code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def a__ ( lowerCAmelCase ) -> str: random.seed(lowerCAmelCase ) np.random.seed(lowerCAmelCase ) torch.manual_seed(lowerCAmelCase ) torch.cuda.manual_seed_all(lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class lowerCamelCase : '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase = 0.9_999 , _lowerCamelCase = 0.0 , _lowerCamelCase = 0 , _lowerCamelCase = False , _lowerCamelCase = 1.0 , _lowerCamelCase = 2 / 3 , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" if isinstance(_lowerCamelCase , torch.nn.Module ): UpperCAmelCase__ : Any = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , _lowerCamelCase , standard_warn=_lowerCamelCase , ) UpperCAmelCase__ : str = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility UpperCAmelCase__ : List[str] = True if kwargs.get("""max_value""" , _lowerCamelCase ) is not None: UpperCAmelCase__ : Dict = """The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , _lowerCamelCase , standard_warn=_lowerCamelCase ) UpperCAmelCase__ : Dict = kwargs["""max_value"""] if kwargs.get("""min_value""" , _lowerCamelCase ) is not None: UpperCAmelCase__ : List[Any] = """The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , _lowerCamelCase , standard_warn=_lowerCamelCase ) UpperCAmelCase__ : Dict = kwargs["""min_value"""] UpperCAmelCase__ : Tuple = list(_lowerCamelCase ) UpperCAmelCase__ : int = [p.clone().detach() for p in parameters] if kwargs.get("""device""" , _lowerCamelCase ) is not None: UpperCAmelCase__ : Any = """The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , _lowerCamelCase , standard_warn=_lowerCamelCase ) self.to(device=kwargs["""device"""] ) UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : int = decay UpperCAmelCase__ : List[str] = min_decay UpperCAmelCase__ : str = update_after_step UpperCAmelCase__ : int = use_ema_warmup UpperCAmelCase__ : List[Any] = inv_gamma UpperCAmelCase__ : Tuple = power UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Union[str, Any] = None # set in `step()` UpperCAmelCase__ : Tuple = model_cls UpperCAmelCase__ : List[str] = model_config @classmethod def _a (cls , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : int = model_cls.load_config(_lowerCamelCase , return_unused_kwargs=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = model_cls.from_pretrained(_lowerCamelCase ) UpperCAmelCase__ : Tuple = cls(model.parameters() , model_cls=_lowerCamelCase , model_config=model.config ) ema_model.load_state_dict(_lowerCamelCase ) return ema_model def _a (self , _lowerCamelCase ): """simple docstring""" if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) UpperCAmelCase__ : Optional[Any] = self.model_cls.from_config(self.model_config ) UpperCAmelCase__ : List[str] = self.state_dict() state_dict.pop("""shadow_params""" , _lowerCamelCase ) model.register_to_config(**_lowerCamelCase ) self.copy_to(model.parameters() ) model.save_pretrained(_lowerCamelCase ) def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Dict = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: UpperCAmelCase__ : Union[str, Any] = 1 - (1 + step / self.inv_gamma) ** -self.power else: UpperCAmelCase__ : Union[str, Any] = (1 + step) / (10 + step) UpperCAmelCase__ : Optional[int] = min(_lowerCamelCase , self.decay ) # make sure decay is not smaller than min_decay UpperCAmelCase__ : Any = max(_lowerCamelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def _a (self , _lowerCamelCase ): """simple docstring""" if isinstance(_lowerCamelCase , torch.nn.Module ): UpperCAmelCase__ : int = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , _lowerCamelCase , standard_warn=_lowerCamelCase , ) UpperCAmelCase__ : Any = parameters.parameters() UpperCAmelCase__ : List[str] = list(_lowerCamelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. UpperCAmelCase__ : Optional[int] = self.get_decay(self.optimization_step ) UpperCAmelCase__ : Optional[Any] = decay UpperCAmelCase__ : int = 1 - decay UpperCAmelCase__ : List[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , _lowerCamelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): UpperCAmelCase__ : int = deepspeed.zero.GatheredParameters(_lowerCamelCase , modifier_rank=_lowerCamelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(_lowerCamelCase ) def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = list(_lowerCamelCase ) for s_param, param in zip(self.shadow_params , _lowerCamelCase ): param.data.copy_(s_param.to(param.device ).data ) def _a (self , _lowerCamelCase=None , _lowerCamelCase=None ): """simple docstring""" UpperCAmelCase__ : Any = [ p.to(device=_lowerCamelCase , dtype=_lowerCamelCase ) if p.is_floating_point() else p.to(device=_lowerCamelCase ) for p in self.shadow_params ] def _a (self ): """simple docstring""" return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = [param.detach().cpu().clone() for param in parameters] def _a (self , _lowerCamelCase ): """simple docstring""" if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , _lowerCamelCase ): param.data.copy_(c_param.data ) # Better memory-wise. UpperCAmelCase__ : Any = None def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Any = copy.deepcopy(_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) UpperCAmelCase__ : Optional[int] = state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , _lowerCamelCase ): raise ValueError("""Invalid min_decay""" ) UpperCAmelCase__ : List[Any] = state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , _lowerCamelCase ): raise ValueError("""Invalid optimization_step""" ) UpperCAmelCase__ : int = state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , _lowerCamelCase ): raise ValueError("""Invalid update_after_step""" ) UpperCAmelCase__ : Tuple = state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , _lowerCamelCase ): raise ValueError("""Invalid use_ema_warmup""" ) UpperCAmelCase__ : Optional[Any] = state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) UpperCAmelCase__ : Any = state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) UpperCAmelCase__ : Union[str, Any] = state_dict.get("""shadow_params""" , _lowerCamelCase ) if shadow_params is not None: UpperCAmelCase__ : str = shadow_params if not isinstance(self.shadow_params , _lowerCamelCase ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(_lowerCamelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
182
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Tuple: # Load configuration defined in the metadata file with open(lowerCAmelCase ) as metadata_file: UpperCAmelCase__ : Optional[int] = json.load(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = LukeConfig(use_entity_aware_attention=lowerCAmelCase , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path UpperCAmelCase__ : Dict = torch.load(lowerCAmelCase , map_location="""cpu""" ) # Load the entity vocab file UpperCAmelCase__ : List[str] = load_entity_vocab(lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = RobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks UpperCAmelCase__ : Any = AddedToken("""<ent>""" , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) UpperCAmelCase__ : Tuple = AddedToken("""<ent2>""" , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowerCAmelCase ) with open(os.path.join(lowerCAmelCase , LukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : int = LukeTokenizer.from_pretrained(lowerCAmelCase ) # Initialize the embeddings of the special tokens UpperCAmelCase__ : Any = state_dict["""embeddings.word_embeddings.weight"""] UpperCAmelCase__ : Any = word_emb[tokenizer.convert_tokens_to_ids(["""@"""] )[0]].unsqueeze(0 ) UpperCAmelCase__ : List[Any] = word_emb[tokenizer.convert_tokens_to_ids(["""#"""] )[0]].unsqueeze(0 ) UpperCAmelCase__ : List[Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCAmelCase__ : Any = F"""encoder.layer.{layer_index}.attention.self.""" UpperCAmelCase__ : List[Any] = state_dict[prefix + matrix_name] UpperCAmelCase__ : Dict = state_dict[prefix + matrix_name] UpperCAmelCase__ : Optional[int] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCAmelCase__ : List[str] = state_dict["""entity_embeddings.entity_embeddings.weight"""] UpperCAmelCase__ : int = entity_emb[entity_vocab["""[MASK]"""]] UpperCAmelCase__ : Tuple = LukeModel(config=lowerCAmelCase ).eval() UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) if not (len(lowerCAmelCase ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F"""Missing keys {', '.join(lowerCAmelCase )}. Expected only missing embeddings.position_ids""" ) if not (all(key.startswith("""entity_predictions""" ) or key.startswith("""lm_head""" ) for key in unexpected_keys )): raise ValueError( """Unexpected keys""" F""" {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}""" ) # Check outputs UpperCAmelCase__ : Optional[Any] = LukeTokenizer.from_pretrained(lowerCAmelCase , task="""entity_classification""" ) UpperCAmelCase__ : Dict = ( """Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the""" """ new world number one avoid a humiliating second- round exit at Wimbledon .""" ) UpperCAmelCase__ : List[Any] = (39, 42) UpperCAmelCase__ : str = tokenizer(lowerCAmelCase , entity_spans=[span] , add_prefix_space=lowerCAmelCase , return_tensors="""pt""" ) UpperCAmelCase__ : List[str] = model(**lowerCAmelCase ) # Verify word hidden states if model_size == "large": UpperCAmelCase__ : Optional[Any] = torch.Size((1, 42, 10_24) ) UpperCAmelCase__ : Union[str, Any] = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base UpperCAmelCase__ : Optional[int] = torch.Size((1, 42, 7_68) ) UpperCAmelCase__ : Optional[Any] = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": UpperCAmelCase__ : Union[str, Any] = torch.Size((1, 1, 10_24) ) UpperCAmelCase__ : str = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base UpperCAmelCase__ : Tuple = torch.Size((1, 1, 7_68) ) UpperCAmelCase__ : List[str] = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCAmelCase , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(lowerCAmelCase ) ) model.save_pretrained(lowerCAmelCase ) def a__ ( lowerCAmelCase ) -> Union[str, Any]: UpperCAmelCase__ : List[str] = {} with open(lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(lowerCAmelCase ): UpperCAmelCase__ , UpperCAmelCase__ : Tuple = line.rstrip().split("""\t""" ) UpperCAmelCase__ : int = index return entity_vocab if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) _A = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
182
1
from __future__ import annotations import numpy as np def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> tuple[np.ndarray, np.ndarray]: lowercase__ , lowercase__ = np.shape(_SCREAMING_SNAKE_CASE ) if rows != columns: lowercase__ = ( '\'table\' has to be of square shaped array but got a ' F"""{rows}x{columns} array:\n{table}""" ) raise ValueError(_SCREAMING_SNAKE_CASE ) lowercase__ = np.zeros((rows, columns) ) lowercase__ = np.zeros((rows, columns) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): lowercase__ = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) lowercase__ = (table[i][j] - total) / upper[j][j] lowercase__ = 1 for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase__ = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) lowercase__ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
45
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
45
1
def lowerCamelCase__ ( _lowercase , _lowercase = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( '''Warning: upper bound of deterministic test is exceeded. ''' '''Pass allow_probable=True to allow probabilistic test. ''' '''A return value of True indicates a probable prime.''' ) # array bounds provided by analysis UpperCAmelCase_ : Tuple = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] UpperCAmelCase_ : Dict = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_lowercase , 1 ): if n < _p: # then we have our last prime to check UpperCAmelCase_ : Dict = primes[:idx] break UpperCAmelCase_, UpperCAmelCase_ : Dict = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: UpperCAmelCase_ : Any = False for r in range(_lowercase ): UpperCAmelCase_ : Optional[int] = pow(_lowercase , d * 2**r , _lowercase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): UpperCAmelCase_ : int = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def lowerCamelCase__ ( ): '''simple docstring''' assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
30
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = 3 UpperCamelCase = 250 UpperCamelCase = ids_tensor((batch_size, length) , lowerCamelCase_ ) UpperCamelCase = torch.ones((batch_size, length) , device=lowerCamelCase_ , dtype=torch.float ) / length return input_ids, scores def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) UpperCamelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = MaxLengthCriteria(max_length=10 ) UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) UpperCamelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCamelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCamelCase_ ) , 1 )
537
0
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : int = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class UpperCAmelCase ( _lowercase ): UpperCAmelCase : Any = '''efficientformer''' def __init__(self : List[Any] , A__ : List[int] = [3, 2, 6, 4] , A__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , A__ : List[bool] = [True, True, True, True] , A__ : int = 4_4_8 , A__ : int = 3_2 , A__ : int = 4 , A__ : int = 7 , A__ : int = 5 , A__ : int = 8 , A__ : int = 4 , A__ : float = 0.0 , A__ : int = 1_6 , A__ : int = 3 , A__ : int = 3 , A__ : int = 3 , A__ : int = 2 , A__ : int = 1 , A__ : float = 0.0 , A__ : int = 1 , A__ : bool = True , A__ : bool = True , A__ : float = 1e-5 , A__ : str = "gelu" , A__ : float = 0.0_2 , A__ : float = 1e-12 , A__ : int = 2_2_4 , A__ : float = 1e-05 , **A__ : List[str] , ) -> None: super().__init__(**A__ ) lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = hidden_sizes lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = initializer_range lowercase = layer_norm_eps lowercase = patch_size lowercase = num_channels lowercase = depths lowercase = mlp_expansion_ratio lowercase = downsamples lowercase = dim lowercase = key_dim lowercase = attention_ratio lowercase = resolution lowercase = pool_size lowercase = downsample_patch_size lowercase = downsample_stride lowercase = downsample_pad lowercase = drop_path_rate lowercase = num_metaad_blocks lowercase = distillation lowercase = use_layer_scale lowercase = layer_scale_init_value lowercase = image_size lowercase = batch_norm_eps
712
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __lowerCamelCase : List[str] = logging.get_logger(__name__) class UpperCAmelCase ( _lowercase ): def __init__(self : Any , A__ : int , A__ : int , A__ : float , **A__ : int ) -> List[str]: lowercase = feature_size lowercase = sampling_rate lowercase = padding_value lowercase = kwargs.pop("padding_side" , "right" ) lowercase = kwargs.pop("return_attention_mask" , A__ ) super().__init__(**A__ ) def UpperCAmelCase__ (self : Tuple , A__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , A__ : Union[bool, str, PaddingStrategy] = True , A__ : Optional[int] = None , A__ : bool = False , A__ : Optional[int] = None , A__ : Optional[bool] = None , A__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(A__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): lowercase = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" f' to this method that includes {self.model_input_names[0]}, but you provided' f' {list(processed_features.keys() )}' ) lowercase = processed_features[self.model_input_names[0]] lowercase = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(A__ ) == 0: if return_attention_mask: lowercase = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch lowercase = required_input[0] if isinstance(A__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. lowercase = 0 while len(required_input[index] ) == 0: index += 1 if index < len(A__ ): lowercase = required_input[index][0] if return_tensors is None: if is_tf_tensor(A__ ): lowercase = "tf" elif is_torch_tensor(A__ ): lowercase = "pt" elif isinstance(A__ , (int, float, list, tuple, np.ndarray) ): lowercase = "np" else: raise ValueError( f'type of {first_element} unknown: {type(A__ )}. ' "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): lowercase = to_numpy(A__ ) else: lowercase = [to_numpy(A__ ) for v in value] # Convert padding_strategy in PaddingStrategy lowercase = self._get_padding_strategies(padding=A__ , max_length=A__ ) lowercase = processed_features[self.model_input_names[0]] lowercase = len(A__ ) if not all(len(A__ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) lowercase = [] for i in range(A__ ): lowercase = {k: v[i] for k, v in processed_features.items()} # truncation lowercase = self._truncate( A__ , max_length=A__ , pad_to_multiple_of=A__ , truncation=A__ , ) truncated_inputs.append(A__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length lowercase = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) lowercase = PaddingStrategy.MAX_LENGTH lowercase = {} for i in range(A__ ): # padding lowercase = self._pad( truncated_inputs[i] , max_length=A__ , padding_strategy=A__ , pad_to_multiple_of=A__ , return_attention_mask=A__ , ) for key, value in outputs.items(): if key not in batch_outputs: lowercase = [] if value.dtype is np.dtype(np.floataa ): lowercase = value.astype(np.floataa ) batch_outputs[key].append(A__ ) return BatchFeature(A__ , tensor_type=A__ ) def UpperCAmelCase__ (self : Union[str, Any] , A__ : Union[Dict[str, np.ndarray], BatchFeature] , A__ : Optional[int] = None , A__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , A__ : Optional[int] = None , A__ : Optional[bool] = None , ) -> dict: lowercase = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: lowercase = len(A__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowercase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowercase = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(A__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: lowercase = np.ones(len(A__ ) , dtype=np.intaa ) if needs_to_be_padded: lowercase = max_length - len(A__ ) if self.padding_side == "right": if return_attention_mask: lowercase = np.pad( processed_features["attention_mask"] , (0, difference) ) lowercase = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) lowercase = np.pad( A__ , A__ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: lowercase = np.pad( processed_features["attention_mask"] , (difference, 0) ) lowercase = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) lowercase = np.pad( A__ , A__ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCAmelCase__ (self : Dict , A__ : Union[Dict[str, np.ndarray], BatchFeature] , A__ : Optional[int] = None , A__ : Optional[int] = None , A__ : Optional[bool] = None , ) -> str: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) lowercase = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowercase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowercase = len(A__ ) > max_length if needs_to_be_truncated: lowercase = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: lowercase = processed_features["attention_mask"][:max_length] return processed_features def UpperCAmelCase__ (self : int , A__ : Optional[Any]=False , A__ : Dict=None ) -> Optional[int]: # Get padding strategy if padding is not False: if padding is True: lowercase = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(A__ , A__ ): lowercase = PaddingStrategy(A__ ) elif isinstance(A__ , A__ ): lowercase = padding else: lowercase = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
