code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class A__ ( snake_case_ ): def __init__( self : Tuple , _a : pyspark.sql.DataFrame , _a : Optional[NamedSplit] = None , _a : Optional[Features] = None , _a : bool = True , _a : str = None , _a : bool = False , _a : str = None , _a : bool = True , _a : str = "arrow" , **_a : Optional[int] , ) -> Union[str, Any]: '''simple docstring''' super().__init__( split=_a , features=_a , cache_dir=_a , keep_in_memory=_a , streaming=_a , **_a , ) _SCREAMING_SNAKE_CASE =load_from_cache_file _SCREAMING_SNAKE_CASE =file_format _SCREAMING_SNAKE_CASE =Spark( df=_a , features=_a , cache_dir=_a , working_dir=_a , **_a , ) def A ( self : Optional[Any] ) -> str: '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _SCREAMING_SNAKE_CASE =None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_a , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
405
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
417
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Any = logging.get_logger(__name__) __snake_case : Union[str, Any] = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class A__ ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[str]=64 , _SCREAMING_SNAKE_CASE: Any=1 , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: int=180 , _SCREAMING_SNAKE_CASE: str=[6, 6, 6, 6, 6, 6] , _SCREAMING_SNAKE_CASE: int=[6, 6, 6, 6, 6, 6] , _SCREAMING_SNAKE_CASE: Tuple=8 , _SCREAMING_SNAKE_CASE: List[str]=2.0 , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , _SCREAMING_SNAKE_CASE: str=0.0 , _SCREAMING_SNAKE_CASE: List[str]=0.0 , _SCREAMING_SNAKE_CASE: int=0.1 , _SCREAMING_SNAKE_CASE: List[str]="gelu" , _SCREAMING_SNAKE_CASE: Dict=False , _SCREAMING_SNAKE_CASE: List[str]=0.02 , _SCREAMING_SNAKE_CASE: str=1e-5 , _SCREAMING_SNAKE_CASE: List[str]=2 , _SCREAMING_SNAKE_CASE: Any=1.0 , _SCREAMING_SNAKE_CASE: Any="1conv" , _SCREAMING_SNAKE_CASE: List[Any]="pixelshuffle" , **_SCREAMING_SNAKE_CASE: Dict , ) -> Optional[int]: """simple docstring""" super().__init__(**_UpperCAmelCase) __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = embed_dim __lowerCAmelCase = depths __lowerCAmelCase = len(_UpperCAmelCase) __lowerCAmelCase = num_heads __lowerCAmelCase = window_size __lowerCAmelCase = mlp_ratio __lowerCAmelCase = qkv_bias __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = drop_path_rate __lowerCAmelCase = hidden_act __lowerCAmelCase = use_absolute_embeddings __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range __lowerCAmelCase = upscale __lowerCAmelCase = img_range __lowerCAmelCase = resi_connection __lowerCAmelCase = upsampler
713
"""simple docstring""" import string from math import logaa def _lowercase ( __snake_case ,__snake_case ) -> int: __lowerCAmelCase : int = document.translate( str.maketrans("" ,"" ,string.punctuation ) ).replace("\n" ,"" ) __lowerCAmelCase : Dict = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _lowercase ( __snake_case ,__snake_case ) -> tuple[int, int]: __lowerCAmelCase : Optional[Any] = corpus.lower().translate( str.maketrans("" ,"" ,string.punctuation ) ) # strip all punctuation and replace it with '' __lowerCAmelCase : List[str] = corpus_without_punctuation.split("\n" ) __lowerCAmelCase : str = term.lower() return (len([doc for doc in docs if term in doc] ), len(__snake_case )) def _lowercase ( __snake_case ,__snake_case ,__snake_case=False ) -> float: if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) ,3 ) def _lowercase ( __snake_case ,__snake_case ) -> float: return round(tf * idf ,3 )
615
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
300
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a ( unittest.TestCase ): def _UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = 1 _UpperCAmelCase : Any = 3 _UpperCAmelCase : List[Any] = (32, 32) _UpperCAmelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A_ ) return image @property def _UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def _UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' def extract(*A_ , **A_ ): class a : def __init__( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = torch.ones([0] ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' self.pixel_values.to(A_ ) return self return Out() return extract def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : List[str] = PNDMScheduler(skip_prk_steps=A_ ) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Any = self.dummy_text_encoder _UpperCAmelCase : Tuple = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _UpperCAmelCase : Dict = 77 _UpperCAmelCase : Optional[int] = self.dummy_image.to(A_ ) _UpperCAmelCase : List[Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _UpperCAmelCase : Tuple = AltDiffusionImgaImgPipeline( unet=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , safety_checker=A_ , feature_extractor=self.dummy_extractor , ) _UpperCAmelCase : str = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A_ ) _UpperCAmelCase : Dict = alt_pipe.to(A_ ) alt_pipe.set_progress_bar_config(disable=A_ ) _UpperCAmelCase : List[str] = "A painting of a squirrel eating a burger" _UpperCAmelCase : Optional[int] = torch.Generator(device=A_ ).manual_seed(0 ) _UpperCAmelCase : Optional[int] = alt_pipe( [prompt] , generator=A_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=A_ , ) _UpperCAmelCase : str = output.images _UpperCAmelCase : Tuple = torch.Generator(device=A_ ).manual_seed(0 ) _UpperCAmelCase : Dict = alt_pipe( [prompt] , generator=A_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=A_ , return_dict=A_ , )[0] _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCAmelCase : int = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : str = self.dummy_cond_unet _UpperCAmelCase : Any = PNDMScheduler(skip_prk_steps=A_ ) _UpperCAmelCase : Optional[Any] = self.dummy_vae _UpperCAmelCase : Any = self.dummy_text_encoder _UpperCAmelCase : Dict = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _UpperCAmelCase : Any = 77 _UpperCAmelCase : List[Any] = self.dummy_image.to(A_ ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : Optional[Any] = vae.half() _UpperCAmelCase : int = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Optional[int] = AltDiffusionImgaImgPipeline( unet=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , safety_checker=A_ , feature_extractor=self.dummy_extractor , ) _UpperCAmelCase : int = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A_ ) _UpperCAmelCase : List[str] = alt_pipe.to(A_ ) alt_pipe.set_progress_bar_config(disable=A_ ) _UpperCAmelCase : List[str] = "A painting of a squirrel eating a burger" _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : int = alt_pipe( [prompt] , generator=A_ , num_inference_steps=2 , output_type="np" , image=A_ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _UpperCAmelCase : Dict = init_image.resize((760, 504) ) _UpperCAmelCase : str = "BAAI/AltDiffusion" _UpperCAmelCase : str = AltDiffusionImgaImgPipeline.from_pretrained( A_ , safety_checker=A_ , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() _UpperCAmelCase : Union[str, Any] = "A fantasy landscape, trending on artstation" _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = pipe( prompt=A_ , image=A_ , strength=0.75 , guidance_scale=7.5 , generator=A_ , output_type="np" , ) _UpperCAmelCase : Union[str, Any] = output.images[0] _UpperCAmelCase : Optional[int] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) _UpperCAmelCase : Optional[int] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class a ( unittest.TestCase ): def _UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _UpperCAmelCase : Optional[int] = init_image.resize((768, 512) ) _UpperCAmelCase : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _UpperCAmelCase : int = "BAAI/AltDiffusion" _UpperCAmelCase : Optional[int] = AltDiffusionImgaImgPipeline.from_pretrained( A_ , safety_checker=A_ , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() _UpperCAmelCase : int = "A fantasy landscape, trending on artstation" _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : int = pipe( prompt=A_ , image=A_ , strength=0.75 , guidance_scale=7.5 , generator=A_ , output_type="np" , ) _UpperCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
300
1
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> float: """simple docstring""" def get_matched_characters(lowercase_ , lowercase_ ) -> str: A__ = [] A__ = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): A__ = int(max(0 , i - limit ) ) A__ = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowercase_ ) A__ = f"""{_stra[0:_stra.index(lowercase_ )]} {_stra[_stra.index(lowercase_ ) + 1:]}""" return "".join(lowercase_ ) # matching characters A__ = get_matched_characters(lowercase_ , lowercase_ ) A__ = get_matched_characters(lowercase_ , lowercase_ ) A__ = len(lowercase_ ) # transposition A__ = ( len([(ca, ca) for ca, ca in zip(lowercase_ , lowercase_ ) if ca != ca] ) // 2 ) if not match_count: A__ = 0.0 else: A__ = ( 1 / 3 * ( match_count / len(lowercase_ ) + match_count / len(lowercase_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters A__ = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
706
from collections import namedtuple import requests from lxml import html # type: ignore _lowerCamelCase : Optional[int] = namedtuple("""covid_data""", """cases deaths recovered""") def SCREAMING_SNAKE_CASE ( lowercase_ = "https://www.worldometers.info/coronavirus/" ) -> covid_data: """simple docstring""" A__ = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(lowercase_ ).content ).xpath(lowercase_ ) ) _lowerCamelCase : Optional[int] = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
177
0
'''simple docstring''' from __future__ import annotations from typing import Any def __snake_case ( _UpperCAmelCase : list[Any]): create_state_space_tree(_UpperCAmelCase, [], 0) def __snake_case ( _UpperCAmelCase : list[Any], _UpperCAmelCase : list[Any], _UpperCAmelCase : int): if index == len(_UpperCAmelCase): print(_UpperCAmelCase) return create_state_space_tree(_UpperCAmelCase, _UpperCAmelCase, index + 1) current_subsequence.append(sequence[index]) create_state_space_tree(_UpperCAmelCase, _UpperCAmelCase, index + 1) current_subsequence.pop() if __name__ == "__main__": snake_case_ : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
212
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Optional[Any] = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys snake_case_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
212
1
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCamelCase ( _A : np.ndarray , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Union[str, Any] = math.sqrt(_A ) lowerCAmelCase : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCamelCase ( _A : np.ndarray , _A : int , _A : int , _A : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCamelCase ( _A : int , _A : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _A ): for j in range(0 , _A ): lowerCAmelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_A , _A ) def __UpperCamelCase ( _A : np.ndarray , _A : float , _A : float , _A : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase : str = np.zeros(img.shape ) lowerCAmelCase : int = get_gauss_kernel(_A , _A ) lowerCAmelCase , lowerCAmelCase : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase : int = get_slice(_A , _A , _A , _A ) lowerCAmelCase : Any = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase : str = vec_gaussian(_A , _A ) lowerCAmelCase : Optional[int] = np.multiply(_A , _A ) lowerCAmelCase : str = np.multiply(_A , _A ) lowerCAmelCase : Union[str, Any] = np.sum(_A ) / np.sum(_A ) lowerCAmelCase : Tuple = val return imga def __UpperCamelCase ( _A : list ) -> tuple: """simple docstring""" lowerCAmelCase : List[Any] = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase : Any = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase : int = int(args[4] ) lowerCAmelCase : Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = parse_args(sys.argv) _lowerCAmelCase : str = cva.imread(filename, 0) cva.imshow('input image', img) _lowerCAmelCase : Union[str, Any] = img / 255 _lowerCAmelCase : List[str] = out.astype('float32') _lowerCAmelCase : Optional[int] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase : Union[str, Any] = out * 255 _lowerCAmelCase : Optional[Any] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
646
1
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def lowercase_ (A : Union[dict, list, tuple, torch.Tensor] ): snake_case__ : List[str] = [] if isinstance(A , A ): for v in tree.values(): shapes.extend(_fetch_dims(A ) ) elif isinstance(A , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(A ) ) elif isinstance(A , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def lowercase_ (A : int , A : Tuple[int, ...] ): snake_case__ : Optional[int] = [] for d in reversed(A ): idx.append(flat_idx % d ) snake_case__ : Tuple = flat_idx // d return tuple(reversed(A ) ) @torch.jit.ignore def lowercase_ (A : Sequence[int] , A : Sequence[int] , A : Sequence[int] , A : Optional[Sequence[bool]] = None , A : Optional[Sequence[bool]] = None , ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(A : List[bool] ) -> None: snake_case__ : Optional[int] = True for i in range(len(A ) ): snake_case__ : int = -1 * (i + 1) l[reversed_idx] &= tally snake_case__ : Tuple = l[reversed_idx] if start_edges is None: snake_case__ : int = [s == 0 for s in start] reduce_edge_list(A ) if end_edges is None: snake_case__ : Optional[Any] = [e == (d - 1) for e, d in zip(A , A )] reduce_edge_list(A ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(A ) == 0: return [()] elif len(A ) == 1: return [(slice(start[0] , end[0] + 1 ),)] snake_case__ : List[Tuple[slice, ...]] = [] snake_case__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(A , A ): if s == e: path_list.append(slice(A , s + 1 ) ) else: break snake_case__ : Tuple[slice, ...] = tuple(A ) snake_case__ : List[str] = len(A ) # start == end, and we're done if divergence_idx == len(A ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None snake_case__ : Any = start[divergence_idx] return tuple( path + (slice(A , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None snake_case__ : Dict = end[divergence_idx] return tuple( path + (slice(A , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) snake_case__ : Optional[int] = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def lowercase_ (A : torch.Tensor , A : int , A : int , A : int ): snake_case__ : List[Any] = t.shape[:no_batch_dims] snake_case__ : str = list(_flat_idx_to_idx(A , A ) ) # _get_minimal_slice_set is inclusive snake_case__ : Optional[int] = list(_flat_idx_to_idx(flat_end - 1 , A ) ) # Get an ordered list of slices to perform snake_case__ : List[str] = _get_minimal_slice_set( A , A , A , ) snake_case__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def lowercase_ (A : Callable , A : Dict[str, Any] , A : int , A : int , A : bool = False , A : Any = None , A : bool = False , ): if not (len(A ) > 0): raise ValueError('Must provide at least one input' ) snake_case__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(A )] snake_case__ : Dict = tuple([max(A ) for s in zip(*A )] ) def _prep_inputs(A : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: snake_case__ : int = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) snake_case__ : List[Any] = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: snake_case__ : str = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t snake_case__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , A ) snake_case__ : Union[str, Any] = None if _out is not None: snake_case__ : Optional[Any] = tensor_tree_map(lambda A : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) snake_case__ : Optional[Any] = 1 for d in orig_batch_dims: flat_batch_dim *= d snake_case__ : List[Any] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(A : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t snake_case__ : str = 0 snake_case__ : Optional[Any] = prepped_outputs for _ in range(A ): # Chunk the input if not low_mem: snake_case__ : Optional[Any] = _select_chunk else: snake_case__ : Union[str, Any] = partial( _chunk_slice , flat_start=A , flat_end=min(A , i + chunk_size ) , no_batch_dims=len(A ) , ) snake_case__ : Dict[str, Any] = tensor_tree_map(A , A ) # Run the layer on the chunk snake_case__ : List[str] = layer(**A ) # Allocate space for the output if out is None: snake_case__ : Dict = tensor_tree_map(lambda A : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , A ) # Put the chunk in its pre-allocated space if isinstance(A , A ): def assign(A : dict , A : dict ) -> None: for k, v in da.items(): if isinstance(A , A ): assign(A , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: snake_case__ : Dict = da[k] assign(A , A ) elif isinstance(A , A ): for xa, xa in zip(A , A ): if _add_into_out: xa[i : i + chunk_size] += xa else: snake_case__ : Tuple = xa elif isinstance(A , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: snake_case__ : Optional[Any] = output_chunk else: raise ValueError('Not supported' ) i += chunk_size snake_case__ : Dict = tensor_tree_map(lambda A : t.view(orig_batch_dims + t.shape[1:] ) , A ) return out class snake_case__ : """simple docstring""" def __init__( self : int, _snake_case : int = 5_1_2, ) ->List[str]: snake_case__ : Optional[int] = max_chunk_size snake_case__ : Optional[int] = None snake_case__ : Optional[tuple] = None def lowercase_ ( self : List[Any], _snake_case : Callable, _snake_case : tuple, _snake_case : int ) ->int: logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size snake_case__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size, 2 ) ) + 1 )] snake_case__ : Optional[int] = [c for c in candidates if c > min_chunk_size] snake_case__ : Optional[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_snake_case : int ) -> bool: try: with torch.no_grad(): fn(*_snake_case, chunk_size=_snake_case ) return True except RuntimeError: return False snake_case__ : List[Any] = 0 snake_case__ : Optional[Any] = len(_snake_case ) - 1 while i > min_viable_chunk_size_index: snake_case__ : Optional[int] = test_chunk_size(candidates[i] ) if not viable: snake_case__ : Optional[int] = (min_viable_chunk_size_index + i) // 2 else: snake_case__ : Optional[Any] = i snake_case__ : List[Any] = (i + len(_snake_case ) - 1) // 2 return candidates[min_viable_chunk_size_index] def lowercase_ ( self : List[str], _snake_case : Iterable, _snake_case : Iterable ) ->bool: snake_case__ : Dict = True for aa, aa in zip(_snake_case, _snake_case ): assert type(_snake_case ) == type(_snake_case ) if isinstance(_snake_case, (list, tuple) ): consistent &= self._compare_arg_caches(_snake_case, _snake_case ) elif isinstance(_snake_case, _snake_case ): snake_case__ : Any = [v for _, v in sorted(aa.items(), key=lambda _snake_case : x[0] )] snake_case__ : Any = [v for _, v in sorted(aa.items(), key=lambda _snake_case : x[0] )] consistent &= self._compare_arg_caches(_snake_case, _snake_case ) else: consistent &= aa == aa return consistent def lowercase_ ( self : List[str], _snake_case : Callable, _snake_case : tuple, _snake_case : int, ) ->int: snake_case__ : str = True snake_case__ : tuple = tree_map(lambda _snake_case : a.shape if isinstance(_snake_case, torch.Tensor ) else a, _snake_case, _snake_case ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(_snake_case ) snake_case__ : List[str] = self._compare_arg_caches(self.cached_arg_data, _snake_case ) else: # Otherwise, we can reuse the precomputed value snake_case__ : str = False if not consistent: snake_case__ : List[Any] = self._determine_favorable_chunk_size( _snake_case, _snake_case, _snake_case, ) snake_case__ : Optional[int] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
478
from ....utils import logging a_ :Optional[int] = logging.get_logger(__name__) class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any], _snake_case : List[str], _snake_case : Any=None, _snake_case : Tuple=2_0_4_8 ) ->List[str]: snake_case__ : Dict = config.__dict__ snake_case__ : Optional[Any] = modal_hidden_size if num_labels: snake_case__ : Union[str, Any] = num_labels
478
1
'''simple docstring''' import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = """ssube/stable-diffusion-x4-upscaler-onnx""" def A ( self : Union[str, Any] , UpperCamelCase__ : str=0 ): """simple docstring""" UpperCamelCase = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(__A ) ) UpperCamelCase = torch.manual_seed(__A ) UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def A ( self : int ): """simple docstring""" UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=__A ) UpperCamelCase = self.get_dummy_inputs() UpperCamelCase = pipe(**__A ).images UpperCamelCase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__A ) pipe.set_progress_bar_config(disable=__A ) UpperCamelCase = self.get_dummy_inputs() UpperCamelCase = pipe(**__A ).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def A ( self : Tuple ): """simple docstring""" UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__A ) UpperCamelCase = self.get_dummy_inputs() UpperCamelCase = pipe(**__A ).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__A ) UpperCamelCase = self.get_dummy_inputs() UpperCamelCase = pipe(**__A ).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__A ) UpperCamelCase = self.get_dummy_inputs() UpperCamelCase = pipe(**__A ).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @property def A ( self : List[Any] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A ( self : str ): """simple docstring""" UpperCamelCase = ort.SessionOptions() UpperCamelCase = False return options def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) UpperCamelCase = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__A ) UpperCamelCase = 'A fantasy landscape, trending on artstation' UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = pipe( prompt=__A , image=__A , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__A , output_type='np' , ) UpperCamelCase = output.images UpperCamelCase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def A ( self : Tuple ): """simple docstring""" UpperCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) UpperCamelCase = init_image.resize((1_2_8, 1_2_8) ) UpperCamelCase = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , subfolder='scheduler' ) UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , scheduler=__A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__A ) UpperCamelCase = 'A fantasy landscape, trending on artstation' UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = pipe( prompt=__A , image=__A , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__A , output_type='np' , ) UpperCamelCase = output.images UpperCamelCase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
718
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = StableDiffusionPanoramaPipeline _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS def A ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=1 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) UpperCamelCase = DDIMScheduler() torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) UpperCamelCase = CLIPTextModel(UpperCamelCase__ ) UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def A ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : str=0 ): """simple docstring""" UpperCamelCase = torch.manual_seed(UpperCamelCase__ ) UpperCamelCase = { 'prompt': 'a photo of the dolomites', 'generator': generator, # Setting height and width to None to prevent OOMs on CPU. 'height': None, 'width': None, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionPanoramaPipeline(**UpperCamelCase__ ) UpperCamelCase = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCamelCase = self.get_dummy_inputs(UpperCamelCase__ ) UpperCamelCase = sd_pipe(**UpperCamelCase__ ).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : Optional[Any] ): """simple docstring""" super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def A ( self : Any ): """simple docstring""" super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5E-3 ) def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionPanoramaPipeline(**UpperCamelCase__ ) UpperCamelCase = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCamelCase = self.get_dummy_inputs(UpperCamelCase__ ) UpperCamelCase = 'french fries' UpperCamelCase = sd_pipe(**UpperCamelCase__ , negative_prompt=UpperCamelCase__ ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : int ): """simple docstring""" UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionPanoramaPipeline(**UpperCamelCase__ ) UpperCamelCase = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCamelCase = self.get_dummy_inputs(UpperCamelCase__ ) UpperCamelCase = sd_pipe(**UpperCamelCase__ , view_batch_size=2 ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' ) UpperCamelCase = StableDiffusionPanoramaPipeline(**UpperCamelCase__ ) UpperCamelCase = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCamelCase = self.get_dummy_inputs(UpperCamelCase__ ) UpperCamelCase = sd_pipe(**UpperCamelCase__ ).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : int ): """simple docstring""" UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = PNDMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , skip_prk_steps=UpperCamelCase__ ) UpperCamelCase = StableDiffusionPanoramaPipeline(**UpperCamelCase__ ) UpperCamelCase = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCamelCase = self.get_dummy_inputs(UpperCamelCase__ ) UpperCamelCase = sd_pipe(**UpperCamelCase__ ).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[str] , UpperCamelCase__ : Optional[int]=0 ): """simple docstring""" UpperCamelCase = torch.manual_seed(UpperCamelCase__ ) UpperCamelCase = { 'prompt': 'a photo of the dolomites', 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def A ( self : int ): """simple docstring""" UpperCamelCase = 'stabilityai/stable-diffusion-2-base' UpperCamelCase = DDIMScheduler.from_pretrained(UpperCamelCase__ , subfolder='scheduler' ) UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() UpperCamelCase = self.get_inputs() UpperCamelCase = pipe(**UpperCamelCase__ ).images UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 2_0_4_8, 3) UpperCamelCase = np.array( [ 0.3_6_9_6_8_3_9_2, 0.2_7_0_2_5_3_7_2, 0.3_2_4_4_6_7_6_6, 0.2_8_3_7_9_3_8_7, 0.3_6_3_6_3_2_7_4, 0.3_0_7_3_3_3_4_7, 0.2_7_1_0_0_0_2_7, 0.2_7_0_5_4_1_2_5, 0.2_5_5_3_6_0_9_6, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def A ( self : int ): """simple docstring""" UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-base' , safety_checker=UpperCamelCase__ ) UpperCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() UpperCamelCase = self.get_inputs() UpperCamelCase = pipe(**UpperCamelCase__ ).images UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 2_0_4_8, 3) UpperCamelCase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def A ( self : Any ): """simple docstring""" UpperCamelCase = 0 def callback_fn(UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : torch.FloatTensor ) -> None: UpperCamelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCamelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 2_5_6) UpperCamelCase = latents[0, -3:, -3:, -1] UpperCamelCase = np.array( [ 0.1_8_6_8_1_8_6_9, 0.3_3_9_0_7_8_1_6, 0.5_3_6_1_2_7_6, 0.1_4_4_3_2_8_6_5, -0.0_2_8_5_6_6_1_1, -0.7_3_9_4_1_1_2_3, 0.2_3_3_9_7_9_8_7, 0.4_7_3_2_2_6_8_2, -0.3_7_8_2_3_1_6_4, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: UpperCamelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 2_5_6) UpperCamelCase = latents[0, -3:, -3:, -1] UpperCamelCase = np.array( [ 0.1_8_5_3_9_6_4_5, 0.3_3_9_8_7_2_4_8, 0.5_3_7_8_5_5_9, 0.1_4_4_3_7_1_4_2, -0.0_2_4_5_5_2_6_1, -0.7_3_3_8_3_1_7, 0.2_3_9_9_0_7_5_5, 0.4_7_3_5_6_2_7_2, -0.3_7_8_6_5_0_5, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 UpperCamelCase = False UpperCamelCase = 'stabilityai/stable-diffusion-2-base' UpperCamelCase = DDIMScheduler.from_pretrained(UpperCamelCase__ , subfolder='scheduler' ) UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ ) UpperCamelCase = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() UpperCamelCase = self.get_inputs() pipe(**UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def A ( self : Optional[int] ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = 'stabilityai/stable-diffusion-2-base' UpperCamelCase = DDIMScheduler.from_pretrained(UpperCamelCase__ , subfolder='scheduler' ) UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ ) UpperCamelCase = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCamelCase = self.get_inputs() UpperCamelCase = pipe(**UpperCamelCase__ ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 1_0**9
324
0
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs a__ : Optional[Any] = imread(r"""digital_image_processing/image_data/lena_small.jpg""") a__ : List[Any] = cvtColor(img, COLOR_BGR2GRAY) def A__ ( ): """simple docstring""" _lowerCAmelCase = cn.convert_to_negative(__lowerCamelCase ) # assert negative_img array for at least one True assert negative_img.any() def A__ ( ): """simple docstring""" with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(__lowerCamelCase, 1_1_0 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def A__ ( ): """simple docstring""" _lowerCAmelCase = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def A__ ( ): """simple docstring""" _lowerCAmelCase = imread('digital_image_processing/image_data/lena_small.jpg', 0 ) # assert ambiguous array for all == True assert canny_img.all() _lowerCAmelCase = canny.canny(__lowerCamelCase ) # assert canny array for at least one True assert canny_array.any() def A__ ( ): """simple docstring""" assert gg.gaussian_filter(__lowerCamelCase, 5, sigma=0.9 ).all() def A__ ( ): """simple docstring""" # laplace diagonals _lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) _lowerCAmelCase = conv.img_convolve(__lowerCamelCase, __lowerCamelCase ).astype(__lowerCamelCase ) assert res.any() def A__ ( ): """simple docstring""" assert med.median_filter(__lowerCamelCase, 3 ).any() def A__ ( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = sob.sobel_filter(__lowerCamelCase ) assert grad.any() and theta.any() def A__ ( ): """simple docstring""" _lowerCAmelCase = sp.make_sepia(__lowerCamelCase, 2_0 ) assert sepia.all() def A__ ( __lowerCamelCase = "digital_image_processing/image_data/lena_small.jpg" ): """simple docstring""" _lowerCAmelCase = bs.Burkes(imread(__lowerCamelCase, 1 ), 1_2_0 ) burkes.process() assert burkes.output_img.any() def A__ ( __lowerCamelCase = "digital_image_processing/image_data/lena_small.jpg", ): """simple docstring""" _lowerCAmelCase = rs.NearestNeighbour(imread(__lowerCamelCase, 1 ), 4_0_0, 2_0_0 ) nn.process() assert nn.output.any() def A__ ( ): """simple docstring""" _lowerCAmelCase = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. _lowerCAmelCase = imread(__lowerCamelCase, 0 ) # Test for get_neighbors_pixel function() return not None _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = image[x_coordinate][y_coordinate] _lowerCAmelCase = lbp.get_neighbors_pixel( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): _lowerCAmelCase = lbp.local_binary_value(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) assert lbp_image.any()
589
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : List[str] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
589
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _a : Tuple = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _a : List[Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : Optional[Any] = bs[:] __UpperCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Dict = set() __UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[Any] = char return pairs class __A (__magic_name__ ): snake_case :Optional[int] = VOCAB_FILES_NAMES snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : int = json.load(UpperCamelCase_ ) __UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Any = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 while i < len(UpperCamelCase_ ): try: __UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : str = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = new_word if len(UpperCamelCase_ ) == 1: break else: __UpperCAmelCase : int = get_pairs(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ ) __UpperCAmelCase : Dict = word return word def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = [] for token in re.findall(self.pat , UpperCamelCase_ ): __UpperCAmelCase : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) ) return bpe_tokens def _snake_case ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = "".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : Any = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" ) __UpperCAmelCase : str = 0 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : str = token_index writer.write(" ".join(UpperCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ): __UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): __UpperCAmelCase : Tuple = " " + text return (text, kwargs)
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
1
import colorsys from PIL import Image # type: ignore def a_ ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' _lowerCamelCase : List[Any] =x _lowerCamelCase : List[Any] =y for step in range(A_ ): # noqa: B007 _lowerCamelCase : Dict =a * a - b * b + x _lowerCamelCase : List[str] =2 * a * b + y _lowerCamelCase : Any =a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def a_ ( SCREAMING_SNAKE_CASE__ : float ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def a_ ( SCREAMING_SNAKE_CASE__ : float ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(A_ , 1 , 1 ) ) def a_ ( SCREAMING_SNAKE_CASE__ : int = 800 , SCREAMING_SNAKE_CASE__ : int = 600 , SCREAMING_SNAKE_CASE__ : float = -0.6 , SCREAMING_SNAKE_CASE__ : float = 0 , SCREAMING_SNAKE_CASE__ : float = 3.2 , SCREAMING_SNAKE_CASE__ : int = 50 , SCREAMING_SNAKE_CASE__ : bool = True , ): '''simple docstring''' _lowerCamelCase : Tuple =Image.new('RGB' , (image_width, image_height) ) _lowerCamelCase : int =img.load() # loop through the image-coordinates for image_x in range(A_ ): for image_y in range(A_ ): # determine the figure-coordinates based on the image-coordinates _lowerCamelCase : Optional[Any] =figure_width / image_width * image_height _lowerCamelCase : List[Any] =figure_center_x + (image_x / image_width - 0.5) * figure_width _lowerCamelCase : Optional[Any] =figure_center_y + (image_y / image_height - 0.5) * figure_height _lowerCamelCase : str =get_distance(A_ , A_ , A_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: _lowerCamelCase : Dict =get_color_coded_rgb(A_ ) else: _lowerCamelCase : str =get_black_and_white_rgb(A_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
464
"""simple docstring""" def snake_case_ ( A_ : int, A_ : int ): '''simple docstring''' return int(input_a == input_a == 0 ) def snake_case_ ( ): '''simple docstring''' print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(F'''| 0 | 0 | {nor_gate(0, 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0, 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1, 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1, 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
83
0
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def lowerCamelCase_ ( _a : Optional[Any] , _a : Any ): '''simple docstring''' UpperCAmelCase_ : Dict = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) UpperCAmelCase_ : List[str] = DatasetInfosDict.from_directory(_lowerCamelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ), ] , ) def lowerCamelCase_ ( _a : List[Any] , _a : DatasetInfo ): '''simple docstring''' UpperCAmelCase_ : str = str(_lowerCamelCase ) dataset_info.write_to_directory(_lowerCamelCase ) UpperCAmelCase_ : List[str] = DatasetInfo.from_directory(_lowerCamelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_lowerCamelCase , """dataset_info.json""" ) ) def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : Dict = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) UpperCAmelCase_ : List[str] = dataset_info._to_yaml_dict() assert sorted(_lowerCamelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) UpperCAmelCase_ : Optional[Any] = yaml.safe_dump(_lowerCamelCase ) UpperCAmelCase_ : List[Any] = yaml.safe_load(_lowerCamelCase ) assert dataset_info_yaml_dict == reloaded def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = DatasetInfo() UpperCAmelCase_ : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=42 ), """v2""": DatasetInfo(dataset_size=1337 ), } ), ] , ) def lowerCamelCase_ ( _a : Tuple , _a : DatasetInfosDict ): '''simple docstring''' UpperCAmelCase_ : List[str] = str(_lowerCamelCase ) dataset_infos_dict.write_to_directory(_lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = DatasetInfosDict.from_directory(_lowerCamelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): UpperCAmelCase_ : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml UpperCAmelCase_ : str = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_lowerCamelCase , """README.md""" ) )
719
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _snake_case ( __snake_case ): '''simple docstring''' A__ : List[Any] = "facebook/bart-large-mnli" A__ : List[Any] = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) A__ : str = "text_classifier" A__ : Tuple = AutoTokenizer A__ : int = AutoModelForSequenceClassification A__ : List[str] = ["text", ["text"]] A__ : Dict = ["text"] def A__ ( self: List[str] ) -> List[str]: super().setup() UpperCAmelCase_ : Dict = self.model.config UpperCAmelCase_ : Dict = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): UpperCAmelCase_ : List[str] = int(lowerCamelCase_ ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def A__ ( self: Dict ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[Any] ) -> Optional[int]: UpperCAmelCase_ : str = labels return self.pre_processor( [text] * len(lowerCamelCase_ ) ,[F'''This example is {label}''' for label in labels] ,return_tensors="""pt""" ,padding="""max_length""" ,) def A__ ( self: int ,lowerCamelCase_: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : int = outputs.logits UpperCAmelCase_ : Tuple = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
322
0
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) __a : Optional[Any] = "pytorch_model.bin" __a : Optional[Any] = "pytorch_model.bin.index.json" __a : Tuple = "adapter_config.json" __a : Union[str, Any] = "adapter_model.bin" __a : List[Any] = "adapter_model.safetensors" __a : List[Any] = "tf_model.h5" __a : Union[str, Any] = "tf_model.h5.index.json" __a : Optional[Any] = "model.ckpt" __a : Union[str, Any] = "flax_model.msgpack" __a : Optional[int] = "flax_model.msgpack.index.json" __a : int = "model.safetensors" __a : List[str] = "model.safetensors.index.json" __a : int = "config.json" __a : Dict = "preprocessor_config.json" __a : Optional[Any] = FEATURE_EXTRACTOR_NAME __a : List[str] = "generation_config.json" __a : List[str] = "modelcard.json" __a : Union[str, Any] = "▁" __a : int = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility __a : Optional[Any] = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. __a : List[str] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] __a : Tuple = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def _SCREAMING_SNAKE_CASE ( __lowercase : List[Any] ) -> Optional[Any]: """simple docstring""" if version.parse(__lowercase ) < version.parse(__lowercase ): if "dev" in min_version: __A = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: __A = f"This example requires a minimum version of {min_version}," error_message += f" but the version found is {__version__}.\n" raise ImportError( error_message + """Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other """ """versions of HuggingFace Transformers.""" )
637
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase : '''simple docstring''' lowerCamelCase_ = 42 lowerCamelCase_ = None @staticmethod def lowerCAmelCase_ ( ): """simple docstring""" raise NotImplementedError def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , **lowercase ): """simple docstring""" raise NotImplementedError def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" raise NotImplementedError def lowerCAmelCase_ ( self ): """simple docstring""" if not self.is_available(): raise RuntimeError( F'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def lowerCAmelCase_ ( cls ): """simple docstring""" return F'''`pip install {cls.pip_package or cls.name}`''' class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''optuna''' @staticmethod def lowerCAmelCase_ ( ): """simple docstring""" return is_optuna_available() def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , **lowercase ): """simple docstring""" return run_hp_search_optuna(lowercase , lowercase , lowercase , **lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return default_hp_space_optuna(lowercase ) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''ray''' lowerCamelCase_ = '''\'ray[tune]\'''' @staticmethod def lowerCAmelCase_ ( ): """simple docstring""" return is_ray_available() def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , **lowercase ): """simple docstring""" return run_hp_search_ray(lowercase , lowercase , lowercase , **lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return default_hp_space_ray(lowercase ) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''sigopt''' @staticmethod def lowerCAmelCase_ ( ): """simple docstring""" return is_sigopt_available() def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , **lowercase ): """simple docstring""" return run_hp_search_sigopt(lowercase , lowercase , lowercase , **lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return default_hp_space_sigopt(lowercase ) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''wandb''' @staticmethod def lowerCAmelCase_ ( ): """simple docstring""" return is_wandb_available() def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , **lowercase ): """simple docstring""" return run_hp_search_wandb(lowercase , lowercase , lowercase , **lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return default_hp_space_wandb(lowercase ) _UpperCAmelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def UpperCamelCase ( ): '''simple docstring''' A_ : List[str] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__lowercase ) > 0: A_ : List[str] = available_backends[0].name if len(__lowercase ) > 1: logger.info( f'''{len(__lowercase )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( f''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
558
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { '''configuration_lilt''': ['''LILT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LiltConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''LILT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LiltForQuestionAnswering''', '''LiltForSequenceClassification''', '''LiltForTokenClassification''', '''LiltModel''', '''LiltPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
635
"""simple docstring""" from __future__ import annotations def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , )-> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
635
1
"""simple docstring""" import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( a__ ): _UpperCAmelCase = (CMStochasticIterativeScheduler,) _UpperCAmelCase = 10 def __lowerCamelCase ( self ,**_A ): '''simple docstring''' _lowerCAmelCase : Any = { 'num_train_timesteps': 201, 'sigma_min': 0.0_0_2, 'sigma_max': 8_0.0, } config.update(**_A ) return config def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : List[str] = self.scheduler_classes[0](**_A ) scheduler.set_timesteps(_A ) _lowerCAmelCase : Any = scheduler.timesteps[0] _lowerCAmelCase : Tuple = scheduler.timesteps[1] _lowerCAmelCase : str = self.dummy_sample _lowerCAmelCase : List[str] = 0.1 * sample _lowerCAmelCase : Any = scheduler.step(_A ,_A ,_A ).prev_sample _lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) _lowerCAmelCase : Tuple = 1 scheduler.set_timesteps(_A ) _lowerCAmelCase : Dict = scheduler.timesteps _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = self.dummy_model() _lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_A ): # 1. scale model input _lowerCAmelCase : List[Any] = scheduler.scale_model_input(_A ,_A ) # 2. predict noise residual _lowerCAmelCase : Any = model(_A ,_A ) # 3. predict previous sample x_t-1 _lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ,generator=_A ).prev_sample _lowerCAmelCase : str = pred_prev_sample _lowerCAmelCase : str = torch.sum(torch.abs(_A ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 1_9_2.7_6_1_4 ) < 1E-2 assert abs(result_mean.item() - 0.2_5_1_0 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**_A ) _lowerCAmelCase : Optional[int] = [106, 0] scheduler.set_timesteps(timesteps=_A ) _lowerCAmelCase : Tuple = scheduler.timesteps _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : Dict = self.dummy_model() _lowerCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _lowerCAmelCase : Dict = scheduler.scale_model_input(_A ,_A ) # 2. predict noise residual _lowerCAmelCase : List[str] = model(_A ,_A ) # 3. predict previous sample x_t-1 _lowerCAmelCase : List[Any] = scheduler.step(_A ,_A ,_A ,generator=_A ).prev_sample _lowerCAmelCase : str = pred_prev_sample _lowerCAmelCase : Any = torch.sum(torch.abs(_A ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 3_4_7.6_3_5_7 ) < 1E-2 assert abs(result_mean.item() - 0.4_5_2_7 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**_A ) _lowerCAmelCase : Tuple = [39, 30, 12, 15, 0] with self.assertRaises(_A ,msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config() _lowerCAmelCase : Optional[int] = scheduler_class(**_A ) _lowerCAmelCase : Any = [39, 30, 12, 1, 0] _lowerCAmelCase : Tuple = len(_A ) with self.assertRaises(_A ,msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_A ,timesteps=_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) _lowerCAmelCase : Any = [scheduler.config.num_train_timesteps] with self.assertRaises( _A ,msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' ,): scheduler.set_timesteps(timesteps=_A )
259
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase="pt" ): '''simple docstring''' _lowerCAmelCase : str = {'add_prefix_space': True} if isinstance(_lowerCamelCase , _lowerCamelCase ) and not line.startswith(' ' ) else {} _lowerCAmelCase : List[str] = padding_side return tokenizer( [line] , max_length=_lowerCamelCase , padding='max_length' if pad_to_max_length else None , truncation=_lowerCamelCase , return_tensors=_lowerCamelCase , add_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase : str = input_ids.ne(_lowerCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A ,_A ,_A ,_A="train" ,_A=None ,_A=None ,_A=None ,_A="" ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = Path(_A ).joinpath(type_path + '.source' ) _lowerCAmelCase : Optional[int] = Path(_A ).joinpath(type_path + '.target' ) _lowerCAmelCase : List[Any] = self.get_char_lens(self.src_file ) _lowerCAmelCase : Tuple = max_source_length _lowerCAmelCase : Union[str, Any] = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" _lowerCAmelCase : Dict = tokenizer _lowerCAmelCase : List[Any] = prefix if n_obs is not None: _lowerCAmelCase : int = self.src_lens[:n_obs] _lowerCAmelCase : List[str] = src_lang _lowerCAmelCase : Any = tgt_lang def __len__( self ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = index + 1 # linecache starts at 1 _lowerCAmelCase : Optional[int] = self.prefix + linecache.getline(str(self.src_file ) ,_A ).rstrip('\n' ) _lowerCAmelCase : Optional[int] = linecache.getline(str(self.tgt_file ) ,_A ).rstrip('\n' ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer ,_A ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _lowerCAmelCase : List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,_A ) else self.tokenizer ) _lowerCAmelCase : Dict = self.tokenizer.generator if isinstance(self.tokenizer ,_A ) else self.tokenizer _lowerCAmelCase : Union[str, Any] = encode_line(_A ,_A ,self.max_source_length ,'right' ) _lowerCAmelCase : Optional[int] = encode_line(_A ,_A ,self.max_target_length ,'right' ) _lowerCAmelCase : Tuple = source_inputs['input_ids'].squeeze() _lowerCAmelCase : int = target_inputs['input_ids'].squeeze() _lowerCAmelCase : Optional[Any] = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' return [len(_A ) for x in Path(_A ).open().readlines()] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = torch.stack([x['input_ids'] for x in batch] ) _lowerCAmelCase : List[Any] = torch.stack([x['attention_mask'] for x in batch] ) _lowerCAmelCase : Any = torch.stack([x['decoder_input_ids'] for x in batch] ) _lowerCAmelCase : List[str] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,_A ) else self.tokenizer.pad_token_id ) _lowerCAmelCase : List[str] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,_A ) else self.tokenizer.pad_token_id ) _lowerCAmelCase : int = trim_batch(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = trim_batch(_A ,_A ,attention_mask=_A ) _lowerCAmelCase : List[str] = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch _lowerCAmelCase = getLogger(__name__) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return list(itertools.chain.from_iterable(_lowerCamelCase ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = get_git_info() save_json(_lowerCamelCase , os.path.join(_lowerCamelCase , 'git_log.json' ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=4 , **_lowerCamelCase ): '''simple docstring''' with open(_lowerCamelCase , 'w' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=_lowerCamelCase , **_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(_lowerCamelCase ) as f: return json.load(_lowerCamelCase ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = git.Repo(search_parent_directories=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = { 'repo_id': str(_lowerCamelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return list(map(_lowerCamelCase , _lowerCamelCase ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' with open(_lowerCamelCase , 'wb' ) as f: return pickle.dump(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' def remove_articles(_lowerCamelCase ): return re.sub(R'\b(a|an|the)\b' , ' ' , _lowerCamelCase ) def white_space_fix(_lowerCamelCase ): return " ".join(text.split() ) def remove_punc(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCamelCase ) ) ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = normalize_answer(_lowerCamelCase ).split() _lowerCAmelCase : List[str] = normalize_answer(_lowerCamelCase ).split() _lowerCAmelCase : Optional[Any] = Counter(_lowerCamelCase ) & Counter(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sum(common.values() ) if num_same == 0: return 0 _lowerCAmelCase : Any = 1.0 * num_same / len(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = 1.0 * num_same / len(_lowerCamelCase ) _lowerCAmelCase : str = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return normalize_answer(_lowerCamelCase ) == normalize_answer(_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = 0 for hypo, pred in zip(_lowerCamelCase , _lowerCamelCase ): em += exact_match_score(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: em /= len(_lowerCamelCase ) return {"em": em} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return model_prefix.startswith('rag' ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _lowerCAmelCase : List[str] = 'dropout_rate' for p in extra_params: if getattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if not hasattr(_lowerCamelCase , _lowerCamelCase ) and not hasattr(_lowerCamelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowerCamelCase ) ) delattr(_lowerCamelCase , _lowerCamelCase ) continue _lowerCAmelCase : Optional[Any] = p if hasattr(_lowerCamelCase , _lowerCamelCase ) else equivalent_param[p] setattr(_lowerCamelCase , _lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) delattr(_lowerCamelCase , _lowerCamelCase ) return hparams, config
259
1
