetrFeatureExtractor'] lowercase : int = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
557
0
'''simple docstring''' from ...processing_utils import ProcessorMixin class lowerCamelCase_ ( snake_case_ ): _lowerCAmelCase : Optional[int] = 'WhisperFeatureExtractor' _lowerCAmelCase : Optional[Any] = 'WhisperTokenizer' def __init__( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = self.feature_extractor SCREAMING_SNAKE_CASE : Optional[Any] = False def __lowercase ( self : List[Any] , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=True ): """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=lowerCAmelCase__ , language=lowerCAmelCase__ , no_timestamps=lowerCAmelCase__ ) def __call__( self : List[Any] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Dict ): """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = kwargs.pop('''audio''' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = kwargs.pop('''sampling_rate''' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''text''' , lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: SCREAMING_SNAKE_CASE : List[Any] = args[0] SCREAMING_SNAKE_CASE : Optional[int] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extractor(lowerCAmelCase__ , *lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None: SCREAMING_SNAKE_CASE : str = self.tokenizer(lowerCAmelCase__ , **lowerCAmelCase__ ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE : Union[str, Any] = encodings['''input_ids'''] return inputs def __lowercase ( self : List[Any] , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Any ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __lowercase ( self : Union[str, Any] , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : str ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __lowercase ( self : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Any="np" ): """simple docstring""" return self.tokenizer.get_prompt_ids(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ )
464
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase_ : Tuple = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Dict = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : str = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowerCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
464
1
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UpperCamelCase_ ( UpperCamelCase__ ): _A : Tuple = 42 _A : Dict = None def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase=0.9_99 , lowerCAmelCase="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) UpperCAmelCase = [] for i in range(lowerCAmelCase ): UpperCAmelCase = i / num_diffusion_timesteps UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase ) / alpha_bar_fn(lowerCAmelCase ) , lowerCAmelCase ) ) return torch.tensor(lowerCAmelCase , dtype=torch.floataa ) class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self , snake_case__ = 10_00 , snake_case__ = "fixed_small_log" , snake_case__ = True , snake_case__ = 1.0 , snake_case__ = "epsilon" , snake_case__ = "squaredcos_cap_v2" , ) -> Any: """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) UpperCAmelCase = betas_for_alpha_bar(__snake_case ) UpperCAmelCase = 1.0 - self.betas UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase = 1.0 # setable values UpperCAmelCase = None UpperCAmelCase = torch.from_numpy(np.arange(0 , __snake_case )[::-1].copy() ) UpperCAmelCase = variance_type def UpperCamelCase_ ( self , snake_case__ , snake_case__ = None ) -> Any: """simple docstring""" return sample def UpperCamelCase_ ( self , snake_case__ , snake_case__ = None ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = num_inference_steps UpperCAmelCase = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase = (np.arange(0 , __snake_case ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase = torch.from_numpy(__snake_case ).to(__snake_case ) def UpperCamelCase_ ( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None ) -> Optional[Any]: """simple docstring""" if prev_timestep is None: UpperCAmelCase = t - 1 UpperCAmelCase = self.alphas_cumprod[t] UpperCAmelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase = 1 - alpha_prod_t UpperCAmelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase = self.betas[t] else: UpperCAmelCase = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase = torch.log(torch.clamp(__snake_case , min=1e-20 ) ) UpperCAmelCase = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase = variance.log() UpperCAmelCase = beta.log() UpperCAmelCase = (predicted_variance + 1) / 2 UpperCAmelCase = frac * max_log + (1 - frac) * min_log return variance def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__=None , snake_case__ = True , ) -> List[str]: """simple docstring""" UpperCAmelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase = torch.split(__snake_case , sample.shape[1] , dim=1 ) else: UpperCAmelCase = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase = t - 1 UpperCAmelCase = self.alphas_cumprod[t] UpperCAmelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase = 1 - alpha_prod_t UpperCAmelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase = self.betas[t] UpperCAmelCase = self.alphas[t] else: UpperCAmelCase = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase = torch.clamp( __snake_case , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase = 0 if t > 0: UpperCAmelCase = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__snake_case , device=model_output.device ) UpperCAmelCase = self._get_variance( __snake_case , predicted_variance=__snake_case , prev_timestep=__snake_case , ) if self.variance_type == "fixed_small_log": UpperCAmelCase = variance elif self.variance_type == "learned_range": UpperCAmelCase = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' """ for the UnCLIPScheduler.""" ) UpperCAmelCase = variance * variance_noise UpperCAmelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__snake_case , pred_original_sample=__snake_case ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase = timesteps.to(original_samples.device ) UpperCAmelCase = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
673
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = KandinskyInpaintPipeline UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase = False @property def A__ ( self :Union[str, Any] ): '''simple docstring''' return 32 @property def A__ ( self :Optional[Any] ): '''simple docstring''' return 32 @property def A__ ( self :List[Any] ): '''simple docstring''' return self.time_input_dim @property def A__ ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def A__ ( self :List[Any] ): '''simple docstring''' return 1_00 @property def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : str =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __magic_name__ : Tuple =MultilingualCLIP(__snake_case ) __magic_name__ : Optional[int] =text_encoder.eval() return text_encoder @property def A__ ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Optional[Any] ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case ) return model @property def A__ ( self :List[str] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self :Tuple ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[str] =self.dummy_text_encoder __magic_name__ : Optional[Any] =self.dummy_tokenizer __magic_name__ : Optional[Any] =self.dummy_unet __magic_name__ : Tuple =self.dummy_movq __magic_name__ : List[str] =DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , ) __magic_name__ : str ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ): '''simple docstring''' __magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image __magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa ) __magic_name__ : Any =0 if str(__snake_case ).startswith("""mps""" ): __magic_name__ : Dict =torch.manual_seed(__snake_case ) else: __magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__ : List[Any] ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple ="""cpu""" __magic_name__ : List[Any] =self.get_dummy_components() __magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case ) __magic_name__ : Tuple =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) ) __magic_name__ : List[Any] =output.images __magic_name__ : Any =pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] __magic_name__ : int =image[0, -3:, -3:, -1] __magic_name__ : str =image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) __magic_name__ : Optional[Any] =np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def A__ ( self :Dict ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def A__ ( self :List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[str] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __magic_name__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa ) __magic_name__ : Any =0 __magic_name__ : int ="""a hat""" __magic_name__ : int =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) __magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __magic_name__ : int =pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__ , __magic_name__ : Dict =pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __magic_name__ : Optional[Any] =pipeline( __snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) __magic_name__ : Optional[int] =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
21
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCamelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : Tuple = KandinskyInpaintPipeline snake_case__ : int = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] snake_case__ : Dict = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] snake_case__ : Any = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] snake_case__ : Union[str, Any] = False @property def a_ ( self ): return 32 @property def a_ ( self ): return 32 @property def a_ ( self ): return self.time_input_dim @property def a_ ( self ): return self.time_input_dim * 4 @property def a_ ( self ): return 100 @property def a_ ( self ): __SCREAMING_SNAKE_CASE : str = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def a_ ( self ): torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) __SCREAMING_SNAKE_CASE : List[str] = MultilingualCLIP(__snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = text_encoder.eval() return text_encoder @property def a_ ( self ): torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __SCREAMING_SNAKE_CASE : Dict = UNetaDConditionModel(**__snake_case ) return model @property def a_ ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a_ ( self ): torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : str = VQModel(**self.dummy_movq_kwargs ) return model def a_ ( self ): __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_text_encoder __SCREAMING_SNAKE_CASE : int = self.dummy_tokenizer __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_unet __SCREAMING_SNAKE_CASE : str = self.dummy_movq __SCREAMING_SNAKE_CASE : Optional[Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="epsilon" , thresholding=__snake_case , ) __SCREAMING_SNAKE_CASE : Optional[int] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def a_ ( self , a__ , a__=0 ): __SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) __SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image __SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) __SCREAMING_SNAKE_CASE : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE : Tuple = Image.fromarray(np.uinta(__snake_case ) ).convert("RGB" ).resize((256, 256) ) # create mask __SCREAMING_SNAKE_CASE : Tuple = np.ones((64, 64) , dtype=np.floataa ) __SCREAMING_SNAKE_CASE : Tuple = 0 if str(__snake_case ).startswith("mps" ): __SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(__snake_case ) else: __SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def a_ ( self ): __SCREAMING_SNAKE_CASE : Dict = '''cpu''' __SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**__snake_case ) __SCREAMING_SNAKE_CASE : str = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = pipe(**self.get_dummy_inputs(__snake_case ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = output.images __SCREAMING_SNAKE_CASE : Tuple = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] __SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE : Optional[Any] = np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def a_ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def a_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self ): __SCREAMING_SNAKE_CASE : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) __SCREAMING_SNAKE_CASE : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) __SCREAMING_SNAKE_CASE : str = np.ones((768, 768) , dtype=np.floataa ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Dict = '''a hat''' __SCREAMING_SNAKE_CASE : str = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : List[str] = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) __SCREAMING_SNAKE_CASE : Any = torch.Generator(device="cpu" ).manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="" , ).to_tuple() __SCREAMING_SNAKE_CASE : Optional[int] = pipeline( __snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) __SCREAMING_SNAKE_CASE : List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
705
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __A ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : np.ndarray ): """simple docstring""" return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) def __A ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : np.ndarray ): """simple docstring""" if dataset.ndim != value_array.ndim: __SCREAMING_SNAKE_CASE : Union[str, Any] = ( "Wrong input data's dimensions... " f'dataset : {dataset.ndim}, value_array : {value_array.ndim}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) try: if dataset.shape[1] != value_array.shape[1]: __SCREAMING_SNAKE_CASE : Optional[int] = ( "Wrong input data's shape... " f'dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: __SCREAMING_SNAKE_CASE : Dict = ( "Input data have different datatype... " f'dataset : {dataset.dtype}, value_array : {value_array.dtype}' ) raise TypeError(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Optional[Any] = [] for value in value_array: __SCREAMING_SNAKE_CASE : int = euclidean(_SCREAMING_SNAKE_CASE , dataset[0] ) __SCREAMING_SNAKE_CASE : int = dataset[0].tolist() for dataset_value in dataset[1:]: __SCREAMING_SNAKE_CASE : List[str] = euclidean(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if dist > temp_dist: __SCREAMING_SNAKE_CASE : str = temp_dist __SCREAMING_SNAKE_CASE : List[str] = dataset_value.tolist() answer.append([vector, dist] ) return answer def __A ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : np.ndarray ): """simple docstring""" return np.dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) / (norm(_SCREAMING_SNAKE_CASE ) * norm(_SCREAMING_SNAKE_CASE )) if __name__ == "__main__": import doctest doctest.testmod()
564
0
def _A ( __snake_case :list[int] ) -> float: """simple docstring""" if not nums: # Makes sure that the list is not empty raise ValueError("List is empty" ) __SCREAMING_SNAKE_CASE = sum(__snake_case ) / len(__snake_case ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
693
import random from .binary_exp_mod import bin_exp_mod def _A ( __snake_case :List[Any] , __snake_case :Union[str, Any]=1000 ) -> int: """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd __SCREAMING_SNAKE_CASE = n - 1 __SCREAMING_SNAKE_CASE = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) __SCREAMING_SNAKE_CASE = 0 while count < prec: __SCREAMING_SNAKE_CASE = random.randint(2 , n - 1 ) __SCREAMING_SNAKE_CASE = bin_exp_mod(__snake_case , __snake_case , __snake_case ) if b != 1: __SCREAMING_SNAKE_CASE = True for _ in range(__snake_case ): if b == n - 1: __SCREAMING_SNAKE_CASE = False break __SCREAMING_SNAKE_CASE = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _snake_case : int = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
693
1
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __UpperCamelCase : List[str] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): __a =field(default=_lowerCAmelCase , metadata={"help": "Whether to use SortishSampler or not."} ) __a =field( default=_lowerCAmelCase , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) __a =field( default=_lowerCAmelCase , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) __a =field( default=_lowerCAmelCase , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) __a =field( default=_lowerCAmelCase , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def __UpperCamelCase ( self ) ->Dict: '''simple docstring''' __a = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase , lowerCamelCase ): __a = v.to_dict() return d
270
'''simple docstring''' __UpperCamelCase : Tuple = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
270
1
from ..utils import DummyObject, requires_backends class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> List[Any]: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> List[Any]: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> str: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Tuple: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Dict: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Optional[Any]: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> str: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> List[Any]: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Dict: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> List[Any]: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> List[str]: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Dict: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> str: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Any: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Optional[Any]: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> List[str]: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> int: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> str: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Optional[int]: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> int: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> str: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> str: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Any: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> str: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> str: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Optional[Any]: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['sentencepiece'] ) class _a ( metaclass=__snake_case ): """simple docstring""" A_ = ["""sentencepiece"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Any: requires_backends(self , ['sentencepiece'] )
23
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Union[str, Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __A : List[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def __a ( A__ : Dict , A__ : Dict , A__ : Any ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: SCREAMING_SNAKE_CASE = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = value return new_state_dict def __a ( A__ : Optional[Any] , A__ : Tuple=False ): SCREAMING_SNAKE_CASE = "" if is_panoptic: SCREAMING_SNAKE_CASE = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE = in_proj_bias[:256] SCREAMING_SNAKE_CASE = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE = in_proj_bias[256:512] SCREAMING_SNAKE_CASE = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE = in_proj_bias[-256:] def __a ( ): SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def __a ( A__ : List[str] , A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: SCREAMING_SNAKE_CASE = "resnet101" if "dc5" in model_name: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = "panoptic" in model_name if is_panoptic: SCREAMING_SNAKE_CASE = 250 else: SCREAMING_SNAKE_CASE = 91 SCREAMING_SNAKE_CASE = "huggingface/label-files" SCREAMING_SNAKE_CASE = "coco-detection-id2label.json" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(A__ , A__ , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE = {int(A__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} # load image processor SCREAMING_SNAKE_CASE = "coco_panoptic" if is_panoptic else "coco_detection" SCREAMING_SNAKE_CASE = ConditionalDetrImageProcessor(format=A__ ) # prepare image SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=A__ , return_tensors="pt" ) SCREAMING_SNAKE_CASE = encoding["pixel_values"] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub SCREAMING_SNAKE_CASE = torch.hub.load("DeppMeng/ConditionalDETR" , A__ , pretrained=A__ ).eval() SCREAMING_SNAKE_CASE = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: SCREAMING_SNAKE_CASE = "conditional_detr." + src rename_key(A__ , A__ , A__ ) SCREAMING_SNAKE_CASE = rename_backbone_keys(A__ ) # query, key and value matrices need special treatment read_in_q_k_v(A__ , is_panoptic=A__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val elif "class_labels_classifier" in key or "bbox_predictor" in key: SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE = ConditionalDetrForSegmentation(A__ ) if is_panoptic else ConditionalDetrForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() model.push_to_hub(repo_id=A__ , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion SCREAMING_SNAKE_CASE = conditional_detr(A__ ) SCREAMING_SNAKE_CASE = model(A__ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __A : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
0
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCAmelCase_ : str = '\\n Text data.\n Second line of data.' lowerCAmelCase_ : Union[str, Any] = 'file' @pytest.fixture(scope='''session''' ) def UpperCAmelCase ( A : Any ): SCREAMING_SNAKE_CASE : List[Any] = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') SCREAMING_SNAKE_CASE : Tuple = bytes(A , '''utf-8''' ) with zstd.open(A , '''wb''' ) as f: f.write(A ) return path @pytest.fixture def UpperCAmelCase ( A : Union[str, Any] ): with open(os.path.join(tmpfs.local_root_dir , A ) , '''w''' ) as f: f.write(A ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def UpperCAmelCase ( A : Dict , A : Dict , A : str , A : Any , A : List[Any] , A : Tuple ): SCREAMING_SNAKE_CASE : Tuple = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} SCREAMING_SNAKE_CASE : List[Any] = input_paths[compression_format] SCREAMING_SNAKE_CASE : List[str] = tmp_path / '''cache''' SCREAMING_SNAKE_CASE : int = DownloadConfig(cache_dir=A , extract_compressed_file=A ) SCREAMING_SNAKE_CASE : List[str] = cached_path(A , download_config=A ) with open(A ) as f: SCREAMING_SNAKE_CASE : int = f.read() with open(A ) as f: SCREAMING_SNAKE_CASE : Union[str, Any] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def UpperCAmelCase ( A : Optional[Any] , A : Any , A : List[Any] , A : Optional[int] , A : Optional[Any] ): SCREAMING_SNAKE_CASE : List[str] = '''custom_cache''' SCREAMING_SNAKE_CASE : Dict = '''custom_extracted_dir''' SCREAMING_SNAKE_CASE : Optional[int] = tmp_path / '''custom_extracted_path''' if default_extracted: SCREAMING_SNAKE_CASE : Any = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , A ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(A ) ) SCREAMING_SNAKE_CASE : Optional[int] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) SCREAMING_SNAKE_CASE : Any = xz_file SCREAMING_SNAKE_CASE : Union[str, Any] = ( DownloadConfig(extract_compressed_file=A ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=A ) ) SCREAMING_SNAKE_CASE : Optional[Any] = cached_path(A , download_config=A ) assert Path(A ).parent.parts[-2:] == expected def UpperCAmelCase ( A : Tuple ): # absolute path SCREAMING_SNAKE_CASE : Any = str(Path(A ).resolve() ) assert cached_path(A ) == text_file # relative path SCREAMING_SNAKE_CASE : Union[str, Any] = str(Path(A ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(A ) == text_file def UpperCAmelCase ( A : Tuple ): # absolute path SCREAMING_SNAKE_CASE : List[str] = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(A ): cached_path(A ) # relative path SCREAMING_SNAKE_CASE : str = '''./__missing_file__.txt''' with pytest.raises(A ): cached_path(A ) def UpperCAmelCase ( A : List[str] ): SCREAMING_SNAKE_CASE : Optional[Any] = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(A ) as f: SCREAMING_SNAKE_CASE : List[Any] = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , A ) def UpperCAmelCase ( ): with pytest.raises(A ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , A ) def UpperCAmelCase ( A : Any ): SCREAMING_SNAKE_CASE : int = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(A ): http_get('''https://huggingface.co''' , temp_file=A ) with pytest.raises(A ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , A ) def UpperCAmelCase ( A : Dict ): SCREAMING_SNAKE_CASE : Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(A ): ftp_get('''ftp://huggingface.co''' , temp_file=A ) with pytest.raises(A ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , A ) def UpperCAmelCase ( A : List[str] ): SCREAMING_SNAKE_CASE : Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(A ): fsspec_get('''s3://huggingface.co''' , temp_file=A ) with pytest.raises(A ): fsspec_head('''s3://huggingface.co''' )
464
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : int = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( snake_case_ , unittest.TestCase ): _lowerCAmelCase : Optional[int] = XLMRobertaTokenizer _lowerCAmelCase : Optional[Any] = XLMRobertaTokenizerFast _lowerCAmelCase : List[str] = True _lowerCAmelCase : Union[str, Any] = True def __lowercase ( self : int ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : str = XLMRobertaTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = '''<pad>''' SCREAMING_SNAKE_CASE : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __lowercase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCAmelCase__ ) , 10_02 ) def __lowercase ( self : List[Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def __lowercase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = XLMRobertaTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE : Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) SCREAMING_SNAKE_CASE : Any = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __lowercase ( self : Tuple ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE : Tuple = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE : int = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.save_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE : Optional[Any] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : Dict = tokenizer_r.from_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.from_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE : List[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : Any = tokenizer_r.from_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) @cached_property def __lowercase ( self : Tuple ): """simple docstring""" return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def __lowercase ( self : Optional[int] ): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name ) SCREAMING_SNAKE_CASE : str = XLMRobertaTokenizer(f.name , keep_accents=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = pickle.dumps(lowerCAmelCase__ ) pickle.loads(lowerCAmelCase__ ) def __lowercase ( self : Dict ): """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE : int = self.get_tokenizer() SCREAMING_SNAKE_CASE : int = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE : List[Any] = '''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE : int = tokenizer.tokenize(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE : Dict = tokenizer.encode(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __lowercase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = '''Hello World!''' SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def __lowercase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : str = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) SCREAMING_SNAKE_CASE : Any = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def __lowercase ( self : List[str] ): """simple docstring""" # fmt: off SCREAMING_SNAKE_CASE : Union[str, Any] = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
464
1
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'MCTCTFeatureExtractor' SCREAMING_SNAKE_CASE__ = 'AutoTokenizer' def __init__( self , _lowerCamelCase , _lowerCamelCase ): super().__init__(_lowerCamelCase , _lowerCamelCase ) a :Union[str, Any] = self.feature_extractor a :Union[str, Any] = False def __call__( self , *_lowerCamelCase , **_lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCamelCase , **_lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) a :str = kwargs.pop('''raw_speech''' ) else: a :Tuple = kwargs.pop('''audio''' , _lowerCamelCase ) a :Dict = kwargs.pop('''sampling_rate''' , _lowerCamelCase ) a :List[Any] = kwargs.pop('''text''' , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: a :Union[str, Any] = args[0] a :Dict = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: a :Optional[Any] = self.feature_extractor(_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) if text is not None: a :List[str] = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: a :Optional[int] = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_lowerCamelCase , **_lowerCamelCase ) a :Union[str, Any] = kwargs.pop('''input_features''' , _lowerCamelCase ) a :Dict = kwargs.pop('''labels''' , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: a :Dict = args[0] a :List[Any] = args[1:] if input_features is not None: a :Tuple = self.feature_extractor.pad(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) if labels is not None: a :Union[str, Any] = self.tokenizer.pad(_lowerCamelCase , **_lowerCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: a :Tuple = labels['''input_ids'''] return input_features def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) a :List[str] = True a :int = self.tokenizer yield a :List[Any] = self.feature_extractor a :Tuple = False
445
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = CanineTokenizer SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() a :List[str] = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE__ ( self ): return CanineTokenizer.from_pretrained('''google/canine-s''' ) def SCREAMING_SNAKE_CASE__ ( self , **_lowerCamelCase ): a :Dict = self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCamelCase ) a :List[Any] = 1024 return tokenizer @require_torch def SCREAMING_SNAKE_CASE__ ( self ): a :Any = self.canine_tokenizer a :Tuple = ['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off a :Any = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on a :Dict = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors='''pt''' ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) a :str = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.canine_tokenizer a :Optional[int] = ['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] a :Dict = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''' , _lowerCamelCase ) self.assertIn('''attention_mask''' , _lowerCamelCase ) self.assertIn('''token_type_ids''' , _lowerCamelCase ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ): a :Any = self.canine_tokenizer a :str = [ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] a :List[str] = tokenizer( text_target=_lowerCamelCase , max_length=32 , padding='''max_length''' , truncation=_lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def SCREAMING_SNAKE_CASE__ ( self ): # safety check on max_len default value so we are sure the test works a :Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test a :Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc a :List[str] = tempfile.mkdtemp() a :Any = ''' He is very happy, UNwant\u00E9d,running''' a :Dict = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) a :Optional[Any] = tokenizer.__class__.from_pretrained(_lowerCamelCase ) a :str = after_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) shutil.rmtree(_lowerCamelCase ) a :str = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc a :Any = tempfile.mkdtemp() a :Optional[Any] = ''' He is very happy, UNwant\u00E9d,running''' a :Optional[int] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: a :str = chr(0Xe_0_0_7 ) additional_special_tokens.append(_lowerCamelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) a :Tuple = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) a :int = tokenizer.__class__.from_pretrained(_lowerCamelCase ) a :Dict = after_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertIn(_lowerCamelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) a :str = tokenizer.__class__.from_pretrained(_lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Tuple = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): a , a :Tuple = self.get_clean_sequence(_lowerCamelCase ) # a special token for Canine can be defined as follows: a :Tuple = 0Xe_0_0_5 a :Optional[int] = chr(_lowerCamelCase ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) a :Optional[int] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertEqual(len(_lowerCamelCase ) , 1 ) a :List[Any] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCamelCase ) a :List[str] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) a :Tuple = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) a :Optional[Any] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , input_encoded + special_token_id ) a :Any = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) self.assertTrue(special_token not in decoded ) def SCREAMING_SNAKE_CASE__ ( self ): a :int = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): a :int = chr(0Xe_0_0_5 ) a :str = chr(0Xe_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) a :Optional[int] = tokenizer.tokenize(_lowerCamelCase ) a :Optional[Any] = tokenizer.tokenize(_lowerCamelCase ) self.assertEqual(len(_lowerCamelCase ) , 1 ) self.assertEqual(len(_lowerCamelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCamelCase ) self.assertEqual(token_a[0] , _lowerCamelCase ) @require_tokenizers def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: a :Optional[int] = 0Xe_0_0_6 a :List[str] = chr(_lowerCamelCase ) a :Optional[int] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCamelCase ) tokenizer.from_pretrained(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: a :Optional[Any] = json.load(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: a :Tuple = json.load(_lowerCamelCase ) # a special token for Canine can be defined as follows: a :int = 0Xe_0_0_6 a :Optional[Any] = chr(_lowerCamelCase ) a :Union[str, Any] = [new_token_a] a :Optional[int] = [new_token_a] with open(os.path.join(_lowerCamelCase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_lowerCamelCase , _lowerCamelCase ) with open(os.path.join(_lowerCamelCase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_lowerCamelCase , _lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files a :str = tokenizer_class.from_pretrained(_lowerCamelCase , extra_ids=0 ) self.assertIn(_lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) a :Optional[int] = 0Xe_0_0_7 a :Any = chr(_lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained a :Tuple = [AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase )] a :Optional[Any] = tokenizer_class.from_pretrained( _lowerCamelCase , additional_special_tokens=_lowerCamelCase , extra_ids=0 ) self.assertIn(_lowerCamelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): a :List[str] = '''hello world''' if self.space_between_special_tokens: a :Optional[Any] = '''[CLS] hello world [SEP]''' else: a :Tuple = input a :Any = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) a :List[Any] = tokenizer.decode(_lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCamelCase , [output, output.lower()] ) def SCREAMING_SNAKE_CASE__ ( self ): a :int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): a :Any = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] a :str = '''a''' a :List[Any] = ord(_lowerCamelCase ) for attr in attributes_list: setattr(_lowerCamelCase , attr + '''_id''' , _lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase , attr + '''_id''' ) , _lowerCamelCase ) setattr(_lowerCamelCase , attr + '''_id''' , _lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase , attr + '''_id''' ) , _lowerCamelCase ) setattr(_lowerCamelCase , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_lowerCamelCase , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_lowerCamelCase , '''additional_special_tokens_ids''' ) , [] ) a :List[Any] = 0Xe_0_0_6 a :str = chr(_lowerCamelCase ) setattr(_lowerCamelCase , '''additional_special_tokens_ids''' , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCamelCase , '''additional_special_tokens''' ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCamelCase , '''additional_special_tokens_ids''' ) , [additional_special_token_id] ) def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): pass
445
1
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCamelCase : """simple docstring""" def __init__( self : List[str], _UpperCAmelCase : List[Any], _UpperCAmelCase : List[str]=1_3, _UpperCAmelCase : List[Any]=6_4, _UpperCAmelCase : Optional[int]=2, _UpperCAmelCase : Any=3, _UpperCAmelCase : Optional[int]=True, _UpperCAmelCase : List[str]=True, _UpperCAmelCase : Union[str, Any]=3_2, _UpperCAmelCase : str=5, _UpperCAmelCase : str=4, _UpperCAmelCase : Optional[int]=3_7, _UpperCAmelCase : int="gelu", _UpperCAmelCase : int=0.1, _UpperCAmelCase : Tuple=0.1, _UpperCAmelCase : Any=1_0, _UpperCAmelCase : List[str]=0.02, _UpperCAmelCase : List[Any]=[1, 1_6, 4, 4], _UpperCAmelCase : Tuple=None, ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : Optional[Any] = image_size SCREAMING_SNAKE_CASE__ : Optional[int] = patch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE__ : List[str] = is_training SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE__ : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple = intermediate_size SCREAMING_SNAKE_CASE__ : List[Any] = hidden_act SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : str = initializer_range SCREAMING_SNAKE_CASE__ : Tuple = scope SCREAMING_SNAKE_CASE__ : Optional[Any] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size SCREAMING_SNAKE_CASE__ : Union[str, Any] = (self.image_size // 3_2) ** 2 SCREAMING_SNAKE_CASE__ : Optional[Any] = num_patches + 1 def A_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : List[Any] = self.get_config() return config, pixel_values, labels def A_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [4, 8, 1_6, 3_2], "num_groups": 2, } return ViTHybridConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=_UpperCAmelCase, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=_UpperCAmelCase, ) def A_ ( self : List[Any], _UpperCAmelCase : Tuple, _UpperCAmelCase : Optional[Any], _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = ViTHybridModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Dict = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : List[str], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : int, _UpperCAmelCase : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.type_sequence_label_size SCREAMING_SNAKE_CASE__ : str = ViTHybridForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Any = model(_UpperCAmelCase, labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def A_ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Tuple = config_and_inputs SCREAMING_SNAKE_CASE__ : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCAmelCase_ = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def A_ ( self : Union[str, Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = ViTHybridModelTester(self ) SCREAMING_SNAKE_CASE__ : int = ConfigTester(self, config_class=_UpperCAmelCase, has_text_modality=_UpperCAmelCase, hidden_size=3_7 ) def A_ ( self : Dict ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def A_ ( self : Dict ) -> Dict: """simple docstring""" pass def A_ ( self : str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Dict = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) SCREAMING_SNAKE_CASE__ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase, nn.Linear ) ) def A_ ( self : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Tuple = model_class(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : Union[str, Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Any = ["pixel_values"] self.assertListEqual(arg_names[:1], _UpperCAmelCase ) def A_ ( self : Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def A_ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class(config=_UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": SCREAMING_SNAKE_CASE__ : Dict = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @slow def A_ ( self : Any ) -> List[Any]: """simple docstring""" for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : str = ViTHybridModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _a ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" @cached_property def A_ ( self : List[Any] ) -> Dict: """simple docstring""" return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A_ ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = self.default_image_processor SCREAMING_SNAKE_CASE__ : Any = prepare_img() SCREAMING_SNAKE_CASE__ : int = image_processor(images=_UpperCAmelCase, return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Dict = model(**_UpperCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE__ : Any = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], _UpperCAmelCase, atol=1E-4 ) ) @slow @require_accelerate def A_ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384" ) SCREAMING_SNAKE_CASE__ : Tuple = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384", device_map="auto" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE__ : List[Any] = image_processor(images=_UpperCAmelCase, return_tensors="pt" ) SCREAMING_SNAKE_CASE__ : Dict = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.logits # model predicts one of the 1000 ImageNet classes SCREAMING_SNAKE_CASE__ : List[Any] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx], "tabby, tabby cat" )
157
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } _lowerCamelCase : Optional[int] = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _a ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> str: '''simple docstring''' for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models SCREAMING_SNAKE_CASE__ : Union[str, Any] = "lm_head" SCREAMING_SNAKE_CASE__ : List[str] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: SCREAMING_SNAKE_CASE__ : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": SCREAMING_SNAKE_CASE__ : List[Any] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE__ : str = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE__ : str = value elif weight_type == "bias": SCREAMING_SNAKE_CASE__ : Union[str, Any] = value else: SCREAMING_SNAKE_CASE__ : str = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] SCREAMING_SNAKE_CASE__ : Optional[int] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE__ : str = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE__ : Tuple = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == "group" , ) SCREAMING_SNAKE_CASE__ : List[str] = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE__ : Dict = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: SCREAMING_SNAKE_CASE__ : str = True if "*" in mapped_key: SCREAMING_SNAKE_CASE__ : str = name.split(SCREAMING_SNAKE_CASE__ )[0].split("." )[-2] SCREAMING_SNAKE_CASE__ : List[str] = mapped_key.replace("*" , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: SCREAMING_SNAKE_CASE__ : Optional[int] = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE__ : Optional[int] = "weight_v" elif "bias" in name: SCREAMING_SNAKE_CASE__ : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE__ : str = "weight" else: SCREAMING_SNAKE_CASE__ : List[Any] = None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _a ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = full_name.split("conv_layers." )[-1] SCREAMING_SNAKE_CASE__ : Any = name.split("." ) SCREAMING_SNAKE_CASE__ : List[str] = int(items[0] ) SCREAMING_SNAKE_CASE__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ : Dict = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ : int = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int=True ) -> List[str]: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE__ : str = UniSpeechConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ : str = UniSpeechConfig() if is_finetuned: if dict_path: SCREAMING_SNAKE_CASE__ : List[Any] = Dictionary.load_from_json(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE__ : str = target_dict.pad_index SCREAMING_SNAKE_CASE__ : str = target_dict.bos_index SCREAMING_SNAKE_CASE__ : int = target_dict.eos_index SCREAMING_SNAKE_CASE__ : List[str] = len(target_dict.symbols ) SCREAMING_SNAKE_CASE__ : int = os.path.join(SCREAMING_SNAKE_CASE__ , "vocab.json" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE__ : Dict = 42 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 43 with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = WavaVecaPhonemeCTCTokenizer( SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = True if config.feat_extract_norm == "layer" else False SCREAMING_SNAKE_CASE__ : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : str = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = UniSpeechForCTC(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = UniSpeechForPreTraining(SCREAMING_SNAKE_CASE__ ) if is_finetuned: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) SCREAMING_SNAKE_CASE__ : int = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) hf_unispeech.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
157
1
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Any: """simple docstring""" return (data["data"], data["target"]) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(__UpperCAmelCase , __UpperCAmelCase ) # Predict target for test data _SCREAMING_SNAKE_CASE = xgb.predict(__UpperCAmelCase ) _SCREAMING_SNAKE_CASE = predictions.reshape(len(__UpperCAmelCase ) , 1 ) return predictions def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = fetch_california_housing() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = data_handling(__UpperCAmelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = train_test_split( __UpperCAmelCase , __UpperCAmelCase , test_size=0.25 , random_state=1 ) _SCREAMING_SNAKE_CASE = xgboost(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Error printing print(F"Mean Absolute Error : {mean_absolute_error(__UpperCAmelCase , __UpperCAmelCase )}" ) print(F"Mean Square Error : {mean_squared_error(__UpperCAmelCase , __UpperCAmelCase )}" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
591
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING a_ : str = logging.get_logger(__name__) @add_end_docstrings(_lowercase ) class __UpperCamelCase ( _lowercase ): """simple docstring""" def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> int: super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) self.check_model_type(SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Union[str, Any]: a__ , a__ = {}, {} if padding is not None: a__ = padding if truncation is not None: a__ = truncation if top_k is not None: a__ = top_k return preprocess_params, {}, postprocess_params def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE , (Image.Image, str) ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): a__ = {'''image''': image, '''question''': question} else: a__ = image a__ = super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) return results def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> Dict: a__ = load_image(inputs['''image'''] ) a__ = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE ) a__ = self.image_processor(images=SCREAMING_SNAKE_CASE , return_tensors=self.framework ) model_inputs.update(SCREAMING_SNAKE_CASE ) return model_inputs def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: a__ = self.model(**SCREAMING_SNAKE_CASE ) return model_outputs def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=5 ) -> Optional[Any]: if top_k > self.model.config.num_labels: a__ = self.model.config.num_labels if self.framework == "pt": a__ = model_outputs.logits.sigmoid()[0] a__ , a__ = probs.topk(SCREAMING_SNAKE_CASE ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) a__ = scores.tolist() a__ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )]
194
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
719
"""simple docstring""" import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class snake_case_ ( unittest.TestCase ): @property def snake_case_ ( self ): torch.manual_seed(0 ) a_ : Any = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def snake_case_ ( self ): a_ : Any = self.dummy_uncond_unet a_ : Any = PNDMScheduler() a_ : List[Any] = PNDMPipeline(unet=a_ , scheduler=a_ ) pndm.to(a_ ) pndm.set_progress_bar_config(disable=a_ ) a_ : Tuple = torch.manual_seed(0 ) a_ : Union[str, Any] = pndm(generator=a_ , num_inference_steps=2_0 , output_type="numpy" ).images a_ : int = torch.manual_seed(0 ) a_ : Optional[int] = pndm(generator=a_ , num_inference_steps=2_0 , output_type="numpy" , return_dict=a_ )[0] a_ : List[Any] = image[0, -3:, -3:, -1] a_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) a_ : List[Any] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class snake_case_ ( unittest.TestCase ): def snake_case_ ( self ): a_ : Optional[Any] = "google/ddpm-cifar10-32" a_ : Optional[int] = UNetaDModel.from_pretrained(a_ ) a_ : Union[str, Any] = PNDMScheduler() a_ : List[Any] = PNDMPipeline(unet=a_ , scheduler=a_ ) pndm.to(a_ ) pndm.set_progress_bar_config(disable=a_ ) a_ : Optional[int] = torch.manual_seed(0 ) a_ : List[Any] = pndm(generator=a_ , output_type="numpy" ).images a_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) a_ : Optional[Any] = np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
370
0
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING lowerCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(snake_case__ ) class UpperCamelCase ( snake_case__ ): def __init__( self : Union[str, Any] ,**_lowerCAmelCase : str ): """simple docstring""" super().__init__(**_lowerCAmelCase ) requires_backends(self ,"vision" ) requires_backends(self ,"torch" ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(_lowerCAmelCase ) def UpperCamelCase_ ( self : Dict ,**_lowerCAmelCase : List[str] ): """simple docstring""" __snake_case = {} __snake_case = {} __snake_case = {} # preprocess args if "points_per_batch" in kwargs: __snake_case = kwargs["points_per_batch"] if "points_per_crop" in kwargs: __snake_case = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: __snake_case = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: __snake_case = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: __snake_case = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: __snake_case = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: __snake_case = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: __snake_case = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: __snake_case = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: __snake_case = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: __snake_case = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: __snake_case = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Dict ,_lowerCAmelCase : Optional[Any] ,*_lowerCAmelCase : List[Any] ,_lowerCAmelCase : Dict=None ,_lowerCAmelCase : int=None ,**_lowerCAmelCase : str ): """simple docstring""" return super().__call__(_lowerCAmelCase ,*_lowerCAmelCase ,num_workers=_lowerCAmelCase ,batch_size=_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self : Union[str, Any] ,_lowerCAmelCase : List[Any] ,_lowerCAmelCase : Optional[Any]=64 ,_lowerCAmelCase : int = 0 ,_lowerCAmelCase : float = 512 / 1_500 ,_lowerCAmelCase : Optional[int] = 32 ,_lowerCAmelCase : Optional[int] = 1 ,): """simple docstring""" __snake_case = load_image(_lowerCAmelCase ) __snake_case = self.image_processor.size["longest_edge"] __snake_case , __snake_case , __snake_case , __snake_case = self.image_processor.generate_crop_boxes( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) __snake_case = self.image_processor(images=_lowerCAmelCase ,return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": __snake_case = self.get_inference_context() with inference_context(): __snake_case = self._ensure_tensor_on_device(_lowerCAmelCase ,device=self.device ) __snake_case = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) __snake_case = image_embeddings __snake_case = grid_points.shape[1] __snake_case = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0 ,_lowerCAmelCase ,_lowerCAmelCase ): __snake_case = grid_points[:, i : i + points_per_batch, :, :] __snake_case = input_labels[:, i : i + points_per_batch] __snake_case = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase_ ( self : List[str] ,_lowerCAmelCase : Any ,_lowerCAmelCase : Union[str, Any]=0.8_8 ,_lowerCAmelCase : int=0.9_5 ,_lowerCAmelCase : int=0 ,_lowerCAmelCase : List[Any]=1 ,): """simple docstring""" __snake_case = model_inputs.pop("input_boxes" ) __snake_case = model_inputs.pop("is_last" ) __snake_case = model_inputs.pop("original_sizes" ).tolist() __snake_case = model_inputs.pop("reshaped_input_sizes" ).tolist() __snake_case = self.model(**_lowerCAmelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __snake_case = model_outputs["pred_masks"] __snake_case = self.image_processor.post_process_masks( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,binarize=_lowerCAmelCase ) __snake_case = model_outputs["iou_scores"] __snake_case , __snake_case , __snake_case = self.image_processor.filter_masks( masks[0] ,iou_scores[0] ,original_sizes[0] ,input_boxes[0] ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase_ ( self : Any ,_lowerCAmelCase : Union[str, Any] ,_lowerCAmelCase : Optional[int]=False ,_lowerCAmelCase : List[str]=False ,_lowerCAmelCase : List[Any]=0.7 ,): """simple docstring""" __snake_case = [] __snake_case = [] __snake_case = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) __snake_case = torch.cat(_lowerCAmelCase ) __snake_case = torch.cat(_lowerCAmelCase ) __snake_case , __snake_case , __snake_case , __snake_case = self.image_processor.post_process_for_mask_generation( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) __snake_case = defaultdict(_lowerCAmelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(_lowerCAmelCase ) __snake_case = {} if output_rle_mask: __snake_case = rle_mask if output_bboxes_mask: __snake_case = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