459
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=4_0_0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=1 / 2_5_5 , __SCREAMING_SNAKE_CASE=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : Optional[int] = size if size is not None else {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} snake_case__ : str = parent snake_case__ : str = batch_size snake_case__ : Tuple = num_channels snake_case__ : List[Any] = min_resolution snake_case__ : Union[str, Any] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : List[Any] = size snake_case__ : str = do_normalize snake_case__ : Optional[int] = image_mean snake_case__ : int = image_std snake_case__ : Dict = do_rescale snake_case__ : str = rescale_factor snake_case__ : Optional[int] = do_pad def __UpperCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): if not batched: snake_case__ : str = image_inputs[0] if isinstance(__SCREAMING_SNAKE_CASE , Image.Image ): snake_case__ , snake_case__ : List[Any] = image.size else: snake_case__ , snake_case__ : Any = image.shape[1], image.shape[2] if w < h: snake_case__ : Tuple = int(self.size["""shortest_edge"""] * h / w ) snake_case__ : Optional[Any] = self.size["""shortest_edge"""] elif w > h: snake_case__ : str = self.size["""shortest_edge"""] snake_case__ : Optional[int] = int(self.size["""shortest_edge"""] * w / h ) else: snake_case__ : Tuple = self.size["""shortest_edge"""] snake_case__ : Union[str, Any] = self.size["""shortest_edge"""] else: snake_case__ : Dict = [] for image in image_inputs: snake_case__ , snake_case__ : Union[str, Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : List[str] = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[0] )[0] snake_case__ : List[str] = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = DetaImageProcessor if is_vision_available() else None def __UpperCamelCase ( self ): snake_case__ : List[str] = DetaImageProcessingTester(self ) @property def __UpperCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_mean""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_std""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_normalize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_rescale""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_pad""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """size""" ) ) def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values snake_case__ , snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ , snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values snake_case__ , snake_case__ : int = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Any = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values snake_case__ , snake_case__ : Dict = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values snake_case__ , snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : str = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values snake_case__ , snake_case__ : str = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __UpperCamelCase ( self ): # prepare image and target snake_case__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: snake_case__ : str = json.loads(f.read() ) snake_case__ : Any = {"""image_id""": 3_9_7_6_9, """annotations""": target} # encode them snake_case__ : Optional[Any] = DetaImageProcessor() snake_case__ : Optional[Any] = image_processing(images=__SCREAMING_SNAKE_CASE , annotations=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) # verify pixel values snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["""pixel_values"""].shape , __SCREAMING_SNAKE_CASE ) snake_case__ : str = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __SCREAMING_SNAKE_CASE ) ) # verify boxes snake_case__ : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __SCREAMING_SNAKE_CASE ) snake_case__ : Any = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id snake_case__ : List[str] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __SCREAMING_SNAKE_CASE ) ) # verify is_crowd snake_case__ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __SCREAMING_SNAKE_CASE ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __SCREAMING_SNAKE_CASE ) ) # verify orig_size snake_case__ : Tuple = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __SCREAMING_SNAKE_CASE ) ) # verify size snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __SCREAMING_SNAKE_CASE ) ) @slow def __UpperCamelCase ( self ): # prepare image, target and masks_path snake_case__ : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: snake_case__ : Optional[Any] = json.loads(f.read() ) snake_case__ : Dict = {"""file_name""": """000000039769.png""", """image_id""": 3_9_7_6_9, """segments_info""": target} snake_case__ : Optional[int] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them snake_case__ : Union[str, Any] = DetaImageProcessor(format="""coco_panoptic""" ) snake_case__ : Optional[int] = image_processing(images=__SCREAMING_SNAKE_CASE , annotations=__SCREAMING_SNAKE_CASE , masks_path=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) # verify pixel values snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["""pixel_values"""].shape , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area snake_case__ : str = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __SCREAMING_SNAKE_CASE ) ) # verify boxes snake_case__ : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __SCREAMING_SNAKE_CASE ) snake_case__ : Dict = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id snake_case__ : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __SCREAMING_SNAKE_CASE ) ) # verify is_crowd snake_case__ : int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __SCREAMING_SNAKE_CASE ) ) # verify class_labels snake_case__ : Union[str, Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __SCREAMING_SNAKE_CASE ) ) # verify masks snake_case__ : Any = 8_2_2_8_7_3 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __SCREAMING_SNAKE_CASE ) # verify orig_size snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __SCREAMING_SNAKE_CASE ) ) # verify size snake_case__ : Optional[int] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __SCREAMING_SNAKE_CASE ) )
38
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCAmelCase_ ( ): lowercase_ = """https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg""" lowercase_ = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ).convert("""RGB""" ) return image def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.embeddings.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.embeddings.layernorm.bias""") ) # fmt: on return rename_keys def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = dct.pop(UpperCAmelCase__ ) lowercase_ = val def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowercase_ = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) lowercase_ = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict lowercase_ = torch.cat((q_bias, torch.zeros_like(UpperCAmelCase__ , requires_grad=UpperCAmelCase__ ), v_bias) ) lowercase_ = qkv_bias def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = 3_6_4 if """coco""" in model_name else 2_2_4 lowercase_ = InstructBlipVisionConfig(image_size=UpperCAmelCase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: lowercase_ = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowercase_ = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: lowercase_ = LlamaConfig.from_pretrained("""decapoda-research/llama-7b-hf""" , vocab_size=3_2_0_0_1 ).to_dict() elif "vicuna-13b" in model_name: lowercase_ = LlamaConfig.from_pretrained("""decapoda-research/llama-13b-hf""" , vocab_size=3_2_0_0_1 ).to_dict() else: raise ValueError("""Model name not supported""" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 lowercase_ = InstructBlipQFormerConfig(vocab_size=3_0_5_2_3 ).to_dict() lowercase_ = InstructBlipConfig(vision_config=UpperCAmelCase__ , text_config=UpperCAmelCase__ , qformer_config=UpperCAmelCase__ ) return config, image_size @torch.no_grad() def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=False ): lowercase_ = AutoTokenizer.from_pretrained("""bert-base-uncased""" , truncation_side="""left""" ) qformer_tokenizer.add_special_tokens({"""bos_token""": """[DEC]"""} ) if "t5" in model_name: lowercase_ = TaTokenizerFast.from_pretrained("""google/flan-t5-xl""" , truncation_side="""left""" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) lowercase_ = LlamaTokenizerFast.from_pretrained( """huggyllama/llama-7b""" , truncation_side="""left""" , bos_token="""</s>""" , unk_token="""</s>""" ) tokenizer.add_special_tokens({"""pad_token""": """[PAD]"""} ) lowercase_ , lowercase_ = get_blipa_config(UpperCAmelCase__ ) lowercase_ = InstructBlipForConditionalGeneration(UpperCAmelCase__ ).eval() lowercase_ = { """instructblip-vicuna-7b""": ("""blip2_vicuna_instruct""", """vicuna7b"""), """instructblip-vicuna-13b""": ("""blip2_vicuna_instruct""", """vicuna13b"""), """instructblip-flan-t5-xl""": ("""blip2_t5_instruct""", """flant5xl"""), """instructblip-flan-t5-xxl""": ("""blip2_t5_instruct""", """flant5xxl"""), } lowercase_ , lowercase_ = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) lowercase_ = """cuda:1""" if torch.cuda.is_available() else """cpu""" lowercase_ = """cuda:2""" if torch.cuda.is_available() else """cpu""" lowercase_ , lowercase_ , lowercase_ = load_model_and_preprocess( name=UpperCAmelCase__ , model_type=UpperCAmelCase__ , is_eval=UpperCAmelCase__ , device=UpperCAmelCase__ ) original_model.eval() print("""Done!""" ) # update state dict keys lowercase_ = original_model.state_dict() lowercase_ = create_rename_keys(UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowercase_ = state_dict.pop(UpperCAmelCase__ ) if key.startswith("""Qformer.bert""" ): lowercase_ = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: lowercase_ = key.replace("""self""" , """attention""" ) if "llm_proj" in key: lowercase_ = key.replace("""llm_proj""" , """language_projection""" ) if "t5_proj" in key: lowercase_ = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""llm_model""" ): lowercase_ = key.replace("""llm_model""" , """language_model""" ) if key.startswith("""t5""" ): lowercase_ = key.replace("""t5""" , """language""" ) lowercase_ = val # read in qv biases read_in_q_v_bias(UpperCAmelCase__ , UpperCAmelCase__ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) lowercase_ = load_demo_image() lowercase_ = """What is unusual about this image?""" # create processor lowercase_ = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=UpperCAmelCase__ , image_std=UpperCAmelCase__ ) lowercase_ = InstructBlipProcessor( image_processor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , qformer_tokenizer=UpperCAmelCase__ , ) lowercase_ = processor(images=UpperCAmelCase__ , text=UpperCAmelCase__ , return_tensors="""pt""" ).to(UpperCAmelCase__ ) # make sure processor creates exact same pixel values lowercase_ = vis_processors["""eval"""](UpperCAmelCase__ ).unsqueeze(0 ).to(UpperCAmelCase__ ) lowercase_ = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , UpperCAmelCase__ ) original_model.to(UpperCAmelCase__ ) hf_model.to(UpperCAmelCase__ ) with torch.no_grad(): if "vicuna" in model_name: lowercase_ = original_model({"""image""": original_pixel_values, """text_input""": [prompt]} ).logits lowercase_ = hf_model(**UpperCAmelCase__ ).logits else: lowercase_ = original_model( {"""image""": original_pixel_values, """text_input""": [prompt], """text_output""": ["""\n"""]} ).logits lowercase_ = tokenizer("""\n""" , return_tensors="""pt""" ).input_ids.to(UpperCAmelCase__ ) lowercase_ = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_0_0 ) lowercase_ = hf_model(**UpperCAmelCase__ , labels=UpperCAmelCase__ ).logits print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape lowercase_ = 1e-4 if """vicuna""" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , UpperCAmelCase__ , atol=UpperCAmelCase__ ) print("""Looks ok!""" ) print("""Generating with original model...""" ) lowercase_ = original_model.generate({"""image""": original_pixel_values, """prompt""": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("""Generating with HF model...""" ) lowercase_ = hf_model.generate( **UpperCAmelCase__ , do_sample=UpperCAmelCase__ , num_beams=5 , max_length=2_5_6 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? lowercase_ = 2 print("""Original generation:""" , UpperCAmelCase__ ) lowercase_ = processor.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) lowercase_ = [text.strip() for text in output_text] print("""HF generation:""" , UpperCAmelCase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCAmelCase__ ) hf_model.save_pretrained(UpperCAmelCase__ ) if push_to_hub: processor.push_to_hub(F'''Salesforce/{model_name}''' ) hf_model.push_to_hub(F'''Salesforce/{model_name}''' ) if __name__ == "__main__": a = argparse.ArgumentParser() a = [ 'instructblip-vicuna-7b', 'instructblip-vicuna-13b', 'instructblip-flan-t5-xl', 'instructblip-flan-t5-xxl', ] parser.add_argument( '--model_name', default='instructblip-flan-t5-xl', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) a = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
412
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowerCamelCase =logging.get_logger(__name__) lowerCamelCase ={ "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = '''bloom''' SCREAMING_SNAKE_CASE_ = ['''past_key_values'''] SCREAMING_SNAKE_CASE_ = { '''num_hidden_layers''': '''n_layer''', '''num_attention_heads''': '''n_head''', } def __init__( self , __SCREAMING_SNAKE_CASE=2_5_0_8_8_0 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" UpperCamelCase__ : Tuple = vocab_size # Backward compatibility with n_embed kwarg UpperCamelCase__ : List[str] = kwargs.pop('''n_embed''' , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = hidden_size if n_embed is None else n_embed UpperCamelCase__ : Tuple = n_layer UpperCamelCase__ : Dict = n_head UpperCamelCase__ : Optional[Any] = layer_norm_epsilon UpperCamelCase__ : Dict = initializer_range UpperCamelCase__ : str = use_cache UpperCamelCase__ : Any = pretraining_tp UpperCamelCase__ : Union[str, Any] = apply_residual_connection_post_layernorm UpperCamelCase__ : int = hidden_dropout UpperCamelCase__ : Any = attention_dropout UpperCamelCase__ : Any = bos_token_id UpperCamelCase__ : List[str] = eos_token_id UpperCamelCase__ : List[str] = slow_but_exact super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = version.parse('''1.12''' ) def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "default" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , ) -> Optional[Any]: """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , __SCREAMING_SNAKE_CASE ): # TODO: how to do that better? UpperCamelCase__ : Any = 0 @property def __SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" UpperCamelCase__ : Tuple = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' , inverted_values_shape=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCamelCase__ : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __SCREAMING_SNAKE_CASE ( self ) -> int: """simple docstring""" return self._config.n_layer @property def __SCREAMING_SNAKE_CASE ( self ) -> int: """simple docstring""" return self._config.n_head @property def __SCREAMING_SNAKE_CASE ( self ) -> float: """simple docstring""" return 1e-3 def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: """simple docstring""" UpperCamelCase__ : str = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() UpperCamelCase__ : Any = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCamelCase__ : Union[str, Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCamelCase__ : List[Any] = seqlen + 2 UpperCamelCase__ : Any = self._config.hidden_size // self.num_attention_heads UpperCamelCase__ : List[str] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) UpperCamelCase__ : int = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) UpperCamelCase__ : List[Any] = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] UpperCamelCase__ : Tuple = common_inputs['''attention_mask'''] if self.use_past: UpperCamelCase__ : List[Any] = ordered_inputs['''attention_mask'''].dtype UpperCamelCase__ : Tuple = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def __SCREAMING_SNAKE_CASE ( self ) -> int: """simple docstring""" return 1_3
708
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values lowerCamelCase =argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") lowerCamelCase , lowerCamelCase =parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") lowerCamelCase =rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: lowerCamelCase =rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) lowerCamelCase =args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F'''python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
462
0