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowercase = random.Random() def _lowerCAmelCase ( __lowerCamelCase:List[str] , __lowerCamelCase:int=1.0 , __lowerCamelCase:Tuple=None , __lowerCamelCase:List[str]=None ): '''simple docstring''' if rng is None: __magic_name__ = global_rng __magic_name__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class A_ ( unittest.TestCase ): def __init__( self : int , __lowerCamelCase : str , __lowerCamelCase : Any=7 , __lowerCamelCase : Union[str, Any]=4_0_0 , __lowerCamelCase : List[Any]=2_0_0_0 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : List[str]=0.0 , __lowerCamelCase : Dict=1_6_0_0_0 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : int=8_0 , __lowerCamelCase : str=1_6 , __lowerCamelCase : Optional[int]=6_4 , __lowerCamelCase : Tuple="hann_window" , __lowerCamelCase : Union[str, Any]=8_0 , __lowerCamelCase : Any=7_6_0_0 , __lowerCamelCase : Dict=1e-10 , __lowerCamelCase : Tuple=True , ) -> Optional[int]: __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = min_seq_length __magic_name__ = max_seq_length __magic_name__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __magic_name__ = feature_size __magic_name__ = padding_value __magic_name__ = sampling_rate __magic_name__ = do_normalize __magic_name__ = num_mel_bins __magic_name__ = hop_length __magic_name__ = win_length __magic_name__ = win_function __magic_name__ = fmin __magic_name__ = fmax __magic_name__ = mel_floor __magic_name__ = return_attention_mask def _snake_case ( self : Tuple ) -> Any: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def _snake_case ( self : List[Any] , __lowerCamelCase : str=False , __lowerCamelCase : str=False ) -> Optional[int]: def _flatten(__lowerCamelCase : Any ): return list(itertools.chain(*__lowerCamelCase ) ) if equal_length: __magic_name__ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __magic_name__ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __magic_name__ = [np.asarray(__lowerCamelCase ) for x in speech_inputs] return speech_inputs def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple=False , __lowerCamelCase : Any=False ) -> int: if equal_length: __magic_name__ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __magic_name__ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __magic_name__ = [np.asarray(__lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch class A_ ( snake_case_ , unittest.TestCase ): UpperCAmelCase__ = SpeechTaFeatureExtractor def _snake_case ( self : int ) -> Optional[Any]: __magic_name__ = SpeechTaFeatureExtractionTester(self ) def _snake_case ( self : str , __lowerCamelCase : Dict ) -> Optional[Any]: self.assertTrue(np.all(np.mean(__lowerCamelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__lowerCamelCase , axis=0 ) - 1 ) < 1e-3 ) ) def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus __magic_name__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __magic_name__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __magic_name__ = [np.asarray(__lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input __magic_name__ = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values __magic_name__ = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) # Test batched __magic_name__ = feat_extract(__lowerCamelCase , return_tensors="np" ).input_values __magic_name__ = feat_extract(__lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase ): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def _snake_case ( self : List[Any] ) -> Dict: __magic_name__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __magic_name__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __magic_name__ = ["longest", "max_length", "do_not_pad"] __magic_name__ = [None, 1_6_0_0, None] for max_length, padding in zip(__lowerCamelCase , __lowerCamelCase ): __magic_name__ = feat_extract(__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors="np" ) __magic_name__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def _snake_case ( self : int ) -> Optional[int]: __magic_name__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __magic_name__ = range(8_0_0 , 1_4_0_0 , 2_0_0 ) __magic_name__ = [floats_list((1, x) )[0] for x in lengths] __magic_name__ = ["longest", "max_length", "do_not_pad"] __magic_name__ = [None, 1_6_0_0, None] for max_length, padding in zip(__lowerCamelCase , __lowerCamelCase ): __magic_name__ = feat_extract(__lowerCamelCase , max_length=__lowerCamelCase , padding=__lowerCamelCase ) __magic_name__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def _snake_case ( self : Any ) -> Optional[Any]: __magic_name__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __magic_name__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __magic_name__ = feat_extract( __lowerCamelCase , truncation=__lowerCamelCase , max_length=1_0_0_0 , padding="max_length" , return_tensors="np" ) __magic_name__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _snake_case ( self : List[str] ) -> Optional[Any]: __magic_name__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __magic_name__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __magic_name__ = feat_extract( __lowerCamelCase , truncation=__lowerCamelCase , max_length=1_0_0_0 , padding="longest" , return_tensors="np" ) __magic_name__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) __magic_name__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __magic_name__ = feat_extract( __lowerCamelCase , truncation=__lowerCamelCase , max_length=2_0_0_0 , padding="longest" , return_tensors="np" ) __magic_name__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def _snake_case ( self : Any ) -> Tuple: __magic_name__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __magic_name__ = np.random.rand(1_0_0 ).astype(np.floataa ) __magic_name__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __magic_name__ = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __magic_name__ = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _snake_case ( self : Tuple ) -> List[Any]: # Tests that all call wrap to encode_plus and batch_encode_plus __magic_name__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __magic_name__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __magic_name__ = [np.asarray(__lowerCamelCase ) for speech_input in speech_inputs] # Test feature size __magic_name__ = feature_extractor(audio_target=__lowerCamelCase , padding=__lowerCamelCase , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input __magic_name__ = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values __magic_name__ = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) # Test batched __magic_name__ = feature_extractor(__lowerCamelCase , return_tensors="np" ).input_values __magic_name__ = feature_extractor(__lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase ): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __magic_name__ = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] __magic_name__ = np.asarray(__lowerCamelCase ) __magic_name__ = feature_extractor(__lowerCamelCase , return_tensors="np" ).input_values __magic_name__ = feature_extractor(__lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase ): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def _snake_case ( self : Any ) -> List[str]: __magic_name__ = self.feat_extract_tester.prepare_inputs_for_target() __magic_name__ = self.feature_extraction_class(**self.feat_extract_dict ) __magic_name__ = feat_extract.model_input_names[0] __magic_name__ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__lowerCamelCase ) == len(__lowerCamelCase ) for x, y in zip(__lowerCamelCase , processed_features[input_name] ) ) ) __magic_name__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__lowerCamelCase ) __magic_name__ = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) __magic_name__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: __magic_name__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _snake_case ( self : List[str] ) -> Union[str, Any]: __magic_name__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__lowerCamelCase ) __magic_name__ = self.feature_extraction_class(**self.feat_extract_dict ) __magic_name__ = feat_extract.model_input_names[0] __magic_name__ = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) __magic_name__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: __magic_name__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _snake_case ( self : Dict ) -> Tuple: __magic_name__ = self.feature_extraction_class(**self.feat_extract_dict ) __magic_name__ = self.feat_extract_tester.prepare_inputs_for_target() __magic_name__ = feat_extract.model_input_names[0] __magic_name__ = BatchFeature({input_name: speech_inputs} ) __magic_name__ = feat_extract.num_mel_bins # hack! __magic_name__ = feat_extract.pad(__lowerCamelCase , padding="longest" , return_tensors="np" )[input_name] __magic_name__ = feat_extract.pad(__lowerCamelCase , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _snake_case ( self : List[Any] ) -> str: __magic_name__ = self.feat_extract_dict __magic_name__ = True __magic_name__ = self.feature_extraction_class(**__lowerCamelCase ) __magic_name__ = self.feat_extract_tester.prepare_inputs_for_target() __magic_name__ = [len(__lowerCamelCase ) for x in speech_inputs] __magic_name__ = feat_extract.model_input_names[0] __magic_name__ = BatchFeature({input_name: speech_inputs} ) __magic_name__ = feat_extract.num_mel_bins # hack! __magic_name__ = feat_extract.pad(__lowerCamelCase , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __lowerCamelCase ) def _snake_case ( self : Any ) -> Optional[int]: __magic_name__ = self.feat_extract_dict __magic_name__ = True __magic_name__ = self.feature_extraction_class(**__lowerCamelCase ) __magic_name__ = self.feat_extract_tester.prepare_inputs_for_target() __magic_name__ = [len(__lowerCamelCase ) for x in speech_inputs] __magic_name__ = feat_extract.model_input_names[0] __magic_name__ = BatchFeature({input_name: speech_inputs} ) __magic_name__ = min(__lowerCamelCase ) __magic_name__ = feat_extract.num_mel_bins # hack! __magic_name__ = feat_extract.pad( __lowerCamelCase , padding="max_length" , max_length=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="np" ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def _snake_case ( self : int , __lowerCamelCase : str ) -> List[Any]: from datasets import load_dataset __magic_name__ = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __magic_name__ = ds.sort("id" ).select(range(__lowerCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _snake_case ( self : Any ) -> Dict: # fmt: off __magic_name__ = torch.tensor( [2.38_04e-03, 2.07_52e-03, 1.98_36e-03, 2.10_57e-03, 1.61_74e-03, 3.05_18e-04, 9.15_53e-05, 3.35_69e-04, 9.76_56e-04, 1.83_11e-03, 2.01_42e-03, 2.10_57e-03, 1.73_95e-03, 4.57_76e-04, -3.96_73e-04, 4.57_76e-04, 1.00_71e-03, 9.15_53e-05, 4.88_28e-04, 1.15_97e-03, 7.32_42e-04, 9.46_04e-04, 1.80_05e-03, 1.83_11e-03, 8.85_01e-04, 4.27_25e-04, 4.88_28e-04, 7.32_42e-04, 1.09_86e-03, 2.10_57e-03] ) # fmt: on __magic_name__ = self._load_datasamples(1 ) __magic_name__ = SpeechTaFeatureExtractor() __magic_name__ = feature_extractor(__lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0] , __lowerCamelCase , atol=1e-6 ) ) def _snake_case ( self : List[str] ) -> List[Any]: # fmt: off __magic_name__ = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on __magic_name__ = self._load_datasamples(1 ) __magic_name__ = SpeechTaFeatureExtractor() __magic_name__ = feature_extractor(audio_target=__lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , __lowerCamelCase , atol=1e-4 ) )
721
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class A_ : UpperCAmelCase__ = LEDConfig UpperCAmelCase__ = {} UpperCAmelCase__ = '''gelu''' def __init__( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=1_3 , __lowerCamelCase : str=7 , __lowerCamelCase : Any=True , __lowerCamelCase : int=False , __lowerCamelCase : List[Any]=9_9 , __lowerCamelCase : Any=3_2 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Dict=4 , __lowerCamelCase : int=3_7 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=2_0 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : str=1 , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : Dict=4 , ) -> Optional[Any]: __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = eos_token_id __magic_name__ = pad_token_id __magic_name__ = bos_token_id __magic_name__ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __magic_name__ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __magic_name__ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _snake_case ( self : Dict ) -> Optional[Any]: __magic_name__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __magic_name__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __magic_name__ = tf.concat([input_ids, eos_tensor] , axis=1 ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __magic_name__ = prepare_led_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __magic_name__ = tf.concat( [tf.zeros_like(__lowerCamelCase )[:, :-1], tf.ones_like(__lowerCamelCase )[:, -1:]] , axis=-1 , ) __magic_name__ = global_attention_mask return config, inputs_dict def _snake_case ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any ) -> Union[str, Any]: __magic_name__ = TFLEDModel(config=__lowerCamelCase ).get_decoder() __magic_name__ = inputs_dict["input_ids"] __magic_name__ = input_ids[:1, :] __magic_name__ = inputs_dict["attention_mask"][:1, :] __magic_name__ = 1 # first forward pass __magic_name__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) __magic_name__ , __magic_name__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __magic_name__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) __magic_name__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __magic_name__ = tf.concat([input_ids, next_tokens] , axis=-1 ) __magic_name__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __magic_name__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] __magic_name__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __magic_name__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __magic_name__ = output_from_no_past[:, -3:, random_slice_idx] __magic_name__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1e-3 ) def _lowerCAmelCase ( __lowerCamelCase:str , __lowerCamelCase:str , __lowerCamelCase:List[Any] , __lowerCamelCase:Any=None , __lowerCamelCase:Dict=None , __lowerCamelCase:List[Any]=None , __lowerCamelCase:Union[str, Any]=None , ): '''simple docstring''' if attention_mask is None: __magic_name__ = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __magic_name__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __magic_name__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __magic_name__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class A_ ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCAmelCase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCAmelCase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase__ = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def _snake_case ( self : int ) -> Optional[int]: __magic_name__ = TFLEDModelTester(self ) __magic_name__ = ConfigTester(self , config_class=__lowerCamelCase ) def _snake_case ( self : Optional[Any] ) -> Dict: self.config_tester.run_common_tests() def _snake_case ( self : Optional[int] ) -> List[Any]: __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) def _snake_case ( self : List[str] ) -> str: __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = tf.zeros_like(inputs_dict["attention_mask"] ) __magic_name__ = 2 __magic_name__ = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) __magic_name__ = True __magic_name__ = self.model_tester.seq_length __magic_name__ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__lowerCamelCase : int ): __magic_name__ = outputs.decoder_attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__lowerCamelCase : Any ): __magic_name__ = [t.numpy() for t in outputs.encoder_attentions] __magic_name__ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __magic_name__ = True __magic_name__ = False __magic_name__ = False __magic_name__ = model_class(__lowerCamelCase ) __magic_name__ = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __magic_name__ = len(__lowerCamelCase ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) if self.is_encoder_decoder: __magic_name__ = model_class(__lowerCamelCase ) __magic_name__ = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_decoder_attentions_output(__lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ = True __magic_name__ = model_class(__lowerCamelCase ) __magic_name__ = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) # Check attention is always last and order is fine __magic_name__ = True __magic_name__ = True __magic_name__ = model_class(__lowerCamelCase ) __magic_name__ = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def _snake_case ( self : Union[str, Any] ) -> List[str]: pass def _snake_case ( self : int ) -> str: # TODO: Head-masking not yet implement pass def _lowerCAmelCase ( __lowerCamelCase:Optional[int] ): '''simple docstring''' return tf.constant(__lowerCamelCase , dtype=tf.intaa ) lowercase = 1e-4 @slow @require_tf class A_ ( unittest.TestCase ): def _snake_case ( self : Optional[Any] ) -> List[str]: __magic_name__ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here __magic_name__ = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __magic_name__ = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __magic_name__ = prepare_led_inputs_dict(model.config , __lowerCamelCase , __lowerCamelCase ) __magic_name__ = model(**__lowerCamelCase )[0] __magic_name__ = (1, 1_0_2_4, 7_6_8) self.assertEqual(output.shape , __lowerCamelCase ) # change to expected output here __magic_name__ = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1e-3 ) def _snake_case ( self : Any ) -> Dict: __magic_name__ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here __magic_name__ = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __magic_name__ = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __magic_name__ = prepare_led_inputs_dict(model.config , __lowerCamelCase , __lowerCamelCase ) __magic_name__ = model(**__lowerCamelCase )[0] __magic_name__ = (1, 1_0_2_4, model.config.vocab_size) self.assertEqual(output.shape , __lowerCamelCase ) # change to expected output here __magic_name__ = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1e-3 , rtol=1e-3 )
468
0
UpperCAmelCase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): assert type(__SCREAMING_SNAKE_CASE ) in (int, float) and decimal == int(__SCREAMING_SNAKE_CASE ) lowercase = int(__SCREAMING_SNAKE_CASE ) lowercase = '' lowercase = False if decimal < 0: lowercase = True decimal *= -1 while decimal > 0: lowercase , lowercase = divmod(__SCREAMING_SNAKE_CASE , 16 ) lowercase = values[remainder] + hexadecimal lowercase = '0x' + hexadecimal if negative: lowercase = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
84
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowercase = logging.get_logger(__name__) __lowercase = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class _lowercase ( __lowerCamelCase ): _lowercase : Any = 'table-transformer' _lowercase : List[Any] = ['past_key_values'] _lowercase : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : List[Any] , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Any=3 , lowerCamelCase__ : Any=1_0_0 , lowerCamelCase__ : int=6 , lowerCamelCase__ : List[Any]=2_0_4_8 , lowerCamelCase__ : List[str]=8 , lowerCamelCase__ : int=6 , lowerCamelCase__ : List[str]=2_0_4_8 , lowerCamelCase__ : Optional[int]=8 , lowerCamelCase__ : Union[str, Any]=0.0 , lowerCamelCase__ : Any=0.0 , lowerCamelCase__ : str=True , lowerCamelCase__ : Optional[Any]="relu" , lowerCamelCase__ : Optional[int]=2_5_6 , lowerCamelCase__ : List[str]=0.1 , lowerCamelCase__ : str=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : Dict=0.02 , lowerCamelCase__ : Union[str, Any]=1.0 , lowerCamelCase__ : Union[str, Any]=False , lowerCamelCase__ : Optional[int]="sine" , lowerCamelCase__ : str="resnet50" , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Optional[Any]=False , lowerCamelCase__ : Any=1 , lowerCamelCase__ : int=5 , lowerCamelCase__ : Union[str, Any]=2 , lowerCamelCase__ : List[str]=1 , lowerCamelCase__ : Union[str, Any]=1 , lowerCamelCase__ : Optional[Any]=5 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : List[str]=0.1 , **lowerCamelCase__ : List[str] , ) -> Dict: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A_ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ = backbone_config.get('''model_type''' ) A_ = CONFIG_MAPPING[backbone_model_type] A_ = config_class.from_dict(lowerCamelCase__ ) # set timm attributes to None A_ ,A_ ,A_ = None, None, None A_ = use_timm_backbone A_ = backbone_config A_ = num_channels A_ = num_queries A_ = d_model A_ = encoder_ffn_dim A_ = encoder_layers A_ = encoder_attention_heads A_ = decoder_ffn_dim A_ = decoder_layers A_ = decoder_attention_heads A_ = dropout A_ = attention_dropout A_ = activation_dropout A_ = activation_function A_ = init_std A_ = init_xavier_std A_ = encoder_layerdrop A_ = decoder_layerdrop A_ = encoder_layers A_ = auxiliary_loss A_ = position_embedding_type A_ = backbone A_ = use_pretrained_backbone A_ = dilation # Hungarian matcher A_ = class_cost A_ = bbox_cost A_ = giou_cost # Loss coefficients A_ = mask_loss_coefficient A_ = dice_loss_coefficient A_ = bbox_loss_coefficient A_ = giou_loss_coefficient A_ = eos_coefficient super().__init__(is_encoder_decoder=lowerCamelCase__ , **lowerCamelCase__ ) @property def UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase ( self : Any ) -> int: """simple docstring""" return self.d_model class _lowercase ( __lowerCamelCase ): _lowercase : Tuple = version.parse('1.11' ) @property def UpperCamelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def UpperCamelCase ( self : List[Any] ) -> float: """simple docstring""" return 1e-5 @property def UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" return 1_2
203
0
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _snake_case = "0.12" # assumed parallelism: 8 if is_torch_available(): import torch def snake_case ( _a: Optional[int] , _a: List[Any] , _a: List[Any]=None )-> str: '''simple docstring''' if rng is None: lowerCamelCase__ = random.Random() lowerCamelCase__ = 1 for dim in shape: total_dims *= dim lowerCamelCase__ = [] for _ in range(_a ): values.append(rng.randint(0 , vocab_size - 1 ) ) lowerCamelCase__ = np.array(_a , dtype=jnp.intaa ).reshape(_a ) return output def snake_case ( _a: Optional[Any] , _a: Tuple=None )-> Optional[Any]: '''simple docstring''' lowerCamelCase__ = ids_tensor(_a , vocab_size=2 , rng=_a ) # make sure that at least one token is attended to for each batch lowerCamelCase__ = 1 return attn_mask @require_flax class _a : a_ : Optional[Any] = None a_ : List[Any] = () def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 lowerCamelCase__ = 2 lowerCamelCase__ = inputs['input_ids'].shape[-1] // 2 lowerCamelCase__ = inputs['input_ids'][:max_batch_size, :sequence_length] lowerCamelCase__ = jnp.ones_like(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens lowerCamelCase__ = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` lowerCamelCase__ = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _UpperCamelCase ( self : Any ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() lowerCamelCase__ = False lowerCamelCase__ = max_length lowerCamelCase__ = 0 for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCamelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = pt_model_class(SCREAMING_SNAKE_CASE__ ).eval() lowerCamelCase__ = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE__ , flax_model.params ) lowerCamelCase__ = flax_model.generate(SCREAMING_SNAKE_CASE__ ).sequences lowerCamelCase__ = pt_model.generate(torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: lowerCamelCase__ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() lowerCamelCase__ = False lowerCamelCase__ = max_length for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = jit(model.generate ) lowerCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() lowerCamelCase__ = True lowerCamelCase__ = max_length for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = jit(model.generate ) lowerCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() lowerCamelCase__ = False lowerCamelCase__ = max_length lowerCamelCase__ = 2 for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = jit(model.generate ) lowerCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() lowerCamelCase__ = False lowerCamelCase__ = max_length lowerCamelCase__ = 2 lowerCamelCase__ = 2 for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() lowerCamelCase__ = True lowerCamelCase__ = max_length lowerCamelCase__ = 0.8 lowerCamelCase__ = 10 lowerCamelCase__ = 0.3 lowerCamelCase__ = 1 lowerCamelCase__ = 8 lowerCamelCase__ = 9 for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = jit(model.generate ) lowerCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() lowerCamelCase__ = max_length lowerCamelCase__ = 1 lowerCamelCase__ = 8 lowerCamelCase__ = 9 for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = jit(model.generate ) lowerCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() lowerCamelCase__ = max_length lowerCamelCase__ = 2 lowerCamelCase__ = 1 lowerCamelCase__ = 8 lowerCamelCase__ = 9 for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = jit(model.generate ) lowerCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _UpperCamelCase ( self : Any ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() # pad attention mask on the left lowerCamelCase__ = attention_mask.at[(0, 0)].set(0 ) lowerCamelCase__ = False lowerCamelCase__ = max_length for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = jit(model.generate ) lowerCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _UpperCamelCase ( self : Dict ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() # pad attention mask on the left lowerCamelCase__ = attention_mask.at[(0, 0)].set(0 ) lowerCamelCase__ = True lowerCamelCase__ = max_length for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = jit(model.generate ) lowerCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._get_input_ids_and_config() # pad attention mask on the left lowerCamelCase__ = attention_mask.at[(0, 0)].set(0 ) lowerCamelCase__ = 2 lowerCamelCase__ = max_length for model_class in self.all_generative_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = jit(model.generate ) lowerCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class _a ( unittest.TestCase ): def _UpperCamelCase ( self : int ): lowerCamelCase__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) lowerCamelCase__ = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) lowerCamelCase__ = 'Hello world' lowerCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE__ , 'do_samples' ): model.generate(SCREAMING_SNAKE_CASE__ , do_samples=SCREAMING_SNAKE_CASE__ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(SCREAMING_SNAKE_CASE__ , 'foo' ): lowerCamelCase__ = {'foo': 'bar'} model.generate(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
659
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Union[PIL.Image.Image, np.ndarray] class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : PriorTransformer , SCREAMING_SNAKE_CASE__ : CLIPVisionModel , SCREAMING_SNAKE_CASE__ : CLIPImageProcessor , SCREAMING_SNAKE_CASE__ : HeunDiscreteScheduler , SCREAMING_SNAKE_CASE__ : ShapERenderer , ): super().__init__() self.register_modules( prior=SCREAMING_SNAKE_CASE__ , image_encoder=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , renderer=SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ): if latents is None: lowerCamelCase__ = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowerCamelCase__ = latents.to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = latents * scheduler.init_noise_sigma return latents def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowerCamelCase__ = torch.device(F'cuda:{gpu_id}' ) lowerCamelCase__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @property def _UpperCamelCase ( self : Dict ): if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(SCREAMING_SNAKE_CASE__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(image[0] , torch.Tensor ): lowerCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE__ , axis=0 ) if image[0].ndim == 4 else torch.stack(SCREAMING_SNAKE_CASE__ , axis=0 ) if not isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): lowerCamelCase__ = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) lowerCamelCase__ = image.to(dtype=self.image_encoder.dtype , device=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.image_encoder(SCREAMING_SNAKE_CASE__ )['last_hidden_state'] lowerCamelCase__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCamelCase__ = image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) if do_classifier_free_guidance: lowerCamelCase__ = torch.zeros_like(SCREAMING_SNAKE_CASE__ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(SCREAMING_SNAKE_CASE__ ) def __call__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[PIL.Image.Image, List[PIL.Image.Image]] , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 25 , SCREAMING_SNAKE_CASE__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : float = 4.0 , SCREAMING_SNAKE_CASE__ : int = 64 , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , ): if isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): lowerCamelCase__ = 1 elif isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): lowerCamelCase__ = image.shape[0] elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowerCamelCase__ = len(SCREAMING_SNAKE_CASE__ ) else: raise ValueError( F'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(SCREAMING_SNAKE_CASE__ )}' ) lowerCamelCase__ = self._execution_device lowerCamelCase__ = batch_size * num_images_per_prompt lowerCamelCase__ = guidance_scale > 1.0 lowerCamelCase__ = self._encode_image(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # prior self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.scheduler.timesteps lowerCamelCase__ = self.prior.config.num_embeddings lowerCamelCase__ = self.prior.config.embedding_dim lowerCamelCase__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCamelCase__ = latents.reshape(latents.shape[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE__ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase__ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.prior( SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , proj_embedding=SCREAMING_SNAKE_CASE__ , ).predicted_image_embedding # remove the variance lowerCamelCase__ , lowerCamelCase__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCamelCase__ , lowerCamelCase__ = noise_pred.chunk(2 ) lowerCamelCase__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCamelCase__ = self.scheduler.step( SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , sample=SCREAMING_SNAKE_CASE__ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = [] for i, latent in enumerate(SCREAMING_SNAKE_CASE__ ): print() lowerCamelCase__ = self.renderer.decode( latent[None, :] , SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.stack(SCREAMING_SNAKE_CASE__ ) if output_type not in ["np", "pil"]: raise ValueError(F'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowerCamelCase__ = images.cpu().numpy() if output_type == "pil": lowerCamelCase__ = [self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=SCREAMING_SNAKE_CASE__ )
659
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black UpperCAmelCase__ : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. UpperCAmelCase__ : List[str] = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class A ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) ) lowerCAmelCase__ = self.transformer_dir shutil.copy( os.path.join(__magic_name__ , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = "src/transformers" shutil.rmtree(self.transformer_dir ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Tuple=None ): """simple docstring""" lowerCAmelCase__ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCAmelCase__ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCAmelCase__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase__ = black.format_str(__magic_name__ , mode=__magic_name__ ) lowerCAmelCase__ = os.path.join(self.transformer_dir , "new_code.py" ) with open(__magic_name__ , "w" , newline="\n" ) as f: f.write(__magic_name__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__magic_name__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__magic_name__ ) with open(__magic_name__ , "r" ) as f: self.assertTrue(f.read() , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , __magic_name__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , __magic_name__ ) , ) # Copy consistency with a really long name lowerCAmelCase__ = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , f"""{long_class_name}LMPredictionHead""" , re.sub("Bert" , __magic_name__ , __magic_name__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , __magic_name__ , overwrite_result=re.sub("Bert" , "TestModel" , __magic_name__ ) , ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = check_copies.LOCALIZED_READMES["README_zh-hans.md"] lowerCAmelCase__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) lowerCAmelCase__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) lowerCAmelCase__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) lowerCAmelCase__ ,lowerCAmelCase__ = check_copies.convert_to_localized_md( __magic_name__ , __magic_name__ , localized_readme["format_model_list"] ) self.assertFalse(__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ ,lowerCAmelCase__ = check_copies.convert_to_localized_md( __magic_name__ , __magic_name__ , localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__magic_name__ ) lowerCAmelCase__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) lowerCAmelCase__ = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) lowerCAmelCase__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) lowerCAmelCase__ ,lowerCAmelCase__ = check_copies.convert_to_localized_md( __magic_name__ , __magic_name__ , localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(__magic_name__ , __magic_name__ )
48
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase = logging.getLogger(__name__) @dataclass class __lowerCamelCase : """simple docstring""" snake_case__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case__ = field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case__ = field(default=UpperCamelCase__ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowerCamelCase : """simple docstring""" snake_case__ = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) snake_case__ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _A ( ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' " --overwrite_output_dir to overcome." ) lowerCAmelCase__ = import_module("tasks" ) try: lowerCAmelCase__ = getattr(lowerCAmelCase_ , model_args.task_type ) lowerCAmelCase__ = token_classification_task_clazz() except AttributeError: raise ValueError( F'Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , lowerCAmelCase_ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowerCAmelCase__ = token_classification_task.get_labels(data_args.labels ) lowerCAmelCase__ = dict(enumerate(lowerCAmelCase_ ) ) lowerCAmelCase__ = len(lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , labelaid={label: i for i, label in enumerate(lowerCAmelCase_ )} , cache_dir=model_args.cache_dir , ) lowerCAmelCase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowerCAmelCase__ = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , ) # Get datasets lowerCAmelCase__ = ( TokenClassificationDataset( token_classification_task=lowerCAmelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , labels=lowerCAmelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCAmelCase__ = ( TokenClassificationDataset( token_classification_task=lowerCAmelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , labels=lowerCAmelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : np.ndarray ) -> Tuple[List[int], List[int]]: lowerCAmelCase__ = np.argmax(lowerCAmelCase_ , axis=2 ) lowerCAmelCase__ , lowerCAmelCase__ = preds.shape lowerCAmelCase__ = [[] for _ in range(lowerCAmelCase_ )] lowerCAmelCase__ = [[] for _ in range(lowerCAmelCase_ )] for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(lowerCAmelCase_ : EvalPrediction ) -> Dict: lowerCAmelCase__ , lowerCAmelCase__ = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(lowerCAmelCase_ , lowerCAmelCase_ ), "precision": precision_score(lowerCAmelCase_ , lowerCAmelCase_ ), "recall": recall_score(lowerCAmelCase_ , lowerCAmelCase_ ), "f1": fa_score(lowerCAmelCase_ , lowerCAmelCase_ ), } # Data collator lowerCAmelCase__ = DataCollatorWithPadding(lowerCAmelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCAmelCase__ = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=lowerCAmelCase_ , eval_dataset=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase__ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCAmelCase__ = trainer.evaluate() lowerCAmelCase__ = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , lowerCAmelCase_ , lowerCAmelCase_ ) writer.write("%s = %s\n" % (key, value) ) results.update(lowerCAmelCase_ ) # Predict if training_args.do_predict: lowerCAmelCase__ = TokenClassificationDataset( token_classification_task=lowerCAmelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , labels=lowerCAmelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = trainer.predict(lowerCAmelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = align_predictions(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = os.path.join(training_args.output_dir , "test_results.txt" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , "w" ) as writer: for key, value in metrics.items(): logger.info(" %s = %s" , lowerCAmelCase_ , lowerCAmelCase_ ) writer.write("%s = %s\n" % (key, value) ) # Save predictions lowerCAmelCase__ = os.path.join(training_args.output_dir , "test_predictions.txt" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , "w" ) as writer: with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f: token_classification_task.write_predictions_to_file(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return results def _A ( lowerCAmelCase_ : Tuple ): """simple docstring""" main() if __name__ == "__main__": main()
61
0
'''simple docstring''' import unittest from knapsack import knapsack as k class snake_case_ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self): lowerCamelCase__ = 0 lowerCamelCase__ = [0] lowerCamelCase__ = [0] lowerCamelCase__ = len(UpperCamelCase) self.assertEqual(k.knapsack(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase) , 0) lowerCamelCase__ = [60] lowerCamelCase__ = [10] lowerCamelCase__ = len(UpperCamelCase) self.assertEqual(k.knapsack(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase) , 0) def __UpperCAmelCase ( self): lowerCamelCase__ = 3 lowerCamelCase__ = [1, 2, 3] lowerCamelCase__ = [3, 2, 1] lowerCamelCase__ = len(UpperCamelCase) self.assertEqual(k.knapsack(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase) , 5) def __UpperCAmelCase ( self): lowerCamelCase__ = 50 lowerCamelCase__ = [60, 1_00, 1_20] lowerCamelCase__ = [10, 20, 30] lowerCamelCase__ = len(UpperCamelCase) self.assertEqual(k.knapsack(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase) , 2_20) if __name__ == "__main__": unittest.main()
426
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class snake_case_ ( A__ ): """simple docstring""" __lowerCAmelCase : BigBirdConfig __lowerCAmelCase : jnp.dtype =jnp.floataa __lowerCAmelCase : bool =True def __UpperCAmelCase ( self): super().setup() lowerCamelCase__ = nn.Dense(5 , dtype=self.dtype) def __call__( self , *UpperCamelCase , **UpperCamelCase): lowerCamelCase__ = super().__call__(*UpperCamelCase , **UpperCamelCase) lowerCamelCase__ = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class snake_case_ ( A__ ): """simple docstring""" __lowerCAmelCase : Optional[int] =FlaxBigBirdForNaturalQuestionsModule def lowerCAmelCase( a__ : List[str] , a__ : Dict , a__ : Optional[Any] , a__ : List[str] , a__ : str , a__ : Optional[int] ): '''simple docstring''' def cross_entropy(a__ : Union[str, Any] , a__ : Any , a__ : List[Any]=None ): lowerCamelCase__ = logits.shape[-1] lowerCamelCase__ = (labels[..., None] == jnp.arange(a__ )[None]).astype("f4" ) lowerCamelCase__ = jax.nn.log_softmax(a__ , axis=-1 ) lowerCamelCase__ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowerCamelCase__ = reduction(a__ ) return loss lowerCamelCase__ = partial(a__ , reduction=jnp.mean ) lowerCamelCase__ = cross_entropy(a__ , a__ ) lowerCamelCase__ = cross_entropy(a__ , a__ ) lowerCamelCase__ = cross_entropy(a__ , a__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class snake_case_ : """simple docstring""" __lowerCAmelCase : str ="google/bigbird-roberta-base" __lowerCAmelCase : int =3_0_0_0 __lowerCAmelCase : int =1_0_5_0_0 __lowerCAmelCase : int =1_2_8 __lowerCAmelCase : int =3 __lowerCAmelCase : int =1 __lowerCAmelCase : int =5 # tx_args __lowerCAmelCase : float =3e-5 __lowerCAmelCase : float =0.0 __lowerCAmelCase : int =2_0_0_0_0 __lowerCAmelCase : float =0.0095 __lowerCAmelCase : str ="bigbird-roberta-natural-questions" __lowerCAmelCase : str ="training-expt" __lowerCAmelCase : str ="data/nq-training.jsonl" __lowerCAmelCase : str ="data/nq-validation.jsonl" def __UpperCAmelCase ( self): os.makedirs(self.base_dir , exist_ok=UpperCamelCase) lowerCamelCase__ = os.path.join(self.base_dir , self.save_dir) lowerCamelCase__ = self.batch_size_per_device * jax.device_count() @dataclass class snake_case_ : """simple docstring""" __lowerCAmelCase : int __lowerCAmelCase : int =4_0_9_6 # no dynamic padding on TPUs def __call__( self , UpperCamelCase): lowerCamelCase__ = self.collate_fn(UpperCamelCase) lowerCamelCase__ = jax.tree_util.tree_map(UpperCamelCase , UpperCamelCase) return batch def __UpperCAmelCase ( self , UpperCamelCase): lowerCamelCase__ , lowerCamelCase__ = self.fetch_inputs(features["input_ids"]) lowerCamelCase__ = { "input_ids": jnp.array(UpperCamelCase , dtype=jnp.intaa), "attention_mask": jnp.array(UpperCamelCase , dtype=jnp.intaa), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa), } return batch def __UpperCAmelCase ( self , UpperCamelCase): lowerCamelCase__ = [self._fetch_inputs(UpperCamelCase) for ids in input_ids] return zip(*UpperCamelCase) def __UpperCAmelCase ( self , UpperCamelCase): lowerCamelCase__ = [1 for _ in range(len(UpperCamelCase))] while len(UpperCamelCase) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def lowerCAmelCase( a__ : List[Any] , a__ : Tuple , a__ : Any=None ): '''simple docstring''' if seed is not None: lowerCamelCase__ = dataset.shuffle(seed=a__ ) for i in range(len(a__ ) // batch_size ): lowerCamelCase__ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(a__ ) @partial(jax.pmap , axis_name="batch" ) def lowerCAmelCase( a__ : List[Any] , a__ : Tuple , **a__ : Union[str, Any] ): '''simple docstring''' def loss_fn(a__ : str ): lowerCamelCase__ = model_inputs.pop("start_labels" ) lowerCamelCase__ = model_inputs.pop("end_labels" ) lowerCamelCase__ = model_inputs.pop("pooled_labels" ) lowerCamelCase__ = state.apply_fn(**a__ , params=a__ , dropout_rng=a__ , train=a__ ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = outputs return state.loss_fn( a__ , a__ , a__ , a__ , a__ , a__ , ) lowerCamelCase__ , lowerCamelCase__ = jax.random.split(a__ ) lowerCamelCase__ = jax.value_and_grad(a__ ) lowerCamelCase__ , lowerCamelCase__ = grad_fn(state.params ) lowerCamelCase__ = jax.lax.pmean({"loss": loss} , axis_name="batch" ) lowerCamelCase__ = jax.lax.pmean(a__ , "batch" ) lowerCamelCase__ = state.apply_gradients(grads=a__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def lowerCAmelCase( a__ : int , **a__ : Tuple ): '''simple docstring''' lowerCamelCase__ = model_inputs.pop("start_labels" ) lowerCamelCase__ = model_inputs.pop("end_labels" ) lowerCamelCase__ = model_inputs.pop("pooled_labels" ) lowerCamelCase__ = state.apply_fn(**a__ , params=state.params , train=a__ ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = outputs lowerCamelCase__ = state.loss_fn(a__ , a__ , a__ , a__ , a__ , a__ ) lowerCamelCase__ = jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class snake_case_ ( train_state.TrainState ): """simple docstring""" __lowerCAmelCase : Callable =struct.field(pytree_node=A__ ) @dataclass class snake_case_ : """simple docstring""" __lowerCAmelCase : Args __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : wandb __lowerCAmelCase : Callable =None def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None): lowerCamelCase__ = model.params lowerCamelCase__ = TrainState.create( apply_fn=model.__call__ , params=UpperCamelCase , tx=UpperCamelCase , loss_fn=UpperCamelCase , ) if ckpt_dir is not None: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = restore_checkpoint(UpperCamelCase , UpperCamelCase) lowerCamelCase__ = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } lowerCamelCase__ , lowerCamelCase__ = build_tx(**UpperCamelCase) lowerCamelCase__ = train_state.TrainState( step=UpperCamelCase , apply_fn=model.__call__ , params=UpperCamelCase , tx=UpperCamelCase , opt_state=UpperCamelCase , ) lowerCamelCase__ = args lowerCamelCase__ = data_collator lowerCamelCase__ = lr lowerCamelCase__ = params lowerCamelCase__ = jax_utils.replicate(UpperCamelCase) return state def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = self.args lowerCamelCase__ = len(UpperCamelCase) // args.batch_size lowerCamelCase__ = jax.random.PRNGKey(0) lowerCamelCase__ = jax.random.split(UpperCamelCase , jax.device_count()) for epoch in range(args.max_epochs): lowerCamelCase__ = jnp.array(0 , dtype=jnp.floataa) lowerCamelCase__ = get_batched_dataset(UpperCamelCase , args.batch_size , seed=UpperCamelCase) lowerCamelCase__ = 0 for batch in tqdm(UpperCamelCase , total=UpperCamelCase , desc=f"""Running EPOCH-{epoch}"""): lowerCamelCase__ = self.data_collator(UpperCamelCase) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.train_step_fn(UpperCamelCase , UpperCamelCase , **UpperCamelCase) running_loss += jax_utils.unreplicate(metrics["loss"]) i += 1 if i % args.logging_steps == 0: lowerCamelCase__ = jax_utils.unreplicate(state.step) lowerCamelCase__ = running_loss.item() / i lowerCamelCase__ = self.scheduler_fn(state_step - 1) lowerCamelCase__ = self.evaluate(UpperCamelCase , UpperCamelCase) lowerCamelCase__ = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(UpperCamelCase)) self.logger.log(UpperCamelCase , commit=UpperCamelCase) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"""-e{epoch}-s{i}""" , state=UpperCamelCase) def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = get_batched_dataset(UpperCamelCase , self.args.batch_size) lowerCamelCase__ = len(UpperCamelCase) // self.args.batch_size lowerCamelCase__ = jnp.array(0 , dtype=jnp.floataa) lowerCamelCase__ = 0 for batch in tqdm(UpperCamelCase , total=UpperCamelCase , desc="Evaluating ... "): lowerCamelCase__ = self.data_collator(UpperCamelCase) lowerCamelCase__ = self.val_step_fn(UpperCamelCase , **UpperCamelCase) running_loss += jax_utils.unreplicate(metrics["loss"]) i += 1 return running_loss / i def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = jax_utils.unreplicate(UpperCamelCase) print(f"""SAVING CHECKPOINT IN {save_dir}""" , end=" ... ") self.model_save_fn(UpperCamelCase , params=state.params) with open(os.path.join(UpperCamelCase , "opt_state.msgpack") , "wb") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(UpperCamelCase , "args.joblib")) joblib.dump(self.data_collator , os.path.join(UpperCamelCase , "data_collator.joblib")) with open(os.path.join(UpperCamelCase , "training_state.json") , "w") as f: json.dump({"step": state.step.item()} , UpperCamelCase) print("DONE") def lowerCAmelCase( a__ : str , a__ : Optional[int] ): '''simple docstring''' print(f"""RESTORING CHECKPOINT FROM {save_dir}""" , end=" ... " ) with open(os.path.join(a__ , "flax_model.msgpack" ) , "rb" ) as f: lowerCamelCase__ = from_bytes(state.params , f.read() ) with open(os.path.join(a__ , "opt_state.msgpack" ) , "rb" ) as f: lowerCamelCase__ = from_bytes(state.opt_state , f.read() ) lowerCamelCase__ = joblib.load(os.path.join(a__ , "args.joblib" ) ) lowerCamelCase__ = joblib.load(os.path.join(a__ , "data_collator.joblib" ) ) with open(os.path.join(a__ , "training_state.json" ) , "r" ) as f: lowerCamelCase__ = json.load(a__ ) lowerCamelCase__ = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def lowerCAmelCase( a__ : Union[str, Any] , a__ : List[str] , a__ : Tuple , a__ : Optional[int] ): '''simple docstring''' lowerCamelCase__ = num_train_steps - warmup_steps lowerCamelCase__ = optax.linear_schedule(init_value=a__ , end_value=a__ , transition_steps=a__ ) lowerCamelCase__ = optax.linear_schedule(init_value=a__ , end_value=1E-7 , transition_steps=a__ ) lowerCamelCase__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def lowerCAmelCase( a__ : Any , a__ : Union[str, Any] , a__ : Optional[int] , a__ : List[str] , a__ : Union[str, Any] ): '''simple docstring''' def weight_decay_mask(a__ : str ): lowerCamelCase__ = traverse_util.flatten_dict(a__ ) lowerCamelCase__ = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(a__ ) lowerCamelCase__ = scheduler_fn(a__ , a__ , a__ , a__ ) lowerCamelCase__ = optax.adamw(learning_rate=a__ , weight_decay=a__ , mask=a__ ) return tx, lr
426
1
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def _UpperCAmelCase ( a__): '''simple docstring''' return {key.lstrip("""-"""): value for key, value in zip(unknown_args[::2] , unknown_args[1::2])} def _UpperCAmelCase ( ): '''simple docstring''' a_ : List[str] = ArgumentParser( """HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=a__) a_ : str = parser.add_subparsers(help="""datasets-cli command helpers""") set_verbosity_info() # Register commands ConvertCommand.register_subcommand(a__) EnvironmentCommand.register_subcommand(a__) TestCommand.register_subcommand(a__) RunBeamCommand.register_subcommand(a__) DummyDataCommand.register_subcommand(a__) # Parse args a_ , a_ : Optional[int] = parser.parse_known_args() if not hasattr(a__ , """func"""): parser.print_help() exit(1) a_ : Tuple = parse_unknown_args(a__) # Run a_ : Any = args.func(a__ , **a__) service.run() if __name__ == "__main__": main()
540
from random import randint from tempfile import TemporaryFile import numpy as np def _UpperCAmelCase ( a__ , a__ , a__): '''simple docstring''' a_ : List[Any] = 0 if start < end: a_ : Dict = randint(a__ , a__) a_ : List[str] = a[end] a_ : Tuple = a[pivot] a_ : Tuple = temp a_ , a_ : List[Any] = _in_place_partition(a__ , a__ , a__) count += _in_place_quick_sort(a__ , a__ , p - 1) count += _in_place_quick_sort(a__ , p + 1 , a__) return count def _UpperCAmelCase ( a__ , a__ , a__): '''simple docstring''' a_ : Optional[int] = 0 a_ : Union[str, Any] = randint(a__ , a__) a_ : Union[str, Any] = a[end] a_ : Any = a[pivot] a_ : Any = temp a_ : int = start - 1 for index in range(a__ , a__): count += 1 if a[index] < a[end]: # check if current val is less than pivot value a_ : str = new_pivot_index + 1 a_ : Optional[Any] = a[new_pivot_index] a_ : str = a[index] a_ : Union[str, Any] = temp a_ : Union[str, Any] = a[new_pivot_index + 1] a_ : Tuple = a[end] a_ : Any = temp return new_pivot_index + 1, count __snake_case : Union[str, Any] = TemporaryFile() __snake_case : Dict = 1_00 # 1000 elements are to be sorted __snake_case , __snake_case : int = 0, 1 # mean and standard deviation __snake_case : Tuple = np.random.normal(mu, sigma, p) np.save(outfile, X) print("""The array is""") print(X) outfile.seek(0) # using the same array __snake_case : str = np.load(outfile) __snake_case : Dict = len(M) - 1 __snake_case : Dict = _in_place_quick_sort(M, 0, r) print( """No of Comparisons for 100 elements selected from a standard normal distribution""" """is :""" ) print(z)
540
1
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' a = "owlvit_text_model" def __init__( self : List[str] , _snake_case : Optional[Any]=49408 , _snake_case : int=512 , _snake_case : List[Any]=2048 , _snake_case : Optional[int]=12 , _snake_case : Union[str, Any]=8 , _snake_case : Optional[Any]=16 , _snake_case : Tuple="quick_gelu" , _snake_case : Optional[Any]=1e-5 , _snake_case : Any=0.0 , _snake_case : List[str]=0.02 , _snake_case : List[str]=1.0 , _snake_case : Optional[Any]=0 , _snake_case : Tuple=49406 , _snake_case : Union[str, Any]=49407 , **_snake_case : Optional[Any] , ) -> Tuple: super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = initializer_factor @classmethod def lowerCAmelCase_ ( cls : Tuple , _snake_case : Union[str, os.PathLike] , **_snake_case : Optional[int] ) -> "PretrainedConfig": cls._set_token_in_kwargs(_snake_case ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = cls.get_config_dict(_snake_case , **_snake_case ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": SCREAMING_SNAKE_CASE__ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_snake_case , **_snake_case ) class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' a = "owlvit_vision_model" def __init__( self : Any , _snake_case : List[Any]=768 , _snake_case : Optional[Any]=3072 , _snake_case : List[str]=12 , _snake_case : Tuple=12 , _snake_case : int=3 , _snake_case : Dict=768 , _snake_case : Optional[int]=32 , _snake_case : Optional[Any]="quick_gelu" , _snake_case : Union[str, Any]=1e-5 , _snake_case : Optional[Any]=0.0 , _snake_case : Optional[int]=0.02 , _snake_case : Optional[int]=1.0 , **_snake_case : Any , ) -> Optional[int]: super().__init__(**_snake_case ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = initializer_factor @classmethod def lowerCAmelCase_ ( cls : Dict , _snake_case : Union[str, os.PathLike] , **_snake_case : int ) -> "PretrainedConfig": cls._set_token_in_kwargs(_snake_case ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = cls.get_config_dict(_snake_case , **_snake_case ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": SCREAMING_SNAKE_CASE__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_snake_case , **_snake_case ) class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' a = "owlvit" a = True def __init__( self : Tuple , _snake_case : str=None , _snake_case : List[Any]=None , _snake_case : List[Any]=512 , _snake_case : Dict=2.6592 , _snake_case : int=True , **_snake_case : List[Any] , ) -> str: super().__init__(**_snake_case ) if text_config is None: SCREAMING_SNAKE_CASE__ = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE__ = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) SCREAMING_SNAKE_CASE__ = OwlViTTextConfig(**_snake_case ) SCREAMING_SNAKE_CASE__ = OwlViTVisionConfig(**_snake_case ) SCREAMING_SNAKE_CASE__ = projection_dim SCREAMING_SNAKE_CASE__ = logit_scale_init_value SCREAMING_SNAKE_CASE__ = return_dict SCREAMING_SNAKE_CASE__ = 1.0 @classmethod def lowerCAmelCase_ ( cls : Optional[int] , _snake_case : Union[str, os.PathLike] , **_snake_case : str ) -> "PretrainedConfig": cls._set_token_in_kwargs(_snake_case ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = cls.get_config_dict(_snake_case , **_snake_case ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_snake_case , **_snake_case ) @classmethod def lowerCAmelCase_ ( cls : str , _snake_case : Dict , _snake_case : Dict , **_snake_case : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = text_config SCREAMING_SNAKE_CASE__ = vision_config return cls.from_dict(_snake_case , **_snake_case ) def lowerCAmelCase_ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.text_config.to_dict() SCREAMING_SNAKE_CASE__ = self.vision_config.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowerCAmelCase_ ( self : int ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def lowerCAmelCase_ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def lowerCAmelCase_ ( self : List[str] ) -> float: return 1e-4 def lowerCAmelCase_ ( self : Optional[Any] , _snake_case : "ProcessorMixin" , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : Optional["TensorType"] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE__ = super().generate_dummy_inputs( processor.tokenizer , batch_size=_snake_case , seq_length=_snake_case , framework=_snake_case ) SCREAMING_SNAKE_CASE__ = super().generate_dummy_inputs( processor.image_processor , batch_size=_snake_case , framework=_snake_case ) return {**text_input_dict, **image_input_dict} @property def lowerCAmelCase_ ( self : str ) -> int: return 14
538
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME _A = ['small', 'medium', 'large'] _A = 'lm_head.decoder.weight' _A = 'lm_head.weight' def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE__ = torch.load(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = d.pop(__UpperCAmelCase ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) torch.save(__UpperCAmelCase , os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) _A = parser.parse_args() for MODEL in DIALOGPT_MODELS: _A = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl') _A = F'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
538
1
'''simple docstring''' class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = val __A : Tuple = None __A : Any = None def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if self.val: if val < self.val: if self.left is None: __A : Union[str, Any] = Node(_UpperCAmelCase) else: self.left.insert(_UpperCAmelCase) elif val > self.val: if self.right is None: __A : Dict = Node(_UpperCAmelCase) else: self.right.insert(_UpperCAmelCase) else: __A : str = val def _lowerCAmelCase ( __snake_case : Tuple , __snake_case : int ) -> Union[str, Any]: # Recursive traversal if root: inorder(root.left , __snake_case ) res.append(root.val ) inorder(root.right , __snake_case ) def _lowerCAmelCase ( __snake_case : List[str] ) -> Union[str, Any]: # Build BST if len(__snake_case ) == 0: return arr __A : List[str] = Node(arr[0] ) for i in range(1 , len(__snake_case ) ): root.insert(arr[i] ) # Traverse BST in order. __A : Tuple = [] inorder(__snake_case , __snake_case ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
8
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowerCAmelCase_ = logging.get_logger(__name__) class _snake_case ( __snake_case ): """simple docstring""" a = "vision-encoder-decoder" a = True def __init__( self : str , **_A : str): """simple docstring""" super().__init__(**_A) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""") _SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop("""encoder""") _SCREAMING_SNAKE_CASE : Optional[int] = encoder_config.pop("""model_type""") _SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("""decoder""") _SCREAMING_SNAKE_CASE : Tuple = decoder_config.pop("""model_type""") _SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.for_model(_A , **_A) _SCREAMING_SNAKE_CASE : Union[str, Any] = AutoConfig.for_model(_A , **_A) _SCREAMING_SNAKE_CASE : Any = True @classmethod def _lowerCAmelCase ( cls : Union[str, Any] , _A : PretrainedConfig , _A : PretrainedConfig , **_A : Optional[int]): """simple docstring""" logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""") _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Optional[int] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_A) def _lowerCAmelCase ( self : List[Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : int = copy.deepcopy(self.__dict__) _SCREAMING_SNAKE_CASE : Dict = self.encoder.to_dict() _SCREAMING_SNAKE_CASE : List[Any] = self.decoder.to_dict() _SCREAMING_SNAKE_CASE : List[Any] = self.__class__.model_type return output class _snake_case ( __snake_case ): """simple docstring""" a = version.parse("1.11" ) @property def _lowerCAmelCase ( self : List[Any]): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _lowerCAmelCase ( self : List[Any]): """simple docstring""" return 1e-4 @property def _lowerCAmelCase ( self : Tuple): """simple docstring""" return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}}) class _snake_case ( __snake_case ): """simple docstring""" @property def _lowerCAmelCase ( self : Dict): """simple docstring""" _SCREAMING_SNAKE_CASE : int = OrderedDict() _SCREAMING_SNAKE_CASE : Optional[int] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _SCREAMING_SNAKE_CASE : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _SCREAMING_SNAKE_CASE : Optional[int] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def _lowerCAmelCase ( self : Dict , _A : "PreTrainedTokenizerBase" , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional["TensorType"] = None , ): """simple docstring""" import torch _SCREAMING_SNAKE_CASE : List[Any] = OrderedDict() _SCREAMING_SNAKE_CASE : Any = super().generate_dummy_inputs( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = dummy_input["""input_ids"""].shape _SCREAMING_SNAKE_CASE : str = (batch, encoder_sequence, self._config.encoder_hidden_size) _SCREAMING_SNAKE_CASE : Any = dummy_input.pop("""input_ids""") _SCREAMING_SNAKE_CASE : Optional[int] = dummy_input.pop("""attention_mask""") _SCREAMING_SNAKE_CASE : str = torch.zeros(_A) return common_inputs class _snake_case ( __snake_case ): """simple docstring""" @property def _lowerCAmelCase ( self : Optional[Any]): """simple docstring""" pass def _lowerCAmelCase ( self : Any , _A : PretrainedConfig): """simple docstring""" return VisionEncoderDecoderEncoderOnnxConfig(_A) def _lowerCAmelCase ( self : List[Any] , _A : PretrainedConfig , _A : PretrainedConfig , _A : str = "default"): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_A , _A)
338
0
'''simple docstring''' from __future__ import annotations def _snake_case ( A_ : int | str ): """simple docstring""" a_ : List[str] = str(A_ ) return n == n[::-1] def _snake_case ( A_ : int = 100_0000 ): """simple docstring""" a_ : Tuple = 0 for i in range(1 , A_ ): if is_palindrome(A_ ) and is_palindrome(bin(A_ ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
460
'''simple docstring''' from math import factorial __snake_case: List[Any] = {str(d): factorial(d) for d in range(10)} def _snake_case ( A_ : int ): """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(A_ ) ) def _snake_case ( ): """simple docstring""" a_ : Union[str, Any] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , A_ ) if sum_of_digit_factorial(A_ ) == i ) if __name__ == "__main__": print(F"""{solution() = }""")
460