524
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : str ): """simple docstring""" __snake_case = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) __snake_case = AutoTokenizer.from_pretrained("google/mt5-small" ) __snake_case = tokenizer("Hello there" ,return_tensors="np" ).input_ids __snake_case = tokenizer("Hi I am" ,return_tensors="np" ).input_ids __snake_case = shift_tokens_right(_lowerCAmelCase ,model.config.pad_token_id ,model.config.decoder_start_token_id ) __snake_case = model(_lowerCAmelCase ,decoder_input_ids=_lowerCAmelCase ).logits __snake_case = optax.softmax_cross_entropy(_lowerCAmelCase ,onehot(_lowerCAmelCase ,logits.shape[-1] ) ).mean() __snake_case = -(labels.shape[-1] * loss.item()) __snake_case = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
524
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : List[str] = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __A : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure)
717
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __UpperCamelCase ( unittest.TestCase ): def a__ ( self :List[str] ): snake_case_ : Union[str, Any] = """hf-internal-testing/tiny-random-t5""" snake_case_ : str = AutoTokenizer.from_pretrained(_UpperCamelCase ) snake_case_ : str = AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ) snake_case_ : List[str] = tokenizer("""This is me""" ,return_tensors="""pt""" ) snake_case_ : List[str] = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) snake_case_ : List[str] = model.generate(**_UpperCamelCase ) snake_case_ : Dict = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCamelCase ) snake_case_ : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) snake_case_ : Optional[Any] = model_reloaded.generate(**_UpperCamelCase ) self.assertTrue(torch.allclose(_UpperCamelCase ,_UpperCamelCase ) ) def a__ ( self :Union[str, Any] ): snake_case_ : Optional[Any] = """hf-internal-testing/tiny-random-t5""" snake_case_ : str = AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ) snake_case_ : List[Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_UpperCamelCase ): model.save_pretrained(_UpperCamelCase ) snake_case_ : Any = model.reverse_bettertransformer() model.save_pretrained(_UpperCamelCase )
267
0
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> int: '''simple docstring''' assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" __SCREAMING_SNAKE_CASE = nn.Parameter(__UpperCAmelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" __SCREAMING_SNAKE_CASE = nn.Parameter(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) __SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) __SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , __UpperCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , __UpperCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(__UpperCAmelCase ).view(-1 , __UpperCAmelCase ).contiguous().transpose(0 , 1 ) , ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) __SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) __SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) __SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , __UpperCAmelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , __UpperCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , __UpperCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(__UpperCAmelCase ).view(-1 , __UpperCAmelCase ).contiguous().transpose(0 , 1 ) , ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = weights[0][0][0] __SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) __SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__UpperCAmelCase ) , torch.tensor(__UpperCAmelCase ) , ) # lsh weights + output __SCREAMING_SNAKE_CASE = weights[0][1] if len(__UpperCAmelCase ) < 4: set_layer_weights_in_torch_lsh(__UpperCAmelCase , torch_block.attention , __UpperCAmelCase ) else: set_layer_weights_in_torch_local(__UpperCAmelCase , torch_block.attention , __UpperCAmelCase ) # intermediate weighs __SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(__UpperCAmelCase ) == 4: __SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 __SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) __SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__UpperCAmelCase ) , torch.tensor(__UpperCAmelCase ) , ) # intermediate dense __SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) __SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__UpperCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__UpperCAmelCase ) , ) # intermediate out __SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) __SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__UpperCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__UpperCAmelCase ) , ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds __SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__UpperCAmelCase ) , ) if isinstance(weights[3] , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" __SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __UpperCAmelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # output layer norm __SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) __SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__UpperCAmelCase ) , torch.tensor(__UpperCAmelCase ) , ) # output embeddings __SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) __SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__UpperCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__UpperCAmelCase ) , ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(__UpperCAmelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) __SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(__UpperCAmelCase ) with open(__UpperCAmelCase , """rb""" ) as f: __SCREAMING_SNAKE_CASE = pickle.load(__UpperCAmelCase )["""weights"""] set_model_weights_in_torch(__UpperCAmelCase , __UpperCAmelCase , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __UpperCAmelCase ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
109
"""simple docstring""" UpperCamelCase__ :Tuple = frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) UpperCamelCase__ :List[str] = frozenset(["""prompt""", """negative_prompt"""]) UpperCamelCase__ :Tuple = frozenset([]) UpperCamelCase__ :Union[str, Any] = frozenset(["""image"""]) UpperCamelCase__ :str = frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) UpperCamelCase__ :Any = frozenset(["""image"""]) UpperCamelCase__ :Optional[int] = frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) UpperCamelCase__ :int = frozenset(["""prompt""", """image""", """negative_prompt"""]) UpperCamelCase__ :Tuple = frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) UpperCamelCase__ :Any = frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) UpperCamelCase__ :Dict = frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) UpperCamelCase__ :Dict = frozenset(["""image""", """mask_image"""]) UpperCamelCase__ :Tuple = frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) UpperCamelCase__ :List[str] = frozenset(["""example_image""", """image""", """mask_image"""]) UpperCamelCase__ :List[str] = frozenset(["""class_labels"""]) UpperCamelCase__ :Union[str, Any] = frozenset(["""class_labels"""]) UpperCamelCase__ :Any = frozenset(["""batch_size"""]) UpperCamelCase__ :Optional[Any] = frozenset([]) UpperCamelCase__ :Optional[Any] = frozenset(["""batch_size"""]) UpperCamelCase__ :Optional[int] = frozenset([]) UpperCamelCase__ :str = frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) UpperCamelCase__ :Union[str, Any] = frozenset(["""prompt""", """negative_prompt"""]) UpperCamelCase__ :Tuple = frozenset(["""input_tokens"""]) UpperCamelCase__ :int = frozenset(["""input_tokens"""])
355
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): a : Optional[Any] = AltDiffusionPipeline a : Optional[int] = TEXT_TO_IMAGE_PARAMS a : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS a : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS a : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=UpperCamelCase , set_alpha_to_one=UpperCamelCase , ) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) __lowerCAmelCase = CLIPTextModel(UpperCamelCase ) __lowerCAmelCase = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) __lowerCAmelCase = 77 __lowerCAmelCase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase=0 ) -> Dict: if str(UpperCamelCase ).startswith("mps" ): __lowerCAmelCase = torch.manual_seed(UpperCamelCase ) else: __lowerCAmelCase = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) __lowerCAmelCase = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self ) -> Union[str, Any]: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCAmelCase_ ( self ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: __lowerCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() torch.manual_seed(0 ) __lowerCAmelCase = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder __lowerCAmelCase = RobertaSeriesModelWithTransformation(UpperCamelCase ) __lowerCAmelCase = text_encoder __lowerCAmelCase = AltDiffusionPipeline(**UpperCamelCase ) __lowerCAmelCase = alt_pipe.to(UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase ) __lowerCAmelCase = self.get_dummy_inputs(UpperCamelCase ) __lowerCAmelCase = "A photo of an astronaut" __lowerCAmelCase = alt_pipe(**UpperCamelCase ) __lowerCAmelCase = output.images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = np.array( [0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self ) -> Optional[int]: __lowerCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase ) torch.manual_seed(0 ) __lowerCAmelCase = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder __lowerCAmelCase = RobertaSeriesModelWithTransformation(UpperCamelCase ) __lowerCAmelCase = text_encoder __lowerCAmelCase = AltDiffusionPipeline(**UpperCamelCase ) __lowerCAmelCase = alt_pipe.to(UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase ) __lowerCAmelCase = self.get_dummy_inputs(UpperCamelCase ) __lowerCAmelCase = alt_pipe(**UpperCamelCase ) __lowerCAmelCase = output.images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = np.array( [0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): def UpperCAmelCase_ ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ) -> str: # make sure here that pndm scheduler skips prk __lowerCAmelCase = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=UpperCamelCase ) __lowerCAmelCase = alt_pipe.to(UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase ) __lowerCAmelCase = "A painting of a squirrel eating a burger" __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = alt_pipe([prompt] , generator=UpperCamelCase , guidance_scale=6.0 , num_inference_steps=20 , output_type="np" ) __lowerCAmelCase = output.images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowerCAmelCase = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self ) -> List[Any]: __lowerCAmelCase = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler" ) __lowerCAmelCase = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=UpperCamelCase , safety_checker=UpperCamelCase ) __lowerCAmelCase = alt_pipe.to(UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase ) __lowerCAmelCase = "A painting of a squirrel eating a burger" __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = alt_pipe([prompt] , generator=UpperCamelCase , num_inference_steps=2 , output_type="numpy" ) __lowerCAmelCase = output.images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowerCAmelCase = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
39
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __lowerCAmelCase ( lowerCamelCase : Any ): '''simple docstring''' __lowerCAmelCase = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] __lowerCAmelCase = True if "large" in model_name or "huge" in model_name else False __lowerCAmelCase = True if "large" in model_name or "huge" in model_name else False __lowerCAmelCase = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowerCAmelCase = [3, 3, 3, 3] __lowerCAmelCase = [5, 5, 5, 5] elif "fl4" in model_name: __lowerCAmelCase = [4, 4, 4, 4] __lowerCAmelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowerCAmelCase = [3, 3, 3, 3] if "lrf" in model_name: __lowerCAmelCase = [3, 3, 3, 3] else: __lowerCAmelCase = [2, 2, 2, 2] if "tiny" in model_name: __lowerCAmelCase = 96 elif "small" in model_name: __lowerCAmelCase = 96 elif "base" in model_name: __lowerCAmelCase = 1_28 elif "large" in model_name: __lowerCAmelCase = 1_92 elif "xlarge" in model_name: __lowerCAmelCase = 2_56 elif "huge" in model_name: __lowerCAmelCase = 3_52 # set label information __lowerCAmelCase = "huggingface/label-files" if "large" in model_name or "huge" in model_name: __lowerCAmelCase = "imagenet-22k-id2label.json" else: __lowerCAmelCase = "imagenet-1k-id2label.json" __lowerCAmelCase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(lowerCamelCase ): v for k, v in idalabel.items()} __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = FocalNetConfig( embed_dim=lowerCamelCase , depths=lowerCamelCase , focal_levels=lowerCamelCase , focal_windows=lowerCamelCase , use_conv_embed=lowerCamelCase , idalabel=lowerCamelCase , labelaid=lowerCamelCase , use_post_layernorm=lowerCamelCase , use_layerscale=lowerCamelCase , ) return config def __lowerCAmelCase ( lowerCamelCase : Union[str, Any] ): '''simple docstring''' if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __lowerCAmelCase = "encoder." + name if "encoder.layers" in name: __lowerCAmelCase = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: __lowerCAmelCase = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: __lowerCAmelCase = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowerCAmelCase = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowerCAmelCase = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowerCAmelCase = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": __lowerCAmelCase = "layernorm.weight" if name == "norm.bias": __lowerCAmelCase = "layernorm.bias" if "head" in name: __lowerCAmelCase = name.replace("head" , "classifier" ) else: __lowerCAmelCase = "focalnet." + name return name def __lowerCAmelCase ( lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : Union[str, Any]=False ): '''simple docstring''' __lowerCAmelCase = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on __lowerCAmelCase = model_name_to_url[model_name] print("Checkpoint URL: " , lowerCamelCase ) __lowerCAmelCase = torch.hub.load_state_dict_from_url(lowerCamelCase , map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): __lowerCAmelCase = state_dict.pop(lowerCamelCase ) __lowerCAmelCase = val __lowerCAmelCase = get_focalnet_config(lowerCamelCase ) __lowerCAmelCase = FocalNetForImageClassification(lowerCamelCase ) model.eval() # load state dict model.load_state_dict(lowerCamelCase ) # verify conversion __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = BitImageProcessor( do_resize=lowerCamelCase , size={"shortest_edge": 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCamelCase , crop_size=2_24 , do_normalize=lowerCamelCase , image_mean=lowerCamelCase , image_std=lowerCamelCase , ) __lowerCAmelCase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) __lowerCAmelCase = processor(images=lowerCamelCase , return_tensors="pt" ) __lowerCAmelCase = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) __lowerCAmelCase = image_transforms(lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , lowerCamelCase , atol=1e-4 ) __lowerCAmelCase = model(**lowerCamelCase ) __lowerCAmelCase = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowerCAmelCase = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": __lowerCAmelCase = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": __lowerCAmelCase = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": __lowerCAmelCase = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": __lowerCAmelCase = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": __lowerCAmelCase = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase ) processor.save_pretrained(lowerCamelCase ) if push_to_hub: print(f'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(f'''{model_name}''' ) processor.push_to_hub(f'''{model_name}''' ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) lowerCAmelCase : Optional[int] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
39
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __UpperCAmelCase = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ): if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) lowerCamelCase_ : int = str(bin(lowerCAmelCase__ ) ) binary_number += "0" * shift_amount return binary_number def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ): if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) lowerCamelCase_ : Union[str, Any] = str(bin(lowerCAmelCase__ ) )[2:] if shift_amount >= len(lowerCAmelCase__ ): return "0b0" lowerCamelCase_ : List[str] = binary_number[: len(lowerCAmelCase__ ) - shift_amount] return "0b" + shifted_binary_number def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ): if number >= 0: # Get binary representation of positive number lowerCamelCase_ : List[Any] = '0' + str(bin(lowerCAmelCase__ ) ).strip('-' )[2:] else: # Get binary (2's complement) representation of negative number lowerCamelCase_ : Any = len(bin(lowerCAmelCase__ )[3:] ) # Find 2's complement of number lowerCamelCase_ : List[str] = bin(abs(lowerCAmelCase__ ) - (1 << binary_number_length) )[3:] lowerCamelCase_ : List[str] = ( '1' + '0' * (binary_number_length - len(lowerCAmelCase__ )) + binary_number ) if shift_amount >= len(lowerCAmelCase__ ): return "0b" + binary_number[0] * len(lowerCAmelCase__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(lowerCAmelCase__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
364
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='gpt_neo' lowerCamelCase__ =['past_key_values'] lowerCamelCase__ ={'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__(self , a_=5_02_57 , a_=20_48 , a_=20_48 , a_=24 , a_=[[["global", "local"], 12]] , a_=16 , a_=None , a_=2_56 , a_="gelu_new" , a_=0.0 , a_=0.0 , a_=0.0 , a_=0.1 , a_=1E-5 , a_=0.02 , a_=True , a_=5_02_56 , a_=5_02_56 , **a_ , ): '''simple docstring''' __snake_case : Tuple = vocab_size __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Tuple = hidden_size __snake_case : Optional[int] = num_layers __snake_case : Optional[int] = num_heads __snake_case : Tuple = intermediate_size __snake_case : int = window_size __snake_case : Dict = activation_function __snake_case : Dict = resid_dropout __snake_case : Union[str, Any] = embed_dropout __snake_case : str = attention_dropout __snake_case : Any = classifier_dropout __snake_case : Optional[Any] = layer_norm_epsilon __snake_case : Optional[int] = initializer_range __snake_case : List[str] = use_cache __snake_case : Union[str, Any] = bos_token_id __snake_case : Union[str, Any] = eos_token_id __snake_case : List[Any] = attention_types __snake_case : Dict = self.expand_attention_types_params(a_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.attention_layers)` == `config.num_layers` ''' f"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ f"""`config.num_layers = {self.num_layers}`. """ '''`config.attention_layers` is prepared using `config.attention_types`. ''' '''Please verify the value of `config.attention_types` argument.''' ) super().__init__(bos_token_id=a_ , eos_token_id=a_ , **a_ ) @staticmethod def SCREAMING_SNAKE_CASE (a_ ): '''simple docstring''' __snake_case : Any = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowercase ( _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : Tuple , _snake_case : List[str] ) ->int: """simple docstring""" import torch __snake_case : Union[str, Any] = input.size() __snake_case : Dict = len(_snake_case ) __snake_case : Tuple = shape[dimension] __snake_case : Dict = torch.arange(0 , _snake_case , _snake_case ) __snake_case : Union[str, Any] = torch.div(sizedim - size , _snake_case , rounding_mode='''floor''' ) + 1 __snake_case : List[str] = torch.arange(_snake_case ) + low_indices[:min_length][:, None] __snake_case : Optional[Any] = [slice(_snake_case )] * rank __snake_case : Union[str, Any] = indices __snake_case : Any = input[s] __snake_case : List[Any] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(_snake_case ) def lowercase ( _snake_case : Dict , _snake_case : str ) ->int: """simple docstring""" import torch __snake_case : List[Any] = torch.arange(1 , _snake_case ) __snake_case : int = torch.remainder(_snake_case , _snake_case ) __snake_case : Dict = remainders == 0 __snake_case : List[Any] = candidates[divisor_indices] __snake_case : Optional[Any] = torch.max(_snake_case ) return largest_divisor, torch.div(_snake_case , _snake_case , rounding_mode='''floor''' ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(a_ , direction='''inputs''' ) __snake_case : List[Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __snake_case : Optional[int] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._config.num_heads def SCREAMING_SNAKE_CASE (self , a_ , a_ = -1 , a_ = -1 , a_ = False , a_ = None , ): '''simple docstring''' __snake_case : Any = super(a_ , self ).generate_dummy_inputs( a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) # We need to order the input in the way they appears in the forward() __snake_case : str = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __snake_case : List[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __snake_case : List[str] = seqlen + 2 __snake_case : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case : Tuple = [ (torch.zeros(a_ ), torch.zeros(a_ )) for _ in range(self.num_layers ) ] __snake_case : Tuple = common_inputs['''attention_mask'''] if self.use_past: __snake_case : Dict = ordered_inputs['''attention_mask'''].dtype __snake_case : int = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(a_ , a_ , dtype=a_ )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 13
714
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def lowercase ( _snake_case : int=None ) ->Optional[int]: """simple docstring""" if subparsers is not None: __snake_case : List[Any] = subparsers.add_parser('''test''' ) else: __snake_case : Optional[int] = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=_snake_case , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=_snake_case ) return parser def lowercase ( _snake_case : Optional[Any] ) ->int: """simple docstring""" __snake_case : Optional[Any] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: __snake_case : List[str] = script_name else: __snake_case : Dict = f"""--config_file={args.config_file} {script_name}""" __snake_case : str = ['''accelerate-launch'''] + test_args.split() __snake_case : Optional[int] = execute_subprocess_async(_snake_case , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def lowercase ( ) ->Tuple: """simple docstring""" __snake_case : Union[str, Any] = test_command_parser() __snake_case : Dict = parser.parse_args() test_command(_snake_case ) if __name__ == "__main__": main()
229
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['ConvNextFeatureExtractor'] a_ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
76
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def A_ ( snake_case_ : int ): '''simple docstring''' UpperCamelCase : List[Any] = checkpoints.load_tax_checkpoint(snake_case_ ) UpperCamelCase : Dict = flatten_dict(snake_case_ ) return flax_params def A_ ( snake_case_ : Optional[int] ): '''simple docstring''' UpperCamelCase : Optional[int] = {} UpperCamelCase : Tuple = { """token_embedder""": """embeddings""", """encoder_norm""": """layernorm""", """kernel""": """weight""", """.out""": """.output""", """scale""": """weight""", """embedders_0.pos_embedding""": """row_embedder.weight""", """embedders_1.pos_embedding""": """column_embedder.weight""", } UpperCamelCase : Optional[int] = { """query""": """attention.query""", """key""": """attention.key""", """value""": """attention.value""", """output.dense""": """output""", """encoder_decoder_attention.o""": """encoder_decoder_attention.attention.o""", """pre_self_attention_layer_norm""": """self_attention.layer_norm""", """pre_cross_attention_layer_norm""": """encoder_decoder_attention.layer_norm""", """mlp.""": """mlp.DenseReluDense.""", """pre_mlp_layer_norm""": """mlp.layer_norm""", """self_attention.o""": """self_attention.attention.o""", """decoder.embeddings.embedding""": """decoder.embed_tokens.weight""", """decoder.relpos_bias.rel_embedding""": """decoder.layer.0.self_attention.attention.relative_attention_bias.weight""", """decoder.decoder_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.logits_dense.weight""": """decoder.lm_head.weight""", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key UpperCamelCase : List[str] = """.""".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): UpperCamelCase : List[str] = new_key.replace(snake_case_ ,snake_case_ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): UpperCamelCase : str = new_key.replace(snake_case_ ,snake_case_ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number UpperCamelCase : List[str] = re.sub(R"""layers_(\d+)""" ,R"""layer.\1""" ,snake_case_ ) UpperCamelCase : Union[str, Any] = new_key.replace("""encoder""" ,"""encoder.encoder""" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number UpperCamelCase : Any = re.sub(R"""layers_(\d+)""" ,R"""layer.\1""" ,snake_case_ ) UpperCamelCase : Any = flax_dict[key] UpperCamelCase : Optional[Any] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): UpperCamelCase : Union[str, Any] = torch.from_numpy(converted_dict[key].T ) else: UpperCamelCase : List[Any] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def A_ ( snake_case_ : Optional[Any] ,snake_case_ : Dict ,snake_case_ : str=False ,snake_case_ : Dict=False ): '''simple docstring''' UpperCamelCase : Optional[int] = get_flax_param(snake_case_ ) if not use_large: UpperCamelCase : List[str] = PixaStructVisionConfig() UpperCamelCase : int = PixaStructTextConfig() else: UpperCamelCase : List[str] = PixaStructVisionConfig( hidden_size=1_5_3_6 ,d_ff=3_9_6_8 ,num_attention_heads=2_4 ,num_hidden_layers=1_8 ) UpperCamelCase : Tuple = PixaStructTextConfig(hidden_size=1_5_3_6 ,d_ff=3_9_6_8 ,num_heads=2_4 ,num_layers=1_8 ) UpperCamelCase : List[Any] = PixaStructConfig( vision_config=encoder_config.to_dict() ,text_config=decoder_config.to_dict() ,is_vqa=snake_case_ ) UpperCamelCase : Optional[int] = PixaStructForConditionalGeneration(snake_case_ ) UpperCamelCase : Optional[Any] = rename_and_convert_flax_params(snake_case_ ) model.load_state_dict(snake_case_ ) UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained("""ybelkada/test-pix2struct-tokenizer""" ) UpperCamelCase : Dict = PixaStructImageProcessor() UpperCamelCase : List[str] = PixaStructProcessor(image_processor=snake_case_ ,tokenizer=snake_case_ ) if use_large: UpperCamelCase : int = 4_0_9_6 UpperCamelCase : int = True # mkdir if needed os.makedirs(snake_case_ ,exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) processor.save_pretrained(snake_case_ ) print("""Model saved in {}""".format(snake_case_ ) ) if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') __A : Optional[Any] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
499
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase ( a , a , a ) -> float: '''simple docstring''' if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def UpperCamelCase ( a , a , a , ) -> float: '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def UpperCamelCase ( a , a , a , ) -> float: '''simple docstring''' if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( a , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' _lowerCAmelCase = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
245
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
52
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _UpperCamelCase : Any =HUGGINGFACE_HUB_CACHE _UpperCamelCase : List[str] ="config.json" _UpperCamelCase : Union[str, Any] ="diffusion_pytorch_model.bin" _UpperCamelCase : List[str] ="diffusion_flax_model.msgpack" _UpperCamelCase : Any ="model.onnx" _UpperCamelCase : List[Any] ="diffusion_pytorch_model.safetensors" _UpperCamelCase : str ="weights.pb" _UpperCamelCase : Union[str, Any] ="https://huggingface.co" _UpperCamelCase : Any =default_cache_path _UpperCamelCase : List[str] ="diffusers_modules" _UpperCamelCase : Optional[Any] =os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) _UpperCamelCase : str =["fp16", "non-ema"] _UpperCamelCase : str =".self_attn"
316
0
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run lowercase = True except (ImportError, AttributeError): lowercase = object def __UpperCAmelCase ( *a_ , **a_): pass lowercase = False lowercase = logging.get_logger("transformers-cli/serving") def __UpperCAmelCase ( a_): snake_case_ = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(__SCREAMING_SNAKE_CASE , args.host , args.port , args.workers) class UpperCamelCase_ ( lowercase__ ): '''simple docstring''' lowerCAmelCase = 42 class UpperCamelCase_ ( lowercase__ ): '''simple docstring''' lowerCAmelCase = 42 lowerCAmelCase = 42 class UpperCamelCase_ ( lowercase__ ): '''simple docstring''' lowerCAmelCase = 42 class UpperCamelCase_ ( lowercase__ ): '''simple docstring''' lowerCAmelCase = 42 class UpperCamelCase_ ( lowercase__ ): '''simple docstring''' @staticmethod def _UpperCamelCase ( a ) -> Dict: snake_case_ = parser.add_parser( 'serve' , help='CLI tool to run inference requests through REST and GraphQL endpoints.' ) serve_parser.add_argument( '--task' , type=a , choices=get_supported_tasks() , help='The task to run the pipeline on' , ) serve_parser.add_argument('--host' , type=a , default='localhost' , help='Interface the server will listen on.' ) serve_parser.add_argument('--port' , type=a , default=88_88 , help='Port the serving will listen to.' ) serve_parser.add_argument('--workers' , type=a , default=1 , help='Number of http workers' ) serve_parser.add_argument('--model' , type=a , help='Model\'s name or path to stored model.' ) serve_parser.add_argument('--config' , type=a , help='Model\'s config name or path to stored model.' ) serve_parser.add_argument('--tokenizer' , type=a , help='Tokenizer name to use.' ) serve_parser.add_argument( '--device' , type=a , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) serve_parser.set_defaults(func=a ) def __init__( self , a , a , a , a ) -> Optional[int]: snake_case_ = pipeline snake_case_ = host snake_case_ = port snake_case_ = workers if not _serve_dependencies_installed: raise RuntimeError( 'Using serve command requires FastAPI and uvicorn. ' 'Please install transformers with [serving]: pip install \"transformers[serving]\".' 'Or install FastAPI and uvicorn separately.' ) else: logger.info(F'''Serving model over {host}:{port}''' ) snake_case_ = FastAPI( routes=[ APIRoute( '/' , self.model_info , response_model=a , response_class=a , methods=['GET'] , ), APIRoute( '/tokenize' , self.tokenize , response_model=a , response_class=a , methods=['POST'] , ), APIRoute( '/detokenize' , self.detokenize , response_model=a , response_class=a , methods=['POST'] , ), APIRoute( '/forward' , self.forward , response_model=a , response_class=a , methods=['POST'] , ), ] , timeout=6_00 , ) def _UpperCamelCase ( self ) -> Dict: run(self._app , host=self.host , port=self.port , workers=self.workers ) def _UpperCamelCase ( self ) -> Tuple: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def _UpperCamelCase ( self , a = Body(a , embed=a ) , a = Body(a , embed=a ) ) -> str: try: snake_case_ = self._pipeline.tokenizer.tokenize(a ) if return_ids: snake_case_ = self._pipeline.tokenizer.convert_tokens_to_ids(a ) return ServeTokenizeResult(tokens=a , tokens_ids=a ) else: return ServeTokenizeResult(tokens=a ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'model': '', 'error': str(a )} ) def _UpperCamelCase ( self , a = Body(a , embed=a ) , a = Body(a , embed=a ) , a = Body(a , embed=a ) , ) -> List[Any]: try: snake_case_ = self._pipeline.tokenizer.decode(a , a , a ) return ServeDeTokenizeResult(model='' , text=a ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'model': '', 'error': str(a )} ) async def _UpperCamelCase ( self , a=Body(a , embed=a ) ) -> List[str]: # Check we don't have empty string if len(a ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model snake_case_ = self._pipeline(a ) return ServeForwardResult(output=a ) except Exception as e: raise HTTPException(5_00 , {'error': str(a )} )
701
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase = KandinskyImgaImgPipeline lowerCAmelCase = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] lowerCAmelCase = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowerCAmelCase = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowerCAmelCase = False @property def _UpperCamelCase ( self ) -> Optional[int]: return 32 @property def _UpperCamelCase ( self ) -> Any: return 32 @property def _UpperCamelCase ( self ) -> Dict: return self.time_input_dim @property def _UpperCamelCase ( self ) -> Any: return self.time_input_dim * 4 @property def _UpperCamelCase ( self ) -> Union[str, Any]: return 1_00 @property def _UpperCamelCase ( self ) -> List[str]: snake_case_ = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def _UpperCamelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) snake_case_ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) snake_case_ = MultilingualCLIP(a ) snake_case_ = text_encoder.eval() return text_encoder @property def _UpperCamelCase ( self ) -> str: torch.manual_seed(0 ) snake_case_ = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } snake_case_ = UNetaDConditionModel(**a ) return model @property def _UpperCamelCase ( self ) -> str: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _UpperCamelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) snake_case_ = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCamelCase ( self ) -> Union[str, Any]: snake_case_ = self.dummy_text_encoder snake_case_ = self.dummy_tokenizer snake_case_ = self.dummy_unet snake_case_ = self.dummy_movq snake_case_ = { 'num_train_timesteps': 10_00, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } snake_case_ = DDIMScheduler(**a ) snake_case_ = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _UpperCamelCase ( self , a , a=0 ) -> str: snake_case_ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(a ) ).to(a ) snake_case_ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(a ) # create init_image snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(a ) ).to(a ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ = Image.fromarray(np.uinta(a ) ).convert('RGB' ).resize((2_56, 2_56) ) if str(a ).startswith('mps' ): snake_case_ = torch.manual_seed(a ) else: snake_case_ = torch.Generator(device=a ).manual_seed(a ) snake_case_ = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def _UpperCamelCase ( self ) -> int: snake_case_ = 'cpu' snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**a ) snake_case_ = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) snake_case_ = pipe(**self.get_dummy_inputs(a ) ) snake_case_ = output.images snake_case_ = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ) -> Optional[int]: snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) snake_case_ = 'A red cartoon frog, 4k' snake_case_ = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(a ) snake_case_ = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa ) snake_case_ = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) snake_case_ = torch.Generator(device='cpu' ).manual_seed(0 ) snake_case_ , snake_case_ = pipe_prior( a , generator=a , num_inference_steps=5 , negative_prompt='' , ).to_tuple() snake_case_ = pipeline( a , image=a , image_embeds=a , negative_image_embeds=a , generator=a , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type='np' , ) snake_case_ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(a , a )
607
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
93
'''simple docstring''' from __future__ import annotations import numpy as np def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = np.shape(lowerCAmelCase ) if rows != columns: _lowerCAmelCase = ( """'table' has to be of square shaped array but got a """ f"{rows}x{columns} array:\n{table}" ) raise ValueError(lowerCAmelCase ) _lowerCAmelCase = np.zeros((rows, columns) ) _lowerCAmelCase = np.zeros((rows, columns) ) for i in range(lowerCAmelCase ): for j in range(lowerCAmelCase ): _lowerCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(lowerCAmelCase ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) _lowerCAmelCase = (table[i][j] - total) / upper[j][j] _lowerCAmelCase = 1 for j in range(lowerCAmelCase , lowerCAmelCase ): _lowerCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(lowerCAmelCase ) ) _lowerCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
207
0
"""simple docstring""" import os def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(A ) ) _UpperCAmelCase = os.path.join(A , 'triangle.txt' ) with open(A ) as f: _UpperCAmelCase = f.readlines() _UpperCAmelCase = [] for line in triangle: _UpperCAmelCase = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(A ) ) a.append(A ) for i in range(1 , len(A ) ): for j in range(len(a[i] ) ): _UpperCAmelCase = a[i - 1][j] if j != len(a[i - 1] ) else 0 _UpperCAmelCase = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(A , A ) return max(a[-1] ) if __name__ == "__main__": print(solution())
24
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __a = '\\n Text data.\n Second line of data.' __a = 'file' @pytest.fixture(scope='''session''' ) def a ( snake_case__: Dict ): '''simple docstring''' lowercase_ = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') lowercase_ = bytes(snake_case__ , '''utf-8''' ) with zstd.open(snake_case__ , '''wb''' ) as f: f.write(snake_case__ ) return path @pytest.fixture def a ( snake_case__: int ): '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , snake_case__ ) , '''w''' ) as f: f.write(snake_case__ ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def a ( snake_case__: List[Any] , snake_case__: Union[str, Any] , snake_case__: Tuple , snake_case__: Union[str, Any] , snake_case__: List[Any] , snake_case__: Optional[Any] ): '''simple docstring''' lowercase_ = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} lowercase_ = input_paths[compression_format] lowercase_ = tmp_path / '''cache''' lowercase_ = DownloadConfig(cache_dir=snake_case__ , extract_compressed_file=snake_case__ ) lowercase_ = cached_path(snake_case__ , download_config=snake_case__ ) with open(snake_case__ ) as f: lowercase_ = f.read() with open(snake_case__ ) as f: lowercase_ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def a ( snake_case__: Tuple , snake_case__: Optional[int] , snake_case__: Optional[int] , snake_case__: List[str] , snake_case__: Dict ): '''simple docstring''' lowercase_ = '''custom_cache''' lowercase_ = '''custom_extracted_dir''' lowercase_ = tmp_path / '''custom_extracted_path''' if default_extracted: lowercase_ = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , snake_case__ ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(snake_case__ ) ) lowercase_ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) lowercase_ = xz_file lowercase_ = ( DownloadConfig(extract_compressed_file=snake_case__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=snake_case__ ) ) lowercase_ = cached_path(snake_case__ , download_config=snake_case__ ) assert Path(snake_case__ ).parent.parts[-2:] == expected def a ( snake_case__: Any ): '''simple docstring''' # absolute path lowercase_ = str(Path(snake_case__ ).resolve() ) assert cached_path(snake_case__ ) == text_file # relative path lowercase_ = str(Path(snake_case__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(snake_case__ ) == text_file def a ( snake_case__: Optional[Any] ): '''simple docstring''' # absolute path lowercase_ = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(snake_case__ ): cached_path(snake_case__ ) # relative path lowercase_ = '''./__missing_file__.txt''' with pytest.raises(snake_case__ ): cached_path(snake_case__ ) def a ( snake_case__: Union[str, Any] ): '''simple docstring''' lowercase_ = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(snake_case__ ) as f: lowercase_ = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , snake_case__ ) def a ( ): '''simple docstring''' with pytest.raises(snake_case__ ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , snake_case__ ) def a ( snake_case__: Optional[int] ): '''simple docstring''' lowercase_ = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(snake_case__ ): http_get('''https://huggingface.co''' , temp_file=snake_case__ ) with pytest.raises(snake_case__ ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , snake_case__ ) def a ( snake_case__: int ): '''simple docstring''' lowercase_ = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(snake_case__ ): ftp_get('''ftp://huggingface.co''' , temp_file=snake_case__ ) with pytest.raises(snake_case__ ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , snake_case__ ) def a ( snake_case__: Tuple ): '''simple docstring''' lowercase_ = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(snake_case__ ): fsspec_get('''s3://huggingface.co''' , temp_file=snake_case__ ) with pytest.raises(snake_case__ ): fsspec_head('''s3://huggingface.co''' )
97
def lowerCAmelCase__( lowercase : list ) -> list: __snake_case : str = len(lowercase ) for _ in range(lowercase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __snake_case , __snake_case : str = arr[i + 1], arr[i] return arr if __name__ == "__main__": _UpperCamelCase = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
243
0
from __future__ import annotations import math def A_ ( snake_case ): if num <= 0: SCREAMING_SNAKE_CASE:Any = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(snake_case__ ) SCREAMING_SNAKE_CASE:List[str] = [True] * (num + 1) SCREAMING_SNAKE_CASE:Dict = [] SCREAMING_SNAKE_CASE:Dict = 2 SCREAMING_SNAKE_CASE:Any = int(math.sqrt(snake_case__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(snake_case__ ) # Set multiples of start be False for i in range(start * start , num + 1 , snake_case__ ): if sieve[i] is True: SCREAMING_SNAKE_CASE:Optional[int] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(snake_case__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
700
'''simple docstring''' import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } A_ = logging.get_logger(__name__) class _snake_case ( _a ): _A : List[Any] = '''mask2former''' _A : str = ['''swin'''] _A : Tuple = {'''hidden_size''': '''hidden_dim'''} def __init__( self : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[Dict] = None ,SCREAMING_SNAKE_CASE__ : int = 256 ,SCREAMING_SNAKE_CASE__ : int = 256 ,SCREAMING_SNAKE_CASE__ : int = 256 ,SCREAMING_SNAKE_CASE__ : int = 1_024 ,SCREAMING_SNAKE_CASE__ : str = "relu" ,SCREAMING_SNAKE_CASE__ : int = 6 ,SCREAMING_SNAKE_CASE__ : int = 10 ,SCREAMING_SNAKE_CASE__ : int = 8 ,SCREAMING_SNAKE_CASE__ : float = 0.0 ,SCREAMING_SNAKE_CASE__ : int = 2_048 ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : int = 4 ,SCREAMING_SNAKE_CASE__ : int = 255 ,SCREAMING_SNAKE_CASE__ : int = 100 ,SCREAMING_SNAKE_CASE__ : float = 0.1 ,SCREAMING_SNAKE_CASE__ : float = 2.0 ,SCREAMING_SNAKE_CASE__ : float = 5.0 ,SCREAMING_SNAKE_CASE__ : float = 5.0 ,SCREAMING_SNAKE_CASE__ : int = 12_544 ,SCREAMING_SNAKE_CASE__ : float = 3.0 ,SCREAMING_SNAKE_CASE__ : float = 0.75 ,SCREAMING_SNAKE_CASE__ : float = 0.02 ,SCREAMING_SNAKE_CASE__ : float = 1.0 ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : List[int] = [4, 8, 16, 32] ,SCREAMING_SNAKE_CASE__ : bool = None ,**SCREAMING_SNAKE_CASE__ : Dict ,): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) SCREAMING_SNAKE_CASE:Union[str, Any] = CONFIG_MAPPING["swin"]( image_size=224 ,in_channels=3 ,patch_size=4 ,embed_dim=96 ,depths=[2, 2, 18, 2] ,num_heads=[3, 6, 12, 24] ,window_size=7 ,drop_path_rate=0.3 ,use_absolute_embeddings=SCREAMING_SNAKE_CASE__ ,out_features=["stage1", "stage2", "stage3", "stage4"] ,) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE:Any = backbone_config.pop("model_type" ) SCREAMING_SNAKE_CASE:List[str] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE:List[str] = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {",".join(self.backbones_supported )}''' ) SCREAMING_SNAKE_CASE:List[str] = backbone_config SCREAMING_SNAKE_CASE:Union[str, Any] = feature_size SCREAMING_SNAKE_CASE:Union[str, Any] = mask_feature_size SCREAMING_SNAKE_CASE:str = hidden_dim SCREAMING_SNAKE_CASE:Optional[int] = encoder_feedforward_dim SCREAMING_SNAKE_CASE:Tuple = activation_function SCREAMING_SNAKE_CASE:Optional[int] = encoder_layers SCREAMING_SNAKE_CASE:List[Any] = decoder_layers SCREAMING_SNAKE_CASE:Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE:Dict = dropout SCREAMING_SNAKE_CASE:List[str] = dim_feedforward SCREAMING_SNAKE_CASE:int = pre_norm SCREAMING_SNAKE_CASE:Union[str, Any] = enforce_input_projection SCREAMING_SNAKE_CASE:Any = common_stride SCREAMING_SNAKE_CASE:int = ignore_value SCREAMING_SNAKE_CASE:List[Any] = num_queries SCREAMING_SNAKE_CASE:Dict = no_object_weight SCREAMING_SNAKE_CASE:str = class_weight SCREAMING_SNAKE_CASE:Tuple = mask_weight SCREAMING_SNAKE_CASE:Optional[int] = dice_weight SCREAMING_SNAKE_CASE:int = train_num_points SCREAMING_SNAKE_CASE:str = oversample_ratio SCREAMING_SNAKE_CASE:str = importance_sample_ratio SCREAMING_SNAKE_CASE:str = init_std SCREAMING_SNAKE_CASE:Any = init_xavier_std SCREAMING_SNAKE_CASE:List[Any] = use_auxiliary_loss SCREAMING_SNAKE_CASE:Union[str, Any] = feature_strides SCREAMING_SNAKE_CASE:Union[str, Any] = output_auxiliary_logits SCREAMING_SNAKE_CASE:Dict = decoder_layers super().__init__(**SCREAMING_SNAKE_CASE__ ) @classmethod def __UpperCamelCase ( cls : Tuple ,SCREAMING_SNAKE_CASE__ : PretrainedConfig ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return cls( backbone_config=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) def __UpperCamelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE:Union[str, Any] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE:str = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE:List[str] = self.__class__.model_type return output
465
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCamelCase ( __snake_case , unittest.TestCase ): lowercase : Optional[Any] = KandinskyVaaInpaintPipeline lowercase : Union[str, Any] = ['image_embeds', 'negative_image_embeds', 'image', 'mask_image'] lowercase : Optional[int] = [ 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] lowercase : List[str] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase : List[str] = False @property def a__ ( self :Optional[Any] ): return 3_2 @property def a__ ( self :int ): return 3_2 @property def a__ ( self :int ): return self.time_input_dim @property def a__ ( self :Dict ): return self.time_input_dim * 4 @property def a__ ( self :Optional[Any] ): return 1_0_0 @property def a__ ( self :Optional[Any] ): torch.manual_seed(0 ) snake_case_ : Tuple = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case_ : Union[str, Any] = UNetaDConditionModel(**lowerCAmelCase_ ) return model @property def a__ ( self :Any ): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a__ ( self :List[Any] ): torch.manual_seed(0 ) snake_case_ : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a__ ( self :str ): snake_case_ : List[Any] = self.dummy_unet snake_case_ : Dict = self.dummy_movq snake_case_ : str = DDIMScheduler( num_train_timesteps=1_0_0_0 ,beta_schedule="""linear""" ,beta_start=0.0_00_85 ,beta_end=0.0_12 ,clip_sample=lowerCAmelCase_ ,set_alpha_to_one=lowerCAmelCase_ ,steps_offset=1 ,prediction_type="""epsilon""" ,thresholding=lowerCAmelCase_ ,) snake_case_ : Any = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a__ ( self :Tuple ,_UpperCamelCase :Any ,_UpperCamelCase :str=0 ): snake_case_ : str = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) snake_case_ : str = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( lowerCAmelCase_ ) # create init_image snake_case_ : str = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) snake_case_ : int = image.cpu().permute(0 ,2 ,3 ,1 )[0] snake_case_ : List[str] = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("""RGB""" ).resize((2_5_6, 2_5_6) ) # create mask snake_case_ : Union[str, Any] = np.ones((6_4, 6_4) ,dtype=np.floataa ) snake_case_ : Optional[Any] = 0 if str(lowerCAmelCase_ ).startswith("""mps""" ): snake_case_ : Optional[int] = torch.manual_seed(lowerCAmelCase_ ) else: snake_case_ : str = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) snake_case_ : Any = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def a__ ( self :Tuple ): snake_case_ : int = """cpu""" snake_case_ : List[Any] = self.get_dummy_components() snake_case_ : str = self.pipeline_class(**lowerCAmelCase_ ) snake_case_ : List[Any] = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) snake_case_ : Optional[Any] = pipe(**self.get_dummy_inputs(lowerCAmelCase_ ) ) snake_case_ : List[str] = output.images snake_case_ : Union[str, Any] = pipe( **self.get_dummy_inputs(lowerCAmelCase_ ) ,return_dict=lowerCAmelCase_ ,)[0] snake_case_ : Dict = image[0, -3:, -3:, -1] snake_case_ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 6_4, 6_4, 3) snake_case_ : str = np.array( [0.50_77_59_03, 0.49_52_71_95, 0.48_82_45_43, 0.50_19_22_37, 0.48_64_49_06, 0.49_37_38_14, 0.4_78_05_98, 0.47_23_48_27, 0.48_32_78_48] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def a__ ( self :Dict ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def a__ ( self :Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self :Dict ): snake_case_ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) snake_case_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case_ : int = np.ones((7_6_8, 7_6_8) ,dtype=np.floataa ) snake_case_ : Optional[int] = 0 snake_case_ : List[str] = """a hat""" snake_case_ : Dict = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" ,torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase_ ) snake_case_ : List[Any] = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""" ,torch_dtype=torch.floataa ) snake_case_ : Optional[int] = pipeline.to(lowerCAmelCase_ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase_ ) snake_case_ : Dict = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case_ , snake_case_ : str = pipe_prior( lowerCAmelCase_ ,generator=lowerCAmelCase_ ,num_inference_steps=5 ,negative_prompt="""""" ,).to_tuple() snake_case_ : Union[str, Any] = pipeline( image=lowerCAmelCase_ ,mask_image=lowerCAmelCase_ ,image_embeds=lowerCAmelCase_ ,negative_image_embeds=lowerCAmelCase_ ,generator=lowerCAmelCase_ ,num_inference_steps=1_0_0 ,height=7_6_8 ,width=7_6_8 ,output_type="""np""" ,) snake_case_ : str = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase_ ,lowerCAmelCase_ )