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } A = logging.get_logger(__name__) class a__ ( __magic_name__ ): lowercase_ = "mask2former" lowercase_ = ["swin"] lowercase_ = {"hidden_size": "hidden_dim"} def __init__( self : Any , UpperCamelCase_ : Optional[Dict] = None , UpperCamelCase_ : int = 256 , UpperCamelCase_ : int = 256 , UpperCamelCase_ : int = 256 , UpperCamelCase_ : int = 1024 , UpperCamelCase_ : str = "relu" , UpperCamelCase_ : int = 6 , UpperCamelCase_ : int = 10 , UpperCamelCase_ : int = 8 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 2048 , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : int = 4 , UpperCamelCase_ : int = 255 , UpperCamelCase_ : int = 100 , UpperCamelCase_ : float = 0.1 , UpperCamelCase_ : float = 2.0 , UpperCamelCase_ : float = 5.0 , UpperCamelCase_ : float = 5.0 , UpperCamelCase_ : int = 12544 , UpperCamelCase_ : float = 3.0 , UpperCamelCase_ : float = 0.75 , UpperCamelCase_ : float = 0.02 , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : bool = True , UpperCamelCase_ : List[int] = [4, 8, 16, 32] , UpperCamelCase_ : bool = None , **UpperCamelCase_ : int , ): """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.") __UpperCAmelCase : List[Any] = CONFIG_MAPPING["swin"]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=UpperCamelCase_ , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(UpperCamelCase_ , UpperCamelCase_): __UpperCAmelCase : Dict = backbone_config.pop("model_type") __UpperCAmelCase : Optional[int] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : Dict = config_class.from_dict(UpperCamelCase_) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " F"Supported model types: {','.join(self.backbones_supported)}") __UpperCAmelCase : Optional[int] = backbone_config __UpperCAmelCase : Union[str, Any] = feature_size __UpperCAmelCase : Dict = mask_feature_size __UpperCAmelCase : List[Any] = hidden_dim __UpperCAmelCase : Tuple = encoder_feedforward_dim __UpperCAmelCase : Tuple = activation_function __UpperCAmelCase : Optional[Any] = encoder_layers __UpperCAmelCase : Optional[int] = decoder_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : Union[str, Any] = dropout __UpperCAmelCase : Any = dim_feedforward __UpperCAmelCase : Tuple = pre_norm __UpperCAmelCase : Any = enforce_input_projection __UpperCAmelCase : Union[str, Any] = common_stride __UpperCAmelCase : List[str] = ignore_value __UpperCAmelCase : Optional[Any] = num_queries __UpperCAmelCase : Optional[Any] = no_object_weight __UpperCAmelCase : Tuple = class_weight __UpperCAmelCase : List[Any] = mask_weight __UpperCAmelCase : int = dice_weight __UpperCAmelCase : int = train_num_points __UpperCAmelCase : Optional[Any] = oversample_ratio __UpperCAmelCase : Dict = importance_sample_ratio __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : List[Any] = init_xavier_std __UpperCAmelCase : str = use_auxiliary_loss __UpperCAmelCase : Any = feature_strides __UpperCAmelCase : Optional[int] = output_auxiliary_logits __UpperCAmelCase : str = decoder_layers super().__init__(**UpperCamelCase_) @classmethod def a_ ( cls : List[str] , UpperCamelCase_ : PretrainedConfig , **UpperCamelCase_ : Optional[int]): """simple docstring""" return cls( backbone_config=UpperCamelCase_ , **UpperCamelCase_ , ) def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : str = copy.deepcopy(self.__dict__) __UpperCAmelCase : Optional[Any] = self.backbone_config.to_dict() __UpperCAmelCase : Tuple = self.__class__.model_type return output
77
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCamelCase_ : def __init__( self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=99 , lowerCamelCase_=32 , lowerCamelCase_=2 , lowerCamelCase_=4 , lowerCamelCase_=37 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_12 , lowerCamelCase_=16 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=3 , lowerCamelCase_=4 , lowerCamelCase_=None , ) -> Optional[int]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = 13 _UpperCamelCase = 7 _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = 99 _UpperCamelCase = 3_84 _UpperCamelCase = 2 _UpperCamelCase = 4 _UpperCamelCase = 37 _UpperCamelCase = "gelu" _UpperCamelCase = 0.1 _UpperCamelCase = 0.1 _UpperCamelCase = 5_12 _UpperCamelCase = 16 _UpperCamelCase = 2 _UpperCamelCase = 0.02 _UpperCamelCase = 3 _UpperCamelCase = 4 _UpperCamelCase = 1_28 _UpperCamelCase = 2 _UpperCamelCase = 9 _UpperCamelCase = 1 _UpperCamelCase = None def lowercase ( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase = TFConvBertModel(config=lowerCamelCase_ ) _UpperCamelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _UpperCamelCase = [input_ids, input_mask] _UpperCamelCase = model(lowerCamelCase_ ) _UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = TFConvBertForMaskedLM(config=lowerCamelCase_ ) _UpperCamelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: """simple docstring""" _UpperCamelCase = self.num_labels _UpperCamelCase = TFConvBertForSequenceClassification(config=lowerCamelCase_ ) _UpperCamelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: """simple docstring""" _UpperCamelCase = self.num_choices _UpperCamelCase = TFConvBertForMultipleChoice(config=lowerCamelCase_ ) _UpperCamelCase = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) _UpperCamelCase = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) _UpperCamelCase = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) _UpperCamelCase = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase = self.num_labels _UpperCamelCase = TFConvBertForTokenClassification(config=lowerCamelCase_ ) _UpperCamelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str: """simple docstring""" _UpperCamelCase = TFConvBertForQuestionAnswering(config=lowerCamelCase_ ) _UpperCamelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self ) -> str: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCamelCase_ ( lowercase , lowercase , unittest.TestCase ): __lowercase : int = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __lowercase : int = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __lowercase : Any = False __lowercase : List[str] = False __lowercase : List[Any] = False def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFConvBertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def lowercase ( self ) -> int: """simple docstring""" self.config_tester.run_common_tests() def lowercase ( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def lowercase ( self ) -> int: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ ) def lowercase ( self ) -> Dict: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def lowercase ( self ) -> Tuple: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def lowercase ( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def lowercase ( self ) -> Dict: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = True _UpperCamelCase = True if hasattr(lowerCamelCase_ , "use_cache" ): _UpperCamelCase = True _UpperCamelCase = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) _UpperCamelCase = getattr(self.model_tester , "key_length" , lowerCamelCase_ ) for model_class in self.all_model_classes: _UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = model_class(lowerCamelCase_ ) _UpperCamelCase = len(model(lowerCamelCase_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) _UpperCamelCase = os.path.join(lowerCamelCase_ , "saved_model" , "1" ) _UpperCamelCase = tf.keras.models.load_model(lowerCamelCase_ ) _UpperCamelCase = model(lowerCamelCase_ ) if self.is_encoder_decoder: _UpperCamelCase = outputs["encoder_hidden_states"] _UpperCamelCase = outputs["encoder_attentions"] else: _UpperCamelCase = outputs["hidden_states"] _UpperCamelCase = outputs["attentions"] self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) _UpperCamelCase = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowercase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = True _UpperCamelCase = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) _UpperCamelCase = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) _UpperCamelCase = getattr(self.model_tester , "key_length" , lowerCamelCase_ ) _UpperCamelCase = getattr(self.model_tester , "key_length" , lowerCamelCase_ ) def check_decoder_attentions_output(lowerCamelCase_ ): _UpperCamelCase = len(lowerCamelCase_ ) self.assertEqual(out_len % 2 , 0 ) _UpperCamelCase = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowerCamelCase_ ): _UpperCamelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = model_class(lowerCamelCase_ ) _UpperCamelCase = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) _UpperCamelCase = len(lowerCamelCase_ ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) if self.is_encoder_decoder: _UpperCamelCase = model_class(lowerCamelCase_ ) _UpperCamelCase = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_decoder_attentions_output(lowerCamelCase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCamelCase = True _UpperCamelCase = model_class(lowerCamelCase_ ) _UpperCamelCase = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) # Check attention is always last and order is fine _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = model_class(lowerCamelCase_ ) _UpperCamelCase = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase_ ) ) self.assertEqual(model.config.output_hidden_states , lowerCamelCase_ ) check_encoder_attentions_output(lowerCamelCase_ ) @require_tf class lowerCamelCase_ ( unittest.TestCase ): @slow def lowercase ( self ) -> int: """simple docstring""" _UpperCamelCase = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) _UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCamelCase = model(lowerCamelCase_ )[0] _UpperCamelCase = [1, 6, 7_68] self.assertEqual(output.shape , lowerCamelCase_ ) _UpperCamelCase = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 )
147
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self ): return self.__class__(**{k: copy.deepcopy(__lowerCamelCase ) for k, v in self.__dict__.items()} )
705
from __future__ import annotations import math from collections.abc import Callable def UpperCamelCase__( UpperCamelCase__ : Callable[[int | float], int | float] , UpperCamelCase__ : int | float , UpperCamelCase__ : int | float , UpperCamelCase__ : int = 1_00 , )->float: A__ = x_start A__ = fnc(UpperCamelCase__ ) A__ = 0.0 for _ in range(UpperCamelCase__ ): # Approximates curve as a sequence of linear lines and sums their length A__ = (x_end - x_start) / steps + xa A__ = fnc(UpperCamelCase__ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step A__ = xa A__ = fxa return length if __name__ == "__main__": def UpperCamelCase__( UpperCamelCase__ : Dict )->List[Any]: return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') a__: List[str] = 10 while i <= 100_000: print(F"With {i} steps: {line_length(f, -10, 10, i)}") i *= 10
212
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCamelCase ={ """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
681
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration _lowerCamelCase =HfArgumentParser(InitializationArguments) _lowerCamelCase =parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization _lowerCamelCase =AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks _lowerCamelCase ={ """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) _lowerCamelCase =AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config _lowerCamelCase =AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
681
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['image_processor', 'tokenizer'] lowerCamelCase__ ='FlavaImageProcessor' lowerCamelCase__ =('BertTokenizer', 'BertTokenizerFast') def __init__(self , a_=None , a_=None , **a_ ): '''simple docstring''' __snake_case : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a_ , ) __snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' ) __snake_case : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a_ , a_ ) __snake_case : Union[str, Any] = self.image_processor def __call__(self , a_ = None , a_ = None , a_ = True , a_ = False , a_ = False , a_ = None , a_ = 0 , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = False , a_ = False , a_ = False , a_ = False , a_ = True , a_ = None , **a_ , ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case : Dict = self.tokenizer( text=a_ , add_special_tokens=a_ , padding=a_ , truncation=a_ , max_length=a_ , stride=a_ , pad_to_multiple_of=a_ , return_token_type_ids=a_ , return_attention_mask=a_ , return_overflowing_tokens=a_ , return_special_tokens_mask=a_ , return_offsets_mapping=a_ , return_length=a_ , verbose=a_ , return_tensors=a_ , **a_ , ) if images is not None: __snake_case : Union[str, Any] = self.image_processor( a_ , return_image_mask=a_ , return_codebook_pixels=a_ , return_tensors=a_ , **a_ , ) if text is not None and images is not None: encoding.update(a_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.batch_decode(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.decode(*a_ , **a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = self.tokenizer.model_input_names __snake_case : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a_ , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a_ , ) return self.image_processor
229
"""simple docstring""" from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def lowercase ( _snake_case : List[Any] ) ->Optional[int]: """simple docstring""" return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def lowercase ( ) ->List[str]: """simple docstring""" __snake_case : Optional[int] = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_snake_case ) __snake_case : Optional[int] = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_snake_case ) EnvironmentCommand.register_subcommand(_snake_case ) TestCommand.register_subcommand(_snake_case ) RunBeamCommand.register_subcommand(_snake_case ) DummyDataCommand.register_subcommand(_snake_case ) # Parse args __snake_case , __snake_case : List[str] = parser.parse_known_args() if not hasattr(_snake_case , '''func''' ): parser.print_help() exit(1 ) __snake_case : Any = parse_unknown_args(_snake_case ) # Run __snake_case : int = args.func(_snake_case , **_snake_case ) service.run() if __name__ == "__main__": main()
229
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __magic_name__ : int = logging.get_logger(__name__) class UpperCamelCase__ ( __snake_case ): """simple docstring""" UpperCAmelCase__ = ['pixel_values'] def __init__( self : int , __A : str = True , __A : str = None , __A : List[Any] = PILImageResampling.BILINEAR , __A : Optional[Any] = True , __A : Union[str, Any] = 1 / 2_5_5 , __A : str = True , __A : Dict = None , __A : Tuple = True , **__A : Dict , ): """simple docstring""" super().__init__(**__UpperCamelCase ) _lowercase = size if size is not None else {"shortest_edge": 2_2_4} _lowercase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _lowercase = crop_size if crop_size is not None else {"height": 2_5_6, "width": 2_5_6} _lowercase = get_size_dict(__UpperCamelCase , param_name="crop_size" ) _lowercase = do_resize _lowercase = size _lowercase = resample _lowercase = do_rescale _lowercase = rescale_factor _lowercase = do_center_crop _lowercase = crop_size _lowercase = do_flip_channel_order def snake_case ( self : List[Any] , __A : Optional[int] , __A : List[Any] , __A : Optional[Any] = PIL.Image.BILINEAR , __A : Optional[int] = None , **__A : Optional[Any] , ): """simple docstring""" _lowercase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) _lowercase = get_resize_output_image_size(__UpperCamelCase , size=size["shortest_edge"] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def snake_case ( self : Dict , __A : Optional[int] , __A : Optional[int] , __A : List[Any] = None , **__A : Any , ): """simple docstring""" _lowercase = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__UpperCamelCase , size=(size["height"], size["width"]) , data_format=__UpperCamelCase , **__UpperCamelCase ) def snake_case ( self : Any , __A : Optional[Any] , __A : Any , __A : Any = None , **__A : Tuple , ): """simple docstring""" return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def snake_case ( self : Tuple , __A : str , __A : int = None ): """simple docstring""" return flip_channel_order(__UpperCamelCase , data_format=__UpperCamelCase ) def snake_case ( self : str , __A : Optional[int] , __A : str = None , __A : List[str] = None , __A : List[Any] = None , __A : str = None , __A : Union[str, Any] = None , __A : List[Any] = None , __A : str = None , __A : Dict = None , __A : Dict = None , __A : Optional[Any] = ChannelDimension.FIRST , **__A : Union[str, Any] , ): """simple docstring""" _lowercase = do_resize if do_resize is not None else self.do_resize _lowercase = resample if resample is not None else self.resample _lowercase = do_rescale if do_rescale is not None else self.do_rescale _lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowercase = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) _lowercase = size if size is not None else self.size _lowercase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _lowercase = crop_size if crop_size is not None else self.crop_size _lowercase = get_size_dict(__UpperCamelCase , param_name="crop_size" ) _lowercase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. _lowercase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _lowercase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _lowercase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _lowercase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: _lowercase = [self.flip_channel_order(image=__UpperCamelCase ) for image in images] _lowercase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _lowercase = {"pixel_values": images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase ) def snake_case ( self : str , __A : Any , __A : Tuple = None ): """simple docstring""" _lowercase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(__UpperCamelCase ): _lowercase = target_sizes.numpy() _lowercase = [] for idx in range(len(__UpperCamelCase ) ): _lowercase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=__UpperCamelCase ) _lowercase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__UpperCamelCase ) else: _lowercase = logits.argmax(dim=1 ) _lowercase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
497
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure)
187
0