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def A ( UpperCamelCase_ : Union[str, Any] ) -> str: '''simple docstring''' lowerCAmelCase__ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCAmelCase__ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCAmelCase__ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCAmelCase__ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCAmelCase__ = [3, 3, 3, 3] lowerCAmelCase__ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCAmelCase__ = [4, 4, 4, 4] lowerCAmelCase__ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCAmelCase__ = [3, 3, 3, 3] if "lrf" in model_name: lowerCAmelCase__ = [3, 3, 3, 3] else: lowerCAmelCase__ = [2, 2, 2, 2] if "tiny" in model_name: lowerCAmelCase__ = 96 elif "small" in model_name: lowerCAmelCase__ = 96 elif "base" in model_name: lowerCAmelCase__ = 1_28 elif "large" in model_name: lowerCAmelCase__ = 1_92 elif "xlarge" in model_name: lowerCAmelCase__ = 2_56 elif "huge" in model_name: lowerCAmelCase__ = 3_52 # set label information lowerCAmelCase__ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCAmelCase__ = '''imagenet-22k-id2label.json''' else: lowerCAmelCase__ = '''imagenet-1k-id2label.json''' lowerCAmelCase__ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) lowerCAmelCase__ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowerCAmelCase__ = {v: k for k, v in idalabel.items()} lowerCAmelCase__ = FocalNetConfig( embed_dim=lowerCAmelCase__ , depths=lowerCAmelCase__ , focal_levels=lowerCAmelCase__ , focal_windows=lowerCAmelCase__ , use_conv_embed=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ , use_post_layernorm=lowerCAmelCase__ , use_layerscale=lowerCAmelCase__ , ) return config def A ( UpperCamelCase_ : str ) -> str: '''simple docstring''' if "patch_embed.proj" in name: lowerCAmelCase__ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowerCAmelCase__ = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: lowerCAmelCase__ = '''encoder.''' + name if "encoder.layers" in name: lowerCAmelCase__ = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: lowerCAmelCase__ = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: lowerCAmelCase__ = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCAmelCase__ = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCAmelCase__ = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCAmelCase__ = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": lowerCAmelCase__ = '''layernorm.weight''' if name == "norm.bias": lowerCAmelCase__ = '''layernorm.bias''' if "head" in name: lowerCAmelCase__ = name.replace("head" , "classifier" ) else: lowerCAmelCase__ = '''focalnet.''' + name return name def A ( UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict=False ) -> int: '''simple docstring''' lowerCAmelCase__ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCAmelCase__ = model_name_to_url[model_name] print("Checkpoint URL: " , lowerCAmelCase__ ) lowerCAmelCase__ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="cpu" )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCAmelCase__ = state_dict.pop(lowerCAmelCase__ ) lowerCAmelCase__ = val lowerCAmelCase__ = get_focalnet_config(lowerCAmelCase__ ) lowerCAmelCase__ = FocalNetForImageClassification(lowerCAmelCase__ ) model.eval() # load state dict model.load_state_dict(lowerCAmelCase__ ) # verify conversion lowerCAmelCase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase__ = BitImageProcessor( do_resize=lowerCAmelCase__ , size={"shortest_edge": 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase__ , crop_size=2_24 , do_normalize=lowerCAmelCase__ , image_mean=lowerCAmelCase__ , image_std=lowerCAmelCase__ , ) lowerCAmelCase__ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) lowerCAmelCase__ = processor(images=lowerCAmelCase__ , return_tensors="pt" ) lowerCAmelCase__ = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCAmelCase__ = image_transforms(lowerCAmelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , lowerCAmelCase__ , atol=1E-4 ) lowerCAmelCase__ = model(**lowerCAmelCase__ ) lowerCAmelCase__ = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCAmelCase__ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": lowerCAmelCase__ = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": lowerCAmelCase__ = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": lowerCAmelCase__ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": lowerCAmelCase__ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": lowerCAmelCase__ = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) UpperCAmelCase__ : int = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
48
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __UpperCamelCase ( lowerCAmelCase__ : List[str] ): __a : Any = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class UpperCamelCase__ ( __lowercase ,__lowercase ,__lowercase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = StableDiffusionLatentUpscalePipeline _SCREAMING_SNAKE_CASE : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } _SCREAMING_SNAKE_CASE : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} _SCREAMING_SNAKE_CASE : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _SCREAMING_SNAKE_CASE : Union[str, Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _SCREAMING_SNAKE_CASE : Optional[int] = frozenset([] ) _SCREAMING_SNAKE_CASE : Optional[int] = True @property def lowerCAmelCase (self : Optional[int] ): __a : Union[str, Any] = 1 __a : Dict = 4 __a : int = (1_6, 1_6) __a : Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case_ ) return image def lowerCAmelCase (self : int ): torch.manual_seed(0 ) __a : Dict = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=snake_case_ , block_out_channels=[3_2, 3_2, 6_4, 6_4] , time_cond_proj_dim=1_6_0 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=3_2 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=snake_case_ , only_cross_attention=snake_case_ , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) __a : Optional[int] = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4, 6_4] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) __a : Dict = EulerDiscreteScheduler(prediction_type='''sample''' ) __a : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''quick_gelu''' , projection_dim=5_1_2 , ) __a : int = CLIPTextModel(snake_case_ ) __a : Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a : Tuple = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def lowerCAmelCase (self : List[str] , snake_case_ : Tuple , snake_case_ : List[Any]=0 ): if str(snake_case_ ).startswith('''mps''' ): __a : Any = torch.manual_seed(snake_case_ ) else: __a : Optional[Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) __a : Tuple = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase (self : Tuple ): __a : Optional[int] = '''cpu''' __a : Union[str, Any] = self.get_dummy_components() __a : Any = self.pipeline_class(**snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __a : int = self.get_dummy_inputs(snake_case_ ) __a : Dict = pipe(**snake_case_ ).images __a : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_5_6, 2_5_6, 3) ) __a : List[str] = np.array( [0.4722_2412, 0.4192_1633, 0.4471_7434, 0.4687_4192, 0.4258_8258, 0.4615_0726, 0.467_7534, 0.4558_3832, 0.4857_9055] ) __a : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case_ , 1E-3 ) def lowerCAmelCase (self : Tuple ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def lowerCAmelCase (self : Any ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def lowerCAmelCase (self : Optional[Any] ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCAmelCase (self : Optional[Any] ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def lowerCAmelCase (self : List[str] ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def lowerCAmelCase (self : Tuple ): super().test_save_load_local(expected_max_difference=3E-3 ) def lowerCAmelCase (self : Optional[int] ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowerCAmelCase (self : Union[str, Any] ): __a : List[Any] = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] __a : List[str] = self.get_dummy_components() __a : List[Any] = self.pipeline_class(**snake_case_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __a : Optional[Any] = self.get_dummy_inputs(snake_case_ ) __a : List[Any] = 2 __a : str = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __a : Union[str, Any] = getattr(snake_case_ , scheduler_enum.name ) __a : Any = scheduler_cls.from_config(pipe.scheduler.config ) __a : Any = pipe(**snake_case_ )[0] outputs.append(snake_case_ ) assert check_same_shape(snake_case_ ) @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase ): def lowerCAmelCase (self : Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase (self : Union[str, Any] ): __a : Union[str, Any] = torch.manual_seed(3_3 ) __a : List[Any] = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) __a : str = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) __a : int = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' __a : Dict = pipe(snake_case_ , generator=snake_case_ , output_type='''latent''' ).images __a : Any = upscaler( prompt=snake_case_ , image=snake_case_ , num_inference_steps=2_0 , guidance_scale=0 , generator=snake_case_ , output_type='''np''' , ).images[0] __a : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def lowerCAmelCase (self : List[Any] ): __a : int = torch.manual_seed(3_3 ) __a : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) __a : Optional[int] = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' __a : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) __a : Any = upscaler( prompt=snake_case_ , image=snake_case_ , num_inference_steps=2_0 , guidance_scale=0 , generator=snake_case_ , output_type='''np''' , ).images[0] __a : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-2
521
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) UpperCAmelCase = logging.getLogger() def A_ ( ): """simple docstring""" a__ = argparse.ArgumentParser() parser.add_argument("""-f""" ) a__ = parser.parse_args() return args.f class __snake_case ( SCREAMING_SNAKE_CASE): '''simple docstring''' def _a ( self ): a__ = logging.StreamHandler(sys.stdout ) logger.addHandler(a_ ) def _a ( self , a_ ): a__ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(a_ , """argv""" , a_ ): a__ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(a_ , 0.666 ) @slow @require_torch_non_multi_gpu def _a ( self ): a__ = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(a_ ) a__ = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(a_ ) a__ = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(a_ )
706
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"""vocab_file""": """spiece.model"""} UpperCAmelCase = { """vocab_file""": { """bert_for_seq_generation""": ( """https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model""" ), } } UpperCAmelCase = {"""bert_for_seq_generation""": 512} class __snake_case ( SCREAMING_SNAKE_CASE): '''simple docstring''' UpperCamelCase__ : Optional[Any] = VOCAB_FILES_NAMES UpperCamelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : List[int] = [] UpperCamelCase__ : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , a_ , a_="<s>" , a_="</s>" , a_="<unk>" , a_="<pad>" , a_="<::::>" , a_ = None , **a_ , ): a__ = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=a_ , eos_token=a_ , unk_token=a_ , pad_token=a_ , sep_token=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) a__ = vocab_file a__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) @property def _a ( self ): return self.sp_model.get_piece_size() def _a ( self ): a__ = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): a__ = self.__dict__.copy() a__ = None return state def __setstate__( self , a_ ): a__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): a__ = {} a__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , a_ ): return self.sp_model.encode(a_ , out_type=a_ ) def _a ( self , a_ ): return self.sp_model.piece_to_id(a_ ) def _a ( self , a_ ): a__ = self.sp_model.IdToPiece(a_ ) return token def _a ( self , a_ ): a__ = [] a__ = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a_ ) + token a__ = [] else: current_sub_tokens.append(a_ ) out_string += self.sp_model.decode(a_ ) return out_string.strip() def _a ( self , a_ , a_ = None ): if not os.path.isdir(a_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a__ = os.path.join( a_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , """wb""" ) as fi: a__ = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
351
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp _snake_case = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } _snake_case = { '''RUCAIBox/mvp''': 10_24, } class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Optional[int] = VOCAB_FILES_NAMES __A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Dict = ["input_ids", "attention_mask"] __A : List[str] = MvpTokenizer def __init__( self , __A=None , __A=None , __A=None , __A="replace" , __A="<s>" , __A="</s>" , __A="</s>" , __A="<s>" , __A="<unk>" , __A="<pad>" , __A="<mask>" , __A=False , __A=True , **__A , ): """simple docstring""" super().__init__( __A , __A , tokenizer_file=__A , errors=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , trim_offsets=__A , **__A , ) lowerCamelCase : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __A ) != add_prefix_space: lowerCamelCase : Optional[Any] = getattr(__A , pre_tok_state.pop("type" ) ) lowerCamelCase : List[str] = add_prefix_space lowerCamelCase : Dict = pre_tok_class(**__A ) lowerCamelCase : Optional[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCamelCase : Dict = "post_processor" lowerCamelCase : Tuple = getattr(self.backend_tokenizer , __A , __A ) if tokenizer_component_instance: lowerCamelCase : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCamelCase : Optional[Any] = tuple(state["sep"] ) if "cls" in state: lowerCamelCase : Dict = tuple(state["cls"] ) lowerCamelCase : str = False if state.get("add_prefix_space" , __A ) != add_prefix_space: lowerCamelCase : Tuple = add_prefix_space lowerCamelCase : int = True if state.get("trim_offsets" , __A ) != trim_offsets: lowerCamelCase : int = trim_offsets lowerCamelCase : Dict = True if changes_to_apply: lowerCamelCase : Union[str, Any] = getattr(__A , state.pop("type" ) ) lowerCamelCase : List[str] = component_class(**__A ) setattr(self.backend_tokenizer , __A , __A ) @property def _snake_case ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : int = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else value lowerCamelCase : List[str] = value def _snake_case ( self , *__A , **__A ): """simple docstring""" lowerCamelCase : str = kwargs.get("is_split_into_words" , __A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A , **__A ) def _snake_case ( self , *__A , **__A ): """simple docstring""" lowerCamelCase : List[Any] = kwargs.get("is_split_into_words" , __A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__A , **__A ) def _snake_case ( self , __A , __A = None ): """simple docstring""" lowerCamelCase : Dict = self._tokenizer.model.save(__A , name=__A ) return tuple(__A ) def _snake_case ( self , __A , __A=None ): """simple docstring""" lowerCamelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _snake_case ( self , __A , __A = None ): """simple docstring""" lowerCamelCase : int = [self.sep_token_id] lowerCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
340
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available('''google.colab''') except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __A = None , __A = [] ): """simple docstring""" lowerCamelCase : Any = 0 lowerCamelCase : Optional[int] = choices lowerCamelCase : Optional[int] = prompt if sys.platform == "win32": lowerCamelCase : Any = "*" else: lowerCamelCase : Union[str, Any] = "➔ " def _snake_case ( self , __A , __A = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 32 , __A ) else: forceWrite(self.choices[index] , __A ) def _snake_case ( self , __A ): """simple docstring""" if index == self.position: forceWrite(F""" {self.arrow_char} """ ) self.write_choice(__A ) else: forceWrite(F""" {self.choices[index]}""" ) reset_cursor() def _snake_case ( self , __A , __A = 1 ): """simple docstring""" lowerCamelCase : Optional[Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__A ) move_cursor(__A , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def _snake_case ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def _snake_case ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def _snake_case ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , "DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def _snake_case ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , "DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__A )] for number in range(10 )] ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = int(chr(self.current_selection ) ) lowerCamelCase : Union[str, Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , __A ) else: return else: return def _snake_case ( self , __A = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , "\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" , "\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n" ) lowerCamelCase : Any = default_choice for i in range(len(self.choices ) ): self.print_choice(__A ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position , "UP" ) with cursor.hide(): while True: if in_colab: try: lowerCamelCase : str = int(builtins.input() ) except ValueError: lowerCamelCase : Optional[Any] = default_choice else: lowerCamelCase : Optional[Any] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , "UP" ) clear_line() self.write_choice(__A , "\n" ) return choice
340
1
import math def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(__magic_name__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _SCREAMING_SNAKE_CASE : int = 'Enter the base and the power separated by a comma: ' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Tuple = map(int, input(prompt).split(',')) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _SCREAMING_SNAKE_CASE : List[Any] = res(xa, ya) _SCREAMING_SNAKE_CASE : List[str] = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
206
def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): return abs(__magic_name__ ) if a == 0 else greatest_common_divisor(b % a , __magic_name__ ) def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): while y: # --> when y=0 then loop will terminate and return x as final GCD. _lowercase , _lowercase: Any = y, x % y return abs(__magic_name__ ) def __lowerCAmelCase ( ): try: _lowercase: Optional[int] = input("Enter two integers separated by comma (,): " ).split("," ) _lowercase: Any = int(nums[0] ) _lowercase: int = int(nums[1] ) print( f"greatest_common_divisor({num_a}, {num_a}) = " f"{greatest_common_divisor(__magic_name__ , __magic_name__ )}" ) print(f"By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__magic_name__ , __magic_name__ )}" ) except (IndexError, UnboundLocalError, ValueError): print("Wrong input" ) if __name__ == "__main__": main()
206
1
'''simple docstring''' from timeit import timeit lowercase : str = { '''MALAYALAM''': True, '''String''': False, '''rotor''': True, '''level''': True, '''A''': True, '''BB''': True, '''ABC''': False, '''amanaplanacanalpanama''': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def __a ( A__ ) -> bool: lowerCAmelCase = 0 lowerCAmelCase = len(_lowercase ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def __a ( A__ ) -> bool: lowerCAmelCase = len(_lowercase ) // 2 lowerCAmelCase = len(_lowercase ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(_lowercase ) ) def __a ( A__ ) -> bool: if len(_lowercase ) <= 2: return True if s[0] == s[len(_lowercase ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def __a ( A__ ) -> bool: return s == s[::-1] def __a ( A__ ) -> None: lowerCAmelCase = f"all({name}(key) is value for key, value in test_data.items())" lowerCAmelCase = f"from __main__ import test_data, {name}" lowerCAmelCase = 50_0000 lowerCAmelCase = timeit(stmt=_lowercase , setup=_lowercase , number=_lowercase ) print(f"{name:<35} finished {number:,} runs in {result:.5f} seconds" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"{key:21} {value}") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
649
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __lowercase ( unittest.TestCase ): def __init__(self , A , A=7 , A=3 , A=3_0 , A=4_0_0 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , A=True , A=1 / 2_5_5 , A=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCamelCase_ : int = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} lowerCamelCase_ : Any = parent lowerCamelCase_ : Tuple = batch_size lowerCamelCase_ : Union[str, Any] = num_channels lowerCamelCase_ : List[str] = min_resolution lowerCamelCase_ : List[Any] = max_resolution lowerCamelCase_ : Tuple = do_resize lowerCamelCase_ : Dict = size lowerCamelCase_ : Optional[int] = do_normalize lowerCamelCase_ : Union[str, Any] = image_mean lowerCamelCase_ : str = image_std lowerCamelCase_ : List[Any] = do_rescale lowerCamelCase_ : str = rescale_factor lowerCamelCase_ : Optional[int] = do_pad def UpperCAmelCase__ (self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ (self , A , A=False ): if not batched: lowerCamelCase_ : Any = image_inputs[0] if isinstance(A , Image.Image ): lowerCamelCase_, lowerCamelCase_ : int = image.size else: lowerCamelCase_, lowerCamelCase_ : Any = image.shape[1], image.shape[2] if w < h: lowerCamelCase_ : str = int(self.size['''shortest_edge'''] * h / w ) lowerCamelCase_ : Optional[Any] = self.size['''shortest_edge'''] elif w > h: lowerCamelCase_ : Union[str, Any] = self.size['''shortest_edge'''] lowerCamelCase_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: lowerCamelCase_ : Any = self.size['''shortest_edge'''] lowerCamelCase_ : Tuple = self.size['''shortest_edge'''] else: lowerCamelCase_ : Optional[Any] = [] for image in image_inputs: lowerCamelCase_, lowerCamelCase_ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase_ : Dict = max(A , key=lambda A : item[0] )[0] lowerCamelCase_ : int = max(A , key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = DetaImageProcessor if is_vision_available() else None def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = DetaImageProcessingTester(self ) @property def UpperCAmelCase__ (self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''do_rescale''' ) ) self.assertTrue(hasattr(A , '''do_pad''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , A ) def UpperCAmelCase__ (self ): pass def UpperCAmelCase__ (self ): # Initialize image_processing lowerCamelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input lowerCamelCase_ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : Optional[Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_, lowerCamelCase_ : Any = self.image_processor_tester.get_expected_values(A , batched=A ) lowerCamelCase_ : Tuple = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ (self ): # Initialize image_processing lowerCamelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input lowerCamelCase_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ : List[str] = image_processing(A , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : Dict = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ (self ): # Initialize image_processing lowerCamelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input lowerCamelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : Any = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ : Optional[Any] = image_processing(A , return_tensors='''pt''' ).pixel_values lowerCamelCase_, lowerCamelCase_ : List[Any] = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase__ (self ): # prepare image and target lowerCamelCase_ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowerCamelCase_ : Any = json.loads(f.read() ) lowerCamelCase_ : str = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them lowerCamelCase_ : Optional[Any] = DetaImageProcessor() lowerCamelCase_ : Optional[int] = image_processing(images=A , annotations=A , return_tensors='''pt''' ) # verify pixel values lowerCamelCase_ : Dict = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , A ) lowerCamelCase_ : Dict = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A , atol=1E-4 ) ) # verify area lowerCamelCase_ : Dict = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A ) ) # verify boxes lowerCamelCase_ : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A ) lowerCamelCase_ : int = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A , atol=1E-3 ) ) # verify image_id lowerCamelCase_ : int = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A ) ) # verify is_crowd lowerCamelCase_ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A ) ) # verify class_labels lowerCamelCase_ : List[str] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A ) ) # verify orig_size lowerCamelCase_ : Optional[int] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A ) ) # verify size lowerCamelCase_ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A ) ) @slow def UpperCAmelCase__ (self ): # prepare image, target and masks_path lowerCamelCase_ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowerCamelCase_ : Tuple = json.loads(f.read() ) lowerCamelCase_ : Tuple = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} lowerCamelCase_ : List[str] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowerCamelCase_ : Any = DetaImageProcessor(format='''coco_panoptic''' ) lowerCamelCase_ : Dict = image_processing(images=A , annotations=A , masks_path=A , return_tensors='''pt''' ) # verify pixel values lowerCamelCase_ : Dict = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , A ) lowerCamelCase_ : Dict = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A , atol=1E-4 ) ) # verify area lowerCamelCase_ : Tuple = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A ) ) # verify boxes lowerCamelCase_ : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A ) lowerCamelCase_ : int = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A , atol=1E-3 ) ) # verify image_id lowerCamelCase_ : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A ) ) # verify is_crowd lowerCamelCase_ : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A ) ) # verify class_labels lowerCamelCase_ : Dict = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A ) ) # verify masks lowerCamelCase_ : Tuple = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A ) # verify orig_size lowerCamelCase_ : Any = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A ) ) # verify size lowerCamelCase_ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A ) )
422
0
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowercase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCamelCase (_UpperCAmelCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> Dict: '''simple docstring''' super().__init__() if hasattr(scheduler.config , """steps_offset""" ) and scheduler.config.steps_offset != 1: lowercase = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ """to update the config accordingly as leaving `steps_offset` might led to incorrect results""" """ in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,""" """ it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`""" """ file""" ) deprecate("""steps_offset!=1""" , """1.0.0""" , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) lowercase = dict(scheduler.config ) lowercase = 1 lowercase = FrozenDict(_lowerCAmelCase ) if hasattr(scheduler.config , """skip_prk_steps""" ) and scheduler.config.skip_prk_steps is False: lowercase = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" """ `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make""" """ sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to""" """ incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face""" """ Hub, it would be very nice if you could open a Pull request for the""" """ `scheduler/scheduler_config.json` file""" ) deprecate("""skip_prk_steps not set""" , """1.0.0""" , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) lowercase = dict(scheduler.config ) lowercase = True lowercase = FrozenDict(_lowerCAmelCase ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( segmentation_model=_lowerCAmelCase , segmentation_processor=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , ) def _a ( self , _lowerCAmelCase = "auto" ) -> Optional[int]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' self.enable_attention_slicing(_lowerCAmelCase ) def _a ( self ) -> Tuple: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowercase = torch.device("""cuda""" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_lowerCAmelCase , _lowerCAmelCase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _a ( self ) -> Optional[Any]: '''simple docstring''' if self.device != torch.device("""meta""" ) or not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCAmelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 512 , _lowerCAmelCase = 512 , _lowerCAmelCase = 50 , _lowerCAmelCase = 7.5 , _lowerCAmelCase = None , _lowerCAmelCase = 1 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = "pil" , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = 1 , **_lowerCAmelCase , ) -> Dict: '''simple docstring''' lowercase = self.segmentation_processor( text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""" ).to(self.device ) lowercase = self.segmentation_model(**_lowerCAmelCase ) lowercase = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowercase = self.numpy_to_pil(_lowerCAmelCase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowercase = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_lowerCAmelCase , image=_lowerCAmelCase , mask_image=_lowerCAmelCase , height=_lowerCAmelCase , width=_lowerCAmelCase , num_inference_steps=_lowerCAmelCase , guidance_scale=_lowerCAmelCase , negative_prompt=_lowerCAmelCase , num_images_per_prompt=_lowerCAmelCase , eta=_lowerCAmelCase , generator=_lowerCAmelCase , latents=_lowerCAmelCase , output_type=_lowerCAmelCase , return_dict=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=_lowerCAmelCase , )
653
'''simple docstring''' import os def SCREAMING_SNAKE_CASE ( ): lowercase = os.path.join(os.path.dirname(lowercase_ ) , """num.txt""" ) with open(lowercase_ ) as file_hand: return str(sum(int(lowercase_ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
653
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __UpperCAmelCase : Optional[Any] = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class __lowerCAmelCase (lowerCamelCase__ ): '''simple docstring''' a__ = 'facebook/nllb-200-distilled-600M' a__ = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) a__ = 'translator' a__ = AutoTokenizer a__ = AutoModelForSeqaSeqLM a__ = LANGUAGE_CODES a__ = ['text', 'text', 'text'] a__ = ['text'] def _a ( self , a , a , a ): """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) snake_case_ :int = self.lang_to_code[src_lang] snake_case_ :Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __UpperCamelCase , return_tensors="pt" , src_lang=__UpperCamelCase , tgt_lang=__UpperCamelCase ) def _a ( self , a ): """simple docstring""" return self.model.generate(**__UpperCamelCase ) def _a ( self , a ): """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__UpperCamelCase )
584
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase : List[str] = tempfile.mkdtemp() __UpperCamelCase : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] __UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __UpperCamelCase : Optional[Any] = { "do_resize": True, "size": {"height": 2_24, "width": 2_24}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], "do_convert_rgb": True, } __UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , __UpperCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self , **__UpperCamelCase ) -> Dict: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __lowerCamelCase ( self , **__UpperCamelCase ) -> Any: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __lowerCamelCase ( self , **__UpperCamelCase ) -> Dict: '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __lowerCamelCase ( self ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' __UpperCamelCase : Optional[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __UpperCamelCase : Dict = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' __UpperCamelCase : str = self.get_tokenizer() __UpperCamelCase : Union[str, Any] = self.get_rust_tokenizer() __UpperCamelCase : Any = self.get_image_processor() __UpperCamelCase : str = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) __UpperCamelCase : Optional[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCamelCase ) __UpperCamelCase : Union[str, Any] = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) __UpperCamelCase : Tuple = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer , __UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor , __UpperCamelCase ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Any = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase : Optional[Any] = self.get_tokenizer(cls_token="(CLS)" , sep_token="(SEP)" ) __UpperCamelCase : Tuple = self.get_image_processor(do_normalize=__UpperCamelCase ) __UpperCamelCase : List[Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="(CLS)" , sep_token="(SEP)" , do_normalize=__UpperCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCamelCase ) def __lowerCamelCase ( self ) -> str: '''simple docstring''' __UpperCamelCase : List[str] = self.get_image_processor() __UpperCamelCase : List[str] = self.get_tokenizer() __UpperCamelCase : Tuple = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __UpperCamelCase : Optional[Any] = self.prepare_image_inputs() __UpperCamelCase : List[str] = image_processor(__UpperCamelCase , return_tensors="np" ) __UpperCamelCase : List[Any] = processor(images=__UpperCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = self.get_image_processor() __UpperCamelCase : Union[str, Any] = self.get_tokenizer() __UpperCamelCase : int = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __UpperCamelCase : int = "Alexandra,T-shirt的价格是15便士。" __UpperCamelCase : int = processor(text=__UpperCamelCase ) __UpperCamelCase : int = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : List[str] = self.get_image_processor() __UpperCamelCase : List[str] = self.get_tokenizer() __UpperCamelCase : Optional[int] = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __UpperCamelCase : str = "Alexandra,T-shirt的价格是15便士。" __UpperCamelCase : List[Any] = self.prepare_image_inputs() __UpperCamelCase : Union[str, Any] = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' __UpperCamelCase : Tuple = self.get_image_processor() __UpperCamelCase : Any = self.get_tokenizer() __UpperCamelCase : Dict = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __UpperCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase : str = processor.batch_decode(__UpperCamelCase ) __UpperCamelCase : Dict = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : Optional[int] = self.get_image_processor() __UpperCamelCase : Tuple = self.get_tokenizer() __UpperCamelCase : Dict = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __UpperCamelCase : Tuple = "Alexandra,T-shirt的价格是15便士。" __UpperCamelCase : Optional[int] = self.prepare_image_inputs() __UpperCamelCase : Tuple = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
327
0
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase__ ( __snake_case , unittest.TestCase ): __snake_case : Tuple = MobileBertTokenizer __snake_case : int = MobileBertTokenizerFast __snake_case : Optional[int] = True __snake_case : Optional[Any] = True __snake_case : Any = filter_non_english __snake_case : List[str] = "google/mobilebert-uncased" def A__ ( self ): super().setUp() _A : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _A : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _A : List[str] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def A__ ( self ,A__ ): _A : List[Any] = '''UNwant\u00E9d,running''' _A : Union[str, Any] = '''unwanted, running''' return input_text, output_text def A__ ( self ): _A : List[Any] = self.tokenizer_class(self.vocab_file ) _A : Tuple = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A__ ,['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) ,[9, 6, 7, 12, 10, 11] ) def A__ ( self ): if not self.test_rust_tokenizer: return _A : Tuple = self.get_tokenizer() _A : str = self.get_rust_tokenizer() _A : Tuple = '''UNwant\u00E9d,running''' _A : Optional[int] = tokenizer.tokenize(A__ ) _A : Optional[int] = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ ,A__ ) _A : Optional[Any] = tokenizer.encode(A__ ,add_special_tokens=A__ ) _A : List[Any] = rust_tokenizer.encode(A__ ,add_special_tokens=A__ ) self.assertListEqual(A__ ,A__ ) _A : Union[str, Any] = self.get_rust_tokenizer() _A : str = tokenizer.encode(A__ ) _A : Optional[int] = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ ,A__ ) # With lower casing _A : Optional[int] = self.get_tokenizer(do_lower_case=A__ ) _A : Union[str, Any] = self.get_rust_tokenizer(do_lower_case=A__ ) _A : Tuple = '''UNwant\u00E9d,running''' _A : int = tokenizer.tokenize(A__ ) _A : Union[str, Any] = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ ,A__ ) _A : str = tokenizer.encode(A__ ,add_special_tokens=A__ ) _A : int = rust_tokenizer.encode(A__ ,add_special_tokens=A__ ) self.assertListEqual(A__ ,A__ ) _A : Union[str, Any] = self.get_rust_tokenizer() _A : int = tokenizer.encode(A__ ) _A : List[str] = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ ,A__ ) def A__ ( self ): _A : Tuple = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) ,['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def A__ ( self ): _A : Optional[Any] = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) ,['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def A__ ( self ): _A : str = BasicTokenizer(do_lower_case=A__ ,strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''h\u00E9llo'''] ) def A__ ( self ): _A : Optional[int] = BasicTokenizer(do_lower_case=A__ ,strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def A__ ( self ): _A : Dict = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def A__ ( self ): _A : Union[str, Any] = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A__ ( self ): _A : int = BasicTokenizer(do_lower_case=A__ ,strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A__ ( self ): _A : Any = BasicTokenizer(do_lower_case=A__ ,strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A__ ( self ): _A : Any = BasicTokenizer(do_lower_case=A__ ,never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def A__ ( self ): _A : Optional[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] _A : str = {} for i, token in enumerate(A__ ): _A : Dict = i _A : Tuple = WordpieceTokenizer(vocab=A__ ,unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) ,[] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) ,['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) ,['''[UNK]''', '''runn''', '''##ing'''] ) def A__ ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def A__ ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def A__ ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def A__ ( self ): _A : Tuple = self.get_tokenizer() _A : Union[str, Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A__ ) for t in ['''Test''', '''\xad''', '''test''']] ,[['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(A__ ) for t in ['''Test''', '''\xad''', '''test''']] ,[['''[UNK]'''], [], ['''[UNK]''']] ) @slow def A__ ( self ): _A : Any = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) _A : int = tokenizer.encode('''sequence builders''' ,add_special_tokens=A__ ) _A : Union[str, Any] = tokenizer.encode('''multi-sequence build''' ,add_special_tokens=A__ ) _A : Optional[int] = tokenizer.build_inputs_with_special_tokens(A__ ) _A : str = tokenizer.build_inputs_with_special_tokens(A__ ,A__ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def A__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _A : int = self.rust_tokenizer_class.from_pretrained(A__ ,**A__ ) _A : Optional[Any] = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" _A : Optional[int] = tokenizer_r.encode_plus( A__ ,return_attention_mask=A__ ,return_token_type_ids=A__ ,return_offsets_mapping=A__ ,add_special_tokens=A__ ,) _A : List[str] = tokenizer_r.do_lower_case if hasattr(A__ ,'''do_lower_case''' ) else False _A : int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens['''offset_mapping'''] ) def A__ ( self ): _A : List[Any] = ['''的''', '''人''', '''有'''] _A : str = ''''''.join(A__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _A : Tuple = True _A : Optional[Any] = self.tokenizer_class.from_pretrained(A__ ,**A__ ) _A : Optional[int] = self.rust_tokenizer_class.from_pretrained(A__ ,**A__ ) _A : str = tokenizer_p.encode(A__ ,add_special_tokens=A__ ) _A : Optional[int] = tokenizer_r.encode(A__ ,add_special_tokens=A__ ) _A : List[str] = tokenizer_r.convert_ids_to_tokens(A__ ) _A : Optional[int] = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A__ ,A__ ) self.assertListEqual(A__ ,A__ ) _A : Optional[int] = False _A : int = self.rust_tokenizer_class.from_pretrained(A__ ,**A__ ) _A : Dict = self.tokenizer_class.from_pretrained(A__ ,**A__ ) _A : Dict = tokenizer_r.encode(A__ ,add_special_tokens=A__ ) _A : Dict = tokenizer_p.encode(A__ ,add_special_tokens=A__ ) _A : str = tokenizer_r.convert_ids_to_tokens(A__ ) _A : Any = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that only the first Chinese character is not preceded by "##". _A : List[str] = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(A__ ) ] self.assertListEqual(A__ ,A__ ) self.assertListEqual(A__ ,A__ )
720
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder _UpperCamelCase : Union[str, Any] =logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCamelCase : List[Any] =256 class UpperCAmelCase__ ( __snake_case ): __snake_case : Tuple = ["melgan"] def __init__( self ,A__ ,A__ ,A__ ,A__ ,A__ ,): super().__init__() # From MELGAN _A : Any = math.log(1E-5 ) # Matches MelGAN training. _A : int = 4.0 # Largest value for most examples _A : int = 128 self.register_modules( notes_encoder=A__ ,continuous_encoder=A__ ,decoder=A__ ,scheduler=A__ ,melgan=A__ ,) def A__ ( self ,A__ ,A__=(-1.0, 1.0) ,A__=False ): _A , _A : int = output_range if clip: _A : int = torch.clip(A__ ,self.min_value ,self.max_value ) # Scale to [0, 1]. _A : Optional[Any] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def A__ ( self ,A__ ,A__=(-1.0, 1.0) ,A__=False ): _A , _A : Dict = input_range _A : Tuple = torch.clip(A__ ,A__ ,A__ ) if clip else outputs # Scale to [0, 1]. _A : Any = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def A__ ( self ,A__ ,A__ ,A__ ): _A : Tuple = input_tokens > 0 _A , _A : str = self.notes_encoder( encoder_input_tokens=A__ ,encoder_inputs_mask=A__ ) _A , _A : List[str] = self.continuous_encoder( encoder_inputs=A__ ,encoder_inputs_mask=A__ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def A__ ( self ,A__ ,A__ ,A__ ): _A : str = noise_time if not torch.is_tensor(A__ ): _A : Any = torch.tensor([timesteps] ,dtype=torch.long ,device=input_tokens.device ) elif torch.is_tensor(A__ ) and len(timesteps.shape ) == 0: _A : Union[str, Any] = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _A : int = timesteps * torch.ones(input_tokens.shape[0] ,dtype=timesteps.dtype ,device=timesteps.device ) _A : Dict = self.decoder( encodings_and_masks=A__ ,decoder_input_tokens=A__ ,decoder_noise_time=A__ ) return logits @torch.no_grad() def __call__( self ,A__ ,A__ = None ,A__ = 100 ,A__ = True ,A__ = "numpy" ,A__ = None ,A__ = 1 ,): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A__ ,A__ ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(A__ )}.""" ) _A : Any = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] ,dtype=np.floataa ) _A : Optional[int] = np.zeros([1, 0, self.n_dims] ,np.floataa ) _A : Dict = torch.ones((1, TARGET_FEATURE_LENGTH) ,dtype=A__ ,device=self.device ) for i, encoder_input_tokens in enumerate(A__ ): if i == 0: _A : str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device ,dtype=self.decoder.dtype ) # The first chunk has no previous context. _A : Dict = torch.zeros((1, TARGET_FEATURE_LENGTH) ,dtype=A__ ,device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. _A : Optional[int] = ones _A : Tuple = self.scale_features( A__ ,output_range=[-1.0, 1.0] ,clip=A__ ) _A : Tuple = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) ,continuous_inputs=A__ ,continuous_mask=A__ ,) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop _A : Any = randn_tensor( shape=encoder_continuous_inputs.shape ,generator=A__ ,device=self.device ,dtype=self.decoder.dtype ,) # set step values self.scheduler.set_timesteps(A__ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _A : Union[str, Any] = self.decode( encodings_and_masks=A__ ,input_tokens=A__ ,noise_time=t / self.scheduler.config.num_train_timesteps ,) # Compute previous output: x_t -> x_t-1 _A : List[str] = self.scheduler.step(A__ ,A__ ,A__ ,generator=A__ ).prev_sample _A : Union[str, Any] = self.scale_to_features(A__ ,input_range=[-1.0, 1.0] ) _A : Optional[Any] = mel[:1] _A : int = mel.cpu().float().numpy() _A : Optional[Any] = np.concatenate([full_pred_mel, pred_mel[:1]] ,axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A__ ,A__ ) logger.info('''Generated segment''' ,A__ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": _A : Optional[Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: _A : Dict = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=A__ )
332
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
252
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class _UpperCamelCase : __lowerCamelCase = BlenderbotSmallConfig __lowerCamelCase = {} __lowerCamelCase = "gelu" def __init__(self , lowerCamelCase__ , lowerCamelCase__=1_3 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=9_9 , lowerCamelCase__=3_2 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=3_7 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=2_0 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=0 , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id def A (self ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A__ = tf.concat([input_ids, eos_tensor] , axis=1 ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A__ = prepare_blenderbot_small_inputs_dict(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return config, inputs_dict def A (self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" A__ = TFBlenderbotSmallModel(config=lowerCamelCase__ ).get_decoder() A__ = inputs_dict["""input_ids"""] A__ = input_ids[:1, :] A__ = inputs_dict["""attention_mask"""][:1, :] A__ = inputs_dict["""head_mask"""] A__ = 1 # first forward pass A__ = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , head_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ ) A__ ,A__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A__ = tf.concat([input_ids, next_tokens] , axis=-1 ) A__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A__ = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] A__ = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A__ = output_from_no_past[:, -3:, random_slice_idx] A__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase__ , lowerCamelCase__ , rtol=1E-3 ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase : List[str] , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : int=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : int=None , UpperCamelCase : Dict=None , ): if attention_mask is None: A__ = tf.cast(tf.math.not_equal(UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCamelCase ( __snake_case , __snake_case , unittest.TestCase): __lowerCamelCase = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __lowerCamelCase = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False def A (self ): """simple docstring""" A__ = TFBlenderbotSmallModelTester(self ) A__ = ConfigTester(self , config_class=lowerCamelCase__ ) def A (self ): """simple docstring""" self.config_tester.run_common_tests() def A (self ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase__ ) @require_tokenizers @require_tf class _UpperCamelCase ( unittest.TestCase): __lowerCamelCase = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] __lowerCamelCase = "facebook/blenderbot_small-90M" @cached_property def A (self ): """simple docstring""" # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) @cached_property def A (self ): """simple docstring""" A__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def A (self ): """simple docstring""" A__ = self.tokenizer(self.src_text , return_tensors="""tf""" ) A__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowerCamelCase__ , ) A__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCamelCase__ )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
574
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a_ : Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" _a = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """The column name of the images in the files."""} ) _a = field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """A folder containing the training data."""} ) _a = field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """A folder containing the validation data."""} ) _a = field( default=0.1_5 , metadata={"""help""": """Percent to split off of train for validation."""} ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = {} if self.train_dir is not None: __magic_name__ = self.train_dir if self.validation_dir is not None: __magic_name__ = self.validation_dir __magic_name__ = data_files if data_files else None @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) _a = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _a = field(default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Name or path of preprocessor config."""} ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _a = field( default=0.7_5 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) _a = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict ): __magic_name__ = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def _SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __magic_name__ = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __magic_name__ , __magic_name__ , __magic_name__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __magic_name__ , __magic_name__ , __magic_name__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , snake_case_ , snake_case_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __magic_name__ = training_args.get_process_log_level() logger.setLevel(snake_case_ ) transformers.utils.logging.set_verbosity(snake_case_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __magic_name__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __magic_name__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. __magic_name__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __magic_name__ = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , snake_case_ ) and data_args.train_val_split > 0.0: __magic_name__ = ds['''train'''].train_test_split(data_args.train_val_split ) __magic_name__ = split['''train'''] __magic_name__ = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __magic_name__ = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: __magic_name__ = ViTMAEConfig.from_pretrained(model_args.config_name , **snake_case_ ) elif model_args.model_name_or_path: __magic_name__ = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **snake_case_ ) else: __magic_name__ = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: __magic_name__ = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **snake_case_ ) elif model_args.model_name_or_path: __magic_name__ = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **snake_case_ ) else: __magic_name__ = ViTImageProcessor() # create model if model_args.model_name_or_path: __magic_name__ = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) __magic_name__ = ViTMAEForPreTraining(snake_case_ ) if training_args.do_train: __magic_name__ = ds['''train'''].column_names else: __magic_name__ = ds['''validation'''].column_names if data_args.image_column_name is not None: __magic_name__ = data_args.image_column_name elif "image" in column_names: __magic_name__ = '''image''' elif "img" in column_names: __magic_name__ = '''img''' else: __magic_name__ = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: __magic_name__ = image_processor.size['''shortest_edge'''] else: __magic_name__ = (image_processor.size['''height'''], image_processor.size['''width''']) __magic_name__ = Compose( [ Lambda(lambda snake_case_ : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(snake_case_ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(snake_case_ : int ): __magic_name__ = [transforms(snake_case_ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: __magic_name__ = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(snake_case_ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: __magic_name__ = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(snake_case_ ) # Compute absolute learning rate __magic_name__ = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: __magic_name__ = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer __magic_name__ = Trainer( model=snake_case_ , args=snake_case_ , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=snake_case_ , data_collator=snake_case_ , ) # Training if training_args.do_train: __magic_name__ = None if training_args.resume_from_checkpoint is not None: __magic_name__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: __magic_name__ = last_checkpoint __magic_name__ = trainer.train(resume_from_checkpoint=snake_case_ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __magic_name__ = trainer.evaluate() trainer.log_metrics('''eval''' , snake_case_ ) trainer.save_metrics('''eval''' , snake_case_ ) # Write model card and (optionally) push to hub __magic_name__ = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case_ ) else: trainer.create_model_card(**snake_case_ ) def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
678
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Union[str, Any] ): __magic_name__ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __magic_name__ = { '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } __magic_name__ = f'{src_lang}-{tgt_lang}' __magic_name__ = f'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n' model_card_dir.mkdir(parents=snake_case_ , exist_ok=snake_case_ ) __magic_name__ = os.path.join(snake_case_ , '''README.md''' ) print(f'Generating {path}' ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(snake_case_ ) # make sure we are under the root of the project a_ : Tuple = Path(__file__).resolve().parent.parent.parent a_ : Dict = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: a_ : List[str] = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
678
1
import math def UpperCamelCase_( _snake_case : int = 100 ): """simple docstring""" __a =sum(i * i for i in range(1 , n + 1 ) ) __a =int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
242
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__UpperCamelCase ) A = -1 A = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__UpperCamelCase ) A = model.generate(__UpperCamelCase , max_new_tokens=10 , do_sample=__UpperCamelCase ) A = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A = TextStreamer(__UpperCamelCase ) model.generate(__UpperCamelCase , max_new_tokens=10 , do_sample=__UpperCamelCase , streamer=__UpperCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A = cs.out[:-1] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase ( self : int ) -> List[Any]: A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__UpperCamelCase ) A = -1 A = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__UpperCamelCase ) A = model.generate(__UpperCamelCase , max_new_tokens=10 , do_sample=__UpperCamelCase ) A = tokenizer.decode(greedy_ids[0] ) A = TextIteratorStreamer(__UpperCamelCase ) A = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} A = Thread(target=model.generate , kwargs=__UpperCamelCase ) thread.start() A = '' for new_text in streamer: streamer_text += new_text self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase ( self : int ) -> Tuple: A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__UpperCamelCase ) A = -1 A = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__UpperCamelCase ) A = model.generate(__UpperCamelCase , max_new_tokens=10 , do_sample=__UpperCamelCase ) A = greedy_ids[:, input_ids.shape[1] :] A = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A = TextStreamer(__UpperCamelCase , skip_prompt=__UpperCamelCase ) model.generate(__UpperCamelCase , max_new_tokens=10 , do_sample=__UpperCamelCase , streamer=__UpperCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A = cs.out[:-1] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them A = AutoTokenizer.from_pretrained('distilgpt2' ) A = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(__UpperCamelCase ) A = -1 A = torch.ones((1, 5) , device=__UpperCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: A = TextStreamer(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) model.generate(__UpperCamelCase , max_new_tokens=1 , do_sample=__UpperCamelCase , streamer=__UpperCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A = cs.out[:-1] # Remove the final "\n" A = tokenizer(__UpperCamelCase , return_tensors='pt' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __UpperCamelCase ( self : Any ) -> Dict: A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__UpperCamelCase ) A = -1 A = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__UpperCamelCase ) A = TextIteratorStreamer(__UpperCamelCase , timeout=0.0_0_1 ) A = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} A = Thread(target=model.generate , kwargs=__UpperCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__UpperCamelCase ): A = '' for new_text in streamer: streamer_text += new_text