334
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=2 , lowerCAmelCase_=56 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=32 , lowerCAmelCase_=2 , lowerCAmelCase_=2 , lowerCAmelCase_=7 , lowerCAmelCase_="gelu_new" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=512 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=4 , lowerCAmelCase_="block_sparse" , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=2 , lowerCAmelCase_=3 , ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_attention_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_choices __lowercase = rescale_embeddings __lowercase = attention_type __lowercase = use_bias __lowercase = block_size __lowercase = num_random_blocks def snake_case__ ( self ): __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_attention_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self ): __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class snake_case ( __snake_case ,unittest.TestCase ): """simple docstring""" __lowerCAmelCase = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) __lowerCAmelCase = False __lowerCAmelCase = False def snake_case__ ( self ): __lowercase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self ): super().test_hidden_states_output() @slow def snake_case__ ( self ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(lowerCAmelCase_ ) def snake_case__ ( self ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ , lowerCAmelCase_=None , **lowerCAmelCase_ ): return model(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1E-5 , lowerCAmelCase_="outputs" , lowerCAmelCase_=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
321
0
'''simple docstring''' def __snake_case ( lowercase : int ): snake_case_ = [[0 for _ in range(lowercase )] for _ in range(m + 1 )] for i in range(m + 1 ): snake_case_ = 1 for n in range(m + 1 ): for k in range(1 , lowercase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowercase__ = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowercase__ = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
420
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def __snake_case ( lowercase : float , lowercase : float , lowercase : bool = False ): if radian_mode: return [magnitude * cos(lowercase ), magnitude * sin(lowercase )] return [magnitude * cos(radians(lowercase ) ), magnitude * sin(radians(lowercase ) )] def __snake_case ( lowercase : NDArray[floataa] , lowercase : NDArray[floataa] , lowercase : float = 10**-1 ): snake_case_ = cross(lowercase , lowercase ) snake_case_ = sum(lowercase ) return abs(lowercase ) < eps if __name__ == "__main__": # Test to check if it works lowercase__ = array( [ polar_force(718.4, 1_80 - 30), polar_force(879.54, 45), polar_force(1_00, -90), ] ) lowercase__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowercase__ = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) lowercase__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowercase__ = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) lowercase__ = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
420
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
83
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''T''') class __snake_case ( Generic[T]): def __init__( self : int , __lowerCAmelCase : T ): """simple docstring""" _lowerCamelCase : Optional[int] = data _lowerCamelCase : Node[T] | None = None def __str__( self : Optional[Any] ): """simple docstring""" return f'''{self.data}''' class __snake_case ( Generic[T]): def __init__( self : int ): """simple docstring""" _lowerCamelCase : Node[T] | None = None def __iter__( self : str ): """simple docstring""" _lowerCamelCase : List[str] = self.top while node: yield node.data _lowerCamelCase : Any = node.next def __str__( self : int ): """simple docstring""" return "->".join([str(__lowerCAmelCase ) for item in self] ) def __len__( self : int ): """simple docstring""" return len(tuple(iter(self ) ) ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return self.top is None def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : T ): """simple docstring""" _lowerCamelCase : Tuple = Node(__lowerCAmelCase ) if not self.is_empty(): _lowerCamelCase : Optional[int] = self.top _lowerCamelCase : List[str] = node def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" if self.is_empty(): raise IndexError('''pop from empty stack''' ) assert isinstance(self.top , __lowerCAmelCase ) _lowerCamelCase : Any = self.top _lowerCamelCase : Any = self.top.next return pop_node.data def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" if self.is_empty(): raise IndexError('''peek from empty stack''' ) assert self.top is not None return self.top.data def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : List[str] = None if __name__ == "__main__": from doctest import testmod testmod()
83
1
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Tuple , __UpperCamelCase : str )->Tuple: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): _UpperCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Optional[Any]: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : Tuple )->Optional[Any]: _UpperCAmelCase = '''sgugger/tiny-distilbert-classification''' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , only_pretrain_model=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : Tuple )->str: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , torchscript=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , fpaa=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : Tuple )->Any: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) # set architectures equal to `None` _UpperCAmelCase = None _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def lowercase__ ( self : List[str] )->int: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__UpperCamelCase , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase__ ( self : str )->Dict: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : Optional[int] )->Optional[Any]: _UpperCAmelCase = '''sshleifer/tinier_bart''' _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : List[str] )->str: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = '''sshleifer/tinier_bart''' _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase__ ( self : Optional[Any] )->int: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , save_to_csv=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__UpperCamelCase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(__UpperCamelCase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(__UpperCamelCase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(__UpperCamelCase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(__UpperCamelCase , '''env.csv''' ) , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCamelCase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , '''env.csv''' ) ).exists() ) def lowercase__ ( self : Tuple )->List[Any]: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(__UpperCamelCase : str ): self.assertTrue(hasattr(__UpperCamelCase , '''sequential''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''cumulative''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''current''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__UpperCamelCase , '''log.txt''' ) , log_print=__UpperCamelCase , trace_memory_line_by_line=__UpperCamelCase , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(__UpperCamelCase , '''log.txt''' ) ).exists() )
713
"""simple docstring""" import functools def lowercase ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(_SCREAMING_SNAKE_CASE ) != 3 or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(_SCREAMING_SNAKE_CASE ) == 0: return 0 if min(_SCREAMING_SNAKE_CASE ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(_SCREAMING_SNAKE_CASE ) >= 366: raise ValueError('''All days elements should be less than 366''' ) _UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) @functools.cache def dynamic_programming(_SCREAMING_SNAKE_CASE : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
95
0
"""simple docstring""" from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder SCREAMING_SNAKE_CASE_ = datasets.utils.logging.get_logger(__name__) class snake_case_ ( folder_based_builder.FolderBasedBuilderConfig ): """simple docstring""" A_ = None A_ = None class snake_case_ ( folder_based_builder.FolderBasedBuilder ): """simple docstring""" A_ = datasets.Audio() A_ = '''audio''' A_ = AudioFolderConfig A_ = 42 # definition at the bottom of the script A_ = AudioClassification(audio_column='''audio''' , label_column='''label''' ) SCREAMING_SNAKE_CASE_ = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] SCREAMING_SNAKE_CASE_ = AUDIO_EXTENSIONS
34
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = """xglm""" SCREAMING_SNAKE_CASE_ : Any = ["""past_key_values"""] SCREAMING_SNAKE_CASE_ : Union[str, Any] = { """num_attention_heads""": """attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """num_layers""", } def __init__( self : Dict , UpperCamelCase__ : Optional[Any]=2_5_6_0_0_8 , UpperCamelCase__ : Dict=2_0_4_8 , UpperCamelCase__ : Tuple=1_0_2_4 , UpperCamelCase__ : Any=4_0_9_6 , UpperCamelCase__ : List[str]=2_4 , UpperCamelCase__ : List[str]=1_6 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : List[str]=0.0 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : Union[str, Any]=2 , UpperCamelCase__ : str=1 , UpperCamelCase__ : str=0 , UpperCamelCase__ : Any=2 , **UpperCamelCase__ : Union[str, Any] , )-> Optional[int]: '''simple docstring''' __lowerCAmelCase: Optional[int] = vocab_size __lowerCAmelCase: Optional[Any] = max_position_embeddings __lowerCAmelCase: int = d_model __lowerCAmelCase: Tuple = ffn_dim __lowerCAmelCase: Optional[Any] = num_layers __lowerCAmelCase: List[str] = attention_heads __lowerCAmelCase: Optional[Any] = activation_function __lowerCAmelCase: Tuple = dropout __lowerCAmelCase: Optional[Any] = attention_dropout __lowerCAmelCase: int = activation_dropout __lowerCAmelCase: Tuple = layerdrop __lowerCAmelCase: List[str] = init_std __lowerCAmelCase: str = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase: List[str] = use_cache super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , **UpperCamelCase__ , )
346
0
import re def UpperCAmelCase_( a__ ): """simple docstring""" if len(re.findall('''[ATCG]''' , a__ ) ) != len(a__ ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
333
from numpy import exp, pi, sqrt def UpperCAmelCase_( a__ , a__ = 0.0 , a__ = 1.0 ): """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
333
1
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) snake_case__ : str = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') snake_case__ : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) snake_case__ : int = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) snake_case__ : List[str] = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(6_4, 6_4), batch_size=3_2, class_mode='binary' ) snake_case__ : Any = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(6_4, 6_4), batch_size=3_2, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions snake_case__ : int = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(6_4, 6_4) ) snake_case__ : Any = tf.keras.preprocessing.image.img_to_array(test_image) snake_case__ : Dict = np.expand_dims(test_image, axis=0) snake_case__ : str = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: snake_case__ : Union[str, Any] = 'Normal' if result[0][0] == 1: snake_case__ : Union[str, Any] = 'Abnormality detected'
408
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : List[Any] = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } snake_case__ : int = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } snake_case__ : Optional[int] = { 'jukebox': 5_1_2, } class _a ( A__ ): """simple docstring""" snake_case =VOCAB_FILES_NAMES snake_case =PRETRAINED_VOCAB_FILES_MAP snake_case =PRETRAINED_LYRIC_TOKENS_SIZES snake_case =["""input_ids""", """attention_mask"""] def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case=["v3", "v2", "v2"] , _snake_case=512 , _snake_case=5 , _snake_case="<|endoftext|>" , **_snake_case , ): _UpperCAmelCase =AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else unk_token super().__init__( unk_token=_snake_case , n_genres=_snake_case , version=_snake_case , max_n_lyric_tokens=_snake_case , **_snake_case , ) _UpperCAmelCase =version _UpperCAmelCase =max_n_lyric_tokens _UpperCAmelCase =n_genres with open(_snake_case , encoding="utf-8" ) as vocab_handle: _UpperCAmelCase =json.load(_snake_case ) with open(_snake_case , encoding="utf-8" ) as vocab_handle: _UpperCAmelCase =json.load(_snake_case ) with open(_snake_case , encoding="utf-8" ) as vocab_handle: _UpperCAmelCase =json.load(_snake_case ) _UpperCAmelCase =R"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: _UpperCAmelCase =oov.replace(R"\-'" , R"\-+'" ) _UpperCAmelCase =regex.compile(_snake_case ) _UpperCAmelCase ={v: k for k, v in self.artists_encoder.items()} _UpperCAmelCase ={v: k for k, v in self.genres_encoder.items()} _UpperCAmelCase ={v: k for k, v in self.lyrics_encoder.items()} @property def SCREAMING_SNAKE_CASE ( self ): return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def SCREAMING_SNAKE_CASE ( self ): return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case ): _UpperCAmelCase =[self.artists_encoder.get(_snake_case , 0 ) for artist in list_artists] for genres in range(len(_snake_case ) ): _UpperCAmelCase =[self.genres_encoder.get(_snake_case , 0 ) for genre in list_genres[genres]] _UpperCAmelCase =list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) _UpperCAmelCase =[[self.lyrics_encoder.get(_snake_case , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def SCREAMING_SNAKE_CASE ( self , _snake_case ): return list(_snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , **_snake_case ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase =self.prepare_for_tokenization(_snake_case , _snake_case , _snake_case ) _UpperCAmelCase =self._tokenize(_snake_case ) return artist, genre, lyrics def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , _snake_case = False ): for idx in range(len(self.version ) ): if self.version[idx] == "v3": _UpperCAmelCase =artists[idx].lower() _UpperCAmelCase =[genres[idx].lower()] else: _UpperCAmelCase =self._normalize(artists[idx] ) + ".v2" _UpperCAmelCase =[ self._normalize(_snake_case ) + ".v2" for genre in genres[idx].split("_" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": _UpperCAmelCase =regex.compile(R"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" ) _UpperCAmelCase ="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n" _UpperCAmelCase ={vocab[index]: index + 1 for index in range(len(_snake_case ) )} _UpperCAmelCase =0 _UpperCAmelCase =len(_snake_case ) + 1 _UpperCAmelCase =self.vocab _UpperCAmelCase ={v: k for k, v in self.vocab.items()} _UpperCAmelCase ="" else: _UpperCAmelCase =regex.compile(R"[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+" ) _UpperCAmelCase =self._run_strip_accents(_snake_case ) _UpperCAmelCase =lyrics.replace("\\" , "\n" ) _UpperCAmelCase =self.out_of_vocab.sub("" , _snake_case ), [], [] return artists, genres, lyrics def SCREAMING_SNAKE_CASE ( self , _snake_case ): _UpperCAmelCase =unicodedata.normalize("NFD" , _snake_case ) _UpperCAmelCase =[] for char in text: _UpperCAmelCase =unicodedata.category(_snake_case ) if cat == "Mn": continue output.append(_snake_case ) return "".join(_snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case ): _UpperCAmelCase =( [chr(_snake_case ) for i in range(ord("a" ) , ord("z" ) + 1 )] + [chr(_snake_case ) for i in range(ord("A" ) , ord("Z" ) + 1 )] + [chr(_snake_case ) for i in range(ord("0" ) , ord("9" ) + 1 )] + ["."] ) _UpperCAmelCase =frozenset(_snake_case ) _UpperCAmelCase =re.compile(R"_+" ) _UpperCAmelCase ="".join([c if c in accepted else "_" for c in text.lower()] ) _UpperCAmelCase =pattern.sub("_" , _snake_case ).strip("_" ) return text def SCREAMING_SNAKE_CASE ( self , _snake_case ): return " ".join(_snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None , _snake_case = False ): # Convert to TensorType if not isinstance(_snake_case , _snake_case ): _UpperCAmelCase =TensorType(_snake_case ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." ) import tensorflow as tf _UpperCAmelCase =tf.constant _UpperCAmelCase =tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed." ) import torch _UpperCAmelCase =torch.tensor _UpperCAmelCase =torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed." ) import jax.numpy as jnp # noqa: F811 _UpperCAmelCase =jnp.array _UpperCAmelCase =_is_jax else: _UpperCAmelCase =np.asarray _UpperCAmelCase =_is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: _UpperCAmelCase =[inputs] if not is_tensor(_snake_case ): _UpperCAmelCase =as_tensor(_snake_case ) except: # noqa E722 raise ValueError( "Unable to create tensor, you should probably activate truncation and/or padding " "with 'padding=True' 'truncation=True' to have batched tensors with the same length." ) return inputs def __call__( self , _snake_case , _snake_case , _snake_case="" , _snake_case="pt" ): _UpperCAmelCase =[0, 0, 0] _UpperCAmelCase =[artist] * len(self.version ) _UpperCAmelCase =[genres] * len(self.version ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase =self.tokenize(_snake_case , _snake_case , _snake_case ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase =self._convert_token_to_id(_snake_case , _snake_case , _snake_case ) _UpperCAmelCase =[-INFINITY] * len(full_tokens[-1] ) _UpperCAmelCase =[ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_snake_case ) for i in range(len(self.version ) ) ] return BatchEncoding({"input_ids": input_ids, "attention_masks": attention_masks} ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None ): if not os.path.isdir(_snake_case ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _UpperCAmelCase =os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["artists_file"] ) with open(_snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_snake_case ) ) _UpperCAmelCase =os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["genres_file"] ) with open(_snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_snake_case ) ) _UpperCAmelCase =os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["lyrics_file"] ) with open(_snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_snake_case ) ) return (artists_file, genres_file, lyrics_file) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case ): _UpperCAmelCase =self.artists_decoder.get(_snake_case ) _UpperCAmelCase =[self.genres_decoder.get(_snake_case ) for genre in genres_index] _UpperCAmelCase =[self.lyrics_decoder.get(_snake_case ) for character in lyric_index] return artist, genres, lyrics
408
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = TextToVideoSDPipeline lowercase_ = TEXT_TO_IMAGE_PARAMS lowercase_ = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowercase_ = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[str]: '''simple docstring''' torch.manual_seed(0) lowerCamelCase__: Optional[int] =UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) lowerCamelCase__: Union[str, Any] =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0) lowerCamelCase__: List[str] =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) lowerCamelCase__: Optional[int] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=512 , ) lowerCamelCase__: Optional[Any] =CLIPTextModel(UpperCAmelCase_) lowerCamelCase__: Dict =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") lowerCamelCase__: Tuple ={ "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any]=0) ->Union[str, Any]: '''simple docstring''' if str(UpperCAmelCase_).startswith("mps"): lowerCamelCase__: Optional[int] =torch.manual_seed(UpperCAmelCase_) else: lowerCamelCase__: Any =torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_) lowerCamelCase__: List[Any] ={ "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] ="cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__: Optional[Any] =self.get_dummy_components() lowerCamelCase__: List[Any] =TextToVideoSDPipeline(**UpperCAmelCase_) lowerCamelCase__: int =sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowerCamelCase__: Any =self.get_dummy_inputs(UpperCAmelCase_) lowerCamelCase__: List[Any] ="np" lowerCamelCase__: Optional[int] =sd_pipe(**UpperCAmelCase_).frames lowerCamelCase__: Dict =frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) lowerCamelCase__: Optional[int] =np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->str: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=3E-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=1E-2) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.") def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->str: '''simple docstring''' pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline.") def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline.") def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Any: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->int: '''simple docstring''' lowerCamelCase__: Dict =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy") lowerCamelCase__: Optional[int] =TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b") lowerCamelCase__: str =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCamelCase__: Tuple =pipe.to("cuda") lowerCamelCase__: List[Any] ="Spiderman is surfing" lowerCamelCase__: Dict =torch.Generator(device="cpu").manual_seed(0) lowerCamelCase__: Optional[int] =pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=25 , output_type="pt").frames lowerCamelCase__: str =video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5E-2 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy") lowerCamelCase__: List[str] =TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b") lowerCamelCase__: Any =pipe.to("cuda") lowerCamelCase__: Dict ="Spiderman is surfing" lowerCamelCase__: Dict =torch.Generator(device="cpu").manual_seed(0) lowerCamelCase__: Optional[int] =pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="pt").frames lowerCamelCase__: List[Any] =video_frames.cpu().numpy() assert np.abs(expected_video - video).mean() < 5E-2
707
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = "Hello, World!" __A = "en_XX" def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =Path("data_bin" ) lowerCamelCase__: int =FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__a ).parent ) , checkpoint_file=Path(__a ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(__a ) , bpe="sentencepiece" , sentencepiece_model=str(Path(__a ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(__a ) lowerCamelCase__: Optional[int] =xmod.model.encoder.sentence_encoder lowerCamelCase__: Tuple =XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase__: Optional[Any] =xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" , __a ) lowerCamelCase__: Tuple =XmodForSequenceClassification(__a ) if classification_head else XmodForMaskedLM(__a ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase__: Any =xmod_sent_encoder.embed_tokens.weight lowerCamelCase__: List[Any] =xmod_sent_encoder.embed_positions.weight lowerCamelCase__: Any =torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCamelCase__: List[Any] =xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase__: Union[str, Any] =xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase__: List[Any] =model.roberta.encoder.layer[i] lowerCamelCase__: Union[str, Any] =xmod_sent_encoder.layers[i] # self attention lowerCamelCase__: Any =layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) lowerCamelCase__: List[str] =xmod_layer.self_attn.q_proj.weight lowerCamelCase__: Any =xmod_layer.self_attn.q_proj.bias lowerCamelCase__: Any =xmod_layer.self_attn.k_proj.weight lowerCamelCase__: Tuple =xmod_layer.self_attn.k_proj.bias lowerCamelCase__: Optional[int] =xmod_layer.self_attn.v_proj.weight lowerCamelCase__: List[str] =xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase__: Optional[int] =layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) lowerCamelCase__: Dict =xmod_layer.self_attn.out_proj.weight lowerCamelCase__: Optional[Any] =xmod_layer.self_attn.out_proj.bias lowerCamelCase__: List[Any] =xmod_layer.self_attn_layer_norm.weight lowerCamelCase__: Dict =xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase__: Optional[Any] =layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) lowerCamelCase__: int =xmod_layer.fca.weight lowerCamelCase__: List[str] =xmod_layer.fca.bias # output lowerCamelCase__: str =layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) lowerCamelCase__: Optional[Any] =xmod_layer.fca.weight lowerCamelCase__: int =xmod_layer.fca.bias lowerCamelCase__: List[str] =xmod_layer.final_layer_norm.weight lowerCamelCase__: List[Any] =xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase__: Tuple =xmod_layer.adapter_layer_norm.weight lowerCamelCase__: List[str] =xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase__: Optional[int] =bert_output.adapter_modules[lang_code] lowerCamelCase__: Optional[int] =xmod_layer.adapter_modules[lang_code] lowerCamelCase__: Any =from_adapter.fca.weight lowerCamelCase__: Tuple =from_adapter.fca.bias lowerCamelCase__: Optional[Any] =from_adapter.fca.weight lowerCamelCase__: Optional[int] =from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase__: Tuple =xmod_sent_encoder.layer_norm.weight lowerCamelCase__: Dict =xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase__: List[Any] =xmod.model.classification_heads["mnli"].dense.weight lowerCamelCase__: int =xmod.model.classification_heads["mnli"].dense.bias lowerCamelCase__: List[str] =xmod.model.classification_heads["mnli"].out_proj.weight lowerCamelCase__: Dict =xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head lowerCamelCase__: Tuple =xmod.model.encoder.lm_head.dense.weight lowerCamelCase__: int =xmod.model.encoder.lm_head.dense.bias lowerCamelCase__: List[Any] =xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase__: str =xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase__: str =xmod.model.encoder.lm_head.weight lowerCamelCase__: str =xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase__: List[str] =xmod.encode(__a ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__a ) lowerCamelCase__: List[Any] =model(__a )[0] if classification_head: lowerCamelCase__: Union[str, Any] =xmod.model.classification_heads["mnli"](xmod.extract_features(__a ) ) else: lowerCamelCase__: Dict =xmod.model(__a , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowerCamelCase__: Optional[int] =torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase__: Tuple =torch.allclose(__a , __a , atol=1e-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(__a ).mkdir(parents=__a , exist_ok=__a ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) __A = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
437
0
from __future__ import annotations import typing from collections import Counter def __a ( lowerCAmelCase_ : int ) -> typing.Counter[int]: '''simple docstring''' UpperCAmelCase_= Counter() for base in range(1 ,max_perimeter + 1 ): for perpendicular in range(lowerCAmelCase_ ,max_perimeter + 1 ): UpperCAmelCase_= (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(lowerCAmelCase_ ): UpperCAmelCase_= int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __a ( lowerCAmelCase_ : int = 10_00 ) -> int: '''simple docstring''' UpperCAmelCase_= pythagorean_triple(lowerCAmelCase_ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'Perimeter {solution()} has maximum solutions')
593
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class lowercase ( snake_case__): """simple docstring""" a__ : List[str] = "detr" a__ : Union[str, Any] = ["past_key_values"] a__ : List[str] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Dict , __UpperCAmelCase : int=True , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Any=3 , __UpperCAmelCase : Optional[int]=100 , __UpperCAmelCase : Union[str, Any]=6 , __UpperCAmelCase : str=2_048 , __UpperCAmelCase : List[Any]=8 , __UpperCAmelCase : Any=6 , __UpperCAmelCase : List[str]=2_048 , __UpperCAmelCase : Optional[int]=8 , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : Union[str, Any]=0.0 , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Any="relu" , __UpperCAmelCase : str=256 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : List[str]=0.0 , __UpperCAmelCase : Tuple=0.02 , __UpperCAmelCase : Dict=1.0 , __UpperCAmelCase : Any=False , __UpperCAmelCase : int="sine" , __UpperCAmelCase : List[Any]="resnet50" , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Dict=False , __UpperCAmelCase : List[str]=1 , __UpperCAmelCase : Dict=5 , __UpperCAmelCase : int=2 , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : Union[str, Any]=1 , __UpperCAmelCase : str=5 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Optional[int]=0.1 , **__UpperCAmelCase : Tuple , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase_= CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_= backbone_config.get("""model_type""" ) UpperCAmelCase_= CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_= config_class.from_dict(__UpperCAmelCase ) # set timm attributes to None UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= None, None, None UpperCAmelCase_= use_timm_backbone UpperCAmelCase_= backbone_config UpperCAmelCase_= num_channels UpperCAmelCase_= num_queries UpperCAmelCase_= d_model UpperCAmelCase_= encoder_ffn_dim UpperCAmelCase_= encoder_layers UpperCAmelCase_= encoder_attention_heads UpperCAmelCase_= decoder_ffn_dim UpperCAmelCase_= decoder_layers UpperCAmelCase_= decoder_attention_heads UpperCAmelCase_= dropout UpperCAmelCase_= attention_dropout UpperCAmelCase_= activation_dropout UpperCAmelCase_= activation_function UpperCAmelCase_= init_std UpperCAmelCase_= init_xavier_std UpperCAmelCase_= encoder_layerdrop UpperCAmelCase_= decoder_layerdrop UpperCAmelCase_= encoder_layers UpperCAmelCase_= auxiliary_loss UpperCAmelCase_= position_embedding_type UpperCAmelCase_= backbone UpperCAmelCase_= use_pretrained_backbone UpperCAmelCase_= dilation # Hungarian matcher UpperCAmelCase_= class_cost UpperCAmelCase_= bbox_cost UpperCAmelCase_= giou_cost # Loss coefficients UpperCAmelCase_= mask_loss_coefficient UpperCAmelCase_= dice_loss_coefficient UpperCAmelCase_= bbox_loss_coefficient UpperCAmelCase_= giou_loss_coefficient UpperCAmelCase_= eos_coefficient super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return self.encoder_attention_heads @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return self.d_model @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] , __UpperCAmelCase : PretrainedConfig , **__UpperCAmelCase : Union[str, Any] ) -> Dict: return cls(backbone_config=__UpperCAmelCase , **__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict[str, any]: UpperCAmelCase_= copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_= self.backbone_config.to_dict() UpperCAmelCase_= self.__class__.model_type return output class lowercase ( snake_case__): """simple docstring""" a__ : Union[str, Any] = version.parse("1.11") @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> float: return 1E-5 @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return 12
593
1
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowercase_ : Union[str, Any] = logging.get_logger(__name__) # General docstring lowercase_ : Dict = '''MobileNetV1Config''' # Base docstring lowercase_ : Union[str, Any] = '''google/mobilenet_v1_1.0_224''' lowercase_ : Optional[Any] = [1, 10_24, 7, 7] # Image classification docstring lowercase_ : Optional[int] = '''google/mobilenet_v1_1.0_224''' lowercase_ : Union[str, Any] = '''tabby, tabby cat''' lowercase_ : Dict = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def _lowerCAmelCase ( lowerCamelCase__ : Any, lowerCamelCase__ : List[str], lowerCamelCase__ : Tuple=None ) -> Dict: _SCREAMING_SNAKE_CASE : Any = {} if isinstance(lowerCamelCase__, lowerCamelCase__ ): _SCREAMING_SNAKE_CASE : Tuple = model.mobilenet_va else: _SCREAMING_SNAKE_CASE : Optional[Any] = model _SCREAMING_SNAKE_CASE : List[Any] = "MobilenetV1/Conv2d_0/" _SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight _SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.bias _SCREAMING_SNAKE_CASE : Dict = backbone.conv_stem.normalization.weight _SCREAMING_SNAKE_CASE : int = backbone.conv_stem.normalization.running_mean _SCREAMING_SNAKE_CASE : int = backbone.conv_stem.normalization.running_var for i in range(1_3 ): _SCREAMING_SNAKE_CASE : int = i + 1 _SCREAMING_SNAKE_CASE : str = i * 2 _SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index] _SCREAMING_SNAKE_CASE : Union[str, Any] = f'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' _SCREAMING_SNAKE_CASE : Union[str, Any] = pointer.convolution.weight _SCREAMING_SNAKE_CASE : Union[str, Any] = pointer.normalization.bias _SCREAMING_SNAKE_CASE : Any = pointer.normalization.weight _SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE : Union[str, Any] = pointer.normalization.running_var _SCREAMING_SNAKE_CASE : Optional[int] = backbone.layer[pt_index + 1] _SCREAMING_SNAKE_CASE : Optional[int] = f'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' _SCREAMING_SNAKE_CASE : Union[str, Any] = pointer.convolution.weight _SCREAMING_SNAKE_CASE : int = pointer.normalization.bias _SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.weight _SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_var if isinstance(lowerCamelCase__, lowerCamelCase__ ): _SCREAMING_SNAKE_CASE : Optional[Any] = "MobilenetV1/Logits/Conv2d_1c_1x1/" _SCREAMING_SNAKE_CASE : Dict = model.classifier.weight _SCREAMING_SNAKE_CASE : Optional[int] = model.classifier.bias return tf_to_pt_map def _lowerCAmelCase ( lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Union[str, Any] ) -> Any: try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model _SCREAMING_SNAKE_CASE : Dict = tf.train.list_variables(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : str = {} for name, shape in init_vars: logger.info(f'''Loading TF weight {name} with shape {shape}''' ) _SCREAMING_SNAKE_CASE : Dict = tf.train.load_variable(lowerCamelCase__, lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Any = array # Build TF to PyTorch weights loading map _SCREAMING_SNAKE_CASE : Optional[Any] = _build_tf_to_pytorch_map(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) for name, pointer in tf_to_pt_map.items(): logger.info(f'''Importing {name}''' ) if name not in tf_weights: logger.info(f'''{name} not in tf pre-trained weights, skipping''' ) continue _SCREAMING_SNAKE_CASE : List[str] = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) _SCREAMING_SNAKE_CASE : int = np.transpose(lowerCamelCase__, (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer _SCREAMING_SNAKE_CASE : Any = array.squeeze().transpose() else: _SCREAMING_SNAKE_CASE : Optional[Any] = np.transpose(lowerCamelCase__, (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(f'''Initialize PyTorch weight {name} {array.shape}''' ) _SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(lowerCamelCase__ ) tf_weights.pop(lowerCamelCase__, lowerCamelCase__ ) tf_weights.pop(name + "/RMSProp", lowerCamelCase__ ) tf_weights.pop(name + "/RMSProp_1", lowerCamelCase__ ) tf_weights.pop(name + "/ExponentialMovingAverage", lowerCamelCase__ ) logger.info(f'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}''' ) return model def _lowerCAmelCase ( lowerCamelCase__ : torch.Tensor, lowerCamelCase__ : nn.Convad ) -> torch.Tensor: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = features.shape[-2:] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = conv_layer.stride _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = conv_layer.kernel_size if in_height % stride_height == 0: _SCREAMING_SNAKE_CASE : str = max(kernel_height - stride_height, 0 ) else: _SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height), 0 ) if in_width % stride_width == 0: _SCREAMING_SNAKE_CASE : Any = max(kernel_width - stride_width, 0 ) else: _SCREAMING_SNAKE_CASE : Union[str, Any] = max(kernel_width - (in_width % stride_width), 0 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = pad_along_width // 2 _SCREAMING_SNAKE_CASE : Tuple = pad_along_width - pad_left _SCREAMING_SNAKE_CASE : Union[str, Any] = pad_along_height // 2 _SCREAMING_SNAKE_CASE : str = pad_along_height - pad_top _SCREAMING_SNAKE_CASE : str = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowerCamelCase__, lowerCamelCase__, "constant", 0.0 ) class UpperCamelCase ( nn.Module ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = 1 , snake_case__ = 1 , snake_case__ = False , snake_case__ = True , snake_case__ = True , ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE : Dict = config if in_channels % groups != 0: raise ValueError(F'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(F'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) _SCREAMING_SNAKE_CASE : Optional[int] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _SCREAMING_SNAKE_CASE : Optional[int] = nn.Convad( in_channels=snake_case__ , out_channels=snake_case__ , kernel_size=snake_case__ , stride=snake_case__ , padding=snake_case__ , groups=snake_case__ , bias=snake_case__ , padding_mode="zeros" , ) if use_normalization: _SCREAMING_SNAKE_CASE : int = nn.BatchNormad( num_features=snake_case__ , eps=config.layer_norm_eps , momentum=0.9_997 , affine=snake_case__ , track_running_stats=snake_case__ , ) else: _SCREAMING_SNAKE_CASE : Optional[int] = None if use_activation: if isinstance(snake_case__ , snake_case__ ): _SCREAMING_SNAKE_CASE : Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , snake_case__ ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ACTaFN[config.hidden_act] else: _SCREAMING_SNAKE_CASE : Any = config.hidden_act else: _SCREAMING_SNAKE_CASE : Any = None def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" if self.config.tf_padding: _SCREAMING_SNAKE_CASE : List[str] = apply_tf_padding(snake_case__ , self.convolution ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.convolution(snake_case__ ) if self.normalization is not None: _SCREAMING_SNAKE_CASE : Dict = self.normalization(snake_case__ ) if self.activation is not None: _SCREAMING_SNAKE_CASE : List[str] = self.activation(snake_case__ ) return features class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): A__ = MobileNetVaConfig A__ = load_tf_weights_in_mobilenet_va A__ = """mobilenet_v1""" A__ = """pixel_values""" A__ = False def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" if isinstance(snake_case__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(snake_case__ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowercase_ : Union[str, Any] = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowercase_ : str = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , __SCREAMING_SNAKE_CASE , ) class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , snake_case__ , snake_case__ = True ): """simple docstring""" super().__init__(snake_case__ ) _SCREAMING_SNAKE_CASE : Any = config _SCREAMING_SNAKE_CASE : int = 32 _SCREAMING_SNAKE_CASE : Union[str, Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) _SCREAMING_SNAKE_CASE : int = MobileNetVaConvLayer( snake_case__ , in_channels=config.num_channels , out_channels=snake_case__ , kernel_size=3 , stride=2 , ) _SCREAMING_SNAKE_CASE : int = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _SCREAMING_SNAKE_CASE : List[str] = nn.ModuleList() for i in range(13 ): _SCREAMING_SNAKE_CASE : Dict = out_channels if strides[i] == 2 or i == 0: depth *= 2 _SCREAMING_SNAKE_CASE : int = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( snake_case__ , in_channels=snake_case__ , out_channels=snake_case__ , kernel_size=3 , stride=strides[i] , groups=snake_case__ , ) ) self.layer.append( MobileNetVaConvLayer( snake_case__ , in_channels=snake_case__ , out_channels=snake_case__ , kernel_size=1 , ) ) _SCREAMING_SNAKE_CASE : List[Any] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ = None , snake_case__ = None , snake_case__ = None , ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE : Tuple = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.conv_stem(snake_case__ ) _SCREAMING_SNAKE_CASE : Dict = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _SCREAMING_SNAKE_CASE : Optional[Any] = layer_module(snake_case__ ) if output_hidden_states: _SCREAMING_SNAKE_CASE : Tuple = all_hidden_states + (hidden_states,) _SCREAMING_SNAKE_CASE : Optional[int] = hidden_states if self.pooler is not None: _SCREAMING_SNAKE_CASE : List[str] = torch.flatten(self.pooler(snake_case__ ) , start_dim=1 ) else: _SCREAMING_SNAKE_CASE : int = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case__ , pooler_output=snake_case__ , hidden_states=snake_case__ , ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , __SCREAMING_SNAKE_CASE , ) class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , snake_case__ ): """simple docstring""" super().__init__(snake_case__ ) _SCREAMING_SNAKE_CASE : Dict = config.num_labels _SCREAMING_SNAKE_CASE : int = MobileNetVaModel(snake_case__ ) _SCREAMING_SNAKE_CASE : int = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=snake_case__ ) _SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(snake_case__ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE : List[Any] = self.mobilenet_va(snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = outputs.pooler_output if return_dict else outputs[1] _SCREAMING_SNAKE_CASE : int = self.classifier(self.dropout(snake_case__ ) ) _SCREAMING_SNAKE_CASE : List[str] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _SCREAMING_SNAKE_CASE : int = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _SCREAMING_SNAKE_CASE : List[str] = "single_label_classification" else: _SCREAMING_SNAKE_CASE : Optional[int] = "multi_label_classification" if self.config.problem_type == "regression": _SCREAMING_SNAKE_CASE : Dict = MSELoss() if self.num_labels == 1: _SCREAMING_SNAKE_CASE : int = loss_fct(logits.squeeze() , labels.squeeze() ) else: _SCREAMING_SNAKE_CASE : Union[str, Any] = loss_fct(snake_case__ , snake_case__ ) elif self.config.problem_type == "single_label_classification": _SCREAMING_SNAKE_CASE : List[str] = CrossEntropyLoss() _SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _SCREAMING_SNAKE_CASE : int = BCEWithLogitsLoss() _SCREAMING_SNAKE_CASE : Union[str, Any] = loss_fct(snake_case__ , snake_case__ ) if not return_dict: _SCREAMING_SNAKE_CASE : Optional[int] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=snake_case__ , logits=snake_case__ , hidden_states=outputs.hidden_states , )
295
"""simple docstring""" def _lowerCAmelCase ( lowerCamelCase__ : str, lowerCamelCase__ : str ) -> Union[str, Any]: print("\nThe shortest path matrix using Floyd Warshall algorithm\n" ) for i in range(lowerCamelCase__ ): for j in range(lowerCamelCase__ ): if dist[i][j] != float("inf" ): print(int(dist[i][j] ), end="\t" ) else: print("INF", end="\t" ) print() def _lowerCAmelCase ( lowerCamelCase__ : Dict, lowerCamelCase__ : Any ) -> List[str]: _SCREAMING_SNAKE_CASE : List[Any] = [[float("inf" ) for _ in range(lowerCamelCase__ )] for _ in range(lowerCamelCase__ )] for i in range(lowerCamelCase__ ): for j in range(lowerCamelCase__ ): _SCREAMING_SNAKE_CASE : List[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(lowerCamelCase__ ): # looping through rows of graph array for i in range(lowerCamelCase__ ): # looping through columns of graph array for j in range(lowerCamelCase__ ): if ( dist[i][k] != float("inf" ) and dist[k][j] != float("inf" ) and dist[i][k] + dist[k][j] < dist[i][j] ): _SCREAMING_SNAKE_CASE : List[Any] = dist[i][k] + dist[k][j] _print_dist(lowerCamelCase__, lowerCamelCase__ ) return dist, v if __name__ == "__main__": lowercase_ : Tuple = int(input('''Enter number of vertices: ''')) lowercase_ : List[Any] = int(input('''Enter number of edges: ''')) lowercase_ : Optional[Any] = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): lowercase_ : Tuple = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) lowercase_ : str = int(input('''Enter source:''')) lowercase_ : Optional[Any] = int(input('''Enter destination:''')) lowercase_ : Union[str, Any] = float(input('''Enter weight:''')) lowercase_ : str = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
295
1
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) # TODO Update this A__ : Tuple = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Tuple = 'esm' def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = vocab_size __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : str = num_hidden_layers __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : Any = intermediate_size __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : Optional[int] = max_position_embeddings __lowerCamelCase : str = initializer_range __lowerCamelCase : Optional[int] = layer_norm_eps __lowerCamelCase : List[str] = position_embedding_type __lowerCamelCase : int = use_cache __lowerCamelCase : Optional[Any] = emb_layer_norm_before __lowerCamelCase : Optional[Any] = token_dropout __lowerCamelCase : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) __lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) __lowerCamelCase : List[str] = get_default_vocab_list() else: __lowerCamelCase : Optional[Any] = vocab_list else: __lowerCamelCase : Dict = None __lowerCamelCase : Optional[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Any = super().to_dict() if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : int = self.esmfold_config.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str = None lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : float = 0 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : int = 1_2_8 lowerCamelCase : "TrunkConfig" = None def lowercase_ ( self ) -> Any: if self.trunk is None: __lowerCamelCase : List[str] = TrunkConfig() elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = TrunkConfig(**self.trunk ) def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[int] = asdict(self ) __lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 4_8 lowerCamelCase : int = 1_0_2_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : float = 0 lowerCamelCase : float = 0 lowerCamelCase : bool = False lowerCamelCase : int = 4 lowerCamelCase : Optional[int] = 1_2_8 lowerCamelCase : "StructureModuleConfig" = None def lowercase_ ( self ) -> Optional[int]: if self.structure_module is None: __lowerCamelCase : Dict = StructureModuleConfig() elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) __lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width __lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : List[str] = asdict(self ) __lowerCamelCase : int = self.structure_module.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 3_8_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_6 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_2 lowerCamelCase : int = 4 lowerCamelCase : int = 8 lowerCamelCase : float = 0.1 lowerCamelCase : int = 8 lowerCamelCase : int = 1 lowerCamelCase : int = 2 lowerCamelCase : int = 7 lowerCamelCase : int = 1_0 lowerCamelCase : float = 1e-8 lowerCamelCase : float = 1e5 def lowercase_ ( self ) -> Any: return asdict(self ) def UpperCAmelCase__ ( ) -> Optional[Any]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
13
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _UpperCAmelCase ( _lowerCamelCase : int ) -> int: _lowerCAmelCase : Any = prime_factors(_lowerCamelCase ) if is_square_free(_lowerCamelCase ): return -1 if len(_lowerCamelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
384
0
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE_ ( metaclass=__lowercase ): '''simple docstring''' lowercase : str = ["onnx"] def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]: requires_backends(self , ['onnx'] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : int ) -> List[str]: requires_backends(cls , ['onnx'] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Dict: requires_backends(cls , ['onnx'] )
706
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' lowercase : Tuple = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 5_02_57 , SCREAMING_SNAKE_CASE__ : int = 10_24 , SCREAMING_SNAKE_CASE__ : int = 7_68 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "gelu_new" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 1e-5 , SCREAMING_SNAKE_CASE__ : float = 0.0_2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> List[str]: super().__init__() A : str =prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' f' `n_embd`: {n_embd} are not equal.' ) A : List[Any] =prefix_inner_dim A : Dict =prefix_hidden_dim A : List[str] =( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) A : Optional[int] =( nn.Linear(self.prefix_hidden_dim , SCREAMING_SNAKE_CASE__ ) if self.prefix_hidden_dim is not None else nn.Identity() ) A : Dict =GPTaConfig( vocab_size=SCREAMING_SNAKE_CASE__ , n_positions=SCREAMING_SNAKE_CASE__ , n_embd=SCREAMING_SNAKE_CASE__ , n_layer=SCREAMING_SNAKE_CASE__ , n_head=SCREAMING_SNAKE_CASE__ , n_inner=SCREAMING_SNAKE_CASE__ , activation_function=SCREAMING_SNAKE_CASE__ , resid_pdrop=SCREAMING_SNAKE_CASE__ , embd_pdrop=SCREAMING_SNAKE_CASE__ , attn_pdrop=SCREAMING_SNAKE_CASE__ , layer_norm_epsilon=SCREAMING_SNAKE_CASE__ , initializer_range=SCREAMING_SNAKE_CASE__ , scale_attn_weights=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ , scale_attn_by_inverse_layer_idx=SCREAMING_SNAKE_CASE__ , reorder_and_upcast_attn=SCREAMING_SNAKE_CASE__ , ) A : Dict =GPTaLMHeadModel(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , ) -> Optional[Any]: A : str =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ ) A : Any =self.encode_prefix(SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =self.decode_prefix(SCREAMING_SNAKE_CASE__ ) A : Optional[int] =torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: A : int =self.get_dummy_token(input_ids.shape[0] , input_ids.device ) A : Optional[int] =torch.cat((dummy_token, input_ids) , dim=1 ) A : Dict =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : torch.device ) -> torch.Tensor: return torch.zeros(SCREAMING_SNAKE_CASE__ , self.prefix_length , dtype=torch.intaa , device=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: return self.encode_prefix(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Dict: A : Dict =torch.split(SCREAMING_SNAKE_CASE__ , 1 , dim=0 ) A : int =[] A : Optional[int] =[] for feature in features: A : int =self.decode_prefix(feature.to(SCREAMING_SNAKE_CASE__ ) ) # back to the clip feature # Only support beam search for now A , A : Dict =self.generate_beam( input_embeds=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) A : str =torch.stack(SCREAMING_SNAKE_CASE__ ) A : int =torch.stack(SCREAMING_SNAKE_CASE__ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : int = 67 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Dict: A : Dict =eos_token_id A : str =None A : List[Any] =None A : List[Any] =torch.ones(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.int ) A : str =torch.zeros(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.bool ) if input_embeds is not None: A : Any =input_embeds else: A : List[Any] =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ): A : Any =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ ) A : str =outputs.logits A : Union[str, Any] =logits[:, -1, :] / (temperature if temperature > 0 else 1.0) A : List[str] =logits.softmax(-1 ).log() if scores is None: A , A : Any =logits.topk(SCREAMING_SNAKE_CASE__ , -1 ) A : Any =generated.expand(SCREAMING_SNAKE_CASE__ , *generated.shape[1:] ) A , A : Tuple =next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: A : Union[str, Any] =next_tokens else: A : str =tokens.expand(SCREAMING_SNAKE_CASE__ , *tokens.shape[1:] ) A : Optional[int] =torch.cat((tokens, next_tokens) , dim=1 ) else: A : Optional[Any] =-float(np.inf ) A : Tuple =0 A : Optional[Any] =scores[:, None] + logits seq_lengths[~is_stopped] += 1 A : int =scores_sum / seq_lengths[:, None] A , A : Optional[int] =scores_sum_average.view(-1 ).topk(SCREAMING_SNAKE_CASE__ , -1 ) A : Dict =next_tokens // scores_sum.shape[1] A : Optional[Any] =seq_lengths[next_tokens_source] A : Tuple =next_tokens % scores_sum.shape[1] A : Optional[Any] =next_tokens.unsqueeze(1 ) A : Optional[Any] =tokens[next_tokens_source] A : Any =torch.cat((tokens, next_tokens) , dim=1 ) A : List[str] =generated[next_tokens_source] A : List[Any] =scores_sum_average * seq_lengths A : Optional[Any] =is_stopped[next_tokens_source] A : Optional[int] =self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) A : Any =torch.cat((generated, next_token_embed) , dim=1 ) A : Optional[int] =is_stopped + next_tokens.eq(SCREAMING_SNAKE_CASE__ ).squeeze() if is_stopped.all(): break A : Optional[Any] =scores / seq_lengths A : str =scores.argsort(descending=SCREAMING_SNAKE_CASE__ ) # tokens tensors are already padded to max_seq_length A : Optional[Any] =[tokens[i] for i in order] A : Any =torch.stack(SCREAMING_SNAKE_CASE__ , dim=0 ) A : str =torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