from typing import List import numpy as np def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ = {key: len(_SCREAMING_SNAKE_CASE ) for key, value in gen_kwargs.items() if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( 'Sharding is ambiguous for this dataset: ' + 'we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n' + '\n'.join(f"""\t- key {key} has length {length}""" for key, length in lists_lengths.items() ) + '\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ' + 'and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.' ) ) SCREAMING_SNAKE_CASE_ = max(lists_lengths.values() , default=0 ) return max(1 , _SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [] for group_idx in range(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break SCREAMING_SNAKE_CASE_ = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 SCREAMING_SNAKE_CASE_ = range(_SCREAMING_SNAKE_CASE , start + num_shards_to_add ) shards_indices_per_group.append(_SCREAMING_SNAKE_CASE ) return shards_indices_per_group def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ = _number_of_shards_in_gen_kwargs(_SCREAMING_SNAKE_CASE ) if num_shards == 1: return [dict(_SCREAMING_SNAKE_CASE )] else: SCREAMING_SNAKE_CASE_ = _distribute_shards(num_shards=_SCREAMING_SNAKE_CASE , max_num_jobs=_SCREAMING_SNAKE_CASE ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(_SCREAMING_SNAKE_CASE ) ) ] def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[dict] ): """simple docstring""" return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , _SCREAMING_SNAKE_CASE ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : np.random.Generator , _SCREAMING_SNAKE_CASE : dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ = {len(_SCREAMING_SNAKE_CASE ) for value in gen_kwargs.values() if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} SCREAMING_SNAKE_CASE_ = {} for size in list_sizes: SCREAMING_SNAKE_CASE_ = list(range(_SCREAMING_SNAKE_CASE ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes SCREAMING_SNAKE_CASE_ = dict(_SCREAMING_SNAKE_CASE ) for key, value in shuffled_kwargs.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ = [value[i] for i in indices_per_size[len(_SCREAMING_SNAKE_CASE )]] return shuffled_kwargs
704
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : int=7 ): """simple docstring""" SCREAMING_SNAKE_CASE_ = None if token is not None: SCREAMING_SNAKE_CASE_ = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} # The id of a workflow (not of a workflow run) SCREAMING_SNAKE_CASE_ = '636036' SCREAMING_SNAKE_CASE_ = f"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" SCREAMING_SNAKE_CASE_ = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() return result["workflow_runs"] def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ = get_daily_ci_runs(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": SCREAMING_SNAKE_CASE_ = workflow_run['id'] break return workflow_run_id def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = get_last_daily_ci_runs(_SCREAMING_SNAKE_CASE ) if workflow_run_id is not None: SCREAMING_SNAKE_CASE_ = get_artifacts_links(worflow_run_id=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) for artifact_name in artifact_names: if artifact_name in artifacts_links: SCREAMING_SNAKE_CASE_ = artifacts_links[artifact_name] download_artifact( artifact_name=_SCREAMING_SNAKE_CASE , artifact_url=_SCREAMING_SNAKE_CASE , output_dir=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" get_last_daily_ci_artifacts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = {} for artifact_name in artifact_names: SCREAMING_SNAKE_CASE_ = os.path.join(_SCREAMING_SNAKE_CASE , f"""{artifact_name}.zip""" ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ = {} with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file with z.open(_SCREAMING_SNAKE_CASE ) as f: SCREAMING_SNAKE_CASE_ = f.read().decode('UTF-8' ) return results
620
0
"""simple docstring""" import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __snake_case : """simple docstring""" def __init__( self :Dict , UpperCamelCase__ :Any , UpperCamelCase__ :int = 13 , UpperCamelCase__ :int = 64 , UpperCamelCase__ :int = 2 , UpperCamelCase__ :int = 3 , UpperCamelCase__ :int = 3 , UpperCamelCase__ :bool = True , UpperCamelCase__ :bool = True , UpperCamelCase__ :int = 128 , UpperCamelCase__ :Tuple=[16, 32, 64, 128] , UpperCamelCase__ :int = 7 , UpperCamelCase__ :int = 4 , UpperCamelCase__ :int = 37 , UpperCamelCase__ :str = "gelu" , UpperCamelCase__ :float = 0.1 , UpperCamelCase__ :float = 0.1 , UpperCamelCase__ :int = 10 , UpperCamelCase__ :float = 0.02 , UpperCamelCase__ :int = 2 , UpperCamelCase__ :int = 1 , UpperCamelCase__ :int = 128 , UpperCamelCase__ :List[int] = [2, 2, 2, 2] , UpperCamelCase__ :int = 2 , UpperCamelCase__ :int = 2 , ): _a = parent _a = batch_size _a = image_size _a = patch_size _a = num_channels _a = is_training _a = use_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = type_sequence_label_size _a = initializer_range _a = encoder_stride _a = num_attention_outputs _a = embed_dim _a = embed_dim + 1 _a = resolution _a = depths _a = hidden_sizes _a = dim _a = mlp_expansion_ratio def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def SCREAMING_SNAKE_CASE_ ( self :int , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :Optional[int] ): _a = TFEfficientFormerModel(config=UpperCamelCase__ ) _a = model(UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self :Any , UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :str , UpperCamelCase__ :List[Any] ): _a = self.type_sequence_label_size _a = TFEfficientFormerForImageClassification(UpperCamelCase__ ) _a = model(UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a = 1 _a = TFEfficientFormerForImageClassification(UpperCamelCase__ ) _a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class __snake_case ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ : Optional[int] = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowerCAmelCase_ : Dict = False lowerCAmelCase_ : str = False lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : Optional[Any] = False def SCREAMING_SNAKE_CASE_ ( self :Tuple ): _a = TFEfficientFormerModelTester(self ) _a = ConfigTester( self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): pass def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(UpperCamelCase__ ) _a = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :str ): def check_hidden_states_output(UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :int , UpperCamelCase__ :Dict ): _a = model_class(UpperCamelCase__ ) _a = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) , training=UpperCamelCase__ ) _a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) if hasattr(self.model_tester , "encoder_seq_length" ): _a = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: _a = seq_length * self.model_tester.chunk_length else: _a = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: _a = outputs.decoder_hidden_states self.asseretIsInstance(UpperCamelCase__ , (list, tuple) ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) _a = getattr(self.model_tester , "seq_length" , UpperCamelCase__ ) _a = getattr(self.model_tester , "decoder_seq_length" , UpperCamelCase__ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :str , UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :List[str] , UpperCamelCase__ :Tuple=False ): _a = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE_ ( self :List[str] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def SCREAMING_SNAKE_CASE_ ( self :int ): for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = TFEfficientFormerModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True _a = getattr(self.model_tester , "seq_length" , UpperCamelCase__ ) _a = getattr(self.model_tester , "encoder_seq_length" , UpperCamelCase__ ) _a = getattr(self.model_tester , "key_length" , UpperCamelCase__ ) _a = getattr(self.model_tester , "chunk_length" , UpperCamelCase__ ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): _a = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: _a = True _a = False _a = True _a = model_class(UpperCamelCase__ ) _a = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) , training=UpperCamelCase__ ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(UpperCamelCase__ ) _a = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) , training=UpperCamelCase__ ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model _a = model_class(UpperCamelCase__ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes _a = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCamelCase__ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } _a = model(UpperCamelCase__ ) self.assertTrue(outputs_dict is not None ) def __a ( ): """simple docstring""" _a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class __snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE_ ( self :str ): return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): _a = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=UpperCamelCase__ , return_tensors="tf" ) # forward pass _a = model(**UpperCamelCase__ , training=UpperCamelCase__ ) # verify the logits _a = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) _a = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self :Dict ): _a = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=UpperCamelCase__ , return_tensors="tf" ) # forward pass _a = model(**UpperCamelCase__ , training=UpperCamelCase__ ) # verify the logits _a = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) _a = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) )
388
"""simple docstring""" from math import ceil def __a ( a, a ): """simple docstring""" _a = list(range(0, a ) ) _a = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _a = [] for i in device_map_blocks: if device_map_blocks.count(a ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(a ) # Missing blocks _a = [i for i in blocks if i not in device_map_blocks] _a = [i for i in device_map_blocks if i not in blocks] if len(a ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(a ) ) if len(a ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(a ) ) if len(a ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(a ) ) def __a ( a, a ): """simple docstring""" _a = list(range(a ) ) _a = int(ceil(n_layers / len(a ) ) ) _a = [layers[i : i + n_blocks] for i in range(0, a, a )] return dict(zip(a, a ) )
388
1
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class a_ : @staticmethod def A__ ( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" pass def lowercase__ ( __UpperCamelCase )-> str: UpperCamelCase = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class a_ ( unittest.TestCase ): lowercase = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase = DepthEstimationPipeline(model=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , _SCREAMING_SNAKE_CASE ) import datasets UpperCamelCase = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) UpperCamelCase = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] ) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, ] , _SCREAMING_SNAKE_CASE , ) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""" ) def A__ ( self ) -> Any: """simple docstring""" pass @slow @require_torch def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = """Intel/dpt-large""" UpperCamelCase = pipeline("""depth-estimation""" , model=_SCREAMING_SNAKE_CASE ) UpperCamelCase = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) UpperCamelCase = hashimage(outputs["""depth"""] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 2_9.3_0_4 ) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.6_6_2 ) @require_torch def A__ ( self ) -> Optional[Any]: """simple docstring""" self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
35
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) SCREAMING_SNAKE_CASE__ = CLIPImageProcessor() SCREAMING_SNAKE_CASE__ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') SCREAMING_SNAKE_CASE__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
35
1
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class lowercase_ : def __init__( self , __A , __A=14 , __A=7 , __A=True , __A=True , __A=False , __A=True , __A=99 , __A=32 , __A=4 , __A=4 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : Tuple =parent SCREAMING_SNAKE_CASE_ : List[str] =batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] =seq_length SCREAMING_SNAKE_CASE_ : int =is_training SCREAMING_SNAKE_CASE_ : List[str] =use_input_mask SCREAMING_SNAKE_CASE_ : Any =use_token_type_ids SCREAMING_SNAKE_CASE_ : Union[str, Any] =use_labels SCREAMING_SNAKE_CASE_ : Optional[int] =vocab_size SCREAMING_SNAKE_CASE_ : Any =hidden_size SCREAMING_SNAKE_CASE_ : int =rotary_dim SCREAMING_SNAKE_CASE_ : Dict =num_hidden_layers SCREAMING_SNAKE_CASE_ : List[str] =num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] =intermediate_size SCREAMING_SNAKE_CASE_ : Dict =hidden_act SCREAMING_SNAKE_CASE_ : Optional[Any] =hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str =max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] =initializer_range SCREAMING_SNAKE_CASE_ : List[Any] =None SCREAMING_SNAKE_CASE_ : str =vocab_size - 1 SCREAMING_SNAKE_CASE_ : Dict =vocab_size - 1 SCREAMING_SNAKE_CASE_ : List[str] =vocab_size - 1 def _snake_case ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] =None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Dict =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : str =GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__A , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def _snake_case ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ : Any =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int =config_and_inputs SCREAMING_SNAKE_CASE_ : Dict ={'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _snake_case ( self , __A , __A , __A , __A ) -> List[Any]: SCREAMING_SNAKE_CASE_ : Tuple =20 SCREAMING_SNAKE_CASE_ : Optional[int] =model_class_name(__A ) SCREAMING_SNAKE_CASE_ : List[Any] =model.init_cache(input_ids.shape[0] , __A ) SCREAMING_SNAKE_CASE_ : Any =jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) SCREAMING_SNAKE_CASE_ : List[str] =jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE_ : str =model( input_ids[:, :-1] , attention_mask=__A , past_key_values=__A , position_ids=__A , ) SCREAMING_SNAKE_CASE_ : Any =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) SCREAMING_SNAKE_CASE_ : Dict =model( input_ids[:, -1:] , attention_mask=__A , past_key_values=outputs_cache.past_key_values , position_ids=__A , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =model(__A ) SCREAMING_SNAKE_CASE_ : Optional[int] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def _snake_case ( self , __A , __A , __A , __A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : str =20 SCREAMING_SNAKE_CASE_ : List[str] =model_class_name(__A ) SCREAMING_SNAKE_CASE_ : int =jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) SCREAMING_SNAKE_CASE_ : List[Any] =model.init_cache(input_ids.shape[0] , __A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE_ : str =model( input_ids[:, :-1] , attention_mask=__A , past_key_values=__A , position_ids=__A , ) SCREAMING_SNAKE_CASE_ : Dict =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__A , position_ids=__A , ) SCREAMING_SNAKE_CASE_ : List[str] =model(__A , attention_mask=__A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class lowercase_ ( A , A , unittest.TestCase ): __lowerCamelCase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCamelCase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def _snake_case ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ : List[str] =FlaxGPTJModelTester(self ) def _snake_case ( self ) -> List[str]: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__A , __A , __A , __A ) def _snake_case ( self ) -> Optional[int]: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __A , __A , __A , __A ) @tooslow def _snake_case ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ : List[Any] =GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) SCREAMING_SNAKE_CASE_ : Tuple =tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=__A , truncation=__A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) SCREAMING_SNAKE_CASE_ : Dict =False SCREAMING_SNAKE_CASE_ : Tuple =model.config.eos_token_id SCREAMING_SNAKE_CASE_ : Optional[int] =jax.jit(model.generate ) SCREAMING_SNAKE_CASE_ : int =jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences SCREAMING_SNAKE_CASE_ : Tuple =tokenizer.batch_decode(__A , skip_special_tokens=__A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =[ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(__A , __A ) @is_pt_flax_cross_test def _snake_case ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE_ : List[Any] =self._prepare_for_class(__A , __A ) SCREAMING_SNAKE_CASE_ : str ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE_ : int =model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_ : Optional[Any] =getattr(__A , __A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict =pt_inputs['''input_ids'''].shape SCREAMING_SNAKE_CASE_ : Any =np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__A ): SCREAMING_SNAKE_CASE_ : Dict =0 SCREAMING_SNAKE_CASE_ : Union[str, Any] =1 SCREAMING_SNAKE_CASE_ : List[Any] =0 SCREAMING_SNAKE_CASE_ : Any =1 SCREAMING_SNAKE_CASE_ : int =pt_model_class(__A ).eval() SCREAMING_SNAKE_CASE_ : str =model_class(__A , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ : Optional[Any] =convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __A ) SCREAMING_SNAKE_CASE_ : int =fx_state with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[Any] =pt_model(**__A ).to_tuple() SCREAMING_SNAKE_CASE_ : Optional[Any] =fx_model(**__A ).to_tuple() self.assertEqual(len(__A ) , len(__A ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(__A , __A ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__A ) SCREAMING_SNAKE_CASE_ : Any =model_class.from_pretrained(__A , from_pt=__A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =fx_model_loaded(**__A ).to_tuple() self.assertEqual( len(__A ) , len(__A ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(__A , __A ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def _snake_case ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE_ : str =self._prepare_for_class(__A , __A ) SCREAMING_SNAKE_CASE_ : Dict ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE_ : Optional[int] =model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_ : int =getattr(__A , __A ) SCREAMING_SNAKE_CASE_ : List[str] =pt_model_class(__A ).eval() SCREAMING_SNAKE_CASE_ : Optional[Any] =model_class(__A , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =load_flax_weights_in_pytorch_model(__A , fx_model.params ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] =pt_inputs['''input_ids'''].shape SCREAMING_SNAKE_CASE_ : int =np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__A ): SCREAMING_SNAKE_CASE_ : Tuple =0 SCREAMING_SNAKE_CASE_ : Union[str, Any] =1 SCREAMING_SNAKE_CASE_ : Union[str, Any] =0 SCREAMING_SNAKE_CASE_ : int =1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[Any] =pt_model(**__A ).to_tuple() SCREAMING_SNAKE_CASE_ : Dict =fx_model(**__A ).to_tuple() self.assertEqual(len(__A ) , len(__A ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(__A , __A ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__A ) SCREAMING_SNAKE_CASE_ : Dict =pt_model_class.from_pretrained(__A , from_flax=__A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Dict =pt_model_loaded(**__A ).to_tuple() self.assertEqual( len(__A ) , len(__A ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(__A , __A ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def _snake_case ( self ) -> Tuple: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[Any] =model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) SCREAMING_SNAKE_CASE_ : Dict =model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