106
0
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase = [[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase = y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
702
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
393
0
"""simple docstring""" import argparse import os import re _a : Dict = """src/diffusers""" # Pattern that looks at the indentation in a line. _a : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _a : Optional[Any] = re.compile(r'^\s*\"([^\"]+)\":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _a : Any = re.compile(r'^\s*_import_structure\[\"([^\"]+)\"\]') # Pattern that matches `"key",` and puts `key` in group 0. _a : Dict = re.compile(r'^\s*\"([^\"]+)\",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _a : Dict = re.compile(r'\[([^\]]+)\]') def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ) -> Union[str, Any]: _lowerCAmelCase : Any = _re_indent.search(__lowerCamelCase ) return "" if search is None else search.groups()[0] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : Any="" ,_lowerCamelCase : List[str]=None ,_lowerCamelCase : int=None ) -> Optional[int]: _lowerCAmelCase : int = 0 _lowerCAmelCase : List[str] = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(__lowerCamelCase ): index += 1 _lowerCAmelCase : Optional[Any] = ["""\n""".join(lines[:index] )] else: _lowerCAmelCase : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : Optional[Any] = [lines[index]] index += 1 while index < len(__lowerCamelCase ) and (end_prompt is None or not lines[index].startswith(__lowerCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__lowerCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(__lowerCamelCase ) ) if index < len(__lowerCamelCase ) - 1: _lowerCAmelCase : Optional[Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Union[str, Any] = [] else: blocks.append("""\n""".join(__lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__lowerCamelCase ) > 0: blocks.append("""\n""".join(__lowerCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__lowerCamelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> Dict: def _inner(_lowerCamelCase : Any ): return key(__lowerCamelCase ).lower().replace("""_""" ,"""""" ) return _inner def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Union[str, Any]=None ) -> Any: # If no key is provided, we use a noop. def noop(_lowerCamelCase : int ): return x if key is None: _lowerCAmelCase : Dict = noop # Constants are all uppercase, they go first. _lowerCAmelCase : str = [obj for obj in objects if key(__lowerCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Optional[Any] = [obj for obj in objects if key(__lowerCamelCase )[0].isupper() and not key(__lowerCamelCase ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : Union[str, Any] = [obj for obj in objects if not key(__lowerCamelCase )[0].isupper()] _lowerCAmelCase : Any = ignore_underscore(__lowerCamelCase ) return sorted(__lowerCamelCase ,key=__lowerCamelCase ) + sorted(__lowerCamelCase ,key=__lowerCamelCase ) + sorted(__lowerCamelCase ,key=__lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Dict: # This inner function sort imports between [ ]. def _replace(_lowerCamelCase : str ): _lowerCAmelCase : List[Any] = match.groups()[0] if "," not in imports: return f"[{imports}]" _lowerCAmelCase : Any = [part.strip().replace("""\"""" ,"""""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : Optional[int] = keys[:-1] return "[" + ", ".join([f"\"{k}\"" for k in sort_objects(__lowerCamelCase )] ) + "]" _lowerCAmelCase : Any = import_statement.split("""\n""" ) if len(__lowerCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Dict = 2 if lines[1].strip() == """[""" else 1 _lowerCAmelCase : Optional[int] = [(i, _re_strip_line.search(__lowerCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Dict = sort_objects(__lowerCamelCase ,key=lambda _lowerCamelCase : x[1] ) _lowerCAmelCase : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__lowerCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : str = _re_bracket_content.sub(_replace ,lines[1] ) else: _lowerCAmelCase : Optional[Any] = [part.strip().replace("""\"""" ,"""""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : Optional[int] = keys[:-1] _lowerCAmelCase : str = get_indent(lines[1] ) + """, """.join([f"\"{k}\"" for k in sort_objects(__lowerCamelCase )] ) return "\n".join(__lowerCamelCase ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : str = _re_bracket_content.sub(_replace ,__lowerCamelCase ) return import_statement def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Optional[Any]=True ) -> List[Any]: with open(__lowerCamelCase ,"""r""" ) as f: _lowerCAmelCase : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Union[str, Any] = split_code_in_indented_blocks( __lowerCamelCase ,start_prompt="""_import_structure = {""" ,end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 ,len(__lowerCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : str = main_blocks[block_idx] _lowerCAmelCase : Optional[Any] = block.split("""\n""" ) # Get to the start of the imports. _lowerCAmelCase : List[str] = 0 while line_idx < len(__lowerCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Dict = len(__lowerCamelCase ) else: line_idx += 1 if line_idx >= len(__lowerCamelCase ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : Dict = """\n""".join(block_lines[line_idx:-1] ) _lowerCAmelCase : Optional[int] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : Optional[int] = split_code_in_indented_blocks(__lowerCamelCase ,indent_level=__lowerCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : int = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : str = [(pattern.search(__lowerCamelCase ).groups()[0] if pattern.search(__lowerCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : List[Any] = [(i, key) for i, key in enumerate(__lowerCamelCase ) if key is not None] _lowerCAmelCase : Any = [x[0] for x in sorted(__lowerCamelCase ,key=lambda _lowerCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : List[str] = [] for i in range(len(__lowerCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Optional[int] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__lowerCamelCase ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : Union[str, Any] = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__lowerCamelCase ): if check_only: return True else: print(f"Overwriting {file}." ) with open(__lowerCamelCase ,"""w""" ) as f: f.write("""\n""".join(__lowerCamelCase ) ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str=True ) -> Dict: _lowerCAmelCase : Optional[int] = [] for root, _, files in os.walk(__lowerCamelCase ): if "__init__.py" in files: _lowerCAmelCase : Optional[int] = sort_imports(os.path.join(__lowerCamelCase ,"""__init__.py""" ) ,check_only=__lowerCamelCase ) if result: _lowerCAmelCase : Optional[int] = [os.path.join(__lowerCamelCase ,"""__init__.py""" )] if len(__lowerCamelCase ) > 0: raise ValueError(f"Would overwrite {len(__lowerCamelCase )} files, run `make style`." ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _a : Dict = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
213
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def lowerCAmelCase( __lowerCamelCase ): __a = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' f'''{test_file} instead.''' ) __a = components[-1] if not test_fn.endswith('py' ): raise ValueError(f'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('test_modeling_' ): raise ValueError( f'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) __a = components[:-1] + [test_fn.replace('.py' , '' )] __a = '.'.join(__lowerCamelCase ) return test_module_path def lowerCAmelCase( __lowerCamelCase ): __a = get_module_path(__lowerCamelCase ) __a = importlib.import_module(__lowerCamelCase ) return test_module def lowerCAmelCase( __lowerCamelCase ): __a = [] __a = get_test_module(__lowerCamelCase ) for attr in dir(__lowerCamelCase ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(__lowerCamelCase , __lowerCamelCase ) ) # sort with class names return sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x.__name__ ) def lowerCAmelCase( __lowerCamelCase ): __a = [] __a = get_test_module(__lowerCamelCase ) for attr in dir(__lowerCamelCase ): __a = getattr(__lowerCamelCase , __lowerCamelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __a = getattr(__lowerCamelCase , 'all_model_classes' , [] ) if len(__lowerCamelCase ) > 0: test_classes.append(__lowerCamelCase ) # sort with class names return sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x.__name__ ) def lowerCAmelCase( __lowerCamelCase ): __a = get_test_classes(__lowerCamelCase ) __a = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x.__name__ ) def lowerCAmelCase( __lowerCamelCase ): __a = test_class() if hasattr(__lowerCamelCase , 'setUp' ): test.setUp() __a = None if hasattr(__lowerCamelCase , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __a = test.model_tester.__class__ return model_tester def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): __a = get_test_classes(__lowerCamelCase ) __a = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__lowerCamelCase ) # sort with class names return sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x.__name__ ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): __a = get_test_classes_for_model(__lowerCamelCase , __lowerCamelCase ) __a = [] for test_class in test_classes: __a = get_model_tester_from_test_class(__lowerCamelCase ) if tester_class is not None: tester_classes.append(__lowerCamelCase ) # sort with class names return sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x.__name__ ) def lowerCAmelCase( __lowerCamelCase ): __a = get_test_classes(__lowerCamelCase ) __a = {test_class: get_model_tester_from_test_class(__lowerCamelCase ) for test_class in test_classes} return test_tester_mapping def lowerCAmelCase( __lowerCamelCase ): __a = get_model_classes(__lowerCamelCase ) __a = { model_class: get_test_classes_for_model(__lowerCamelCase , __lowerCamelCase ) for model_class in model_classes } return model_test_mapping def lowerCAmelCase( __lowerCamelCase ): __a = get_model_classes(__lowerCamelCase ) __a = { model_class: get_tester_classes_for_model(__lowerCamelCase , __lowerCamelCase ) for model_class in model_classes } return model_to_tester_mapping def lowerCAmelCase( __lowerCamelCase ): if isinstance(__lowerCamelCase , __lowerCamelCase ): return o elif isinstance(__lowerCamelCase , __lowerCamelCase ): return o.__name__ elif isinstance(__lowerCamelCase , (list, tuple) ): return [to_json(__lowerCamelCase ) for x in o] elif isinstance(__lowerCamelCase , __lowerCamelCase ): return {to_json(__lowerCamelCase ): to_json(__lowerCamelCase ) for k, v in o.items()} else: return o
559
0
import math class UpperCamelCase : def __init__( self : List[str] , snake_case__ : Optional[int]=0 ): # a graph with Node 0,1,...,N-1 """simple docstring""" SCREAMING_SNAKE_CASE = n SCREAMING_SNAKE_CASE = [ [math.inf for j in range(0 , snake_case__ )] for i in range(0 , snake_case__ ) ] # adjacency matrix for weight SCREAMING_SNAKE_CASE = [ [math.inf for j in range(0 , snake_case__ )] for i in range(0 , snake_case__ ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase ( self : int , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = w def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): SCREAMING_SNAKE_CASE = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Optional[int] ): """simple docstring""" return self.dp[u][v] if __name__ == "__main__": a_ : Tuple = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
673
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a_ : Optional[int] = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } a_ : List[Any] = { "allenai/led-base-16384": 1_6384, } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =LEDTokenizer __UpperCamelCase =["input_ids", "attention_mask"] def __init__( self : Tuple , snake_case__ : List[Any]=None , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : Dict="replace" , snake_case__ : Tuple="<s>" , snake_case__ : Optional[Any]="</s>" , snake_case__ : int="</s>" , snake_case__ : Dict="<s>" , snake_case__ : Union[str, Any]="<unk>" , snake_case__ : Optional[int]="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : List[Any]=False , snake_case__ : int=True , **snake_case__ : Dict , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(snake_case__ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**snake_case__ ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = 'post_processor' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state['cls'] ) SCREAMING_SNAKE_CASE = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(snake_case__ , state.pop('type' ) ) SCREAMING_SNAKE_CASE = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase ( self : List[Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value SCREAMING_SNAKE_CASE = value def UpperCamelCase ( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[str] , *snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Tuple=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self : Optional[Any] , snake_case__ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case__ : Optional[int] = None , snake_case__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , ): """simple docstring""" SCREAMING_SNAKE_CASE = super()._pad( encoded_inputs=snake_case__ , max_length=snake_case__ , padding_strategy=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE = len(encoded_inputs['global_attention_mask'] ) != len(snake_case__ ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = len(snake_case__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
673
1
from __future__ import annotations def lowerCamelCase_ ( _UpperCamelCase ) -> list[int]: """simple docstring""" return [ord(_UpperCamelCase ) - 96 for elem in plain] def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def lowerCamelCase_ ( ) -> None: """simple docstring""" snake_case_ : List[Any] = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , _UpperCamelCase ) print('''Decoded:''' , decode(_UpperCamelCase ) ) if __name__ == "__main__": main()
60
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def a__ (self ) -> List[str]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ) -> Optional[int]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def a__ (self , A , A , A , A , A , A , A ) -> Any: """simple docstring""" _a = OpenLlamaModel(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A ) _a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Any: """simple docstring""" _a = True _a = OpenLlamaModel(A ) model.to(A ) model.eval() _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) _a = model( A , attention_mask=A , encoder_hidden_states=A , ) _a = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Tuple: """simple docstring""" _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Dict: """simple docstring""" _a = True _a = True _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )['''hidden_states'''][0] _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )['''hidden_states'''][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowerCamelCase : Any = (OpenLlamaForCausalLM,) if is_torch_available() else () __lowerCamelCase : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False def a__ (self ) -> Tuple: """simple docstring""" _a = OpenLlamaModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*A ) def a__ (self ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''single_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''multi_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def a__ (self ) -> Optional[Any]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def a__ (self , A ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ids_tensor([1, 10] , config.vocab_size ) _a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() _a = original_model(A ).last_hidden_state _a = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = {'''type''': scaling_type, '''factor''': 10.0} _a = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() _a = scaled_model(A ).last_hidden_state _a = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1E-5 ) )
11
0
"""simple docstring""" from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : float = 0 ): lowerCAmelCase , lowerCAmelCase = row, column lowerCAmelCase = [[default_value for c in range(lowerCAmelCase )] for r in range(lowerCAmelCase )] def __str__( self : Dict ): lowerCAmelCase = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCAmelCase = 0 for row_vector in self.array: for obj in row_vector: lowerCAmelCase = max(lowerCAmelCase , len(str(lowerCAmelCase ) ) ) lowerCAmelCase = f'''%{max_element_length}s''' # Make string and return def single_line(lowerCAmelCase : list[float] ) -> str: nonlocal string_format_identifier lowerCAmelCase = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(lowerCAmelCase ) for row_vector in self.array ) return s def __repr__( self : List[Any] ): return str(self ) def __lowercase ( self : Dict , lowerCAmelCase : tuple[int, int] ): if not (isinstance(lowerCAmelCase , (list, tuple) ) and len(lowerCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : int , lowerCAmelCase : tuple[int, int] ): assert self.validate_indicies(lowerCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self : Tuple , lowerCAmelCase : tuple[int, int] , lowerCAmelCase : float ): assert self.validate_indicies(lowerCAmelCase ) lowerCAmelCase = value def __add__( self : Any , lowerCAmelCase : Matrix ): assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert self.row == another.row and self.column == another.column # Add lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] + another[r, c] return result def __neg__( self : List[str] ): lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = -self[r, c] return result def __sub__( self : str , lowerCAmelCase : Matrix ): return self + (-another) def __mul__( self : Optional[Any] , lowerCAmelCase : int | float | Matrix ): if isinstance(lowerCAmelCase , (int, float) ): # Scalar multiplication lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] * another return result elif isinstance(lowerCAmelCase , lowerCAmelCase ): # Matrix multiplication assert self.column == another.row lowerCAmelCase = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCAmelCase = f'''Unsupported type given for another ({type(lowerCAmelCase )})''' raise TypeError(lowerCAmelCase ) def __lowercase ( self : Tuple ): lowerCAmelCase = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] return result def __lowercase ( self : Any , lowerCAmelCase : Matrix , lowerCAmelCase : Matrix ): assert isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCAmelCase = v.transpose() lowerCAmelCase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowercase () -> None: '''simple docstring''' lowerCAmelCase = Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCAmelCase = 1 print(f'''a^(-1) is {ainv}''' ) # u, v lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1, 2, -3 lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(snake_case__ , snake_case__ )}''' ) def lowercase () -> None: '''simple docstring''' import doctest doctest.testmod() testa()
529
"""simple docstring""" from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( _a ): _a = 'autoformer' _a = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Dict , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : str = "student_t" , lowerCAmelCase : str = "nll" , lowerCAmelCase : int = 1 , lowerCAmelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase : bool = True , lowerCAmelCase : int = 0 , lowerCAmelCase : int = 0 , lowerCAmelCase : int = 0 , lowerCAmelCase : int = 0 , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : int = 64 , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 32 , lowerCAmelCase : int = 32 , lowerCAmelCase : str = "gelu" , lowerCAmelCase : float = 0.1 , lowerCAmelCase : float = 0.1 , lowerCAmelCase : float = 0.1 , lowerCAmelCase : float = 0.1 , lowerCAmelCase : float = 0.1 , lowerCAmelCase : int = 100 , lowerCAmelCase : float = 0.02 , lowerCAmelCase : bool = True , lowerCAmelCase : Tuple=True , lowerCAmelCase : int = 10 , lowerCAmelCase : int = 25 , lowerCAmelCase : int = 3 , **lowerCAmelCase : Tuple , ): # time series specific configuration lowerCAmelCase = prediction_length lowerCAmelCase = context_length if context_length is not None else prediction_length lowerCAmelCase = distribution_output lowerCAmelCase = loss lowerCAmelCase = input_size lowerCAmelCase = num_time_features lowerCAmelCase = lags_sequence lowerCAmelCase = scaling lowerCAmelCase = num_dynamic_real_features lowerCAmelCase = num_static_real_features lowerCAmelCase = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowerCAmelCase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) lowerCAmelCase = cardinality else: lowerCAmelCase = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowerCAmelCase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) lowerCAmelCase = embedding_dimension else: lowerCAmelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase = num_parallel_samples # Transformer architecture configuration lowerCAmelCase = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase = d_model lowerCAmelCase = encoder_attention_heads lowerCAmelCase = decoder_attention_heads lowerCAmelCase = encoder_ffn_dim lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = encoder_layers lowerCAmelCase = decoder_layers lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = encoder_layerdrop lowerCAmelCase = decoder_layerdrop lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = use_cache # Autoformer lowerCAmelCase = label_length lowerCAmelCase = moving_average lowerCAmelCase = autocorrelation_factor super().__init__(is_encoder_decoder=lowerCAmelCase , **lowerCAmelCase ) @property def __lowercase ( self : Tuple ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
529
1
from ....utils import logging __lowerCAmelCase : Any =logging.get_logger(__name__) class _lowercase ( A__ ): '''simple docstring''' def __init__( self :Any , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :Any=2_048 ) -> List[Any]: __SCREAMING_SNAKE_CASE : int = config.__dict__ __SCREAMING_SNAKE_CASE : Dict = modal_hidden_size if num_labels: __SCREAMING_SNAKE_CASE : Optional[int] = num_labels
696
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : Tuple ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = '''transfo-xl''' SCREAMING_SNAKE_CASE__ : List[str] = ['''mems'''] SCREAMING_SNAKE_CASE__ : List[Any] = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self :str , lowerCAmelCase__ :Optional[int]=267_735 , lowerCAmelCase__ :Optional[int]=[20_000, 40_000, 200_000] , lowerCAmelCase__ :List[Any]=1_024 , lowerCAmelCase__ :List[str]=1_024 , lowerCAmelCase__ :Any=16 , lowerCAmelCase__ :Tuple=64 , lowerCAmelCase__ :Union[str, Any]=4_096 , lowerCAmelCase__ :Dict=4 , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :Dict=18 , lowerCAmelCase__ :Union[str, Any]=1_600 , lowerCAmelCase__ :Union[str, Any]=1_000 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Optional[Any]=0 , lowerCAmelCase__ :Union[str, Any]=-1 , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :int=True , lowerCAmelCase__ :str="normal" , lowerCAmelCase__ :Tuple=0.01 , lowerCAmelCase__ :Union[str, Any]=0.01 , lowerCAmelCase__ :str=0.02 , lowerCAmelCase__ :Optional[Any]=1E-5 , lowerCAmelCase__ :Union[str, Any]=0 , **lowerCAmelCase__ :Optional[Any] , ) -> str: __SCREAMING_SNAKE_CASE : str = vocab_size __SCREAMING_SNAKE_CASE : Tuple = [] self.cutoffs.extend(lowerCAmelCase__ ) if proj_share_all_but_first: __SCREAMING_SNAKE_CASE : List[str] = [False] + [True] * len(self.cutoffs ) else: __SCREAMING_SNAKE_CASE : Tuple = [False] + [False] * len(self.cutoffs ) __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Union[str, Any] = d_embed __SCREAMING_SNAKE_CASE : Tuple = d_head __SCREAMING_SNAKE_CASE : Dict = d_inner __SCREAMING_SNAKE_CASE : Optional[Any] = div_val __SCREAMING_SNAKE_CASE : Optional[Any] = pre_lnorm __SCREAMING_SNAKE_CASE : List[str] = n_layer __SCREAMING_SNAKE_CASE : int = n_head __SCREAMING_SNAKE_CASE : str = mem_len __SCREAMING_SNAKE_CASE : Union[str, Any] = same_length __SCREAMING_SNAKE_CASE : str = attn_type __SCREAMING_SNAKE_CASE : Dict = clamp_len __SCREAMING_SNAKE_CASE : Tuple = sample_softmax __SCREAMING_SNAKE_CASE : Optional[int] = adaptive __SCREAMING_SNAKE_CASE : int = dropout __SCREAMING_SNAKE_CASE : Optional[Any] = dropatt __SCREAMING_SNAKE_CASE : int = untie_r __SCREAMING_SNAKE_CASE : Optional[int] = init __SCREAMING_SNAKE_CASE : List[str] = init_range __SCREAMING_SNAKE_CASE : Any = proj_init_std __SCREAMING_SNAKE_CASE : List[str] = init_std __SCREAMING_SNAKE_CASE : Tuple = layer_norm_epsilon super().__init__(eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __magic_name__( self :str ) -> int: # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __magic_name__( self :Tuple , lowerCAmelCase__ :int ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
696
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" __UpperCAmelCase : List[str] = '''cvt''' def __init__( self , a_=3 , a_=[7, 3, 3] , a_=[4, 2, 2] , a_=[2, 1, 1] , a_=[64, 192, 384] , a_=[1, 3, 6] , a_=[1, 2, 10] , a_=[4.0, 4.0, 4.0] , a_=[0.0, 0.0, 0.0] , a_=[0.0, 0.0, 0.0] , a_=[0.0, 0.0, 0.1] , a_=[True, True, True] , a_=[False, False, True] , a_=["dw_bn", "dw_bn", "dw_bn"] , a_=[3, 3, 3] , a_=[1, 1, 1] , a_=[2, 2, 2] , a_=[1, 1, 1] , a_=[1, 1, 1] , a_=0.02 , a_=1E-12 , **a_ , ): super().__init__(**a_ ) lowerCamelCase_ : Optional[Any] = num_channels lowerCamelCase_ : str = patch_sizes lowerCamelCase_ : List[Any] = patch_stride lowerCamelCase_ : str = patch_padding lowerCamelCase_ : str = embed_dim lowerCamelCase_ : Union[str, Any] = num_heads lowerCamelCase_ : Optional[Any] = depth lowerCamelCase_ : int = mlp_ratio lowerCamelCase_ : Union[str, Any] = attention_drop_rate lowerCamelCase_ : Optional[Any] = drop_rate lowerCamelCase_ : Optional[int] = drop_path_rate lowerCamelCase_ : Union[str, Any] = qkv_bias lowerCamelCase_ : int = cls_token lowerCamelCase_ : int = qkv_projection_method lowerCamelCase_ : int = kernel_qkv lowerCamelCase_ : Optional[Any] = padding_kv lowerCamelCase_ : Optional[int] = stride_kv lowerCamelCase_ : Optional[int] = padding_q lowerCamelCase_ : List[Any] = stride_q lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : int = layer_norm_eps
73
__magic_name__ = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.602_176_634E-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.35_58_18, } def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCamelCase_ : List[Any] = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {', '.join(lowerCAmelCase_)}""" ) raise ValueError(lowerCAmelCase_) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
73
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : Tuple = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[int] = "megatron-bert" def __init__( self : Union[str, Any] , _lowercase : str=2_90_56 , _lowercase : int=10_24 , _lowercase : Any=24 , _lowercase : Optional[int]=16 , _lowercase : Union[str, Any]=40_96 , _lowercase : Union[str, Any]="gelu" , _lowercase : Tuple=0.1 , _lowercase : Dict=0.1 , _lowercase : str=5_12 , _lowercase : Optional[int]=2 , _lowercase : List[Any]=0.02 , _lowercase : List[Any]=1E-12 , _lowercase : Any=0 , _lowercase : Dict="absolute" , _lowercase : Optional[int]=True , **_lowercase : Optional[Any] , ): super().__init__(pad_token_id=_lowercase , **_lowercase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
49
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ : Any = 'http://www.mocksite.com/file1.txt' lowerCAmelCase_ : List[str] = '"text": ["foo", "foo"]' lowerCAmelCase_ : Any = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class lowerCamelCase_ : _lowerCAmelCase : Dict = 2_0_0 _lowerCAmelCase : int = {'Content-Length': '100'} _lowerCAmelCase : Optional[Any] = {} def __lowercase ( self : str , **lowerCAmelCase__ : Any ): """simple docstring""" return [bytes(lowerCAmelCase__ , '''utf-8''' )] def UpperCAmelCase ( *A : int , **A : Optional[Any] ): return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def UpperCAmelCase ( A : int , A : Union[str, Any] , A : Union[str, Any] ): import requests monkeypatch.setattr(A , '''request''' , A ) SCREAMING_SNAKE_CASE : Optional[Any] = URL if issubclass(A , A ): SCREAMING_SNAKE_CASE : List[Any] = url elif issubclass(A , A ): SCREAMING_SNAKE_CASE : List[Any] = [url] elif issubclass(A , A ): SCREAMING_SNAKE_CASE : str = {'''train''': url} SCREAMING_SNAKE_CASE : Any = '''dummy''' SCREAMING_SNAKE_CASE : Optional[Any] = '''downloads''' SCREAMING_SNAKE_CASE : Optional[Any] = tmp_path SCREAMING_SNAKE_CASE : List[str] = DownloadConfig( cache_dir=os.path.join(A , A ) , use_etag=A , ) SCREAMING_SNAKE_CASE : Union[str, Any] = DownloadManager(dataset_name=A , download_config=A ) SCREAMING_SNAKE_CASE : List[str] = dl_manager.download(A ) SCREAMING_SNAKE_CASE : Dict = urls for downloaded_paths in [downloaded_paths]: if isinstance(A , A ): SCREAMING_SNAKE_CASE : List[str] = [downloaded_paths] SCREAMING_SNAKE_CASE : int = [urls] elif isinstance(A , A ): assert "train" in downloaded_paths.keys() SCREAMING_SNAKE_CASE : Optional[int] = downloaded_paths.values() SCREAMING_SNAKE_CASE : Union[str, Any] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(A , A ): assert downloaded_path == dl_manager.downloaded_paths[input_url] SCREAMING_SNAKE_CASE : Dict = Path(A ) SCREAMING_SNAKE_CASE : Optional[Any] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() SCREAMING_SNAKE_CASE : str = downloaded_path.read_text() assert content == CONTENT SCREAMING_SNAKE_CASE : str = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() SCREAMING_SNAKE_CASE : Optional[int] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def UpperCAmelCase ( A : Tuple , A : Union[str, Any] , A : Dict ): SCREAMING_SNAKE_CASE : List[str] = str(A ) if issubclass(A , A ): SCREAMING_SNAKE_CASE : Optional[int] = filename elif issubclass(A , A ): SCREAMING_SNAKE_CASE : Optional[int] = [filename] elif issubclass(A , A ): SCREAMING_SNAKE_CASE : List[Any] = {'''train''': filename} SCREAMING_SNAKE_CASE : Dict = '''dummy''' SCREAMING_SNAKE_CASE : Optional[Any] = xz_file.parent SCREAMING_SNAKE_CASE : List[Any] = '''extracted''' SCREAMING_SNAKE_CASE : Optional[Any] = DownloadConfig( cache_dir=A , use_etag=A , ) SCREAMING_SNAKE_CASE : Optional[int] = DownloadManager(dataset_name=A , download_config=A ) SCREAMING_SNAKE_CASE : Optional[int] = dl_manager.extract(A ) SCREAMING_SNAKE_CASE : Tuple = paths for extracted_paths in [extracted_paths]: if isinstance(A , A ): SCREAMING_SNAKE_CASE : List[Any] = [extracted_paths] SCREAMING_SNAKE_CASE : str = [paths] elif isinstance(A , A ): assert "train" in extracted_paths.keys() SCREAMING_SNAKE_CASE : Optional[int] = extracted_paths.values() SCREAMING_SNAKE_CASE : Union[str, Any] = paths.values() assert extracted_paths for extracted_path, input_path in zip(A , A ): assert extracted_path == dl_manager.extracted_paths[input_path] SCREAMING_SNAKE_CASE : Any = Path(A ) SCREAMING_SNAKE_CASE : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(A , etag=A ) assert parts[-2] == extracted_subdir assert extracted_path.exists() SCREAMING_SNAKE_CASE : int = extracted_path.read_text() SCREAMING_SNAKE_CASE : Optional[int] = text_file.read_text() assert extracted_file_content == expected_file_content def UpperCAmelCase ( A : Optional[int] , A : int ): assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(A , start=1 ): SCREAMING_SNAKE_CASE : List[Any] = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def UpperCAmelCase ( A : Any , A : str ): SCREAMING_SNAKE_CASE : Union[str, Any] = request.getfixturevalue(A ) SCREAMING_SNAKE_CASE : List[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(A ) , start=1 ): _test_jsonl(A , A ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def UpperCAmelCase ( A : Dict , A : Optional[Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = request.getfixturevalue(A ) SCREAMING_SNAKE_CASE : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(A ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(A ) , start=1 ): _test_jsonl(A , A ) assert num_tar == 1 assert num_jsonl == 2 def UpperCAmelCase ( A : List[Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(A ) , start=1 ): assert os.path.basename(A ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
527
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
539
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear", "self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed", "self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } SCREAMING_SNAKE_CASE__ = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCamelCase ( _snake_case : int ,_snake_case : Union[str, Any] ,_snake_case : Any ,_snake_case : Optional[int] ,_snake_case : List[str] ): '''simple docstring''' for attribute in key.split("." ): lowercase__ = getattr(_snake_case ,_snake_case ) if weight_type is not None: lowercase__ = getattr(_snake_case ,_snake_case ).shape else: lowercase__ = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowerCamelCase ( _snake_case : Any ,_snake_case : int ): '''simple docstring''' lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( _snake_case ,_snake_case ,_snake_case ,_snake_case ,hf_model.config.feat_extract_norm == "group" ,) lowercase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(_snake_case )[0].split("." )[-2] lowercase__ = mapped_key.replace("*" ,_snake_case ) if "weight_g" in name: lowercase__ = "weight_g" elif "weight_v" in name: lowercase__ = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: lowercase__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ = "weight" else: lowercase__ = None set_recursively(_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(f'''Unused weights: {unused_weights}''' ) def lowerCamelCase ( _snake_case : str ,_snake_case : int ,_snake_case : Optional[Any] ,_snake_case : Tuple ,_snake_case : List[Any] ): '''simple docstring''' lowercase__ = full_name.split("conv_layers." )[-1] lowercase__ = name.split("." ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowerCamelCase ( _snake_case : Optional[int] ,_snake_case : Any ,_snake_case : List[Any]=None ): '''simple docstring''' lowercase__ = torch.load(_snake_case ) lowercase__ = WavLMConfigOrig(checkpoint["cfg"] ) lowercase__ = WavLMOrig(_snake_case ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: lowercase__ = WavLMConfig.from_pretrained(_snake_case ) else: lowercase__ = WavLMConfig() lowercase__ = WavLMModel(_snake_case ) recursively_load_weights(_snake_case ,_snake_case ) hf_wavlm.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
539
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase__ = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } lowerCamelCase__ = { '''gpt-neox-20b''': 2048, } class _lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" lowerCAmelCase__ =VOCAB_FILES_NAMES lowerCAmelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ =['''input_ids''', '''attention_mask'''] def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ) -> Tuple: """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) snake_case__ : str =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __SCREAMING_SNAKE_CASE ) != add_prefix_space: snake_case__ : List[str] =getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) snake_case__ : Dict =add_prefix_space snake_case__ : Optional[Any] =pre_tok_class(**__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] =add_prefix_space def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" snake_case__ : Optional[int] =self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> List[int]: """simple docstring""" snake_case__ : str =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) + [self.eos_token_id] ) if len(__SCREAMING_SNAKE_CASE ) > self.model_max_length: snake_case__ : int =input_ids[-self.model_max_length :] return input_ids
381
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class _lowerCAmelCase : """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ) -> Any: """simple docstring""" snake_case__ : List[Any] =parent snake_case__ : Union[str, Any] =batch_size snake_case__ : List[str] =seq_length snake_case__ : List[str] =is_training snake_case__ : str =use_input_mask snake_case__ : int =use_token_type_ids snake_case__ : int =use_labels snake_case__ : Union[str, Any] =vocab_size snake_case__ : Dict =hidden_size snake_case__ : Any =num_hidden_layers snake_case__ : Any =num_attention_heads snake_case__ : Optional[int] =intermediate_multiple_size snake_case__ : List[str] =hidden_act snake_case__ : List[str] =hidden_dropout snake_case__ : Optional[int] =attention_dropout snake_case__ : Union[str, Any] =weight_tying snake_case__ : List[str] =max_position_embeddings snake_case__ : Any =type_vocab_size snake_case__ : Optional[Any] =type_sequence_label_size snake_case__ : List[str] =initializer_range snake_case__ : Tuple =num_labels snake_case__ : Tuple =num_choices snake_case__ : List[Any] =scope def UpperCAmelCase ( self ) -> Any: """simple docstring""" snake_case__ : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : List[str] =None if self.use_input_mask: snake_case__ : Optional[int] =random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : int =None if self.use_labels: snake_case__ : Any =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Tuple =self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self ) -> Tuple: """simple docstring""" snake_case__, snake_case__, snake_case__, snake_case__ : int =self.prepare_config_and_inputs() snake_case__ : Optional[int] =True return config, input_ids, input_mask, token_labels def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" snake_case__ : Dict =GPTNeoXJapaneseModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Dict =model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] =model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" snake_case__ : Optional[int] =True snake_case__ : Dict =GPTNeoXJapaneseModel(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Optional[int] =model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" snake_case__ : Tuple =GPTNeoXJapaneseForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Tuple =model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" snake_case__ : Tuple =True snake_case__ : Tuple =GPTNeoXJapaneseForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() # first forward pass snake_case__ : List[str] =model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ : str =ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : Dict =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ : List[str] =torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : str =torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ : Union[str, Any] =model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] =output_from_no_past['''hidden_states'''][0] snake_case__ : Dict =model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] # select random slice snake_case__ : Dict =ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : List[Any] =output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Optional[Any] =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Union[str, Any] =self.prepare_config_and_inputs() snake_case__, snake_case__, snake_case__, snake_case__ : str =config_and_inputs snake_case__ : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ =(GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCAmelCase__ =(GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCAmelCase__ =( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCAmelCase__ =False lowerCAmelCase__ =False lowerCAmelCase__ =False lowerCAmelCase__ =False def UpperCAmelCase ( self ) -> int: """simple docstring""" snake_case__ : Optional[Any] =GPTNeoXJapaneseModelTester(self ) snake_case__ : List[str] =ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" snake_case__, snake_case__, snake_case__, snake_case__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> str: """simple docstring""" snake_case__, snake_case__, snake_case__, snake_case__ : List[str] =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> str: """simple docstring""" snake_case__, snake_case__, snake_case__, snake_case__ : List[str] =self.model_tester.prepare_config_and_inputs_for_decoder() snake_case__ : Optional[int] =None self.model_tester.create_and_check_model_as_decoder(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> Dict: """simple docstring""" snake_case__, snake_case__, snake_case__, snake_case__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ) -> Dict: """simple docstring""" snake_case__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase ( self ) -> Any: """simple docstring""" snake_case__ : Union[str, Any] ='''abeja/gpt-neox-japanese-2.7b''' snake_case__ : str =['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] snake_case__ : Optional[int] =[ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] snake_case__ : Any =GPTNeoXJapaneseTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] =GPTNeoXJapaneseForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] =[] for prompt in prompts: snake_case__ : Union[str, Any] =tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_ids snake_case__ : Optional[Any] =model.generate(__SCREAMING_SNAKE_CASE , max_length=50 ) snake_case__ : str =tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) predicted_outputs += generated_string self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
381
1
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __lowercase ( unittest.TestCase ): lowercase = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING lowercase = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __a ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowercase = AudioClassificationPipeline(model=__lowerCamelCase , feature_extractor=__lowerCamelCase ) # test with a raw waveform lowercase = np.zeros((3_40_00,) ) lowercase = np.zeros((1_40_00,) ) return audio_classifier, [audioa, audio] def __a ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Dict ) -> Dict: '''simple docstring''' lowercase ,lowercase = examples lowercase = audio_classifier(__lowerCamelCase ) # by default a model is initialized with num_labels=2 self.assertEqual( __lowerCamelCase , [ {'''score''': ANY(__lowerCamelCase ), '''label''': ANY(__lowerCamelCase )}, {'''score''': ANY(__lowerCamelCase ), '''label''': ANY(__lowerCamelCase )}, ] , ) lowercase = audio_classifier(__lowerCamelCase , top_k=1 ) self.assertEqual( __lowerCamelCase , [ {'''score''': ANY(__lowerCamelCase ), '''label''': ANY(__lowerCamelCase )}, ] , ) self.run_torchaudio(__lowerCamelCase ) @require_torchaudio def __a ( self : Dict , __lowerCamelCase : Tuple ) -> Tuple: '''simple docstring''' import datasets # test with a local file lowercase = datasets.load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) lowercase = dataset[0]['''audio''']['''array'''] lowercase = audio_classifier(__lowerCamelCase ) self.assertEqual( __lowerCamelCase , [ {'''score''': ANY(__lowerCamelCase ), '''label''': ANY(__lowerCamelCase )}, {'''score''': ANY(__lowerCamelCase ), '''label''': ANY(__lowerCamelCase )}, ] , ) @require_torch def __a ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase = '''anton-l/wav2vec2-random-tiny-classifier''' lowercase = pipeline('''audio-classification''' , model=__lowerCamelCase ) lowercase = np.ones((80_00,) ) lowercase = audio_classifier(__lowerCamelCase , top_k=4 ) lowercase = [ {'''score''': 0.0842, '''label''': '''no'''}, {'''score''': 0.0838, '''label''': '''up'''}, {'''score''': 0.0837, '''label''': '''go'''}, {'''score''': 0.0834, '''label''': '''right'''}, ] lowercase = [ {'''score''': 0.0845, '''label''': '''stop'''}, {'''score''': 0.0844, '''label''': '''on'''}, {'''score''': 0.0841, '''label''': '''right'''}, {'''score''': 0.0834, '''label''': '''left'''}, ] self.assertIn(nested_simplify(__lowerCamelCase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) lowercase = {'''array''': np.ones((80_00,) ), '''sampling_rate''': audio_classifier.feature_extractor.sampling_rate} lowercase = audio_classifier(__lowerCamelCase , top_k=4 ) self.assertIn(nested_simplify(__lowerCamelCase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __a ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' import datasets lowercase = '''superb/wav2vec2-base-superb-ks''' lowercase = pipeline('''audio-classification''' , model=__lowerCamelCase ) lowercase = datasets.load_dataset('''anton-l/superb_dummy''' , '''ks''' , split='''test''' ) lowercase = np.array(dataset[3]['''speech'''] , dtype=np.floataa ) lowercase = audio_classifier(__lowerCamelCase , top_k=4 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=3 ) , [ {'''score''': 0.981, '''label''': '''go'''}, {'''score''': 0.007, '''label''': '''up'''}, {'''score''': 0.006, '''label''': '''_unknown_'''}, {'''score''': 0.001, '''label''': '''down'''}, ] , ) @require_tf @unittest.skip('''Audio classification is not implemented for TF''' ) def __a ( self : List[str] ) -> List[Any]: '''simple docstring''' pass
702
import cmath import math def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase )-> complex: """simple docstring""" lowercase = math.radians(UpperCAmelCase ) lowercase = math.radians(UpperCAmelCase ) # Convert voltage and current to rectangular form lowercase = cmath.rect(UpperCAmelCase, UpperCAmelCase ) lowercase = cmath.rect(UpperCAmelCase, UpperCAmelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
479
0
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): _a = 42 class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ ): @register_to_config def __init__( self : Union[str, Any] , lowerCAmelCase : str = 32 , lowerCAmelCase : Dict = 64 , lowerCAmelCase : Union[str, Any] = 20 , lowerCAmelCase : List[Any] = 768 , lowerCAmelCase : List[Any]=77 , lowerCAmelCase : Optional[int]=4 , lowerCAmelCase : Optional[Any] = 0.0 , lowerCAmelCase : str = "silu" , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : int = None , lowerCAmelCase : int = "linear" , lowerCAmelCase : str = "prd" , lowerCAmelCase : Tuple = None , lowerCAmelCase : Optional[Any] = None , lowerCAmelCase : Any = None , ): super().__init__() lowerCAmelCase = num_attention_heads lowerCAmelCase = attention_head_dim lowerCAmelCase = num_attention_heads * attention_head_dim lowerCAmelCase = additional_embeddings lowerCAmelCase = time_embed_dim or inner_dim lowerCAmelCase = embedding_proj_dim or embedding_dim lowerCAmelCase = clip_embed_dim or embedding_dim lowerCAmelCase = Timesteps(_UpperCAmelCase , _UpperCAmelCase , 0 ) lowerCAmelCase = TimestepEmbedding(_UpperCAmelCase , _UpperCAmelCase , out_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase ) lowerCAmelCase = nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) if embedding_proj_norm_type is None: lowerCAmelCase = None elif embedding_proj_norm_type == "layer": lowerCAmelCase = nn.LayerNorm(_UpperCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) lowerCAmelCase = nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) if encoder_hid_proj_type is None: lowerCAmelCase = None elif encoder_hid_proj_type == "linear": lowerCAmelCase = nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) lowerCAmelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _UpperCAmelCase ) ) if added_emb_type == "prd": lowerCAmelCase = nn.Parameter(torch.zeros(1 , 1 , _UpperCAmelCase ) ) elif added_emb_type is None: lowerCAmelCase = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) lowerCAmelCase = nn.ModuleList( [ BasicTransformerBlock( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , dropout=_UpperCAmelCase , activation_fn="""gelu""" , attention_bias=_UpperCAmelCase , ) for d in range(_UpperCAmelCase ) ] ) if norm_in_type == "layer": lowerCAmelCase = nn.LayerNorm(_UpperCAmelCase ) elif norm_in_type is None: lowerCAmelCase = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) lowerCAmelCase = nn.LayerNorm(_UpperCAmelCase ) lowerCAmelCase = nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0000.0 ) causal_attention_mask.triu_(1 ) lowerCAmelCase = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , _UpperCAmelCase , persistent=_UpperCAmelCase ) lowerCAmelCase = nn.Parameter(torch.zeros(1 , _UpperCAmelCase ) ) lowerCAmelCase = nn.Parameter(torch.zeros(1 , _UpperCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowercase ( self : str ): lowerCAmelCase = {} def fn_recursive_add_processors(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ): if hasattr(_UpperCAmelCase , """set_processor""" ): lowerCAmelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , _UpperCAmelCase , _UpperCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return processors def __lowercase ( self : Any , lowerCAmelCase : str ): lowerCAmelCase = len(self.attn_processors.keys() ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(_UpperCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ): if hasattr(_UpperCAmelCase , """set_processor""" ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): module.set_processor(_UpperCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , _UpperCAmelCase , _UpperCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def __lowercase ( self : Dict ): self.set_attn_processor(AttnProcessor() ) def __lowercase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : str = None , lowerCAmelCase : Optional[Any] = None , lowerCAmelCase : str = True , ): lowerCAmelCase = hidden_states.shape[0] lowerCAmelCase = timestep if not torch.is_tensor(_UpperCAmelCase ): lowerCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(_UpperCAmelCase ) and len(timesteps.shape ) == 0: lowerCAmelCase = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCAmelCase = timesteps * torch.ones(_UpperCAmelCase , dtype=timesteps.dtype , device=timesteps.device ) lowerCAmelCase = self.time_proj(_UpperCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowerCAmelCase = timesteps_projected.to(dtype=self.dtype ) lowerCAmelCase = self.time_embedding(_UpperCAmelCase ) if self.embedding_proj_norm is not None: lowerCAmelCase = self.embedding_proj_norm(_UpperCAmelCase ) lowerCAmelCase = self.embedding_proj(_UpperCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowerCAmelCase = self.encoder_hidden_states_proj(_UpperCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) lowerCAmelCase = self.proj_in(_UpperCAmelCase ) lowerCAmelCase = self.positional_embedding.to(hidden_states.dtype ) lowerCAmelCase = [] lowerCAmelCase = 0 if encoder_hidden_states is not None: additional_embeds.append(_UpperCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowerCAmelCase = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowerCAmelCase = hidden_states[:, None, :] lowerCAmelCase = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowerCAmelCase = self.prd_embedding.to(hidden_states.dtype ).expand(_UpperCAmelCase , -1 , -1 ) additional_embeds.append(_UpperCAmelCase ) lowerCAmelCase = torch.cat( _UpperCAmelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowerCAmelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowerCAmelCase = F.pad( _UpperCAmelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) lowerCAmelCase = hidden_states + positional_embeddings if attention_mask is not None: lowerCAmelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 lowerCAmelCase = F.pad(_UpperCAmelCase , (0, self.additional_embeddings) , value=0.0 ) lowerCAmelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowerCAmelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: lowerCAmelCase = self.norm_in(_UpperCAmelCase ) for block in self.transformer_blocks: lowerCAmelCase = block(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) lowerCAmelCase = self.norm_out(_UpperCAmelCase ) if self.prd_embedding is not None: lowerCAmelCase = hidden_states[:, -1] else: lowerCAmelCase = hidden_states[:, additional_embeddings_len:] lowerCAmelCase = self.proj_to_clip_embeddings(_UpperCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_UpperCAmelCase ) def __lowercase ( self : Optional[int] , lowerCAmelCase : Optional[Any] ): lowerCAmelCase = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
169
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = AlbertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = AlbertForPreTraining(__lowercase) # Load weights from tf checkpoint load_tf_weights_in_albert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
23
0
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowerCAmelCase_ ( UpperCamelCase__ : List[Any] ): """simple docstring""" return EnvironmentCommand() def lowerCAmelCase_ ( UpperCamelCase__ : str ): """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class lowerCamelCase__ ( _UpperCAmelCase ): @staticmethod def SCREAMING_SNAKE_CASE_ ( A_ : ArgumentParser ): '''simple docstring''' __lowercase = parser.add_parser("""env""" ) download_parser.set_defaults(func=__UpperCamelCase ) download_parser.add_argument( """--accelerate-config_file""" , default=__UpperCamelCase , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=__UpperCamelCase ) def __init__( self : Any , A_ : List[Any] , *A_ : Any ): '''simple docstring''' __lowercase = accelerate_config_file def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = """not installed""" if is_safetensors_available(): import safetensors __lowercase = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors __lowercase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' __lowercase = """not installed""" __lowercase = __lowercase = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __lowercase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(__UpperCamelCase ): __lowercase = load_config_from_file(self._accelerate_config_file ).to_dict() __lowercase = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else F'''\t{accelerate_config}''' ) __lowercase = """not installed""" __lowercase = """NA""" if is_torch_available(): import torch __lowercase = torch.__version__ __lowercase = torch.cuda.is_available() __lowercase = """not installed""" __lowercase = """NA""" if is_tf_available(): import tensorflow as tf __lowercase = tf.__version__ try: # deprecated in v2.1 __lowercase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __lowercase = bool(tf.config.list_physical_devices("""GPU""" ) ) __lowercase = """not installed""" __lowercase = """not installed""" __lowercase = """not installed""" __lowercase = """NA""" if is_flax_available(): import flax import jax import jaxlib __lowercase = flax.__version__ __lowercase = jax.__version__ __lowercase = jaxlib.__version__ __lowercase = jax.lib.xla_bridge.get_backend().platform __lowercase = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": F'''{safetensors_version}''', """Accelerate version""": F'''{accelerate_version}''', """Accelerate config""": F'''{accelerate_config_str}''', """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": F'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": F'''{flax_version} ({jax_backend})''', """Jax version""": F'''{jax_version}''', """JaxLib version""": F'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(__UpperCamelCase ) ) return info @staticmethod def SCREAMING_SNAKE_CASE_ ( A_ : Union[str, Any] ): '''simple docstring''' return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
719
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def lowerCAmelCase_ ( UpperCamelCase__ : str ): """simple docstring""" def decorator(UpperCamelCase__ : Tuple ): __lowercase = getattr(UpperCamelCase__ , """handle_key""" , [] ) handle += [key] setattr(UpperCamelCase__ , """handle_key""" , UpperCamelCase__ ) return func return decorator def lowerCAmelCase_ ( *UpperCamelCase__ : List[str] ): """simple docstring""" def decorator(UpperCamelCase__ : Tuple ): __lowercase = getattr(UpperCamelCase__ , """handle_key""" , [] ) handle += keys setattr(UpperCamelCase__ , """handle_key""" , UpperCamelCase__ ) return func return decorator class lowerCamelCase__ ( _a ): def __new__( cls : str , A_ : Optional[Any] , A_ : Union[str, Any] , A_ : int ): '''simple docstring''' __lowercase = super().__new__(cls , A_ , A_ , A_ ) if not hasattr(A_ , """key_handler""" ): setattr(A_ , """key_handler""" , {} ) setattr(A_ , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __lowercase = getattr(A_ , """handle_key""" , [] ) for key in handled_keys: __lowercase = value return new_cls @staticmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict ): '''simple docstring''' __lowercase = get_character() if char != KEYMAP["undefined"]: __lowercase = ord(A_ ) __lowercase = cls.key_handler.get(A_ ) if handler: __lowercase = char return handler(cls ) else: return None def lowerCAmelCase_ ( cls : int ): """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
442