661
0
def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[str] = len(_lowercase ) for _ in range(_lowercase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: UpperCAmelCase_, UpperCAmelCase_ : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __a = list(range(10, 0, -1)) print(F"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
30
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCAmelCase : List[Any] = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : str = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = ['''LayoutLMv2FeatureExtractor'''] _UpperCAmelCase : str = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys _UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
107
0
import os import re import shutil import sys import tempfile import unittest import black _lowercase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _lowercase = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class a_ ( unittest.TestCase ): def lowercase__ ( self : Optional[Any] ): __snake_case = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) ) __snake_case = self.transformer_dir shutil.copy( os.path.join(lowercase__ , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , ) def lowercase__ ( self : Optional[Any] ): __snake_case = """src/transformers""" shutil.rmtree(self.transformer_dir ) def lowercase__ ( self : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : int=None ): __snake_case = comment + F'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: __snake_case = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result __snake_case = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) __snake_case = black.format_str(lowercase__ , mode=lowercase__ ) __snake_case = os.path.join(self.transformer_dir , 'new_code.py' ) with open(lowercase__ , 'w' , newline='\n' ) as f: f.write(lowercase__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase__ ) with open(lowercase__ , 'r' ) as f: self.assertTrue(f.read() , lowercase__ ) def lowercase__ ( self : List[Any] ): __snake_case = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(lowercase__ , lowercase__ ) def lowercase__ ( self : Optional[int] ): # Base copy consistency self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , lowercase__ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , lowercase__ ) , ) # Copy consistency with a really long name __snake_case = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}' , F'{long_class_name}LMPredictionHead' , re.sub('Bert' , lowercase__ , lowercase__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , lowercase__ , overwrite_result=re.sub('Bert' , 'TestModel' , lowercase__ ) , ) def lowercase__ ( self : str ): __snake_case = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] __snake_case = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) __snake_case = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __snake_case = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) __snake_case = check_copies.convert_to_localized_md( lowercase__ , lowercase__ , localized_readme['format_model_list'] ) self.assertFalse(lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) __snake_case = check_copies.convert_to_localized_md( lowercase__ , lowercase__ , localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowercase__ ) __snake_case = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) __snake_case = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __snake_case = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __snake_case = check_copies.convert_to_localized_md( lowercase__ , lowercase__ , localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(lowercase__ , lowercase__ )
704
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( UpperCAmelCase__ , unittest.TestCase ): lowercase_ : int = RobertaTokenizer lowercase_ : int = RobertaTokenizerFast lowercase_ : int = True lowercase_ : Dict = {'''cls_token''': '''<s>'''} def lowercase__ ( self : Union[str, Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __snake_case = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) __snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __snake_case = {'unk_token': '<unk>'} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__lowerCAmelCase ) ) def lowercase__ ( self : Tuple , **__lowerCAmelCase : List[str] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def lowercase__ ( self : Dict , **__lowerCAmelCase : Tuple ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def lowercase__ ( self : Optional[Any] , __lowerCAmelCase : int ): __snake_case = 'lower newer' __snake_case = 'lower newer' return input_text, output_text def lowercase__ ( self : Union[str, Any] ): __snake_case = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __snake_case = 'lower newer' __snake_case = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] __snake_case = tokenizer.tokenize(__lowerCAmelCase ) # , add_prefix_space=True) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def lowercase__ ( self : Tuple ): __snake_case = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=__lowerCAmelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=__lowerCAmelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def lowercase__ ( self : int ): __snake_case = self.tokenizer_class.from_pretrained('roberta-base' ) __snake_case = tokenizer.encode('sequence builders' , add_special_tokens=__lowerCAmelCase ) __snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=__lowerCAmelCase ) __snake_case = tokenizer.encode( 'sequence builders' , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) __snake_case = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) __snake_case = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase ) __snake_case = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowercase__ ( self : int ): __snake_case = self.get_tokenizer() __snake_case = 'Encode this sequence.' __snake_case = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments __snake_case = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) __snake_case = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) __snake_case = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing spaces after special tokens __snake_case = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase )} ) # mask token has a left space __snake_case = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) __snake_case = 'Encode <mask> sequence' __snake_case = 'Encode <mask>sequence' __snake_case = tokenizer.encode(__lowerCAmelCase ) __snake_case = encoded.index(__lowerCAmelCase ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) __snake_case = tokenizer.encode(__lowerCAmelCase ) __snake_case = encoded.index(__lowerCAmelCase ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) def lowercase__ ( self : List[str] ): pass def lowercase__ ( self : Dict ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __snake_case = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __snake_case = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __snake_case = 'A, <mask> AllenNLP sentence.' __snake_case = tokenizer_r.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) __snake_case = tokenizer_p.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) __snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) __snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( __lowerCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( __lowerCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def lowercase__ ( self : Optional[int] ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __snake_case = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __snake_case = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , __lowerCAmelCase ) self.assertEqual(post_processor_state['add_prefix_space'] , __lowerCAmelCase ) self.assertEqual(post_processor_state['trim_offsets'] , __lowerCAmelCase ) def lowercase__ ( self : Optional[Any] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __snake_case = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` __snake_case = F'{text_of_1_token} {text_of_1_token}' __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ) + 1, len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ) + 1, len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ), len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ), len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ) + 1, 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ), 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ), 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
427
0
import os from collections import deque import torch from torch.utils.data import Dataset class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , lowerCAmelCase : Any="" , lowerCAmelCase : Union[str, Any]="train") -> List[Any]: """simple docstring""" assert os.path.isdir(lowerCAmelCase) _snake_case : Optional[Any] = [] _snake_case : int = os.listdir(lowerCAmelCase) for story_filename in story_filenames_list: if "summary" in story_filename: continue _snake_case : Any = os.path.join(lowerCAmelCase , lowerCAmelCase) if not os.path.isfile(lowerCAmelCase): continue self.documents.append(lowerCAmelCase) def __len__( self : List[str]) -> int: """simple docstring""" return len(self.documents) def __getitem__( self : List[str] , lowerCAmelCase : List[Any]) -> str: """simple docstring""" _snake_case : str = self.documents[idx] _snake_case : List[str] = document_path.split("""/""")[-1] with open(lowerCAmelCase , encoding="""utf-8""") as source: _snake_case : str = source.read() _snake_case , _snake_case : Any = process_story(lowerCAmelCase) return document_name, story_lines, summary_lines def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: _snake_case : Optional[int] = list(filter(lambda SCREAMING_SNAKE_CASE__ : len(SCREAMING_SNAKE_CASE__ ) != 0 , [line.strip() for line in raw_story.split("""\n""" )] ) ) # for some unknown reason some lines miss a period, add it _snake_case : Dict = [_add_missing_period(SCREAMING_SNAKE_CASE__ ) for line in nonempty_lines] # gather article lines _snake_case : Dict = [] _snake_case : List[Any] = deque(SCREAMING_SNAKE_CASE__ ) while True: try: _snake_case : Union[str, Any] = lines.popleft() if element.startswith("""@highlight""" ): break story_lines.append(SCREAMING_SNAKE_CASE__ ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines _snake_case : Optional[Any] = list(filter(lambda SCREAMING_SNAKE_CASE__ : not t.startswith("""@highlight""" ) , SCREAMING_SNAKE_CASE__ ) ) return story_lines, summary_lines def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: _snake_case : Optional[Any] = [""".""", """!""", """?""", """...""", """'""", """`""", """\"""", """\u2019""", """\u2019""", """)"""] if line.startswith("""@highlight""" ): return line if line[-1] in END_TOKENS: return line return line + "." def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> Any: if len(SCREAMING_SNAKE_CASE__ ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(SCREAMING_SNAKE_CASE__ )) ) return sequence def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: _snake_case : Optional[int] = torch.ones_like(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = sequence == pad_token_id _snake_case : List[Any] = 0 return mask def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: _snake_case : Tuple = [tokenizer.encode(SCREAMING_SNAKE_CASE__ ) for line in story_lines] _snake_case : Union[str, Any] = [token for sentence in story_lines_token_ids for token in sentence] _snake_case : Dict = [tokenizer.encode(SCREAMING_SNAKE_CASE__ ) for line in summary_lines] _snake_case : List[str] = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Any: _snake_case : List[str] = [] for sequence in batch: _snake_case : Tuple = -1 _snake_case : List[str] = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(SCREAMING_SNAKE_CASE__ ) return torch.tensor(SCREAMING_SNAKE_CASE__ )
477
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
477
1
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase__ : Tuple = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) UpperCamelCase__ : Union[str, Any] = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase__ : str = "sshleifer/tiny-mbart" @require_torch class _a (_lowerCamelCase): """simple docstring""" def UpperCamelCase ( self , A__=False , A__=None , A__=True , A__=True , A__=True , A__=True , ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.run_trainer( eval_steps=1 , max_len=12 , model_name=A__ , num_train_epochs=1 , distributed=A__ , extra_args_str=A__ , predict_with_generate=A__ , do_train=A__ , do_eval=A__ , do_predict=A__ , ) _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(os.path.join(A__ , """trainer_state.json""" ) ).log_history if not do_eval: return _SCREAMING_SNAKE_CASE = [log for log in logs if """eval_loss""" in log.keys()] _SCREAMING_SNAKE_CASE = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats _SCREAMING_SNAKE_CASE = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , A__ ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def UpperCamelCase ( self ) -> Optional[int]: self.run_seqaseq_quick() @require_torch_multi_gpu def UpperCamelCase ( self ) -> Optional[Any]: self.run_seqaseq_quick(distributed=A__ ) @require_torch_multi_gpu def UpperCamelCase ( self ) -> Union[str, Any]: self.run_seqaseq_quick(distributed=A__ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> Any: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> Tuple: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> str: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=A__ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> List[str]: self.run_seqaseq_quick( distributed=A__ , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=A__ ) @require_apex @require_torch_gpu def UpperCamelCase ( self ) -> Optional[Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def UpperCamelCase ( self , A__ ) -> List[Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout _SCREAMING_SNAKE_CASE = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } _SCREAMING_SNAKE_CASE = experiments[experiment_id] _SCREAMING_SNAKE_CASE = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} _SCREAMING_SNAKE_CASE = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**A__ , extra_args_str=data["""extra_args_str"""] ) _SCREAMING_SNAKE_CASE = len(re.findall(A__ , cl.err ) ) self.assertEqual(A__ , data["""n_matches"""] ) @slow def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=A__ , learning_rate=3E-4 , num_train_epochs=10 , distributed=A__ , ) # Check metrics _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(os.path.join(A__ , """trainer_state.json""" ) ).log_history _SCREAMING_SNAKE_CASE = [log for log in logs if """eval_loss""" in log.keys()] _SCREAMING_SNAKE_CASE = eval_metrics[0] _SCREAMING_SNAKE_CASE = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , A__ ) # test if do_predict saves generations and metrics _SCREAMING_SNAKE_CASE = os.listdir(A__ ) _SCREAMING_SNAKE_CASE = {os.path.basename(A__ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def UpperCamelCase ( self ) -> Dict: from transformers.training_args import OptimizerNames def train_and_return_metrics(A__ ) -> Tuple[int, float]: _SCREAMING_SNAKE_CASE = """--skip_memory_metrics 0""" _SCREAMING_SNAKE_CASE = self.run_trainer( max_len=1_28 , model_name=A__ , learning_rate=3E-4 , num_train_epochs=1 , optim=A__ , distributed=A__ , extra_args_str=A__ , do_eval=A__ , do_predict=A__ , n_gpus_to_use=1 , ) # Check metrics _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(Path(A__ , """trainer_state.json""" ) ).log_history _SCREAMING_SNAKE_CASE = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) _SCREAMING_SNAKE_CASE = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) _SCREAMING_SNAKE_CASE = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) _SCREAMING_SNAKE_CASE = gpu_alloc_mem_orig - gpu_alloc_mem_bnb _SCREAMING_SNAKE_CASE = gpu_peak_mem_orig + gpu_alloc_mem_orig _SCREAMING_SNAKE_CASE = gpu_peak_mem_bnb + gpu_alloc_mem_bnb _SCREAMING_SNAKE_CASE = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings _SCREAMING_SNAKE_CASE = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( A__ , A__ , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" F" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" F" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( A__ , A__ , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" F" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" F" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( A__ , A__ , F"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}" ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ = 3E-3 , A__ = "adafactor" , A__ = False , A__ = None , A__ = 0 , A__ = True , A__ = True , A__ = True , A__ = True , A__ = None , ) -> Dict: _SCREAMING_SNAKE_CASE = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" _SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() _SCREAMING_SNAKE_CASE = F"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(A__ )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(A__ )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() _SCREAMING_SNAKE_CASE = F"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(A__ )}\n ".split() _SCREAMING_SNAKE_CASE = """ --do_predict """.split() _SCREAMING_SNAKE_CASE = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: _SCREAMING_SNAKE_CASE = get_gpu_count() _SCREAMING_SNAKE_CASE = get_torch_dist_unique_port() _SCREAMING_SNAKE_CASE = F"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() _SCREAMING_SNAKE_CASE = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A__ , env=self.get_env() ) else: _SCREAMING_SNAKE_CASE = ["""run_translation.py"""] + args with patch.object(A__ , """argv""" , A__ ): main() return output_dir
0
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(SCREAMING_SNAKE_CASE_ ): print(F"{i}\t\t{d}" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" for j in range(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: return True return False def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[float]: """simple docstring""" _SCREAMING_SNAKE_CASE = [float("""inf""" )] * vertex_count _SCREAMING_SNAKE_CASE = 0.0 for _ in range(vertex_count - 1 ): for j in range(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: _SCREAMING_SNAKE_CASE = distance[u] + w _SCREAMING_SNAKE_CASE = check_negative_cycle(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if negative_cycle_exists: raise Exception("""Negative cycle found""" ) return distance if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : int = int(input("Enter number of vertices: ").strip()) UpperCamelCase__ : int = int(input("Enter number of edges: ").strip()) UpperCamelCase__ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Dict = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) UpperCamelCase__ : Optional[Any] = {"src": src, "dst": dest, "weight": weight} UpperCamelCase__ : Optional[Any] = int(input("\nEnter shortest path source:").strip()) UpperCamelCase__ : Any = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
0
1
from __future__ import annotations from typing import Any class __lowercase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None: A , A : Optional[int] = row, column A : Optional[Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )] def __str__( self ) -> str: A : List[str] = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier A : Dict = 0 for row_vector in self.array: for obj in row_vector: A : Dict = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) ) A : Any = f'%{max_element_length}s' # Make string and return def single_line(__UpperCAmelCase ) -> str: nonlocal string_format_identifier A : List[str] = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array ) return s def __repr__( self ) -> str: return str(self ) def snake_case ( self , __UpperCAmelCase ) -> bool: if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __UpperCAmelCase ) -> Any: assert self.validate_indicies(__UpperCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: assert self.validate_indicies(__UpperCAmelCase ) A : str = value def __add__( self , __UpperCAmelCase ) -> Matrix: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == another.row and self.column == another.column # Add A : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): A : int = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: A : Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): A : List[str] = -self[r, c] return result def __sub__( self , __UpperCAmelCase ) -> Matrix: return self + (-another) def __mul__( self , __UpperCAmelCase ) -> Matrix: if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication A : str = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): A : List[str] = self[r, c] * another return result elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication assert self.column == another.row A : Any = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: A : Union[str, Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})' raise TypeError(__UpperCAmelCase ) def snake_case ( self ) -> Matrix: A : Tuple = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): A : Tuple = self[r, c] return result def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate A : Optional[Any] = v.transpose() A : Any = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def snake_case__ ( ): # a^(-1) A : Any = Matrix(3 , 3 , 0 ) for i in range(3 ): A : int = 1 print(F'a^(-1) is {ainv}' ) # u, v A : Union[str, Any] = Matrix(3 , 1 , 0 ) A , A , A : Union[str, Any] = 1, 2, -3 A : Union[str, Any] = Matrix(3 , 1 , 0 ) A , A , A : Optional[int] = 4, -2, 5 print(F'u is {u}' ) print(F'v is {v}' ) print(F'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(F'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase_ , lowerCamelCase_ )}' ) def snake_case__ ( ): import doctest doctest.testmod() testa()
542
def snake_case__ ( lowerCamelCase_ = 1000 ): return sum(e for e in range(3 , lowerCamelCase_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
542
1
from ...processing_utils import ProcessorMixin class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = '''SpeechT5FeatureExtractor''' SCREAMING_SNAKE_CASE__ : Optional[int] = '''SpeechT5Tokenizer''' def __init__( self :Optional[int] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> str: super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __call__( self :Optional[int] , *lowerCAmelCase__ :Optional[int] , **lowerCAmelCase__ :str ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop('''audio''' , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop('''text''' , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = kwargs.pop('''text_target''' , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = kwargs.pop('''audio_target''' , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = kwargs.pop('''sampling_rate''' , lowerCAmelCase__ ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: __SCREAMING_SNAKE_CASE : List[Any] = self.feature_extractor(lowerCAmelCase__ , *lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , **lowerCAmelCase__ ) elif text is not None: __SCREAMING_SNAKE_CASE : str = self.tokenizer(lowerCAmelCase__ , **lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Dict = None if audio_target is not None: __SCREAMING_SNAKE_CASE : str = self.feature_extractor(audio_target=lowerCAmelCase__ , *lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = targets['''input_values'''] elif text_target is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = targets['''input_ids'''] else: __SCREAMING_SNAKE_CASE : Optional[int] = None if inputs is None: return targets if targets is not None: __SCREAMING_SNAKE_CASE : Any = labels __SCREAMING_SNAKE_CASE : Any = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: __SCREAMING_SNAKE_CASE : Any = decoder_attention_mask return inputs def __magic_name__( self :List[str] , *lowerCAmelCase__ :Union[str, Any] , **lowerCAmelCase__ :int ) -> Any: __SCREAMING_SNAKE_CASE : Any = kwargs.pop('''input_values''' , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop('''input_ids''' , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = kwargs.pop('''labels''' , lowerCAmelCase__ ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: __SCREAMING_SNAKE_CASE : str = self.feature_extractor.pad(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) elif input_ids is not None: __SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.pad(lowerCAmelCase__ , **lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = None if labels is not None: if "input_ids" in labels or (isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and "input_ids" in labels[0]): __SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.pad(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = targets['''input_ids'''] else: __SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extractor.feature_size __SCREAMING_SNAKE_CASE : Any = self.feature_extractor.num_mel_bins __SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extractor.pad(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = feature_size_hack __SCREAMING_SNAKE_CASE : List[str] = targets['''input_values'''] else: __SCREAMING_SNAKE_CASE : Dict = None if inputs is None: return targets if targets is not None: __SCREAMING_SNAKE_CASE : Any = labels __SCREAMING_SNAKE_CASE : Any = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: __SCREAMING_SNAKE_CASE : int = decoder_attention_mask return inputs def __magic_name__( self :Union[str, Any] , *lowerCAmelCase__ :Optional[int] , **lowerCAmelCase__ :Optional[int] ) -> Any: return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :Dict , *lowerCAmelCase__ :Union[str, Any] , **lowerCAmelCase__ :int ) -> Optional[int]: return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ )
260
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Optional[Any] ={'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple =[ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __lowerCAmelCase : List[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
260
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : int=3 , lowerCamelCase : int=18 , lowerCamelCase : Tuple=30 , lowerCamelCase : Dict=400 , lowerCamelCase : Optional[int]=True , lowerCamelCase : int=None , lowerCamelCase : List[str]=True , lowerCamelCase : List[Any]=None , lowerCamelCase : Any=True , lowerCamelCase : int=[0.5, 0.5, 0.5] , lowerCamelCase : List[Any]=[0.5, 0.5, 0.5] , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = size if size is not None else {"""shortest_edge""": 18} _UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def lowerCamelCase ( self : Dict ) -> List[str]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = LevitImageProcessor if is_vision_available() else None def lowerCamelCase ( self : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase = LevitImageProcessingTester(self ) @property def lowerCamelCase ( self : int ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase ( self : int ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) def lowerCamelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCamelCase ( self : str ) -> int: """simple docstring""" pass def lowerCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase ( self : Optional[int] ) -> Any: """simple docstring""" # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
108
def UpperCAmelCase_ ( _UpperCAmelCase ): lowerCamelCase_: Any = current_set.copy() for row_index, row in enumerate(_UpperCAmelCase ): lowerCamelCase_: Optional[Any] = row[0] for column_index, column in enumerate(_UpperCAmelCase ): if magnitude == 0: lowerCamelCase_: Union[str, Any] = column continue lowerCamelCase_: Any = column / magnitude # Subtract to cancel term lowerCamelCase_: str = current_set[0] lowerCamelCase_: Union[str, Any] = [first_row] lowerCamelCase_: Optional[int] = current_set[1::] for row in current_set: lowerCamelCase_: List[Any] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(_UpperCAmelCase ) continue for column_index in range(len(_UpperCAmelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(_UpperCAmelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowerCamelCase_: Dict = final_set[0] lowerCamelCase_: List[str] = [] lowerCamelCase_: Union[str, Any] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowerCamelCase_: Any = simplify(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , _UpperCAmelCase ) lowerCamelCase_: Dict = resultant return final_set def UpperCAmelCase_ ( _UpperCAmelCase ): if len(_UpperCAmelCase ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowerCamelCase_: Optional[Any] = len(_UpperCAmelCase ) + 1 if any(len(_UpperCAmelCase ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(_UpperCAmelCase , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(_UpperCAmelCase ) == 1: return [equations[0][-1] / equations[0][0]] lowerCamelCase_: Tuple = equations.copy() if any(0 in row for row in data_set ): lowerCamelCase_: Tuple = data_set.copy() lowerCamelCase_: Tuple = [] for row_index, row in enumerate(_UpperCAmelCase ): if 0 not in row: lowerCamelCase_: Optional[int] = data_set.pop(_UpperCAmelCase ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , _UpperCAmelCase ) lowerCamelCase_: List[Any] = data_set.copy() lowerCamelCase_: str = simplify(_UpperCAmelCase ) lowerCamelCase_: Union[str, Any] = simplified[::-1] lowerCamelCase_: list = [] for row in simplified: lowerCamelCase_: Any = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowerCamelCase_: List[str] = row.copy()[: len(_UpperCAmelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(_UpperCAmelCase ) == 0: solutions.append(0 ) continue lowerCamelCase_: Optional[int] = temp_row[1::] lowerCamelCase_: Optional[Any] = temp_row[::-1] for column_index, column in enumerate(_UpperCAmelCase ): current_solution -= column * solutions[column_index] solutions.append(_UpperCAmelCase ) lowerCamelCase_: List[Any] = [] for item in solutions: final.append(float(round(_UpperCAmelCase , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowercase : str = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
423
0
"""simple docstring""" from math import factorial def __lowerCamelCase ( SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__lowerCAmelCase,__lowerCAmelCase ) or not isinstance(__lowerCAmelCase,__lowerCAmelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _UpperCAmelCase = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _UpperCAmelCase = float(factorial(__lowerCAmelCase ) ) coefficient /= factorial(__lowerCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
712
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class lowerCAmelCase ( unittest.TestCase ): def __A ( self ): _UpperCAmelCase = tf.convert_to_tensor( [ [ 8.2_220_991, # 3rd highest value; idx. 0 -0.5_620_044, 5.23_229_752, 4.0_386_393, -6.8_798_378, -0.54_785_802, -3.2_012_153, 2.92_777_176, 1.88_171_953, 7.35_341_276, # 5th highest value; idx. 9 8.43_207_833, # 2nd highest value; idx. 10 -9.85_711_836, -5.96_209_236, -1.13_039_161, -7.1_115_294, -0.8_369_633, -5.3_186_408, 7.06_427_407, 0.81_369_344, -0.82_023_817, -5.9_179_796, 0.58_813_443, -6.99_778_438, 4.71_551_189, -0.18_771_637, 7.44_020_759, # 4th highest value; idx. 25 9.38_450_987, # 1st highest value; idx. 26 2.12_662_941, -9.32_562_038, 2.35_652_522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_425_518, 4.53_139_238, -5.57_510_464, -6.28_030_699, -7.19_529_503, -4.02_122_551, 1.39_337_037, -6.06_707_057, 1.59_480_517, -9.643_119, 0.03_907_799, 0.67_231_762, -8.88_206_726, 6.27_115_922, # 4th highest value; idx. 13 2.28_520_723, 4.82_767_506, 4.30_421_368, 8.8_275_313, # 2nd highest value; idx. 17 5.44_029_958, # 5th highest value; idx. 18 -4.4_735_794, 7.38_579_536, # 3rd highest value; idx. 20 -2.91_051_663, 2.61_946_077, -2.5_674_762, -9.48_959_302, -4.02_922_645, -1.35_416_918, 9.67_702_323, # 1st highest value; idx. 27 -5.89_478_553, 1.85_370_467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) _UpperCAmelCase = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above _UpperCAmelCase = tf.convert_to_tensor( [8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above _UpperCAmelCase = tf_top_k_top_p_filtering(a__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) _UpperCAmelCase = output[output != -float('inf' )] _UpperCAmelCase = tf.cast( tf.where(tf.not_equal(a__ , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(a__ , a__ , rtol=1E-12 ) tf.debugging.assert_equal(a__ , a__ ) @require_tf class lowerCAmelCase ( unittest.TestCase , snake_case ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowerCAmelCase__ = { """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def __A ( self ): # TF-only test: tf.saved_model export _UpperCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _UpperCAmelCase = 2 _UpperCAmelCase = 2 class lowerCAmelCase ( tf.Module ): def __init__( self , a__ ): super(a__ , self ).__init__() _UpperCAmelCase = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ), tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ), ) , jit_compile=a__ , ) def __A ( self , a__ , a__ ): _UpperCAmelCase = self.model.generate( input_ids=a__ , attention_mask=a__ , max_new_tokens=a__ , return_dict_in_generate=a__ , ) return {"sequences": outputs["sequences"]} _UpperCAmelCase = [[2, 0], [1_02, 1_03]] _UpperCAmelCase = [[1, 0], [1, 1]] _UpperCAmelCase = DummyModel(model=a__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a__ , a__ , signatures={'serving_default': dummy_model.serving} ) _UpperCAmelCase = tf.saved_model.load(a__ ).signatures['serving_default'] for batch_size in range(1 , len(a__ ) + 1 ): _UpperCAmelCase = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } _UpperCAmelCase = serving_func(**a__ )['sequences'] _UpperCAmelCase = test_model.generate(**a__ , max_new_tokens=a__ ) tf.debugging.assert_equal(a__ , a__ ) @slow def __A ( self ): # TF-only test: tf.saved_model export _UpperCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _UpperCAmelCase = 1 _UpperCAmelCase = 2 class lowerCAmelCase ( tf.Module ): def __init__( self , a__ ): super(a__ , self ).__init__() _UpperCAmelCase = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ), ) , jit_compile=a__ , ) def __A ( self , a__ , a__ ): _UpperCAmelCase = self.model.generate( input_ids=a__ , attention_mask=a__ , max_new_tokens=a__ , return_dict_in_generate=a__ , ) return {"sequences": outputs["sequences"]} _UpperCAmelCase = [[2], [1_02, 1_03]] _UpperCAmelCase = [[1], [1, 1]] _UpperCAmelCase = DummyModel(model=a__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a__ , a__ , signatures={'serving_default': dummy_model.serving} ) _UpperCAmelCase = tf.saved_model.load(a__ ).signatures['serving_default'] for input_row in range(len(a__ ) ): _UpperCAmelCase = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } _UpperCAmelCase = serving_func(**a__ )['sequences'] _UpperCAmelCase = test_model.generate(**a__ , max_new_tokens=a__ ) tf.debugging.assert_equal(a__ , a__ ) @slow @require_tensorflow_text def __A ( self ): # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=a__ ) class lowerCAmelCase ( tf.keras.layers.Layer ): def __init__( self ): super().__init__() _UpperCAmelCase = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(a__ , 'spiece.model' ) , 'rb' ).read() ) _UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def __A ( self , a__ , *a__ , **a__ ): _UpperCAmelCase = self.tokenizer.tokenize(a__ ) _UpperCAmelCase , _UpperCAmelCase = text.pad_model_inputs( a__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) _UpperCAmelCase = self.model.generate(input_ids=a__ , attention_mask=a__ ) return self.tokenizer.detokenize(a__ ) _UpperCAmelCase = CompleteSentenceTransformer() _UpperCAmelCase = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' ) _UpperCAmelCase = complete_model(a__ ) _UpperCAmelCase = tf.keras.Model(a__ , a__ ) keras_model.save(a__ ) def __A ( self ): # Has PT equivalent: this test relies on random sampling _UpperCAmelCase = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } _UpperCAmelCase = 14 _UpperCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _UpperCAmelCase = 'Hello, my dog is cute and' _UpperCAmelCase = tokenizer(a__ , return_tensors='tf' ) _UpperCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _UpperCAmelCase = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) _UpperCAmelCase = model.generate(**a__ , eos_token_id=a__ , **a__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) _UpperCAmelCase = [6_38, 1_98] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) _UpperCAmelCase = model.generate(**a__ , eos_token_id=a__ , **a__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def __A ( self ): # Has PT equivalent: ample use of framework-specific code _UpperCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) _UpperCAmelCase = 'Hugging Face is a technology company based in New York and Paris.' _UpperCAmelCase = bart_tokenizer(a__ , return_tensors='tf' ).input_ids _UpperCAmelCase = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) _UpperCAmelCase = bart_model.generate(a__ ).numpy() class lowerCAmelCase ( snake_case ): def __A ( self , a__ , a__=None , **a__ ): return super().call(a__ , **a__ ) _UpperCAmelCase = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) _UpperCAmelCase = bart_model.generate(a__ , foo='bar' ).numpy() self.assertTrue(np.array_equal(a__ , a__ ) ) class lowerCAmelCase ( bart_model.model.encoder.__class__ ): def __A ( self , a__ , **a__ ): return super().call(a__ , **a__ ) _UpperCAmelCase = FakeEncoder(bart_model.config , bart_model.model.shared ) _UpperCAmelCase = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) _UpperCAmelCase = bart_model.generate(a__ ).numpy() with self.assertRaises(a__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(a__ , foo='bar' )
494
0
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: return int((input_a, input_a).count(0 ) == 0 ) def a__ ( ) -> None: assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
346
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __A = True except ImportError: __A = False __A = logging.get_logger(__name__) # pylint: disable=invalid-name def a__ ( __SCREAMING_SNAKE_CASE ) -> int: return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class snake_case ( __snake_case ): @staticmethod def lowercase_ ( UpperCamelCase__ : ArgumentParser)-> List[str]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = parser.add_parser("add-new-model") add_new_model_parser.add_argument("--testing" , action="store_true" , help="If in testing mode.") add_new_model_parser.add_argument("--testing_file" , type=UpperCamelCase__ , help="Configuration file on which to run.") add_new_model_parser.add_argument( "--path" , type=UpperCamelCase__ , help="Path to cookiecutter. Should only be used for testing purposes.") add_new_model_parser.set_defaults(func=UpperCamelCase__) def __init__( self : Dict , UpperCamelCase__ : bool , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any]=None , *UpperCamelCase__ : Tuple)-> str: '''simple docstring''' __lowerCAmelCase: Dict = testing __lowerCAmelCase: Any = testing_file __lowerCAmelCase: str = path def lowercase_ ( self : int)-> Optional[int]: '''simple docstring''' warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead.") if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n") # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory __lowerCAmelCase: Union[str, Any] = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:2_2]] if len(UpperCamelCase__) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory.") __lowerCAmelCase: Any = ( Path(UpperCamelCase__).parent.parent.parent.parent if self._path is None else Path(self._path).parent.parent ) __lowerCAmelCase: Any = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCamelCase__)) else: with open(self._testing_file , "r") as configuration_file: __lowerCAmelCase: Any = json.load(UpperCamelCase__) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path) , no_input=UpperCamelCase__ , extra_context=UpperCamelCase__ , ) __lowerCAmelCase: Dict = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:2_2]][0] # Retrieve configuration with open(directory + "/configuration.json" , "r") as configuration_file: __lowerCAmelCase: Optional[int] = json.load(UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = configuration["lowercase_modelname"] __lowerCAmelCase: List[str] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f"{directory}/configuration.json") __lowerCAmelCase: Optional[Any] = "PyTorch" in generate_tensorflow_pytorch_and_flax __lowerCAmelCase: str = "TensorFlow" in generate_tensorflow_pytorch_and_flax __lowerCAmelCase: str = "Flax" in generate_tensorflow_pytorch_and_flax __lowerCAmelCase: Any = f"{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}" os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__) os.makedirs(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}" , exist_ok=UpperCamelCase__) # Tests require submodules as they have parent imports with open(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py" , "w"): pass shutil.move( f"{directory}/__init__.py" , f"{model_dir}/__init__.py" , ) shutil.move( f"{directory}/configuration_{lowercase_model_name}.py" , f"{model_dir}/configuration_{lowercase_model_name}.py" , ) def remove_copy_lines(UpperCamelCase__ : int): with open(UpperCamelCase__ , "r") as f: __lowerCAmelCase: int = f.readlines() with open(UpperCamelCase__ , "w") as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCamelCase__) if output_pytorch: if not self._testing: remove_copy_lines(f"{directory}/modeling_{lowercase_model_name}.py") shutil.move( f"{directory}/modeling_{lowercase_model_name}.py" , f"{model_dir}/modeling_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_{lowercase_model_name}.py") os.remove(f"{directory}/test_modeling_{lowercase_model_name}.py") if output_tensorflow: if not self._testing: remove_copy_lines(f"{directory}/modeling_tf_{lowercase_model_name}.py") shutil.move( f"{directory}/modeling_tf_{lowercase_model_name}.py" , f"{model_dir}/modeling_tf_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_tf_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_tf_{lowercase_model_name}.py") os.remove(f"{directory}/test_modeling_tf_{lowercase_model_name}.py") if output_flax: if not self._testing: remove_copy_lines(f"{directory}/modeling_flax_{lowercase_model_name}.py") shutil.move( f"{directory}/modeling_flax_{lowercase_model_name}.py" , f"{model_dir}/modeling_flax_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/test_modeling_flax_{lowercase_model_name}.py" , f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py" , ) else: os.remove(f"{directory}/modeling_flax_{lowercase_model_name}.py") os.remove(f"{directory}/test_modeling_flax_{lowercase_model_name}.py") shutil.move( f"{directory}/{lowercase_model_name}.md" , f"{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md" , ) shutil.move( f"{directory}/tokenization_{lowercase_model_name}.py" , f"{model_dir}/tokenization_{lowercase_model_name}.py" , ) shutil.move( f"{directory}/tokenization_fast_{lowercase_model_name}.py" , f"{model_dir}/tokenization_{lowercase_model_name}_fast.py" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : List[str]): # Create temp file __lowerCAmelCase , __lowerCAmelCase: List[str] = mkstemp() __lowerCAmelCase: Dict = False with fdopen(UpperCamelCase__ , "w") as new_file: with open(UpperCamelCase__) as old_file: for line in old_file: new_file.write(UpperCamelCase__) if line_to_copy_below in line: __lowerCAmelCase: str = True for line_to_copy in lines_to_copy: new_file.write(UpperCamelCase__) if not line_found: raise ValueError(f"Line {line_to_copy_below} was not found in file.") # Copy the file permissions from the old file to the new file copymode(UpperCamelCase__ , UpperCamelCase__) # Remove original file remove(UpperCamelCase__) # Move new file move(UpperCamelCase__ , UpperCamelCase__) def skip_units(UpperCamelCase__ : Union[str, Any]): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCamelCase__ : List[str]): with open(UpperCamelCase__) as datafile: __lowerCAmelCase: Tuple = [] __lowerCAmelCase: str = False __lowerCAmelCase: Optional[int] = False for line in datafile: if "# To replace in: " in line and "##" not in line: __lowerCAmelCase: List[Any] = line.split("\"")[1] __lowerCAmelCase: Dict = skip_units(UpperCamelCase__) elif "# Below: " in line and "##" not in line: __lowerCAmelCase: List[Any] = line.split("\"")[1] __lowerCAmelCase: Any = skip_units(UpperCamelCase__) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) __lowerCAmelCase: List[str] = [] elif "# Replace with" in line and "##" not in line: __lowerCAmelCase: List[str] = [] elif "##" not in line: lines_to_copy.append(UpperCamelCase__) remove(UpperCamelCase__) replace_in_files(f"{directory}/to_replace_{lowercase_model_name}.py") os.rmdir(UpperCamelCase__)
346
1
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowercase : str = TypeVar('T') def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return (position - 1) // 2 def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return (2 * position) + 1 def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return (2 * position) + 2 class A ( Generic[T] ): def __init__( self ) -> None: """simple docstring""" A : list[tuple[T, int]] = [] A : dict[T, int] = {} A : int = 0 def __len__( self ) -> int: """simple docstring""" return self.elements def __repr__( self ) -> str: """simple docstring""" return str(self.heap ) def __lowerCAmelCase ( self ) -> bool: """simple docstring""" return self.elements == 0 def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" self.heap.append((elem, weight) ) A : List[Any] = self.elements self.elements += 1 self._bubble_up(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> T: """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) A, A : List[Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: A, A : Any = self.heap[0] self._bubble_down(SCREAMING_SNAKE_CASE ) return elem def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" A : int = self.position_map[elem] A : Union[str, Any] = (elem, weight) if position > 0: A : Tuple = get_parent_position(SCREAMING_SNAKE_CASE ) A, A : Dict = self.heap[parent_position] if parent_weight > weight: self._bubble_up(SCREAMING_SNAKE_CASE ) else: self._bubble_down(SCREAMING_SNAKE_CASE ) else: self._bubble_down(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" A : List[Any] = self.position_map[elem] if curr_pos == 0: return None A : Tuple = get_parent_position(SCREAMING_SNAKE_CASE ) A, A : List[Any] = self.heap[curr_pos] A, A : List[Any] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return self._bubble_up(SCREAMING_SNAKE_CASE ) return None def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" A : Tuple = self.position_map[elem] A, A : Any = self.heap[curr_pos] A : List[str] = get_child_left_position(SCREAMING_SNAKE_CASE ) A : Optional[Any] = get_child_right_position(SCREAMING_SNAKE_CASE ) if child_left_position < self.elements and child_right_position < self.elements: A, A : List[Any] = self.heap[child_left_position] A, A : Any = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return self._bubble_down(SCREAMING_SNAKE_CASE ) if child_left_position < self.elements: A, A : Optional[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return self._bubble_down(SCREAMING_SNAKE_CASE ) else: return None if child_right_position < self.elements: A, A : List[Any] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return self._bubble_down(SCREAMING_SNAKE_CASE ) return None def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" A : Tuple = self.heap[nodea_pos][0] A : Any = self.heap[nodea_pos][0] A, A : List[Any] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) A : Optional[Any] = nodea_pos A : Any = nodea_pos class A ( Generic[T] ): def __init__( self ) -> None: """simple docstring""" A : dict[T, dict[T, int]] = {} A : int = 0 def __repr__( self ) -> str: """simple docstring""" return str(self.connections ) def __len__( self ) -> int: """simple docstring""" return self.nodes def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if node not in self.connections: A : str = {} self.nodes += 1 def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" self.add_node(SCREAMING_SNAKE_CASE ) self.add_node(SCREAMING_SNAKE_CASE ) A : int = weight A : str = weight def lowerCAmelCase_ ( snake_case__ , ): '''simple docstring''' A : dict[T, int] = {node: maxsize for node in graph.connections} A : dict[T, T | None] = {node: None for node in graph.connections} A : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(snake_case__ , snake_case__ ) if priority_queue.is_empty(): return dist, parent # initialization A : int = priority_queue.extract_min() A : Union[str, Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: A : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(snake_case__ , dist[neighbour] ) A : int = node # running prim's algorithm while not priority_queue.is_empty(): A : Optional[Any] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: A : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(snake_case__ , dist[neighbour] ) A : Tuple = node return dist, parent
343
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : int = torch.load(snake_case__ , map_location='''cpu''' ) A : Optional[Any] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository A : Any = {} for k, v in state_dict.items(): if "pred_layer" in k: A : Any = v else: A : int = v A : str = chkpt['''params'''] A : Tuple = {n: v for n, v in config.items() if not isinstance(snake_case__ , (torch.FloatTensor, numpy.ndarray) )} A : Dict = chkpt['''dico_word2id'''] A : Optional[int] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model A : str = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME A : Dict = pytorch_dump_folder_path + '''/''' + CONFIG_NAME A : Optional[int] = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(snake_case__ , snake_case__ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case__ , indent=2 ) + '''\n''' ) print(F'Save vocab file to {pytorch_config_dump_path}' ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case__ , indent=2 ) + '''\n''' ) if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase : int = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
343
1
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : '''simple docstring''' @staticmethod def _lowerCamelCase ( *a :Tuple , **a :Any ) -> int: pass @is_pipeline_test @require_vision @require_timm @require_torch class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' _A = MODEL_FOR_OBJECT_DETECTION_MAPPING def _lowerCamelCase ( self :int , a :Any , a :Union[str, Any] , a :List[str] ) -> str: __UpperCamelCase : Union[str, Any] = ObjectDetectionPipeline(model=a , image_processor=a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def _lowerCamelCase ( self :Optional[Any] , a :Tuple , a :Any ) -> Dict: __UpperCamelCase : Tuple = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) import datasets __UpperCamelCase : Optional[Any] = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) __UpperCamelCase : Any = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] __UpperCamelCase : List[Any] = object_detector(a , threshold=0.0 ) self.assertEqual(len(a ) , len(a ) ) for outputs in batch_outputs: self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def _lowerCamelCase ( self :Union[str, Any] ) -> Any: pass @require_torch def _lowerCamelCase ( self :Optional[int] ) -> Optional[int]: __UpperCamelCase : Any = "hf-internal-testing/tiny-detr-mobilenetsv3" __UpperCamelCase : Optional[int] = AutoModelForObjectDetection.from_pretrained(a ) __UpperCamelCase : Tuple = AutoFeatureExtractor.from_pretrained(a ) __UpperCamelCase : List[Any] = ObjectDetectionPipeline(model=a , feature_extractor=a ) __UpperCamelCase : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, ] , ) __UpperCamelCase : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, ], ] , ) @require_torch @slow def _lowerCamelCase ( self :int ) -> int: __UpperCamelCase : List[str] = "facebook/detr-resnet-50" __UpperCamelCase : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(a ) __UpperCamelCase : List[str] = AutoFeatureExtractor.from_pretrained(a ) __UpperCamelCase : Dict = ObjectDetectionPipeline(model=a , feature_extractor=a ) __UpperCamelCase : Optional[Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ] , ) __UpperCamelCase : Union[str, Any] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], ] , ) @require_torch @slow def _lowerCamelCase ( self :Tuple ) -> Tuple: __UpperCamelCase : Union[str, Any] = "facebook/detr-resnet-50" __UpperCamelCase : Union[str, Any] = pipeline("object-detection" , model=a ) __UpperCamelCase : List[Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ] , ) __UpperCamelCase : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], ] , ) @require_torch @slow def _lowerCamelCase ( self :Tuple ) -> str: __UpperCamelCase : Optional[Any] = 0.9985 __UpperCamelCase : Dict = "facebook/detr-resnet-50" __UpperCamelCase : List[Any] = pipeline("object-detection" , model=a ) __UpperCamelCase : Optional[int] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=a ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ] , ) @require_torch @require_pytesseract @slow def _lowerCamelCase ( self :Tuple ) -> str: __UpperCamelCase : Dict = "Narsil/layoutlmv3-finetuned-funsd" __UpperCamelCase : List[str] = 0.9993 __UpperCamelCase : Any = pipeline("object-detection" , model=a , threshold=a ) __UpperCamelCase : List[str] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 2_9_4, "ymin": 2_5_4, "xmax": 3_4_3, "ymax": 2_6_4}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 2_9_4, "ymin": 2_5_4, "xmax": 3_4_3, "ymax": 2_6_4}}, ] , )