443
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
443
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : Any = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
717
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) @add_end_docstrings( lowerCAmelCase__ , R'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , ) class __lowerCAmelCase( lowerCAmelCase__ ): def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : GenericTensor ): """simple docstring""" if self.framework == "tf": SCREAMING_SNAKE_CASE_ :Union[str, Any] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": SCREAMING_SNAKE_CASE_ :List[str] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=SCREAMING_SNAKE_CASE ) else: raise ValueError('Unsupported framework' ) return masked_index def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : GenericTensor ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[Any] = self.get_masked_index(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :int = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , f'No mask_token ({self.tokenizer.mask_token}) found on the input' , ) def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : GenericTensor ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(SCREAMING_SNAKE_CASE ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str]=None , **SCREAMING_SNAKE_CASE : int ): """simple docstring""" if return_tensors is None: SCREAMING_SNAKE_CASE_ :Dict = self.framework SCREAMING_SNAKE_CASE_ :Union[str, Any] = self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE ) self.ensure_exactly_one_mask_token(SCREAMING_SNAKE_CASE ) return model_inputs def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :int = model_inputs['input_ids'] return model_outputs def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict=5 , SCREAMING_SNAKE_CASE : Any=None ): """simple docstring""" if target_ids is not None and target_ids.shape[0] < top_k: SCREAMING_SNAKE_CASE_ :Tuple = target_ids.shape[0] SCREAMING_SNAKE_CASE_ :List[Any] = model_outputs['input_ids'][0] SCREAMING_SNAKE_CASE_ :List[str] = model_outputs['logits'] if self.framework == "tf": SCREAMING_SNAKE_CASE_ :Optional[int] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] SCREAMING_SNAKE_CASE_ :Dict = outputs.numpy() SCREAMING_SNAKE_CASE_ :Any = outputs[0, masked_index, :] SCREAMING_SNAKE_CASE_ :Union[str, Any] = stable_softmax(SCREAMING_SNAKE_CASE , axis=-1 ) if target_ids is not None: SCREAMING_SNAKE_CASE_ :Union[str, Any] = tf.gather_nd(tf.squeeze(SCREAMING_SNAKE_CASE , 0 ) , target_ids.reshape(-1 , 1 ) ) SCREAMING_SNAKE_CASE_ :List[str] = tf.expand_dims(SCREAMING_SNAKE_CASE , 0 ) SCREAMING_SNAKE_CASE_ :Optional[Any] = tf.math.top_k(SCREAMING_SNAKE_CASE , k=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Optional[int] = topk.values.numpy(), topk.indices.numpy() else: SCREAMING_SNAKE_CASE_ :List[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=SCREAMING_SNAKE_CASE ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample SCREAMING_SNAKE_CASE_ :str = outputs[0, masked_index, :] SCREAMING_SNAKE_CASE_ :int = logits.softmax(dim=-1 ) if target_ids is not None: SCREAMING_SNAKE_CASE_ :Union[str, Any] = probs[..., target_ids] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Optional[int] = probs.topk(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Any = [] SCREAMING_SNAKE_CASE_ :str = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): SCREAMING_SNAKE_CASE_ :Optional[Any] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place SCREAMING_SNAKE_CASE_ :Any = input_ids.numpy().copy() if target_ids is not None: SCREAMING_SNAKE_CASE_ :Optional[Any] = target_ids[p].tolist() SCREAMING_SNAKE_CASE_ :int = p # Filter padding out: SCREAMING_SNAKE_CASE_ :Optional[int] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back SCREAMING_SNAKE_CASE_ :Any = self.tokenizer.decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Any = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(SCREAMING_SNAKE_CASE ) result.append(SCREAMING_SNAKE_CASE ) if single_mask: return result[0] return result def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int=None ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ :Union[str, Any] = [targets] try: SCREAMING_SNAKE_CASE_ :Union[str, Any] = self.tokenizer.get_vocab() except Exception: SCREAMING_SNAKE_CASE_ :List[Any] = {} SCREAMING_SNAKE_CASE_ :str = [] for target in targets: SCREAMING_SNAKE_CASE_ :Optional[int] = vocab.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if id_ is None: SCREAMING_SNAKE_CASE_ :List[Any] = self.tokenizer( SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE , max_length=1 , truncation=SCREAMING_SNAKE_CASE , )['input_ids'] if len(SCREAMING_SNAKE_CASE ) == 0: logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' 'We cannot replace it with anything meaningful, ignoring it' ) continue SCREAMING_SNAKE_CASE_ :Union[str, Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' f'Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.' ) target_ids.append(id_ ) SCREAMING_SNAKE_CASE_ :List[str] = list(set(SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('At least one target must be provided when passed.' ) SCREAMING_SNAKE_CASE_ :Optional[int] = np.array(SCREAMING_SNAKE_CASE ) return target_ids def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Optional[int]=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ :List[Any] = {} if targets is not None: SCREAMING_SNAKE_CASE_ :Dict = self.get_target_ids(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Any = target_ids if top_k is not None: SCREAMING_SNAKE_CASE_ :str = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , 'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Dict = super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) == 1: return outputs[0] return outputs
233
0
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowercase ) , "Tatoeba directory does not exist." ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self : int ) -> List[str]: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() return TatoebaConverter(save_dir=__lowerCamelCase ) @slow def lowercase_ ( self : Tuple ) -> int: self.resolver.convert_models(['''heb-eng'''] ) @slow def lowercase_ ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=__lowerCamelCase ) assert mmeta["long_pair"] == "heb-eng"
493
"""simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
156
0
"""simple docstring""" from PIL import Image def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = image.size SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = image.load() for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = pixels[j, i] mean += pixel mean //= width * height for j in range(SCREAMING_SNAKE_CASE_ ): for i in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = 2_5_5 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": snake_case = mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
714
"""simple docstring""" import random def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], [], [] for element in data: if element < pivot: less.append(SCREAMING_SNAKE_CASE_ ) elif element > pivot: greater.append(SCREAMING_SNAKE_CASE_ ) else: equal.append(SCREAMING_SNAKE_CASE_ ) return less, equal, greater def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(SCREAMING_SNAKE_CASE_ ) or index < 0: return None SCREAMING_SNAKE_CASE = items[random.randint(0, len(SCREAMING_SNAKE_CASE_ ) - 1 )] SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = _partition(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # must be in larger else: return quick_select(SCREAMING_SNAKE_CASE_, index - (m + count) )
406
0
from manim import * class a ( lowercase__ ): """simple docstring""" def UpperCAmelCase ( self : List[Any] ) -> List[str]: __UpperCAmelCase : List[Any] = Rectangle(height=0.5 , width=0.5 ) __UpperCAmelCase : List[Any] = Rectangle(height=0.25 , width=0.25 ) __UpperCAmelCase : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __UpperCAmelCase : Any = [mem.copy() for i in range(6 )] __UpperCAmelCase : str = [mem.copy() for i in range(6 )] __UpperCAmelCase : Optional[int] = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __UpperCAmelCase : List[str] = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __UpperCAmelCase : List[Any] = VGroup(__lowercase , __lowercase ).arrange(__lowercase , buff=0 ) __UpperCAmelCase : List[str] = Text("""CPU""" , font_size=24 ) __UpperCAmelCase : List[Any] = Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowercase ) __UpperCAmelCase : Tuple = [mem.copy() for i in range(4 )] __UpperCAmelCase : Any = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __UpperCAmelCase : Union[str, Any] = Text("""GPU""" , font_size=24 ) __UpperCAmelCase : str = Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) gpu.move_to([-1, -1, 0] ) self.add(__lowercase ) __UpperCAmelCase : List[Any] = [mem.copy() for i in range(6 )] __UpperCAmelCase : List[Any] = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __UpperCAmelCase : Union[str, Any] = Text("""Model""" , font_size=24 ) __UpperCAmelCase : Optional[int] = Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) model.move_to([3, -1.0, 0] ) self.add(__lowercase ) __UpperCAmelCase : Tuple = [] __UpperCAmelCase : str = [] __UpperCAmelCase : List[Any] = [] for i, rect in enumerate(__lowercase ): rect.set_stroke(__lowercase ) __UpperCAmelCase : List[Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowercase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowercase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__lowercase , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__lowercase , buff=0.0 ) self.add(__lowercase ) model_cpu_arr.append(__lowercase ) self.add(*__lowercase , *__lowercase , *__lowercase ) __UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] __UpperCAmelCase : List[Any] = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __UpperCAmelCase : Optional[Any] = Text("""Loaded Checkpoint""" , font_size=24 ) __UpperCAmelCase : List[Any] = Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) checkpoint.move_to([3, 0.5, 0] ) self.add(__lowercase ) __UpperCAmelCase : int = [] __UpperCAmelCase : Optional[int] = [] for i, rect in enumerate(__lowercase ): __UpperCAmelCase : Dict = fill.copy().set_fill(__lowercase , opacity=0.7 ) target.move_to(__lowercase ) ckpt_arr.append(__lowercase ) __UpperCAmelCase : Optional[Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__lowercase ) self.add(*__lowercase , *__lowercase ) __UpperCAmelCase : Union[str, Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __UpperCAmelCase : Optional[Any] = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowercase , __lowercase ) __UpperCAmelCase : List[Any] = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__lowercase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__lowercase ) __UpperCAmelCase : Union[str, Any] = MarkupText( f"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) __UpperCAmelCase : List[str] = [meta_mem.copy() for i in range(6 )] __UpperCAmelCase : List[str] = [meta_mem.copy() for i in range(6 )] __UpperCAmelCase : Optional[int] = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __UpperCAmelCase : Union[str, Any] = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __UpperCAmelCase : Tuple = VGroup(__lowercase , __lowercase ).arrange(__lowercase , buff=0 ) __UpperCAmelCase : Tuple = Text("""Disk""" , font_size=24 ) __UpperCAmelCase : str = Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(__lowercase , run_time=3 ) , Write(__lowercase , run_time=1 ) , Create(__lowercase , run_time=1 ) ) __UpperCAmelCase : List[Any] = [] for i, rect in enumerate(__lowercase ): __UpperCAmelCase : Any = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__lowercase , run_time=1.5 ) ) self.play(*__lowercase ) self.play(FadeOut(__lowercase ) ) __UpperCAmelCase : Tuple = MarkupText(f"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowercase , run_time=3 ) ) self.play( FadeOut(__lowercase , __lowercase , *__lowercase , *__lowercase ) , ) self.wait()
63
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowerCamelCase__ ( ): __UpperCAmelCase : Union[str, Any] = ArgumentParser("""Transformers CLI tool""" , usage="""transformers-cli <command> [<args>]""" ) __UpperCAmelCase : Any = parser.add_subparsers(help="""transformers-cli command helpers""" ) # Register commands ConvertCommand.register_subcommand(__lowerCamelCase ) DownloadCommand.register_subcommand(__lowerCamelCase ) EnvironmentCommand.register_subcommand(__lowerCamelCase ) RunCommand.register_subcommand(__lowerCamelCase ) ServeCommand.register_subcommand(__lowerCamelCase ) UserCommands.register_subcommand(__lowerCamelCase ) AddNewModelCommand.register_subcommand(__lowerCamelCase ) AddNewModelLikeCommand.register_subcommand(__lowerCamelCase ) LfsCommands.register_subcommand(__lowerCamelCase ) PTtoTFCommand.register_subcommand(__lowerCamelCase ) # Let's go __UpperCAmelCase : Optional[Any] = parser.parse_args() if not hasattr(__lowerCamelCase , """func""" ): parser.print_help() exit(1 ) # Run __UpperCAmelCase : Tuple = args.func(__lowerCamelCase ) service.run() if __name__ == "__main__": main()
63
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a ={'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys a =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
717
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a =logging.get_logger(__name__) class __UpperCAmelCase ( __lowerCAmelCase ): def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
132
0
"""simple docstring""" import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[Any]) -> Tuple: """simple docstring""" return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_SCREAMING_SNAKE_CASE) for s in shape])}.npy""" def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Any: """simple docstring""" super().tearDown() gc.collect() def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: List[Any]=0 , _SCREAMING_SNAKE_CASE: Tuple=(4, 4, 64, 64) , _SCREAMING_SNAKE_CASE: Tuple=False) -> Tuple: """simple docstring""" __lowerCAmelCase : int = jnp.bfloataa if fpaa else jnp.floataa __lowerCAmelCase : List[Any] = jnp.array(load_hf_numpy(self.get_file_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)) , dtype=_SCREAMING_SNAKE_CASE) return image def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: str="CompVis/stable-diffusion-v1-4") -> Any: """simple docstring""" __lowerCAmelCase : Optional[int] = jnp.bfloataa if fpaa else jnp.floataa __lowerCAmelCase : List[str] = "bf16" if fpaa else None __lowerCAmelCase , __lowerCAmelCase : str = FlaxUNetaDConditionModel.from_pretrained( _SCREAMING_SNAKE_CASE , subfolder="unet" , dtype=_SCREAMING_SNAKE_CASE , revision=_SCREAMING_SNAKE_CASE) return model, params def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Any=0 , _SCREAMING_SNAKE_CASE: Any=(4, 77, 768) , _SCREAMING_SNAKE_CASE: Optional[Any]=False) -> Optional[int]: """simple docstring""" __lowerCAmelCase : str = jnp.bfloataa if fpaa else jnp.floataa __lowerCAmelCase : Union[str, Any] = jnp.array(load_hf_numpy(self.get_file_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)) , dtype=_SCREAMING_SNAKE_CASE) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ]) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str]) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : Tuple = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4" , fpaa=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = self.get_latents(_SCREAMING_SNAKE_CASE , fpaa=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = self.get_encoder_hidden_states(_SCREAMING_SNAKE_CASE , fpaa=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = model.apply( {"params": params} , _SCREAMING_SNAKE_CASE , jnp.array(_SCREAMING_SNAKE_CASE , dtype=jnp.intaa) , encoder_hidden_states=_SCREAMING_SNAKE_CASE , ).sample assert sample.shape == latents.shape __lowerCAmelCase : Union[str, Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())) , dtype=jnp.floataa) __lowerCAmelCase : int = jnp.array(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-2) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ]) def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : List[Any] = self.get_unet_model(model_id="stabilityai/stable-diffusion-2" , fpaa=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = self.get_latents(_SCREAMING_SNAKE_CASE , shape=(4, 4, 96, 96) , fpaa=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = self.get_encoder_hidden_states(_SCREAMING_SNAKE_CASE , shape=(4, 77, 1024) , fpaa=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = model.apply( {"params": params} , _SCREAMING_SNAKE_CASE , jnp.array(_SCREAMING_SNAKE_CASE , dtype=jnp.intaa) , encoder_hidden_states=_SCREAMING_SNAKE_CASE , ).sample assert sample.shape == latents.shape __lowerCAmelCase : Tuple = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())) , dtype=jnp.floataa) __lowerCAmelCase : str = jnp.array(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-2)
293
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __a: Union[str, Any] = logging.get_logger(__name__) __a: str = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __a: Dict = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } __a: Union[str, Any] = { '''facebook/blenderbot_small-90M''': 512, } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = BlenderbotSmallTokenizer def __init__( self : List[str] , lowerCamelCase : List[str]=None , lowerCamelCase : str=None , lowerCamelCase : Optional[Any]="<|endoftext|>" , lowerCamelCase : Dict="<|endoftext|>" , lowerCamelCase : str="<|endoftext|>" , lowerCamelCase : str=False , lowerCamelCase : Tuple=True , **lowerCamelCase : List[str] , ) -> List[Any]: """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=lowerCamelCase , merges=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase , ) , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , **lowerCamelCase , ) _UpperCAmelCase = add_prefix_space def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Union[str, Any]=None ) -> str: """simple docstring""" _UpperCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase ( self : Any , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
108
0