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]=7 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[str]=1_8 , lowerCAmelCase_ : Union[str, Any]=3_0 , lowerCAmelCase_ : int=4_0_0 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : List[Any]=None , ) -> Union[str, Any]: __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_0} __lowerCAmelCase = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = image_size __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size def lowercase ( self : Tuple ) -> Optional[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = MobileNetVaImageProcessor if is_vision_available() else None def lowercase ( self : Dict ) -> int: __lowerCAmelCase = MobileNetVaImageProcessingTester(self ) @property def lowercase ( self : List[Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self : Any ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'crop_size' ) ) def lowercase ( self : int ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def lowercase ( self : List[Any] ) -> str: pass def lowercase ( self : Any ) -> str: # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowerCAmelCase = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase ( self : List[Any] ) -> List[Any]: # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowerCAmelCase = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase ( self : List[Any] ) -> List[Any]: # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowerCAmelCase = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
53
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a_ ( lowerCAmelCase_ : str=None ): if subparsers is not None: __lowerCAmelCase = subparsers.add_parser('env' ) else: __lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file', default=lowerCAmelCase_, help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = torch.__version__ __lowerCAmelCase = torch.cuda.is_available() __lowerCAmelCase = is_xpu_available() __lowerCAmelCase = is_npu_available() __lowerCAmelCase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() __lowerCAmelCase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'PyTorch XPU available': str(lowerCAmelCase_ ), 'PyTorch NPU available': str(lowerCAmelCase_ ), 'System RAM': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __lowerCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __lowerCAmelCase = ( '\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else F"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) __lowerCAmelCase = accelerate_config return info def a_ ( ): __lowerCAmelCase = env_command_parser() __lowerCAmelCase = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
53
1
import string from math import logaa def _A ( A__ , A__ ): """simple docstring""" __lowercase = document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) __lowercase = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' __lowercase = corpus_without_punctuation.split('''\n''' ) __lowercase = term.lower() return (len([doc for doc in docs if term in doc] ), len(_A )) def _A ( A__ , A__ , A__=False ): """simple docstring""" if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def _A ( A__ , A__ ): """simple docstring""" return round(tf * idf , 3 )
719
'''simple docstring''' from collections.abc import Callable import numpy as np def _A ( A__ , A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = int(np.ceil((x_end - xa) / step_size ) ) __lowercase = np.zeros((n + 1,) ) __lowercase = ya __lowercase = xa for k in range(A__ ): __lowercase = y[k] + step_size * ode_func(A__ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
624
0
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase__ = logging.get_logger(__name__) class __magic_name__ : def __init__( self , _a = None , _a = None , _a=None , _a=None ) -> Dict: if not conversation_id: lowerCAmelCase_ = uuid.uuida() if past_user_inputs is None: lowerCAmelCase_ = [] if generated_responses is None: lowerCAmelCase_ = [] lowerCAmelCase_ = conversation_id lowerCAmelCase_ = past_user_inputs lowerCAmelCase_ = generated_responses lowerCAmelCase_ = text def __eq__( self , _a ) -> List[str]: if not isinstance(_a , _a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __a ( self , _a , _a = False ) -> int: if self.new_user_input: if overwrite: logger.warning( f"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " f"with: \"{text}\"." ) lowerCAmelCase_ = text else: logger.warning( f"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " f"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: lowerCAmelCase_ = text def __a ( self ) -> str: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowerCAmelCase_ = None def __a ( self , _a ) -> str: self.generated_responses.append(_a ) def __a ( self ) -> int: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ) -> List[str]: lowerCAmelCase_ = f"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): lowerCAmelCase_ = '''user''' if is_user else '''bot''' output += f"{name} >> {text} \n" return output @add_end_docstrings( A__ , R''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class __magic_name__ (A__ ): def __init__( self , *_a , **_a ) -> int: super().__init__(*_a , **_a ) if self.tokenizer.pad_token_id is None: lowerCAmelCase_ = self.tokenizer.eos_token def __a ( self , _a=None , _a=None , _a=None , **_a ) -> List[str]: lowerCAmelCase_ = {} lowerCAmelCase_ = {} lowerCAmelCase_ = {} if min_length_for_response is not None: lowerCAmelCase_ = min_length_for_response if minimum_tokens is not None: lowerCAmelCase_ = minimum_tokens if "max_length" in generate_kwargs: lowerCAmelCase_ = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowerCAmelCase_ = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_a ) return preprocess_params, forward_params, postprocess_params def __call__( self , _a , _a=0 , **_a ) -> Dict: lowerCAmelCase_ = super().__call__(_a , num_workers=_a , **_a ) if isinstance(_a , _a ) and len(_a ) == 1: return outputs[0] return outputs def __a ( self , _a , _a=32 ) -> Any: if not isinstance(_a , _a ): raise ValueError("ConversationalPipeline, expects Conversation as inputs" ) if conversation.new_user_input is None: raise ValueError( f"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " "Add user inputs with the conversation\'s `add_user_input` method" ) if hasattr(self.tokenizer , "_build_conversation_input_ids" ): lowerCAmelCase_ = self.tokenizer._build_conversation_input_ids(_a ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowerCAmelCase_ = self._legacy_parse_and_tokenize(_a ) if self.framework == "pt": lowerCAmelCase_ = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowerCAmelCase_ = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def __a ( self , _a , _a=10 , **_a ) -> Optional[int]: lowerCAmelCase_ = generate_kwargs.get("max_length" , self.model.config.max_length ) lowerCAmelCase_ = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(f"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) lowerCAmelCase_ = max_length - minimum_tokens lowerCAmelCase_ = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: lowerCAmelCase_ = model_inputs['''attention_mask'''][:, -trim:] lowerCAmelCase_ = model_inputs.pop("conversation" ) lowerCAmelCase_ = max_length lowerCAmelCase_ = self.model.generate(**_a , **_a ) if self.model.config.is_encoder_decoder: lowerCAmelCase_ = 1 else: lowerCAmelCase_ = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __a ( self , _a , _a=True ) -> Optional[Any]: lowerCAmelCase_ = model_outputs['''output_ids'''] lowerCAmelCase_ = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) lowerCAmelCase_ = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(_a ) return conversation def __a ( self , _a ) -> Tuple: lowerCAmelCase_ = self.tokenizer.eos_token_id lowerCAmelCase_ = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_a , add_special_tokens=_a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_a , add_special_tokens=_a ) ) if len(_a ) > self.tokenizer.model_max_length: lowerCAmelCase_ = input_ids[-self.tokenizer.model_max_length :] return input_ids
122
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def a ( __snake_case : float, __snake_case : float ): '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
608
0
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = ['image_processor', 'tokenizer'] lowerCamelCase_ = 'Pix2StructImageProcessor' lowerCamelCase_ = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] ): '''simple docstring''' lowercase : Optional[int] =False super().__init__(UpperCAmelCase__ , UpperCAmelCase__ ) def __call__( self : Union[str, Any] , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[int] = 2048 , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase__ : List[str] , ): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: lowercase : Optional[Any] =self.tokenizer lowercase : str =self.tokenizer( text=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , stride=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_overflowing_tokens=UpperCAmelCase__ , return_special_tokens_mask=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_length=UpperCAmelCase__ , verbose=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowercase : List[str] =self.image_processor( UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , max_patches=UpperCAmelCase__ , **UpperCAmelCase__ ) else: # add pixel_values and bbox lowercase : Optional[int] =self.image_processor( UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , max_patches=UpperCAmelCase__ , header_text=UpperCAmelCase__ , **UpperCAmelCase__ ) if text is not None and not self.image_processor.is_vqa: lowercase : Union[str, Any] =self.tokenizer( text=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , stride=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_overflowing_tokens=UpperCAmelCase__ , return_special_tokens_mask=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_length=UpperCAmelCase__ , verbose=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ , ) if "attention_mask" in text_encoding: lowercase : List[Any] =text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: lowercase : Union[str, Any] =text_encoding.pop('''input_ids''' ) else: lowercase : Tuple =None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase__ ) return encoding_image_processor def lowerCamelCase_ ( self : Tuple , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Dict ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCamelCase_ ( self : Dict , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) @property def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : str =self.tokenizer.model_input_names lowercase : int =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
700
'''simple docstring''' import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = """▁""" UpperCamelCase_ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( lowercase__ , unittest.TestCase ): lowerCamelCase_ = BigBirdTokenizer lowerCamelCase_ = BigBirdTokenizerFast lowerCamelCase_ = True lowerCamelCase_ = True def lowerCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() lowercase : Optional[int] =self.tokenizer_class(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : Optional[int] ='''<s>''' lowercase : int =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowercase : Dict =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(UpperCAmelCase__ ) , 1004 ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase : Optional[int] =self.get_tokenizer() lowercase : Any =self.get_rust_tokenizer() lowercase : int ='''I was born in 92000, and this is falsé.''' lowercase : List[str] =tokenizer.tokenize(UpperCAmelCase__ ) lowercase : Dict =rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : str =tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) lowercase : Union[str, Any] =rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : Optional[Any] =self.get_rust_tokenizer() lowercase : Optional[Any] =tokenizer.encode(UpperCAmelCase__ ) lowercase : Union[str, Any] =rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : Tuple =BigBirdTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) lowercase : Tuple =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [285, 46, 10, 170, 382] , ) lowercase : Tuple =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase : Any =tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowercase : List[Any] =tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def lowerCamelCase_ ( self : str ): '''simple docstring''' return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : str ='''Hello World!''' lowercase : Union[str, Any] =[65, 18536, 2260, 101, 66] self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) ) @slow def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : int =( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off lowercase : Tuple =[65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) ) @require_torch @slow def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence lowercase : List[str] =list(self.big_tokenizer.get_vocab().keys() )[:10] lowercase : Dict =''' '''.join(UpperCAmelCase__ ) lowercase : Union[str, Any] =self.big_tokenizer.encode_plus(UpperCAmelCase__ , return_tensors='''pt''' , return_token_type_ids=UpperCAmelCase__ ) lowercase : Dict =self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=UpperCAmelCase__ ) lowercase : Optional[int] =BigBirdConfig(attention_type='''original_full''' ) lowercase : Dict =BigBirdModel(UpperCAmelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase__ ) model(**UpperCAmelCase__ ) @slow def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowercase : Union[str, Any] =BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) lowercase : Dict =tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def lowerCamelCase_ ( self : int ): '''simple docstring''' # fmt: off lowercase : str ={'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
88
0
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class _snake_case : def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : list[tuple[float, float]] ): SCREAMING_SNAKE_CASE:List[Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. SCREAMING_SNAKE_CASE:Any = len(_lowerCamelCase ) - 1 def __UpperCamelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE:Union[str, Any] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree ,_lowerCamelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_lowerCamelCase ) ,5 ) == 1 return output_values def __UpperCamelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE:Optional[Any] = self.basis_function(_lowerCamelCase ) SCREAMING_SNAKE_CASE:Tuple = 0.0 SCREAMING_SNAKE_CASE:List[str] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __UpperCamelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore SCREAMING_SNAKE_CASE:Dict = [] # x coordinates of points to plot SCREAMING_SNAKE_CASE:List[Any] = [] # y coordinates of points to plot SCREAMING_SNAKE_CASE:Tuple = 0.0 while t <= 1: SCREAMING_SNAKE_CASE:Optional[Any] = self.bezier_curve_function(_lowerCamelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size SCREAMING_SNAKE_CASE:Any = [i[0] for i in self.list_of_points] SCREAMING_SNAKE_CASE:List[str] = [i[1] for i in self.list_of_points] plt.plot( _lowerCamelCase ,_lowerCamelCase ,color="blue" ,label="Curve of Degree " + str(self.degree ) ,) plt.scatter(_lowerCamelCase ,_lowerCamelCase ,color="red" ,label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
143
"""simple docstring""" from __future__ import annotations import math class lowerCAmelCase__ : def __init__( self : int , _lowerCamelCase : int ): _snake_case = size # approximate the overall size of segment tree with given value _snake_case = [0 for i in range(0 , 4 * size )] # create array to store lazy update _snake_case = [0 for i in range(0 , 4 * size )] _snake_case = [0 for i in range(0 , 4 * size )] # flag for lazy update def lowercase ( self : Optional[Any] , _lowerCamelCase : int ): return idx * 2 def lowercase ( self : Dict , _lowerCamelCase : int ): return idx * 2 + 1 def lowercase ( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[int] ): if left_element == right_element: _snake_case = a[left_element - 1] else: _snake_case = (left_element + right_element) // 2 self.build(self.left(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.build(self.right(_lowerCamelCase ) , mid + 1 , _lowerCamelCase , _lowerCamelCase ) _snake_case = max( self.segment_tree[self.left(_lowerCamelCase )] , self.segment_tree[self.right(_lowerCamelCase )] ) def lowercase ( self : str , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ): if self.flag[idx] is True: _snake_case = self.lazy[idx] _snake_case = False if left_element != right_element: _snake_case = self.lazy[idx] _snake_case = self.lazy[idx] _snake_case = True _snake_case = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: _snake_case = val if left_element != right_element: _snake_case = val _snake_case = val _snake_case = True _snake_case = True return True _snake_case = (left_element + right_element) // 2 self.update(self.left(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.update(self.right(_lowerCamelCase ) , mid + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _snake_case = max( self.segment_tree[self.left(_lowerCamelCase )] , self.segment_tree[self.right(_lowerCamelCase )] ) return True def lowercase ( self : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ): if self.flag[idx] is True: _snake_case = self.lazy[idx] _snake_case = False if left_element != right_element: _snake_case = self.lazy[idx] _snake_case = self.lazy[idx] _snake_case = True _snake_case = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] _snake_case = (left_element + right_element) // 2 _snake_case = self.query(self.left(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _snake_case = self.query(self.right(_lowerCamelCase ) , mid + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return max(_lowerCamelCase , _lowerCamelCase ) def __str__( self : List[Any] ): return str([self.query(1 , 1 , self.size , _lowerCamelCase , _lowerCamelCase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": UpperCAmelCase__ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] UpperCAmelCase__ = 15 UpperCAmelCase__ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
224
0
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowercase : List[Any] = TypeVar("""T""") def UpperCAmelCase_ ( _UpperCAmelCase ): return (position - 1) // 2 def UpperCAmelCase_ ( _UpperCAmelCase ): return (2 * position) + 1 def UpperCAmelCase_ ( _UpperCAmelCase ): return (2 * position) + 2 class a__ ( Generic[T] ): def __init__( self : List[str] ) -> None: """simple docstring""" lowerCamelCase_: list[tuple[T, int]] = [] lowerCamelCase_: dict[T, int] = {} lowerCamelCase_: int = 0 def __len__( self : Tuple ) -> int: """simple docstring""" return self.elements def __repr__( self : Any ) -> str: """simple docstring""" return str(self.heap ) def lowerCAmelCase ( self : List[Any] ) -> bool: """simple docstring""" # Check if the priority queue is empty return self.elements == 0 def lowerCAmelCase ( self : Any , A_ : T , A_ : int ) -> None: """simple docstring""" # Add an element with given priority to the queue self.heap.append((elem, weight) ) lowerCamelCase_: Optional[int] = self.elements self.elements += 1 self._bubble_up(A_ ) def lowerCAmelCase ( self : str ) -> T: """simple docstring""" # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) lowerCamelCase_ , lowerCamelCase_: Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowerCamelCase_ , lowerCamelCase_: Optional[int] = self.heap[0] self._bubble_down(A_ ) return elem def lowerCAmelCase ( self : Optional[Any] , A_ : T , A_ : int ) -> None: """simple docstring""" # Update the weight of the given key lowerCamelCase_: List[Any] = self.position_map[elem] lowerCamelCase_: List[Any] = (elem, weight) if position > 0: lowerCamelCase_: List[str] = get_parent_position(A_ ) lowerCamelCase_ , lowerCamelCase_: Tuple = self.heap[parent_position] if parent_weight > weight: self._bubble_up(A_ ) else: self._bubble_down(A_ ) else: self._bubble_down(A_ ) def lowerCAmelCase ( self : Tuple , A_ : T ) -> None: """simple docstring""" # Place a node at the proper position (upward movement) [to be used internally # only] lowerCamelCase_: Optional[Any] = self.position_map[elem] if curr_pos == 0: return None lowerCamelCase_: Any = get_parent_position(A_ ) lowerCamelCase_ , lowerCamelCase_: int = self.heap[curr_pos] lowerCamelCase_ , lowerCamelCase_: List[str] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(A_ , A_ ) return self._bubble_up(A_ ) return None def lowerCAmelCase ( self : str , A_ : T ) -> None: """simple docstring""" # Place a node at the proper position (downward movement) [to be used # internally only] lowerCamelCase_: Dict = self.position_map[elem] lowerCamelCase_ , lowerCamelCase_: Union[str, Any] = self.heap[curr_pos] lowerCamelCase_: Union[str, Any] = get_child_left_position(A_ ) lowerCamelCase_: int = get_child_right_position(A_ ) if child_left_position < self.elements and child_right_position < self.elements: lowerCamelCase_ , lowerCamelCase_: str = self.heap[child_left_position] lowerCamelCase_ , lowerCamelCase_: Dict = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(A_ , A_ ) return self._bubble_down(A_ ) if child_left_position < self.elements: lowerCamelCase_ , lowerCamelCase_: Optional[int] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(A_ , A_ ) return self._bubble_down(A_ ) else: return None if child_right_position < self.elements: lowerCamelCase_ , lowerCamelCase_: List[str] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(A_ , A_ ) return self._bubble_down(A_ ) return None def lowerCAmelCase ( self : Any , A_ : int , A_ : int ) -> None: """simple docstring""" # Swap the nodes at the given positions lowerCamelCase_: str = self.heap[nodea_pos][0] lowerCamelCase_: int = self.heap[nodea_pos][0] lowerCamelCase_ , lowerCamelCase_: List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) lowerCamelCase_: Dict = nodea_pos lowerCamelCase_: Optional[Any] = nodea_pos class a__ ( Generic[T] ): def __init__( self : Tuple ) -> None: """simple docstring""" lowerCamelCase_: dict[T, dict[T, int]] = {} lowerCamelCase_: int = 0 def __repr__( self : Optional[int] ) -> str: """simple docstring""" return str(self.connections ) def __len__( self : Optional[Any] ) -> int: """simple docstring""" return self.nodes def lowerCAmelCase ( self : Dict , A_ : T ) -> None: """simple docstring""" # Add a node in the graph if it is not in the graph if node not in self.connections: lowerCamelCase_: List[str] = {} self.nodes += 1 def lowerCAmelCase ( self : Tuple , A_ : T , A_ : T , A_ : int ) -> None: """simple docstring""" # Add an edge between 2 nodes in the graph self.add_node(A_ ) self.add_node(A_ ) lowerCamelCase_: Union[str, Any] = weight lowerCamelCase_: Dict = weight def UpperCAmelCase_ ( _UpperCAmelCase , ): lowerCamelCase_: dict[T, int] = {node: maxsize for node in graph.connections} lowerCamelCase_: dict[T, T | None] = {node: None for node in graph.connections} lowerCamelCase_: MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_UpperCAmelCase , _UpperCAmelCase ) if priority_queue.is_empty(): return dist, parent # initialization lowerCamelCase_: List[str] = priority_queue.extract_min() lowerCamelCase_: List[str] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCamelCase_: Optional[int] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_UpperCAmelCase , dist[neighbour] ) lowerCamelCase_: Tuple = node # running prim's algorithm while not priority_queue.is_empty(): lowerCamelCase_: Any = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCamelCase_: Tuple = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_UpperCAmelCase , dist[neighbour] ) lowerCamelCase_: List[str] = node return dist, parent
584
from __future__ import annotations import os from collections.abc import Mapping lowercase : str = tuple[int, int] class a__ : def __init__( self : Optional[Any] , A_ : set[int] , A_ : Mapping[EdgeT, int] ) -> None: """simple docstring""" lowerCamelCase_: set[int] = vertices lowerCamelCase_: dict[EdgeT, int] = { (min(A_ ), max(A_ )): weight for edge, weight in edges.items() } def lowerCAmelCase ( self : Optional[int] , A_ : EdgeT , A_ : int ) -> None: """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCamelCase_: Tuple = weight def lowerCAmelCase ( self : List[str] ) -> Graph: """simple docstring""" lowerCamelCase_: Graph = Graph({min(self.vertices )} , {} ) lowerCamelCase_: EdgeT lowerCamelCase_: int lowerCamelCase_: EdgeT lowerCamelCase_: int while len(subgraph.vertices ) < len(self.vertices ): lowerCamelCase_: List[str] = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCamelCase_: List[str] = edge lowerCamelCase_: str = weight subgraph.add_edge(A_ , A_ ) return subgraph def UpperCAmelCase_ ( _UpperCAmelCase = "p107_network.txt" ): lowerCamelCase_: str = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowerCamelCase_: str = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase_: dict[EdgeT, int] = {} lowerCamelCase_: list[str] lowerCamelCase_: int lowerCamelCase_: int with open(_UpperCAmelCase ) as f: lowerCamelCase_: Optional[int] = f.read().strip().split("""\n""" ) lowerCamelCase_: Dict = [line.split(""",""" ) for line in data] for edgea in range(1 , len(_UpperCAmelCase ) ): for edgea in range(_UpperCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": lowerCamelCase_: Any = int(adjaceny_matrix[edgea][edgea] ) lowerCamelCase_: Graph = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase ) lowerCamelCase_: Graph = graph.prims_algorithm() lowerCamelCase_: int = sum(graph.edges.values() ) lowerCamelCase_: int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
584
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" A_ = 42 A_ = 42 class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self: List[str] , __A: int ) -> Dict: _A = [[] for _ in range(__A )] _A = size def __getitem__( self: str , __A: int ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def __A ( self: Optional[int] ) -> str: return self._size def __A ( self: Optional[Any] , __A: int , __A: int , __A: int ) -> Any: if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(__A , __A ) ) def __A ( self: Optional[int] , __A: int , __A: int ) -> int | None: _A = deque([start_vertex] ) _A = [None] * self.size _A = 0 while queue: _A = queue.popleft() _A = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _A = current_distance + edge.weight _A = distances[edge.destination_vertex] if ( isinstance(__A , __A ) and new_distance >= dest_vertex_distance ): continue _A = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
484
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
484
1
class lowercase_ : def __init__( self , __A ) -> List[Any]: SCREAMING_SNAKE_CASE_ : int =val SCREAMING_SNAKE_CASE_ : Optional[Any] =None SCREAMING_SNAKE_CASE_ : str =None def _snake_case ( self , __A ) -> Union[str, Any]: if self.val: if val < self.val: if self.left is None: SCREAMING_SNAKE_CASE_ : str =Node(UpperCamelCase__ ) else: self.left.insert(UpperCamelCase__ ) elif val > self.val: if self.right is None: SCREAMING_SNAKE_CASE_ : Dict =Node(UpperCamelCase__ ) else: self.right.insert(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE_ : List[str] =val def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) -> int: if root: inorder(root.left , __UpperCamelCase ) res.append(root.val ) inorder(root.right , __UpperCamelCase ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[str] ) -> Tuple: if len(__UpperCamelCase ) == 0: return arr SCREAMING_SNAKE_CASE_ : Any =Node(arr[0] ) for i in range(1 , len(__UpperCamelCase ) ): root.insert(arr[i] ) # Traverse BST in order. SCREAMING_SNAKE_CASE_ : Optional[Any] =[] inorder(__UpperCamelCase , __UpperCamelCase ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
711
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str ) -> str: return " ".join( ''''''.join(word[::-1] ) if len(UpperCAmelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("""Hey wollef sroirraw"""))
431
0
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) UpperCAmelCase__ : List[Any] = sorted(string.lower() ) return len(__UpperCamelCase ) == len(set(__UpperCamelCase ) ) if __name__ == "__main__": __UpperCAmelCase = input('Enter a string ').strip() __UpperCAmelCase = is_isogram(input_str) print(F"{input_str} is {'an' if isogram else 'not an'} isogram.")
65
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCAmelCase = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __lowercase : snake_case_ = PegasusConfig snake_case_ = {} snake_case_ = """gelu""" def __init__( self : List[Any] ,A : int ,A : Optional[Any]=13 ,A : Dict=7 ,A : Dict=True ,A : Any=False ,A : Dict=99 ,A : int=32 ,A : Optional[int]=5 ,A : Union[str, Any]=4 ,A : Union[str, Any]=37 ,A : str=0.1 ,A : int=0.1 ,A : Optional[int]=20 ,A : Tuple=2 ,A : str=1 ,A : Optional[Any]=0 ,): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Union[str, Any] = batch_size UpperCAmelCase__ : List[Any] = seq_length UpperCAmelCase__ : int = is_training UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : int = vocab_size UpperCAmelCase__ : Dict = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Any = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Union[str, Any] = eos_token_id UpperCAmelCase__ : Union[str, Any] = pad_token_id UpperCAmelCase__ : List[str] = bos_token_id def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ).clip(3 ,self.vocab_size ) UpperCAmelCase__ : List[str] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) ,1 ) UpperCAmelCase__ : Any = np.concatenate([input_ids, eos_tensor] ,axis=1 ) UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ : str = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) UpperCAmelCase__ : Optional[Any] = prepare_pegasus_inputs_dict(A ,A ,A ) return config, inputs_dict def __lowercase ( self : Any ,A : Optional[int] ,A : str ,A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = 20 UpperCAmelCase__ : Dict = model_class_name(A ) UpperCAmelCase__ : str = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase__ : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] ,A ,A ) UpperCAmelCase__ : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) ,dtype="""i4""" ) UpperCAmelCase__ : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) UpperCAmelCase__ : Optional[int] = model.decode( decoder_input_ids[:, :-1] ,A ,decoder_attention_mask=A ,past_key_values=A ,decoder_position_ids=A ,) UpperCAmelCase__ : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype="""i4""" ) UpperCAmelCase__ : int = model.decode( decoder_input_ids[:, -1:] ,A ,decoder_attention_mask=A ,past_key_values=outputs_cache.past_key_values ,decoder_position_ids=A ,) UpperCAmelCase__ : Dict = model.decode(A ,A ) UpperCAmelCase__ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 ,msg=f"Max diff is {diff}" ) def __lowercase ( self : Optional[int] ,A : str ,A : Dict ,A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = 20 UpperCAmelCase__ : str = model_class_name(A ) UpperCAmelCase__ : Any = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase__ : Optional[int] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] ,axis=-1 ,) UpperCAmelCase__ : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] ,A ,A ) UpperCAmelCase__ : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) UpperCAmelCase__ : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] ,A ,decoder_attention_mask=A ,past_key_values=A ,decoder_position_ids=A ,) UpperCAmelCase__ : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype="""i4""" ) UpperCAmelCase__ : Dict = model.decode( decoder_input_ids[:, -1:] ,A ,past_key_values=outputs_cache.past_key_values ,decoder_attention_mask=A ,decoder_position_ids=A ,) UpperCAmelCase__ : Union[str, Any] = model.decode(A ,A ,decoder_attention_mask=A ) UpperCAmelCase__ : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 ,msg=f"Max diff is {diff}" ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , ): '''simple docstring''' if attention_mask is None: UpperCAmelCase__ : Union[str, Any] = np.not_equal(__UpperCamelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: UpperCAmelCase__ : Tuple = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) snake_case_ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = FlaxPegasusModelTester(self ) UpperCAmelCase__ : Optional[Any] = ConfigTester(self ,config_class=A ) def __lowercase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(A ,A ,A ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(A ,A ,A ) def __lowercase ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : List[Any] = self._prepare_for_class(A ,A ) UpperCAmelCase__ : int = model_class(A ) @jax.jit def encode_jitted(A : Optional[int] ,A : Union[str, Any]=None ,**A : Optional[Any] ): return model.encode(input_ids=A ,attention_mask=A ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase__ : int = encode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase__ : Dict = encode_jitted(**A ).to_tuple() self.assertEqual(len(A ) ,len(A ) ) for jitted_output, output in zip(A ,A ): self.assertEqual(jitted_output.shape ,output.shape ) def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : Dict = model_class(A ) UpperCAmelCase__ : str = model.encode(inputs_dict["""input_ids"""] ,inputs_dict["""attention_mask"""] ) UpperCAmelCase__ : Dict = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(A : List[Any] ,A : Any ,A : List[Any] ): return model.decode( decoder_input_ids=A ,decoder_attention_mask=A ,encoder_outputs=A ,) with self.subTest("""JIT Enabled""" ): UpperCAmelCase__ : Tuple = decode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase__ : str = decode_jitted(**A ).to_tuple() self.assertEqual(len(A ) ,len(A ) ) for jitted_output, output in zip(A ,A ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def __lowercase ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class_name.from_pretrained("""google/pegasus-large""" ,from_pt=A ) UpperCAmelCase__ : Any = np.ones((1, 1) ) UpperCAmelCase__ : Optional[Any] = model(A ) self.assertIsNotNone(A ) @slow def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) UpperCAmelCase__ : Optional[Any] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) UpperCAmelCase__ : Union[str, Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] UpperCAmelCase__ : str = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] UpperCAmelCase__ : str = tokenizer(A ,return_tensors="""np""" ,truncation=A ,max_length=512 ,padding=A ) UpperCAmelCase__ : Union[str, Any] = model.generate(**A ,num_beams=2 ).sequences UpperCAmelCase__ : int = tokenizer.batch_decode(A ,skip_special_tokens=A ) assert tgt_text == decoded
65
1
"""simple docstring""" from __future__ import annotations from collections import namedtuple def _lowerCamelCase ( UpperCAmelCase_ : float, UpperCAmelCase_ : float, UpperCAmelCase_ : float ) -> tuple: """simple docstring""" A__ = namedtuple("result", "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage", power / current ) elif current == 0: return result("current", power / voltage ) elif power == 0: return result("power", float(round(abs(voltage * current ), 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
704
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class UpperCamelCase__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=sys.maxsize ) -> str: A__ = "bilinear" A__ = max_size A__ = short_edge_length def __call__( self , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: A__ = [] for img in imgs: A__ , A__ = img.shape[:2] # later: provide list and randomly choose index for resize A__ = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img A__ = size * 1.0 / min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if h < w: A__ , A__ = size, scale * w else: A__ , A__ = scale * h, size if max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) > self.max_size: A__ = self.max_size * 1.0 / max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = newh * scale A__ = neww * scale A__ = int(neww + 0.5 ) A__ = int(newh + 0.5 ) if img.dtype == np.uinta: A__ = Image.fromarray(SCREAMING_SNAKE_CASE__ ) A__ = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) A__ = np.asarray(SCREAMING_SNAKE_CASE__ ) else: A__ = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw A__ = nn.functional.interpolate( SCREAMING_SNAKE_CASE__ , (newh, neww) , mode=self.interp_method , align_corners=SCREAMING_SNAKE_CASE__ ).squeeze(0 ) img_augs.append(SCREAMING_SNAKE_CASE__ ) return img_augs class UpperCamelCase__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ ) -> str: A__ = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) A__ = cfg.INPUT.FORMAT A__ = cfg.SIZE_DIVISIBILITY A__ = cfg.PAD_VALUE A__ = cfg.INPUT.MAX_SIZE_TEST A__ = cfg.MODEL.DEVICE A__ = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) A__ = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) A__ = lambda SCREAMING_SNAKE_CASE__ : (x - self.pixel_mean) / self.pixel_std def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: A__ = tuple(max(SCREAMING_SNAKE_CASE__ ) for s in zip(*[img.shape for img in images] ) ) A__ = [im.shape[-2:] for im in images] A__ = [ nn.functional.pad( SCREAMING_SNAKE_CASE__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ] return torch.stack(SCREAMING_SNAKE_CASE__ ), torch.tensor(SCREAMING_SNAKE_CASE__ ) def __call__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ) -> Optional[int]: with torch.no_grad(): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ = [images] if single_image: assert len(SCREAMING_SNAKE_CASE__ ) == 1 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(SCREAMING_SNAKE_CASE__ , images.pop(SCREAMING_SNAKE_CASE__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( SCREAMING_SNAKE_CASE__ , torch.as_tensor(img_tensorize(images.pop(SCREAMING_SNAKE_CASE__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge A__ = torch.tensor([im.shape[:2] for im in images] ) A__ = self.aug(SCREAMING_SNAKE_CASE__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic A__ = [self.normalizer(SCREAMING_SNAKE_CASE__ ) for x in images] # now pad them to do the following operations A__ , A__ = self.pad(SCREAMING_SNAKE_CASE__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad A__ = torch.true_divide(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCamelCase ( UpperCAmelCase_ : List[Any], UpperCAmelCase_ : List[str] ) -> List[Any]: """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCamelCase ( UpperCAmelCase_ : List[str], UpperCAmelCase_ : Tuple[int, int] ) -> str: """simple docstring""" assert torch.isfinite(UpperCAmelCase_ ).all(), "Box tensor contains infinite or NaN!" A__ , A__ = box_size tensor[:, 0].clamp_(min=0, max=UpperCAmelCase_ ) tensor[:, 1].clamp_(min=0, max=UpperCAmelCase_ ) tensor[:, 2].clamp_(min=0, max=UpperCAmelCase_ ) tensor[:, 3].clamp_(min=0, max=UpperCAmelCase_ )
562
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available __a: Optional[Any] = {'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Any = ['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys __a: List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
108
'''simple docstring''' from typing import Any def A__ ( A_ ) -> list[Any]: if not input_list: return [] _lowercase = [input_list.count(A_ ) for value in input_list] _lowercase = max(A_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(A_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
497
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowercase_ (_UpperCAmelCase ): A__ : str = '''Salesforce/blip-image-captioning-base''' A__ : Optional[int] = ( '''This is a tool that generates a description of an image. It takes an input named `image` which should be the ''' '''image to caption, and returns a text that contains the description in English.''' ) A__ : str = '''image_captioner''' A__ : Tuple = AutoModelForVisionaSeq A__ : Tuple = ['''image'''] A__ : List[Any] = ['''text'''] def __init__( self , *a_ , **a_ ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["vision"] ) super().__init__(*a_ , **a_ ) def lowerCamelCase__ ( self , a_ ) ->Union[str, Any]: '''simple docstring''' return self.pre_processor(images=a_ , return_tensors="pt" ) def lowerCamelCase__ ( self , a_ ) ->List[Any]: '''simple docstring''' return self.model.generate(**a_ ) def lowerCamelCase__ ( self , a_ ) ->Tuple: '''simple docstring''' return self.pre_processor.batch_decode(a_ , skip_special_tokens=a_ )[0].strip()
612
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCAmelCase ( UpperCamelCase_: Features ) -> Optional[int]: '''simple docstring''' _a = np.inf def set_batch_size(UpperCamelCase_: FeatureType ) -> None: nonlocal batch_size if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _a = min(UpperCamelCase_ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): _a = min(UpperCamelCase_ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and feature.dtype == "binary": _a = min(UpperCamelCase_ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(UpperCamelCase_ , UpperCamelCase_ ) return None if batch_size is np.inf else batch_size class lowercase_ (_UpperCAmelCase ): def __init__( self , a_ , a_ = None , a_ = None , a_ = None , a_ = False , a_ = False , a_ = None , **a_ , ) ->Optional[int]: '''simple docstring''' super().__init__( a_ , split=a_ , features=a_ , cache_dir=a_ , keep_in_memory=a_ , streaming=a_ , num_proc=a_ , **a_ , ) _a = path_or_paths if isinstance(a_ , a_ ) else {self.split: path_or_paths} _a = _PACKAGED_DATASETS_MODULES["parquet"][1] _a = Parquet( cache_dir=a_ , data_files=a_ , features=a_ , hash=a_ , **a_ , ) def lowerCamelCase__ ( self ) ->str: '''simple docstring''' if self.streaming: _a = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _a = None _a = None _a = None _a = None self.builder.download_and_prepare( download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , num_proc=self.num_proc , ) _a = self.builder.as_dataset( split=self.split , verification_mode=a_ , in_memory=self.keep_in_memory ) return dataset class lowercase_ : def __init__( self , a_ , a_ , a_ = None , **a_ , ) ->int: '''simple docstring''' _a = dataset _a = path_or_buf _a = batch_size or get_writer_batch_size(dataset.features ) _a = parquet_writer_kwargs def lowerCamelCase__ ( self ) ->int: '''simple docstring''' _a = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: _a = self._write(file_obj=a_ , batch_size=a_ , **self.parquet_writer_kwargs ) else: _a = self._write(file_obj=self.path_or_buf , batch_size=a_ , **self.parquet_writer_kwargs ) return written def lowerCamelCase__ ( self , a_ , a_ , **a_ ) ->int: '''simple docstring''' _a = 0 _a = parquet_writer_kwargs.pop("path_or_buf" , a_ ) _a = self.dataset.features.arrow_schema _a = pq.ParquetWriter(a_ , schema=a_ , **a_ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , a_ ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): _a = query_table( table=self.dataset._data , key=slice(a_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(a_ ) written += batch.nbytes writer.close() return written
612
1
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _a ( unittest.TestCase ): def __init__( self: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: bool = True , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: int = 32 , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 255 , UpperCamelCase_: bool = True , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Union[float, List[float]]] = [0.48145466, 0.4578275, 0.40821073] , UpperCamelCase_: Optional[Union[float, List[float]]] = [0.26862954, 0.26130258, 0.27577711] , UpperCamelCase_: bool = True , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Union[str, Any]=30 , UpperCamelCase_: Optional[int]=400 , UpperCamelCase_: List[str]=3 , ) -> Tuple: """simple docstring""" lowercase__ = parent lowercase__ = do_resize lowercase__ = size if size is not None else {'''shortest_edge''': 288} lowercase__ = size_divisor lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = do_center_crop lowercase__ = image_mean lowercase__ = image_std lowercase__ = do_pad lowercase__ = batch_size lowercase__ = num_channels lowercase__ = min_resolution lowercase__ = max_resolution def lowerCamelCase_ ( self: Tuple ) -> str: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Union[str, Any]=False ) -> str: """simple docstring""" if not batched: lowercase__ = self.size['''shortest_edge'''] lowercase__ = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): lowercase__ , lowercase__ = image.size else: lowercase__ , lowercase__ = image.shape[1], image.shape[2] lowercase__ = size / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowercase__ , lowercase__ = size, scale * w else: lowercase__ , lowercase__ = scale * h, size lowercase__ = int((1_333 / 800) * size ) if max(UpperCamelCase_ , UpperCamelCase_ ) > max_size: lowercase__ = max_size / max(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = newh * scale lowercase__ = neww * scale lowercase__ , lowercase__ = int(newh + 0.5 ), int(neww + 0.5 ) lowercase__ , lowercase__ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: lowercase__ = [] for image in image_inputs: lowercase__ , lowercase__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__ = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0] lowercase__ = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[Any] = BridgeTowerImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self: int ) -> Tuple: """simple docstring""" lowercase__ = BridgeTowerImageProcessingTester(self ) @property def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size_divisor''' ) ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" pass def lowerCamelCase_ ( self: Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
43
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __UpperCamelCase : def __init__( self ,_A ,_A=13 ,_A=7 ,_A=True ,_A=True ,_A=True ,_A=99 ,_A=32 ,_A=5 ,_A=4 ,_A=37 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=512 ,_A=16 ,_A=2 ,_A=0.0_2 ,_A=3 ,_A=4 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : str = parent _lowerCAmelCase : Optional[int] = batch_size _lowerCAmelCase : Dict = seq_length _lowerCAmelCase : Union[str, Any] = is_training _lowerCAmelCase : Tuple = use_token_type_ids _lowerCAmelCase : str = use_labels _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : Optional[Any] = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : str = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : int = type_sequence_label_size _lowerCAmelCase : int = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : Any = num_choices _lowerCAmelCase : Tuple = scope _lowerCAmelCase : int = self.vocab_size - 1 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] ,self.num_choices ) _lowerCAmelCase : List[Any] = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) _lowerCAmelCase : Dict = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,*_A ): '''simple docstring''' _lowerCAmelCase : Tuple = OpenAIGPTModel(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Dict = model(_A ,token_type_ids=_A ,head_mask=_A ) _lowerCAmelCase : Tuple = model(_A ,token_type_ids=_A ) _lowerCAmelCase : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,*_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = OpenAIGPTLMHeadModel(_A ) model.to(_A ) model.eval() _lowerCAmelCase : Union[str, Any] = model(_A ,token_type_ids=_A ,labels=_A ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,*_A ): '''simple docstring''' _lowerCAmelCase : str = OpenAIGPTDoubleHeadsModel(_A ) model.to(_A ) model.eval() _lowerCAmelCase : Optional[int] = model(_A ,token_type_ids=_A ,labels=_A ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,*_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.num_labels _lowerCAmelCase : Any = OpenAIGPTForSequenceClassification(_A ) model.to(_A ) model.eval() _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCAmelCase : Tuple = model(_A ,token_type_ids=_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ) : int = config_and_inputs _lowerCAmelCase : Any = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( a__ , a__ , a__ , unittest.TestCase ): _UpperCAmelCase = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _UpperCAmelCase = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _UpperCAmelCase = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __lowerCamelCase ( self ,_A ,_A ,_A=False ): '''simple docstring''' _lowerCAmelCase : int = super()._prepare_for_class(_A ,_A ,return_labels=_A ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _lowerCAmelCase : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=_A ,) _lowerCAmelCase : int = inputs_dict['labels'] _lowerCAmelCase : Tuple = inputs_dict['labels'] _lowerCAmelCase : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=_A ,) _lowerCAmelCase : Dict = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_A ) return inputs_dict def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = OpenAIGPTModelTester(self ) _lowerCAmelCase : Union[str, Any] = ConfigTester(self ,config_class=_A ,n_embd=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : List[Any] = OpenAIGPTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_A ) _lowerCAmelCase : Any = torch.tensor([[481, 4735, 544]] ,dtype=torch.long ,device=_A ) # the president is _lowerCAmelCase : Dict = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the _lowerCAmelCase : str = model.generate(_A ,do_sample=_A ) self.assertListEqual(output_ids[0].tolist() ,_A )
259
0
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase__ = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } lowerCamelCase__ = { '''allenai/led-base-16384''': 1_63_84, } class __magic_name__ (__lowercase ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = LEDTokenizer lowerCamelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self , _a=None , _a=None , _a=None , _a="replace" , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=False , _a=True , **_a , ) -> Union[str, Any]: super().__init__( _a , _a , tokenizer_file=_a , errors=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , trim_offsets=_a , **_a , ) lowerCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _a ) != add_prefix_space: lowerCAmelCase_ = getattr(_a , pre_tok_state.pop("type" ) ) lowerCAmelCase_ = add_prefix_space lowerCAmelCase_ = pre_tok_class(**_a ) lowerCAmelCase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCAmelCase_ = "post_processor" lowerCAmelCase_ = getattr(self.backend_tokenizer , _a , _a ) if tokenizer_component_instance: lowerCAmelCase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase_ = tuple(state["sep"] ) if "cls" in state: lowerCAmelCase_ = tuple(state["cls"] ) lowerCAmelCase_ = False if state.get("add_prefix_space" , _a ) != add_prefix_space: lowerCAmelCase_ = add_prefix_space lowerCAmelCase_ = True if state.get("trim_offsets" , _a ) != trim_offsets: lowerCAmelCase_ = trim_offsets lowerCAmelCase_ = True if changes_to_apply: lowerCAmelCase_ = getattr(_a , state.pop("type" ) ) lowerCAmelCase_ = component_class(**_a ) setattr(self.backend_tokenizer , _a , _a ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __a ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __a ( self , _a ) -> int: lowerCAmelCase_ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else value lowerCAmelCase_ = value def __a ( self , *_a , **_a ) -> BatchEncoding: lowerCAmelCase_ = kwargs.get("is_split_into_words" , _a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_a , **_a ) def __a ( self , *_a , **_a ) -> BatchEncoding: lowerCAmelCase_ = kwargs.get("is_split_into_words" , _a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*_a , **_a ) def __a ( self , _a , _a = None ) -> Tuple[str]: lowerCAmelCase_ = self._tokenizer.model.save(_a , name=_a ) return tuple(_a ) def __a ( self , _a , _a=None ) -> int: lowerCAmelCase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __a ( self , _a , _a = None ) -> List[int]: lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __a ( self , _a , _a = None , _a = PaddingStrategy.DO_NOT_PAD , _a = None , _a = None , ) -> dict: lowerCAmelCase_ = super()._pad( encoded_inputs=_a , max_length=_a , padding_strategy=_a , pad_to_multiple_of=_a , return_attention_mask=_a , ) # Load from model defaults if return_attention_mask is None: lowerCAmelCase_ = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCAmelCase_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCAmelCase_ = len(encoded_inputs["global_attention_mask"] ) != len(_a ) if needs_to_be_padded: lowerCAmelCase_ = len(_a ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCAmelCase_ = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": lowerCAmelCase_ = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
700
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __a ( self ) -> Dict: lowerCAmelCase_ = 1 lowerCAmelCase_ = 3 lowerCAmelCase_ = (32, 32) lowerCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image @property def __a ( self ) -> int: torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def __a ( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def __a ( self ) -> int: torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_a ) @property def __a ( self ) -> List[str]: def extract(*_a , **_a ): class __magic_name__ : def __init__( self ) -> List[str]: lowerCAmelCase_ = torch.ones([0] ) def __a ( self , _a ) -> int: self.pixel_values.to(_a ) return self return Out() return extract def __a ( self ) -> Dict: lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.dummy_cond_unet lowerCAmelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_a , set_alpha_to_one=_a , ) lowerCAmelCase_ = self.dummy_vae lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk lowerCAmelCase_ = StableDiffusionPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = "A painting of a squirrel eating a burger" lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe([prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) lowerCAmelCase_ = output.images lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_a , )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.dummy_cond_unet lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=_a ) lowerCAmelCase_ = self.dummy_vae lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk lowerCAmelCase_ = StableDiffusionPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = "A painting of a squirrel eating a burger" lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe([prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) lowerCAmelCase_ = output.images lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_a , )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> Any: lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=_a ) assert isinstance(_a , _a ) assert isinstance(pipe.scheduler , _a ) assert pipe.safety_checker is None lowerCAmelCase_ = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_a ) lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(_a ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCAmelCase_ = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def __a ( self ) -> Any: lowerCAmelCase_ = self.dummy_cond_unet lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=_a ) lowerCAmelCase_ = self.dummy_vae lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 lowerCAmelCase_ = unet.half() lowerCAmelCase_ = vae.half() lowerCAmelCase_ = bert.half() # make sure here that pndm scheduler skips prk lowerCAmelCase_ = StableDiffusionPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = "A painting of a squirrel eating a burger" lowerCAmelCase_ = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Any: lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_a ) lowerCAmelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) lowerCAmelCase_ = 4003660346 lowerCAmelCase_ = 7 # without safety guidance (sld_guidance_scale = 0) lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_a ) lowerCAmelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = "padme amidala taking a bath artwork, safe for work, no nudity" lowerCAmelCase_ = 2734971755 lowerCAmelCase_ = 7 lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> int: lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) lowerCAmelCase_ = 1044355234 lowerCAmelCase_ = 12 lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
226