557
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowercase : Union[str, Any] = ['bert-base-uncased', 'bert-base-cased'] lowercase : Any = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class lowerCamelCase__ ( tf.keras.Model): '''simple docstring''' def __init__( self :List[Any] , a :int ) -> int: super().__init__() __UpperCamelCase : Any = tokenizer __UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained(a ) __UpperCamelCase : Dict = TFAutoModel.from_config(a ) def _lowerCamelCase ( self :List[Any] , a :Dict ) -> Any: __UpperCamelCase : int = self.tokenizer(a ) __UpperCamelCase : int = self.bert(**a ) return out["pooler_output"] @require_tf @require_tensorflow_text class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self :str ) -> str: super().setUp() __UpperCamelCase : Dict = [ BertTokenizer.from_pretrained(a ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false __UpperCamelCase : List[Any] = [TFBertTokenizer.from_pretrained(a ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(a , use_fast_bert_tokenizer=a ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __UpperCamelCase : Dict = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] __UpperCamelCase : Dict = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _lowerCamelCase ( self :List[Any] ) -> int: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): __UpperCamelCase : str = tokenizer(a , return_tensors="tf" , padding="longest" ) __UpperCamelCase : Any = tf_tokenizer(a ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def _lowerCamelCase ( self :Union[str, Any] ) -> Any: for tf_tokenizer in self.tf_tokenizers: __UpperCamelCase : List[str] = tf_tokenizer(self.paired_sentences ) __UpperCamelCase : Union[str, Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def _lowerCamelCase ( self :Any ) -> Optional[int]: for tf_tokenizer in self.tf_tokenizers: __UpperCamelCase : Optional[Any] = tf.function(a ) for test_inputs in (self.test_sentences, self.paired_sentences): __UpperCamelCase : Tuple = tf.constant(a ) __UpperCamelCase : List[str] = compiled_tokenizer(a ) __UpperCamelCase : Any = tf_tokenizer(a ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _lowerCamelCase ( self :List[Any] ) -> Tuple: for tf_tokenizer in self.tf_tokenizers: __UpperCamelCase : str = ModelToSave(tokenizer=a ) __UpperCamelCase : List[Any] = tf.convert_to_tensor(self.test_sentences ) __UpperCamelCase : Optional[int] = model(a ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __UpperCamelCase : Optional[Any] = Path(a ) / "saved.model" model.save(a ) __UpperCamelCase : List[Any] = tf.keras.models.load_model(a ) __UpperCamelCase : Optional[Any] = loaded_model(a ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
557
1
'''simple docstring''' class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE ) -> None: A_ = len(_SCREAMING_SNAKE_CASE ) A_ = [0] * len_array if len_array > 0: A_ = array[0] for i in range(1 , _SCREAMING_SNAKE_CASE ): A_ = self.prefix_sum[i - 1] + array[i] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __A ( self , _SCREAMING_SNAKE_CASE ) -> bool: A_ = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(_SCREAMING_SNAKE_CASE ) return False if __name__ == "__main__": import doctest doctest.testmod()
174
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __snake_case : Union[str, Any] = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' __snake_case : Tuple = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' __snake_case : Optional[int] = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Dict ) -> Dict: return float((preds == labels).mean() ) def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : List[str], _UpperCamelCase : Tuple="binary" ) -> int: A_ = simple_accuracy(_UpperCamelCase, _UpperCamelCase ) A_ = float(fa_score(y_true=_UpperCamelCase, y_pred=_UpperCamelCase, average=_UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : Union[str, Any] ) -> Optional[Any]: A_ = {} for id_pred, label in zip(_UpperCamelCase, _UpperCamelCase ): A_ = F'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' A_ = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: A_ = [(pred, label)] A_ ,A_ = [], [] for question, preds_labels in question_map.items(): A_ ,A_ = zip(*_UpperCamelCase ) A_ = fa_score(y_true=_UpperCamelCase, y_pred=_UpperCamelCase, average='''macro''' ) fas.append(_UpperCamelCase ) A_ = int(sum(pred == label for pred, label in preds_labels ) == len(_UpperCamelCase ) ) ems.append(_UpperCamelCase ) A_ = float(sum(_UpperCamelCase ) / len(_UpperCamelCase ) ) A_ = sum(_UpperCamelCase ) / len(_UpperCamelCase ) A_ = float(fa_score(y_true=_UpperCamelCase, y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __A ( self ) -> str: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __A ( self ) -> Tuple: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg='''macro''' ) elif self.config_name == "record": A_ = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] A_ = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
174
1
'''simple docstring''' from itertools import permutations def UpperCamelCase__ ( _lowercase : tuple ) -> bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __UpperCAmelCase: List[Any] = [7, 1_1, 1_3, 1_7] for i, test in enumerate(_lowercase ): if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0: return False return True def UpperCamelCase__ ( _lowercase : int = 1_0 ) -> int: return sum( int("""""".join(map(_lowercase , _lowercase ) ) ) for num in permutations(range(_lowercase ) ) if is_substring_divisible(_lowercase ) ) if __name__ == "__main__": print(F"""{solution() = }""")
523
'''simple docstring''' def UpperCamelCase__ ( _lowercase : list ) -> list: if len(_lowercase ) < 2: return collection def circle_sort_util(_lowercase : list , _lowercase : int , _lowercase : int ) -> bool: __UpperCAmelCase: Tuple = False if low == high: return swapped __UpperCAmelCase: int = low __UpperCAmelCase: int = high while left < right: if collection[left] > collection[right]: __UpperCAmelCase, __UpperCAmelCase: List[str] = ( collection[right], collection[left], ) __UpperCAmelCase: Optional[int] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __UpperCAmelCase, __UpperCAmelCase: str = ( collection[right + 1], collection[left], ) __UpperCAmelCase: Union[str, Any] = True __UpperCAmelCase: List[str] = low + int((high - low) / 2 ) __UpperCAmelCase: Optional[int] = circle_sort_util(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase: List[Any] = circle_sort_util(_lowercase , mid + 1 , _lowercase ) return swapped or left_swap or right_swap __UpperCAmelCase: str = True while is_not_sorted is True: __UpperCAmelCase: Dict = circle_sort_util(_lowercase , 0 , len(_lowercase ) - 1 ) return collection if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE_ = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
523
1
"""simple docstring""" from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _lowerCAmelCase = 1.054_571_817E-34 # unit of ℏ : J * s _lowerCAmelCase = 3E8 # unit of c : m * s^-1 def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: _lowerCAmelCase : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCAmelCase : Any = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCAmelCase : List[str] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
701
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
16
0
'''simple docstring''' def __lowerCamelCase ( ) ->List[str]: return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] a__ : Any = generate_large_matrix() a__ : Optional[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __lowerCamelCase ( UpperCAmelCase_ ) ->Tuple: assert all(row == sorted(UpperCAmelCase_ , reverse=UpperCAmelCase_ ) for row in grid ) assert all(list(UpperCAmelCase_ ) == sorted(UpperCAmelCase_ , reverse=UpperCAmelCase_ ) for col in zip(*UpperCAmelCase_ ) ) def __lowerCamelCase ( UpperCAmelCase_ ) ->List[str]: snake_case__ = 0 snake_case__ = len(UpperCAmelCase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: snake_case__ = (left + right) // 2 snake_case__ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: snake_case__ = mid + 1 else: snake_case__ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(UpperCAmelCase_ ) def __lowerCamelCase ( UpperCAmelCase_ ) ->str: snake_case__ = 0 snake_case__ = len(grid[0] ) for i in range(len(UpperCAmelCase_ ) ): snake_case__ = find_negative_index(grid[i][:bound] ) total += bound return (len(UpperCAmelCase_ ) * len(grid[0] )) - total def __lowerCamelCase ( UpperCAmelCase_ ) ->Tuple: return len([number for row in grid for number in row if number < 0] ) def __lowerCamelCase ( UpperCAmelCase_ ) ->Dict: snake_case__ = 0 for row in grid: for i, number in enumerate(UpperCAmelCase_ ): if number < 0: total += len(UpperCAmelCase_ ) - i break return total def __lowerCamelCase ( ) ->Optional[Any]: from timeit import timeit print('Running benchmarks' ) snake_case__ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): snake_case__ = timeit(f'''{func}(grid=grid)''' , setup=UpperCAmelCase_ , number=5_00 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
368
'''simple docstring''' def __snake_case ( ): lowerCamelCase_ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] lowerCamelCase_ = 6 lowerCamelCase_ = 1 lowerCamelCase_ = 1901 lowerCamelCase_ = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 lowerCamelCase_ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 lowerCamelCase_ = day - 29 else: if day > days_per_month[month - 1]: month += 1 lowerCamelCase_ = day - days_per_month[month - 2] if month > 12: year += 1 lowerCamelCase_ = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
675
0
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _a (_lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = MobileBertTokenizer SCREAMING_SNAKE_CASE = MobileBertTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = filter_non_english SCREAMING_SNAKE_CASE = 'google/mobilebert-uncased' def UpperCamelCase ( self ) -> Any: super().setUp() _SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _SCREAMING_SNAKE_CASE = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCamelCase ( self , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = """unwanted, running""" return input_text, output_text def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(A__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [9, 6, 7, 12, 10, 11] ) def UpperCamelCase ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) # With lower casing _SCREAMING_SNAKE_CASE = self.get_tokenizer(do_lower_case=A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(do_lower_case=A__ ) _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _SCREAMING_SNAKE_CASE = {} for i, token in enumerate(A__ ): _SCREAMING_SNAKE_CASE = i _SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=A__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def UpperCamelCase ( self ) -> str: self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def UpperCamelCase ( self ) -> Union[str, Any]: self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def UpperCamelCase ( self ) -> Dict: self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(A__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(A__ , A__ ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def UpperCamelCase ( self ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." _SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( A__ , return_attention_mask=A__ , return_token_type_ids=A__ , return_offsets_mapping=A__ , add_special_tokens=A__ , ) _SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(A__ , """do_lower_case""" ) else False _SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = ["""的""", """人""", """有"""] _SCREAMING_SNAKE_CASE = """""".join(A__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that only the first Chinese character is not preceded by "##". _SCREAMING_SNAKE_CASE = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(A__ ) ] self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ )
0
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def lowerCAmelCase_ ( ) -> int: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head("""https://huggingface.co""" )
0
1
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _a ( unittest.TestCase ): """simple docstring""" A_ = MODEL_FOR_MASKED_LM_MAPPING A_ = TF_MODEL_FOR_MASKED_LM_MAPPING def _UpperCAmelCase ( self ) -> List[str]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2e-05, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() UpperCamelCase_ = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(_UpperCAmelCase ) @slow @require_tf def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is John', 'score': 0.0_0_8, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.0_0_7, 'token': 1573, 'token_str': ' Chris'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.2_5_1, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.2_1_4, 'token': 12790, 'token_str': ' Lyon', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is Patrick', 'score': 0.0_0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.0_0_0, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.0_0_0, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) @require_tf def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = fill_masker.tokenizer UpperCamelCase_ = fill_masker.model UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , ) with self.assertRaises(_UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_UpperCAmelCase ): fill_masker('This is' ) self.run_test_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_targets(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_top_k_targets(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_multiple_masks(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = sorted(vocab.keys() )[:2] # Pipeline argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , targets=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Call argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Score equivalence UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['token_str'] for top_mask in outputs] UpperCamelCase_ = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ) == set(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''] ) with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='' ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , top_k=2 ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # top_k=2, ntargets=3 UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCamelCase_ = [el['token_str'] for el in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ).issubset(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.get_vocab() # String duplicates + id duplicates UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCamelCase_ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=_UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_UpperCAmelCase ) , 3 ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , )
23
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowerCAmelCase ( UpperCamelCase__ : BertModel , UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') __UpperCAmelCase = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(UpperCamelCase__ ): os.makedirs(UpperCamelCase__ ) __UpperCAmelCase = model.state_dict() def to_tf_var_name(UpperCamelCase__ : str ): for patt, repl in iter(UpperCamelCase__ ): __UpperCAmelCase = name.replace(UpperCamelCase__ , UpperCamelCase__ ) return f"""bert/{name}""" def create_tf_var(UpperCamelCase__ : np.ndarray , UpperCamelCase__ : str , UpperCamelCase__ : tf.Session ): __UpperCAmelCase = tf.dtypes.as_dtype(tensor.dtype ) __UpperCAmelCase = tf.get_variable(dtype=UpperCamelCase__ , shape=tensor.shape , name=UpperCamelCase__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(UpperCamelCase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __UpperCAmelCase = to_tf_var_name(UpperCamelCase__ ) __UpperCAmelCase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __UpperCAmelCase = torch_tensor.T __UpperCAmelCase = create_tf_var(tensor=UpperCamelCase__ , name=UpperCamelCase__ , session=UpperCamelCase__ ) tf.keras.backend.set_value(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = session.run(UpperCamelCase__ ) print(f"""Successfully created {tf_name}: {np.allclose(UpperCamelCase__ , UpperCamelCase__ )}""" ) __UpperCAmelCase = tf.train.Saver(tf.trainable_variables() ) saver.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def lowerCAmelCase ( UpperCamelCase__ : List[str]=None ): """simple docstring""" __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''Directory in which to save tensorflow model''' ) __UpperCAmelCase = parser.parse_args(UpperCamelCase__ ) __UpperCAmelCase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=UpperCamelCase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
262
0
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Dict = len(__lowerCamelCase ) __snake_case : Optional[int] = [[0] * n for i in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): __snake_case : Optional[Any] = y_points[i] for i in range(2 , __lowerCamelCase ): for j in range(__lowerCamelCase , __lowerCamelCase ): __snake_case : str = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
203
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _snake_case : List[Any] = "src/diffusers" _snake_case : str = "." # This is to make sure the diffusers module imported is the one in the repo. _snake_case : List[str] = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) _snake_case : Dict = spec.loader.load_module() def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): return line.startswith(__lowerCamelCase ) or len(__lowerCamelCase ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$" , __lowerCamelCase ) is not None def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : str = object_name.split("." ) __snake_case : Any = 0 # First let's find the module where our object lives. __snake_case : Optional[int] = parts[i] while i < len(__lowerCamelCase ) and not os.path.isfile(os.path.join(__lowerCamelCase , F'{module}.py' ) ): i += 1 if i < len(__lowerCamelCase ): __snake_case : Dict = os.path.join(__lowerCamelCase , parts[i] ) if i >= len(__lowerCamelCase ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(__lowerCamelCase , F'{module}.py' ) , "r" , encoding="utf-8" , newline="\n" ) as f: __snake_case : Optional[Any] = f.readlines() # Now let's find the class / func in the code! __snake_case : Any = "" __snake_case : Any = 0 for name in parts[i + 1 :]: while ( line_index < len(__lowerCamelCase ) and re.search(RF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__lowerCamelCase ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __snake_case : Optional[Any] = line_index while line_index < len(__lowerCamelCase ) and _should_continue(lines[line_index] , __lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __snake_case : Dict = lines[start_index:line_index] return "".join(__lowerCamelCase ) _snake_case : Any = re.compile(R"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") _snake_case : Union[str, Any] = re.compile(R"^\s*(\S+)->(\S+)(\s+.*|$)") _snake_case : Optional[int] = re.compile(R"<FILL\s+[^>]*>") def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Dict = code.split("\n" ) __snake_case : List[str] = 0 while idx < len(__lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__lowerCamelCase ): return re.search(R"^(\s*)\S" , lines[idx] ).groups()[0] return "" def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : List[str] = len(get_indent(__lowerCamelCase ) ) > 0 if has_indent: __snake_case : str = F'class Bla:\n{code}' __snake_case : List[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=__lowerCamelCase ) __snake_case : int = black.format_str(__lowerCamelCase , mode=__lowerCamelCase ) __snake_case , __snake_case : List[str] = style_docstrings_in_code(__lowerCamelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase=False ): with open(__lowerCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: __snake_case : List[Any] = f.readlines() __snake_case : int = [] __snake_case : Optional[Any] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__lowerCamelCase ): __snake_case : List[Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __snake_case , __snake_case , __snake_case : List[str] = search.groups() __snake_case : List[str] = find_code_in_diffusers(__lowerCamelCase ) __snake_case : str = get_indent(__lowerCamelCase ) __snake_case : Optional[Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 __snake_case : Tuple = theoretical_indent __snake_case : str = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __snake_case : str = True while line_index < len(__lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(__lowerCamelCase ): break __snake_case : Union[str, Any] = lines[line_index] __snake_case : Any = _should_continue(__lowerCamelCase , __lowerCamelCase ) and re.search(F'^{indent}# End copy' , __lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __snake_case : int = lines[start_index:line_index] __snake_case : int = "".join(__lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies __snake_case : Union[str, Any] = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(__lowerCamelCase ) is None] __snake_case : Optional[Any] = "\n".join(__lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__lowerCamelCase ) > 0: __snake_case : Optional[int] = replace_pattern.replace("with" , "" ).split("," ) __snake_case : Tuple = [_re_replace_pattern.search(__lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue __snake_case , __snake_case , __snake_case : Optional[Any] = pattern.groups() __snake_case : Tuple = re.sub(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if option.strip() == "all-casing": __snake_case : List[Any] = re.sub(obja.lower() , obja.lower() , __lowerCamelCase ) __snake_case : Union[str, Any] = re.sub(obja.upper() , obja.upper() , __lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __snake_case : str = blackify(lines[start_index - 1] + theoretical_code ) __snake_case : Tuple = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __snake_case : str = lines[:start_index] + [theoretical_code] + lines[line_index:] __snake_case : List[Any] = start_index + 1 if overwrite and len(__lowerCamelCase ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(__lowerCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(__lowerCamelCase ) return diffs def lowerCAmelCase_ ( __lowerCamelCase = False ): __snake_case : Optional[Any] = glob.glob(os.path.join(__lowerCamelCase , "**/*.py" ) , recursive=__lowerCamelCase ) __snake_case : Dict = [] for filename in all_files: __snake_case : Union[str, Any] = is_copy_consistent(__lowerCamelCase , __lowerCamelCase ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(__lowerCamelCase ) > 0: __snake_case : Optional[Any] = "\n".join(__lowerCamelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": _snake_case : Optional[int] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _snake_case : Union[str, Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
203
1
import math import sys import cva import numpy as np def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : str ): '''simple docstring''' lowerCamelCase_ = math.sqrt(lowerCamelCase__ ) lowerCamelCase_ = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Dict , lowercase : List[Any] , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Optional[Any] ): '''simple docstring''' lowerCamelCase_ = np.zeros((kernel_size, kernel_size) ) for i in range(0 , lowerCamelCase__ ): for j in range(0 , lowerCamelCase__ ): lowerCamelCase_ = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(lowerCamelCase__ , lowerCamelCase__ ) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Dict , lowercase : Optional[int] , lowercase : int , ): '''simple docstring''' lowerCamelCase_ = np.zeros(img.shape ) lowerCamelCase_ = get_gauss_kernel(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCamelCase_ = get_slice(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCamelCase_ = vec_gaussian(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = np.multiply(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = np.multiply(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = np.sum(lowerCamelCase__ ) / np.sum(lowerCamelCase__ ) lowerCamelCase_ = val return imga def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = args[1] if args[1:] else "../image_data/lena.jpg" lowerCamelCase_ = float(args[2] ) if args[2:] else 1.0 lowerCamelCase_ = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCamelCase_ = int(args[4] ) lowerCamelCase_ = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCamelCase_ = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[Any] = parse_args(sys.argv) lowerCamelCase : Union[str, Any] = cva.imread(filename, 0) cva.imshow("input image", img) lowerCamelCase : str = img / 255 lowerCamelCase : List[Any] = out.astype("float32") lowerCamelCase : int = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowerCamelCase : List[str] = out * 255 lowerCamelCase : Union[str, Any] = np.uinta(out) cva.imshow("output image", out) cva.waitKey(0) cva.destroyAllWindows()
70
import math class snake_case__: """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE : List[Any]=0 ): # a graph with Node 0,1,...,N-1 lowercase__ : Dict = n lowercase__ : List[Any] = [ [math.inf for j in range(0 , SCREAMING_SNAKE_CASE )] for i in range(0 , SCREAMING_SNAKE_CASE ) ] # adjacency matrix for weight lowercase__ : Optional[int] = [ [math.inf for j in range(0 , SCREAMING_SNAKE_CASE )] for i in range(0 , SCREAMING_SNAKE_CASE ) ] # dp[i][j] stores minimum distance from i to j def snake_case ( self : int , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase__ : Optional[Any] = w def snake_case ( self : int ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowercase__ : Union[str, Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any ): return self.dp[u][v] if __name__ == "__main__": lowerCAmelCase__ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
496
0
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCAmelCase__ = ( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def _lowerCAmelCase( __A , __A ): warnings.warn(__A , __A ) requires_backends(__A , "sklearn" ) return (preds == labels).mean() def _lowerCAmelCase( __A , __A ): warnings.warn(__A , __A ) requires_backends(__A , "sklearn" ) UpperCAmelCase = simple_accuracy(__A , __A ) UpperCAmelCase = fa_score(y_true=__A , y_pred=__A ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def _lowerCAmelCase( __A , __A ): warnings.warn(__A , __A ) requires_backends(__A , "sklearn" ) UpperCAmelCase = pearsonr(__A , __A )[0] UpperCAmelCase = spearmanr(__A , __A )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def _lowerCAmelCase( __A , __A , __A ): warnings.warn(__A , __A ) requires_backends(__A , "sklearn" ) assert len(__A ) == len(__A ), F"Predictions and labels have mismatched lengths {len(__A )} and {len(__A )}" if task_name == "cola": return {"mcc": matthews_corrcoef(__A , __A )} elif task_name == "sst-2": return {"acc": simple_accuracy(__A , __A )} elif task_name == "mrpc": return acc_and_fa(__A , __A ) elif task_name == "sts-b": return pearson_and_spearman(__A , __A ) elif task_name == "qqp": return acc_and_fa(__A , __A ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__A , __A )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__A , __A )} elif task_name == "qnli": return {"acc": simple_accuracy(__A , __A )} elif task_name == "rte": return {"acc": simple_accuracy(__A , __A )} elif task_name == "wnli": return {"acc": simple_accuracy(__A , __A )} elif task_name == "hans": return {"acc": simple_accuracy(__A , __A )} else: raise KeyError(__A ) def _lowerCAmelCase( __A , __A , __A ): warnings.warn(__A , __A ) requires_backends(__A , "sklearn" ) if len(__A ) != len(__A ): raise ValueError(F"Predictions and labels have mismatched lengths {len(__A )} and {len(__A )}" ) if task_name == "xnli": return {"acc": simple_accuracy(__A , __A )} else: raise KeyError(__A )
1
import numpy # List of input, output pairs lowerCAmelCase__ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) lowerCAmelCase__ = (((515, 22, 13), 555), ((61, 35, 49), 150)) lowerCAmelCase__ = [2, 4, 1, 5] lowerCAmelCase__ = len(train_data) lowerCAmelCase__ = 0.0_0_9 def _lowerCAmelCase( __A , __A="train" ): return calculate_hypothesis_value(__A , __A ) - output( __A , __A ) def _lowerCAmelCase( __A ): UpperCAmelCase = 0 for i in range(len(__A ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _lowerCAmelCase( __A , __A ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _lowerCAmelCase( __A , __A ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _lowerCAmelCase( __A , __A=m ): UpperCAmelCase = 0 for i in range(__A ): if index == -1: summation_value += _error(__A ) else: summation_value += _error(__A ) * train_data[i][0][index] return summation_value def _lowerCAmelCase( __A ): UpperCAmelCase = summation_of_cost_derivative(__A , __A ) / m return cost_derivative_value def _lowerCAmelCase( ): global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase = 0.000002 UpperCAmelCase = 0 UpperCAmelCase = 0 while True: j += 1 UpperCAmelCase = [0, 0, 0, 0] for i in range(0 , len(__A ) ): UpperCAmelCase = get_cost_derivative(i - 1 ) UpperCAmelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __A , __A , atol=__A , rtol=__A , ): break UpperCAmelCase = temp_parameter_vector print(("Number of iterations:", j) ) def _lowerCAmelCase( ): for i in range(len(__A ) ): print(("Actual output value:", output(__A , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(__A , "test" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
1
1
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _UpperCamelCase ( lowerCAmelCase__: Union[str, Any] ) -> List[str]: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE_ = k.replace(lowerCAmelCase__ ,lowerCAmelCase__ ) if k.startswith('encoder' ): SCREAMING_SNAKE_CASE_ = k.replace('.attn' ,'.self_attn' ) SCREAMING_SNAKE_CASE_ = k.replace('norm1' ,'self_attn_layer_norm' ) SCREAMING_SNAKE_CASE_ = k.replace('norm2' ,'final_layer_norm' ) elif k.startswith('decoder' ): SCREAMING_SNAKE_CASE_ = k.replace('norm1' ,'self_attn_layer_norm' ) SCREAMING_SNAKE_CASE_ = k.replace('norm2' ,'encoder_attn_layer_norm' ) SCREAMING_SNAKE_CASE_ = k.replace('norm3' ,'final_layer_norm' ) return k def _UpperCamelCase ( lowerCAmelCase__: Optional[Any] ) -> str: SCREAMING_SNAKE_CASE_ = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: SCREAMING_SNAKE_CASE_ = sd.pop(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = k.replace('layernorm_embedding' ,'layer_norm' ) assert new_k not in sd SCREAMING_SNAKE_CASE_ = v SCREAMING_SNAKE_CASE : Any = ["START"] @torch.no_grad() def _UpperCamelCase ( lowerCAmelCase__: Dict ,lowerCAmelCase__: List[str] ,lowerCAmelCase__: int ) -> str: SCREAMING_SNAKE_CASE_ = torch.load(lowerCAmelCase__ ,map_location='cpu' ) SCREAMING_SNAKE_CASE_ = model['model'] SCREAMING_SNAKE_CASE_ = BlenderbotConfig.from_json_file(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = BlenderbotForConditionalGeneration(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = m.model.state_dict().keys() SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue SCREAMING_SNAKE_CASE_ = rename_state_dict_key(lowerCAmelCase__ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: SCREAMING_SNAKE_CASE_ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(lowerCAmelCase__ ) m.model.load_state_dict(lowerCAmelCase__ ,strict=lowerCAmelCase__ ) m.half() m.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
294
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart SCREAMING_SNAKE_CASE : str = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } SCREAMING_SNAKE_CASE : Union[str, Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class snake_case ( lowercase_ ): """simple docstring""" _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["""input_ids""", """attention_mask"""] _a = BartTokenizer def __init__( self, _lowercase=None, _lowercase=None, _lowercase=None, _lowercase="replace", _lowercase="<s>", _lowercase="</s>", _lowercase="</s>", _lowercase="<s>", _lowercase="<unk>", _lowercase="<pad>", _lowercase="<mask>", _lowercase=False, _lowercase=True, **_lowercase, ) -> Dict: super().__init__( _lowercase, _lowercase, tokenizer_file=_lowercase, errors=_lowercase, bos_token=_lowercase, eos_token=_lowercase, sep_token=_lowercase, cls_token=_lowercase, unk_token=_lowercase, pad_token=_lowercase, mask_token=_lowercase, add_prefix_space=_lowercase, trim_offsets=_lowercase, **_lowercase, ) SCREAMING_SNAKE_CASE_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', _lowercase ) != add_prefix_space: SCREAMING_SNAKE_CASE_ = getattr(_lowercase, pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE_ = add_prefix_space SCREAMING_SNAKE_CASE_ = pre_tok_class(**_lowercase ) SCREAMING_SNAKE_CASE_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE_ = 'post_processor' SCREAMING_SNAKE_CASE_ = getattr(self.backend_tokenizer, _lowercase, _lowercase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE_ = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE_ = tuple(state['cls'] ) SCREAMING_SNAKE_CASE_ = False if state.get('add_prefix_space', _lowercase ) != add_prefix_space: SCREAMING_SNAKE_CASE_ = add_prefix_space SCREAMING_SNAKE_CASE_ = True if state.get('trim_offsets', _lowercase ) != trim_offsets: SCREAMING_SNAKE_CASE_ = trim_offsets SCREAMING_SNAKE_CASE_ = True if changes_to_apply: SCREAMING_SNAKE_CASE_ = getattr(_lowercase, state.pop('type' ) ) SCREAMING_SNAKE_CASE_ = component_class(**_lowercase ) setattr(self.backend_tokenizer, _lowercase, _lowercase ) @property def a__ ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def a__ ( self, _lowercase ) -> Dict: SCREAMING_SNAKE_CASE_ = AddedToken(_lowercase, lstrip=_lowercase, rstrip=_lowercase ) if isinstance(_lowercase, _lowercase ) else value SCREAMING_SNAKE_CASE_ = value def a__ ( self, *_lowercase, **_lowercase ) -> BatchEncoding: SCREAMING_SNAKE_CASE_ = kwargs.get('is_split_into_words', _lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*_lowercase, **_lowercase ) def a__ ( self, *_lowercase, **_lowercase ) -> BatchEncoding: SCREAMING_SNAKE_CASE_ = kwargs.get('is_split_into_words', _lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*_lowercase, **_lowercase ) def a__ ( self, _lowercase, _lowercase = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE_ = self._tokenizer.model.save(_lowercase, name=_lowercase ) return tuple(_lowercase ) def a__ ( self, _lowercase, _lowercase=None ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a__ ( self, _lowercase, _lowercase = None ) -> List[int]: SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
294
1
import os def lowercase ( _a = "matrix.txt" ) -> int: with open(os.path.join(os.path.dirname(_a ) ,_a ) ) as in_file: UpperCAmelCase_: str = in_file.read() UpperCAmelCase_: Union[str, Any] = [[int(_a ) for cell in row.split("," )] for row in data.strip().splitlines()] UpperCAmelCase_: List[Any] = [[0 for cell in row] for row in grid] UpperCAmelCase_: Any = len(grid[0] ) UpperCAmelCase_: int = [[0 for i in range(_a )] for j in range(_a )] UpperCAmelCase_: int = grid[0][0] for i in range(1 ,_a ): UpperCAmelCase_: List[Any] = grid[0][i] + dp[0][i - 1] for i in range(1 ,_a ): UpperCAmelCase_: Any = grid[i][0] + dp[i - 1][0] for i in range(1 ,_a ): for j in range(1 ,_a ): UpperCAmelCase_: Union[str, Any] = grid[i][j] + min(dp[i - 1][j] ,dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"""{solution() = }""")
306
def lowercase ( _a = 2000000 ) -> int: UpperCAmelCase_: List[str] = [0 for i in range(n + 1 )] UpperCAmelCase_: str = 1 UpperCAmelCase_: Union[str, Any] = 1 for i in range(2 ,int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i ,n + 1 ,_a ): UpperCAmelCase_: Union[str, Any] = 1 UpperCAmelCase_: Optional[Any] = 0 for i in range(_a ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
306
1
"""simple docstring""" from __future__ import annotations def a_ ( __a , __a ): A__ = 0 A__ = len(__a ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: A__ = i + 1 else: A__ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'{two_pointer([2, 7, 11, 15], 9) = }')
571
UpperCamelCase = 256 # Modulus to hash a string UpperCamelCase = 100_0003 def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Any = len(SCREAMING_SNAKE_CASE ) A_ : int = len(SCREAMING_SNAKE_CASE ) if p_len > t_len: return False A_ : int = 0 A_ : Dict = 0 A_ : Optional[int] = 1 # Calculating the hash of pattern and substring of text for i in range(SCREAMING_SNAKE_CASE ): A_ : List[Any] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus A_ : Dict = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue A_ : Tuple = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash A_ : List[str] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _SCREAMING_SNAKE_CASE ( ): A_ : List[Any] = '''abc1abc12''' A_ : str = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' A_ : Optional[Any] = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test 2) A_ : List[str] = '''ABABX''' A_ : Tuple = '''ABABZABABYABABX''' assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test 3) A_ : Optional[int] = '''AAAB''' A_ : Optional[Any] = '''ABAAAAAB''' assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test 4) A_ : Optional[Any] = '''abcdabcy''' A_ : str = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test 5) A_ : Tuple = '''Lü''' A_ : Dict = '''Lüsai''' assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Dict = '''Lue''' assert not rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
590
0
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : str = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : List[Any] = '''detr''' __UpperCamelCase : List[Any] = ['''past_key_values'''] __UpperCamelCase : List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__(self , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=1_00 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=20_48 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=20_48 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="relu" , SCREAMING_SNAKE_CASE__=2_56 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1.0 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__="sine" , SCREAMING_SNAKE_CASE__="resnet50" , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 , **SCREAMING_SNAKE_CASE__ , ) -> Optional[Any]: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) SCREAMING_SNAKE_CASE__ : Any = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = backbone_config.get("""model_type""" ) SCREAMING_SNAKE_CASE__ : int = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE__ : str = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) # set timm attributes to None SCREAMING_SNAKE_CASE__ : List[str] = None, None, None SCREAMING_SNAKE_CASE__ : Optional[int] = use_timm_backbone SCREAMING_SNAKE_CASE__ : Tuple = backbone_config SCREAMING_SNAKE_CASE__ : List[Any] = num_channels SCREAMING_SNAKE_CASE__ : Tuple = num_queries SCREAMING_SNAKE_CASE__ : Optional[int] = d_model SCREAMING_SNAKE_CASE__ : str = encoder_ffn_dim SCREAMING_SNAKE_CASE__ : str = encoder_layers SCREAMING_SNAKE_CASE__ : Optional[int] = encoder_attention_heads SCREAMING_SNAKE_CASE__ : Any = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_layers SCREAMING_SNAKE_CASE__ : Dict = decoder_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = dropout SCREAMING_SNAKE_CASE__ : Tuple = attention_dropout SCREAMING_SNAKE_CASE__ : Tuple = activation_dropout SCREAMING_SNAKE_CASE__ : Union[str, Any] = activation_function SCREAMING_SNAKE_CASE__ : Any = init_std SCREAMING_SNAKE_CASE__ : Dict = init_xavier_std SCREAMING_SNAKE_CASE__ : Any = encoder_layerdrop SCREAMING_SNAKE_CASE__ : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE__ : Dict = encoder_layers SCREAMING_SNAKE_CASE__ : List[str] = auxiliary_loss SCREAMING_SNAKE_CASE__ : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE__ : List[str] = backbone SCREAMING_SNAKE_CASE__ : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE__ : Any = dilation # Hungarian matcher SCREAMING_SNAKE_CASE__ : Optional[Any] = class_cost SCREAMING_SNAKE_CASE__ : Tuple = bbox_cost SCREAMING_SNAKE_CASE__ : List[Any] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE__ : Optional[int] = mask_loss_coefficient SCREAMING_SNAKE_CASE__ : Optional[Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE__ : Optional[int] = bbox_loss_coefficient SCREAMING_SNAKE_CASE__ : Any = giou_loss_coefficient SCREAMING_SNAKE_CASE__ : List[str] = eos_coefficient super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __magic_name__ (self ) -> int: """simple docstring""" return self.encoder_attention_heads @property def __magic_name__ (self ) -> int: """simple docstring""" return self.d_model @classmethod def __magic_name__ (cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" return cls(backbone_config=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Dict[str, any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: SCREAMING_SNAKE_CASE__ : Any = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE__ : Dict = self.__class__.model_type return output class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Any = version.parse('''1.11''' ) @property def __magic_name__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def __magic_name__ (self ) -> float: """simple docstring""" return 1E-5 @property def __magic_name__ (self ) -> int: """simple docstring""" return 12
708
"""simple docstring""" import math import os import sys def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = """""" try: with open(_snake_case ,"""rb""" ) as binary_file: SCREAMING_SNAKE_CASE__ : str = binary_file.read() for dat in data: SCREAMING_SNAKE_CASE__ : int = f'''{dat:08b}''' result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ): lexicon.pop(_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[int] = last_match_id if math.loga(_snake_case ).is_integer(): for curr_key in lexicon: SCREAMING_SNAKE_CASE__ : Optional[int] = """0""" + lexicon[curr_key] SCREAMING_SNAKE_CASE__ : Tuple = bin(_snake_case )[2:] def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = {"""0""": """0""", """1""": """1"""} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = """""", """""" SCREAMING_SNAKE_CASE__ : int = len(_snake_case ) for i in range(len(_snake_case ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue SCREAMING_SNAKE_CASE__ : Dict = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_snake_case ,_snake_case ,_snake_case ,_snake_case ) index += 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = """""" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": SCREAMING_SNAKE_CASE__ : Optional[int] = lexicon[curr_string] result += last_match_id return result def lowercase_ ( _snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : str = os.path.getsize(_snake_case ) SCREAMING_SNAKE_CASE__ : Any = bin(_snake_case )[2:] SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(_snake_case ) return "0" * (length_length - 1) + file_length_binary + compressed def lowercase_ ( _snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Tuple = 8 try: with open(_snake_case ,"""wb""" ) as opened_file: SCREAMING_SNAKE_CASE__ : Optional[int] = [ to_write[i : i + byte_length] for i in range(0 ,len(_snake_case ) ,_snake_case ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(_snake_case ,2 ).to_bytes(1 ,byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def lowercase_ ( _snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = read_file_binary(_snake_case ) SCREAMING_SNAKE_CASE__ : List[str] = compress_data(_snake_case ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = add_file_length(_snake_case ,_snake_case ) write_file_binary(_snake_case ,_snake_case ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
545
0
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __lowerCamelCase ( _lowercase ) -> Tuple: if isinstance(_lowercase , collections.abc.Iterable ): return x return (x, x) @require_tf class _lowerCAmelCase : """simple docstring""" def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" pass def __lowerCAmelCase ( self : int ): """simple docstring""" pass def __lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" pass def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = TFVisionTextDualEncoderModel(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=None , **SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.get_vision_text_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = TFVisionTextDualEncoderModel(vision_model=SCREAMING_SNAKE_CASE__ , text_model=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None , **SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.get_vision_text_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = {'vision_model': vision_model, 'text_model': text_model} UpperCamelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , **SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.get_vision_text_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = TFVisionTextDualEncoderModel(vision_model=SCREAMING_SNAKE_CASE__ , text_model=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = TFVisionTextDualEncoderModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = after_output[0].numpy() UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-5 ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=None , **SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.get_vision_text_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = TFVisionTextDualEncoderModel(vision_model=SCREAMING_SNAKE_CASE__ , text_model=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = model( input_ids=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , output_attentions=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = output.vision_model_output.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = to_atuple(vision_model.config.image_size ) UpperCamelCase = to_atuple(vision_model.config.patch_size ) UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCamelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCamelCase = output.text_model_output.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" UpperCamelCase = np.abs((a - b) ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , F'Difference between torch and flax is {diff} (>= {tol}).' ) def __lowerCAmelCase ( self : Any ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() self.check_save_load(**SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**SCREAMING_SNAKE_CASE__ ) @slow def __lowerCAmelCase ( self : Optional[int] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.get_pretrained_model_and_inputs() UpperCamelCase = model_a(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = TFVisionTextDualEncoderModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = model_a(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = after_outputs[0].numpy() UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-5 ) @require_tf class _lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : List[str] ): """simple docstring""" UpperCamelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) UpperCamelCase = 13 UpperCamelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) UpperCamelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) UpperCamelCase = random_attention_mask([batch_size, 4] ) UpperCamelCase = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" UpperCamelCase = TFViTModel(SCREAMING_SNAKE_CASE__ , name='vision_model' ) UpperCamelCase = TFBertModel(SCREAMING_SNAKE_CASE__ , name='text_model' ) return vision_model, text_model def __lowerCAmelCase ( self : Tuple ): """simple docstring""" UpperCamelCase = TFViTModelTester(self ) UpperCamelCase = TFBertModelTester(self ) UpperCamelCase = vit_model_tester.prepare_config_and_inputs() UpperCamelCase = bert_model_tester.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = vision_config_and_inputs ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : int ): """simple docstring""" UpperCamelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) UpperCamelCase = 13 UpperCamelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) UpperCamelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) UpperCamelCase = random_attention_mask([batch_size, 4] ) UpperCamelCase = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any=None , **SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.get_vision_text_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = TFVisionTextDualEncoderModel(vision_model=SCREAMING_SNAKE_CASE__ , text_model=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = model( input_ids=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , output_attentions=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = output.vision_model_output.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCamelCase = to_atuple(vision_model.config.image_size ) UpperCamelCase = to_atuple(vision_model.config.patch_size ) UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCamelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCamelCase = output.text_model_output.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" UpperCamelCase = TFDeiTModel(SCREAMING_SNAKE_CASE__ , name='vision_model' ) UpperCamelCase = TFRobertaModel(SCREAMING_SNAKE_CASE__ , name='text_model' ) return vision_model, text_model def __lowerCAmelCase ( self : Any ): """simple docstring""" UpperCamelCase = TFDeiTModelTester(self ) UpperCamelCase = TFRobertaModelTester(self ) UpperCamelCase = vit_model_tester.prepare_config_and_inputs() UpperCamelCase = bert_model_tester.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = vision_config_and_inputs ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : int ): """simple docstring""" UpperCamelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) UpperCamelCase = 13 UpperCamelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) UpperCamelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) UpperCamelCase = random_attention_mask([batch_size, 4] ) UpperCamelCase = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = TFCLIPVisionModel(SCREAMING_SNAKE_CASE__ , name='vision_model' ) UpperCamelCase = TFBertModel(SCREAMING_SNAKE_CASE__ , name='text_model' ) return vision_model, text_model def __lowerCAmelCase ( self : str ): """simple docstring""" UpperCamelCase = TFCLIPVisionModelTester(self ) UpperCamelCase = TFBertModelTester(self ) UpperCamelCase = clip_model_tester.prepare_config_and_inputs() UpperCamelCase = bert_model_tester.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase = vision_config_and_inputs ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCamelCase = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) UpperCamelCase = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) UpperCamelCase = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
282
def __lowerCamelCase ( _lowercase ) -> list: UpperCamelCase = len(_lowercase ) for _ in range(_lowercase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: UpperCamelCase , UpperCamelCase = arr[i + 1], arr[i] return arr if __name__ == "__main__": _snake_case = list(range(10, 0, -1)) print(F"Original: {arr}. Sorted: {odd_even_transposition(arr)}")
282
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase) class snake_case__ ( UpperCamelCase): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization a_ = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True}) a_ = Features({"question": Value("string"), "context": Value("string")}) a_ = Features( { "answers": Sequence( { "text": Value("string"), "answer_start": Value("int32"), }) }) a_ = "question" a_ = "context" a_ = "answers" @property def A ( self : List[Any] ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