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( a__ , unittest.TestCase ): snake_case__ = CTRLTokenizer snake_case__ = False snake_case__ = False def lowerCamelCase__ ( self : Optional[Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase : Dict = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] __lowerCamelCase : Tuple = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) __lowerCamelCase : List[Any] = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] __lowerCamelCase : Dict = {"unk_token": "<unk>"} __lowerCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __lowerCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase ) ) def lowerCamelCase__ ( self : int , **UpperCAmelCase : Dict ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : Any ): __lowerCamelCase : Optional[Any] = "adapt react readapt apt" __lowerCamelCase : Dict = "adapt react readapt apt" return input_text, output_text def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : Optional[Any] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCamelCase : int = "adapt react readapt apt" __lowerCamelCase : Union[str, Any] = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() __lowerCamelCase : List[Any] = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Optional[int] = tokens + [tokenizer.unk_token] __lowerCamelCase : Tuple = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase )
718
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _snake_case ( a__ , a__ ): @register_to_config def __init__( self : Optional[Any] , UpperCAmelCase : int = 128 , UpperCAmelCase : int = 256 , UpperCAmelCase : float = 2_0_0_0.0 , UpperCAmelCase : int = 768 , UpperCAmelCase : int = 12 , UpperCAmelCase : int = 12 , UpperCAmelCase : int = 64 , UpperCAmelCase : int = 2048 , UpperCAmelCase : float = 0.1 , ): super().__init__() __lowerCamelCase : List[Any] = nn.Sequential( nn.Linear(UpperCAmelCase , d_model * 4 , bias=UpperCAmelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCAmelCase ) , nn.SiLU() , ) __lowerCamelCase : str = nn.Embedding(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Optional[int] = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) __lowerCamelCase : Optional[Any] = nn.Dropout(p=UpperCAmelCase ) __lowerCamelCase : str = nn.ModuleList() for lyr_num in range(UpperCAmelCase ): # FiLM conditional T5 decoder __lowerCamelCase : List[str] = DecoderLayer(d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase ) self.decoders.append(UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = TaLayerNorm(UpperCAmelCase ) __lowerCamelCase : List[Any] = nn.Dropout(p=UpperCAmelCase ) __lowerCamelCase : Any = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : int ): __lowerCamelCase : List[Any] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : str ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. __lowerCamelCase : str = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) __lowerCamelCase : Optional[int] = self.conditioning_emb(UpperCAmelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) __lowerCamelCase : Tuple = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. __lowerCamelCase : int = torch.broadcast_to( torch.arange(UpperCAmelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) __lowerCamelCase : Optional[Any] = self.position_encoding(UpperCAmelCase ) __lowerCamelCase : List[str] = self.continuous_inputs_projection(UpperCAmelCase ) inputs += position_encodings __lowerCamelCase : List[Any] = self.dropout(UpperCAmelCase ) # decoder: No padding present. __lowerCamelCase : Tuple = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. __lowerCamelCase : Optional[Any] = [(x, self.encoder_decoder_mask(UpperCAmelCase , UpperCAmelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings __lowerCamelCase : Union[str, Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) __lowerCamelCase : Union[str, Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: __lowerCamelCase : List[Any] = lyr( UpperCAmelCase , conditioning_emb=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , )[0] __lowerCamelCase : Dict = self.decoder_norm(UpperCAmelCase ) __lowerCamelCase : Optional[int] = self.post_dropout(UpperCAmelCase ) __lowerCamelCase : str = self.spec_out(UpperCAmelCase ) return spec_out class _snake_case ( nn.Module ): def __init__( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str]=1E-6 ): super().__init__() __lowerCamelCase : Union[str, Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , dropout_rate=UpperCAmelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , dropout_rate=UpperCAmelCase , layer_norm_epsilon=UpperCAmelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase , layer_norm_epsilon=UpperCAmelCase ) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Dict=None , ): __lowerCamelCase : Union[str, Any] = self.layer[0]( UpperCAmelCase , conditioning_emb=UpperCAmelCase , attention_mask=UpperCAmelCase , ) if encoder_hidden_states is not None: __lowerCamelCase : Tuple = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) __lowerCamelCase : Dict = self.layer[1]( UpperCAmelCase , key_value_states=UpperCAmelCase , attention_mask=UpperCAmelCase , ) # Apply Film Conditional Feed Forward layer __lowerCamelCase : List[Any] = self.layer[-1](UpperCAmelCase , UpperCAmelCase ) return (hidden_states,) class _snake_case ( nn.Module ): def __init__( self : str , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict ): super().__init__() __lowerCamelCase : Union[str, Any] = TaLayerNorm(UpperCAmelCase ) __lowerCamelCase : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCAmelCase ) __lowerCamelCase : Optional[Any] = Attention(query_dim=UpperCAmelCase , heads=UpperCAmelCase , dim_head=UpperCAmelCase , out_bias=UpperCAmelCase , scale_qk=UpperCAmelCase ) __lowerCamelCase : Tuple = nn.Dropout(UpperCAmelCase ) def lowerCamelCase__ ( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any]=None , UpperCAmelCase : str=None , ): # pre_self_attention_layer_norm __lowerCamelCase : int = self.layer_norm(UpperCAmelCase ) if conditioning_emb is not None: __lowerCamelCase : Optional[Any] = self.FiLMLayer(UpperCAmelCase , UpperCAmelCase ) # Self-attention block __lowerCamelCase : Optional[Any] = self.attention(UpperCAmelCase ) __lowerCamelCase : Dict = hidden_states + self.dropout(UpperCAmelCase ) return hidden_states class _snake_case ( nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : List[str] ): super().__init__() __lowerCamelCase : str = Attention(query_dim=UpperCAmelCase , heads=UpperCAmelCase , dim_head=UpperCAmelCase , out_bias=UpperCAmelCase , scale_qk=UpperCAmelCase ) __lowerCamelCase : List[Any] = TaLayerNorm(UpperCAmelCase , eps=UpperCAmelCase ) __lowerCamelCase : str = nn.Dropout(UpperCAmelCase ) def lowerCamelCase__ ( self : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[int]=None , ): __lowerCamelCase : str = self.layer_norm(UpperCAmelCase ) __lowerCamelCase : Dict = self.attention( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , attention_mask=attention_mask.squeeze(1 ) , ) __lowerCamelCase : List[str] = hidden_states + self.dropout(UpperCAmelCase ) return layer_output class _snake_case ( nn.Module ): def __init__( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] ): super().__init__() __lowerCamelCase : str = TaDenseGatedActDense(d_model=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCAmelCase ) __lowerCamelCase : Dict = TaLayerNorm(UpperCAmelCase , eps=UpperCAmelCase ) __lowerCamelCase : Optional[Any] = nn.Dropout(UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any=None ): __lowerCamelCase : int = self.layer_norm(UpperCAmelCase ) if conditioning_emb is not None: __lowerCamelCase : Union[str, Any] = self.film(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : List[str] = self.DenseReluDense(UpperCAmelCase ) __lowerCamelCase : Optional[int] = hidden_states + self.dropout(UpperCAmelCase ) return hidden_states class _snake_case ( nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ): super().__init__() __lowerCamelCase : List[Any] = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) __lowerCamelCase : List[Any] = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) __lowerCamelCase : List[Any] = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) __lowerCamelCase : str = nn.Dropout(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = NewGELUActivation() def lowerCamelCase__ ( self : Dict , UpperCAmelCase : List[Any] ): __lowerCamelCase : Union[str, Any] = self.act(self.wi_a(UpperCAmelCase ) ) __lowerCamelCase : Any = self.wi_a(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = hidden_gelu * hidden_linear __lowerCamelCase : Any = self.dropout(UpperCAmelCase ) __lowerCamelCase : List[Any] = self.wo(UpperCAmelCase ) return hidden_states class _snake_case ( nn.Module ): def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[str]=1E-6 ): super().__init__() __lowerCamelCase : List[Any] = nn.Parameter(torch.ones(UpperCAmelCase ) ) __lowerCamelCase : Tuple = eps def lowerCamelCase__ ( self : Tuple , UpperCAmelCase : Any ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 __lowerCamelCase : int = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCAmelCase ) __lowerCamelCase : Dict = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: __lowerCamelCase : Union[str, Any] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _snake_case ( nn.Module ): def lowerCamelCase__ ( self : str , UpperCAmelCase : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(UpperCAmelCase , 3.0 )) )) class _snake_case ( nn.Module ): def __init__( self : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] ): super().__init__() __lowerCamelCase : Any = nn.Linear(UpperCAmelCase , out_features * 2 , bias=UpperCAmelCase ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any ): __lowerCamelCase : Optional[Any] = self.scale_bias(UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase : Dict = torch.chunk(UpperCAmelCase , 2 , -1 ) __lowerCamelCase : List[Any] = x * (1 + scale) + shift return x
366
0
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCAmelCase :int = '''\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n''' class _lowerCamelCase ( unittest.TestCase , __a ): '''simple docstring''' def __lowerCAmelCase ( self : Any ) -> Any: __magic_name__ : int = load_tool('text-question-answering' ) self.tool.setup() __magic_name__ : int = load_tool('text-question-answering' , remote=_UpperCamelCase ) def __lowerCAmelCase ( self : Optional[Any] ) -> Any: __magic_name__ : Any = self.tool(_UpperCamelCase , 'What did Hugging Face do in April 2021?' ) self.assertEqual(_UpperCamelCase , 'launched the BigScience Research Workshop' ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: __magic_name__ : int = self.remote_tool(_UpperCamelCase , 'What did Hugging Face do in April 2021?' ) self.assertEqual(_UpperCamelCase , 'launched the BigScience Research Workshop' ) def __lowerCAmelCase ( self : Tuple ) -> Dict: __magic_name__ : int = self.tool(text=_UpperCamelCase , question='What did Hugging Face do in April 2021?' ) self.assertEqual(_UpperCamelCase , 'launched the BigScience Research Workshop' ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: __magic_name__ : int = self.remote_tool(text=_UpperCamelCase , question='What did Hugging Face do in April 2021?' ) self.assertEqual(_UpperCamelCase , 'launched the BigScience Research Workshop' )
561
def lowerCamelCase__ ( __lowerCAmelCase : list ): """simple docstring""" for i in range(len(__lowerCAmelCase ) - 1 , 0 , -1 ): lowerCAmelCase_ = False for j in range(__lowerCAmelCase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowerCAmelCase_ , lowerCAmelCase_ = unsorted[j - 1], unsorted[j] lowerCAmelCase_ = True for j in range(__lowerCAmelCase ): if unsorted[j] > unsorted[j + 1]: lowerCAmelCase_ , lowerCAmelCase_ = unsorted[j + 1], unsorted[j] lowerCAmelCase_ = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() _A = input("Enter numbers separated by a comma:\n").strip() _A = [int(item) for item in user_input.split(",")] print(f"""{cocktail_shaker_sort(unsorted) = }""")
290
0
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _snake_case : Optional[int] = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def _a ( a : List[str] , a : Dict , a : Optional[int]=None ): if rng is None: _SCREAMING_SNAKE_CASE = random.Random() _SCREAMING_SNAKE_CASE = 1 for dim in shape: total_dims *= dim _SCREAMING_SNAKE_CASE = [] for _ in range(_SCREAMING_SNAKE_CASE ): values.append(rng.randint(0 , vocab_size - 1 ) ) _SCREAMING_SNAKE_CASE = np.array(_SCREAMING_SNAKE_CASE , dtype=jnp.intaa ).reshape(_SCREAMING_SNAKE_CASE ) return output def _a ( a : List[str] , a : Any=None ): _SCREAMING_SNAKE_CASE = ids_tensor(_SCREAMING_SNAKE_CASE , vocab_size=2 , rng=_SCREAMING_SNAKE_CASE ) # make sure that at least one token is attended to for each batch _SCREAMING_SNAKE_CASE = 1 return attn_mask @require_flax class lowerCAmelCase : a : Union[str, Any] = None a : Optional[Any] = () def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = inputs["input_ids"].shape[-1] // 2 _SCREAMING_SNAKE_CASE = inputs["input_ids"][:max_batch_size, :sequence_length] _SCREAMING_SNAKE_CASE = jnp.ones_like(UpperCamelCase ) _SCREAMING_SNAKE_CASE = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _SCREAMING_SNAKE_CASE = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _SCREAMING_SNAKE_CASE = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = max_length _SCREAMING_SNAKE_CASE = 0 for model_class in self.all_generative_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCamelCase ) _SCREAMING_SNAKE_CASE = model_class.__name__[4:] # Skip the "Flax" at the beginning _SCREAMING_SNAKE_CASE = getattr(UpperCamelCase , UpperCamelCase ) _SCREAMING_SNAKE_CASE = pt_model_class(UpperCamelCase ).eval() _SCREAMING_SNAKE_CASE = load_flax_weights_in_pytorch_model(UpperCamelCase , flax_model.params ) _SCREAMING_SNAKE_CASE = flax_model.generate(UpperCamelCase ).sequences _SCREAMING_SNAKE_CASE = pt_model.generate(torch.tensor(UpperCamelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _SCREAMING_SNAKE_CASE = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = max_length for model_class in self.all_generative_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCamelCase ) _SCREAMING_SNAKE_CASE = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) _SCREAMING_SNAKE_CASE = jit(model.generate ) _SCREAMING_SNAKE_CASE = jit_generate(UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = max_length for model_class in self.all_generative_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCamelCase ) _SCREAMING_SNAKE_CASE = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) _SCREAMING_SNAKE_CASE = jit(model.generate ) _SCREAMING_SNAKE_CASE = jit_generate(UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = max_length _SCREAMING_SNAKE_CASE = 2 for model_class in self.all_generative_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCamelCase ) _SCREAMING_SNAKE_CASE = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) _SCREAMING_SNAKE_CASE = jit(model.generate ) _SCREAMING_SNAKE_CASE = jit_generate(UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = max_length _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 2 for model_class in self.all_generative_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCamelCase ) _SCREAMING_SNAKE_CASE = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = max_length _SCREAMING_SNAKE_CASE = 0.8 _SCREAMING_SNAKE_CASE = 10 _SCREAMING_SNAKE_CASE = 0.3 _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 8 _SCREAMING_SNAKE_CASE = 9 for model_class in self.all_generative_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCamelCase ) _SCREAMING_SNAKE_CASE = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) _SCREAMING_SNAKE_CASE = jit(model.generate ) _SCREAMING_SNAKE_CASE = jit_generate(UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() _SCREAMING_SNAKE_CASE = max_length _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 8 _SCREAMING_SNAKE_CASE = 9 for model_class in self.all_generative_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCamelCase ) _SCREAMING_SNAKE_CASE = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) _SCREAMING_SNAKE_CASE = jit(model.generate ) _SCREAMING_SNAKE_CASE = jit_generate(UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() _SCREAMING_SNAKE_CASE = max_length _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 8 _SCREAMING_SNAKE_CASE = 9 for model_class in self.all_generative_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCamelCase ) _SCREAMING_SNAKE_CASE = model.generate(UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) _SCREAMING_SNAKE_CASE = jit(model.generate ) _SCREAMING_SNAKE_CASE = jit_generate(UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() # pad attention mask on the left _SCREAMING_SNAKE_CASE = attention_mask.at[(0, 0)].set(0 ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = max_length for model_class in self.all_generative_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCamelCase ) _SCREAMING_SNAKE_CASE = model.generate(UpperCamelCase , attention_mask=UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) _SCREAMING_SNAKE_CASE = jit(model.generate ) _SCREAMING_SNAKE_CASE = jit_generate(UpperCamelCase , attention_mask=UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() # pad attention mask on the left _SCREAMING_SNAKE_CASE = attention_mask.at[(0, 0)].set(0 ) _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = max_length for model_class in self.all_generative_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCamelCase ) _SCREAMING_SNAKE_CASE = model.generate(UpperCamelCase , attention_mask=UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) _SCREAMING_SNAKE_CASE = jit(model.generate ) _SCREAMING_SNAKE_CASE = jit_generate(UpperCamelCase , attention_mask=UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase ( self ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() # pad attention mask on the left _SCREAMING_SNAKE_CASE = attention_mask.at[(0, 0)].set(0 ) _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = max_length for model_class in self.all_generative_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCamelCase ) _SCREAMING_SNAKE_CASE = model.generate(UpperCamelCase , attention_mask=UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCamelCase ) _SCREAMING_SNAKE_CASE = jit(model.generate ) _SCREAMING_SNAKE_CASE = jit_generate(UpperCamelCase , attention_mask=UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) _SCREAMING_SNAKE_CASE = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) _SCREAMING_SNAKE_CASE = "Hello world" _SCREAMING_SNAKE_CASE = tokenizer(UpperCamelCase , return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(UpperCamelCase , "do_samples" ): model.generate(UpperCamelCase , do_samples=UpperCamelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(UpperCamelCase , "foo" ): _SCREAMING_SNAKE_CASE = {"foo": "bar"} model.generate(UpperCamelCase , **UpperCamelCase )