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : Dict , __A : str=False ) -> Any: """simple docstring""" lowercase : str =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" lowercase : Union[str, Any] =[(pair[0], pair[1][4:]) if pair[1].startswith('''deit''' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ] ) return rename_keys def lowercase_ ( __A : Optional[Any] , __A : Dict , __A : str=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowercase : Optional[Any] ='''''' else: lowercase : Optional[Any] ='''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Any =state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) lowercase : str =state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowercase : Union[str, Any] =in_proj_weight[ : config.hidden_size, : ] lowercase : Optional[Any] =in_proj_bias[: config.hidden_size] lowercase : Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : Tuple =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : Union[str, Any] =in_proj_weight[ -config.hidden_size :, : ] lowercase : Any =in_proj_bias[-config.hidden_size :] def lowercase_ ( __A : Optional[Any] , __A : Optional[int] , __A : List[Any] ) -> List[Any]: """simple docstring""" lowercase : str =dct.pop(__A ) lowercase : int =val def lowercase_ ( ) -> str: """simple docstring""" lowercase : Dict ='''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : List[str] =Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def lowercase_ ( __A : List[str] , __A : str ) -> Tuple: """simple docstring""" lowercase : Any =DeiTConfig() # all deit models have fine-tuned heads lowercase : Dict =False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size lowercase : List[str] =1_0_0_0 lowercase : Any ='''huggingface/label-files''' lowercase : List[Any] ='''imagenet-1k-id2label.json''' lowercase : Optional[Any] =json.load(open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) ) lowercase : Dict ={int(__A ): v for k, v in idalabel.items()} lowercase : Tuple =idalabel lowercase : Any ={v: k for k, v in idalabel.items()} lowercase : Dict =int(deit_name[-6:-4] ) lowercase : Any =int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('''tiny''' ): lowercase : Any =1_9_2 lowercase : Optional[int] =7_6_8 lowercase : List[Any] =1_2 lowercase : Tuple =3 elif deit_name[9:].startswith('''small''' ): lowercase : List[Any] =3_8_4 lowercase : str =1_5_3_6 lowercase : List[Any] =1_2 lowercase : List[Any] =6 if deit_name[9:].startswith('''base''' ): pass elif deit_name[4:].startswith('''large''' ): lowercase : List[Any] =1_0_2_4 lowercase : str =4_0_9_6 lowercase : List[str] =2_4 lowercase : str =1_6 # load original model from timm lowercase : Optional[Any] =timm.create_model(__A , pretrained=__A ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowercase : Optional[Any] =timm_model.state_dict() lowercase : Dict =create_rename_keys(__A , __A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_q_k_v(__A , __A , __A ) # load HuggingFace model lowercase : Optional[int] =DeiTForImageClassificationWithTeacher(__A ).eval() model.load_state_dict(__A ) # Check outputs on an image, prepared by DeiTImageProcessor lowercase : Tuple =int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 lowercase : List[str] =DeiTImageProcessor(size=__A , crop_size=config.image_size ) lowercase : Optional[int] =image_processor(images=prepare_img() , return_tensors='''pt''' ) lowercase : int =encoding['''pixel_values'''] lowercase : List[Any] =model(__A ) lowercase : str =timm_model(__A ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__A , outputs.logits , atol=1E-3 ) Path(__A ).mkdir(exist_ok=__A ) print(F'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__A ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
94
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class UpperCAmelCase_ ( __A ): """simple docstring""" def A__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def A__ ( self : Any ) -> List[str]: '''simple docstring''' lowercase : List[str] ={'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(UpperCAmelCase ) def A__ ( self : Any ) -> Tuple: '''simple docstring''' lowercase : Tuple =self._create_example_records() lowercase : Tuple =Dataset.from_list(UpperCAmelCase ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(UpperCAmelCase ): self.assertDictEqual(UpperCAmelCase , example_records[i] ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Optional[Any] =self._create_example_records() lowercase : Union[str, Any] =Dataset.from_list(UpperCAmelCase ) lowercase : Tuple =Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def A__ ( self : str ) -> List[Any]: # checks what happens with missing columns '''simple docstring''' lowercase : Tuple =[{'''col_1''': 1}, {'''col_2''': '''x'''}] lowercase : Optional[Any] =Dataset.from_list(UpperCAmelCase ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def A__ ( self : List[Any] ) -> int: # checks if the type can be inferred from the second record '''simple docstring''' lowercase : List[Any] =[{'''col_1''': []}, {'''col_1''': [1, 2]}] lowercase : Union[str, Any] =Dataset.from_list(UpperCAmelCase ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[str] =Dataset.from_list([] ) self.assertEqual(len(UpperCAmelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
94
1
__snake_case :Optional[int] ='\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __snake_case :Tuple =[{'type': 'code', 'content': INSTALL_CONTENT}] __snake_case :Tuple ={ '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
224
__snake_case :List[Any] =range(2, 20 + 1) __snake_case :Dict =[10**k for k in range(ks[-1] + 1)] __snake_case :dict[int, dict[int, list[list[int]]]] ={} def lowerCamelCase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] ) -> int: '''simple docstring''' A = sum(a_i[j] for j in range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) ) A = sum(a_i[j] * base[j] for j in range(min(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) ) A , A = 0, 0 A = n - i A = memo.get(lowerCAmelCase__ ) if sub_memo is not None: A = sub_memo.get(lowerCAmelCase__ ) if jumps is not None and len(lowerCAmelCase__ ) > 0: # find and make the largest jump without going over A = -1 for _k in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A = _k break if max_jump >= 0: A , A , A = jumps[max_jump] # since the difference between jumps is cached, add c A = diff + c for j in range(min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) ): A , A = divmod(lowerCAmelCase__ , 10 ) if new_c > 0: add(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: A = [] else: A = {c: []} A = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A , A = next_term(lowerCAmelCase__ , k - 1 , i + dn , lowerCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A , A = compute(lowerCAmelCase__ , lowerCAmelCase__ , i + dn , lowerCAmelCase__ ) diff += _diff dn += terms_jumped A = sub_memo[c] # keep jumps sorted by # of terms skipped A = 0 while j < len(lowerCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCAmelCase__ , (diff, dn, k) ) return (diff, dn) def lowerCamelCase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ) -> Optional[Any]: '''simple docstring''' if i >= n: return 0, i if k > len(lowerCAmelCase__ ): a_i.extend([0 for _ in range(k - len(lowerCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A = i A , A , A = 0, 0, 0 for j in range(len(lowerCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A = ds_c + ds_b diff += addend A = 0 for j in range(lowerCAmelCase__ ): A = a_i[j] + addend A , A = divmod(lowerCAmelCase__ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return diff, i - start_i def lowerCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' for j in range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ): A = digits[j] + addend if s >= 10: A , A = divmod(lowerCAmelCase__ , 10 ) A = addend // 10 + quotient else: A = s A = addend // 10 if addend == 0: break while addend > 0: A , A = divmod(lowerCAmelCase__ , 10 ) digits.append(lowerCAmelCase__ ) def lowerCamelCase_ ( lowerCAmelCase__ : int = 10**15 ) -> int: '''simple docstring''' A = [1] A = 1 A = 0 while True: A , A = next_term(lowerCAmelCase__ , 20 , i + dn , lowerCAmelCase__ ) dn += terms_jumped if dn == n - i: break A = 0 for j in range(len(lowerCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
224
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> None: if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): UpperCamelCase__ : Optional[int] = array[indexa], array[indexa] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> None: if length > 1: UpperCamelCase__ : Dict = int(length / 2 ) for i in range(__lowerCAmelCase , low + middle ): comp_and_swap(__lowerCAmelCase , __lowerCAmelCase , i + middle , __lowerCAmelCase ) bitonic_merge(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) bitonic_merge(__lowerCAmelCase , low + middle , __lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> None: if length > 1: UpperCamelCase__ : Any = int(length / 2 ) bitonic_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 ) bitonic_sort(__lowerCAmelCase , low + middle , __lowerCAmelCase , 0 ) bitonic_merge(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase : List[Any] =input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase : List[str] =[int(item.strip()) for item in user_input.split(''',''')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('''\nSorted array in ascending order is: ''', end='''''') print(*unsorted, sep=''', ''') bitonic_merge(unsorted, 0, len(unsorted), 0) print('''Sorted array in descending order is: ''', end='''''') print(*unsorted, sep=''', ''')
228
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _lowerCamelCase : List[str] = """\ """ _lowerCamelCase : Optional[int] = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _lowerCamelCase : List[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowercase ( datasets.Metric): '''simple docstring''' def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , ) def lowerCamelCase_ ( self : List[Any] , snake_case : Optional[int] , snake_case : int , snake_case : int = 16 , snake_case : bool = True , snake_case : Dict=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": SCREAMING_SNAKE_CASE : Union[str, Any] = 'cuda' else: SCREAMING_SNAKE_CASE : Union[str, Any] = 'cuda' if torch.cuda.is_available() else 'cpu' SCREAMING_SNAKE_CASE : Any = AutoModelForCausalLM.from_pretrained(snake_case ) SCREAMING_SNAKE_CASE : Dict = model.to(snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: SCREAMING_SNAKE_CASE : str = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(snake_case ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" SCREAMING_SNAKE_CASE : List[str] = model.config.max_length - 1 else: SCREAMING_SNAKE_CASE : Union[str, Any] = model.config.max_length SCREAMING_SNAKE_CASE : Tuple = tokenizer( snake_case , add_special_tokens=snake_case , padding=snake_case , truncation=snake_case , max_length=snake_case , return_tensors='pt' , return_attention_mask=snake_case , ).to(snake_case ) SCREAMING_SNAKE_CASE : List[Any] = encodings['input_ids'] SCREAMING_SNAKE_CASE : Dict = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Optional[Any] = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 , len(snake_case ) , snake_case ) ): SCREAMING_SNAKE_CASE : Dict = min(start_index + batch_size , len(snake_case ) ) SCREAMING_SNAKE_CASE : List[str] = encoded_texts[start_index:end_index] SCREAMING_SNAKE_CASE : Optional[int] = attn_masks[start_index:end_index] if add_start_token: SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) SCREAMING_SNAKE_CASE : int = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(snake_case ), attn_mask] , dim=1 ) SCREAMING_SNAKE_CASE : Optional[Any] = encoded_batch with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(snake_case , attention_mask=snake_case ).logits SCREAMING_SNAKE_CASE : Optional[Any] = out_logits[..., :-1, :].contiguous() SCREAMING_SNAKE_CASE : Optional[int] = labels[..., 1:].contiguous() SCREAMING_SNAKE_CASE : Optional[int] = attn_mask[..., 1:].contiguous() SCREAMING_SNAKE_CASE : Optional[int] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , snake_case ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(snake_case )}
352
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor UpperCamelCase__ : List[Any] = logging.get_logger(__name__) class _UpperCamelCase ( A_ ): '''simple docstring''' def __init__( self : Tuple , *__lowercase : Dict , **__lowercase : List[str] ): '''simple docstring''' warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
486
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def A_( A ): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) UpperCamelCase__ : Any = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class _UpperCamelCase ( A_ ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE ( __lowercase : ArgumentParser ): '''simple docstring''' UpperCAmelCase_ = parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=__lowercase , required=__lowercase , help="""Model's type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=__lowercase , required=__lowercase , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=__lowercase , required=__lowercase , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=__lowercase , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=__lowercase , default=__lowercase , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=__lowercase ) def __init__( self : Optional[int] , __lowercase : str , __lowercase : str , __lowercase : str , __lowercase : str , __lowercase : str , *__lowercase : Tuple , ): '''simple docstring''' UpperCAmelCase_ = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(F"""Loading model {model_type}""" ) UpperCAmelCase_ = model_type UpperCAmelCase_ = tf_checkpoint UpperCAmelCase_ = pytorch_dump_output UpperCAmelCase_ = config UpperCAmelCase_ = finetuning_task_name def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(__lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase_ = self._tf_checkpoint UpperCAmelCase_ = """""" else: UpperCAmelCase_ = self._tf_checkpoint UpperCAmelCase_ = """""" convert_transfo_xl_checkpoint_to_pytorch( __lowercase , self._config , self._pytorch_dump_output , __lowercase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
486
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : float , snake_case_ : float ) -> tuple: '''simple docstring''' UpperCAmelCase_ = namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
78
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __A ( UpperCamelCase__ ): a__ : List[str] = """Salesforce/blip-image-captioning-base""" a__ : Optional[Any] = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) a__ : str = """image_captioner""" a__ : List[str] = AutoModelForVisionaSeq a__ : int = ["""image"""] a__ : Optional[Any] = ["""text"""] def __init__(self : Any , *__a : Dict , **__a : Union[str, Any] ): requires_backends(self , ["vision"] ) super().__init__(*__a , **__a ) def _lowercase (self : Union[str, Any] , __a : "Image" ): return self.pre_processor(images=__a , return_tensors="pt" ) def _lowercase (self : List[str] , __a : Dict ): return self.model.generate(**__a ) def _lowercase (self : int , __a : Optional[Any] ): return self.pre_processor.batch_decode(__a , skip_special_tokens=__a )[0].strip()
78
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowercase_ : Optional[int] = '\\n Text data.\n Second line of data.' lowercase_ : List[Any] = 'file' @pytest.fixture(scope='''session''' ) def A__ ( snake_case_ : Optional[Any] ): SCREAMING_SNAKE_CASE__: Union[str, Any]= tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') SCREAMING_SNAKE_CASE__: Any= bytes(snake_case_ , '''utf-8''' ) with zstd.open(snake_case_ , '''wb''' ) as f: f.write(snake_case_ ) return path @pytest.fixture def A__ ( snake_case_ : int ): with open(os.path.join(tmpfs.local_root_dir , snake_case_ ) , '''w''' ) as f: f.write(snake_case_ ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def A__ ( snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : List[Any] ): SCREAMING_SNAKE_CASE__: List[str]= {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} SCREAMING_SNAKE_CASE__: str= input_paths[compression_format] SCREAMING_SNAKE_CASE__: List[str]= tmp_path / '''cache''' SCREAMING_SNAKE_CASE__: Dict= DownloadConfig(cache_dir=snake_case_ , extract_compressed_file=snake_case_ ) SCREAMING_SNAKE_CASE__: List[Any]= cached_path(snake_case_ , download_config=snake_case_ ) with open(snake_case_ ) as f: SCREAMING_SNAKE_CASE__: int= f.read() with open(snake_case_ ) as f: SCREAMING_SNAKE_CASE__: Optional[int]= f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def A__ ( snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Optional[Any] ): SCREAMING_SNAKE_CASE__: List[str]= '''custom_cache''' SCREAMING_SNAKE_CASE__: Any= '''custom_extracted_dir''' SCREAMING_SNAKE_CASE__: List[Any]= tmp_path / '''custom_extracted_path''' if default_extracted: SCREAMING_SNAKE_CASE__: Union[str, Any]= ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , snake_case_ ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(snake_case_ ) ) SCREAMING_SNAKE_CASE__: Optional[int]= custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) SCREAMING_SNAKE_CASE__: Any= xz_file SCREAMING_SNAKE_CASE__: Union[str, Any]= ( DownloadConfig(extract_compressed_file=snake_case_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=snake_case_ ) ) SCREAMING_SNAKE_CASE__: Any= cached_path(snake_case_ , download_config=snake_case_ ) assert Path(snake_case_ ).parent.parts[-2:] == expected def A__ ( snake_case_ : str ): # absolute path SCREAMING_SNAKE_CASE__: Optional[int]= str(Path(snake_case_ ).resolve() ) assert cached_path(snake_case_ ) == text_file # relative path SCREAMING_SNAKE_CASE__: Union[str, Any]= str(Path(snake_case_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(snake_case_ ) == text_file def A__ ( snake_case_ : Dict ): # absolute path SCREAMING_SNAKE_CASE__: List[Any]= str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(snake_case_ ): cached_path(snake_case_ ) # relative path SCREAMING_SNAKE_CASE__: int= '''./__missing_file__.txt''' with pytest.raises(snake_case_ ): cached_path(snake_case_ ) def A__ ( snake_case_ : List[Any] ): SCREAMING_SNAKE_CASE__: Union[str, Any]= get_from_cache(F'tmp://{tmpfs_file}' ) with open(snake_case_ ) as f: SCREAMING_SNAKE_CASE__: List[str]= f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , snake_case_ ) def A__ ( ): with pytest.raises(snake_case_ ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , snake_case_ ) def A__ ( snake_case_ : int ): SCREAMING_SNAKE_CASE__: Dict= tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(snake_case_ ): http_get('''https://huggingface.co''' , temp_file=snake_case_ ) with pytest.raises(snake_case_ ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , snake_case_ ) def A__ ( snake_case_ : Dict ): SCREAMING_SNAKE_CASE__: List[Any]= tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(snake_case_ ): ftp_get('''ftp://huggingface.co''' , temp_file=snake_case_ ) with pytest.raises(snake_case_ ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , snake_case_ ) def A__ ( snake_case_ : int ): SCREAMING_SNAKE_CASE__: List[str]= tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(snake_case_ ): fsspec_get('''s3://huggingface.co''' , temp_file=snake_case_ ) with pytest.raises(snake_case_ ): fsspec_head('''s3://huggingface.co''' )
107
import re def A__ ( snake_case_ : str ): if len(re.findall('''[ATCG]''' , snake_case_ ) ) != len(snake_case_ ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
107
1
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __A : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class _a ( lowerCAmelCase_): """simple docstring""" def __init__( self : Optional[int] , __UpperCamelCase : CLIPSegForImageSegmentation , __UpperCamelCase : CLIPSegProcessor , __UpperCamelCase : AutoencoderKL , __UpperCamelCase : CLIPTextModel , __UpperCamelCase : CLIPTokenizer , __UpperCamelCase : UNetaDConditionModel , __UpperCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __UpperCamelCase : StableDiffusionSafetyChecker , __UpperCamelCase : CLIPImageProcessor , )->List[Any]: super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: _UpperCAmelCase = ( F'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' F' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' 'to update the config accordingly as leaving `steps_offset` might led to incorrect results' ' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,' ' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`' ' file' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , SCREAMING_SNAKE_CASE__ , standard_warn=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase = dict(scheduler.config ) _UpperCAmelCase = 1 _UpperCAmelCase = FrozenDict(SCREAMING_SNAKE_CASE__ ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: _UpperCAmelCase = ( F'The configuration file of this scheduler: {scheduler} has not set the configuration' ' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make' ' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to' ' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face' ' Hub, it would be very nice if you could open a Pull request for the' ' `scheduler/scheduler_config.json` file' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , SCREAMING_SNAKE_CASE__ , standard_warn=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase = dict(scheduler.config ) _UpperCAmelCase = True _UpperCAmelCase = FrozenDict(SCREAMING_SNAKE_CASE__ ) if safety_checker is None: logger.warning( F'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=SCREAMING_SNAKE_CASE__ , segmentation_processor=SCREAMING_SNAKE_CASE__ , vae=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , ) def lowercase__ ( self : str , __UpperCamelCase : Optional[Union[str, int]] = "auto" )->List[str]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE__ ) def lowercase__ ( self : Tuple )->List[str]: self.enable_attention_slicing(SCREAMING_SNAKE_CASE__ ) def lowercase__ ( self : Dict )->str: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _UpperCAmelCase = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowercase__ ( self : Optional[int] )->Optional[int]: if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(SCREAMING_SNAKE_CASE__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Union[str, Any] , __UpperCamelCase : Union[str, List[str]] , __UpperCamelCase : Union[torch.FloatTensor, PIL.Image.Image] , __UpperCamelCase : str , __UpperCamelCase : int = 5_1_2 , __UpperCamelCase : int = 5_1_2 , __UpperCamelCase : int = 5_0 , __UpperCamelCase : float = 7.5 , __UpperCamelCase : Optional[Union[str, List[str]]] = None , __UpperCamelCase : Optional[int] = 1 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : Optional[torch.Generator] = None , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCamelCase : int = 1 , **__UpperCamelCase : List[Any] , )->List[str]: _UpperCAmelCase = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) _UpperCAmelCase = self.segmentation_model(**SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() _UpperCAmelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask _UpperCAmelCase = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , height=SCREAMING_SNAKE_CASE__ , width=SCREAMING_SNAKE_CASE__ , num_inference_steps=SCREAMING_SNAKE_CASE__ , guidance_scale=SCREAMING_SNAKE_CASE__ , negative_prompt=SCREAMING_SNAKE_CASE__ , num_images_per_prompt=SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , latents=SCREAMING_SNAKE_CASE__ , output_type=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , callback=SCREAMING_SNAKE_CASE__ , callback_steps=SCREAMING_SNAKE_CASE__ , )
602
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class SCREAMING_SNAKE_CASE_ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int = 16 , SCREAMING_SNAKE_CASE__ : int = 88 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : int = 32 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "geglu" , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Optional[int]: super().__init__() A : Tuple =nn.ModuleList( [ TransformeraDModel( num_attention_heads=SCREAMING_SNAKE_CASE__ , attention_head_dim=SCREAMING_SNAKE_CASE__ , in_channels=SCREAMING_SNAKE_CASE__ , num_layers=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , norm_num_groups=SCREAMING_SNAKE_CASE__ , cross_attention_dim=SCREAMING_SNAKE_CASE__ , attention_bias=SCREAMING_SNAKE_CASE__ , sample_size=SCREAMING_SNAKE_CASE__ , num_vector_embeds=SCREAMING_SNAKE_CASE__ , activation_fn=SCREAMING_SNAKE_CASE__ , num_embeds_ada_norm=SCREAMING_SNAKE_CASE__ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference A : List[Any] =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` A : str =[77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` A : Optional[int] =[1, 0] def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : bool = True , ) -> Dict: A : Any =hidden_states A : int =[] A : str =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens A : Optional[int] =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] A : str =self.transformer_index_for_condition[i] A : str =self.transformers[transformer_index]( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , cross_attention_kwargs=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] A : str =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) A : Any =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=SCREAMING_SNAKE_CASE__ )
305
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __A( __UpperCAmelCase ): __A = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) __A = "CIDAS/clipseg-rd64-refined" __A = "image_segmenter" __A = CLIPSegForImageSegmentation __A = ["image", "text"] __A = ["image"] def __init__( self, *A, **A ): """simple docstring""" requires_backends(self, ['''vision'''] ) super().__init__(*__A, **__A ) def _UpperCamelCase ( self, A, A ): """simple docstring""" return self.pre_processor(text=[label], images=[image], padding=__A, return_tensors='''pt''' ) def _UpperCamelCase ( self, A ): """simple docstring""" with torch.no_grad(): _UpperCamelCase = self.model(**__A ).logits return logits def _UpperCamelCase ( self, A ): """simple docstring""" _UpperCamelCase = outputs.cpu().detach().numpy() _UpperCamelCase = 0 _UpperCamelCase = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
718
def SCREAMING_SNAKE_CASE ( lowerCAmelCase ): _UpperCamelCase = [] if len(lowerCAmelCase ) == 1: return [nums.copy()] for _ in range(len(lowerCAmelCase ) ): _UpperCamelCase = nums.pop(0 ) _UpperCamelCase = permute(lowerCAmelCase ) for perm in permutations: perm.append(lowerCAmelCase ) result.extend(lowerCAmelCase ) nums.append(lowerCAmelCase ) return result def SCREAMING_SNAKE_CASE ( lowerCAmelCase ): def backtrack(lowerCAmelCase ): if start == len(lowerCAmelCase ) - 1: output.append(nums[:] ) else: for i in range(lowerCAmelCase , len(lowerCAmelCase ) ): _UpperCamelCase , _UpperCamelCase = nums[i], nums[start] backtrack(start + 1 ) _UpperCamelCase , _UpperCamelCase = nums[i], nums[start] # backtrack _UpperCamelCase = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowercase : Optional[Any] = permutea([1, 2, 3]) print(res) doctest.testmod()
105
0
'''simple docstring''' def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowerCAmelCase__ : Tuple = mf_knapsack(i - 1 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: lowerCAmelCase__ : Union[str, Any] = max( mf_knapsack(i - 1 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) , mf_knapsack(i - 1 , lowerCamelCase_ , lowerCamelCase_ , j - wt[i - 1] ) + val[i - 1] , ) lowerCAmelCase__ : Optional[Any] = val return f[i][j] def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowerCAmelCase__ : Any = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowerCAmelCase__ : List[str] = dp[i - 1][w_] return dp[n][w_], dp def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if not (isinstance(lowerCamelCase_ , (list, tuple) ) and isinstance(lowerCamelCase_ , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) lowerCAmelCase__ : List[str] = len(lowerCamelCase_ ) if num_items != len(lowerCamelCase_ ): lowerCAmelCase__ : Optional[int] = ( "The number of weights must be the same as the number of values.\n" f'''But got {num_items} weights and {len(lowerCamelCase_ )} values''' ) raise ValueError(lowerCamelCase_ ) for i in range(lowerCamelCase_ ): if not isinstance(wt[i] , lowerCamelCase_ ): lowerCAmelCase__ : Tuple = ( "All weights must be integers but got weight of " f'''type {type(wt[i] )} at index {i}''' ) raise TypeError(lowerCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ : int = knapsack(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ : set = set() _construct_solution(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return optimal_val, example_optional_set def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowerCamelCase_ , lowerCamelCase_ , i - 1 , lowerCamelCase_ , lowerCamelCase_ ) else: optimal_set.add(lowerCamelCase_ ) _construct_solution(lowerCamelCase_ , lowerCamelCase_ , i - 1 , j - wt[i - 1] , lowerCamelCase_ ) if __name__ == "__main__": snake_case = [3, 2, 4, 4] snake_case = [4, 3, 2, 3] snake_case = 4 snake_case = 6 snake_case = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] snake_case , snake_case = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 snake_case , snake_case = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
378
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class lowerCAmelCase ( UpperCamelCase_ ): A_ : List[str] = """mobilenet_v2""" def __init__( self : Optional[int] , a__ : Dict=3 , a__ : str=224 , a__ : int=1.0 , a__ : Dict=8 , a__ : Dict=8 , a__ : Dict=6 , a__ : Optional[Any]=32 , a__ : List[str]=True , a__ : int=True , a__ : List[str]="relu6" , a__ : List[str]=True , a__ : List[Any]=0.8 , a__ : Tuple=0.02 , a__ : Tuple=0.001 , a__ : Optional[Any]=255 , **a__ : str , ): '''simple docstring''' super().__init__(**a__ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCAmelCase__ : Any = num_channels lowerCAmelCase__ : Union[str, Any] = image_size lowerCAmelCase__ : Tuple = depth_multiplier lowerCAmelCase__ : Optional[int] = depth_divisible_by lowerCAmelCase__ : Union[str, Any] = min_depth lowerCAmelCase__ : List[str] = expand_ratio lowerCAmelCase__ : Union[str, Any] = output_stride lowerCAmelCase__ : Optional[int] = first_layer_is_expansion lowerCAmelCase__ : Tuple = finegrained_output lowerCAmelCase__ : Optional[int] = hidden_act lowerCAmelCase__ : Optional[Any] = tf_padding lowerCAmelCase__ : Union[str, Any] = classifier_dropout_prob lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : str = layer_norm_eps lowerCAmelCase__ : int = semantic_loss_ignore_index class lowerCAmelCase ( UpperCamelCase_ ): A_ : Optional[int] = version.parse("""1.11""" ) @property def _A ( self : List[Any] ): '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def _A ( self : Optional[int] ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def _A ( self : List[str] ): '''simple docstring''' return 1e-4
378
1
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class snake_case__: """simple docstring""" @staticmethod def snake_case ( *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Dict ): pass def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Tuple = np.array(lowerCamelCase__ ) lowercase__ : List[Any] = npimg.shape return {"hash": hashimage(lowerCamelCase__ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class snake_case__(unittest.TestCase ): """simple docstring""" lowercase_ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) lowercase_ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any ): lowercase__ : Dict = MaskGenerationPipeline(model=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def snake_case ( self : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] ): pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def snake_case ( self : int ): pass @slow @require_torch def snake_case ( self : Dict ): lowercase__ : Any = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) lowercase__ : Union[str, Any] = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=256 ) # Shortening by hashing lowercase__ : str = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0_444}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.021}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0_167}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0_132}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0_053}, {"mask": {"hash": "e2d0b7a0b7", "shape": (480, 640)}, "scores": 0.9_967}, {"mask": {"hash": "453c7844bd", "shape": (480, 640)}, "scores": 0.993}, {"mask": {"hash": "3d44f2926d", "shape": (480, 640)}, "scores": 0.9_909}, {"mask": {"hash": "64033ddc3f", "shape": (480, 640)}, "scores": 0.9_879}, {"mask": {"hash": "801064ff79", "shape": (480, 640)}, "scores": 0.9_834}, {"mask": {"hash": "6172f276ef", "shape": (480, 640)}, "scores": 0.9_716}, {"mask": {"hash": "b49e60e084", "shape": (480, 640)}, "scores": 0.9_612}, {"mask": {"hash": "a811e775fd", "shape": (480, 640)}, "scores": 0.9_599}, {"mask": {"hash": "a6a8ebcf4b", "shape": (480, 640)}, "scores": 0.9_552}, {"mask": {"hash": "9d8257e080", "shape": (480, 640)}, "scores": 0.9_532}, {"mask": {"hash": "32de6454a8", "shape": (480, 640)}, "scores": 0.9_516}, {"mask": {"hash": "af3d4af2c8", "shape": (480, 640)}, "scores": 0.9_499}, {"mask": {"hash": "3c6db475fb", "shape": (480, 640)}, "scores": 0.9_483}, {"mask": {"hash": "c290813fb9", "shape": (480, 640)}, "scores": 0.9_464}, {"mask": {"hash": "b6f0b8f606", "shape": (480, 640)}, "scores": 0.943}, {"mask": {"hash": "92ce16bfdf", "shape": (480, 640)}, "scores": 0.943}, {"mask": {"hash": "c749b25868", "shape": (480, 640)}, "scores": 0.9_408}, {"mask": {"hash": "efb6cab859", "shape": (480, 640)}, "scores": 0.9_335}, {"mask": {"hash": "1ff2eafb30", "shape": (480, 640)}, "scores": 0.9_326}, {"mask": {"hash": "788b798e24", "shape": (480, 640)}, "scores": 0.9_262}, {"mask": {"hash": "abea804f0e", "shape": (480, 640)}, "scores": 0.8_999}, {"mask": {"hash": "7b9e8ddb73", "shape": (480, 640)}, "scores": 0.8_986}, {"mask": {"hash": "cd24047c8a", "shape": (480, 640)}, "scores": 0.8_984}, {"mask": {"hash": "6943e6bcbd", "shape": (480, 640)}, "scores": 0.8_873}, {"mask": {"hash": "b5f47c9191", "shape": (480, 640)}, "scores": 0.8_871} ] , ) # fmt: on @require_torch @slow def snake_case ( self : Dict ): lowercase__ : int = "facebook/sam-vit-huge" lowercase__ : Optional[Any] = pipeline("mask-generation" , model=SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing lowercase__ : int = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0_444}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_210}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0_167}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0_132}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0_053}, ] , )
718
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
81
0
"""simple docstring""" import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowercase__ = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") lowercase__ = get_tests_dir("""fixtures/vocab.json""") lowercase__ = get_tests_dir("""fixtures""") class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def A_ ( self ): _lowerCamelCase : List[str] = 0 def A_ ( self ): _lowerCamelCase : Any = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase , lowercase ) def A_ ( self ): with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Any = WavaVecaConfig() _lowerCamelCase : Optional[int] = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) # save in new folder model_config.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) _lowerCamelCase : Optional[int] = AutoProcessor.from_pretrained(lowercase ) self.assertIsInstance(lowercase , lowercase ) def A_ ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowercase , os.path.join(lowercase , lowercase ) ) copyfile(lowercase , os.path.join(lowercase , 'vocab.json' ) ) _lowerCamelCase : str = AutoProcessor.from_pretrained(lowercase ) self.assertIsInstance(lowercase , lowercase ) def A_ ( self ): with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : List[str] = WavaVecaFeatureExtractor() _lowerCamelCase : int = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) _lowerCamelCase : List[Any] = WavaVecaProcessor(lowercase , lowercase ) # save in new folder processor.save_pretrained(lowercase ) # drop `processor_class` in tokenizer with open(os.path.join(lowercase , lowercase ) , 'r' ) as f: _lowerCamelCase : Dict = json.load(lowercase ) config_dict.pop('processor_class' ) with open(os.path.join(lowercase , lowercase ) , 'w' ) as f: f.write(json.dumps(lowercase ) ) _lowerCamelCase : Optional[int] = AutoProcessor.from_pretrained(lowercase ) self.assertIsInstance(lowercase , lowercase ) def A_ ( self ): with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Optional[Any] = WavaVecaFeatureExtractor() _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) _lowerCamelCase : Dict = WavaVecaProcessor(lowercase , lowercase ) # save in new folder processor.save_pretrained(lowercase ) # drop `processor_class` in feature extractor with open(os.path.join(lowercase , lowercase ) , 'r' ) as f: _lowerCamelCase : List[Any] = json.load(lowercase ) config_dict.pop('processor_class' ) with open(os.path.join(lowercase , lowercase ) , 'w' ) as f: f.write(json.dumps(lowercase ) ) _lowerCamelCase : Tuple = AutoProcessor.from_pretrained(lowercase ) self.assertIsInstance(lowercase , lowercase ) def A_ ( self ): with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : str = WavaVecaConfig(processor_class='Wav2Vec2Processor' ) model_config.save_pretrained(lowercase ) # copy relevant files copyfile(lowercase , os.path.join(lowercase , 'vocab.json' ) ) # create emtpy sample processor with open(os.path.join(lowercase , lowercase ) , 'w' ) as f: f.write('{}' ) _lowerCamelCase : List[Any] = AutoProcessor.from_pretrained(lowercase ) self.assertIsInstance(lowercase , lowercase ) def A_ ( self ): with self.assertRaises(lowercase ): _lowerCamelCase : List[Any] = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase ): _lowerCamelCase : Optional[int] = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase ) _lowerCamelCase : int = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) _lowerCamelCase : Any = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) _lowerCamelCase : Dict = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version _lowerCamelCase : List[Any] = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase , use_fast=lowercase ) _lowerCamelCase : Optional[int] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def A_ ( self ): try: AutoConfig.register('custom' , lowercase ) AutoFeatureExtractor.register(lowercase , lowercase ) AutoTokenizer.register(lowercase , slow_tokenizer_class=lowercase ) AutoProcessor.register(lowercase , lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase ): AutoProcessor.register(lowercase , lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCamelCase : str = CustomFeatureExtractor.from_pretrained(lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : List[str] = os.path.join(lowercase , 'vocab.txt' ) with open(lowercase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _lowerCamelCase : List[str] = CustomTokenizer(lowercase ) _lowerCamelCase : Tuple = CustomProcessor(lowercase , lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowercase ) _lowerCamelCase : Tuple = AutoProcessor.from_pretrained(lowercase ) self.assertIsInstance(lowercase , lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def A_ ( self ): class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = False class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = False class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = '''AutoFeatureExtractor''' lowerCamelCase__ = '''AutoTokenizer''' lowerCamelCase__ = False try: AutoConfig.register('custom' , lowercase ) AutoFeatureExtractor.register(lowercase , lowercase ) AutoTokenizer.register(lowercase , slow_tokenizer_class=lowercase ) AutoProcessor.register(lowercase , lowercase ) # If remote code is not set, the default is to use local classes. _lowerCamelCase : str = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. _lowerCamelCase : int = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. _lowerCamelCase : Union[str, Any] = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def A_ ( self ): _lowerCamelCase : Optional[int] = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(processor.__class__.__name__ , 'BertTokenizerFast' ) def A_ ( self ): _lowerCamelCase : Optional[Any] = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' ) self.assertEqual(processor.__class__.__name__ , 'ConvNextImageProcessor' ) @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def A_ ( cls ): _lowerCamelCase : Union[str, Any] = TOKEN HfFolder.save_token(lowercase ) @classmethod def A_ ( cls ): try: delete_repo(token=cls._token , repo_id='test-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-processor' ) except HTTPError: pass def A_ ( self ): _lowerCamelCase : Union[str, Any] = WavaVecaProcessor.from_pretrained(lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowercase , 'test-processor' ) , push_to_hub=lowercase , use_auth_token=self._token ) _lowerCamelCase : Union[str, Any] = WavaVecaProcessor.from_pretrained(F'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowercase , getattr(new_processor.feature_extractor , lowercase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def A_ ( self ): _lowerCamelCase : Optional[Any] = WavaVecaProcessor.from_pretrained(lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowercase , 'test-processor-org' ) , push_to_hub=lowercase , use_auth_token=self._token , organization='valid_org' , ) _lowerCamelCase : List[str] = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowercase , getattr(new_processor.feature_extractor , lowercase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def A_ ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() _lowerCamelCase : List[Any] = CustomFeatureExtractor.from_pretrained(lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : List[str] = os.path.join(lowercase , 'vocab.txt' ) with open(lowercase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _lowerCamelCase : Dict = CustomTokenizer(lowercase ) _lowerCamelCase : Dict = CustomProcessor(lowercase , lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'''{USER}/test-dynamic-processor''' , token=self._token ) _lowerCamelCase : Tuple = Repository(lowercase , clone_from=F'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(lowercase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowercase , 'tokenizer_config.json' ) ) as f: _lowerCamelCase : Optional[Any] = json.load(lowercase ) self.assertDictEqual( tokenizer_config['auto_map'] , { 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowercase , 'custom_feature_extraction.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowercase , 'custom_tokenization.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowercase , 'custom_processing.py' ) ) ) repo.push_to_hub() _lowerCamelCase : Optional[Any] = AutoProcessor.from_pretrained(F'''{USER}/test-dynamic-processor''' , trust_remote_code=lowercase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , 'CustomProcessor' )
630
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin _A = logging.get_logger(__name__) enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( snake_case , snake_case , unittest.TestCase ): __a : List[Any] = UNetaDModel __a : Union[str, Any] = '''sample''' @property def _snake_case ( self ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[Any] = 4 __SCREAMING_SNAKE_CASE : Dict = 3 __SCREAMING_SNAKE_CASE : Union[str, Any] = (3_2, 3_2) __SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([1_0] ).to(lowercase ) return {"sample": noise, "timestep": time_step} @property def _snake_case ( self ) -> Tuple: '''simple docstring''' return (3, 3_2, 3_2) @property def _snake_case ( self ) -> List[Any]: '''simple docstring''' return (3, 3_2, 3_2) def _snake_case ( self ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''block_out_channels''': (3_2, 6_4), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 3_2, } __SCREAMING_SNAKE_CASE : int = self.dummy_input return init_dict, inputs_dict class SCREAMING_SNAKE_CASE_ ( snake_case , snake_case , unittest.TestCase ): __a : str = UNetaDModel __a : Optional[Any] = '''sample''' @property def _snake_case ( self ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = 4 __SCREAMING_SNAKE_CASE : Any = 4 __SCREAMING_SNAKE_CASE : str = (3_2, 3_2) __SCREAMING_SNAKE_CASE : int = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase ) __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([1_0] ).to(lowercase ) return {"sample": noise, "timestep": time_step} @property def _snake_case ( self ) -> Any: '''simple docstring''' return (4, 3_2, 3_2) @property def _snake_case ( self ) -> int: '''simple docstring''' return (4, 3_2, 3_2) def _snake_case ( self ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = { '''sample_size''': 3_2, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (3_2, 6_4), '''attention_head_dim''': 3_2, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_input return init_dict, inputs_dict def _snake_case ( self ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=lowercase ) self.assertIsNotNone(lowercase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(lowercase ) __SCREAMING_SNAKE_CASE : int = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _snake_case ( self ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=lowercase ) model.to(lowercase ) __SCREAMING_SNAKE_CASE : int = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _snake_case ( self ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=lowercase ) model_accelerate.to(lowercase ) model_accelerate.eval() __SCREAMING_SNAKE_CASE : str = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) __SCREAMING_SNAKE_CASE : str = noise.to(lowercase ) __SCREAMING_SNAKE_CASE : List[str] = torch.tensor([1_0] * noise.shape[0] ).to(lowercase ) __SCREAMING_SNAKE_CASE : int = model_accelerate(lowercase , lowercase )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=lowercase , low_cpu_mem_usage=lowercase ) model_normal_load.to(lowercase ) model_normal_load.eval() __SCREAMING_SNAKE_CASE : List[Any] = model_normal_load(lowercase , lowercase )['''sample'''] assert torch_all_close(lowercase , lowercase , rtol=1e-3 ) def _snake_case ( self ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : Union[str, Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(lowercase ) __SCREAMING_SNAKE_CASE : Dict = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __SCREAMING_SNAKE_CASE : Tuple = noise.to(lowercase ) __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([1_0] * noise.shape[0] ).to(lowercase ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[int] = model(lowercase , lowercase ).sample __SCREAMING_SNAKE_CASE : List[str] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __SCREAMING_SNAKE_CASE : Dict = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(lowercase , lowercase , rtol=1e-3 ) ) class SCREAMING_SNAKE_CASE_ ( snake_case , snake_case , unittest.TestCase ): __a : List[str] = UNetaDModel __a : Any = '''sample''' @property def _snake_case ( self , lowercase=(3_2, 3_2) ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : Union[str, Any] = 4 __SCREAMING_SNAKE_CASE : int = 3 __SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase ) __SCREAMING_SNAKE_CASE : Any = torch.tensor(batch_size * [1_0] ).to(dtype=torch.intaa , device=lowercase ) return {"sample": noise, "timestep": time_step} @property def _snake_case ( self ) -> Union[str, Any]: '''simple docstring''' return (3, 3_2, 3_2) @property def _snake_case ( self ) -> List[str]: '''simple docstring''' return (3, 3_2, 3_2) def _snake_case ( self ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[Any] = { '''block_out_channels''': [3_2, 6_4, 6_4, 6_4], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } __SCREAMING_SNAKE_CASE : int = self.dummy_input return init_dict, inputs_dict @slow def _snake_case ( self ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=lowercase ) self.assertIsNotNone(lowercase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(lowercase ) __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_input __SCREAMING_SNAKE_CASE : str = floats_tensor((4, 3) + (2_5_6, 2_5_6) ).to(lowercase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = noise __SCREAMING_SNAKE_CASE : Dict = model(**lowercase ) assert image is not None, "Make sure output is not None" @slow def _snake_case ( self ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE : str = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(lowercase ) __SCREAMING_SNAKE_CASE : Any = 4 __SCREAMING_SNAKE_CASE : Dict = 3 __SCREAMING_SNAKE_CASE : Tuple = (2_5_6, 2_5_6) __SCREAMING_SNAKE_CASE : Dict = torch.ones((batch_size, num_channels) + sizes ).to(lowercase ) __SCREAMING_SNAKE_CASE : List[str] = torch.tensor(batch_size * [1e-4] ).to(lowercase ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : Any = model(lowercase , lowercase ).sample __SCREAMING_SNAKE_CASE : int = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off __SCREAMING_SNAKE_CASE : str = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(lowercase , lowercase , rtol=1e-2 ) ) def _snake_case ( self ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(lowercase ) __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : str = 3 __SCREAMING_SNAKE_CASE : Optional[Any] = (3_2, 3_2) __SCREAMING_SNAKE_CASE : str = torch.ones((batch_size, num_channels) + sizes ).to(lowercase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(lowercase ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : Dict = model(lowercase , lowercase ).sample __SCREAMING_SNAKE_CASE : str = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(lowercase , lowercase , rtol=1e-2 ) ) def _snake_case ( self ) -> str: '''simple docstring''' pass
158
0
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets lowerCamelCase :int = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' lowerCamelCase :Optional[int] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' lowerCamelCase :int = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def _a (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[ """https://en.wikipedia.org/wiki/ROUGE_(metric)""", """https://github.com/google-research/google-research/tree/master/rouge""", ] , ) def _a (self , lowercase , lowercase , lowercase=None , lowercase=True , lowercase=False ): if rouge_types is None: A_ : List[Any] = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""] A_ : List[Any] = rouge_scorer.RougeScorer(rouge_types=lowercase , use_stemmer=lowercase ) if use_aggregator: A_ : Tuple = scoring.BootstrapAggregator() else: A_ : Dict = [] for ref, pred in zip(lowercase , lowercase ): A_ : Any = scorer.score(lowercase , lowercase ) if use_aggregator: aggregator.add_scores(lowercase ) else: scores.append(lowercase ) if use_aggregator: A_ : List[str] = aggregator.aggregate() else: A_ : List[str] = {} for key in scores[0]: A_ : Dict = [score[key] for score in scores] return result
716
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCamelCase__ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def a ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def a ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCamelCase__ ): http_head("""https://huggingface.co""" )
686
0
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''nielsr/canine-s''': 2_0_4_8, } # Unicode defines 1,114,112 total “codepoints” __magic_name__ = 1_1_1_4_1_1_2 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py __magic_name__ = 0 __magic_name__ = 0XE_000 __magic_name__ = 0XE_001 __magic_name__ = 0XE_002 __magic_name__ = 0XE_003 __magic_name__ = 0XE_004 # Maps special codepoints to human-readable names. __magic_name__ = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: '''[CLS]''', SEP: '''[SEP]''', BOS: '''[BOS]''', MASK: '''[MASK]''', PAD: '''[PAD]''', RESERVED: '''[RESERVED]''', } # Maps special codepoint human-readable names to their codepoint values. __magic_name__ = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , a_=chr(a_ ) , a_=chr(a_ ) , a_=chr(a_ ) , a_=chr(a_ ) , a_=chr(a_ ) , a_=chr(a_ ) , a_=False , a_=2048 , **a_ , ): lowerCamelCase_ : int = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else bos_token lowerCamelCase_ : int = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else eos_token lowerCamelCase_ : str = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else sep_token lowerCamelCase_ : str = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else cls_token lowerCamelCase_ : str = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : List[Any] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , pad_token=a_ , mask_token=a_ , add_prefix_space=a_ , model_max_length=a_ , **a_ , ) # Creates a mapping for looking up the IDs of special symbols. lowerCamelCase_ : Optional[int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): lowerCamelCase_ : Tuple = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. lowerCamelCase_ : List[Any] = { codepoint: name for name, codepoint in self._special_codepoints.items() } lowerCamelCase_ : str = UNICODE_VOCAB_SIZE lowerCamelCase_ : Any = len(self._special_codepoints ) @property def _UpperCamelCase ( self ): return self._unicode_vocab_size def _UpperCamelCase ( self , a_ ): return list(a_ ) def _UpperCamelCase ( self , a_ ): try: return ord(a_ ) except TypeError: raise ValueError(F"""invalid token: '{token}'""" ) def _UpperCamelCase ( self , a_ ): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(a_ ) except TypeError: raise ValueError(F"""invalid id: {index}""" ) def _UpperCamelCase ( self , a_ ): return "".join(a_ ) def _UpperCamelCase ( self , a_ , a_ = None ): lowerCamelCase_ : List[str] = [self.sep_token_id] lowerCamelCase_ : Dict = [self.cls_token_id] lowerCamelCase_ : Optional[Any] = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _UpperCamelCase ( self , a_ , a_ = None , a_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) lowerCamelCase_ : List[Any] = [1] + ([0] * len(a_ )) + [1] if token_ids_a is not None: result += ([0] * len(a_ )) + [1] return result def _UpperCamelCase ( self , a_ , a_ = None ): lowerCamelCase_ : str = [self.sep_token_id] lowerCamelCase_ : int = [self.cls_token_id] lowerCamelCase_ : Optional[int] = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _UpperCamelCase ( self , a_ , a_ = None ): return ()
250
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase ( __magic_name__ ): _a = """segformer""" def __init__( self , UpperCamelCase=3 , UpperCamelCase=4 , UpperCamelCase=[2, 2, 2, 2] , UpperCamelCase=[8, 4, 2, 1] , UpperCamelCase=[32, 64, 160, 256] , UpperCamelCase=[7, 3, 3, 3] , UpperCamelCase=[4, 2, 2, 2] , UpperCamelCase=[1, 2, 5, 8] , UpperCamelCase=[4, 4, 4, 4] , UpperCamelCase="gelu" , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=0.1 , UpperCamelCase=0.02 , UpperCamelCase=0.1 , UpperCamelCase=1e-6 , UpperCamelCase=256 , UpperCamelCase=255 , **UpperCamelCase , ) -> int: super().__init__(**UpperCamelCase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCamelCase , ) __a = num_channels __a = num_encoder_blocks __a = depths __a = sr_ratios __a = hidden_sizes __a = patch_sizes __a = strides __a = mlp_ratios __a = num_attention_heads __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = classifier_dropout_prob __a = initializer_range __a = drop_path_rate __a = layer_norm_eps __a = decoder_hidden_size __a = kwargs.get('reshape_last_stage' , UpperCamelCase ) __a = semantic_loss_ignore_index class __lowercase ( __magic_name__ ): _a = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCamelCase__ ( self ) -> float: return 1e-4 @property def UpperCamelCase__ ( self ) -> int: return 12
539
0