216
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase : Optional[int] = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[str] = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : int = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys _UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
216
1
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowerCAmelCase__ : def __init__( self ): '''simple docstring''' A__ = {} def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 ): '''simple docstring''' if self.graph.get(UpperCamelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A__ = [[w, v]] if not self.graph.get(UpperCamelCase__ ): A__ = [] def lowercase_ ( self ): '''simple docstring''' return list(self.graph ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if self.graph.get(UpperCamelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__=-2 , UpperCamelCase__=-1 ): '''simple docstring''' if s == d: return [] A__ = [] A__ = [] if s == -2: A__ = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) A__ = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(UpperCamelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCamelCase__ ) != 0: A__ = stack[len(UpperCamelCase__ ) - 1] else: A__ = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return visited def lowercase_ ( self , UpperCamelCase__=-1 ): '''simple docstring''' if c == -1: A__ = floor(random() * 1_00_00 ) + 10 for i in range(UpperCamelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): A__ = floor(random() * c ) + 1 if n != i: self.add_pair(UpperCamelCase__ , UpperCamelCase__ , 1 ) def lowercase_ ( self , UpperCamelCase__=-2 ): '''simple docstring''' A__ = deque() A__ = [] if s == -2: A__ = list(self.graph )[0] d.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) while d: A__ = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' A__ = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' return len(self.graph[u] ) def lowercase_ ( self , UpperCamelCase__=-2 ): '''simple docstring''' A__ = [] A__ = [] if s == -2: A__ = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) A__ = s A__ = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(UpperCamelCase__ ) != 0: A__ = stack[len(UpperCamelCase__ ) - 1] else: A__ = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return sorted_nodes def lowercase_ ( self ): '''simple docstring''' A__ = [] A__ = [] A__ = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) A__ = -2 A__ = [] A__ = s A__ = False A__ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A__ = len(UpperCamelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: stack.pop() A__ = True if len(UpperCamelCase__ ) != 0: A__ = stack[len(UpperCamelCase__ ) - 1] else: A__ = False indirect_parents.append(UpperCamelCase__ ) A__ = s A__ = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return list(UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ = [] A__ = [] A__ = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) A__ = -2 A__ = [] A__ = s A__ = False A__ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A__ = len(UpperCamelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: stack.pop() A__ = True if len(UpperCamelCase__ ) != 0: A__ = stack[len(UpperCamelCase__ ) - 1] else: A__ = False indirect_parents.append(UpperCamelCase__ ) A__ = s A__ = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return False def lowercase_ ( self , UpperCamelCase__=-2 , UpperCamelCase__=-1 ): '''simple docstring''' A__ = time() self.dfs(UpperCamelCase__ , UpperCamelCase__ ) A__ = time() return end - begin def lowercase_ ( self , UpperCamelCase__=-2 ): '''simple docstring''' A__ = time() self.bfs(UpperCamelCase__ ) A__ = time() return end - begin class lowerCAmelCase__ : def __init__( self ): '''simple docstring''' A__ = {} def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 ): '''simple docstring''' if self.graph.get(UpperCamelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A__ = [[w, v]] # add the other way if self.graph.get(UpperCamelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A__ = [[w, u]] def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if self.graph.get(UpperCamelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCamelCase__ ) # the other way round if self.graph.get(UpperCamelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__=-2 , UpperCamelCase__=-1 ): '''simple docstring''' if s == d: return [] A__ = [] A__ = [] if s == -2: A__ = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) A__ = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(UpperCamelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCamelCase__ ) != 0: A__ = stack[len(UpperCamelCase__ ) - 1] else: A__ = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return visited def lowercase_ ( self , UpperCamelCase__=-1 ): '''simple docstring''' if c == -1: A__ = floor(random() * 1_00_00 ) + 10 for i in range(UpperCamelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): A__ = floor(random() * c ) + 1 if n != i: self.add_pair(UpperCamelCase__ , UpperCamelCase__ , 1 ) def lowercase_ ( self , UpperCamelCase__=-2 ): '''simple docstring''' A__ = deque() A__ = [] if s == -2: A__ = list(self.graph )[0] d.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) while d: A__ = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' return len(self.graph[u] ) def lowercase_ ( self ): '''simple docstring''' A__ = [] A__ = [] A__ = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) A__ = -2 A__ = [] A__ = s A__ = False A__ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A__ = len(UpperCamelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: stack.pop() A__ = True if len(UpperCamelCase__ ) != 0: A__ = stack[len(UpperCamelCase__ ) - 1] else: A__ = False indirect_parents.append(UpperCamelCase__ ) A__ = s A__ = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return list(UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ = [] A__ = [] A__ = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) A__ = -2 A__ = [] A__ = s A__ = False A__ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A__ = len(UpperCamelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: stack.pop() A__ = True if len(UpperCamelCase__ ) != 0: A__ = stack[len(UpperCamelCase__ ) - 1] else: A__ = False indirect_parents.append(UpperCamelCase__ ) A__ = s A__ = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return False def lowercase_ ( self ): '''simple docstring''' return list(self.graph ) def lowercase_ ( self , UpperCamelCase__=-2 , UpperCamelCase__=-1 ): '''simple docstring''' A__ = time() self.dfs(UpperCamelCase__ , UpperCamelCase__ ) A__ = time() return end - begin def lowercase_ ( self , UpperCamelCase__=-2 ): '''simple docstring''' A__ = time() self.bfs(UpperCamelCase__ ) A__ = time() return end - begin
337
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase ={ """configuration_rembert""": ["""REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RemBertConfig""", """RemBertOnnxConfig"""] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =["""RemBertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =["""RemBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ """REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RemBertForCausalLM""", """RemBertForMaskedLM""", """RemBertForMultipleChoice""", """RemBertForQuestionAnswering""", """RemBertForSequenceClassification""", """RemBertForTokenClassification""", """RemBertLayer""", """RemBertModel""", """RemBertPreTrainedModel""", """load_tf_weights_in_rembert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ """TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRemBertForCausalLM""", """TFRemBertForMaskedLM""", """TFRemBertForMultipleChoice""", """TFRemBertForQuestionAnswering""", """TFRemBertForSequenceClassification""", """TFRemBertForTokenClassification""", """TFRemBertLayer""", """TFRemBertModel""", """TFRemBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
337
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : int = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Any = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
149
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __SCREAMING_SNAKE_CASE : Dict = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def snake_case_ ( lowercase__ : str = "dhaka" , lowercase__ : int = 5 ): '''simple docstring''' _lowerCAmelCase =min(lowercase__ , 50 ) # Prevent abuse! _lowerCAmelCase ={ """q""": query, """tbm""": """isch""", """hl""": """en""", """ijn""": """0""", } _lowerCAmelCase =requests.get("""https://www.google.com/search""" , params=lowercase__ , headers=lowercase__ ) _lowerCAmelCase =BeautifulSoup(html.text , """html.parser""" ) _lowerCAmelCase ="""""".join( re.findall(r"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""" ) ) ) ) _lowerCAmelCase =json.dumps(lowercase__ ) _lowerCAmelCase =json.loads(lowercase__ ) _lowerCAmelCase =re.findall( r"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , lowercase__ , ) if not matched_google_image_data: return 0 _lowerCAmelCase =re.sub( r"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(lowercase__ ) , ) _lowerCAmelCase =re.findall( r"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , lowercase__ , ) for index, fixed_full_res_image in enumerate(lowercase__ ): if index >= max_images: return index _lowerCAmelCase =bytes(lowercase__ , """ascii""" ).decode( """unicode-escape""" ) _lowerCAmelCase =bytes(lowercase__ , """ascii""" ).decode( """unicode-escape""" ) _lowerCAmelCase =urllib.request.build_opener() _lowerCAmelCase =[ ( """User-Agent""", """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""", ) ] urllib.request.install_opener(lowercase__ ) _lowerCAmelCase =f"query_{query.replace(' ' , '_' )}" if not os.path.exists(lowercase__ ): os.makedirs(lowercase__ ) urllib.request.urlretrieve( # noqa: S310 lowercase__ , f"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: __SCREAMING_SNAKE_CASE : Any = download_images_from_google_query(sys.argv[1]) print(F'{image_count} images were downloaded to disk.') except IndexError: print('''Please provide a search term.''') raise
149
1
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def __A ( _lowercase , _lowercase ): '''simple docstring''' _A = XCLIPTextConfig() # derive patch size from model name _A = model_name.find('''patch''' ) _A = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) _A = XCLIPVisionConfig(patch_size=_lowercase , num_frames=_lowercase ) if "large" in model_name: _A = 7_68 _A = 30_72 _A = 12 _A = 10_24 _A = 40_96 _A = 16 _A = 24 _A = 7_68 _A = 30_72 if model_name == "xclip-large-patch14-16-frames": _A = 3_36 _A = XCLIPConfig.from_text_vision_configs(_lowercase , _lowercase ) if "large" in model_name: _A = 7_68 return config def __A ( _lowercase ): '''simple docstring''' if name == "token_embedding.weight": _A = name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": _A = name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: _A = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: _A = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: _A = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: _A = name.replace('''c_proj''' , '''fc2''' ) if name.startswith('''transformer.resblocks''' ): _A = name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: _A = name.replace('''attn.out_proj''' , '''self_attn.out_proj''' ) if "ln_final" in name: _A = name.replace('''ln_final''' , '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": _A = name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": _A = name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): _A = name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' ) if "visual.conv1" in name: _A = name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: _A = name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: _A = name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' ) if "visual.proj" in name: _A = name.replace('''visual.proj''' , '''visual_projection.weight''' ) if "text_projection" in name: _A = name.replace('''text_projection''' , '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: _A = name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: _A = name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": _A = name.replace('''positional''' , '''position''' ) if name.startswith('''mit.resblocks''' ): _A = name.replace('''mit.resblocks''' , '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): _A = name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' ) return name def __A ( _lowercase , _lowercase ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _A = orig_state_dict.pop(_lowercase ) if "attn.in_proj" in key: _A = key.split('''.''' ) if key.startswith('''visual''' ): _A = key_split[3] _A = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: _A = val[ :dim, : ] _A = val[ dim : dim * 2, : ] _A = val[ -dim:, : ] else: _A = val[ :dim ] _A = val[ dim : dim * 2 ] _A = val[ -dim: ] else: if "weight" in key: _A = val[ :dim, : ] _A = val[ dim : dim * 2, : ] _A = val[ -dim:, : ] else: _A = val[:dim] _A = val[ dim : dim * 2 ] _A = val[-dim:] elif key.startswith('''mit''' ): _A = key_split[2] _A = config.vision_config.mit_hidden_size if "weight" in key: _A = val[:dim, :] _A = val[dim : dim * 2, :] _A = val[-dim:, :] else: _A = val[:dim] _A = val[dim : dim * 2] _A = val[-dim:] else: _A = key_split[2] _A = config.text_config.hidden_size if "weight" in key: _A = val[:dim, :] _A = val[ dim : dim * 2, : ] _A = val[-dim:, :] else: _A = val[:dim] _A = val[ dim : dim * 2 ] _A = val[-dim:] else: _A = rename_key(_lowercase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: _A = val.T _A = val return orig_state_dict def __A ( _lowercase ): '''simple docstring''' if num_frames == 8: _A = '''eating_spaghetti_8_frames.npy''' elif num_frames == 16: _A = '''eating_spaghetti.npy''' elif num_frames == 32: _A = '''eating_spaghetti_32_frames.npy''' _A = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename=_lowercase , repo_type='''dataset''' , ) _A = np.load(_lowercase ) return list(_lowercase ) def __A ( _lowercase , _lowercase=None , _lowercase=False ): '''simple docstring''' _A = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } _A = model_to_url[model_name] _A = 8 if "16-frames" in model_name: _A = 16 elif "shot" in model_name: _A = 32 _A = get_xclip_config(_lowercase , _lowercase ) _A = XCLIPModel(_lowercase ) model.eval() if "drive" in checkpoint_url: _A = '''pytorch_model.bin''' gdown.cached_download(_lowercase , _lowercase , quiet=_lowercase ) _A = torch.load(_lowercase , map_location='''cpu''' )['''model'''] else: _A = torch.hub.load_state_dict_from_url(_lowercase )['''model'''] _A = convert_state_dict(_lowercase , _lowercase ) _A = XCLIPModel(_lowercase ) _A ,_A = model.load_state_dict(_lowercase , strict=_lowercase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() _A = 3_36 if model_name == '''xclip-large-patch14-16-frames''' else 2_24 _A = VideoMAEImageProcessor(size=_lowercase ) _A = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) _A = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) _A = XCLIPProcessor(image_processor=_lowercase , tokenizer=_lowercase ) _A = prepare_video(_lowercase ) _A = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=_lowercase , return_tensors='''pt''' , padding=_lowercase ) print('''Shape of pixel values:''' , inputs.pixel_values.shape ) with torch.no_grad(): _A = model(**_lowercase ) # Verify outputs _A = outputs.logits_per_video _A = logits_per_video.softmax(dim=1 ) print('''Probs:''' , _lowercase ) # kinetics-400 if model_name == "xclip-base-patch32": _A = torch.tensor([[0.00_19, 0.99_51, 0.00_30]] ) elif model_name == "xclip-base-patch32-16-frames": _A = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": _A = torch.tensor([[0.00_83, 0.96_81, 0.02_36]] ) elif model_name == "xclip-base-patch16-16-frames": _A = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": _A = torch.tensor([[0.00_62, 0.98_64, 0.00_75]] ) elif model_name == "xclip-large-patch14-16-frames": _A = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": _A = torch.tensor([[0.05_55, 0.89_14, 0.05_31]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": _A = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": _A = torch.tensor([[0.00_36, 0.99_20, 0.00_45]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": _A = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": _A = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": _A = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": _A = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": _A = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": _A = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": _A = torch.tensor([[0.00_27, 0.99_04, 0.00_70]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": _A = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": _A = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(f"""Model name {model_name} not supported""" ) assert torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(_lowercase , organization='''nielsr''' ) processor.push_to_hub(_lowercase , organization='''nielsr''' ) slow_tokenizer.push_to_hub(_lowercase , organization='''nielsr''' ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='xclip-base-patch32', type=str, help='Name of the model.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __A = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
484
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __A = logging.get_logger('transformers.models.encodec') __A = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } __A = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } __A = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } __A = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } __A = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } __A = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __A = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __A = [] __A = [] def __A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' for attribute in key.split('''.''' ): _A = getattr(_lowercase , _lowercase ) if weight_type is not None: _A = getattr(_lowercase , _lowercase ).shape else: _A = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": _A = value elif weight_type == "weight_g": _A = value elif weight_type == "weight_v": _A = value elif weight_type == "bias": _A = value elif weight_type == "running_mean": _A = value elif weight_type == "running_var": _A = value elif weight_type == "num_batches_tracked": _A = value elif weight_type == "weight_ih_l0": _A = value elif weight_type == "weight_hh_l0": _A = value elif weight_type == "bias_ih_l0": _A = value elif weight_type == "bias_hh_l0": _A = value elif weight_type == "weight_ih_l1": _A = value elif weight_type == "weight_hh_l1": _A = value elif weight_type == "bias_ih_l1": _A = value elif weight_type == "bias_hh_l1": _A = value else: _A = value logger.info(f"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def __A ( _lowercase , _lowercase ): '''simple docstring''' for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _A ,_A = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def __A ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A = [] if model_name == "encodec_24khz" or "encodec_32khz": _A = MAPPING_24K elif model_name == "encodec_48khz": _A = MAPPING_48K else: raise ValueError(f"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(_lowercase , _lowercase ): logger.info(f"""{name} was ignored""" ) continue _A = False for key, mapped_key in MAPPING.items(): if "*" in key: _A ,_A = key.split('''.*.''' ) if prefix in name and suffix in name: _A = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue _A = True if "*" in mapped_key: _A = name.split(_lowercase )[0].split('''.''' )[-2] _A = mapped_key.replace('''*''' , _lowercase ) if "weight_g" in name: _A = '''weight_g''' elif "weight_v" in name: _A = '''weight_v''' elif "weight_ih_l0" in name: _A = '''weight_ih_l0''' elif "weight_hh_l0" in name: _A = '''weight_hh_l0''' elif "bias_ih_l0" in name: _A = '''bias_ih_l0''' elif "bias_hh_l0" in name: _A = '''bias_hh_l0''' elif "weight_ih_l1" in name: _A = '''weight_ih_l1''' elif "weight_hh_l1" in name: _A = '''weight_hh_l1''' elif "bias_ih_l1" in name: _A = '''bias_ih_l1''' elif "bias_hh_l1" in name: _A = '''bias_hh_l1''' elif "bias" in name: _A = '''bias''' elif "weight" in name: _A = '''weight''' elif "running_mean" in name: _A = '''running_mean''' elif "running_var" in name: _A = '''running_var''' elif "num_batches_tracked" in name: _A = '''num_batches_tracked''' else: _A = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) continue if not is_used: unused_weights.append(_lowercase ) logger.warning(f"""Unused weights: {unused_weights}""" ) @torch.no_grad() def __A ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , ): '''simple docstring''' if config_path is not None: _A = EncodecConfig.from_pretrained(_lowercase ) else: _A = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _A = [8, 5, 4, 4] _A = [2.2] _A = 64 _A = 3_20_00 _A = 20_48 _A = False _A = False _A = False elif model_name == "encodec_48khz": _A = [8, 5, 4, 2] _A = [3.0, 6.0, 12.0, 24.0] _A = 4_80_00 _A = 2 _A = False _A = '''time_group_norm''' _A = True _A = 1.0 _A = 0.01 else: raise ValueError(f"""Unknown model name: {model_name}""" ) _A = EncodecModel(_lowercase ) _A = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_lowercase ) _A = torch.load(_lowercase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _A = original_checkpoint['''best_state'''] recursively_load_weights(_lowercase , _lowercase , _lowercase ) model.save_pretrained(_lowercase ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(_lowercase ) model.push_to_hub(_lowercase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __A = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
484
1
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def UpperCAmelCase_ ( lowercase__ , lowercase__="shi-labs/oneformer_demo" ): '''simple docstring''' with open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="dataset" ) , "r" ) as f: a_ =json.load(lowerCamelCase_ ) a_ ={} a_ =[] a_ =[] for key, info in class_info.items(): a_ =info["""name"""] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(lowerCamelCase_ ) ) a_ =thing_ids a_ =class_names return metadata class UpperCAmelCase ( unittest.TestCase): '''simple docstring''' def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=7 , lowerCAmelCase_=3 , lowerCAmelCase_=3_0 , lowerCAmelCase_=4_0_0 , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=[0.5, 0.5, 0.5] , lowerCAmelCase_=[0.5, 0.5, 0.5] , lowerCAmelCase_=1_0 , lowerCAmelCase_=False , lowerCAmelCase_=2_5_5 , lowerCAmelCase_="shi-labs/oneformer_demo" , lowerCAmelCase_="ade20k_panoptic.json" , lowerCAmelCase_=1_0 , ) -> Union[str, Any]: """simple docstring""" a_ =parent a_ =batch_size a_ =num_channels a_ =min_resolution a_ =max_resolution a_ =do_resize a_ ={"""shortest_edge""": 3_2, """longest_edge""": 1_3_3_3} if size is None else size a_ =do_normalize a_ =image_mean a_ =image_std a_ =class_info_file a_ =prepare_metadata(lowerCamelCase_ , lowerCamelCase_) a_ =num_text a_ =repo_path # for the post_process_functions a_ =2 a_ =1_0 a_ =1_0 a_ =3 a_ =4 a_ =num_labels a_ =do_reduce_labels a_ =ignore_index def lowercase_ ( self) -> int: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def lowercase_ ( self , lowerCAmelCase_ , lowerCAmelCase_=False) -> Any: """simple docstring""" if not batched: a_ =image_inputs[0] if isinstance(lowerCamelCase_ , Image.Image): a_ =image.size else: a_ =image.shape[1], image.shape[2] if w < h: a_ =int(self.size["shortest_edge"] * h / w) a_ =self.size["""shortest_edge"""] elif w > h: a_ =self.size["""shortest_edge"""] a_ =int(self.size["shortest_edge"] * w / h) else: a_ =self.size["""shortest_edge"""] a_ =self.size["""shortest_edge"""] else: a_ =[] for image in image_inputs: a_ =self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) a_ =max(lowerCamelCase_ , key=lambda lowerCAmelCase_: item[0])[0] a_ =max(lowerCamelCase_ , key=lambda lowerCAmelCase_: item[1])[1] return expected_height, expected_width def lowercase_ ( self) -> List[Any]: """simple docstring""" return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1)) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width)) , ) @require_torch @require_vision class UpperCAmelCase ( lowercase_ , unittest.TestCase): '''simple docstring''' __magic_name__ : Tuple = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __magic_name__ : Dict = image_processing_class def lowercase_ ( self) -> str: """simple docstring""" a_ =OneFormerImageProcessorTester(self) @property def lowercase_ ( self) -> int: """simple docstring""" return self.image_processing_tester.prepare_image_processor_dict() def lowercase_ ( self) -> Optional[Any]: """simple docstring""" a_ =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCamelCase_ , "image_mean")) self.assertTrue(hasattr(lowerCamelCase_ , "image_std")) self.assertTrue(hasattr(lowerCamelCase_ , "do_normalize")) self.assertTrue(hasattr(lowerCamelCase_ , "do_resize")) self.assertTrue(hasattr(lowerCamelCase_ , "size")) self.assertTrue(hasattr(lowerCamelCase_ , "ignore_index")) self.assertTrue(hasattr(lowerCamelCase_ , "class_info_file")) self.assertTrue(hasattr(lowerCamelCase_ , "num_text")) self.assertTrue(hasattr(lowerCamelCase_ , "repo_path")) self.assertTrue(hasattr(lowerCamelCase_ , "metadata")) self.assertTrue(hasattr(lowerCamelCase_ , "do_reduce_labels")) def lowercase_ ( self) -> Dict: """simple docstring""" pass def lowercase_ ( self) -> str: """simple docstring""" a_ =self.image_processing_class(**self.image_processor_dict) # create random PIL images a_ =prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase_) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image) # Test not batched input a_ =image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt").pixel_values a_ =self.image_processing_tester.get_expected_values(lowerCamelCase_) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ =self.image_processing_tester.get_expected_values(lowerCamelCase_ , batched=lowerCamelCase_) a_ =image_processor( lowerCamelCase_ , ["semantic"] * len(lowerCamelCase_) , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self) -> int: """simple docstring""" a_ =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors a_ =prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray) # Test not batched input a_ =image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt").pixel_values a_ =self.image_processing_tester.get_expected_values(lowerCamelCase_) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ =self.image_processing_tester.get_expected_values(lowerCamelCase_ , batched=lowerCamelCase_) a_ =image_processor( lowerCamelCase_ , ["semantic"] * len(lowerCamelCase_) , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self) -> int: """simple docstring""" a_ =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors a_ =prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor) # Test not batched input a_ =image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt").pixel_values a_ =self.image_processing_tester.get_expected_values(lowerCamelCase_) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ =self.image_processing_tester.get_expected_values(lowerCamelCase_ , batched=lowerCamelCase_) a_ =image_processor( lowerCamelCase_ , ["semantic"] * len(lowerCamelCase_) , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_="np") -> Union[str, Any]: """simple docstring""" a_ =self.image_processing_class(**self.image_processor_dict) # prepare image and target a_ =self.image_processing_tester.num_labels a_ =None a_ =None a_ =prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase_) if with_segmentation_maps: a_ =num_labels if is_instance_map: a_ =list(range(lowerCamelCase_)) * 2 a_ =dict(enumerate(lowerCamelCase_)) a_ =[ np.random.randint(0 , high * 2 , (img.size[1], img.size[0])).astype(np.uinta) for img in image_inputs ] if segmentation_type == "pil": a_ =[Image.fromarray(lowerCamelCase_) for annotation in annotations] a_ =image_processor( lowerCamelCase_ , ["semantic"] * len(lowerCamelCase_) , lowerCamelCase_ , return_tensors="pt" , instance_id_to_semantic_id=lowerCamelCase_ , pad_and_return_pixel_mask=lowerCamelCase_ , ) return inputs def lowercase_ ( self) -> str: """simple docstring""" pass def lowercase_ ( self) -> Union[str, Any]: """simple docstring""" def common(lowerCAmelCase_=False , lowerCAmelCase_=None): a_ =self.comm_get_image_processor_inputs( with_segmentation_maps=lowerCamelCase_ , is_instance_map=lowerCamelCase_ , segmentation_type=lowerCamelCase_) a_ =inputs["""mask_labels"""] a_ =inputs["""class_labels"""] a_ =inputs["""pixel_values"""] a_ =inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): self.assertEqual(mask_label.shape[0] , class_label.shape[0]) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:]) self.assertEqual(len(lowerCamelCase_) , self.image_processing_tester.num_text) common() common(is_instance_map=lowerCamelCase_) common(is_instance_map=lowerCamelCase_ , segmentation_type="pil") common(is_instance_map=lowerCamelCase_ , segmentation_type="pil") def lowercase_ ( self) -> Tuple: """simple docstring""" a_ =np.zeros((2_0, 5_0)) a_ =1 a_ =1 a_ =1 a_ =binary_mask_to_rle(lowerCamelCase_) self.assertEqual(len(lowerCamelCase_) , 4) self.assertEqual(rle[0] , 2_1) self.assertEqual(rle[1] , 4_5) def lowercase_ ( self) -> Any: """simple docstring""" a_ =self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) a_ =self.image_processing_tester.get_fake_oneformer_outputs() a_ =fature_extractor.post_process_semantic_segmentation(lowerCamelCase_) self.assertEqual(len(lowerCamelCase_) , self.image_processing_tester.batch_size) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) a_ =[(1, 4) for i in range(self.image_processing_tester.batch_size)] a_ =fature_extractor.post_process_semantic_segmentation(lowerCamelCase_ , target_sizes=lowerCamelCase_) self.assertEqual(segmentation[0].shape , target_sizes[0]) def lowercase_ ( self) -> List[str]: """simple docstring""" a_ =self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) a_ =self.image_processing_tester.get_fake_oneformer_outputs() a_ =image_processor.post_process_instance_segmentation(lowerCamelCase_ , threshold=0) self.assertTrue(len(lowerCamelCase_) == self.image_processing_tester.batch_size) for el in segmentation: self.assertTrue("segmentation" in el) self.assertTrue("segments_info" in el) self.assertEqual(type(el["segments_info"]) , lowerCamelCase_) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width)) def lowercase_ ( self) -> Dict: """simple docstring""" a_ =self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) a_ =self.image_processing_tester.get_fake_oneformer_outputs() a_ =image_processor.post_process_panoptic_segmentation(lowerCamelCase_ , threshold=0) self.assertTrue(len(lowerCamelCase_) == self.image_processing_tester.batch_size) for el in segmentation: self.assertTrue("segmentation" in el) self.assertTrue("segments_info" in el) self.assertEqual(type(el["segments_info"]) , lowerCamelCase_) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width))
712
'''simple docstring''' from collections.abc import Sequence def UpperCAmelCase_ ( lowercase__ = None ): '''simple docstring''' if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) a_ =nums[0] for i in range(1 , len(lowercase__ ) ): a_ =nums[i] a_ =max(lowercase__ , ans + num , lowercase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowercase = int(input('''Enter number of elements : ''').strip()) lowercase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
41
0
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class A ( lowercase_ , unittest.TestCase ): UpperCamelCase_ : List[Any] =CTRLTokenizer UpperCamelCase_ : Tuple =False UpperCamelCase_ : int =False def _A (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase= ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] __lowercase= dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) __lowercase= ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] __lowercase= {'unk_token': '<unk>'} __lowercase= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowercase= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase__ ) ) def _A (self , **lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _A (self , lowerCAmelCase ): __lowercase= 'adapt react readapt apt' __lowercase= 'adapt react readapt apt' return input_text, output_text def _A (self ): __lowercase= CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase= 'adapt react readapt apt' __lowercase= 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() __lowercase= tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) __lowercase= tokens + [tokenizer.unk_token] __lowercase= [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ )
230
'''simple docstring''' import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : """simple docstring""" def __init__( self : int , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : Dict=7 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Optional[Any]=99 , UpperCamelCase__ : Union[str, Any]=32 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Dict=512 , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : str=2 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Optional[Any]=3 , UpperCamelCase__ : Dict=4 , UpperCamelCase__ : Optional[Any]=None , ) -> str: _UpperCamelCase =parent _UpperCamelCase =batch_size _UpperCamelCase =seq_length _UpperCamelCase =is_training _UpperCamelCase =use_input_mask _UpperCamelCase =use_token_type_ids _UpperCamelCase =use_labels _UpperCamelCase =vocab_size _UpperCamelCase =hidden_size _UpperCamelCase =num_hidden_layers _UpperCamelCase =num_attention_heads _UpperCamelCase =intermediate_size _UpperCamelCase =hidden_act _UpperCamelCase =hidden_dropout_prob _UpperCamelCase =attention_probs_dropout_prob _UpperCamelCase =max_position_embeddings _UpperCamelCase =type_vocab_size _UpperCamelCase =type_sequence_label_size _UpperCamelCase =initializer_range _UpperCamelCase =num_labels _UpperCamelCase =num_choices _UpperCamelCase =scope def UpperCamelCase__ ( self : Tuple ) -> List[Any]: _UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase =None if self.use_input_mask: _UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase =None if self.use_token_type_ids: _UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase =None _UpperCamelCase =None _UpperCamelCase =None if self.use_labels: _UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self : Tuple ) -> List[Any]: return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> Dict: _UpperCamelCase =NystromformerModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) _UpperCamelCase =model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) _UpperCamelCase =model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ) -> int: _UpperCamelCase =NystromformerForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] ) -> List[str]: _UpperCamelCase =NystromformerForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCamelCase =model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> List[str]: _UpperCamelCase =self.num_labels _UpperCamelCase =NystromformerForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ) -> int: _UpperCamelCase =self.num_labels _UpperCamelCase =NystromformerForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ) -> str: _UpperCamelCase =self.num_choices _UpperCamelCase =NystromformerForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCamelCase =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase =model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self : Union[str, Any] ) -> Optional[int]: _UpperCamelCase =self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) =config_and_inputs _UpperCamelCase ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase): """simple docstring""" lowerCAmelCase_ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase_ = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCamelCase__ ( self : Any ) -> int: _UpperCamelCase =NystromformerModelTester(self ) _UpperCamelCase =ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCamelCase__ ( self : Any ) -> Any: self.config_tester.run_common_tests() def UpperCamelCase__ ( self : str ) -> List[Any]: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCamelCase__ ( self : Union[str, Any] ) -> List[str]: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCamelCase =type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCamelCase__ ( self : Tuple ) -> Any: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def UpperCamelCase__ ( self : Optional[Any] ) -> str: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__ ) def UpperCamelCase__ ( self : Optional[int] ) -> Dict: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def UpperCamelCase__ ( self : List[str] ) -> Optional[int]: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def UpperCamelCase__ ( self : Any ) -> Optional[int]: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def UpperCamelCase__ ( self : int ) -> List[str]: for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase =NystromformerModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch class UpperCAmelCase ( unittest.TestCase): """simple docstring""" @slow def UpperCamelCase__ ( self : List[Any] ) -> int: _UpperCamelCase =NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) _UpperCamelCase =torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _UpperCamelCase =model(UpperCamelCase__ )[0] _UpperCamelCase =torch.Size((1, 6, 768) ) self.assertEqual(output.shape , UpperCamelCase__ ) _UpperCamelCase =torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1E-4 ) ) @slow def UpperCamelCase__ ( self : Any ) -> List[Any]: _UpperCamelCase ='''the [MASK] of Belgium is Brussels''' _UpperCamelCase =AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) _UpperCamelCase =NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) _UpperCamelCase =tokenizer(UpperCamelCase__ , return_tensors='''pt''' ) with torch.no_grad(): _UpperCamelCase =model(encoding.input_ids ).logits _UpperCamelCase =token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(UpperCamelCase__ ) , '''capital''' )
404
0
"""simple docstring""" def __lowercase ( a : int , a : float , a : float ) -> str: return round(float(moles / volume ) * nfactor ) def __lowercase ( a : float , a : float , a : float ) -> Any: return round(float((moles * 0.0_8_2_1 * temperature) / (volume) ) ) def __lowercase ( a : float , a : float , a : float ) -> Tuple: return round(float((moles * 0.0_8_2_1 * temperature) / (pressure) ) ) def __lowercase ( a : float , a : float , a : float ) -> Optional[int]: return round(float((pressure * volume) / (0.0_8_2_1 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
704
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __lowercase ( a : Any , a : List[Any] ) -> Dict: __snake_case : Any =checkpoint __snake_case : Dict ={} __snake_case : List[Any] =vae_state_dict['''encoder.conv_in.weight'''] __snake_case : List[str] =vae_state_dict['''encoder.conv_in.bias'''] __snake_case : Union[str, Any] =vae_state_dict['''encoder.conv_out.weight'''] __snake_case : Union[str, Any] =vae_state_dict['''encoder.conv_out.bias'''] __snake_case : str =vae_state_dict['''encoder.norm_out.weight'''] __snake_case : str =vae_state_dict['''encoder.norm_out.bias'''] __snake_case : Tuple =vae_state_dict['''decoder.conv_in.weight'''] __snake_case : str =vae_state_dict['''decoder.conv_in.bias'''] __snake_case : List[str] =vae_state_dict['''decoder.conv_out.weight'''] __snake_case : Tuple =vae_state_dict['''decoder.conv_out.bias'''] __snake_case : Union[str, Any] =vae_state_dict['''decoder.norm_out.weight'''] __snake_case : List[str] =vae_state_dict['''decoder.norm_out.bias'''] __snake_case : Tuple =vae_state_dict['''quant_conv.weight'''] __snake_case : List[str] =vae_state_dict['''quant_conv.bias'''] __snake_case : Optional[int] =vae_state_dict['''post_quant_conv.weight'''] __snake_case : Tuple =vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only __snake_case : Union[str, Any] =len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) __snake_case : Union[str, Any] ={ layer_id: [key for key in vae_state_dict if f'''down.{layer_id}''' in key] for layer_id in range(a ) } # Retrieves the keys for the decoder up blocks only __snake_case : List[Any] =len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) __snake_case : List[Any] ={ layer_id: [key for key in vae_state_dict if f'''up.{layer_id}''' in key] for layer_id in range(a ) } for i in range(a ): __snake_case : Any =[key for key in down_blocks[i] if f'''down.{i}''' in key and f'''down.{i}.downsample''' not in key] if f'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict: __snake_case : Optional[Any] =vae_state_dict.pop( f'''encoder.down.{i}.downsample.conv.weight''' ) __snake_case : Optional[int] =vae_state_dict.pop( f'''encoder.down.{i}.downsample.conv.bias''' ) __snake_case : Optional[Any] =renew_vae_resnet_paths(a ) __snake_case : Union[str, Any] ={'''old''': f'''down.{i}.block''', '''new''': f'''down_blocks.{i}.resnets'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) __snake_case : Tuple =[key for key in vae_state_dict if '''encoder.mid.block''' in key] __snake_case : Any =2 for i in range(1 , num_mid_res_blocks + 1 ): __snake_case : Tuple =[key for key in mid_resnets if f'''encoder.mid.block_{i}''' in key] __snake_case : List[str] =renew_vae_resnet_paths(a ) __snake_case : List[str] ={'''old''': f'''mid.block_{i}''', '''new''': f'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) __snake_case : int =[key for key in vae_state_dict if '''encoder.mid.attn''' in key] __snake_case : List[Any] =renew_vae_attention_paths(a ) __snake_case : Union[str, Any] ={'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) for i in range(a ): __snake_case : List[Any] =num_up_blocks - 1 - i __snake_case : Dict =[ key for key in up_blocks[block_id] if f'''up.{block_id}''' in key and f'''up.{block_id}.upsample''' not in key ] if f'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict: __snake_case : int =vae_state_dict[ f'''decoder.up.{block_id}.upsample.conv.weight''' ] __snake_case : Optional[Any] =vae_state_dict[ f'''decoder.up.{block_id}.upsample.conv.bias''' ] __snake_case : List[str] =renew_vae_resnet_paths(a ) __snake_case : int ={'''old''': f'''up.{block_id}.block''', '''new''': f'''up_blocks.{i}.resnets'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) __snake_case : Any =[key for key in vae_state_dict if '''decoder.mid.block''' in key] __snake_case : Dict =2 for i in range(1 , num_mid_res_blocks + 1 ): __snake_case : Dict =[key for key in mid_resnets if f'''decoder.mid.block_{i}''' in key] __snake_case : Tuple =renew_vae_resnet_paths(a ) __snake_case : Tuple ={'''old''': f'''mid.block_{i}''', '''new''': f'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) __snake_case : Optional[Any] =[key for key in vae_state_dict if '''decoder.mid.attn''' in key] __snake_case : Dict =renew_vae_attention_paths(a ) __snake_case : List[str] ={'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) return new_checkpoint def __lowercase ( a : str , a : str , ) -> Optional[int]: # Only support V1 __snake_case : Union[str, Any] =requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) __snake_case : Union[str, Any] =io.BytesIO(r.content ) __snake_case : Any =OmegaConf.load(a ) __snake_case : Union[str, Any] =512 __snake_case : List[str] ='''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open __snake_case : Any ={} with safe_open(a , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): __snake_case : Optional[int] =f.get_tensor(a ) else: __snake_case : Optional[int] =torch.load(a , map_location=a )['''state_dict'''] # Convert the VAE model. __snake_case : Dict =create_vae_diffusers_config(a , image_size=a ) __snake_case : Union[str, Any] =custom_convert_ldm_vae_checkpoint(a , a ) __snake_case : str =AutoencoderKL(**a ) vae.load_state_dict(a ) vae.save_pretrained(a ) if __name__ == "__main__": UpperCamelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") UpperCamelCase_ : Optional[Any] = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
497
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __A = logging.get_logger(__name__) class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :int = ["""pixel_values"""] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 2_5_5 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ :int = size if size is not None else {'shortest_edge': 2_5_6} lowerCAmelCase__ :Optional[int] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) lowerCAmelCase__ :str = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} lowerCAmelCase__ :Optional[int] = get_size_dict(__UpperCAmelCase , param_name='crop_size' ) lowerCAmelCase__ :Optional[Any] = do_resize lowerCAmelCase__ :Dict = size lowerCAmelCase__ :Tuple = resample lowerCAmelCase__ :Any = do_center_crop lowerCAmelCase__ :Tuple = crop_size lowerCAmelCase__ :List[Any] = do_rescale lowerCAmelCase__ :Any = rescale_factor lowerCAmelCase__ :Tuple = do_normalize lowerCAmelCase__ :Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ :List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) lowerCAmelCase__ :Any = get_resize_output_image_size(__UpperCAmelCase , size=size['shortest_edge'] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :Dict = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(__UpperCAmelCase , size=(size['height'], size['width']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ :int = size if size is not None else self.size lowerCAmelCase__ :Optional[Any] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = resample if resample is not None else self.resample lowerCAmelCase__ :List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ :List[str] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ :Union[str, Any] = get_size_dict(__UpperCAmelCase , param_name='crop_size' ) lowerCAmelCase__ :List[str] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ :List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ :List[Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ :Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ :Optional[int] = image_std if image_std is not None else self.image_std lowerCAmelCase__ :List[str] = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase__ :Optional[int] = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: lowerCAmelCase__ :Tuple = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: lowerCAmelCase__ :Union[str, Any] = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: lowerCAmelCase__ :Union[str, Any] = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: lowerCAmelCase__ :List[str] = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] lowerCAmelCase__ :Dict = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] lowerCAmelCase__ :List[str] = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :int = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(__UpperCAmelCase ): lowerCAmelCase__ :Optional[Any] = target_sizes.numpy() lowerCAmelCase__ :List[str] = [] for idx in range(len(__UpperCAmelCase ) ): lowerCAmelCase__ :Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__UpperCAmelCase ) else: lowerCAmelCase__ :List[str] = logits.argmax(dim=1 ) lowerCAmelCase__ :Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
93
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ : def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Dict=2 , _A : Optional[Any]=32 , _A : List[str]=16 , _A : str=3 , _A : List[Any]=True , _A : Optional[int]=True , _A : Optional[int]=32 , _A : Optional[Any]=4 , _A : Optional[int]=[0, 1, 2, 3] , _A : List[Any]=4 , _A : Optional[int]=37 , _A : Optional[Any]="gelu" , _A : Optional[Any]=0.1 , _A : Union[str, Any]=0.1 , _A : Dict=0.02 , _A : Optional[Any]=3 , _A : Union[str, Any]=[1, 3_84, 24, 24] , _A : int=True , _A : int=None , ) -> Tuple: UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Union[str, Any] = image_size UpperCAmelCase_ : List[Any] = patch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : str = is_training UpperCAmelCase_ : List[str] = use_labels UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : int = backbone_out_indices UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Dict = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Union[str, Any] = backbone_featmap_shape UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ : List[Any] = (image_size // patch_size) ** 2 UpperCAmelCase_ : List[str] = num_patches + 1 def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ : Dict = self.get_config() return config, pixel_values, labels def A ( self : int ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 1_92, 3_84, 7_68], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_A , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : Union[str, Any] , _A : List[Any] , _A : Optional[int] , _A : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = DPTModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : List[str] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , _A : str , _A : Tuple , _A : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Any = DPTForDepthEstimation(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : List[str] , _A : str , _A : Union[str, Any] , _A : int ) -> Dict: UpperCAmelCase_ : int = self.num_labels UpperCAmelCase_ : Optional[Any] = DPTForSemanticSegmentation(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A , labels=_A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = config_and_inputs UpperCAmelCase_ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () a_ = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) a_ = False a_ = False a_ = False def A ( self : Tuple ) -> Tuple: UpperCAmelCase_ : Any = DPTModelTester(self ) UpperCAmelCase_ : Dict = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Optional[int] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def A ( self : Union[str, Any] ) -> str: pass def A ( self : str ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Union[str, Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def A ( self : List[Any] ) -> Tuple: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(_A ) UpperCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : int = [*signature.parameters.keys()] UpperCAmelCase_ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : List[str] ) -> str: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : str ) -> List[str]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_A ) def A ( self : str ) -> List[Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_A ) def A ( self : Tuple ) -> str: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = True if model_class in get_values(_A ): continue UpperCAmelCase_ : Optional[int] = model_class(_A ) model.to(_A ) model.train() UpperCAmelCase_ : Any = self._prepare_for_class(_A , _A , return_labels=_A ) UpperCAmelCase_ : Tuple = model(**_A ).loss loss.backward() def A ( self : Union[str, Any] ) -> Tuple: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : Optional[Any] = True if model_class in get_values(_A ) or not model_class.supports_gradient_checkpointing: continue UpperCAmelCase_ : int = model_class(_A ) model.to(_A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase_ : int = self._prepare_for_class(_A , _A , return_labels=_A ) UpperCAmelCase_ : List[str] = model(**_A ).loss loss.backward() def A ( self : Optional[Any] ) -> Any: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = _config_zero_init(_A ) for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(config=_A ) # Skip the check for the backbone UpperCAmelCase_ : List[str] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCAmelCase_ : Union[str, Any] = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : Tuple ) -> Optional[Any]: pass @slow def A ( self : Any ) -> int: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCAmelCase_ : Any = DPTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def A ( self : Union[str, Any] ) -> str: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = '''add''' with self.assertRaises(_A ): UpperCAmelCase_ : Optional[Any] = DPTForDepthEstimation(_A ) def __UpperCAmelCase ( ) -> List[Any]: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class snake_case__ ( unittest.TestCase): def A ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : List[Any] = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) UpperCAmelCase_ : Any = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(_A ) UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : Union[str, Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : str = model(**_A ) UpperCAmelCase_ : List[Any] = outputs.predicted_depth # verify the predicted depth UpperCAmelCase_ : str = torch.Size((1, 3_84, 3_84) ) self.assertEqual(predicted_depth.shape , _A ) UpperCAmelCase_ : Tuple = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(_A ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , _A , atol=1e-4 ) )