716
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowerCAmelCase : def lowercase ( self ): torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowercase ( self ): torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.4_14 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCamelCase ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCamelCase ) _SCREAMING_SNAKE_CASE = inputs["prompt"] _SCREAMING_SNAKE_CASE = inputs["generator"] _SCREAMING_SNAKE_CASE = inputs["num_inference_steps"] _SCREAMING_SNAKE_CASE = inputs["output_type"] if "image" in inputs: _SCREAMING_SNAKE_CASE = inputs["image"] else: _SCREAMING_SNAKE_CASE = None if "mask_image" in inputs: _SCREAMING_SNAKE_CASE = inputs["mask_image"] else: _SCREAMING_SNAKE_CASE = None if "original_image" in inputs: _SCREAMING_SNAKE_CASE = inputs["original_image"] else: _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = pipe.encode_prompt(UpperCamelCase ) # inputs with prompt converted to embeddings _SCREAMING_SNAKE_CASE = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: _SCREAMING_SNAKE_CASE = image if mask_image is not None: _SCREAMING_SNAKE_CASE = mask_image if original_image is not None: _SCREAMING_SNAKE_CASE = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCamelCase , UpperCamelCase , UpperCamelCase ) _SCREAMING_SNAKE_CASE = pipe(**UpperCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.pipeline_class.from_pretrained(UpperCamelCase ) pipe_loaded.to(UpperCamelCase ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase , UpperCamelCase ) is None , F'`{optional_component}` did not stay set to None after loading.' , ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCamelCase ) _SCREAMING_SNAKE_CASE = inputs["generator"] _SCREAMING_SNAKE_CASE = inputs["num_inference_steps"] _SCREAMING_SNAKE_CASE = inputs["output_type"] # inputs with prompt converted to embeddings _SCREAMING_SNAKE_CASE = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: _SCREAMING_SNAKE_CASE = image if mask_image is not None: _SCREAMING_SNAKE_CASE = mask_image if original_image is not None: _SCREAMING_SNAKE_CASE = original_image _SCREAMING_SNAKE_CASE = pipe_loaded(**UpperCamelCase )[0] _SCREAMING_SNAKE_CASE = np.abs(to_np(UpperCamelCase ) - to_np(UpperCamelCase ) ).max() self.assertLess(UpperCamelCase , 1e-4 ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCamelCase ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCamelCase ) _SCREAMING_SNAKE_CASE = pipe(**UpperCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.pipeline_class.from_pretrained(UpperCamelCase ) pipe_loaded.to(UpperCamelCase ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCamelCase ) _SCREAMING_SNAKE_CASE = pipe_loaded(**UpperCamelCase )[0] _SCREAMING_SNAKE_CASE = np.abs(to_np(UpperCamelCase ) - to_np(UpperCamelCase ) ).max() self.assertLess(UpperCamelCase , 1e-4 )
493
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _lowerCAmelCase = logging.get_logger(__name__) # General docstring _lowerCAmelCase = """RegNetConfig""" # Base docstring _lowerCAmelCase = """facebook/regnet-y-040""" _lowerCAmelCase = [1, 1088, 7, 7] # Image classification docstring _lowerCAmelCase = """facebook/regnet-y-040""" _lowerCAmelCase = """tabby, tabby cat""" _lowerCAmelCase = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase__ ( nn.Module ): def __init__( self , A__ , A__ , A__ = 3 , A__ = 1 , A__ = 1 , A__ = "relu" , ): """simple docstring""" super().__init__() UpperCAmelCase_: Optional[int] = nn.Convad( A__ , A__ , kernel_size=A__ , stride=A__ , padding=kernel_size // 2 , groups=A__ , bias=A__ , ) UpperCAmelCase_: Any = nn.BatchNormad(A__ ) UpperCAmelCase_: Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def snake_case_ ( self , A__ ): """simple docstring""" UpperCAmelCase_: List[Any] = self.convolution(A__ ) UpperCAmelCase_: List[str] = self.normalization(A__ ) UpperCAmelCase_: Dict = self.activation(A__ ) return hidden_state class UpperCAmelCase__ ( nn.Module ): def __init__( self , A__ ): """simple docstring""" super().__init__() UpperCAmelCase_: List[str] = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) UpperCAmelCase_: List[str] = config.num_channels def snake_case_ ( self , A__ ): """simple docstring""" UpperCAmelCase_: int = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) UpperCAmelCase_: int = self.embedder(A__ ) return hidden_state class UpperCAmelCase__ ( nn.Module ): def __init__( self , A__ , A__ , A__ = 2 ): """simple docstring""" super().__init__() UpperCAmelCase_: Tuple = nn.Convad(A__ , A__ , kernel_size=1 , stride=A__ , bias=A__ ) UpperCAmelCase_: Any = nn.BatchNormad(A__ ) def snake_case_ ( self , A__ ): """simple docstring""" UpperCAmelCase_: Optional[Any] = self.convolution(A__ ) UpperCAmelCase_: List[str] = self.normalization(A__ ) return hidden_state class UpperCAmelCase__ ( nn.Module ): def __init__( self , A__ , A__ ): """simple docstring""" super().__init__() UpperCAmelCase_: List[str] = nn.AdaptiveAvgPoolad((1, 1) ) UpperCAmelCase_: Optional[Any] = nn.Sequential( nn.Convad(A__ , A__ , kernel_size=1 ) , nn.ReLU() , nn.Convad(A__ , A__ , kernel_size=1 ) , nn.Sigmoid() , ) def snake_case_ ( self , A__ ): """simple docstring""" UpperCAmelCase_: Any = self.pooler(A__ ) UpperCAmelCase_: str = self.attention(A__ ) UpperCAmelCase_: Tuple = hidden_state * attention return hidden_state class UpperCAmelCase__ ( nn.Module ): def __init__( self , A__ , A__ , A__ , A__ = 1 ): """simple docstring""" super().__init__() UpperCAmelCase_: Any = in_channels != out_channels or stride != 1 UpperCAmelCase_: List[Any] = max(1 , out_channels // config.groups_width ) UpperCAmelCase_: Dict = ( RegNetShortCut(A__ , A__ , stride=A__ ) if should_apply_shortcut else nn.Identity() ) UpperCAmelCase_: Tuple = nn.Sequential( RegNetConvLayer(A__ , A__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(A__ , A__ , stride=A__ , groups=A__ , activation=config.hidden_act ) , RegNetConvLayer(A__ , A__ , kernel_size=1 , activation=A__ ) , ) UpperCAmelCase_: Dict = ACTaFN[config.hidden_act] def snake_case_ ( self , A__ ): """simple docstring""" UpperCAmelCase_: Any = hidden_state UpperCAmelCase_: Optional[Any] = self.layer(A__ ) UpperCAmelCase_: str = self.shortcut(A__ ) hidden_state += residual UpperCAmelCase_: str = self.activation(A__ ) return hidden_state class UpperCAmelCase__ ( nn.Module ): def __init__( self , A__ , A__ , A__ , A__ = 1 ): """simple docstring""" super().__init__() UpperCAmelCase_: List[Any] = in_channels != out_channels or stride != 1 UpperCAmelCase_: Dict = max(1 , out_channels // config.groups_width ) UpperCAmelCase_: Dict = ( RegNetShortCut(A__ , A__ , stride=A__ ) if should_apply_shortcut else nn.Identity() ) UpperCAmelCase_: Union[str, Any] = nn.Sequential( RegNetConvLayer(A__ , A__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(A__ , A__ , stride=A__ , groups=A__ , activation=config.hidden_act ) , RegNetSELayer(A__ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(A__ , A__ , kernel_size=1 , activation=A__ ) , ) UpperCAmelCase_: Optional[int] = ACTaFN[config.hidden_act] def snake_case_ ( self , A__ ): """simple docstring""" UpperCAmelCase_: Dict = hidden_state UpperCAmelCase_: Union[str, Any] = self.layer(A__ ) UpperCAmelCase_: Optional[int] = self.shortcut(A__ ) hidden_state += residual UpperCAmelCase_: List[str] = self.activation(A__ ) return hidden_state class UpperCAmelCase__ ( nn.Module ): def __init__( self , A__ , A__ , A__ , A__ = 2 , A__ = 2 , ): """simple docstring""" super().__init__() UpperCAmelCase_: Union[str, Any] = RegNetXLayer if config.layer_type == "x" else RegNetYLayer UpperCAmelCase_: str = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( A__ , A__ , A__ , stride=A__ , ) , *[layer(A__ , A__ , A__ ) for _ in range(depth - 1 )] , ) def snake_case_ ( self , A__ ): """simple docstring""" UpperCAmelCase_: List[str] = self.layers(A__ ) return hidden_state class UpperCAmelCase__ ( nn.Module ): def __init__( self , A__ ): """simple docstring""" super().__init__() UpperCAmelCase_: Optional[int] = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( A__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) UpperCAmelCase_: Optional[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(A__ , config.depths[1:] ): self.stages.append(RegNetStage(A__ , A__ , A__ , depth=A__ ) ) def snake_case_ ( self , A__ , A__ = False , A__ = True ): """simple docstring""" UpperCAmelCase_: Any = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCAmelCase_: Dict = hidden_states + (hidden_state,) UpperCAmelCase_: Optional[int] = stage_module(A__ ) if output_hidden_states: UpperCAmelCase_: str = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=A__ , hidden_states=A__ ) class UpperCAmelCase__ ( snake_case__ ): snake_case_ = RegNetConfig snake_case_ = '''regnet''' snake_case_ = '''pixel_values''' snake_case_ = True def snake_case_ ( self , A__ ): """simple docstring""" if isinstance(A__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(A__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def snake_case_ ( self , A__ , A__=False ): """simple docstring""" if isinstance(A__ , A__ ): UpperCAmelCase_: int = value _lowerCAmelCase = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _lowerCAmelCase = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , snake_case__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class UpperCAmelCase__ ( snake_case__ ): def __init__( self , A__ ): """simple docstring""" super().__init__(A__ ) UpperCAmelCase_: Any = config UpperCAmelCase_: str = RegNetEmbeddings(A__ ) UpperCAmelCase_: Any = RegNetEncoder(A__ ) UpperCAmelCase_: Optional[Any] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case_ ( self , A__ , A__ = None , A__ = None ): """simple docstring""" UpperCAmelCase_: Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_: Tuple = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_: str = self.embedder(A__ ) UpperCAmelCase_: Optional[int] = self.encoder( A__ , output_hidden_states=A__ , return_dict=A__ ) UpperCAmelCase_: Optional[Any] = encoder_outputs[0] UpperCAmelCase_: Any = self.pooler(A__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A__ , pooler_output=A__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , snake_case__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class UpperCAmelCase__ ( snake_case__ ): def __init__( self , A__ ): """simple docstring""" super().__init__(A__ ) UpperCAmelCase_: str = config.num_labels UpperCAmelCase_: Optional[int] = RegNetModel(A__ ) # classification head UpperCAmelCase_: Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case_ ( self , A__ = None , A__ = None , A__ = None , A__ = None , ): """simple docstring""" UpperCAmelCase_: int = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_: int = self.regnet(A__ , output_hidden_states=A__ , return_dict=A__ ) UpperCAmelCase_: Any = outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase_: List[str] = self.classifier(A__ ) UpperCAmelCase_: int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCAmelCase_: Any = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCAmelCase_: str = "single_label_classification" else: UpperCAmelCase_: Optional[Any] = "multi_label_classification" if self.config.problem_type == "regression": UpperCAmelCase_: List[Any] = MSELoss() if self.num_labels == 1: UpperCAmelCase_: Dict = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCAmelCase_: Optional[int] = loss_fct(A__ , A__ ) elif self.config.problem_type == "single_label_classification": UpperCAmelCase_: Optional[Any] = CrossEntropyLoss() UpperCAmelCase_: Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCAmelCase_: Tuple = BCEWithLogitsLoss() UpperCAmelCase_: int = loss_fct(A__ , A__ ) if not return_dict: UpperCAmelCase_: Optional[int] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=A__ , logits=A__ , hidden_states=outputs.hidden_states )
137
import warnings warnings.warn( """memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: """ """`from accelerate import find_executable_batch_size` to avoid this warning.""", FutureWarning, )
137
1
"""simple docstring""" import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed A: Dict = logging.getLogger(__name__) def _snake_case ( UpperCamelCase : Any=2 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Union[str, Any]=16 , UpperCamelCase : int = 10 , UpperCamelCase : int = 2 ): def get_dataset(UpperCamelCase : Dict ): UpperCAmelCase : Tuple = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(UpperCamelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCAmelCase : str = get_dataset(UpperCamelCase ) UpperCAmelCase : Optional[Any] = get_dataset(UpperCamelCase ) UpperCAmelCase : Union[str, Any] = DataLoader(UpperCamelCase , shuffle=UpperCamelCase , batch_size=UpperCamelCase , num_workers=4 ) UpperCAmelCase : Dict = DataLoader(UpperCamelCase , shuffle=UpperCamelCase , batch_size=UpperCamelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def _snake_case ( UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : Optional[Any] , UpperCamelCase : List[str]=None ): UpperCAmelCase : str = [] for epoch in range(UpperCamelCase ): # Train quickly model.train() for batch in dataloader: UpperCAmelCase , UpperCAmelCase : Any = batch UpperCAmelCase : int = model(UpperCamelCase ) UpperCAmelCase : Tuple = torch.nn.functional.mse_loss(UpperCamelCase , UpperCamelCase ) accelerator.backward(UpperCamelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self ) -> Any: '''simple docstring''' super().__init__() UpperCAmelCase : Dict = nn.Parameter(torch.randn(1 ) ) UpperCAmelCase : int = nn.Parameter(torch.randn(1 ) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return x * self.a + self.b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase : Any = DummyModel() UpperCAmelCase : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase , UpperCAmelCase : Any = dummy_dataloaders() UpperCAmelCase : Optional[int] = ProjectConfiguration(total_limit=1 , project_dir=_SCREAMING_SNAKE_CASE , automatic_checkpoint_naming=_SCREAMING_SNAKE_CASE ) # Train baseline UpperCAmelCase : Tuple = Accelerator(project_config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase : Union[str, Any] = DummyModel() UpperCAmelCase : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase , UpperCAmelCase : int = dummy_dataloaders() # Train baseline UpperCAmelCase : Any = Accelerator() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save initial UpperCAmelCase : Tuple = os.path.join(_SCREAMING_SNAKE_CASE , """initial""" ) accelerator.save_state(_SCREAMING_SNAKE_CASE ) ((UpperCAmelCase) , (UpperCAmelCase)) : List[Any] = model.a.item(), model.b.item() UpperCAmelCase : Optional[int] = optimizer.state_dict() UpperCAmelCase : Any = train(3 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((UpperCAmelCase) , (UpperCAmelCase)) : Any = model.a.item(), model.b.item() UpperCAmelCase : List[Any] = optimizer.state_dict() # Train partially set_seed(42 ) UpperCAmelCase : str = DummyModel() UpperCAmelCase : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase , UpperCAmelCase : List[str] = dummy_dataloaders() UpperCAmelCase : Optional[int] = Accelerator() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) accelerator.load_state(_SCREAMING_SNAKE_CASE ) ((UpperCAmelCase) , (UpperCAmelCase)) : Tuple = model.a.item(), model.b.item() UpperCAmelCase : List[str] = optimizer.state_dict() self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = train(2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save everything UpperCAmelCase : Dict = os.path.join(_SCREAMING_SNAKE_CASE , """checkpoint""" ) accelerator.save_state(_SCREAMING_SNAKE_CASE ) # Load everything back in and make sure all states work accelerator.load_state(_SCREAMING_SNAKE_CASE ) test_rands += train(1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((UpperCAmelCase) , (UpperCAmelCase)) : str = model.a.item(), model.b.item() UpperCAmelCase : int = optimizer.state_dict() self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase : Dict = DummyModel() UpperCAmelCase : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase , UpperCAmelCase : Any = dummy_dataloaders() UpperCAmelCase : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=_SCREAMING_SNAKE_CASE ) # Train baseline UpperCAmelCase : List[Any] = Accelerator(project_dir=_SCREAMING_SNAKE_CASE , project_config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save initial accelerator.save_state() ((UpperCAmelCase) , (UpperCAmelCase)) : Tuple = model.a.item(), model.b.item() UpperCAmelCase : List[Any] = optimizer.state_dict() UpperCAmelCase : str = train(3 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((UpperCAmelCase) , (UpperCAmelCase)) : List[Any] = model.a.item(), model.b.item() UpperCAmelCase : Tuple = optimizer.state_dict() # Train partially set_seed(42 ) UpperCAmelCase : Dict = DummyModel() UpperCAmelCase : str = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase , UpperCAmelCase : Tuple = dummy_dataloaders() UpperCAmelCase : List[str] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = Accelerator(project_dir=_SCREAMING_SNAKE_CASE , project_config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) accelerator.load_state(os.path.join(_SCREAMING_SNAKE_CASE , """checkpoints""" , """checkpoint_0""" ) ) ((UpperCAmelCase) , (UpperCAmelCase)) : Union[str, Any] = model.a.item(), model.b.item() UpperCAmelCase : str = optimizer.state_dict() self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = train(2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_SCREAMING_SNAKE_CASE , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((UpperCAmelCase) , (UpperCAmelCase)) : Optional[Any] = model.a.item(), model.b.item() UpperCAmelCase : int = optimizer.state_dict() self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Dict = torch.tensor([1, 2, 3] ) UpperCAmelCase : int = torch.tensor([2, 3, 4] ) UpperCAmelCase : List[Any] = DummyModel() UpperCAmelCase : Dict = torch.optim.Adam(net.parameters() ) UpperCAmelCase : List[str] = Accelerator() with self.assertRaises(_SCREAMING_SNAKE_CASE ) as ve: accelerator.register_for_checkpointing(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase : Optional[int] = DummyModel() UpperCAmelCase : str = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase : str = torch.optim.lr_scheduler.StepLR(_SCREAMING_SNAKE_CASE , step_size=1 , gamma=0.99 ) UpperCAmelCase , UpperCAmelCase : str = dummy_dataloaders() UpperCAmelCase : Any = ProjectConfiguration(automatic_checkpoint_naming=_SCREAMING_SNAKE_CASE ) # Train baseline UpperCAmelCase : Union[str, Any] = Accelerator(project_dir=_SCREAMING_SNAKE_CASE , project_config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save initial accelerator.save_state() UpperCAmelCase : int = scheduler.state_dict() train(3 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertNotEqual(_SCREAMING_SNAKE_CASE , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_SCREAMING_SNAKE_CASE , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(_SCREAMING_SNAKE_CASE , scheduler.state_dict() ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase : str = DummyModel() UpperCAmelCase : str = ProjectConfiguration(automatic_checkpoint_naming=_SCREAMING_SNAKE_CASE , total_limit=2 ) # Train baseline UpperCAmelCase : List[str] = Accelerator(project_dir=_SCREAMING_SNAKE_CASE , project_config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = accelerator.prepare(_SCREAMING_SNAKE_CASE ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any = ["""torchrun""", F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(_SCREAMING_SNAKE_CASE , env=os.environ.copy() ) if __name__ == "__main__": A: List[Any] = "/tmp/accelerate/state_checkpointing" A: Any = DummyModel() A: Union[str, Any] = torch.optim.Adam(params=model.parameters(), lr=1E-3) A: int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) A , A: int = dummy_dataloaders() A: Tuple = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline A: Dict = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) A , A , A , A , A: Tuple = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) A , A: Union[str, Any] = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: A: int = group["params"][0].device break assert param_device.type == accelerator.device.type A: List[Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: A: Union[str, Any] = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: A: str = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