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case=0 ): # Format the message. if name is None: __lowerCAmelCase = None else: __lowerCAmelCase = "." * max(0 , spaces - 2 ) + "# {:" + str(50 - spaces ) + "s}" __lowerCAmelCase = fmt.format(__snake_case ) # Print and recurse (if needed). if isinstance(__snake_case , __snake_case ): if msg is not None: print(__snake_case ) for k in val.keys(): recursive_print(__snake_case , val[k] , spaces + 2 ) elif isinstance(__snake_case , torch.Tensor ): print(__snake_case , ":" , val.size() ) else: print(__snake_case , ":" , __snake_case ) def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. __lowerCAmelCase = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] __lowerCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:] __lowerCAmelCase = param.view(*__snake_case ) __lowerCAmelCase = param.transpose(0 , 2 ) __lowerCAmelCase = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] __lowerCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:] __lowerCAmelCase = param.view(*__snake_case ) __lowerCAmelCase = param.transpose(0 , 1 ).contiguous() __lowerCAmelCase = param.view(*__snake_case ) return param def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): # The converted output model. __lowerCAmelCase = {} # old versions did not store training args __lowerCAmelCase = input_state_dict.get("args" , __snake_case ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) __lowerCAmelCase = ds_args.padded_vocab_size __lowerCAmelCase = ds_args.max_position_embeddings __lowerCAmelCase = ds_args.hidden_size __lowerCAmelCase = ds_args.num_layers __lowerCAmelCase = ds_args.num_attention_heads __lowerCAmelCase = ds_args.ffn_hidden_size # pprint(config) # The number of heads. __lowerCAmelCase = config.n_head # The hidden_size per head. __lowerCAmelCase = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): __lowerCAmelCase = input_state_dict["checkpoint_version"] else: __lowerCAmelCase = 0.0 # The model. __lowerCAmelCase = input_state_dict["model"] # The language model. __lowerCAmelCase = model["language_model"] # The embeddings. __lowerCAmelCase = lm["embedding"] # The word embeddings. __lowerCAmelCase = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. __lowerCAmelCase = word_embeddings[: config.vocab_size, :] __lowerCAmelCase = word_embeddings # The position embeddings. __lowerCAmelCase = embeddings["position_embeddings"]["weight"] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] __lowerCAmelCase = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"""pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match""" ) # Store the position embeddings. __lowerCAmelCase = pos_embeddings # The transformer. __lowerCAmelCase = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. __lowerCAmelCase = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" ) # The simple map of names for "automated" rules. __lowerCAmelCase = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } # Extract the layers. for key, val in transformer.items(): # Match the name. __lowerCAmelCase = layer_re.match(__snake_case ) # Stop if that's not a layer if m is None: break # The index of the layer. __lowerCAmelCase = int(m.group(1 ) ) # The name of the operation. __lowerCAmelCase = m.group(2 ) # Is it a weight or a bias? __lowerCAmelCase = m.group(3 ) # The name of the layer. __lowerCAmelCase = F"""transformer.h.{layer_idx}""" # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm" ): __lowerCAmelCase = "ln_1" if op_name.startswith("input" ) else "ln_2" __lowerCAmelCase = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. __lowerCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __snake_case , __snake_case ) __lowerCAmelCase = causal_mask # Insert a "dummy" tensor for masked_bias. __lowerCAmelCase = torch.tensor(-1E4 , dtype=torch.floataa ) __lowerCAmelCase = masked_bias __lowerCAmelCase = fix_query_key_value_ordering(__snake_case , __snake_case , 3 , __snake_case , __snake_case ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. __lowerCAmelCase = out_val.transpose(0 , 1 ).contiguous() # Store. __lowerCAmelCase = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": __lowerCAmelCase = fix_query_key_value_ordering(__snake_case , __snake_case , 3 , __snake_case , __snake_case ) # Store. No change of shape. __lowerCAmelCase = out_val # Transpose the weights. elif weight_or_bias == "weight": __lowerCAmelCase = megatron_to_transformers[op_name] __lowerCAmelCase = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": __lowerCAmelCase = megatron_to_transformers[op_name] __lowerCAmelCase = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. __lowerCAmelCase = transformer["final_layernorm.weight"] __lowerCAmelCase = transformer["final_layernorm.bias"] # For LM head, transformers' wants the matrix to weight embeddings. __lowerCAmelCase = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ): # Create the argument parser. __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" , action="store_true" ) parser.add_argument( "path_to_checkpoint" , type=__snake_case , help="Path to the checkpoint file (.zip archive or direct .pt file)" , ) parser.add_argument( "--config_file" , default="" , type=__snake_case , help="An optional config json file describing the pre-trained model." , ) __lowerCAmelCase = parser.parse_args() # Extract the basename. __lowerCAmelCase = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"""Extracting PyTorch state dictionary from {args.path_to_checkpoint}""" ) if args.path_to_checkpoint.endswith(".zip" ): with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict: __lowerCAmelCase = torch.load(__snake_case , map_location="cpu" ) else: __lowerCAmelCase = torch.load(args.path_to_checkpoint , map_location="cpu" ) __lowerCAmelCase = input_state_dict.get("args" , __snake_case ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: __lowerCAmelCase = "gelu_fast" elif ds_args.openai_gelu: __lowerCAmelCase = "gelu_new" else: __lowerCAmelCase = "gelu" else: # in the very early days this used to be "gelu_new" __lowerCAmelCase = "gelu_new" # Spell out all parameters in case the defaults change. __lowerCAmelCase = GPTaConfig( vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=__snake_case , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="cls_index" , summary_use_proj=__snake_case , summary_activation=__snake_case , summary_proj_to_labels=__snake_case , summary_first_dropout=0.1 , scale_attn_weights=__snake_case , use_cache=__snake_case , bos_token_id=5_0256 , eos_token_id=5_0256 , ) else: __lowerCAmelCase = GPTaConfig.from_json_file(args.config_file ) __lowerCAmelCase = ["GPT2LMHeadModel"] # Convert. print("Converting" ) __lowerCAmelCase = convert_megatron_checkpoint(__snake_case , __snake_case , __snake_case ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__snake_case , __snake_case ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: __lowerCAmelCase = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": __lowerCAmelCase = "gpt2" elif tokenizer_type == "PretrainedFromHF": __lowerCAmelCase = ds_args.tokenizer_name_or_path else: raise ValueError(F"""Unrecognized tokenizer_type {tokenizer_type}""" ) else: __lowerCAmelCase = "gpt2" __lowerCAmelCase = AutoTokenizer.from_pretrained(__snake_case ) __lowerCAmelCase = type(__snake_case ).__name__ __lowerCAmelCase = tokenizer_class # Store the config to file. print("Saving config" ) config.save_pretrained(__snake_case ) # Save tokenizer based on args print(F"""Adding {tokenizer_class} tokenizer files""" ) tokenizer.save_pretrained(__snake_case ) # Store the state_dict to file. __lowerCAmelCase = os.path.join(__snake_case , "pytorch_model.bin" ) print(F"""Saving checkpoint to \"{output_checkpoint_file}\"""" ) torch.save(__snake_case , __snake_case ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
290
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _UpperCamelCase (a_ ): snake_case_ = """blenderbot-small""" snake_case_ = ["""past_key_values"""] snake_case_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __UpperCamelCase=5_0_2_6_5 , __UpperCamelCase=5_1_2 , __UpperCamelCase=8 , __UpperCamelCase=2_0_4_8 , __UpperCamelCase=1_6 , __UpperCamelCase=8 , __UpperCamelCase=2_0_4_8 , __UpperCamelCase=1_6 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase="gelu" , __UpperCamelCase=5_1_2 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0_2 , __UpperCamelCase=1 , __UpperCamelCase=False , __UpperCamelCase=0 , __UpperCamelCase=1 , __UpperCamelCase=2 , __UpperCamelCase=2 , **__UpperCamelCase , )-> Any: __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = d_model __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = encoder_layers __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = use_cache __lowerCAmelCase = encoder_layers __lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , decoder_start_token_id=__UpperCamelCase , forced_eos_token_id=__UpperCamelCase , **__UpperCamelCase , ) class _UpperCamelCase (a_ ): @property def __UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: __lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __lowerCAmelCase = {0: "batch"} __lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"} else: __lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} __lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__UpperCamelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. __lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __lowerCAmelCase , __lowerCAmelCase = self.num_layers for i in range(__UpperCamelCase ): __lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} __lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} else: __lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: __lowerCAmelCase = super().outputs else: __lowerCAmelCase = super(__UpperCamelCase , self ).outputs if self.use_past: __lowerCAmelCase , __lowerCAmelCase = self.num_layers for i in range(__UpperCamelCase ): __lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} __lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , )-> Mapping[str, Any]: __lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Generate decoder inputs __lowerCAmelCase = seq_length if not self.use_past else 1 __lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __lowerCAmelCase = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} __lowerCAmelCase = dict(**__UpperCamelCase , **__UpperCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["input_ids"].shape __lowerCAmelCase = common_inputs["decoder_input_ids"].shape[1] __lowerCAmelCase , __lowerCAmelCase = self.num_attention_heads __lowerCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowerCAmelCase = decoder_seq_length + 3 __lowerCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowerCAmelCase = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__UpperCamelCase , __UpperCamelCase )] , dim=1 ) __lowerCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowerCAmelCase , __lowerCAmelCase = self.num_layers __lowerCAmelCase = min(__UpperCamelCase , __UpperCamelCase ) __lowerCAmelCase = max(__UpperCamelCase , __UpperCamelCase ) - min_num_layers __lowerCAmelCase = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__UpperCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), ) ) # TODO: test this. __lowerCAmelCase = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__UpperCamelCase , __UpperCamelCase ): common_inputs["past_key_values"].append((torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) ) return common_inputs def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , )-> Mapping[str, Any]: __lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["input_ids"].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase , __lowerCAmelCase = self.num_layers __lowerCAmelCase , __lowerCAmelCase = self.num_attention_heads __lowerCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowerCAmelCase = common_inputs["attention_mask"].dtype __lowerCAmelCase = torch.cat( [common_inputs["attention_mask"], torch.ones(__UpperCamelCase , __UpperCamelCase , dtype=__UpperCamelCase )] , dim=1 ) __lowerCAmelCase = [ (torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) for _ in range(__UpperCamelCase ) ] return common_inputs def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , )-> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowerCAmelCase = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowerCAmelCase = tokenizer.num_special_tokens_to_add(__UpperCamelCase ) __lowerCAmelCase = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCamelCase ) # Generate dummy inputs according to compute batch and sequence __lowerCAmelCase = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size __lowerCAmelCase = dict(tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase ) ) return common_inputs def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , )-> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: __lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) elif self.task == "causal-lm": __lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) else: __lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) return common_inputs def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[Any]: if self.task in ["default", "seq2seq-lm"]: __lowerCAmelCase = super()._flatten_past_key_values_(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: __lowerCAmelCase = super(__UpperCamelCase , self )._flatten_past_key_values_( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
290
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowerCamelCase ( TensorFormatter[Mapping, 'torch.Tensor', Mapping] ): '''simple docstring''' def __init__( self , lowerCAmelCase=None , **lowerCAmelCase ): super().__init__(features=lowerCAmelCase ) UpperCAmelCase_ = torch_tensor_kwargs import torch # noqa import torch at initialization def A__ ( self , lowerCAmelCase ): import torch if isinstance(lowerCAmelCase , lowerCAmelCase ) and column: if all( isinstance(lowerCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(lowerCAmelCase ) return column def A__ ( self , lowerCAmelCase ): import torch if isinstance(lowerCAmelCase , (str, bytes, type(lowerCAmelCase )) ): return value elif isinstance(lowerCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase_ = {} if isinstance(lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): UpperCAmelCase_ = {"dtype": torch.intaa} elif isinstance(lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase_ = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowerCAmelCase , PIL.Image.Image ): UpperCAmelCase_ = np.asarray(lowerCAmelCase ) return torch.tensor(lowerCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def A__ ( self , lowerCAmelCase ): import torch # support for torch, tf, jax etc. if hasattr(lowerCAmelCase , "__array__" ) and not isinstance(lowerCAmelCase , torch.Tensor ): UpperCAmelCase_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowerCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowerCAmelCase ) for substruct in data_struct] ) elif isinstance(lowerCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(lowerCAmelCase ) for substruct in data_struct] ) return self._tensorize(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): return map_nested(self._recursive_tensorize , lowerCAmelCase , map_list=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_row(lowerCAmelCase ) UpperCAmelCase_ = self.python_features_decoder.decode_row(lowerCAmelCase ) return self.recursive_tensorize(lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_column(lowerCAmelCase ) UpperCAmelCase_ = self.python_features_decoder.decode_column(lowerCAmelCase , pa_table.column_names[0] ) UpperCAmelCase_ = self.recursive_tensorize(lowerCAmelCase ) UpperCAmelCase_ = self._consolidate(lowerCAmelCase ) return column def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_batch(lowerCAmelCase ) UpperCAmelCase_ = self.python_features_decoder.decode_batch(lowerCAmelCase ) UpperCAmelCase_ = self.recursive_tensorize(lowerCAmelCase ) for column_name in batch: UpperCAmelCase_ = self._consolidate(batch[column_name] ) return batch
579
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): warnings.warn( "The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ImageGPTImageProcessor instead." , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase )
579
1
'''simple docstring''' def lowercase ( lowerCAmelCase : Optional[Any]): """simple docstring""" _A : List[Any] = [1] _A : Union[str, Any] = 0, 0, 0 _A : Optional[int] = ugly_nums[ia] * 2 _A : Any = ugly_nums[ia] * 3 _A : str = ugly_nums[ia] * 5 for _ in range(1 , lowerCAmelCase): _A : Tuple = min(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) ugly_nums.append(lowerCAmelCase) if next_num == next_a: ia += 1 _A : int = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 _A : Union[str, Any] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 _A : List[Any] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'{ugly_numbers(200) = }')
711
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowercase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str]=1024): """simple docstring""" _A , _A : str = [], [] _A : Optional[Any] = list(zip(lowerCAmelCase , lowerCAmelCase)) _A , _A : Dict = sorted_examples[0] def is_too_big(lowerCAmelCase : Optional[Any]): return tok(lowerCAmelCase , return_tensors='''pt''').input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:]): _A : Optional[int] = new_src + ''' ''' + src _A : List[str] = new_tgt + ''' ''' + tgt if is_too_big(lowerCAmelCase) or is_too_big(lowerCAmelCase): # cant fit, finalize example finished_src.append(lowerCAmelCase) finished_tgt.append(lowerCAmelCase) _A , _A : Dict = src, tgt else: # can fit, keep adding _A , _A : Optional[int] = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(lowerCAmelCase) finished_tgt.append(lowerCAmelCase) return finished_src, finished_tgt def lowercase ( lowerCAmelCase : Any , lowerCAmelCase : Path , lowerCAmelCase : Tuple , lowerCAmelCase : Any): """simple docstring""" _A : Dict = Path(lowerCAmelCase) save_path.mkdir(exist_ok=lowerCAmelCase) for split in ["train"]: _A , _A : List[str] = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" _A : Optional[Any] = [x.rstrip() for x in Path(lowerCAmelCase).open().readlines()] _A : Optional[Any] = [x.rstrip() for x in Path(lowerCAmelCase).open().readlines()] _A , _A : Optional[Any] = pack_examples(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) print(f"""packed {split} split from {len(lowerCAmelCase)} examples -> {len(lowerCAmelCase)}.""") Path(save_path / f"""{split}.source""").open('''w''').write('''\n'''.join(lowerCAmelCase)) Path(save_path / f"""{split}.target""").open('''w''').write('''\n'''.join(lowerCAmelCase)) for split in ["val", "test"]: _A , _A : List[str] = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" shutil.copyfile(lowerCAmelCase , save_path / f"""{split}.source""") shutil.copyfile(lowerCAmelCase , save_path / f"""{split}.target""") def lowercase ( ): """simple docstring""" _A : Any = argparse.ArgumentParser() parser.add_argument('''--tok_name''' , type=lowerCAmelCase , help='''like facebook/bart-large-cnn,t5-base, etc.''') parser.add_argument('''--max_seq_len''' , type=lowerCAmelCase , default=128) parser.add_argument('''--data_dir''' , type=lowerCAmelCase) parser.add_argument('''--save_path''' , type=lowerCAmelCase) _A : List[str] = parser.parse_args() _A : List[Any] = AutoTokenizer.from_pretrained(args.tok_name) return pack_data_dir(lowerCAmelCase , Path(args.data_dir) , args.max_seq_len , args.save_path) if __name__ == "__main__": packer_cli()
417
0
import pytest import datasets # Import fixture modules as plugins __snake_case = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def _A ( _lowercase ) -> str: """simple docstring""" config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = tmp_path_factory.getbasetemp() / 'cache' __UpperCamelCase = test_hf_cache_home / 'datasets' __UpperCamelCase = test_hf_cache_home / 'metrics' __UpperCamelCase = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(_lowercase ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(_lowercase ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(_lowercase ) ) __UpperCamelCase = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(_lowercase ) ) __UpperCamelCase = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_lowercase ) ) @pytest.fixture(autouse=_lowercase , scope='session' ) def _A ( ) -> Dict: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=_lowercase ) def _A ( _lowercase ) -> Tuple: """simple docstring""" monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , _lowercase ) @pytest.fixture def _A ( _lowercase ) -> Any: """simple docstring""" monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , _lowercase )
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> list[tuple[int, int]]: __lowercase , __lowercase = position __lowercase = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] __lowercase = [] for position in positions: __lowercase , __lowercase = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(snake_case ) return permissible_positions def SCREAMING_SNAKE_CASE ( snake_case ) -> bool: return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> bool: if is_complete(snake_case ): return True for position in get_valid_pos(snake_case , len(snake_case ) ): __lowercase , __lowercase = position if board[y][x] == 0: __lowercase = curr + 1 if open_knight_tour_helper(snake_case , snake_case , curr + 1 ): return True __lowercase = 0 return False def SCREAMING_SNAKE_CASE ( snake_case ) -> list[list[int]]: __lowercase = [[0 for i in range(snake_case )] for j in range(snake_case )] for i in range(snake_case ): for j in range(snake_case ): __lowercase = 1 if open_knight_tour_helper(snake_case , (i, j) , 1 ): return board __lowercase = 0 __lowercase = F"Open Kight Tour cannot be performed on a board of size {n}" raise ValueError(snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
375
0
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" __UpperCAmelCase : jnp.ndarray __UpperCAmelCase : jnp.ndarray class lowerCAmelCase__ ( nn.Module ): """simple docstring""" __UpperCAmelCase : int __UpperCAmelCase : Tuple[int] = (16, 32, 96, 256) __UpperCAmelCase : jnp.dtype = jnp.floataa def _UpperCamelCase ( self ): lowerCamelCase_ : Union[str, Any] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase_ : Optional[int] = [] for i in range(len(self.block_out_channels ) - 1 ): lowerCamelCase_ : str = self.block_out_channels[i] lowerCamelCase_ : List[Any] = self.block_out_channels[i + 1] lowerCamelCase_ : Tuple = nn.Conv( a_ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(a_ ) lowerCamelCase_ : Optional[Any] = nn.Conv( a_ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(a_ ) lowerCamelCase_ : Union[str, Any] = blocks lowerCamelCase_ : int = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , a_ ): lowerCamelCase_ : Optional[Any] = self.conv_in(a_ ) lowerCamelCase_ : Optional[Any] = nn.silu(a_ ) for block in self.blocks: lowerCamelCase_ : str = block(a_ ) lowerCamelCase_ : str = nn.silu(a_ ) lowerCamelCase_ : Any = self.conv_out(a_ ) return embedding @flax_register_to_config class lowerCAmelCase__ ( nn.Module, __lowerCamelCase, __lowerCamelCase ): """simple docstring""" __UpperCAmelCase : int = 32 __UpperCAmelCase : int = 4 __UpperCAmelCase : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __UpperCAmelCase : Union[bool, Tuple[bool]] = False __UpperCAmelCase : Tuple[int] = (320, 640, 1280, 1280) __UpperCAmelCase : int = 2 __UpperCAmelCase : Union[int, Tuple[int]] = 8 __UpperCAmelCase : Optional[Union[int, Tuple[int]]] = None __UpperCAmelCase : int = 1280 __UpperCAmelCase : float = 0.0 __UpperCAmelCase : bool = False __UpperCAmelCase : jnp.dtype = jnp.floataa __UpperCAmelCase : bool = True __UpperCAmelCase : int = 0 __UpperCAmelCase : str = "rgb" __UpperCAmelCase : Tuple[int] = (16, 32, 96, 256) def _UpperCamelCase ( self , a_ ): # init input tensors lowerCamelCase_ : Tuple = (1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase_ : Union[str, Any] = jnp.zeros(a_ , dtype=jnp.floataa ) lowerCamelCase_ : int = jnp.ones((1,) , dtype=jnp.intaa ) lowerCamelCase_ : int = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCamelCase_ : Union[str, Any] = (1, 3, self.sample_size * 8, self.sample_size * 8) lowerCamelCase_ : List[str] = jnp.zeros(a_ , dtype=jnp.floataa ) lowerCamelCase_ : List[str] = jax.random.split(a_ ) lowerCamelCase_ : Dict = {"params": params_rng, "dropout": dropout_rng} return self.init(a_ , a_ , a_ , a_ , a_ )["params"] def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = self.block_out_channels lowerCamelCase_ : Optional[Any] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase_ : List[str] = self.num_attention_heads or self.attention_head_dim # input lowerCamelCase_ : Dict = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCamelCase_ : Union[str, Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCamelCase_ : int = FlaxTimestepEmbedding(a_ , dtype=self.dtype ) lowerCamelCase_ : List[str] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCamelCase_ : Dict = self.only_cross_attention if isinstance(a_ , a_ ): lowerCamelCase_ : List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(a_ , a_ ): lowerCamelCase_ : Optional[Any] = (num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase_ : Tuple = [] lowerCamelCase_ : List[str] = [] lowerCamelCase_ : Dict = block_out_channels[0] lowerCamelCase_ : Any = nn.Conv( a_ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(a_ ) for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase_ : List[str] = output_channel lowerCamelCase_ : Any = block_out_channels[i] lowerCamelCase_ : Optional[Any] = i == len(a_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase_ : Dict = FlaxCrossAttnDownBlockaD( in_channels=a_ , out_channels=a_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCamelCase_ : Dict = FlaxDownBlockaD( in_channels=a_ , out_channels=a_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(a_ ) for _ in range(self.layers_per_block ): lowerCamelCase_ : Dict = nn.Conv( a_ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(a_ ) if not is_final_block: lowerCamelCase_ : Union[str, Any] = nn.Conv( a_ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(a_ ) lowerCamelCase_ : List[str] = down_blocks lowerCamelCase_ : Union[str, Any] = controlnet_down_blocks # mid lowerCamelCase_ : Optional[int] = block_out_channels[-1] lowerCamelCase_ : List[str] = FlaxUNetMidBlockaDCrossAttn( in_channels=a_ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCamelCase_ : str = nn.Conv( a_ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , a_ , a_ , a_ , a_ , a_ = 1.0 , a_ = True , a_ = False , ): lowerCamelCase_ : int = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCamelCase_ : int = jnp.flip(a_ , axis=1 ) # 1. time if not isinstance(a_ , jnp.ndarray ): lowerCamelCase_ : List[str] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(a_ , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase_ : str = timesteps.astype(dtype=jnp.floataa ) lowerCamelCase_ : Any = jnp.expand_dims(a_ , 0 ) lowerCamelCase_ : Optional[int] = self.time_proj(a_ ) lowerCamelCase_ : Any = self.time_embedding(a_ ) # 2. pre-process lowerCamelCase_ : Union[str, Any] = jnp.transpose(a_ , (0, 2, 3, 1) ) lowerCamelCase_ : Tuple = self.conv_in(a_ ) lowerCamelCase_ : Tuple = jnp.transpose(a_ , (0, 2, 3, 1) ) lowerCamelCase_ : int = self.controlnet_cond_embedding(a_ ) sample += controlnet_cond # 3. down lowerCamelCase_ : str = (sample,) for down_block in self.down_blocks: if isinstance(a_ , a_ ): lowerCamelCase_ : Dict = down_block(a_ , a_ , a_ , deterministic=not train ) else: lowerCamelCase_ : Tuple = down_block(a_ , a_ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCamelCase_ : List[str] = self.mid_block(a_ , a_ , a_ , deterministic=not train ) # 5. contronet blocks lowerCamelCase_ : Union[str, Any] = () for down_block_res_sample, controlnet_block in zip(a_ , self.controlnet_down_blocks ): lowerCamelCase_ : Optional[int] = controlnet_block(a_ ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCamelCase_ : List[Any] = controlnet_down_block_res_samples lowerCamelCase_ : Any = self.controlnet_mid_block(a_ ) # 6. scaling lowerCamelCase_ : Optional[int] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=a_ , mid_block_res_sample=a_ )
715
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=400 , a_=True , a_=None , a_=True , ): lowerCamelCase_ : int = size if size is not None else {"height": 18, "width": 18} lowerCamelCase_ : str = parent lowerCamelCase_ : str = batch_size lowerCamelCase_ : Tuple = num_channels lowerCamelCase_ : Optional[int] = image_size lowerCamelCase_ : List[str] = min_resolution lowerCamelCase_ : Tuple = max_resolution lowerCamelCase_ : Tuple = do_resize lowerCamelCase_ : Dict = size lowerCamelCase_ : List[str] = apply_ocr def _UpperCamelCase ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase__ ( __lowerCamelCase, unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = LayoutLMvaImageProcessingTester(self ) @property def _UpperCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _UpperCamelCase ( self ): lowerCamelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , "do_resize" ) ) self.assertTrue(hasattr(a_ , "size" ) ) self.assertTrue(hasattr(a_ , "apply_ocr" ) ) def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) lowerCamelCase_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): # Initialize image_processing lowerCamelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input lowerCamelCase_ : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , a_ ) self.assertIsInstance(encoding.boxes , a_ ) # Test batched lowerCamelCase_ : int = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _UpperCamelCase ( self ): # Initialize image_processing lowerCamelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input lowerCamelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowerCamelCase_ : Any = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _UpperCamelCase ( self ): # Initialize image_processing lowerCamelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input lowerCamelCase_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowerCamelCase_ : Union[str, Any] = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _UpperCamelCase ( self ): # with apply_OCR = True lowerCamelCase_ : Any = LayoutLMvaImageProcessor() from datasets import load_dataset lowerCamelCase_ : Optional[Any] = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) lowerCamelCase_ : Optional[Any] = Image.open(ds[0]["file"] ).convert("RGB" ) lowerCamelCase_ : List[Any] = image_processing(a_ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowerCamelCase_ : List[Any] = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 lowerCamelCase_ : Tuple = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , a_ ) self.assertListEqual(encoding.boxes , a_ ) # with apply_OCR = False lowerCamelCase_ : List[str] = LayoutLMvaImageProcessor(apply_ocr=a_ ) lowerCamelCase_ : List[str] = image_processing(a_ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
73
0
class lowercase_ : def __init__( self) -> str: a__ =0 a__ =0 a__ ={} def __UpperCamelCase ( self , lowercase_) -> Dict: if vertex not in self.adjacency: a__ ={} self.num_vertices += 1 def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> Dict: self.add_vertex(lowercase_) self.add_vertex(lowercase_) if head == tail: return a__ =weight a__ =weight def __UpperCamelCase ( self) -> Optional[int]: a__ =self.get_edges() for edge in edges: a__ , a__ , a__ =edge edges.remove((tail, head, weight)) for i in range(len(lowercase_)): a__ =list(edges[i]) edges.sort(key=lambda lowercase_: e[2]) for i in range(len(lowercase_) - 1): if edges[i][2] >= edges[i + 1][2]: a__ =edges[i][2] + 1 for edge in edges: a__ , a__ , a__ =edge a__ =weight a__ =weight def __str__( self) -> Tuple: a__ ='' for tail in self.adjacency: for head in self.adjacency[tail]: a__ =self.adjacency[head][tail] string += F"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n') def __UpperCamelCase ( self) -> Union[str, Any]: a__ =[] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def __UpperCamelCase ( self) -> int: return self.adjacency.keys() @staticmethod def __UpperCamelCase ( lowercase_=None , lowercase_=None) -> Dict: a__ =Graph() if vertices is None: a__ =[] if edges is None: a__ =[] for vertex in vertices: g.add_vertex(lowercase_) for edge in edges: g.add_edge(*lowercase_) return g class lowercase_ : def __init__( self) -> Tuple: a__ ={} a__ ={} def __len__( self) -> Dict: return len(self.parent) def __UpperCamelCase ( self , lowercase_) -> Dict: if item in self.parent: return self.find(lowercase_) a__ =item a__ =0 return item def __UpperCamelCase ( self , lowercase_) -> Optional[Any]: if item not in self.parent: return self.make_set(lowercase_) if item != self.parent[item]: a__ =self.find(self.parent[item]) return self.parent[item] def __UpperCamelCase ( self , lowercase_ , lowercase_) -> Dict: a__ =self.find(lowercase_) a__ =self.find(lowercase_) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: a__ =roota return roota if self.rank[roota] < self.rank[roota]: a__ =roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 a__ =roota return roota return None @staticmethod def __UpperCamelCase ( lowercase_) -> Optional[Any]: a__ =graph.num_vertices a__ =Graph.UnionFind() a__ =[] while num_components > 1: a__ ={} for vertex in graph.get_vertices(): a__ =-1 a__ =graph.get_edges() for edge in edges: a__ , a__ , a__ =edge edges.remove((tail, head, weight)) for edge in edges: a__ , a__ , a__ =edge a__ =union_find.find(lowercase_) a__ =union_find.find(lowercase_) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: a__ =[head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: a__ =[head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: a__ , a__ , a__ =cheap_edge[vertex] if union_find.find(lowercase_) != union_find.find(lowercase_): union_find.union(lowercase_ , lowercase_) mst_edges.append(cheap_edge[vertex]) a__ =num_components - 1 a__ =Graph.build(edges=lowercase_) return mst
20
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : str ={"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCAmelCase : Dict ={ """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, } __lowerCAmelCase : Tuple ={ """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } __lowerCAmelCase : Optional[int] ="""▁""" class _A ( lowerCAmelCase ): snake_case__ : Tuple = VOCAB_FILES_NAMES snake_case__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self , __lowerCAmelCase , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowercase = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCAmelCase ) ) lowercase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} lowercase = len(self.sp_model ) - 1 lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase = [self.cls_token_id] lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1, 1] + ([0] * len(__lowerCAmelCase )) + [1] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A__ ( self ): """simple docstring""" return len(self.sp_model ) def A__ ( self ): """simple docstring""" lowercase = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A__ ( self , __lowerCAmelCase ): """simple docstring""" return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase = self.sp_model.PieceToId(__lowerCAmelCase ) return spm_id if spm_id else self.unk_token_id def A__ ( self , __lowerCAmelCase ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = [] lowercase = """""" lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCAmelCase ) + token lowercase = True lowercase = [] else: current_sub_tokens.append(__lowerCAmelCase ) lowercase = False out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def __getstate__( self ): """simple docstring""" lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , __lowerCAmelCase ): """simple docstring""" lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(__lowerCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase = os.path.join( __lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,)
359
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def A ( ) -> int: '''simple docstring''' _UpperCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' _UpperCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) return image def A ( _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = dct.pop(_UpperCAmelCase ) _UpperCAmelCase = val def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ) -> List[str]: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _UpperCAmelCase = state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" ) _UpperCAmelCase = state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict _UpperCAmelCase = torch.cat((q_bias, torch.zeros_like(_UpperCAmelCase , requires_grad=_UpperCAmelCase ), v_bias) ) _UpperCAmelCase = qkv_bias def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: '''simple docstring''' _UpperCAmelCase = 364 if 'coco' in model_name else 224 _UpperCAmelCase = BlipaVisionConfig(image_size=_UpperCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _UpperCAmelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_UpperCAmelCase ).to_dict() elif "opt-6.7b" in model_name: _UpperCAmelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_UpperCAmelCase ).to_dict() elif "t5-xl" in model_name: _UpperCAmelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _UpperCAmelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() _UpperCAmelCase = BlipaConfig(vision_config=_UpperCAmelCase , text_config=_UpperCAmelCase ) return config, image_size @torch.no_grad() def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : int=False ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) _UpperCAmelCase = tokenizer('\n' , add_special_tokens=_UpperCAmelCase ).input_ids[0] _UpperCAmelCase , _UpperCAmelCase = get_blipa_config(_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) _UpperCAmelCase = BlipaForConditionalGeneration(_UpperCAmelCase ).eval() _UpperCAmelCase = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } _UpperCAmelCase , _UpperCAmelCase = model_name_to_original[model_name] # load original model print('Loading original model...' ) _UpperCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = load_model_and_preprocess( name=_UpperCAmelCase , model_type=_UpperCAmelCase , is_eval=_UpperCAmelCase , device=_UpperCAmelCase ) original_model.eval() print('Done!' ) # update state dict keys _UpperCAmelCase = original_model.state_dict() _UpperCAmelCase = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _UpperCAmelCase = state_dict.pop(_UpperCAmelCase ) if key.startswith('Qformer.bert' ): _UpperCAmelCase = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: _UpperCAmelCase = key.replace('self' , 'attention' ) if "opt_proj" in key: _UpperCAmelCase = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: _UpperCAmelCase = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): _UpperCAmelCase = key.replace('opt' , 'language' ) if key.startswith('t5' ): _UpperCAmelCase = key.replace('t5' , 'language' ) _UpperCAmelCase = val # read in qv biases read_in_q_v_bias(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = hf_model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) assert len(_UpperCAmelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _UpperCAmelCase = load_demo_image() _UpperCAmelCase = vis_processors['eval'](_UpperCAmelCase ).unsqueeze(0 ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_UpperCAmelCase ) # create processor _UpperCAmelCase = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase ) _UpperCAmelCase = BlipaProcessor(image_processor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) _UpperCAmelCase = processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values.to(_UpperCAmelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase ) original_model.to(_UpperCAmelCase ) hf_model.to(_UpperCAmelCase ) with torch.no_grad(): if "opt" in model_name: _UpperCAmelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits _UpperCAmelCase = hf_model(_UpperCAmelCase , _UpperCAmelCase ).logits else: _UpperCAmelCase = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits _UpperCAmelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) _UpperCAmelCase = hf_model(_UpperCAmelCase , _UpperCAmelCase , labels=_UpperCAmelCase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _UpperCAmelCase = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_UpperCAmelCase ) assert torch.allclose(logits[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": _UpperCAmelCase = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_UpperCAmelCase ) else: # cast to same type _UpperCAmelCase = logits.dtype assert torch.allclose(original_logits.to(_UpperCAmelCase ) , _UpperCAmelCase , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) _UpperCAmelCase = '' _UpperCAmelCase = tokenizer(_UpperCAmelCase , return_tensors='pt' ).input_ids.to(_UpperCAmelCase ) _UpperCAmelCase = original_model.generate({'image': original_pixel_values} ) _UpperCAmelCase = hf_model.generate( _UpperCAmelCase , _UpperCAmelCase , do_sample=_UpperCAmelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , _UpperCAmelCase ) _UpperCAmelCase = input_ids.shape[1] _UpperCAmelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_UpperCAmelCase ) _UpperCAmelCase = [text.strip() for text in output_text] print('HF generation:' , _UpperCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_UpperCAmelCase ) hf_model.save_pretrained(_UpperCAmelCase ) if push_to_hub: processor.push_to_hub(F"nielsr/{model_name}" ) hf_model.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() UpperCAmelCase__ = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) UpperCAmelCase__ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
639
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase__ = {"facebook/bart-base": BartTokenizer} def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) _UpperCAmelCase = parser.parse_args() return args def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="cpu" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): _UpperCAmelCase = 'My friends are cool but they eat too many carbs.' _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _UpperCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) _UpperCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
639
1
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : Dict = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class _snake_case ( a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE : int = GPTSwaTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Any = False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase = GPTSwaTokenizer(_SCREAMING_SNAKE_CASE , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = 'This is a test' lowerCAmelCase = 'This is a test' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = '<s>' lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 20_00 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 20_00 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = GPTSwaTokenizer(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [4_65, 2_87, 2_65, 6_31, 8_42] ) lowerCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( _SCREAMING_SNAKE_CASE , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] , ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) # fmt: off self.assertListEqual( _SCREAMING_SNAKE_CASE , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = GPTSwaTokenizer(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertListEqual(tokenizer.encode_fast(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Test that decode_fast returns the input text for text, token_ids in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(tokenizer.decode_fast(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase = {'input_ids': [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name='AI-Sweden/gpt-sw3-126m' , sequences=_SCREAMING_SNAKE_CASE , )
284
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _UpperCamelCase : str = { "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
284
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue_model_parallelism.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1_600, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1_600, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, ] ) class __lowerCamelCase ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Optional[Any]: if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=lowerCamelCase , ) assert hasattr(self , """env""" ) def lowerCAmelCase_ ( self , lowerCamelCase ) -> Optional[int]: # configuration for running training on smdistributed Model Parallel snake_case_ = { """enabled""": True, """processes_per_host""": 8, } snake_case_ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } snake_case_ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} snake_case_ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=lowerCamelCase , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=lowerCamelCase , py_version="""py36""" , ) def lowerCAmelCase_ ( self , lowerCamelCase ) -> Dict: TrainingJobAnalytics(lowerCamelCase ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def lowerCAmelCase_ ( self , lowerCamelCase ) -> str: # create estimator snake_case_ = self.create_estimator(lowerCamelCase ) # run training estimator.fit() # result dataframe snake_case_ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis snake_case_ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) snake_case_ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping snake_case_ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , lowerCamelCase )
161
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' snake_case_ = os.path.abspath(lowercase_ ) logger.info(f'''Converting TensorFlow checkpoint from {tf_path}''' ) # Load weights from TF model snake_case_ = tf.train.list_variables(lowercase_ ) snake_case_ = [] snake_case_ = [] snake_case_ = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") snake_case_ = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'''Skipping non-model layer {full_name}''' ) continue if "optimizer" in full_name: logger.info(f'''Skipping optimization layer {full_name}''' ) continue if name[0] == "model": # ignore initial 'model' snake_case_ = name[1:] # figure out how many levels deep the name is snake_case_ = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(lowercase_ ) # read data snake_case_ = tf.train.load_variable(lowercase_ , lowercase_ ) names.append("""/""".join(lowercase_ ) ) arrays.append(lowercase_ ) logger.info(f'''Read a total of {len(lowercase_ ):,} layers''' ) # Sanity check if len(set(lowercase_ ) ) != 1: raise ValueError(f'''Found layer names with different depths (layer depth {list(set(lowercase_ ) )})''' ) snake_case_ = list(set(lowercase_ ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(lowercase_ , lowercase_ ): snake_case_ = full_name.split("""/""" ) snake_case_ = model snake_case_ = [] for i, m_name in enumerate(lowercase_ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): snake_case_ = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) snake_case_ = getattr(lowercase_ , """embeddings""" ) snake_case_ = getattr(lowercase_ , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) snake_case_ = getattr(lowercase_ , """encoder""" ) snake_case_ = getattr(lowercase_ , """layer""" ) snake_case_ = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) snake_case_ = getattr(lowercase_ , """pooler""" ) snake_case_ = getattr(lowercase_ , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) snake_case_ = getattr(lowercase_ , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) snake_case_ = getattr(lowercase_ , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) snake_case_ = getattr(lowercase_ , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) snake_case_ = getattr(lowercase_ , """token_type_embeddings""" ) else: raise ValueError(f'''Unknown embedding layer with name {full_name}''' ) trace.append("""weight""" ) snake_case_ = getattr(lowercase_ , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) snake_case_ = getattr(lowercase_ , """attention""" ) snake_case_ = getattr(lowercase_ , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) snake_case_ = getattr(lowercase_ , """attention""" ) snake_case_ = getattr(lowercase_ , """output""" ) snake_case_ = getattr(lowercase_ , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) snake_case_ = getattr(lowercase_ , """attention""" ) snake_case_ = getattr(lowercase_ , """output""" ) snake_case_ = getattr(lowercase_ , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) snake_case_ = getattr(lowercase_ , """output""" ) snake_case_ = getattr(lowercase_ , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) snake_case_ = getattr(lowercase_ , """output""" ) snake_case_ = getattr(lowercase_ , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) snake_case_ = getattr(lowercase_ , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) snake_case_ = getattr(lowercase_ , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) snake_case_ = getattr(lowercase_ , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) snake_case_ = getattr(lowercase_ , """intermediate""" ) snake_case_ = getattr(lowercase_ , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) snake_case_ = getattr(lowercase_ , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) snake_case_ = getattr(lowercase_ , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) snake_case_ = getattr(lowercase_ , """weight""" ) else: logger.warning(f'''Ignored {m_name}''' ) # for certain layers reshape is necessary snake_case_ = """.""".join(lowercase_ ) if re.match(r"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , lowercase_ ) or re.match( r"""(\S+)\.attention\.output\.dense\.weight""" , lowercase_ ): snake_case_ = array.reshape(pointer.data.shape ) if "kernel" in full_name: snake_case_ = array.transpose() if pointer.shape == array.shape: snake_case_ = torch.from_numpy(lowercase_ ) else: raise ValueError( f'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:''' f''' {array.shape}''' ) logger.info(f'''Successfully set variable {full_name} to PyTorch layer {trace}''' ) return model def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' logger.info(f'''Loading model based on config from {config_path}...''' ) snake_case_ = BertConfig.from_json_file(lowercase_ ) snake_case_ = BertModel(lowercase_ ) # Load weights from checkpoint logger.info(f'''Loading weights from checkpoint {tf_checkpoint_path}...''' ) load_tfa_weights_in_bert(lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model logger.info(f'''Saving PyTorch model to {pytorch_dump_path}...''' ) torch.save(model.state_dict() , lowercase_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) lowerCamelCase_ = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
161
1
'''simple docstring''' def __UpperCAmelCase ( a_: int ): if n == 1 or not isinstance(a_, a_ ): return 0 elif n == 2: return 1 else: _UpperCAmelCase : Dict = [0, 1] for i in range(2, n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : str = 0 _UpperCAmelCase : Dict = 2 while digits < n: index += 1 _UpperCAmelCase : Any = len(str(fibonacci(a_ ) ) ) return index def __UpperCAmelCase ( a_: int = 1_000 ): return fibonacci_digits_index(a_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
494
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Dict = '''gpt_bigcode''' UpperCamelCase_ : Optional[Any] = ['''past_key_values'''] UpperCamelCase_ : int = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any]=5_0_2_5_7 , lowerCAmelCase__ : Optional[Any]=1_0_2_4 , lowerCAmelCase__ : int=7_6_8 , lowerCAmelCase__ : Any=1_2 , lowerCAmelCase__ : Any=1_2 , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : List[Any]="gelu_pytorch_tanh" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Tuple=1e-5 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Union[str, Any]=5_0_2_5_6 , lowerCAmelCase__ : List[str]=5_0_2_5_6 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Tuple=True , **lowerCAmelCase__ : Any , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : int = n_positions _UpperCAmelCase : int = n_embd _UpperCAmelCase : List[Any] = n_layer _UpperCAmelCase : Any = n_head _UpperCAmelCase : int = n_inner _UpperCAmelCase : Optional[Any] = activation_function _UpperCAmelCase : Optional[int] = resid_pdrop _UpperCAmelCase : Dict = embd_pdrop _UpperCAmelCase : Optional[int] = attn_pdrop _UpperCAmelCase : int = layer_norm_epsilon _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = scale_attn_weights _UpperCAmelCase : Any = use_cache _UpperCAmelCase : Dict = attention_softmax_in_fpaa _UpperCAmelCase : str = scale_attention_softmax_in_fpaa _UpperCAmelCase : List[str] = multi_query _UpperCAmelCase : Any = bos_token_id _UpperCAmelCase : str = eos_token_id super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
494
1
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP lowerCamelCase_ : Tuple = False try: lowerCamelCase_ : List[str] = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class _UpperCAmelCase : '''simple docstring''' def __init__( self , snake_case_ = None , snake_case_ = [] ): """simple docstring""" A_ : List[str] = 0 A_ : Tuple = choices A_ : Optional[int] = prompt if sys.platform == "win32": A_ : List[Any] = """*""" else: A_ : Dict = """➔ """ def lowerCamelCase_ ( self , snake_case_ , snake_case_ = "" ): """simple docstring""" if sys.platform != "win32": writeColor(self.choices[index] , 3_2 , _a ) else: forceWrite(self.choices[index] , _a ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" if index == self.position: forceWrite(F""" {self.arrow_char} """ ) self.write_choice(_a ) else: forceWrite(F""" {self.choices[index]}""" ) reset_cursor() def lowerCamelCase_ ( self , snake_case_ , snake_case_ = 1 ): """simple docstring""" A_ : Optional[int] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_a ) move_cursor(_a , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def lowerCamelCase_ ( self ): """simple docstring""" self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def lowerCamelCase_ ( self ): """simple docstring""" self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def lowerCamelCase_ ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def lowerCamelCase_ ( self ): """simple docstring""" move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_a )] for number in range(1_0 )] ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Dict = int(chr(self.current_selection ) ) A_ : Dict = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _a ) else: return else: return def lowerCamelCase_ ( self , snake_case_ = 0 ): """simple docstring""" if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) A_ : int = default_choice for i in range(len(self.choices ) ): self.print_choice(_a ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: A_ : Dict = int(builtins.input() ) except ValueError: A_ : List[Any] = default_choice else: A_ : Union[str, Any] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(_a , '\n' ) return choice
710
"""simple docstring""" def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ): A_ : int = len(set_a.intersection(_UpperCAmelCase ) ) if alternative_union: A_ : List[str] = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) else: A_ : Union[str, Any] = len(set_a.union(_UpperCAmelCase ) ) return intersection / union if isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) ): A_ : Optional[int] = [element for element in set_a if element in set_b] if alternative_union: A_ : Optional[int] = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / union else: A_ : Union[str, Any] = set_a + [element for element in set_b if element not in set_a] return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return None if __name__ == "__main__": lowerCamelCase_ : Optional[int] = {'a', 'b', 'c', 'd', 'e'} lowerCamelCase_ : str = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
302
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __snake_case ( lowercase : str=None ): if subparsers is not None: snake_case_ = subparsers.add_parser("test" ) else: snake_case_ = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=lowercase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=lowercase ) return parser def __snake_case ( lowercase : str ): snake_case_ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: snake_case_ = script_name else: snake_case_ = f'''--config_file={args.config_file} {script_name}''' snake_case_ = ["accelerate-launch"] + test_args.split() snake_case_ = execute_subprocess_async(lowercase , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __snake_case ( ): snake_case_ = test_command_parser() snake_case_ = parser.parse_args() test_command(lowercase ) if __name__ == "__main__": main()
508
'''simple docstring''' from math import isqrt def __snake_case ( lowercase : int ): snake_case_ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowercase , lowercase ): snake_case_ = False return [i for i in range(2 , lowercase ) if is_prime[i]] def __snake_case ( lowercase : int = 10**8 ): snake_case_ = calculate_prime_numbers(max_number // 2 ) snake_case_ = 0 snake_case_ = 0 snake_case_ = len(lowercase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
508
1
import argparse import os import re import packaging.version UpperCAmelCase_ = 'examples/' UpperCAmelCase_ = { 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } UpperCAmelCase_ = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } UpperCAmelCase_ = 'README.md' def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] , __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: Optional[Any] ) -> Dict: with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCamelCase__ : List[Any] = f.read() UpperCamelCase__ ,UpperCamelCase__ : int = REPLACE_PATTERNS[pattern] UpperCamelCase__ : Dict = replace.replace('''VERSION''' , __UpperCAmelCase ) UpperCamelCase__ : int = re_pattern.sub(__UpperCAmelCase , __UpperCAmelCase ) with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(__UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] ) -> Dict: for folder, directories, fnames in os.walk(__UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase , pattern='''examples''' ) def lowerCAmelCase_ ( __UpperCAmelCase: Optional[int] , __UpperCAmelCase: int=False ) -> Tuple: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if not patch: update_version_in_examples(__UpperCAmelCase ) def lowerCAmelCase_ ( ) -> Optional[Any]: UpperCamelCase__ : int = '''🤗 Transformers currently provides the following architectures''' UpperCamelCase__ : Any = '''1. Want to contribute a new model?''' with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCamelCase__ : List[Any] = f.readlines() # Find the start of the list. UpperCamelCase__ : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCamelCase__ : Union[str, Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCamelCase__ : Union[str, Any] = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__UpperCAmelCase ) def lowerCAmelCase_ ( ) -> Optional[int]: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCamelCase__ : Optional[int] = f.read() UpperCamelCase__ : Dict = REPLACE_PATTERNS['''init'''][0].search(__UpperCAmelCase ).groups()[0] return packaging.version.parse(__UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: Tuple=False ) -> int: UpperCamelCase__ : List[str] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCamelCase__ : int = default_version.base_version elif patch: UpperCamelCase__ : int = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: UpperCamelCase__ : Tuple = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. UpperCamelCase__ : Optional[int] = input(f"Which version are you releasing? [{default_version}]" ) if len(__UpperCAmelCase ) == 0: UpperCamelCase__ : Optional[int] = default_version print(f"Updating version to {version}." ) global_version_update(__UpperCAmelCase , patch=__UpperCAmelCase ) def lowerCAmelCase_ ( ) -> Optional[Any]: UpperCamelCase__ : Dict = get_version() UpperCamelCase__ : Union[str, Any] = f"{current_version.major}.{current_version.minor + 1}.0.dev0" UpperCamelCase__ : Optional[Any] = current_version.base_version # Check with the user we got that right. UpperCamelCase__ : str = input(f"Which version are we developing now? [{dev_version}]" ) if len(__UpperCAmelCase ) == 0: UpperCamelCase__ : List[Any] = dev_version print(f"Updating version to {version}." ) global_version_update(__UpperCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') UpperCAmelCase_ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