541
0
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : def __init__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Dict=13 , _UpperCamelCase : List[Any]=64 , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : int=3 , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Tuple=32 , _UpperCamelCase : str=5 , _UpperCamelCase : Tuple=4 , _UpperCamelCase : Any=37 , _UpperCamelCase : List[str]="gelu" , _UpperCamelCase : int=0.1 , _UpperCamelCase : int=0.1 , _UpperCamelCase : Optional[int]=10 , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : Union[str, Any]=[1, 16, 4, 4] , _UpperCamelCase : Optional[Any]=None , ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size SCREAMING_SNAKE_CASE = (self.image_size // 32) ** 2 SCREAMING_SNAKE_CASE = num_patches + 1 def __snake_case( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def __snake_case( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [4, 8, 16, 32], "num_groups": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_UpperCamelCase , ) def __snake_case( self : Dict , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case( self : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.type_sequence_label_size SCREAMING_SNAKE_CASE = ViTHybridForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase ( a , a , unittest.TestCase ): lowercase__ : Optional[int] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ : List[Any] = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : Any = False lowercase__ : Optional[int] = False def __snake_case( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def __snake_case( self : Optional[Any] ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __snake_case( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass def __snake_case( self : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def __snake_case( self : Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __snake_case( self : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __snake_case( self : Dict ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(_UpperCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=_UpperCamelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": SCREAMING_SNAKE_CASE = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def __snake_case( self : Any ) -> List[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = ViTHybridModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __snake_case( self : List[Any] ) -> Any: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __snake_case( self : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow @require_accelerate def __snake_case( self : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384" ) SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384" , device_map="auto" ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ) SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits # model predicts one of the 1000 ImageNet classes SCREAMING_SNAKE_CASE = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , "tabby, tabby cat" )
647
def __lowerCamelCase (UpperCAmelCase__ : list[int] ): if not numbers: return 0 if not isinstance(UpperCAmelCase__ , (list, tuple) ) or not all( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for number in numbers ): raise ValueError("numbers must be an iterable of integers" ) SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = numbers[0] for i in range(1 , len(UpperCAmelCase__ ) ): # update the maximum and minimum subarray products SCREAMING_SNAKE_CASE = numbers[i] if number < 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = min_till_now, max_till_now SCREAMING_SNAKE_CASE = max(UpperCAmelCase__ , max_till_now * number ) SCREAMING_SNAKE_CASE = min(UpperCAmelCase__ , min_till_now * number ) # update the maximum product found till now SCREAMING_SNAKE_CASE = max(UpperCAmelCase__ , UpperCAmelCase__ ) return max_prod
647
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = "▁" _lowerCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} _lowerCAmelCase = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _lowerCAmelCase = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self : int , _A : Optional[Any] , _A : Union[str, Any]="<s>" , _A : List[Any]="</s>" , _A : Tuple="</s>" , _A : List[str]="<s>" , _A : Optional[int]="<unk>" , _A : Optional[Any]="<pad>" , _A : Optional[Any]="<mask>" , _A : Optional[Dict[str, Any]] = None , **_A : List[str] , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) _UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase = 1 _UpperCamelCase = len(self.sp_model ) + self.fairseq_offset _UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[str] ): _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None _UpperCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : Tuple , _A : Optional[int] ): _UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase_ ( self : Dict , _A : List[int] , _A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] _UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self : Dict , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def UpperCamelCase_ ( self : Any , _A : List[int] , _A : Optional[List[int]] = None ): _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self : int ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self : Optional[int] , _A : str ): return self.sp_model.encode(_A , out_type=_A ) def UpperCamelCase_ ( self : Dict , _A : Optional[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase_ ( self : Dict , _A : str ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self : Any , _A : int ): _UpperCamelCase = ''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def UpperCamelCase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ): if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCamelCase = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , '''wb''' ) as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
10
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : Any = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Any = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : int = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
149
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE : int = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowerCamelCase ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" a_: str = ReformerTokenizer a_: Any = ReformerTokenizerFast a_: Union[str, Any] = True a_: int = False a_: List[Any] = True def lowerCAmelCase__ ( self : str ): super().setUp() _lowerCAmelCase =ReformerTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : Any ): _lowerCAmelCase ="""<s>""" _lowerCAmelCase =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def lowerCAmelCase__ ( self : str ): _lowerCAmelCase =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(lowerCamelCase_ ) , 1000 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCAmelCase__ ( self : Tuple ): if not self.test_rust_tokenizer: return _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =self.get_rust_tokenizer() _lowerCAmelCase ="""I was born in 92000, and this is falsé.""" _lowerCAmelCase =tokenizer.tokenize(lowerCamelCase_ ) _lowerCAmelCase =rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase =tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) _lowerCAmelCase =rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase =self.get_rust_tokenizer() _lowerCAmelCase =tokenizer.encode(lowerCamelCase_ ) _lowerCAmelCase =rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase_ : Optional[int]=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase =self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) # Simple input _lowerCAmelCase ="""This is a simple input""" _lowerCAmelCase =["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase =("""This is a simple input""", """This is a pair""") _lowerCAmelCase =[ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(lowerCamelCase_ , tokenizer_r.encode , lowerCamelCase_ , max_length=lowerCamelCase_ , padding="""max_length""" ) # Simple input self.assertRaises(lowerCamelCase_ , tokenizer_r.encode_plus , lowerCamelCase_ , max_length=lowerCamelCase_ , padding="""max_length""" ) # Simple input self.assertRaises( lowerCamelCase_ , tokenizer_r.batch_encode_plus , lowerCamelCase_ , max_length=lowerCamelCase_ , padding="""max_length""" , ) # Pair input self.assertRaises(lowerCamelCase_ , tokenizer_r.encode , lowerCamelCase_ , max_length=lowerCamelCase_ , padding="""max_length""" ) # Pair input self.assertRaises(lowerCamelCase_ , tokenizer_r.encode_plus , lowerCamelCase_ , max_length=lowerCamelCase_ , padding="""max_length""" ) # Pair input self.assertRaises( lowerCamelCase_ , tokenizer_r.batch_encode_plus , lowerCamelCase_ , max_length=lowerCamelCase_ , padding="""max_length""" , ) def lowerCAmelCase__ ( self : Dict ): pass def lowerCAmelCase__ ( self : int ): _lowerCAmelCase =ReformerTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) _lowerCAmelCase =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [285, 46, 10, 170, 382] , ) _lowerCAmelCase =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _lowerCAmelCase =tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowerCAmelCase =tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowerCAmelCase__ ( self : Tuple ): return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def lowerCAmelCase__ ( self : int ): _lowerCAmelCase ="""Hello World!""" _lowerCAmelCase =[126, 32, 262, 152, 38, 72, 287] self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def lowerCAmelCase__ ( self : List[Any] ): _lowerCAmelCase =( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) _lowerCAmelCase =[ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @require_torch @slow def lowerCAmelCase__ ( self : Optional[int] ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence _lowerCAmelCase =list(self.big_tokenizer.get_vocab().keys() )[:10] _lowerCAmelCase =""" """.join(lowerCamelCase_ ) _lowerCAmelCase =self.big_tokenizer.encode_plus(lowerCamelCase_ , return_tensors="""pt""" ) _lowerCAmelCase =self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" ) _lowerCAmelCase =ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) _lowerCAmelCase =encoded_sequence["""input_ids"""].shape _lowerCAmelCase =ReformerModel(lowerCamelCase_ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase_ ) model(**lowerCamelCase_ ) @slow def lowerCAmelCase__ ( self : Dict ): # fmt: off _lowerCAmelCase ={"""input_ids""": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 _lowerCAmelCase =[ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=lowerCamelCase_ , sequences=lowerCamelCase_ , )
149
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCAmelCase( unittest.TestCase ): def __init__( self , __a , __a=7 , __a=3 , __a=18 , __a=30 , __a=4_00 , __a=True , __a=None , __a=True , __a=None , __a=True , __a=[0.5, 0.5, 0.5] , __a=[0.5, 0.5, 0.5] , ) -> int: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''shortest_edge''': 18} _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = image_size _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = LevitImageProcessor if is_vision_available() else None def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = LevitImageProcessingTester(self) @property def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__a , '''image_mean''')) self.assertTrue(hasattr(__a , '''image_std''')) self.assertTrue(hasattr(__a , '''do_normalize''')) self.assertTrue(hasattr(__a , '''do_resize''')) self.assertTrue(hasattr(__a , '''do_center_crop''')) self.assertTrue(hasattr(__a , '''size''')) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 18}) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18}) _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {'''shortest_edge''': 42}) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84}) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a) for image in image_inputs: self.assertIsInstance(__a , Image.Image) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(__a , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a) for image in image_inputs: self.assertIsInstance(__a , np.ndarray) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(__a , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase ( self) -> Any: '''simple docstring''' # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(__a , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
19
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=32 , __a=3 , __a=4 , __a=[10, 20, 30, 40] , __a=[2, 2, 3, 2] , __a=True , __a=True , __a=37 , __a="gelu" , __a=10 , __a=0.02 , __a=["stage2", "stage3", "stage4"] , __a=3 , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = num_stages _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = out_features _UpperCamelCase = num_labels _UpperCamelCase = scope _UpperCamelCase = num_stages def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Any: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__a , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__a , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = UperNetForSemanticSegmentation(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = UperNetModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a) @unittest.skip(reason='''UperNet does not use inputs_embeds''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not support input and output embeddings''') def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''') def UpperCAmelCase ( self) -> int: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''') def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' def check_hidden_states_output(__a , __a , __a): _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(__a) , expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) _UpperCamelCase = _config_zero_init(configs_no_init.backbone_config) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason='''UperNet does not have tied weights''') def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained(__a) self.assertIsNotNone(__a) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''', repo_type='''dataset''', filename='''ADE_val_00000001.jpg''' ) _UpperCamelCase = Image.open(__snake_case ).convert('''RGB''' ) return image @require_torch @require_vision @slow class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''') _UpperCamelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = processor(images=__a , return_tensors='''pt''').to(__a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4))
19
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=1_0 , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=3_2 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1_0 , _lowerCAmelCase=0.02 , _lowerCAmelCase="divided_space_time" , _lowerCAmelCase=None , ): _lowercase : Optional[int] = parent _lowercase : str = batch_size _lowercase : Optional[Any] = image_size _lowercase : Dict = num_channels _lowercase : Tuple = patch_size _lowercase : Any = num_frames _lowercase : str = is_training _lowercase : Optional[int] = use_labels _lowercase : Optional[Any] = hidden_size _lowercase : List[str] = num_hidden_layers _lowercase : List[Any] = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : Dict = hidden_act _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : List[Any] = attention_type _lowercase : str = initializer_range _lowercase : Union[str, Any] = scope _lowercase : int = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _lowercase : List[str] = (image_size // patch_size) ** 2 _lowercase : List[Any] = (num_frames) * self.num_patches_per_frame + 1 def __a ( self ): _lowercase : Tuple = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _lowercase : Optional[Any] = None if self.use_labels: _lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) _lowercase : Optional[int] = self.get_config() return config, pixel_values, labels def __a ( self ): _lowercase : int = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) _lowercase : Dict = self.num_labels return config def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TimesformerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Tuple = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TimesformerForVideoClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Optional[int] = model(_lowerCAmelCase ) # verify the logits shape _lowercase : int = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , _lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase : int = config_and_inputs _lowercase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[int] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () _UpperCamelCase : Optional[Any] = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) _UpperCamelCase : List[str] = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : int = False _UpperCamelCase : List[Any] = False def __a ( self ): _lowercase : int = TimesformerModelTester(self ) _lowercase : List[str] = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): _lowercase : Union[str, Any] = copy.deepcopy(_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowercase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def __a ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='TimeSformer does not use inputs_embeds' ) def __a ( self ): pass def __a ( self ): _lowercase , _lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Union[str, Any] = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowercase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def __a ( self ): _lowercase , _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Optional[int] = model_class(_lowerCAmelCase ) _lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Tuple = [*signature.parameters.keys()] _lowercase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def __a ( self ): _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Union[str, Any] = TimesformerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __a ( self ): if not self.has_attentions: pass else: _lowercase , _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : str = True for model_class in self.all_model_classes: _lowercase : int = self.model_tester.seq_length _lowercase : Optional[Any] = self.model_tester.num_frames _lowercase : Dict = True _lowercase : List[str] = False _lowercase : List[str] = True _lowercase : Any = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): _lowercase : List[Any] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) _lowercase : Union[str, Any] = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowercase : str = True _lowercase : Union[str, Any] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): _lowercase : Dict = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) _lowercase : Dict = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) _lowercase : str = len(_lowerCAmelCase ) # Check attention is always last and order is fine _lowercase : Optional[Any] = True _lowercase : Union[str, Any] = True _lowercase : Union[str, Any] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): _lowercase : List[Any] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(out_len + 1 , len(_lowerCAmelCase ) ) _lowercase : Dict = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __a ( self ): def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): _lowercase : Optional[int] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) _lowercase : Any = outputs.hidden_states _lowercase : int = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) _lowercase : List[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _lowercase , _lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[str] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Union[str, Any] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __magic_name__ ( ) -> Any: _lowercase : Dict = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _lowercase : Union[str, Any] = np.load(SCREAMING_SNAKE_CASE ) return list(SCREAMING_SNAKE_CASE ) @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def __a ( self ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __a ( self ): _lowercase : List[Any] = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400' ).to( _lowerCAmelCase ) _lowercase : Optional[int] = self.default_image_processor _lowercase : Dict = prepare_video() _lowercase : Optional[Any] = image_processor(video[:8] , return_tensors='pt' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): _lowercase : Union[str, Any] = model(**_lowerCAmelCase ) # verify the logits _lowercase : Tuple = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) _lowercase : List[str] = torch.tensor([-0.30_16, -0.77_13, -0.42_05] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
677
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Tuple = "ClapFeatureExtractor" _UpperCamelCase : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowercase : str = kwargs.pop('sampling_rate' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: _lowercase : Dict = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowercase : Any = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowercase : Union[str, Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __a ( self ): _lowercase : Dict = self.tokenizer.model_input_names _lowercase : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
677
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class A__ ( A__ ): """simple docstring""" _lowercase = 42 _lowercase = 42 _lowercase = None class A__ ( A__ , A__ ): """simple docstring""" _lowercase = 2 @register_to_config def __init__( self : List[Any] , lowerCamelCase__ : float = 0.02 , lowerCamelCase__ : float = 100 , lowerCamelCase__ : float = 1.007 , lowerCamelCase__ : float = 80 , lowerCamelCase__ : float = 0.05 , lowerCamelCase__ : float = 50 , ): # standard deviation of the initial noise distribution a__ : Union[str, Any] = sigma_max # setable values a__ : int = None a__ : np.IntTensor = None a__ : torch.FloatTensor = None # sigma(t_i) def _UpperCamelCase( self : Dict , lowerCamelCase__ : torch.FloatTensor , lowerCamelCase__ : Optional[int] = None ): return sample def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : Union[str, torch.device] = None ): a__ : int = num_inference_steps a__ : Optional[int] = np.arange(0 , self.num_inference_steps )[::-1].copy() a__ : List[Any] = torch.from_numpy(lowerCamelCase__ ).to(lowerCamelCase__ ) a__ : Optional[int] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] a__ : Dict = torch.tensor(lowerCamelCase__ , dtype=torch.floataa , device=lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : torch.FloatTensor , lowerCamelCase__ : float , lowerCamelCase__ : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: a__ : Tuple = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: a__ : Optional[int] = 0 # sample eps ~ N(0, S_noise^2 * I) a__ : Optional[Any] = self.config.s_noise * randn_tensor(sample.shape , generator=lowerCamelCase__ ).to(sample.device ) a__ : str = sigma + gamma * sigma a__ : List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _UpperCamelCase( self : Dict , lowerCamelCase__ : torch.FloatTensor , lowerCamelCase__ : float , lowerCamelCase__ : float , lowerCamelCase__ : torch.FloatTensor , lowerCamelCase__ : bool = True , ): a__ : str = sample_hat + sigma_hat * model_output a__ : str = (sample_hat - pred_original_sample) / sigma_hat a__ : Dict = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCamelCase__ , derivative=lowerCamelCase__ , pred_original_sample=lowerCamelCase__ ) def _UpperCamelCase( self : Any , lowerCamelCase__ : torch.FloatTensor , lowerCamelCase__ : float , lowerCamelCase__ : float , lowerCamelCase__ : torch.FloatTensor , lowerCamelCase__ : torch.FloatTensor , lowerCamelCase__ : torch.FloatTensor , lowerCamelCase__ : bool = True , ): a__ : int = sample_prev + sigma_prev * model_output a__ : Any = (sample_prev - pred_original_sample) / sigma_prev a__ : Tuple = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCamelCase__ , derivative=lowerCamelCase__ , pred_original_sample=lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int ): raise NotImplementedError()
37
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase_ ( ) -> int: a__ : Any = HfArgumentParser(__a ) a__ : Any = parser.parse_args_into_dataclasses()[0] a__ : Optional[int] = TensorFlowBenchmark(args=__a ) try: a__ : Optional[int] = parser.parse_args_into_dataclasses()[0] except ValueError as e: a__ : Tuple = "Arg --no_{0} is no longer used, please use --no-{0} instead." a__ : List[Any] = " ".join(str(__a ).split(" " )[:-1] ) a__ : str = "" a__ : List[Any] = eval(str(__a ).split(" " )[-1] ) a__ : List[str] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__a ) if len(__a ) > 0: a__ : Tuple = full_error_msg + begin_error_msg + str(__a ) raise ValueError(__a ) benchmark.run() if __name__ == "__main__": main()
37
1
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCamelCase : Union[str, Any] = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: __lowerCamelCase : int = json.load(f) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : Union[str, Any] , UpperCamelCase_ : str ) -> Optional[int]: """simple docstring""" return FSMTTokenizer.from_pretrained(UpperCamelCase_ ) def __UpperCamelCase ( self : Tuple , UpperCamelCase_ : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ : List[Any] = FSMTForConditionalGeneration.from_pretrained(UpperCamelCase_ ).to(UpperCamelCase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 26.0], ['''ru-en''', 22.0], ['''en-de''', 22.0], ['''de-en''', 29.0], ] ) @slow def __UpperCamelCase ( self : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : int = F"""facebook/wmt19-{pair}""" lowerCamelCase_ : Optional[Any] = self.get_tokenizer(UpperCamelCase_ ) lowerCamelCase_ : str = self.get_model(UpperCamelCase_ ) lowerCamelCase_ : List[Any] = bleu_data[pair]['''src'''] lowerCamelCase_ : int = bleu_data[pair]['''tgt'''] lowerCamelCase_ : int = tokenizer(UpperCamelCase_ , return_tensors='''pt''' , truncation=UpperCamelCase_ , padding='''longest''' ).to(UpperCamelCase_ ) lowerCamelCase_ : Tuple = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCamelCase_ : int = tokenizer.batch_decode( UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) lowerCamelCase_ : Tuple = calculate_bleu(UpperCamelCase_ , UpperCamelCase_ ) print(UpperCamelCase_ ) self.assertGreaterEqual(scores['''bleu'''] , UpperCamelCase_ )
418
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCamelCase : Union[str, Any] = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ __lowerCamelCase : Union[str, Any] = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ __lowerCamelCase : Union[str, Any] = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" return float((preds == labels).mean() ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="binary" ): """simple docstring""" lowerCamelCase_ : str = simple_accuracy(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Dict = float(fa_score(y_true=__UpperCAmelCase , y_pred=__UpperCAmelCase , average=__UpperCAmelCase ) ) return { "accuracy": acc, "f1": fa, } def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Dict = {} for id_pred, label in zip(__UpperCAmelCase , __UpperCAmelCase ): lowerCamelCase_ : List[str] = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" lowerCamelCase_ : List[Any] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCamelCase_ : Optional[Any] = [(pred, label)] lowerCamelCase_ , lowerCamelCase_ : List[str] = [], [] for question, preds_labels in question_map.items(): lowerCamelCase_ , lowerCamelCase_ : Any = zip(*__UpperCAmelCase ) lowerCamelCase_ : Dict = fa_score(y_true=__UpperCAmelCase , y_pred=__UpperCAmelCase , average='''macro''' ) fas.append(__UpperCAmelCase ) lowerCamelCase_ : Any = int(sum(pred == label for pred, label in preds_labels ) == len(__UpperCAmelCase ) ) ems.append(__UpperCAmelCase ) lowerCamelCase_ : int = float(sum(__UpperCAmelCase ) / len(__UpperCAmelCase ) ) lowerCamelCase_ : str = sum(__UpperCAmelCase ) / len(__UpperCAmelCase ) lowerCamelCase_ : str = float(fa_score(y_true=__UpperCAmelCase , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __UpperCamelCase ( self : Tuple ) -> Any: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __UpperCamelCase ( self : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : str ) -> Optional[Any]: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCamelCase_ , UpperCamelCase_ )} elif self.config_name == "cb": return acc_and_fa(UpperCamelCase_ , UpperCamelCase_ , fa_avg='''macro''' ) elif self.config_name == "record": lowerCamelCase_ : List[str] = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] lowerCamelCase_ : Any = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(UpperCamelCase_ , UpperCamelCase_ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCamelCase_ , UpperCamelCase_ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCamelCase_ , UpperCamelCase_ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
418
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __A = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
469
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''lxmert''' snake_case_ = {} def __init__( self , lowerCamelCase__=30_522 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=9_500 , lowerCamelCase__=1_600 , lowerCamelCase__=400 , lowerCamelCase__=3_072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-12 , lowerCamelCase__=9 , lowerCamelCase__=5 , lowerCamelCase__=5 , lowerCamelCase__=2_048 , lowerCamelCase__=4 , lowerCamelCase__=6.67 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , **lowerCamelCase__ , ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = num_qa_labels __lowerCamelCase = num_object_labels __lowerCamelCase = num_attr_labels __lowerCamelCase = l_layers __lowerCamelCase = x_layers __lowerCamelCase = r_layers __lowerCamelCase = visual_feat_dim __lowerCamelCase = visual_pos_dim __lowerCamelCase = visual_loss_normalizer __lowerCamelCase = task_matched __lowerCamelCase = task_mask_lm __lowerCamelCase = task_obj_predict __lowerCamelCase = task_qa __lowerCamelCase = visual_obj_loss __lowerCamelCase = visual_attr_loss __lowerCamelCase = visual_feat_loss __lowerCamelCase = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**lowerCamelCase__ )
469
1
from __future__ import annotations from typing import TypedDict class A ( __lowercase ): _snake_case =42 _snake_case =42 def a__ ( lowercase__ ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(lowercase__ ) )] def a__ ( lowercase__ ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) UpperCAmelCase_ =all_rotations(lowercase__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation UpperCAmelCase_ ={ "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(lowercase__ ), } return response def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: UpperCAmelCase_ =int(lowercase__ ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(lowercase__ ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) UpperCAmelCase_ =[""] * len(lowercase__ ) for _ in range(len(lowercase__ ) ): for i in range(len(lowercase__ ) ): UpperCAmelCase_ =bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": __lowercase : Optional[int] ="""Provide a string that I will generate its BWT transform: """ __lowercase : List[str] =input(entry_msg).strip() __lowercase : str =bwt_transform(s) print( f"""Burrows Wheeler transform for string '{s}' results """ f"""in '{result['bwt_string']}'""" ) __lowercase : List[Any] =reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( f"""Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' """ f"""we get original string '{original_string}'""" )
550
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : Any ={ """configuration_upernet""": ["""UperNetConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Tuple =[ """UperNetForSemanticSegmentation""", """UperNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys __lowercase : Any =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
550
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class __magic_name__ ( A__ ): lowercase : str ='''data2vec-vision''' def __init__( self : str , UpperCamelCase__ : List[str]=7_68 , UpperCamelCase__ : Union[str, Any]=12 , UpperCamelCase__ : List[str]=12 , UpperCamelCase__ : int=30_72 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : List[Any]=0.0 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : Union[str, Any]=1e-1_2 , UpperCamelCase__ : str=2_24 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : Dict=False , UpperCamelCase__ : str=False , UpperCamelCase__ : Any=False , UpperCamelCase__ : int=False , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : str=[3, 5, 7, 11] , UpperCamelCase__ : Dict=[1, 2, 3, 6] , UpperCamelCase__ : Any=True , UpperCamelCase__ : Tuple=0.4 , UpperCamelCase__ : Optional[Any]=2_56 , UpperCamelCase__ : List[str]=1 , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Optional[int]=2_55 , **UpperCamelCase__ : Dict , ) -> Optional[Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = use_mask_token UpperCAmelCase = use_absolute_position_embeddings UpperCAmelCase = use_relative_position_bias UpperCAmelCase = use_shared_relative_position_bias UpperCAmelCase = layer_scale_init_value UpperCAmelCase = drop_path_rate UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) UpperCAmelCase = out_indices UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) UpperCAmelCase = use_auxiliary_head UpperCAmelCase = auxiliary_loss_weight UpperCAmelCase = auxiliary_channels UpperCAmelCase = auxiliary_num_convs UpperCAmelCase = auxiliary_concat_input UpperCAmelCase = semantic_loss_ignore_index class __magic_name__ ( A__ ): lowercase : Optional[int] =version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> float: '''simple docstring''' return 1e-4
323
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Any = { "configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = ["VisionEncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = ["TFVisionEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = ["FlaxVisionEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __lowerCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
323
1
import requests _snake_case : List[str] = "YOUR API KEY" def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase = giphy_api_key ): __snake_case : Dict = "+".join(query.split() ) __snake_case : Optional[int] = F'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}' __snake_case : Optional[int] = requests.get(__lowerCamelCase ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
705
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowerCAmelCase_ ( __lowerCamelCase ): if is_torch_version("<" , "2.0.0" ) or not hasattr(__lowerCamelCase , "_dynamo" ): return False return isinstance(__lowerCamelCase , torch._dynamo.eval_frame.OptimizedModule ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase = True ): __snake_case : Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __snake_case : Tuple = is_compiled_module(__lowerCamelCase ) if is_compiled: __snake_case : Tuple = model __snake_case : List[str] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCamelCase , __lowerCamelCase ): __snake_case : List[Any] = model.module if not keep_fpaa_wrapper: __snake_case : Tuple = getattr(__lowerCamelCase , "forward" ) __snake_case : int = model.__dict__.pop("_original_forward" , __lowerCamelCase ) if original_forward is not None: while hasattr(__lowerCamelCase , "__wrapped__" ): __snake_case : str = forward.__wrapped__ if forward == original_forward: break __snake_case : Dict = forward if getattr(__lowerCamelCase , "_converted_to_transformer_engine" , __lowerCamelCase ): convert_model(__lowerCamelCase , to_transformer_engine=__lowerCamelCase ) if is_compiled: __snake_case : Tuple = model __snake_case : str = compiled_model return model def lowerCAmelCase_ ( ): PartialState().wait_for_everyone() def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCamelCase , __lowerCamelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCamelCase , __lowerCamelCase ) @contextmanager def lowerCAmelCase_ ( **__lowerCamelCase ): for key, value in kwargs.items(): __snake_case : Union[str, Any] = str(__lowerCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowerCAmelCase_ ( __lowerCamelCase ): if not hasattr(__lowerCamelCase , "__qualname__" ) and not hasattr(__lowerCamelCase , "__name__" ): __snake_case : Dict = getattr(__lowerCamelCase , "__class__" , __lowerCamelCase ) if hasattr(__lowerCamelCase , "__qualname__" ): return obj.__qualname__ if hasattr(__lowerCamelCase , "__name__" ): return obj.__name__ return str(__lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): for key, value in source.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): __snake_case : Tuple = destination.setdefault(__lowerCamelCase , {} ) merge_dicts(__lowerCamelCase , __lowerCamelCase ) else: __snake_case : Union[str, Any] = value return destination def lowerCAmelCase_ ( __lowerCamelCase = None ): if port is None: __snake_case : List[str] = 2_9_5_0_0 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
203
0
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def lowerCAmelCase_ ( snake_case_ : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = int(snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = t // 36_00, (t // 60) % 60, t % 60 return f"""{h}:{m:02d}:{s:02d}""" if h != 0 else f"""{m:02d}:{s:02d}""" def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : int=3_00 ) -> str: '''simple docstring''' return f""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def lowerCAmelCase_ ( snake_case_ : List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = "<table border=\"1\" class=\"dataframe\">\n" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: UpperCAmelCase_ = f"""{elt:.6f}""" if isinstance(snake_case_ , snake_case_ ) else str(snake_case_ ) html_code += f""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class __A : a__ : Dict = 5 a__ : Any = 0.2 def __init__(self : Optional[Any] , __a : int , __a : Optional[str] = None , __a : bool = True , __a : Optional["NotebookTrainingTracker"] = None , __a : int = 300 , ): UpperCAmelCase_ = total UpperCAmelCase_ = "" if prefix is None else prefix UpperCAmelCase_ = leave UpperCAmelCase_ = parent UpperCAmelCase_ = width UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None def _lowercase (self : str , __a : int , __a : bool = False , __a : str = None ): UpperCAmelCase_ = value if comment is not None: UpperCAmelCase_ = comment if self.last_value is None: UpperCAmelCase_ = UpperCAmelCase_ = time.time() UpperCAmelCase_ = UpperCAmelCase_ = value UpperCAmelCase_ = UpperCAmelCase_ = None UpperCAmelCase_ = self.warmup UpperCAmelCase_ = 1 self.update_bar(__a ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 UpperCAmelCase_ = time.time() UpperCAmelCase_ = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: UpperCAmelCase_ = self.elapsed_time / (value - self.start_value) else: UpperCAmelCase_ = None if value >= self.total: UpperCAmelCase_ = self.total UpperCAmelCase_ = None if not self.leave: self.close() elif self.average_time_per_item is not None: UpperCAmelCase_ = self.average_time_per_item * (self.total - value) self.update_bar(__a ) UpperCAmelCase_ = value UpperCAmelCase_ = current_time if self.average_time_per_item is None: UpperCAmelCase_ = 1 else: UpperCAmelCase_ = max(int(self.update_every / self.average_time_per_item ) , 1 ) def _lowercase (self : Optional[int] , __a : Tuple , __a : List[Any]=None ): UpperCAmelCase_ = " " * (len(str(self.total ) ) - len(str(__a ) )) + str(__a ) if self.elapsed_time is None: UpperCAmelCase_ = f"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: UpperCAmelCase_ = f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: UpperCAmelCase_ = ( f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" f""" {format_time(self.predicted_remaining )}""" ) self.label += f""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else f""", {self.comment}]""" self.display() def _lowercase (self : Dict ): UpperCAmelCase_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: UpperCAmelCase_ = disp.display(disp.HTML(self.html_code ) , display_id=__a ) else: self.output.update(disp.HTML(self.html_code ) ) def _lowercase (self : Optional[Any] ): if self.parent is None and self.output is not None: self.output.update(disp.HTML("" ) ) class __A ( UpperCamelCase__ ): def __init__(self : List[Any] , __a : List[Any] , __a : Dict=None ): super().__init__(__a ) UpperCAmelCase_ = None if column_names is None else [column_names] UpperCAmelCase_ = None def _lowercase (self : str ): UpperCAmelCase_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: UpperCAmelCase_ = disp.display(disp.HTML(self.html_code ) , display_id=__a ) else: self.output.update(disp.HTML(self.html_code ) ) def _lowercase (self : List[str] , __a : Union[str, Any] ): if self.inner_table is None: UpperCAmelCase_ = [list(values.keys() ), list(values.values() )] else: UpperCAmelCase_ = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__a ) UpperCAmelCase_ = columns self.inner_table.append([values[c] for c in columns] ) def _lowercase (self : Dict , __a : Optional[int] , __a : int=None , __a : int=300 ): UpperCAmelCase_ = NotebookProgressBar(__a , prefix=__a , parent=self , width=__a ) return self.child_bar def _lowercase (self : Dict ): UpperCAmelCase_ = None self.display() class __A ( UpperCamelCase__ ): def __init__(self : Dict ): UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = False def _lowercase (self : int , __a : Optional[Any] , __a : Any , __a : List[str] , **__a : Union[str, Any] ): UpperCAmelCase_ = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step" UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = [self.first_column] + ["Training Loss"] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("Validation Loss" ) UpperCAmelCase_ = NotebookTrainingTracker(state.max_steps , __a ) def _lowercase (self : Union[str, Any] , __a : str , __a : Dict , __a : Dict , **__a : List[Any] ): UpperCAmelCase_ = int(state.epoch ) if int(state.epoch ) == state.epoch else f"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=f"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) UpperCAmelCase_ = False def _lowercase (self : List[Any] , __a : str , __a : Optional[Any] , __a : Optional[int] , __a : Tuple=None , **__a : List[str] ): if not has_length(__a ): return if self.prediction_bar is None: if self.training_tracker is not None: UpperCAmelCase_ = self.training_tracker.add_child(len(__a ) ) else: UpperCAmelCase_ = NotebookProgressBar(len(__a ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def _lowercase (self : int , __a : List[str] , __a : Union[str, Any] , __a : Optional[int] , **__a : Tuple ): if self.prediction_bar is not None: self.prediction_bar.close() UpperCAmelCase_ = None def _lowercase (self : Union[str, Any] , __a : Optional[int] , __a : Any , __a : List[Any] , __a : Tuple=None , **__a : List[Any] ): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: UpperCAmelCase_ = {"Training Loss": logs["loss"]} # First column is necessarily Step sine we're not in epoch eval strategy UpperCAmelCase_ = state.global_step self.training_tracker.write_line(__a ) def _lowercase (self : Optional[int] , __a : str , __a : Tuple , __a : Optional[int] , __a : Union[str, Any]=None , **__a : List[Any] ): if self.training_tracker is not None: UpperCAmelCase_ = {"Training Loss": "No log", "Validation Loss": "No log"} for log in reversed(state.log_history ): if "loss" in log: UpperCAmelCase_ = log["loss"] break if self.first_column == "Epoch": UpperCAmelCase_ = int(state.epoch ) else: UpperCAmelCase_ = state.global_step UpperCAmelCase_ = "eval" for k in metrics: if k.endswith("_loss" ): UpperCAmelCase_ = re.sub(r"\_loss$" , "" , __a ) UpperCAmelCase_ = metrics.pop("total_flos" , __a ) UpperCAmelCase_ = metrics.pop("epoch" , __a ) UpperCAmelCase_ = metrics.pop(f"""{metric_key_prefix}_runtime""" , __a ) UpperCAmelCase_ = metrics.pop(f"""{metric_key_prefix}_samples_per_second""" , __a ) UpperCAmelCase_ = metrics.pop(f"""{metric_key_prefix}_steps_per_second""" , __a ) UpperCAmelCase_ = metrics.pop(f"""{metric_key_prefix}_jit_compilation_time""" , __a ) for k, v in metrics.items(): if k == f"""{metric_key_prefix}_loss""": UpperCAmelCase_ = v else: UpperCAmelCase_ = k.split("_" ) UpperCAmelCase_ = " ".join([part.capitalize() for part in splits[1:]] ) UpperCAmelCase_ = v self.training_tracker.write_line(__a ) self.training_tracker.remove_child() UpperCAmelCase_ = None # Evaluation takes a long time so we should force the next update. UpperCAmelCase_ = True def _lowercase (self : Dict , __a : Dict , __a : Any , __a : Optional[Any] , **__a : Union[str, Any] ): self.training_tracker.update( state.global_step , comment=f"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=__a ) UpperCAmelCase_ = None
78
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] ): return EnvironmentCommand() class lowercase_ ( _UpperCamelCase ): """simple docstring""" @staticmethod def __UpperCAmelCase ( UpperCamelCase__ : ArgumentParser ) -> List[str]: _A = parser.add_parser('env' ) download_parser.set_defaults(func=UpperCamelCase__ ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: _A = huggingface_hub.__version__ _A = 'not installed' _A = 'NA' if is_torch_available(): import torch _A = torch.__version__ _A = torch.cuda.is_available() _A = 'not installed' if is_transformers_available(): import transformers _A = transformers.__version__ _A = 'not installed' if is_accelerate_available(): import accelerate _A = accelerate.__version__ _A = 'not installed' if is_xformers_available(): import xformers _A = xformers.__version__ _A = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f'{pt_version} ({pt_cuda_available})', 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def __UpperCAmelCase ( UpperCamelCase__ : List[Any] ) -> Dict: return "\n".join([f'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
107
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : int = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase : int = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase : List[str] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase : Optional[Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } __lowerCAmelCase : Optional[int] = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } __lowerCAmelCase : Optional[Any] = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } __lowerCAmelCase : str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __lowerCAmelCase : str = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __lowerCAmelCase : List[Any] = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class UpperCAmelCase_ ( __snake_case ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class UpperCAmelCase_ ( __snake_case ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : List[str] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __lowerCAmelCase : str = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __lowerCAmelCase : Union[str, Any] = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(__snake_case ) class UpperCAmelCase_ : '''simple docstring''' def __call__( self : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] = None , UpperCamelCase__ : Tuple = None , UpperCamelCase__ : Union[str, Any] = False , UpperCamelCase__ : Union[str, Any] = False , UpperCamelCase__ : Union[str, Any] = None , UpperCamelCase__ : Dict = None , UpperCamelCase__ : Optional[int] = None , **UpperCamelCase__ : Any , ) -> Optional[int]: """simple docstring""" if titles is None and texts is None: return super().__call__( __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) elif titles is None or texts is None: __magic_name__ = titles if texts is None else texts return super().__call__( __UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) __magic_name__ = titles if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [titles] __magic_name__ = texts if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [texts] __magic_name__ = len(__UpperCamelCase ) __magic_name__ = questions if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [questions] * n_passages if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError( F'''There should be as many titles than texts but got {len(__UpperCamelCase )} titles and {len(__UpperCamelCase )} texts.''' ) __magic_name__ = super().__call__(__UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )["""input_ids"""] __magic_name__ = super().__call__(__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )["""input_ids"""] __magic_name__ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCamelCase , __UpperCamelCase ) ] } if return_attention_mask is not False: __magic_name__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __magic_name__ = attention_mask return self.pad(__UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase ) def _lowercase ( self : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] = 16 , UpperCamelCase__ : List[Any] = 64 , UpperCamelCase__ : Any = 4 , ) -> Tuple: """simple docstring""" __magic_name__ = reader_input["""input_ids"""] __magic_name__ , __magic_name__ , __magic_name__ = reader_output[:3] __magic_name__ = len(__UpperCamelCase ) __magic_name__ = sorted(range(__UpperCamelCase ) , reverse=__UpperCamelCase , key=relevance_logits.__getitem__ ) __magic_name__ = [] for doc_id in sorted_docs: __magic_name__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __magic_name__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __magic_name__ = sequence_ids.index(self.pad_token_id ) else: __magic_name__ = len(__UpperCamelCase ) __magic_name__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCamelCase , top_spans=__UpperCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCamelCase , start_index=__UpperCamelCase , end_index=__UpperCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowercase ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , ) -> List[Any]: """simple docstring""" __magic_name__ = [] for start_index, start_score in enumerate(__UpperCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __magic_name__ = sorted(__UpperCamelCase , key=lambda UpperCamelCase__ : x[1] , reverse=__UpperCamelCase ) __magic_name__ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' ) __magic_name__ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__snake_case ) class UpperCAmelCase_ ( __snake_case , __snake_case ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = READER_PRETRAINED_VOCAB_FILES_MAP a__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = READER_PRETRAINED_INIT_CONFIGURATION a__ = ["""input_ids""", """attention_mask"""]
702
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase : List[str] = { 'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'], 'tokenization_canine': ['CanineTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = [ 'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST', 'CanineForMultipleChoice', 'CanineForQuestionAnswering', 'CanineForSequenceClassification', 'CanineForTokenClassification', 'CanineLayer', 'CanineModel', 'CaninePreTrainedModel', 'load_tf_weights_in_canine', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys __lowerCAmelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
76
0
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel SCREAMING_SNAKE_CASE__ : Tuple = HfApi() SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} # fmt: off SCREAMING_SNAKE_CASE__ : str = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) SCREAMING_SNAKE_CASE__ : str = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) SCREAMING_SNAKE_CASE__ : Any = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) SCREAMING_SNAKE_CASE__ : int = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) SCREAMING_SNAKE_CASE__ : Dict = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) SCREAMING_SNAKE_CASE__ : str = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) SCREAMING_SNAKE_CASE__ : Dict = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) SCREAMING_SNAKE_CASE__ : int = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) SCREAMING_SNAKE_CASE__ : str = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on SCREAMING_SNAKE_CASE__ : Tuple = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": SCREAMING_SNAKE_CASE__ : Tuple = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(F"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): SCREAMING_SNAKE_CASE__ : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: SCREAMING_SNAKE_CASE__ : List[Any] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) SCREAMING_SNAKE_CASE__ : Dict = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : int = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(F"""{mod.modelId} has passed successfully!!!""")