369
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device UpperCAmelCase_ = False class lowercase__ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Dict = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase__ : int = '''A painting of a squirrel eating a burger ''' UpperCamelCase__ : str = torch.manual_seed(0 ) UpperCamelCase__ : int = pipe( prompt=__magic_name__, generator=__magic_name__, guidance_scale=7.5, num_inference_steps=2, output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__magic_name__ ) UpperCamelCase__ : Union[str, Any] = VersatileDiffusionTextToImagePipeline.from_pretrained(__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase__ : Optional[Any] = generator.manual_seed(0 ) UpperCamelCase__ : str = pipe( prompt=__magic_name__, generator=__magic_name__, guidance_scale=7.5, num_inference_steps=2, output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ : str = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''', torch_dtype=torch.floataa ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase__ : Optional[int] = '''A painting of a squirrel eating a burger ''' UpperCamelCase__ : str = torch.manual_seed(0 ) UpperCamelCase__ : Optional[int] = pipe( prompt=__magic_name__, generator=__magic_name__, guidance_scale=7.5, num_inference_steps=50, output_type='''numpy''' ).images UpperCamelCase__ : int = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ : int = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
369
1
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _lowerCamelCase ( UpperCAmelCase_ : str, UpperCAmelCase_ : complex, UpperCAmelCase_ : str = "x", UpperCAmelCase_ : float = 10**-10, UpperCAmelCase_ : int = 1, ) -> complex: """simple docstring""" A__ = symbols(UpperCAmelCase_ ) A__ = lambdify(UpperCAmelCase_, UpperCAmelCase_ ) A__ = lambdify(UpperCAmelCase_, diff(UpperCAmelCase_, UpperCAmelCase_ ) ) A__ = starting_point while True: if diff_function(UpperCAmelCase_ ) != 0: A__ = prev_guess - multiplicity * func(UpperCAmelCase_ ) / diff_function( UpperCAmelCase_ ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess A__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(f'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( """The root of log(y) - 1 = 0 is """, f'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", f'{newton_raphson("exp(x) - 1", 10, precision=0.005)}', ) # Find root of cos(x) print(f'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
104
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase ( snake_case__ , unittest.TestCase): """simple docstring""" a__ : Dict = ConsistencyModelPipeline a__ : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS a__ : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt a__ : Any = frozenset( [ "num_inference_steps", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ]) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: UpperCAmelCase_= UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet""" , ) return unet @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: UpperCAmelCase_= UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet_class_cond""" , ) return unet def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : int=False ) -> List[Any]: if class_cond: UpperCAmelCase_= self.dummy_cond_unet else: UpperCAmelCase_= self.dummy_uncond_unet # Default to CM multistep sampler UpperCAmelCase_= CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase_= { """unet""": unet, """scheduler""": scheduler, } return components def _SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str=0 ) -> Optional[Any]: if str(__UpperCAmelCase ).startswith("""mps""" ): UpperCAmelCase_= torch.manual_seed(__UpperCAmelCase ) else: UpperCAmelCase_= torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) UpperCAmelCase_= { """batch_size""": 1, """num_inference_steps""": None, """timesteps""": [22, 0], """generator""": generator, """output_type""": """np""", } return inputs def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase_= """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_= self.get_dummy_components() UpperCAmelCase_= ConsistencyModelPipeline(**__UpperCAmelCase ) UpperCAmelCase_= pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase_= self.get_dummy_inputs(__UpperCAmelCase ) UpperCAmelCase_= pipe(**__UpperCAmelCase ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase_= image[0, -3:, -3:, -1] UpperCAmelCase_= np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _SCREAMING_SNAKE_CASE ( self : str ) -> str: UpperCAmelCase_= """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_= self.get_dummy_components(class_cond=__UpperCAmelCase ) UpperCAmelCase_= ConsistencyModelPipeline(**__UpperCAmelCase ) UpperCAmelCase_= pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase_= self.get_dummy_inputs(__UpperCAmelCase ) UpperCAmelCase_= 0 UpperCAmelCase_= pipe(**__UpperCAmelCase ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase_= image[0, -3:, -3:, -1] UpperCAmelCase_= np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _SCREAMING_SNAKE_CASE ( self : int ) -> str: UpperCAmelCase_= """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_= self.get_dummy_components() UpperCAmelCase_= ConsistencyModelPipeline(**__UpperCAmelCase ) UpperCAmelCase_= pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase_= self.get_dummy_inputs(__UpperCAmelCase ) UpperCAmelCase_= 1 UpperCAmelCase_= None UpperCAmelCase_= pipe(**__UpperCAmelCase ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase_= image[0, -3:, -3:, -1] UpperCAmelCase_= np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_= """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_= self.get_dummy_components(class_cond=__UpperCAmelCase ) UpperCAmelCase_= ConsistencyModelPipeline(**__UpperCAmelCase ) UpperCAmelCase_= pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase_= self.get_dummy_inputs(__UpperCAmelCase ) UpperCAmelCase_= 1 UpperCAmelCase_= None UpperCAmelCase_= 0 UpperCAmelCase_= pipe(**__UpperCAmelCase ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase_= image[0, -3:, -3:, -1] UpperCAmelCase_= np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class lowercase ( unittest.TestCase): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : str ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : int="cpu" , __UpperCAmelCase : str=torch.floataa , __UpperCAmelCase : Tuple=(1, 3, 64, 64) ) -> str: UpperCAmelCase_= torch.manual_seed(__UpperCAmelCase ) UpperCAmelCase_= { """num_inference_steps""": None, """timesteps""": [22, 0], """class_labels""": 0, """generator""": generator, """output_type""": """np""", } if get_fixed_latents: UpperCAmelCase_= self.get_fixed_latents(seed=__UpperCAmelCase , device=__UpperCAmelCase , dtype=__UpperCAmelCase , shape=__UpperCAmelCase ) UpperCAmelCase_= latents return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : Any=0 , __UpperCAmelCase : int="cpu" , __UpperCAmelCase : Optional[Any]=torch.floataa , __UpperCAmelCase : Any=(1, 3, 64, 64) ) -> List[str]: if type(__UpperCAmelCase ) == str: UpperCAmelCase_= torch.device(__UpperCAmelCase ) UpperCAmelCase_= torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) UpperCAmelCase_= randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=__UpperCAmelCase , dtype=__UpperCAmelCase ) return latents def _SCREAMING_SNAKE_CASE ( self : int ) -> str: UpperCAmelCase_= UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCAmelCase_= CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase_= ConsistencyModelPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) pipe.to(torch_device=__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase_= self.get_inputs() UpperCAmelCase_= pipe(**__UpperCAmelCase ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase_= image[0, -3:, -3:, -1] UpperCAmelCase_= np.array([0.0_888, 0.0_881, 0.0_666, 0.0_479, 0.0_292, 0.0_195, 0.0_201, 0.0_163, 0.0_254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: UpperCAmelCase_= UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCAmelCase_= CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase_= ConsistencyModelPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) pipe.to(torch_device=__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase_= self.get_inputs() UpperCAmelCase_= 1 UpperCAmelCase_= None UpperCAmelCase_= pipe(**__UpperCAmelCase ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase_= image[0, -3:, -3:, -1] UpperCAmelCase_= np.array([0.0_340, 0.0_152, 0.0_063, 0.0_267, 0.0_221, 0.0_107, 0.0_416, 0.0_186, 0.0_217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: UpperCAmelCase_= UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCAmelCase_= CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase_= ConsistencyModelPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) pipe.to(torch_device=__UpperCAmelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase_= self.get_inputs(get_fixed_latents=__UpperCAmelCase , device=__UpperCAmelCase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__UpperCAmelCase , enable_math=__UpperCAmelCase , enable_mem_efficient=__UpperCAmelCase ): UpperCAmelCase_= pipe(**__UpperCAmelCase ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase_= image[0, -3:, -3:, -1] UpperCAmelCase_= np.array([0.1_875, 0.1_428, 0.1_289, 0.2_151, 0.2_092, 0.1_477, 0.1_877, 0.1_641, 0.1_353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: UpperCAmelCase_= UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCAmelCase_= CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase_= ConsistencyModelPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) pipe.to(torch_device=__UpperCAmelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase_= self.get_inputs(get_fixed_latents=__UpperCAmelCase , device=__UpperCAmelCase ) UpperCAmelCase_= 1 UpperCAmelCase_= None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__UpperCAmelCase , enable_math=__UpperCAmelCase , enable_mem_efficient=__UpperCAmelCase ): UpperCAmelCase_= pipe(**__UpperCAmelCase ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase_= image[0, -3:, -3:, -1] UpperCAmelCase_= np.array([0.1_663, 0.1_948, 0.2_275, 0.1_680, 0.1_204, 0.1_245, 0.1_858, 0.1_338, 0.2_095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
593
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __magic_name__ =logging.get_logger(__name__) class _A ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : int =["pixel_values"] def __init__(self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ) -> List[Any]: '''simple docstring''' super().__init__(**lowercase__ ) UpperCamelCase__ = size if size is not None else {"shortest_edge": 224} UpperCamelCase__ = get_size_dict(lowercase__ , default_to_square=lowercase__ ) UpperCamelCase__ = crop_size if crop_size is not None else {"height": 256, "width": 256} UpperCamelCase__ = get_size_dict(lowercase__ , param_name='''crop_size''' ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = resample UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size UpperCamelCase__ = do_flip_channel_order def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = PIL.Image.BILINEAR , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size: raise ValueError(F"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}" ) UpperCamelCase__ = get_resize_output_image_size(lowercase__ , size=size['''shortest_edge'''] , default_to_square=lowercase__ ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(lowercase__ , size=(size['''height'''], size['''width''']) , data_format=lowercase__ , **lowercase__ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: '''simple docstring''' return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Union[str, Any]: '''simple docstring''' return flip_channel_order(lowercase__ , data_format=lowercase__ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(lowercase__ , default_to_square=lowercase__ ) UpperCamelCase__ = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ = get_size_dict(lowercase__ , param_name='''crop_size''' ) UpperCamelCase__ = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(lowercase__ ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: UpperCamelCase__ = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCamelCase__ = [self.flip_channel_order(image=lowercase__ ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] UpperCamelCase__ = {"pixel_values": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[str]: '''simple docstring''' UpperCamelCase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase__ ) != len(lowercase__ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowercase__ ): UpperCamelCase__ = target_sizes.numpy() UpperCamelCase__ = [] for idx in range(len(lowercase__ ) ): UpperCamelCase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowercase__ ) UpperCamelCase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase__ ) else: UpperCamelCase__ = logits.argmax(dim=1 ) UpperCamelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
702
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _A ( unittest.TestCase ): def _a (self ) -> str: '''simple docstring''' UpperCamelCase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) UpperCamelCase__ = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(SCREAMING_SNAKE_CASE_ ) , torch_builtin(SCREAMING_SNAKE_CASE_ ) ) ) self.assertFalse(torch.allclose(gelu_python(SCREAMING_SNAKE_CASE_ ) , gelu_new(SCREAMING_SNAKE_CASE_ ) ) ) def _a (self ) -> str: '''simple docstring''' UpperCamelCase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) UpperCamelCase__ = get_activation('''gelu''' ) UpperCamelCase__ = get_activation('''gelu_10''' ) UpperCamelCase__ = torch_builtin(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = geluaa(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(SCREAMING_SNAKE_CASE_ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _a (self ) -> Optional[Any]: '''simple docstring''' get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): get_activation('''bogus''' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): get_activation(SCREAMING_SNAKE_CASE_ ) def _a (self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = get_activation('''gelu''' ) UpperCamelCase__ = 1 UpperCamelCase__ = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = acta.a
469
0
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = """ylacombe/bark-small""" A_ = tempfile.mkdtemp() A_ = """en_speaker_1""" A_ = """This is a test string""" A_ = """speaker_embeddings_path.json""" A_ = """speaker_embeddings""" def snake_case_ ( self , **UpperCamelCase__ ) -> int: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **UpperCamelCase__ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.get_tokenizer() A_ = BarkProcessor(tokenizer=UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) A_ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) A_ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) A_ = 35 A_ = 2 A_ = 8 A_ = { """semantic_prompt""": np.ones(UpperCamelCase__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset A_ = processor(text=self.input_string , voice_preset=UpperCamelCase__ ) A_ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCamelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file A_ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(UpperCamelCase__ , **UpperCamelCase__ ) A_ = processor(text=self.input_string , voice_preset=UpperCamelCase__ ) A_ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCamelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub A_ = processor(text=self.input_string , voice_preset=self.voice_preset ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.get_tokenizer() A_ = BarkProcessor(tokenizer=UpperCamelCase__ ) A_ = processor(text=self.input_string ) A_ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
288
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""", [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""", ["""default""", 0, 1_00 * 2**20, 9_00 * 2**20] ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config, """IN_MEMORY_MAX_SIZE""", UpperCAmelCase__ ) A_ = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: A_ = dataset_size < in_memory_max_size else: A_ = False A_ = is_small_dataset(UpperCAmelCase__ ) assert result == expected
288
1
from __future__ import annotations def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): a_ : Any = list(range(len(__UpperCamelCase ) ) ) a_ : Union[str, Any] = [v / w for v, w in zip(__UpperCamelCase , __UpperCamelCase )] index.sort(key=lambda __UpperCamelCase : ratio[i] , reverse=__UpperCamelCase ) a_ : float = 0 a_ : list[float] = [0] * len(__UpperCamelCase ) for i in index: if weight[i] <= capacity: a_ : int = 1 max_value += value[i] capacity -= weight[i] else: a_ : Tuple = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
478
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __lowerCamelCase = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __lowerCamelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __lowerCamelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _a ( __UpperCamelCase , __UpperCamelCase ): a_ : List[Any] = len([g for position, g in enumerate(__UpperCamelCase ) if g == main_target[position]] ) return (item, float(__UpperCamelCase )) def _a ( __UpperCamelCase , __UpperCamelCase ): a_ : List[Any] = random.randint(0 , len(__UpperCamelCase ) - 1 ) a_ : Tuple = parent_a[:random_slice] + parent_a[random_slice:] a_ : Optional[Any] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _a ( __UpperCamelCase , __UpperCamelCase ): a_ : Optional[int] = list(__UpperCamelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: a_ : int = random.choice(__UpperCamelCase ) return "".join(__UpperCamelCase ) def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): a_ : Tuple = [] # Generate more children proportionally to the fitness score. a_ : Any = int(parent_a[1] * 1_0_0 ) + 1 a_ : int = 1_0 if child_n >= 1_0 else child_n for _ in range(__UpperCamelCase ): a_ : Tuple = population_score[random.randint(0 , __UpperCamelCase )][0] a_ , a_ : List[str] = crossover(parent_a[0] , __UpperCamelCase ) # Append new string to the population list. pop.append(mutate(__UpperCamelCase , __UpperCamelCase ) ) pop.append(mutate(__UpperCamelCase , __UpperCamelCase ) ) return pop def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: a_ : Union[str, Any] = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(__UpperCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. a_ : List[str] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: a_ : Optional[Any] = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(__UpperCamelCase ) # Generate random starting population. a_ : str = [] for _ in range(__UpperCamelCase ): population.append("""""".join([random.choice(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. a_ , a_ : List[str] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__UpperCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. a_ : Tuple = [evaluate(__UpperCamelCase , __UpperCamelCase ) for item in population] # Check if there is a matching evolution. a_ : Optional[Any] = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] , reverse=__UpperCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 1_0 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. a_ : List[str] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__UpperCamelCase ) # Normalize population score to be between 0 and 1. a_ : Optional[Any] = [ (item, score / len(__UpperCamelCase )) for item, score in population_score ] # This is selection for i in range(__UpperCamelCase ): population.extend(select(population_score[int(__UpperCamelCase )] , __UpperCamelCase , __UpperCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__UpperCamelCase ) > N_POPULATION: break if __name__ == "__main__": __lowerCamelCase = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __lowerCamelCase = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
478
1
def lowercase__ ( A_: Tuple ) -> str: """simple docstring""" __UpperCAmelCase =len(A_ ) __UpperCAmelCase =sum(A_ ) __UpperCAmelCase =[[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __UpperCAmelCase =True for i in range(1 , s + 1 ): __UpperCAmelCase =False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __UpperCAmelCase =dp[i][j - 1] if arr[i - 1] <= j: __UpperCAmelCase =dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __UpperCAmelCase =s - 2 * j break return diff
68
def __lowerCAmelCase ( _UpperCamelCase = 1000000 ) -> int: '''simple docstring''' lowerCamelCase__: Optional[int] = set(range(3 , _UpperCamelCase , 2 ) ) primes.add(2 ) for p in range(3 , _UpperCamelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _UpperCamelCase , _UpperCamelCase ) ) ) lowerCamelCase__: Dict = [float(_UpperCamelCase ) for n in range(limit + 1 )] for p in primes: for n in range(_UpperCamelCase , limit + 1 , _UpperCamelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"""{solution() = }""")
306
0
"""simple docstring""" import numpy as np from PIL import Image def _snake_case ( snake_case__ : np.ndarray , snake_case__ : int , snake_case__ : int ): A = np.array(snake_case__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) A = 0 A = 0 A = 0 A = 0 # compute the shape of the output matrix A = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape A = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix A = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 A = 0 A = 0 return updated_arr def _snake_case ( snake_case__ : np.ndarray , snake_case__ : int , snake_case__ : int ): A = np.array(snake_case__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) A = 0 A = 0 A = 0 A = 0 # compute the shape of the output matrix A = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape A = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix A = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 A = 0 A = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image _lowercase = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
717
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowercase = True except ImportError: _lowercase = False _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( snake_case__ : Namespace ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' ,action='store_true' ,help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' ,type=A_ ,help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' ,type=A_ ,help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=A_ ) def __init__( self : Tuple ,A_ : bool ,A_ : str ,A_ : Tuple=None ,*A_ : List[str] ) -> Union[str, Any]: A = testing A = testing_file A = path def _SCREAMING_SNAKE_CASE ( self : int ) -> int: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory A = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(A_ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) A = ( Path(A_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) A = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(A_ ) ) else: with open(self._testing_file ,'r' ) as configuration_file: A = json.load(A_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=A_ ,extra_context=A_ ,) A = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' ,'r' ) as configuration_file: A = json.load(A_ ) A = configuration['lowercase_modelname'] A = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(F'{directory}/configuration.json' ) A = 'PyTorch' in generate_tensorflow_pytorch_and_flax A = 'TensorFlow' in generate_tensorflow_pytorch_and_flax A = 'Flax' in generate_tensorflow_pytorch_and_flax A = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(A_ ,exist_ok=A_ ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=A_ ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,'w' ): pass shutil.move( F'{directory}/__init__.py' ,F'{model_dir}/__init__.py' ,) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' ,F'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(A_ : int ): with open(A_ ,'r' ) as f: A = f.readlines() with open(A_ ,'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(A_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' ,F'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' ,F'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' ,F'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' ,F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(A_ : str ,A_ : str ,A_ : List[str] ): # Create temp file A , A = mkstemp() A = False with fdopen(A_ ,'w' ) as new_file: with open(A_ ) as old_file: for line in old_file: new_file.write(A_ ) if line_to_copy_below in line: A = True for line_to_copy in lines_to_copy: new_file.write(A_ ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(A_ ,A_ ) # Remove original file remove(A_ ) # Move new file move(A_ ,A_ ) def skip_units(A_ : Dict ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(A_ : Tuple ): with open(A_ ) as datafile: A = [] A = False A = False for line in datafile: if "# To replace in: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# Below: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(A_ ,A_ ,A_ ) A = [] elif "# Replace with" in line and "##" not in line: A = [] elif "##" not in line: lines_to_copy.append(A_ ) remove(A_ ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(A_ )
22
0
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = DebertaVaTokenizer snake_case_ = DebertaVaTokenizerFast snake_case_ = True snake_case_ = True def __magic_name__ ( self : List[str] ) -> int: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ : str =DebertaVaTokenizer(__lowercase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self : str , __lowercase : Any ) -> Any: SCREAMING_SNAKE_CASE__ : Any ='''this is a test''' SCREAMING_SNAKE_CASE__ : Any ='''this is a test''' return input_text, output_text def __magic_name__ ( self : str ) -> List[str]: SCREAMING_SNAKE_CASE__ : Dict ='''<pad>''' SCREAMING_SNAKE_CASE__ : Tuple =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase ) def __magic_name__ ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(__lowercase ) , 3_00_01 ) def __magic_name__ ( self : Optional[Any] ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def __magic_name__ ( self : Tuple ) -> str: # fmt: off SCREAMING_SNAKE_CASE__ : Optional[int] =''' \tHeLLo!how \n Are yoU? ''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on SCREAMING_SNAKE_CASE__ : Optional[Any] =DebertaVaTokenizer(__lowercase , do_lower_case=__lowercase ) SCREAMING_SNAKE_CASE__ : str =tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Any =DebertaVaTokenizerFast(__lowercase , do_lower_case=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) ) self.assertListEqual(__lowercase , __lowercase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def __magic_name__ ( self : Optional[Any] ) -> Tuple: pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def __magic_name__ ( self : str ) -> List[str]: pass def __magic_name__ ( self : Tuple ) -> Dict: # fmt: off SCREAMING_SNAKE_CASE__ : Optional[Any] ='''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE__ : Optional[Any] =['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on SCREAMING_SNAKE_CASE__ : List[str] =DebertaVaTokenizer(__lowercase , split_by_punct=__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =DebertaVaTokenizerFast(__lowercase , split_by_punct=__lowercase ) SCREAMING_SNAKE_CASE__ : str =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) ) self.assertListEqual(__lowercase , __lowercase ) def __magic_name__ ( self : Optional[int] ) -> List[str]: # fmt: off SCREAMING_SNAKE_CASE__ : List[Any] ='''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE__ : Optional[Any] =['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on SCREAMING_SNAKE_CASE__ : str =DebertaVaTokenizer(__lowercase , do_lower_case=__lowercase , split_by_punct=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : str =DebertaVaTokenizerFast(__lowercase , do_lower_case=__lowercase , split_by_punct=__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) ) self.assertListEqual(__lowercase , __lowercase ) def __magic_name__ ( self : Any ) -> Optional[int]: # fmt: off SCREAMING_SNAKE_CASE__ : int ='''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE__ : Dict =['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on SCREAMING_SNAKE_CASE__ : Optional[Any] =DebertaVaTokenizer(__lowercase , do_lower_case=__lowercase , split_by_punct=__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Any =DebertaVaTokenizerFast(__lowercase , do_lower_case=__lowercase , split_by_punct=__lowercase ) SCREAMING_SNAKE_CASE__ : str =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) ) self.assertListEqual(__lowercase , __lowercase ) def __magic_name__ ( self : Union[str, Any] ) -> Dict: # fmt: off SCREAMING_SNAKE_CASE__ : List[Any] ='''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE__ : int =['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on SCREAMING_SNAKE_CASE__ : Optional[Any] =DebertaVaTokenizer(__lowercase , do_lower_case=__lowercase , split_by_punct=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Dict =DebertaVaTokenizerFast(__lowercase , do_lower_case=__lowercase , split_by_punct=__lowercase ) SCREAMING_SNAKE_CASE__ : int =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) ) self.assertListEqual(__lowercase , __lowercase ) def __magic_name__ ( self : Optional[Any] ) -> Dict: # fmt: off SCREAMING_SNAKE_CASE__ : Dict =''' \tHeLLo!how \n Are yoU? ''' SCREAMING_SNAKE_CASE__ : Optional[int] =['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on SCREAMING_SNAKE_CASE__ : str =DebertaVaTokenizer(__lowercase , do_lower_case=__lowercase , split_by_punct=__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : str =DebertaVaTokenizerFast(__lowercase , do_lower_case=__lowercase , split_by_punct=__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) ) self.assertListEqual(__lowercase , __lowercase ) def __magic_name__ ( self : Any ) -> str: SCREAMING_SNAKE_CASE__ : List[str] =self.get_tokenizer() SCREAMING_SNAKE_CASE__ : List[str] =self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : int ='''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE__ : Optional[Any] =tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[int] =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : str =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : int =self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.encode(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =rust_tokenizer.encode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def __magic_name__ ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ : Union[str, Any] ='''This is a test''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =[13, 1, 43_98, 25, 21, 12_89] SCREAMING_SNAKE_CASE__ : Optional[int] =['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] SCREAMING_SNAKE_CASE__ : Union[str, Any] =['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] SCREAMING_SNAKE_CASE__ : Union[str, Any] =DebertaVaTokenizer(__lowercase , keep_accents=__lowercase ) SCREAMING_SNAKE_CASE__ : Any =DebertaVaTokenizerFast(__lowercase , keep_accents=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : str =tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Dict =rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =rust_tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : str =rust_tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) # fmt: off SCREAMING_SNAKE_CASE__ : Tuple ='''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE__ : List[str] =[13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] SCREAMING_SNAKE_CASE__ : Tuple =['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] SCREAMING_SNAKE_CASE__ : Optional[int] =['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Any =tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : str =tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =rust_tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : str =rust_tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def __magic_name__ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ : str =DebertaVaTokenizer(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =tokenizer.encode('''sequence builders''' ) SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.encode('''multi-sequence build''' ) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.build_inputs_with_special_tokens(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __lowercase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __lowercase , ) @slow def __magic_name__ ( self : Optional[int] ) -> List[str]: # fmt: off SCREAMING_SNAKE_CASE__ : Any ={'''input_ids''': [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
296
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
296
1
'''simple docstring''' from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __SCREAMING_SNAKE_CASE ( lowerCamelCase , lowerCamelCase ): snake_case_ = """pixel_values""" snake_case_ = False snake_case_ = TimmBackboneConfig def __init__( self : Union[str, Any] , __lowercase : Optional[Any] , **__lowercase : Optional[int] ) -> Any: requires_backends(self , '''timm''' ) super().__init__(__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(F"backbone {config.backbone} is not supported by timm." ) if hasattr(__lowercase , '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) SCREAMING_SNAKE_CASE__ : Any =getattr(__lowercase , '''use_pretrained_backbone''' , __lowercase ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. SCREAMING_SNAKE_CASE__ : Optional[int] =config.out_indices if getattr(__lowercase , '''out_indices''' , __lowercase ) is not None else (-1,) SCREAMING_SNAKE_CASE__ : str =timm.create_model( config.backbone , pretrained=__lowercase , features_only=config.features_only , in_chans=config.num_channels , out_indices=__lowercase , **__lowercase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. SCREAMING_SNAKE_CASE__ : List[str] =self._backbone.return_layers SCREAMING_SNAKE_CASE__ : List[Any] ={layer['''module''']: str(__lowercase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(__lowercase ) @classmethod def __magic_name__ ( cls : str , __lowercase : Optional[Any] , *__lowercase : str , **__lowercase : Optional[Any] ) -> Dict: requires_backends(cls , ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig SCREAMING_SNAKE_CASE__ : Optional[int] =kwargs.pop('''config''' , TimmBackboneConfig() ) SCREAMING_SNAKE_CASE__ : str =kwargs.pop('''use_timm_backbone''' , __lowercase ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =kwargs.pop('''num_channels''' , config.num_channels ) SCREAMING_SNAKE_CASE__ : Tuple =kwargs.pop('''features_only''' , config.features_only ) SCREAMING_SNAKE_CASE__ : str =kwargs.pop('''use_pretrained_backbone''' , config.use_pretrained_backbone ) SCREAMING_SNAKE_CASE__ : Any =kwargs.pop('''out_indices''' , config.out_indices ) SCREAMING_SNAKE_CASE__ : List[Any] =TimmBackboneConfig( backbone=__lowercase , num_channels=__lowercase , features_only=__lowercase , use_pretrained_backbone=__lowercase , out_indices=__lowercase , ) return super()._from_config(__lowercase , **__lowercase ) def __magic_name__ ( self : Optional[int] , __lowercase : str ) -> str: pass def __magic_name__ ( self : Tuple , __lowercase : Tuple , __lowercase : int=None , __lowercase : Optional[int]=None , __lowercase : List[str]=None , **__lowercase : Dict ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: SCREAMING_SNAKE_CASE__ : Optional[Any] =return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE__ : Optional[Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE__ : List[Any] =output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone SCREAMING_SNAKE_CASE__ : Optional[int] =self._all_layers SCREAMING_SNAKE_CASE__ : str =self._backbone(__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =self._return_layers SCREAMING_SNAKE_CASE__ : Optional[Any] =tuple(hidden_states[i] for i in self.out_indices ) else: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self._backbone(__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =None SCREAMING_SNAKE_CASE__ : Tuple =tuple(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =tuple(__lowercase ) if hidden_states is not None else None if not return_dict: SCREAMING_SNAKE_CASE__ : Dict =(feature_maps,) if output_hidden_states: SCREAMING_SNAKE_CASE__ : Dict =output + (hidden_states,) return output return BackboneOutput(feature_maps=__lowercase , hidden_states=__lowercase , attentions=__lowercase )
665
'''simple docstring''' def _a( UpperCamelCase__ : str, UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] =len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =[[False for _ in range(m + 1 )] for _ in range(n + 1 )] SCREAMING_SNAKE_CASE__ : List[Any] =True for i in range(UpperCamelCase__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: SCREAMING_SNAKE_CASE__ : Optional[int] =True if a[i].islower(): SCREAMING_SNAKE_CASE__ : List[Any] =True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
665
1
"""simple docstring""" from math import sqrt def __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowerCamelCase ( UpperCamelCase__ = 1_0001 ): """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(UpperCamelCase__ ): count += 1 while count != nth: number += 2 if is_prime(UpperCamelCase__ ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
657
"""simple docstring""" def __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" return 10 - x * x def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if equation(UpperCamelCase__ ) * equation(UpperCamelCase__ ) >= 0: raise ValueError("Wrong space!" ) _UpperCAmelCase = a while (b - a) >= 0.01: # Find middle point _UpperCAmelCase = (a + b) / 2 # Check if middle point is root if equation(UpperCamelCase__ ) == 0.0: break # Decide the side to repeat the steps if equation(UpperCamelCase__ ) * equation(UpperCamelCase__ ) < 0: _UpperCAmelCase = c else: _UpperCAmelCase = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
657
1
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 _a : List[Any] = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 128, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class _UpperCAmelCase ( unittest.TestCase): @classmethod def lowerCamelCase__ ( cls ): _snake_case : Union[str, Any] = TOKEN HfFolder.save_token(snake_case_ ) @classmethod def lowerCamelCase__ ( cls ): try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def lowerCamelCase__ ( self ): _snake_case : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _snake_case : List[Any] = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case_ , repo_id="test-config" , push_to_hub=snake_case_ , use_auth_token=self._token ) _snake_case : Tuple = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) def lowerCamelCase__ ( self ): _snake_case : Tuple = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _snake_case : List[Any] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case_ , repo_id="valid_org/test-config-org" , push_to_hub=snake_case_ , use_auth_token=self._token ) _snake_case : List[Any] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case_ , getattr(snake_case_ , snake_case_ ) ) def lowerCamelCase__ ( self ): CustomConfig.register_for_auto_class() _snake_case : List[Any] = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _snake_case : Optional[int] = AutoConfig.from_pretrained(F'{USER}/test-dynamic-config' , trust_remote_code=snake_case_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class _UpperCAmelCase ( unittest.TestCase): def lowerCamelCase__ ( self ): _snake_case : List[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _snake_case : Optional[Any] = c.n_embd + 1 # int _snake_case : Tuple = c.resid_pdrop + 1.0 # float _snake_case : int = not c.scale_attn_weights # bool _snake_case : str = c.summary_type + "foo" # str c.update_from_string( F'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}' ) self.assertEqual(snake_case_ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(snake_case_ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(snake_case_ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(snake_case_ , c.summary_type , "mismatch for key: summary_type" ) def lowerCamelCase__ ( self ): _snake_case : List[Any] = PretrainedConfig() _snake_case : Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case_ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _snake_case : int = [key for key, value in config_common_kwargs.items() if value == getattr(snake_case_ , snake_case_ )] if len(snake_case_ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F' {", ".join(snake_case_ )}.' ) def lowerCamelCase__ ( self ): with self.assertRaises(snake_case_ ): # config is in subfolder, the following should not work without specifying the subfolder _snake_case : Optional[int] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _snake_case : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(snake_case_ ) def lowerCamelCase__ ( self ): # A mock response for an HTTP head request to emulate server down _snake_case : Optional[int] = mock.Mock() _snake_case : Dict = 5_00 _snake_case : Union[str, Any] = {} _snake_case : List[Any] = HTTPError _snake_case : Union[str, Any] = {} # Download this model to make sure it's in the cache. _snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case_ ) as mock_head: _snake_case : str = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase__ ( self ): # This test is for deprecated behavior and can be removed in v5 _snake_case : Union[str, Any] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def lowerCamelCase__ ( self ): _snake_case : Union[str, Any] = AutoConfig.from_pretrained("bert-base-cased" ) _snake_case : Dict = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case_ ) _snake_case : Optional[Any] = 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case_ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _snake_case : List[Any] = AutoConfig.from_pretrained(snake_case_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _snake_case : Optional[Any] = ["config.42.0.0.json"] _snake_case : str = 7_68 configuration.save_pretrained(snake_case_ ) shutil.move(os.path.join(snake_case_ , "config.4.0.0.json" ) , os.path.join(snake_case_ , "config.42.0.0.json" ) ) _snake_case : Any = AutoConfig.from_pretrained(snake_case_ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def lowerCamelCase__ ( self ): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _snake_case : Optional[Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers _snake_case : Tuple = "v4.0.0" _snake_case : Union[str, Any] = new_transformers.models.auto.AutoConfig.from_pretrained( snake_case_ , return_unused_kwargs=snake_case_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _snake_case : str = "v3.0.0" _snake_case : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(snake_case_ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
707
"""simple docstring""" from __future__ import annotations import requests _a : List[str] = set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def a__ ( a : str , a : int = 1 , a : str = "new" , a : list | None = None ): """simple docstring""" _snake_case : Any = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(a ) - valid_terms ) ): _snake_case : Optional[int] = f'Invalid search term: {invalid_search_terms}' raise ValueError(a ) _snake_case : int = requests.get( f'https://reddit.com/r/{subreddit}/{age}.json?limit={limit}' , headers={"User-agent": "A random string"} , ) if response.status_code == 429: raise requests.HTTPError _snake_case : Optional[Any] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(a )} _snake_case : Tuple = {} for id_ in range(a ): _snake_case : List[str] = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
87
0
from __future__ import annotations import numpy as np def A__ ( _a : np.ndarray ): '''simple docstring''' snake_case__ , snake_case__ : str =np.shape(_a ) if rows != columns: snake_case__ : Any =( """'table' has to be of square shaped array but got a """ f"{rows}x{columns} array:\n{table}" ) raise ValueError(_a ) snake_case__ : Dict =np.zeros((rows, columns) ) snake_case__ : str =np.zeros((rows, columns) ) for i in range(_a ): for j in range(_a ): snake_case__ : Optional[int] =sum(lower[i][k] * upper[k][j] for k in range(_a ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) snake_case__ : List[Any] =(table[i][j] - total) / upper[j][j] snake_case__ : Optional[int] =1 for j in range(_a , _a ): snake_case__ : int =sum(lower[i][k] * upper[k][j] for k in range(_a ) ) snake_case__ : Dict =table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
385
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCamelCase : int = 16 __lowerCamelCase : int = 32 def A__ ( _a : Accelerator , _a : int = 16 ): '''simple docstring''' snake_case__ : List[Any] =AutoTokenizer.from_pretrained("""bert-base-cased""" ) snake_case__ : Union[str, Any] =load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_a : List[Any] ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Any =tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_a , max_length=_a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case__ : List[Any] =datasets.map( _a , batched=_a , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : List[str] =tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_a : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case__ : Optional[int] =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case__ : str =16 elif accelerator.mixed_precision != "no": snake_case__ : Optional[Any] =8 else: snake_case__ : int =None return tokenizer.pad( _a , padding="""longest""" , max_length=_a , pad_to_multiple_of=_a , return_tensors="""pt""" , ) # Instantiate dataloaders. snake_case__ : Tuple =DataLoader( tokenized_datasets["""train"""] , shuffle=_a , collate_fn=_a , batch_size=_a ) snake_case__ : Tuple =DataLoader( tokenized_datasets["""validation"""] , shuffle=_a , collate_fn=_a , batch_size=_a ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __lowerCamelCase : Dict = mocked_dataloaders # noqa: F811 def A__ ( _a : List[Any] , _a : Tuple ): '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _a ) == "1": snake_case__ : Union[str, Any] =2 # New Code # snake_case__ : int =int(args.gradient_accumulation_steps ) # Initialize accelerator snake_case__ : Any =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_a ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : Union[str, Any] =config["""lr"""] snake_case__ : Dict =int(config["""num_epochs"""] ) snake_case__ : Tuple =int(config["""seed"""] ) snake_case__ : Dict =int(config["""batch_size"""] ) snake_case__ : str =evaluate.load("""glue""" , """mrpc""" ) set_seed(_a ) snake_case__ , snake_case__ : List[Any] =get_dataloaders(_a , _a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : str =AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case__ : str =model.to(accelerator.device ) # Instantiate optimizer snake_case__ : str =AdamW(params=model.parameters() , lr=_a ) # Instantiate scheduler snake_case__ : List[Any] =get_linear_schedule_with_warmup( optimizer=_a , num_warmup_steps=100 , num_training_steps=(len(_a ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : str =accelerator.prepare( _a , _a , _a , _a , _a ) # Now we train the model for epoch in range(_a ): model.train() for step, batch in enumerate(_a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_a ): snake_case__ : Optional[int] =model(**_a ) snake_case__ : str =output.loss accelerator.backward(_a ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : str =model(**_a ) snake_case__ : int =outputs.logits.argmax(dim=-1 ) snake_case__ , snake_case__ : Any =accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_a , references=_a , ) snake_case__ : List[str] =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _a ) def A__ ( ): '''simple docstring''' snake_case__ : Union[str, Any] =argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_a , default=_a , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=_a , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) snake_case__ : List[Any] =parser.parse_args() snake_case__ : Optional[Any] ={"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_a , _a ) if __name__ == "__main__": main()
385
1
'''simple docstring''' def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: UpperCAmelCase : Tuple = _modexpt(__magic_name__ , exponent // 2 , __magic_name__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__magic_name__ , exponent - 1 , __magic_name__ )) % modulo_value def lowercase ( __magic_name__ = 1777 , __magic_name__ = 1855 , __magic_name__ = 8 ): '''simple docstring''' UpperCAmelCase : Optional[Any] = base for _ in range(1 , __magic_name__ ): UpperCAmelCase : Any = _modexpt(__magic_name__ , __magic_name__ , 10**digits ) return result if __name__ == "__main__": print(F'{solution() = }')
609
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class UpperCamelCase__ ( lowercase__ ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(snake_case , "num_attention_heads" ) ) self.parent.assertTrue(hasattr(snake_case , "num_encoder_blocks" ) ) class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case , snake_case=1_3 , snake_case=6_4 , snake_case=3 , snake_case=4 , snake_case=[2, 2, 2, 2] , snake_case=[8, 4, 2, 1] , snake_case=[1_6, 3_2, 6_4, 1_2_8] , snake_case=[1, 4, 8, 1_6] , snake_case=[1, 2, 4, 8] , snake_case=True , snake_case=True , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=0.02 , snake_case=3 , snake_case=None , ): '''simple docstring''' UpperCAmelCase : Optional[int] = parent UpperCAmelCase : str = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : int = num_channels UpperCAmelCase : List[Any] = num_encoder_blocks UpperCAmelCase : Dict = sr_ratios UpperCAmelCase : Union[str, Any] = depths UpperCAmelCase : Optional[Any] = hidden_sizes UpperCAmelCase : Union[str, Any] = downsampling_rates UpperCAmelCase : Tuple = num_attention_heads UpperCAmelCase : Tuple = is_training UpperCAmelCase : Any = use_labels UpperCAmelCase : str = hidden_act UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : Any = attention_probs_dropout_prob UpperCAmelCase : int = initializer_range UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Optional[Any] = scope def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase : int = self.get_config() return config, pixel_values, labels def A_ ( self ): '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[int] = SegformerModel(config=snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : Optional[int] = model(snake_case ) UpperCAmelCase : List[str] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : Dict = self.num_labels UpperCAmelCase : Optional[Any] = SegformerForSemanticSegmentation(snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : str = model(snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) UpperCAmelCase : Dict = model(snake_case , labels=snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : List[str] = 1 UpperCAmelCase : List[Any] = SegformerForSemanticSegmentation(config=snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : Any = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(snake_case ) UpperCAmelCase : Optional[int] = model(snake_case , labels=snake_case ) self.parent.assertGreater(result.loss , 0.0 ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = config_and_inputs UpperCAmelCase : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : int = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = False SCREAMING_SNAKE_CASE__ : int = False def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = SegformerModelTester(self ) UpperCAmelCase : Dict = SegformerConfigTester(self , config_class=snake_case ) def A_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*snake_case ) @unittest.skip("SegFormer does not use inputs_embeds" ) def A_ ( self ): '''simple docstring''' pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods" ) def A_ ( self ): '''simple docstring''' pass def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(snake_case ) UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Optional[int] = [*signature.parameters.keys()] UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = True for model_class in self.all_model_classes: UpperCAmelCase : Tuple = True UpperCAmelCase : Optional[int] = False UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : Dict = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase : str = model(**self._prepare_for_class(snake_case , snake_case ) ) UpperCAmelCase : int = outputs.attentions UpperCAmelCase : Union[str, Any] = sum(self.model_tester.depths ) self.assertEqual(len(snake_case ) , snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase : Any = True UpperCAmelCase : int = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(**self._prepare_for_class(snake_case , snake_case ) ) UpperCAmelCase : Any = outputs.attentions self.assertEqual(len(snake_case ) , snake_case ) # verify the first attentions (first block, first layer) UpperCAmelCase : Optional[int] = (self.model_tester.image_size // 4) ** 2 UpperCAmelCase : Dict = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) UpperCAmelCase : List[str] = (self.model_tester.image_size // 3_2) ** 2 UpperCAmelCase : int = (self.model_tester.image_size // (3_2 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) UpperCAmelCase : Any = len(snake_case ) # Check attention is always last and order is fine UpperCAmelCase : Dict = True UpperCAmelCase : int = True UpperCAmelCase : Optional[Any] = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case , snake_case ) ) self.assertEqual(out_len + 1 , len(snake_case ) ) UpperCAmelCase : int = outputs.attentions self.assertEqual(len(snake_case ) , snake_case ) # verify the first attentions (first block, first layer) UpperCAmelCase : Optional[int] = (self.model_tester.image_size // 4) ** 2 UpperCAmelCase : str = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def A_ ( self ): '''simple docstring''' def check_hidden_states_output(snake_case , snake_case , snake_case ): UpperCAmelCase : Optional[Any] = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(snake_case , snake_case ) ) UpperCAmelCase : List[str] = outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_encoder_blocks self.assertEqual(len(snake_case ) , snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Union[str, Any] = True check_hidden_states_output(snake_case , snake_case , snake_case ) def A_ ( self ): '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = True for model_class in self.all_model_classes: if model_class in get_values(snake_case ): continue UpperCAmelCase : Optional[int] = model_class(snake_case ) model.to(snake_case ) model.train() UpperCAmelCase : List[Any] = self._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) UpperCAmelCase : Tuple = model(**snake_case ).loss loss.backward() @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A_ ( self ): '''simple docstring''' pass @slow def A_ ( self ): '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Any = SegformerModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def lowercase ( ): '''simple docstring''' UpperCAmelCase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=snake_case , align=snake_case , do_random_crop=snake_case ) UpperCAmelCase : Any = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( snake_case ) UpperCAmelCase : Optional[int] = prepare_img() UpperCAmelCase : List[Any] = image_processor(images=snake_case , return_tensors="pt" ) UpperCAmelCase : List[Any] = encoded_inputs.pixel_values.to(snake_case ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(snake_case ) UpperCAmelCase : int = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape , snake_case ) UpperCAmelCase : List[str] = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , snake_case , atol=1e-4 ) ) @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=snake_case , align=snake_case , do_random_crop=snake_case ) UpperCAmelCase : Dict = SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(snake_case ) UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = image_processor(images=snake_case , return_tensors="pt" ) UpperCAmelCase : Optional[Any] = encoded_inputs.pixel_values.to(snake_case ) with torch.no_grad(): UpperCAmelCase : int = model(snake_case ) UpperCAmelCase : List[Any] = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape , snake_case ) UpperCAmelCase : int = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , snake_case , atol=1e-1 ) ) @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=snake_case , align=snake_case , do_random_crop=snake_case ) UpperCAmelCase : Union[str, Any] = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( snake_case ) UpperCAmelCase : List[str] = prepare_img() UpperCAmelCase : Any = image_processor(images=snake_case , return_tensors="pt" ) UpperCAmelCase : List[str] = encoded_inputs.pixel_values.to(snake_case ) with torch.no_grad(): UpperCAmelCase : str = model(snake_case ) UpperCAmelCase : int = outputs.logits.detach().cpu() UpperCAmelCase : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case , target_sizes=[(5_0_0, 3_0_0)] ) UpperCAmelCase : Tuple = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , snake_case ) UpperCAmelCase : Tuple = image_processor.post_process_semantic_segmentation(outputs=snake_case ) UpperCAmelCase : List[str] = torch.Size((1_2_8, 1_2_8) ) self.assertEqual(segmentation[0].shape , snake_case )
609
1