85
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu SCREAMING_SNAKE_CASE__ : Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: SCREAMING_SNAKE_CASE__ : Tuple = json.load(f) @require_torch class snake_case ( unittest.TestCase ): def __lowercase( self : List[str] , a_ : Any )-> str: """simple docstring""" return FSMTTokenizer.from_pretrained(a_ ) def __lowercase( self : int , a_ : Union[str, Any] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = FSMTForConditionalGeneration.from_pretrained(a_ ).to(a_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def __lowercase( self : int , a_ : Optional[int] , a_ : str )-> List[str]: """simple docstring""" # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality SCREAMING_SNAKE_CASE__ : Any = F'''facebook/wmt19-{pair}''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_tokenizer(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_model(a_ ) SCREAMING_SNAKE_CASE__ : int = bleu_data[pair]['src'] SCREAMING_SNAKE_CASE__ : Optional[int] = bleu_data[pair]['tgt'] SCREAMING_SNAKE_CASE__ : Any = tokenizer(a_ , return_tensors='pt' , truncation=a_ , padding='longest' ).to(a_ ) SCREAMING_SNAKE_CASE__ : int = model.generate( input_ids=batch.input_ids , num_beams=8 , ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.batch_decode( a_ , skip_special_tokens=a_ , clean_up_tokenization_spaces=a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = calculate_bleu(a_ , a_ ) print(a_ ) self.assertGreaterEqual(scores['bleu'] , a_ )
85
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : int = 60_08_51_47_51_43 ): '''simple docstring''' try: lowercase = int(__snake_case ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) lowercase = 2 lowercase = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 lowercase = i while n % i == 0: lowercase = n // i i += 1 return int(__snake_case ) if __name__ == "__main__": print(F'''{solution() = }''')
134
"""simple docstring""" import baseaa def _SCREAMING_SNAKE_CASE ( __snake_case : str ): '''simple docstring''' return baseaa.baaencode(string.encode('utf-8' ) ) def _SCREAMING_SNAKE_CASE ( __snake_case : bytes ): '''simple docstring''' return baseaa.baadecode(__snake_case ).decode('utf-8' ) if __name__ == "__main__": _UpperCamelCase : Dict = 'Hello World!' _UpperCamelCase : List[Any] = baseaa_encode(test) print(encoded) _UpperCamelCase : str = baseaa_decode(encoded) print(decoded)
134
1
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __a (unittest.TestCase): '''simple docstring''' def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = size if size is not None else {"""height""": 18, """width""": 18} SCREAMING_SNAKE_CASE__ : Union[str, Any] = parent SCREAMING_SNAKE_CASE__ : int = batch_size SCREAMING_SNAKE_CASE__ : List[str] = num_channels SCREAMING_SNAKE_CASE__ : Any = image_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = min_resolution SCREAMING_SNAKE_CASE__ : Dict = max_resolution SCREAMING_SNAKE_CASE__ : str = do_resize SCREAMING_SNAKE_CASE__ : Optional[int] = size SCREAMING_SNAKE_CASE__ : List[str] = do_normalize SCREAMING_SNAKE_CASE__ : Dict = image_mean SCREAMING_SNAKE_CASE__ : Optional[Any] = image_std def _a ( self ) -> Tuple: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __a (UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :str = DPTImageProcessor if is_vision_available() else None def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = DPTImageProcessingTester(self ) @property def _a ( self ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , """image_mean""" ) ) self.assertTrue(hasattr(A_ , """image_std""" ) ) self.assertTrue(hasattr(A_ , """do_normalize""" ) ) self.assertTrue(hasattr(A_ , """do_resize""" ) ) self.assertTrue(hasattr(A_ , """size""" ) ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : Any = image_processing(A_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : Dict = image_processing(A_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : List[str] = image_processing(A_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
680
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __magic_name__ : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : str = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __magic_name__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
281
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _lowercase : def __init__( self : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any]=13 , __lowerCAmelCase : Any=10 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : str=2 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : Any=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Any=32 , __lowerCAmelCase : Dict=5 , __lowerCAmelCase : Any=4 , __lowerCAmelCase : Any=37 , __lowerCAmelCase : Optional[Any]="gelu" , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Union[str, Any]=10 , __lowerCAmelCase : Union[str, Any]=0.0_2 , __lowerCAmelCase : Any="divided_space_time" , __lowerCAmelCase : Union[str, Any]=None , ) -> str: """simple docstring""" a = parent a = batch_size a = image_size a = num_channels a = patch_size a = num_frames a = is_training a = use_labels a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = attention_type a = initializer_range a = scope a = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token a = (image_size // patch_size) ** 2 a = (num_frames) * self.num_patches_per_frame + 1 def A ( self : str ) -> int: """simple docstring""" a = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.num_labels ) a = self.get_config() return config, pixel_values, labels def A ( self : List[Any] ) -> List[str]: """simple docstring""" a = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) a = self.num_labels return config def A ( self : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] ) -> str: """simple docstring""" a = TimesformerModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" a = TimesformerForVideoClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase ) # verify the logits shape a = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __lowerCAmelCase ) def A ( self : str ) -> Dict: """simple docstring""" a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowercase ( UpperCAmelCase__, UpperCAmelCase__, unittest.TestCase ): _UpperCAmelCase = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () _UpperCAmelCase = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def A ( self : Optional[int] ) -> List[Any]: """simple docstring""" a = TimesformerModelTester(self ) a = ConfigTester( self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def A ( self : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any]=False ) -> List[str]: """simple docstring""" a = copy.deepcopy(__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def A ( self : List[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def A ( self : int ) -> List[str]: """simple docstring""" pass def A ( self : Dict ) -> List[Any]: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def A ( self : Tuple ) -> Union[str, Any]: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCAmelCase ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def A ( self : Any ) -> Optional[Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def A ( self : Union[str, Any] ) -> Any: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__lowerCAmelCase ) @slow def A ( self : Dict ) -> Union[str, Any]: """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = TimesformerModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def A ( self : Optional[int] ) -> List[str]: """simple docstring""" if not self.has_attentions: pass else: a , a = self.model_tester.prepare_config_and_inputs_for_common() a = True for model_class in self.all_model_classes: a = self.model_tester.seq_length a = self.model_tester.num_frames a = True a = False a = True a = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) a = outputs.attentions self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a = True a = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) a = outputs.attentions self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) a = len(__lowerCAmelCase ) # Check attention is always last and order is fine a = True a = True a = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertEqual(out_len + 1 , len(__lowerCAmelCase ) ) a = outputs.attentions self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def A ( self : Optional[int] ) -> int: """simple docstring""" def check_hidden_states_output(__lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str ): a = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) a = outputs.hidden_states a = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) a = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def UpperCAmelCase__ ( ): '''simple docstring''' a = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) a = np.load(UpperCAmelCase__ ) return list(UpperCAmelCase__ ) @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def A ( self : List[str] ) -> str: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def A ( self : int ) -> int: """simple docstring""" a = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( __lowerCAmelCase ) a = self.default_image_processor a = prepare_video() a = image_processor(video[:8] , return_tensors="pt" ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): a = model(**__lowerCAmelCase ) # verify the logits a = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) a = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) )
32
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging A_ : List[str] = logging.get_logger(__name__) class _lowercase ( UpperCAmelCase__ ): _UpperCAmelCase = ['''audio_values''', '''audio_mask'''] def __init__( self : List[Any] , __lowerCAmelCase : Dict=2048 , __lowerCAmelCase : List[Any]=1 , __lowerCAmelCase : Dict=[16, 16] , __lowerCAmelCase : str=128 , __lowerCAmelCase : Optional[int]=4_4100 , __lowerCAmelCase : int=86 , __lowerCAmelCase : Optional[Any]=2048 , __lowerCAmelCase : str=0.0 , **__lowerCAmelCase : Optional[int] , ) -> Union[str, Any]: """simple docstring""" super().__init__( feature_size=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , padding_value=__lowerCAmelCase , **__lowerCAmelCase , ) a = spectrogram_length a = num_channels a = patch_size a = feature_size // self.patch_size[1] a = n_fft a = sampling_rate // hop_length_to_sampling_rate a = sampling_rate a = padding_value a = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__lowerCAmelCase , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=__lowerCAmelCase , norm="slaney" , mel_scale="slaney" , ).T def A ( self : List[str] , __lowerCAmelCase : np.array ) -> np.ndarray: """simple docstring""" a = spectrogram( __lowerCAmelCase , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="dB" , db_range=8_0.0 , ) a = log_spec[:, :-1] a = log_spec - 2_0.0 a = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Union[str, Any] , __lowerCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , __lowerCAmelCase : Optional[bool] = True , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , **__lowerCAmelCase : Optional[int] , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) a = isinstance(__lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) a = is_batched_numpy or ( isinstance(__lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__lowerCAmelCase , np.ndarray ): a = np.asarray(__lowerCAmelCase , dtype=np.floataa ) elif isinstance(__lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis a = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __lowerCAmelCase ): a = [np.asarray(__lowerCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask a = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: a = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] a = np.array(__lowerCAmelCase ).astype(np.floataa ) # convert into correct format for padding a = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch a = np.ones([len(__lowerCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) a = padded_audio_features * self.padding_value for i in range(len(__lowerCAmelCase ) ): a = audio_features[i] a = feature # return as BatchFeature if return_attention_mask: a = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: a = {"audio_values": padded_audio_features} a = BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase ) return encoded_inputs
32
1
from __future__ import annotations from math import gcd def A ( lowercase__ : int , lowercase__ : int = 2 , lowercase__ : int = 1 , lowercase__ : int = 3 , ) -> int | None: # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> int: return (pow(lowercase__ , 2 ) + step) % modulus for _ in range(lowercase__ ): # These track the position within the cycle detection logic. UpperCamelCase__ :Dict = seed UpperCamelCase__ :List[Any] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. UpperCamelCase__ :Optional[int] = rand_fn(lowercase__ , lowercase__ , lowercase__ ) UpperCamelCase__ :List[str] = rand_fn(lowercase__ , lowercase__ , lowercase__ ) UpperCamelCase__ :str = rand_fn(lowercase__ , lowercase__ , lowercase__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. UpperCamelCase__ :str = gcd(hare - tortoise , lowercase__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. UpperCamelCase__ :Union[str, Any] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse UpperCamelCase = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) UpperCamelCase = parser.parse_args() UpperCamelCase = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f'''{args.num} is probably prime''') else: UpperCamelCase = args.num // divisor print(f'''{args.num} = {divisor} * {quotient}''')
45
'''simple docstring''' from manim import * class _UpperCamelCase ( SCREAMING_SNAKE_CASE): '''simple docstring''' def a__ ( self ) -> List[str]: lowercase : List[Any] = Rectangle(height=0.5 , width=0.5 ) lowercase : str = Rectangle(height=0.25 , width=0.25 ) lowercase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase : List[str] = [mem.copy() for i in range(6 )] lowercase : Any = [mem.copy() for i in range(6 )] lowercase : List[str] = VGroup(*a_ ).arrange(a_ , buff=0 ) lowercase : List[Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) lowercase : List[Any] = VGroup(a_ , a_ ).arrange(a_ , buff=0 ) lowercase : Union[str, Any] = Text("CPU" , font_size=2_4 ) lowercase : List[Any] = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a_ ) lowercase : List[Any] = [mem.copy() for i in range(4 )] lowercase : Union[str, Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) lowercase : Dict = Text("GPU" , font_size=2_4 ) lowercase : Tuple = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) gpu.move_to([-1, -1, 0] ) self.add(a_ ) lowercase : Tuple = [mem.copy() for i in range(6 )] lowercase : Optional[int] = VGroup(*a_ ).arrange(a_ , buff=0 ) lowercase : Any = Text("Model" , font_size=2_4 ) lowercase : str = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) model.move_to([3, -1.0, 0] ) self.add(a_ ) lowercase : Dict = [] lowercase : Tuple = [] lowercase : List[Any] = [] for i, rect in enumerate(a_ ): rect.set_stroke(a_ ) lowercase : Tuple = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(a_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=a_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=a_ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=a_ , buff=0.0 ) self.add(a_ ) model_cpu_arr.append(a_ ) self.add(*a_ , *a_ , *a_ ) lowercase : Any = [mem.copy() for i in range(6 )] lowercase : Dict = VGroup(*a_ ).arrange(a_ , buff=0 ) lowercase : List[str] = Text("Loaded Checkpoint" , font_size=2_4 ) lowercase : Optional[Any] = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) checkpoint.move_to([3, 0.5, 0] ) self.add(a_ ) lowercase : Any = [] lowercase : int = [] for i, rect in enumerate(a_ ): lowercase : str = fill.copy().set_fill(a_ , opacity=0.7 ) target.move_to(a_ ) ckpt_arr.append(a_ ) lowercase : Optional[Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(a_ ) self.add(*a_ , *a_ ) lowercase : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase : str = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a_ , a_ ) lowercase : Any = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=1_8 , ) blue_text.next_to(a_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a_ ) lowercase : List[Any] = MarkupText( F'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) lowercase : Any = [meta_mem.copy() for i in range(6 )] lowercase : Dict = [meta_mem.copy() for i in range(6 )] lowercase : Union[str, Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) lowercase : Dict = VGroup(*a_ ).arrange(a_ , buff=0 ) lowercase : Any = VGroup(a_ , a_ ).arrange(a_ , buff=0 ) lowercase : Optional[Any] = Text("Disk" , font_size=2_4 ) lowercase : List[str] = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(a_ , run_time=3 ) , Write(a_ , run_time=1 ) , Create(a_ , run_time=1 ) ) lowercase : Optional[Any] = [] for i, rect in enumerate(a_ ): lowercase : int = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(a_ , run_time=1.5 ) ) self.play(*a_ ) self.play(FadeOut(a_ ) ) lowercase : List[Any] = MarkupText(F'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(a_ , run_time=3 ) ) self.play( FadeOut(a_ , a_ , *a_ , *a_ ) , ) self.wait()
372
0
def a_ (_lowerCAmelCase : int )-> int: snake_case: List[Any] = abs(_lowerCAmelCase ) snake_case: Union[str, Any] = 0 while n > 0: res += n % 10 n //= 10 return res def a_ (_lowerCAmelCase : int )-> int: snake_case: Tuple = abs(_lowerCAmelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def a_ (_lowerCAmelCase : int )-> int: return sum(int(_lowerCAmelCase ) for c in str(abs(_lowerCAmelCase ) ) ) def a_ ()-> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(_lowerCAmelCase : Callable , _lowerCAmelCase : int ) -> None: snake_case: Union[str, Any] = F"{func.__name__}({value})" snake_case: List[str] = timeit(F"__main__.{call}" , setup="""import __main__""" ) print(F"{call:56} = {func(_lowerCAmelCase )} -- {timing:.4f} seconds" ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_lowerCAmelCase , _lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
701
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): __lowerCAmelCase : List[Any] = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: __lowerCAmelCase : str = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def a_ (_lowerCAmelCase : Optional[Any] )-> Optional[int]: snake_case: Dict = (images / 2 + 0.5).clamp(0 , 1 ) snake_case: Optional[int] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() snake_case: int = numpy_to_pil(_lowerCAmelCase ) return images def a_ (_lowerCAmelCase : Union[str, Any] )-> Dict: if images.ndim == 3: snake_case: List[Any] = images[None, ...] snake_case: str = (images * 255).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images snake_case: int = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: snake_case: Dict = [Image.fromarray(_lowerCAmelCase ) for image in images] return pil_images
164
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _lowerCAmelCase ( ) -> Optional[Any]: __lowerCAmelCase = ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=lowercase ) __lowerCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowercase ) env_command_parser(subparsers=lowercase ) launch_command_parser(subparsers=lowercase ) tpu_command_parser(subparsers=lowercase ) test_command_parser(subparsers=lowercase ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
689
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[int] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""gptj""" a : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = rotary_dim __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
689
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : Dict = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
716
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : Any = logging.get_logger(__name__) set_seed(7_70) __snake_case : Union[str, Any] = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } __snake_case : int = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } __snake_case : Optional[int] = os.path.dirname(os.path.abspath(__file__)) __snake_case : Union[str, Any] = os.path.join(os.path.expanduser("""~"""), """.cache""") __snake_case : Any = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def _UpperCamelCase ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=False ) -> Dict: """simple docstring""" lowerCAmelCase__ = model_type if use_small: key += "_small" return os.path.join(UpperCamelCase_ , REMOTE_MODEL_PATHS[key]['file_name'] ) def _UpperCamelCase ( UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] ) -> Union[str, Any]: """simple docstring""" os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) hf_hub_download(repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , local_dir=UpperCamelCase_ ) def _UpperCamelCase ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any=False , UpperCamelCase_ : Union[str, Any]="text" ) -> Optional[Any]: """simple docstring""" if model_type == "text": lowerCAmelCase__ = BarkSemanticModel lowerCAmelCase__ = BarkSemanticConfig lowerCAmelCase__ = BarkSemanticGenerationConfig elif model_type == "coarse": lowerCAmelCase__ = BarkCoarseModel lowerCAmelCase__ = BarkCoarseConfig lowerCAmelCase__ = BarkCoarseGenerationConfig elif model_type == "fine": lowerCAmelCase__ = BarkFineModel lowerCAmelCase__ = BarkFineConfig lowerCAmelCase__ = BarkFineGenerationConfig else: raise NotImplementedError() lowerCAmelCase__ = F"{model_type}_small" if use_small else model_type lowerCAmelCase__ = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(UpperCamelCase_ ): logger.info(F"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info['repo_id'] , model_info['file_name'] ) lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location=UpperCamelCase_ ) # this is a hack lowerCAmelCase__ = checkpoint['model_args'] if "input_vocab_size" not in model_args: lowerCAmelCase__ = model_args['vocab_size'] lowerCAmelCase__ = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowerCAmelCase__ = model_args.pop('n_head' ) lowerCAmelCase__ = model_args.pop('n_embd' ) lowerCAmelCase__ = model_args.pop('n_layer' ) lowerCAmelCase__ = ConfigClass(**checkpoint['model_args'] ) lowerCAmelCase__ = ModelClass(config=UpperCamelCase_ ) lowerCAmelCase__ = GenerationConfigClass() lowerCAmelCase__ = model_generation_config lowerCAmelCase__ = checkpoint['model'] # fixup checkpoint lowerCAmelCase__ = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(UpperCamelCase_ ): # replace part of the key with corresponding layer name in HF implementation lowerCAmelCase__ = k[len(UpperCamelCase_ ) :] for old_layer_name in new_layer_name_dict: lowerCAmelCase__ = new_k.replace(UpperCamelCase_ , new_layer_name_dict[old_layer_name] ) lowerCAmelCase__ = state_dict.pop(UpperCamelCase_ ) lowerCAmelCase__ = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowerCAmelCase__ = {k for k in extra_keys if not k.endswith('.attn.bias' )} lowerCAmelCase__ = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowerCAmelCase__ = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(UpperCamelCase_ ) != 0: raise ValueError(F"extra keys found: {extra_keys}" ) if len(UpperCamelCase_ ) != 0: raise ValueError(F"missing keys: {missing_keys}" ) model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) lowerCAmelCase__ = model.num_parameters(exclude_embeddings=UpperCamelCase_ ) lowerCAmelCase__ = checkpoint['best_val_loss'].item() logger.info(F"model loaded: {round(n_params/1e6 , 1 )}M params, {round(UpperCamelCase_ , 3 )} loss" ) model.eval() model.to(UpperCamelCase_ ) del checkpoint, state_dict return model def _UpperCamelCase ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any=False , UpperCamelCase_ : Optional[int]="text" ) -> Dict: """simple docstring""" if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowerCAmelCase__ = 'cpu' # do conversion on cpu lowerCAmelCase__ = _get_ckpt_path(UpperCamelCase_ , use_small=UpperCamelCase_ ) lowerCAmelCase__ = _load_model(UpperCamelCase_ , UpperCamelCase_ , model_type=UpperCamelCase_ , use_small=UpperCamelCase_ ) # load bark initial model lowerCAmelCase__ = _bark_load_model(UpperCamelCase_ , 'cpu' , model_type=UpperCamelCase_ , use_small=UpperCamelCase_ ) if model_type == "text": lowerCAmelCase__ = bark_model['model'] if model.num_parameters(exclude_embeddings=UpperCamelCase_ ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model lowerCAmelCase__ = 5 lowerCAmelCase__ = 10 if model_type in ["text", "coarse"]: lowerCAmelCase__ = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) lowerCAmelCase__ = bark_model(UpperCamelCase_ )[0] lowerCAmelCase__ = model(UpperCamelCase_ ) # take last logits lowerCAmelCase__ = output_new_model_total.logits[:, [-1], :] else: lowerCAmelCase__ = 3 lowerCAmelCase__ = 8 lowerCAmelCase__ = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowerCAmelCase__ = model(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = bark_model(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('initial and new outputs are not equal' ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) def _UpperCamelCase ( UpperCamelCase_ : int , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = BarkSemanticConfig.from_pretrained(os.path.join(UpperCamelCase_ , 'config.json' ) ) lowerCAmelCase__ = BarkCoarseConfig.from_pretrained(os.path.join(UpperCamelCase_ , 'config.json' ) ) lowerCAmelCase__ = BarkFineConfig.from_pretrained(os.path.join(UpperCamelCase_ , 'config.json' ) ) lowerCAmelCase__ = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) lowerCAmelCase__ = BarkSemanticModel.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = BarkCoarseModel.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = BarkFineModel.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = EncodecModel.from_pretrained('facebook/encodec_24khz' ) lowerCAmelCase__ = BarkConfig.from_sub_model_configs( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowerCAmelCase__ = BarkModel(UpperCamelCase_ ) lowerCAmelCase__ = semantic lowerCAmelCase__ = coarseAcoustic lowerCAmelCase__ = fineAcoustic lowerCAmelCase__ = codec lowerCAmelCase__ = bark_generation_config Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) bark.save_pretrained(UpperCamelCase_ , repo_id=UpperCamelCase_ , push_to_hub=UpperCamelCase_ ) if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") __snake_case : str = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
365
0
def lowerCamelCase ( UpperCamelCase : int ) -> "list[int]": if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) _lowerCamelCase = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 _lowerCamelCase = 1 if upper_limit > 0: _lowerCamelCase = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(UpperCamelCase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: A = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(F'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
544
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel A = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 1_3_1_0_7_2, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, } def lowerCamelCase ( UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] ) -> Optional[Any]: return torch.atana(UpperCamelCase , UpperCamelCase ) / math.pi * 2 def lowerCamelCase ( UpperCamelCase : str ) -> Union[str, Any]: _lowerCamelCase = torch.sin(t * math.pi / 2 ) ** 2 _lowerCamelCase = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(UpperCamelCase , UpperCamelCase ) class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , snake_case__ : Any ) -> Optional[Any]: super().__init__() _lowerCamelCase = DiffusionAttnUnetaD(snake_case__ , n_attn_layers=4 ) _lowerCamelCase = deepcopy(self.diffusion ) _lowerCamelCase = torch.quasirandom.SobolEngine(1 , scramble=snake_case__ ) def lowerCamelCase ( UpperCamelCase : List[Any] ) -> List[str]: _lowerCamelCase = MODELS_MAP[model_name]['url'] os.system(F"""wget {url} ./""" ) return F"""./{model_name}.ckpt""" A = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } A = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } A = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } A = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } A = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } A = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def lowerCamelCase ( UpperCamelCase : Tuple ) -> int: if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(F"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def lowerCamelCase ( UpperCamelCase : Optional[Any] ) -> Tuple: for key, value in ATTN_MAP.items(): if name.startswith(UpperCamelCase ) and not isinstance(UpperCamelCase , UpperCamelCase ): return name.replace(UpperCamelCase , UpperCamelCase ) elif name.startswith(UpperCamelCase ): return [name.replace(UpperCamelCase , UpperCamelCase ) for v in value] raise ValueError(F"""Attn error with {name}""" ) def lowerCamelCase ( UpperCamelCase : Any , UpperCamelCase : int=13 ) -> Optional[int]: _lowerCamelCase = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) _lowerCamelCase = 0 if string.startswith('net.3.' ): depth += 1 _lowerCamelCase = string[6:] elif string.startswith('net.' ): _lowerCamelCase = string[4:] while string.startswith('main.7.' ): depth += 1 _lowerCamelCase = string[7:] if string.startswith('main.' ): _lowerCamelCase = string[5:] # mid block if string[:2].isdigit(): _lowerCamelCase = string[:2] _lowerCamelCase = string[2:] else: _lowerCamelCase = string[0] _lowerCamelCase = string[1:] if depth == max_depth: _lowerCamelCase = MID_NUM_TO_LAYER[layer_num] _lowerCamelCase = 'mid_block' elif depth > 0 and int(UpperCamelCase ) < 7: _lowerCamelCase = DOWN_NUM_TO_LAYER[layer_num] _lowerCamelCase = F"""down_blocks.{depth}""" elif depth > 0 and int(UpperCamelCase ) > 7: _lowerCamelCase = UP_NUM_TO_LAYER[layer_num] _lowerCamelCase = F"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: _lowerCamelCase = DEPTH_0_TO_LAYER[layer_num] _lowerCamelCase = F"""up_blocks.{max_depth - 1}""" if int(UpperCamelCase ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(F"""Naming error with {input_string} and string_left: {string_left}.""" ) _lowerCamelCase = string_left[1:] if "resnets" in new_layer: _lowerCamelCase = convert_resconv_naming(UpperCamelCase ) elif "attentions" in new_layer: _lowerCamelCase = convert_attn_naming(UpperCamelCase ) _lowerCamelCase = new_string_left if not isinstance(UpperCamelCase , UpperCamelCase ): _lowerCamelCase = prefix + '.' + new_layer + '.' + string_left else: _lowerCamelCase = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def lowerCamelCase ( UpperCamelCase : List[Any] ) -> int: _lowerCamelCase = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue _lowerCamelCase = rename(UpperCamelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(UpperCamelCase , UpperCamelCase ): _lowerCamelCase = transform_conv_attns(UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: _lowerCamelCase = v return new_state_dict def lowerCamelCase ( UpperCamelCase : List[str] , UpperCamelCase : Tuple , UpperCamelCase : Dict ) -> Optional[Any]: if len(UpperCamelCase ) == 1: if len(v.shape ) == 3: # weight _lowerCamelCase = v[:, :, 0] else: # bias _lowerCamelCase = v else: # qkv matrices _lowerCamelCase = v.shape[0] _lowerCamelCase = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: _lowerCamelCase = v[i * single_shape : (i + 1) * single_shape, :, 0] else: _lowerCamelCase = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def lowerCamelCase ( UpperCamelCase : Any ) -> Optional[Any]: _lowerCamelCase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) _lowerCamelCase = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" _lowerCamelCase = download(UpperCamelCase ) _lowerCamelCase = MODELS_MAP[model_name]['sample_rate'] _lowerCamelCase = MODELS_MAP[model_name]['sample_size'] _lowerCamelCase = Object() _lowerCamelCase = sample_size _lowerCamelCase = sample_rate _lowerCamelCase = 0 _lowerCamelCase = UNetaDModel(sample_size=UpperCamelCase , sample_rate=UpperCamelCase ) _lowerCamelCase = diffusers_model.state_dict() _lowerCamelCase = DiffusionUncond(UpperCamelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=UpperCamelCase )['state_dict'] ) _lowerCamelCase = orig_model.diffusion_ema.eval() _lowerCamelCase = orig_model.state_dict() _lowerCamelCase = rename_orig_weights(UpperCamelCase ) _lowerCamelCase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) _lowerCamelCase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(UpperCamelCase ) == 0, F"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith('kernel' ) for k in list(UpperCamelCase ) ), F"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": _lowerCamelCase = value.squeeze() _lowerCamelCase = value diffusers_model.load_state_dict(UpperCamelCase ) _lowerCamelCase = 1_00 _lowerCamelCase = 33 _lowerCamelCase = IPNDMScheduler(num_train_timesteps=UpperCamelCase ) _lowerCamelCase = torch.manual_seed(UpperCamelCase ) _lowerCamelCase = torch.randn([1, 2, config.sample_size] , generator=UpperCamelCase ).to(UpperCamelCase ) _lowerCamelCase = torch.linspace(1 , 0 , steps + 1 , device=UpperCamelCase )[:-1] _lowerCamelCase = get_crash_schedule(UpperCamelCase ) _lowerCamelCase = DanceDiffusionPipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) _lowerCamelCase = torch.manual_seed(33 ) _lowerCamelCase = pipe(num_inference_steps=UpperCamelCase , generator=UpperCamelCase ).audios _lowerCamelCase = sampling.iplms_sample(UpperCamelCase , UpperCamelCase , UpperCamelCase , {} ) _lowerCamelCase = generated.clamp(-1 , 1 ) _lowerCamelCase = (generated - audio).abs().sum() _lowerCamelCase = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , UpperCamelCase ) print('Diff max' , UpperCamelCase ) assert diff_max < 1e-3, F"""Diff max: {diff_max} is too much :-/""" print(F"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') A = parser.parse_args() main(args)
544
1
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : Union[str, Any] , __snake_case : UNetaDModel , __snake_case : UNetaDModel , __snake_case : DDPMScheduler , __snake_case : List[Any] , ) -> List[str]: super().__init__() UpperCAmelCase : Any = value_function UpperCAmelCase : List[str] = unet UpperCAmelCase : Dict = scheduler UpperCAmelCase : Union[str, Any] = env UpperCAmelCase : Dict = env.get_dataset() UpperCAmelCase : Tuple = {} for key in self.data.keys(): try: UpperCAmelCase : Optional[int] = self.data[key].mean() except: # noqa: E722 pass UpperCAmelCase : Any = {} for key in self.data.keys(): try: UpperCAmelCase : str = self.data[key].std() except: # noqa: E722 pass UpperCAmelCase : int = env.observation_space.shape[0] UpperCAmelCase : Optional[Any] = env.action_space.shape[0] def A ( self : Any , __snake_case : Optional[Any] , __snake_case : Union[str, Any] ) -> Optional[int]: return (x_in - self.means[key]) / self.stds[key] def A ( self : Dict , __snake_case : Any , __snake_case : Dict ) -> Any: return x_in * self.stds[key] + self.means[key] def A ( self : Any , __snake_case : int ) -> List[Any]: if type(__snake_case ) is dict: return {k: self.to_torch(__snake_case ) for k, v in x_in.items()} elif torch.is_tensor(__snake_case ): return x_in.to(self.unet.device ) return torch.tensor(__snake_case , device=self.unet.device ) def A ( self : int , __snake_case : Optional[int] , __snake_case : str , __snake_case : Union[str, Any] ) -> Dict: for key, val in cond.items(): UpperCAmelCase : List[Any] = val.clone() return x_in def A ( self : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Any , __snake_case : Dict ) -> Any: UpperCAmelCase : Any = x.shape[0] UpperCAmelCase : Any = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCAmelCase : Tuple = torch.full((batch_size,) , __snake_case , device=self.unet.device , dtype=torch.long ) for _ in range(__snake_case ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCAmelCase : Any = self.value_function(x.permute(0 , 2 , 1 ) , __snake_case ).sample UpperCAmelCase : Dict = torch.autograd.grad([y.sum()] , [x] )[0] UpperCAmelCase : Tuple = self.scheduler._get_variance(__snake_case ) UpperCAmelCase : Optional[int] = torch.exp(0.5 * posterior_variance ) UpperCAmelCase : str = model_std * grad UpperCAmelCase : Dict = 0 UpperCAmelCase : Optional[int] = x.detach() UpperCAmelCase : List[str] = x + scale * grad UpperCAmelCase : List[str] = self.reset_xa(__snake_case , __snake_case , self.action_dim ) UpperCAmelCase : str = self.unet(x.permute(0 , 2 , 1 ) , __snake_case ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCAmelCase : Optional[int] = self.scheduler.step(__snake_case , __snake_case , __snake_case , predict_epsilon=__snake_case )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) UpperCAmelCase : Any = self.reset_xa(__snake_case , __snake_case , self.action_dim ) UpperCAmelCase : List[str] = self.to_torch(__snake_case ) return x, y def __call__( self : Any , __snake_case : List[str] , __snake_case : Optional[Any]=64 , __snake_case : Optional[int]=32 , __snake_case : Union[str, Any]=2 , __snake_case : Optional[int]=0.1 ) -> Tuple: # normalize the observations and create batch dimension UpperCAmelCase : Optional[Any] = self.normalize(__snake_case , '''observations''' ) UpperCAmelCase : Optional[int] = obs[None].repeat(__snake_case , axis=0 ) UpperCAmelCase : Tuple = {0: self.to_torch(__snake_case )} UpperCAmelCase : Tuple = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCAmelCase : Union[str, Any] = randn_tensor(__snake_case , device=self.unet.device ) UpperCAmelCase : int = self.reset_xa(__snake_case , __snake_case , self.action_dim ) UpperCAmelCase : List[Any] = self.to_torch(__snake_case ) # run the diffusion process UpperCAmelCase , UpperCAmelCase : Optional[int] = self.run_diffusion(__snake_case , __snake_case , __snake_case , __snake_case ) # sort output trajectories by value UpperCAmelCase : str = y.argsort(0 , descending=__snake_case ).squeeze() UpperCAmelCase : Tuple = x[sorted_idx] UpperCAmelCase : List[Any] = sorted_values[:, :, : self.action_dim] UpperCAmelCase : str = actions.detach().cpu().numpy() UpperCAmelCase : List[str] = self.de_normalize(__snake_case , key='''actions''' ) # select the action with the highest value if y is not None: UpperCAmelCase : List[Any] = 0 else: # if we didn't run value guiding, select a random action UpperCAmelCase : Optional[int] = np.random.randint(0 , __snake_case ) UpperCAmelCase : Optional[int] = denorm_actions[selected_index, 0] return denorm_actions
528
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def snake_case_ ( _lowerCAmelCase : SplitDict ) -> List[Any]: UpperCAmelCase : str = split_dict._to_yaml_list() assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = SplitDict._from_yaml_list(_lowerCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : Optional[Any] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : Dict = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=_lowerCAmelCase ), SplitInfo(dataset_name='''my_dataset''' )] ) def snake_case_ ( _lowerCAmelCase : List[Any] ) -> Optional[Any]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Any = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
528
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __UpperCAmelCase = None __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCAmelCase = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } __UpperCAmelCase = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off __UpperCAmelCase = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : List[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Tuple = ["input_ids", "attention_mask"] UpperCAmelCase__ : Any = MBartTokenizer UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="<mask>", SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase : str = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( vocab_file=SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, src_lang=SCREAMING_SNAKE_CASE_, tgt_lang=SCREAMING_SNAKE_CASE_, additional_special_tokens=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Union[str, Any] = vocab_file UpperCamelCase : List[Any] = False if not self.vocab_file else True UpperCamelCase : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) UpperCamelCase : Tuple = { lang_code: self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase : Any = src_lang if src_lang is not None else 'en_XX' UpperCamelCase : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def snake_case_ ( self ) -> str: return self._src_lang @src_lang.setter def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : Union[str, Any] = [self.sep_token_id] UpperCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) UpperCamelCase : List[Any] = src_lang UpperCamelCase : List[str] = self(SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_, return_tensors=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = tgt_lang_id return inputs def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = "en_XX", SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = "ro_RO", **SCREAMING_SNAKE_CASE_, ) -> BatchEncoding: UpperCamelCase : Tuple = src_lang UpperCamelCase : Union[str, Any] = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Any: return self.set_src_lang_special_tokens(self.src_lang ) def snake_case_ ( self ) -> Dict: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase : str = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = [] UpperCamelCase : str = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Dict = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase : Optional[Any] = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = [] UpperCamelCase : List[str] = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCamelCase : Optional[Any] = os.path.join( SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
40
'''simple docstring''' import numpy as np class __a : def __init__( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (0, 0) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 def __eq__( self : int ,lowerCamelCase : List[str] ): '''simple docstring''' return self.position == cell.position def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' print(self.position ) class __a : def __init__( self : int ,lowerCamelCase : Optional[int]=(5, 5) ): '''simple docstring''' __SCREAMING_SNAKE_CASE = np.zeros(lowerCamelCase ) __SCREAMING_SNAKE_CASE = world_size[0] __SCREAMING_SNAKE_CASE = world_size[1] def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' print(self.w ) def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] __SCREAMING_SNAKE_CASE = cell.position[0] __SCREAMING_SNAKE_CASE = cell.position[1] __SCREAMING_SNAKE_CASE = [] for n in neughbour_cord: __SCREAMING_SNAKE_CASE = current_x + n[0] __SCREAMING_SNAKE_CASE = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: __SCREAMING_SNAKE_CASE = Cell() __SCREAMING_SNAKE_CASE = (x, y) __SCREAMING_SNAKE_CASE = cell neighbours.append(lowerCamelCase ) return neighbours def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] _open.append(__UpperCAmelCase ) while _open: __SCREAMING_SNAKE_CASE = np.argmin([n.f for n in _open] ) __SCREAMING_SNAKE_CASE = _open[min_f] _closed.append(_open.pop(__UpperCAmelCase ) ) if current == goal: break for n in world.get_neigbours(__UpperCAmelCase ): for c in _closed: if c == n: continue __SCREAMING_SNAKE_CASE = current.g + 1 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = n.position __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = goal.position __SCREAMING_SNAKE_CASE = (ya - ya) ** 2 + (xa - xa) ** 2 __SCREAMING_SNAKE_CASE = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [] while current.parent is not None: path.append(current.position ) __SCREAMING_SNAKE_CASE = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a = Gridworld() # Start position and goal a = Cell() a = (0, 0) a = Cell() a = (4, 4) print(F'''path from {start.position} to {goal.position}''') a = astar(world, start, goal) # Just for visual reasons. for i in s: a = 1 print(world.w)
109
0
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Dict = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class __UpperCAmelCase ( __UpperCAmelCase ): '''simple docstring''' __lowercase : Optional[Any] = '''conditional_detr''' __lowercase : str = ['''past_key_values'''] __lowercase : Union[str, Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=300 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="sine" , _SCREAMING_SNAKE_CASE="resnet50" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.25 , **_SCREAMING_SNAKE_CASE , ) -> Tuple: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A_ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): A_ = backbone_config.get('''model_type''' ) A_ = CONFIG_MAPPING[backbone_model_type] A_ = config_class.from_dict(__SCREAMING_SNAKE_CASE ) A_ = use_timm_backbone A_ = backbone_config A_ = num_channels A_ = num_queries A_ = d_model A_ = encoder_ffn_dim A_ = encoder_layers A_ = encoder_attention_heads A_ = decoder_ffn_dim A_ = decoder_layers A_ = decoder_attention_heads A_ = dropout A_ = attention_dropout A_ = activation_dropout A_ = activation_function A_ = init_std A_ = init_xavier_std A_ = encoder_layerdrop A_ = decoder_layerdrop A_ = encoder_layers A_ = auxiliary_loss A_ = position_embedding_type A_ = backbone A_ = use_pretrained_backbone A_ = dilation # Hungarian matcher A_ = class_cost A_ = bbox_cost A_ = giou_cost # Loss coefficients A_ = mask_loss_coefficient A_ = dice_loss_coefficient A_ = cls_loss_coefficient A_ = bbox_loss_coefficient A_ = giou_loss_coefficient A_ = focal_alpha super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def __A ( self ) -> int: return self.encoder_attention_heads @property def __A ( self ) -> int: return self.d_model def __A ( self ) -> List[str]: A_ = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A_ = self.backbone_config.to_dict() A_ = self.__class__.model_type return output class __UpperCAmelCase ( __UpperCAmelCase ): '''simple docstring''' __lowercase : Any = version.parse('1.11' ) @property def __A ( self ) -> Any: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def __A ( self ) -> str: return 1E-5 @property def __A ( self ) -> Optional[Any]: return 12
716
'''simple docstring''' from itertools import product def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : int ) -> list[int]: A_ = sides_number A_ = max_face_number * dice_number A_ = [0] * (max_total + 1) A_ = 1 A_ = range(_UpperCamelCase, max_face_number + 1 ) for dice_numbers in product(_UpperCamelCase, repeat=_UpperCamelCase ): A_ = sum(_UpperCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def _UpperCAmelCase ( ) -> float: A_ = total_frequency_distribution( sides_number=4, dice_number=9 ) A_ = total_frequency_distribution( sides_number=6, dice_number=6 ) A_ = 0 A_ = 9 A_ = 4 * 9 A_ = 6 for peter_total in range(_UpperCamelCase, max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) A_ = (4**9) * (6**6) A_ = peter_wins_count / total_games_number A_ = round(_UpperCamelCase, ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
174
0
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py SCREAMING_SNAKE_CASE__ : List[Any] = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n' SCREAMING_SNAKE_CASE__ : Optional[Any] = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' SCREAMING_SNAKE_CASE__ : Tuple = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ (datasets.Metric ): '''simple docstring''' def _lowercase ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=4 , UpperCamelCase__=False ) -> Tuple: lowerCamelCase : Any = compute_bleu( reference_corpus=lowerCamelCase_ , translation_corpus=lowerCamelCase_ , max_order=lowerCamelCase_ , smooth=lowerCamelCase_ ) ((lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase)) : int = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
311
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Any: '''simple docstring''' # Initialise PyTorch model UpperCamelCase = MobileBertConfig.from_json_file(UpperCamelCase_ ) print(f"""Building PyTorch model from configuration: {config}""" ) UpperCamelCase = MobileBertForPreTraining(UpperCamelCase_ ) # Load weights from tf checkpoint UpperCamelCase = load_tf_weights_in_mobilebert(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
537
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase): '''simple docstring''' _snake_case = LDMTextToImagePipeline _snake_case = TEXT_TO_IMAGE_PARAMS - { '''negative_prompt''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', '''prompt_embeds''', } _snake_case = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _snake_case = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case = False def a__ ( self ) -> Optional[int]: torch.manual_seed(0 ) lowercase : Dict = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) lowercase : List[str] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=a_ , set_alpha_to_one=a_ , ) torch.manual_seed(0 ) lowercase : str = AutoencoderKL( block_out_channels=(3_2, 6_4) , in_channels=3 , out_channels=3 , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , latent_channels=4 , ) torch.manual_seed(0 ) lowercase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) lowercase : Tuple = CLIPTextModel(a_ ) lowercase : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowercase : Any = { "unet": unet, "scheduler": scheduler, "vqvae": vae, "bert": text_encoder, "tokenizer": tokenizer, } return components def a__ ( self , a_ , a_=0 ) -> Optional[int]: if str(a_ ).startswith("mps" ): lowercase : Optional[Any] = torch.manual_seed(a_ ) else: lowercase : Optional[Any] = torch.Generator(device=a_ ).manual_seed(a_ ) lowercase : List[str] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def a__ ( self ) -> List[str]: lowercase : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase : Tuple = self.get_dummy_components() lowercase : List[str] = LDMTextToImagePipeline(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowercase : Dict = self.get_dummy_inputs(a_ ) lowercase : Dict = pipe(**a_ ).images lowercase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 1_6, 1_6, 3) lowercase : Optional[Any] = np.array([0.61_01, 0.61_56, 0.56_22, 0.48_95, 0.66_61, 0.38_04, 0.57_48, 0.61_36, 0.50_14] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase): '''simple docstring''' def a__ ( self ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self , a_ , a_=torch.floataa , a_=0 ) -> List[str]: lowercase : List[Any] = torch.manual_seed(a_ ) lowercase : Union[str, Any] = np.random.RandomState(a_ ).standard_normal((1, 4, 3_2, 3_2) ) lowercase : Optional[Any] = torch.from_numpy(a_ ).to(device=a_ , dtype=a_ ) lowercase : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def a__ ( self ) -> int: lowercase : List[str] = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowercase : Dict = self.get_inputs(a_ ) lowercase : Any = pipe(**a_ ).images lowercase : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 2_5_6, 2_5_6, 3) lowercase : List[str] = np.array([0.5_18_25, 0.5_28_50, 0.5_25_43, 0.5_42_58, 0.5_23_04, 0.5_25_69, 0.5_43_63, 0.5_52_76, 0.5_68_78] ) lowercase : str = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class _UpperCamelCase ( unittest.TestCase): '''simple docstring''' def a__ ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self , a_ , a_=torch.floataa , a_=0 ) -> Any: lowercase : List[str] = torch.manual_seed(a_ ) lowercase : Any = np.random.RandomState(a_ ).standard_normal((1, 4, 3_2, 3_2) ) lowercase : str = torch.from_numpy(a_ ).to(device=a_ , dtype=a_ ) lowercase : Dict = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 5_0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def a__ ( self ) -> int: lowercase : Dict = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowercase : str = self.get_inputs(a_ ) lowercase : str = pipe(**a_ ).images[0] lowercase : Dict = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" ) lowercase : Any = np.abs(expected_image - image ).max() assert max_diff < 1e-3
711
'''simple docstring''' import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : List[Any] = """▁""" lowerCAmelCase : Union[str, Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class _UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase): '''simple docstring''' _snake_case = BigBirdTokenizer _snake_case = BigBirdTokenizerFast _snake_case = True _snake_case = True def a__ ( self ) -> List[Any]: super().setUp() lowercase : Dict = self.tokenizer_class(a_ , keep_accents=a_ ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self ) -> Tuple: lowercase : Optional[int] = "<s>" lowercase : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) , a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) , a_ ) def a__ ( self ) -> Any: lowercase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(a_ ) , 1_0_0_4 ) def a__ ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def a__ ( self ) -> Dict: if not self.test_rust_tokenizer: return lowercase : str = self.get_tokenizer() lowercase : Optional[Any] = self.get_rust_tokenizer() lowercase : Tuple = "I was born in 92000, and this is falsé." lowercase : Any = tokenizer.tokenize(a_ ) lowercase : List[str] = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) lowercase : Tuple = tokenizer.encode(a_ , add_special_tokens=a_ ) lowercase : Dict = rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) lowercase : Any = self.get_rust_tokenizer() lowercase : Optional[int] = tokenizer.encode(a_ ) lowercase : Dict = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) def a__ ( self ) -> Union[str, Any]: lowercase : Optional[int] = BigBirdTokenizer(a_ , keep_accents=a_ ) lowercase : Optional[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) lowercase : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase : List[str] = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual( a_ , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) lowercase : Dict = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def a__ ( self ) -> Optional[Any]: return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def a__ ( self ) -> Optional[Any]: lowercase : List[Any] = "Hello World!" lowercase : Optional[int] = [6_5, 1_8_5_3_6, 2_2_6_0, 1_0_1, 6_6] self.assertListEqual(a_ , self.big_tokenizer.encode(a_ ) ) @slow def a__ ( self ) -> Union[str, Any]: lowercase : Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off lowercase : int = [6_5, 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, 6_6] # noqa: E231 # fmt: on self.assertListEqual(a_ , self.big_tokenizer.encode(a_ ) ) @require_torch @slow def a__ ( self ) -> Union[str, Any]: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence lowercase : Tuple = list(self.big_tokenizer.get_vocab().keys() )[:1_0] lowercase : Dict = " ".join(a_ ) lowercase : int = self.big_tokenizer.encode_plus(a_ , return_tensors="pt" , return_token_type_ids=a_ ) lowercase : Union[str, Any] = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=a_ ) lowercase : Any = BigBirdConfig(attention_type="original_full" ) lowercase : str = BigBirdModel(a_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**a_ ) model(**a_ ) @slow def a__ ( self ) -> Optional[Any]: lowercase : Tuple = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) lowercase : Any = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def a__ ( self ) -> Optional[int]: # fmt: off lowercase : Dict = {"input_ids": [[6_5, 3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4, 6_6], [6_5, 4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6_5, 4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_ , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
425
0