359
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _snake_case ( ): UpperCAmelCase : dict[int, int] = {} UpperCAmelCase : str = 2 while True: UpperCAmelCase : List[str] = factor_map.pop(UpperCamelCase , UpperCamelCase ) if factor: UpperCAmelCase : Dict = factor + prime while x in factor_map: x += factor UpperCAmelCase : Tuple = factor else: UpperCAmelCase : Optional[int] = prime yield prime prime += 1 def _snake_case ( UpperCamelCase : float = 1e1_0 ): UpperCAmelCase : Tuple = sieve() UpperCAmelCase : Optional[Any] = 1 while True: UpperCAmelCase : List[str] = next(UpperCamelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(UpperCamelCase ) n += 2 if __name__ == "__main__": print(solution())
359
1
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger("""transformers.models.speecht5""") def _lowercase ( a__ : Optional[Any] , a__ : Dict , a__ : Dict ) -> List[str]: """simple docstring""" hf_model.apply_weight_norm() _UpperCamelCase = checkpoint["input_conv.weight_g"] _UpperCamelCase = checkpoint["input_conv.weight_v"] _UpperCamelCase = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): _UpperCamelCase = checkpoint[f'''upsamples.{i}.1.weight_g'''] _UpperCamelCase = checkpoint[f'''upsamples.{i}.1.weight_v'''] _UpperCamelCase = checkpoint[f'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): _UpperCamelCase = checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_g'''] _UpperCamelCase = checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_v'''] _UpperCamelCase = checkpoint[f'''blocks.{i}.convs1.{j}.1.bias'''] _UpperCamelCase = checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_g'''] _UpperCamelCase = checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_v'''] _UpperCamelCase = checkpoint[f'''blocks.{i}.convs2.{j}.1.bias'''] _UpperCamelCase = checkpoint["output_conv.1.weight_g"] _UpperCamelCase = checkpoint["output_conv.1.weight_v"] _UpperCamelCase = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def _lowercase ( a__ : Any , a__ : Tuple , a__ : str , a__ : str=None , a__ : Union[str, Any]=None , ) -> Dict: """simple docstring""" if config_path is not None: _UpperCamelCase = SpeechTaHifiGanConfig.from_pretrained(a__ ) else: _UpperCamelCase = SpeechTaHifiGanConfig() _UpperCamelCase = SpeechTaHifiGan(a__ ) _UpperCamelCase = torch.load(a__ ) load_weights(orig_checkpoint["model"]["generator"] , a__ , a__ ) _UpperCamelCase = np.load(a__ ) _UpperCamelCase = stats[0].reshape(-1 ) _UpperCamelCase = stats[1].reshape(-1 ) _UpperCamelCase = torch.from_numpy(a__ ).float() _UpperCamelCase = torch.from_numpy(a__ ).float() model.save_pretrained(a__ ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(a__ ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __lowerCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
147
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): def lowercase ( self ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase ( self ) -> Dict: """simple docstring""" _UpperCamelCase = 1 _UpperCamelCase = 3 _UpperCamelCase = (32, 32) _UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def lowercase ( self ) -> str: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=lowerCamelCase_ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def lowercase ( self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowercase ( self ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) return CLIPTextModel(lowerCamelCase_ ) def lowercase ( self ) -> Dict: """simple docstring""" _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.dummy_cond_unet_upscale _UpperCamelCase = DDPMScheduler() _UpperCamelCase = DDIMScheduler(prediction_type="v_prediction" ) _UpperCamelCase = self.dummy_vae _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _UpperCamelCase = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=3_50 , ) _UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCamelCase = "A painting of a squirrel eating a burger" _UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCamelCase = output.images _UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=lowerCamelCase_ , )[0] _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] _UpperCamelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _UpperCamelCase = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.dummy_cond_unet_upscale _UpperCamelCase = DDPMScheduler() _UpperCamelCase = DDIMScheduler(prediction_type="v_prediction" ) _UpperCamelCase = self.dummy_vae _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _UpperCamelCase = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=3_50 , ) _UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCamelCase = "A painting of a squirrel eating a burger" _UpperCamelCase = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCamelCase = output.images assert image.shape[0] == 2 _UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCamelCase = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowercase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase = self.dummy_cond_unet_upscale _UpperCamelCase = DDPMScheduler() _UpperCamelCase = DDIMScheduler(prediction_type="v_prediction" ) _UpperCamelCase = self.dummy_vae _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _UpperCamelCase = unet.half() _UpperCamelCase = text_encoder.half() # make sure here that pndm scheduler skips prk _UpperCamelCase = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=3_50 , ) _UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCamelCase = "A painting of a squirrel eating a burger" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type="np" , ).images _UpperCamelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase ( self ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) _UpperCamelCase = "stabilityai/stable-diffusion-x4-upscaler" _UpperCamelCase = StableDiffusionUpscalePipeline.from_pretrained(lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() _UpperCamelCase = "a cat sitting on a park bench" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type="np" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def lowercase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) _UpperCamelCase = "stabilityai/stable-diffusion-x4-upscaler" _UpperCamelCase = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() _UpperCamelCase = "a cat sitting on a park bench" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type="np" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowercase ( self ) -> str: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCamelCase = "stabilityai/stable-diffusion-x4-upscaler" _UpperCamelCase = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCamelCase = "a cat sitting on a park bench" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=5 , output_type="np" , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
147
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A__ = logging.get_logger(__name__) A__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class a ( __snake_case , __snake_case ): __lowerCAmelCase : List[Any] = 'swin' __lowerCAmelCase : Optional[int] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self :Tuple ,__lowercase :Tuple=2_2_4 ,__lowercase :Union[str, Any]=4 ,__lowercase :List[str]=3 ,__lowercase :int=9_6 ,__lowercase :str=[2, 2, 6, 2] ,__lowercase :Union[str, Any]=[3, 6, 1_2, 2_4] ,__lowercase :str=7 ,__lowercase :Optional[Any]=4.0 ,__lowercase :Union[str, Any]=True ,__lowercase :List[Any]=0.0 ,__lowercase :str=0.0 ,__lowercase :int=0.1 ,__lowercase :Union[str, Any]="gelu" ,__lowercase :Tuple=False ,__lowercase :Optional[Any]=0.02 ,__lowercase :Optional[int]=1e-5 ,__lowercase :List[Any]=3_2 ,__lowercase :str=None ,__lowercase :str=None ,**__lowercase :Optional[int] ,): super().__init__(**A_ ) snake_case__ : Optional[int] = image_size snake_case__ : Optional[int] = patch_size snake_case__ : Optional[int] = num_channels snake_case__ : Dict = embed_dim snake_case__ : List[Any] = depths snake_case__ : int = len(A_ ) snake_case__ : List[Any] = num_heads snake_case__ : Optional[int] = window_size snake_case__ : Optional[int] = mlp_ratio snake_case__ : str = qkv_bias snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : Any = drop_path_rate snake_case__ : int = hidden_act snake_case__ : Tuple = use_absolute_embeddings snake_case__ : Union[str, Any] = layer_norm_eps snake_case__ : List[str] = initializer_range snake_case__ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case__ : Optional[int] = int(embed_dim * 2 ** (len(A_ ) - 1) ) snake_case__ : List[str] = ["stem"] + [F"""stage{idx}""" for idx in range(1 ,len(A_ ) + 1 )] snake_case__ : Dict = get_aligned_output_features_output_indices( out_features=A_ ,out_indices=A_ ,stage_names=self.stage_names ) class a ( __snake_case ): __lowerCAmelCase : Tuple = version.parse("""1.11""" ) @property def __lowerCamelCase ( self :List[Any] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCamelCase ( self :Optional[int] ): return 1e-4
716
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class a : __lowerCAmelCase : int __lowerCAmelCase : int class a : def __init__( self :Union[str, Any] ,__lowercase :int ): snake_case__ : list[list[Edge]] = [[] for _ in range(__lowercase )] snake_case__ : str = size def __getitem__( self :Union[str, Any] ,__lowercase :int ): return iter(self._graph[vertex] ) @property def __lowerCamelCase ( self :List[Any] ): return self._size def __lowerCamelCase ( self :int ,__lowercase :int ,__lowercase :int ,__lowercase :int ): if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(__lowercase ,__lowercase ) ) def __lowerCamelCase ( self :str ,__lowercase :int ,__lowercase :int ): snake_case__ : int = deque([start_vertex] ) snake_case__ : list[int | None] = [None] * self.size snake_case__ : List[Any] = 0 while queue: snake_case__ : Dict = queue.popleft() snake_case__ : List[Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: snake_case__ : Tuple = current_distance + edge.weight snake_case__ : Optional[Any] = distances[edge.destination_vertex] if ( isinstance(__lowercase ,__lowercase ) and new_distance >= dest_vertex_distance ): continue snake_case__ : List[str] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
219
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = OrderedDict( [ ("""audio-spectrogram-transformer""", """ASTFeatureExtractor"""), ("""beit""", """BeitFeatureExtractor"""), ("""chinese_clip""", """ChineseCLIPFeatureExtractor"""), ("""clap""", """ClapFeatureExtractor"""), ("""clip""", """CLIPFeatureExtractor"""), ("""clipseg""", """ViTFeatureExtractor"""), ("""conditional_detr""", """ConditionalDetrFeatureExtractor"""), ("""convnext""", """ConvNextFeatureExtractor"""), ("""cvt""", """ConvNextFeatureExtractor"""), ("""data2vec-audio""", """Wav2Vec2FeatureExtractor"""), ("""data2vec-vision""", """BeitFeatureExtractor"""), ("""deformable_detr""", """DeformableDetrFeatureExtractor"""), ("""deit""", """DeiTFeatureExtractor"""), ("""detr""", """DetrFeatureExtractor"""), ("""dinat""", """ViTFeatureExtractor"""), ("""donut-swin""", """DonutFeatureExtractor"""), ("""dpt""", """DPTFeatureExtractor"""), ("""encodec""", """EncodecFeatureExtractor"""), ("""flava""", """FlavaFeatureExtractor"""), ("""glpn""", """GLPNFeatureExtractor"""), ("""groupvit""", """CLIPFeatureExtractor"""), ("""hubert""", """Wav2Vec2FeatureExtractor"""), ("""imagegpt""", """ImageGPTFeatureExtractor"""), ("""layoutlmv2""", """LayoutLMv2FeatureExtractor"""), ("""layoutlmv3""", """LayoutLMv3FeatureExtractor"""), ("""levit""", """LevitFeatureExtractor"""), ("""maskformer""", """MaskFormerFeatureExtractor"""), ("""mctct""", """MCTCTFeatureExtractor"""), ("""mobilenet_v1""", """MobileNetV1FeatureExtractor"""), ("""mobilenet_v2""", """MobileNetV2FeatureExtractor"""), ("""mobilevit""", """MobileViTFeatureExtractor"""), ("""nat""", """ViTFeatureExtractor"""), ("""owlvit""", """OwlViTFeatureExtractor"""), ("""perceiver""", """PerceiverFeatureExtractor"""), ("""poolformer""", """PoolFormerFeatureExtractor"""), ("""regnet""", """ConvNextFeatureExtractor"""), ("""resnet""", """ConvNextFeatureExtractor"""), ("""segformer""", """SegformerFeatureExtractor"""), ("""sew""", """Wav2Vec2FeatureExtractor"""), ("""sew-d""", """Wav2Vec2FeatureExtractor"""), ("""speech_to_text""", """Speech2TextFeatureExtractor"""), ("""speecht5""", """SpeechT5FeatureExtractor"""), ("""swiftformer""", """ViTFeatureExtractor"""), ("""swin""", """ViTFeatureExtractor"""), ("""swinv2""", """ViTFeatureExtractor"""), ("""table-transformer""", """DetrFeatureExtractor"""), ("""timesformer""", """VideoMAEFeatureExtractor"""), ("""tvlt""", """TvltFeatureExtractor"""), ("""unispeech""", """Wav2Vec2FeatureExtractor"""), ("""unispeech-sat""", """Wav2Vec2FeatureExtractor"""), ("""van""", """ConvNextFeatureExtractor"""), ("""videomae""", """VideoMAEFeatureExtractor"""), ("""vilt""", """ViltFeatureExtractor"""), ("""vit""", """ViTFeatureExtractor"""), ("""vit_mae""", """ViTFeatureExtractor"""), ("""vit_msn""", """ViTFeatureExtractor"""), ("""wav2vec2""", """Wav2Vec2FeatureExtractor"""), ("""wav2vec2-conformer""", """Wav2Vec2FeatureExtractor"""), ("""wavlm""", """Wav2Vec2FeatureExtractor"""), ("""whisper""", """WhisperFeatureExtractor"""), ("""xclip""", """CLIPFeatureExtractor"""), ("""yolos""", """YolosFeatureExtractor"""), ] ) SCREAMING_SNAKE_CASE = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowerCamelCase__ ( UpperCAmelCase_ )-> Optional[Any]: """simple docstring""" for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCamelCase = model_type_to_module_name(UpperCAmelCase_ ) UpperCamelCase = importlib.import_module(F".{module_name}" , "transformers.models" ) try: return getattr(UpperCAmelCase_ , UpperCAmelCase_ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(UpperCAmelCase_ , "__name__" , UpperCAmelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCamelCase = importlib.import_module("transformers" ) if hasattr(UpperCAmelCase_ , UpperCAmelCase_ ): return getattr(UpperCAmelCase_ , UpperCAmelCase_ ) return None def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = False , **UpperCAmelCase_ , )-> str: """simple docstring""" UpperCamelCase = get_file_from_repo( UpperCAmelCase_ , UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , force_download=UpperCAmelCase_ , resume_download=UpperCAmelCase_ , proxies=UpperCAmelCase_ , use_auth_token=UpperCAmelCase_ , revision=UpperCAmelCase_ , local_files_only=UpperCAmelCase_ , ) if resolved_config_file is None: logger.info( "Could not locate the feature extractor configuration file, will try to use the model config instead." ) return {} with open(UpperCAmelCase_ , encoding="utf-8" ) as reader: return json.load(UpperCAmelCase_ ) class __a : def __init__( self : Optional[Any] )-> Optional[int]: """simple docstring""" raise EnvironmentError( "AutoFeatureExtractor is designed to be instantiated " "using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( cls : List[Any] , UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any] )-> List[str]: """simple docstring""" UpperCamelCase = kwargs.pop("config" , UpperCAmelCase_ ) UpperCamelCase = kwargs.pop("trust_remote_code" , UpperCAmelCase_ ) UpperCamelCase = True UpperCamelCase , UpperCamelCase = FeatureExtractionMixin.get_feature_extractor_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) UpperCamelCase = config_dict.get("feature_extractor_type" , UpperCAmelCase_ ) UpperCamelCase = None if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): UpperCamelCase = config_dict["auto_map"]["AutoFeatureExtractor"] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCamelCase = AutoConfig.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) # It could be in `config.feature_extractor_type`` UpperCamelCase = getattr(UpperCAmelCase_ , "feature_extractor_type" , UpperCAmelCase_ ) if hasattr(UpperCAmelCase_ , "auto_map" ) and "AutoFeatureExtractor" in config.auto_map: UpperCamelCase = config.auto_map["AutoFeatureExtractor"] if feature_extractor_class is not None: UpperCamelCase = feature_extractor_class_from_name(UpperCAmelCase_ ) UpperCamelCase = feature_extractor_auto_map is not None UpperCamelCase = feature_extractor_class is not None or type(UpperCAmelCase_ ) in FEATURE_EXTRACTOR_MAPPING UpperCamelCase = resolve_trust_remote_code( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if has_remote_code and trust_remote_code: UpperCamelCase = get_class_from_dynamic_module( UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) UpperCamelCase = kwargs.pop("code_revision" , UpperCAmelCase_ ) if os.path.isdir(UpperCAmelCase_ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(UpperCAmelCase_ ) in FEATURE_EXTRACTOR_MAPPING: UpperCamelCase = FEATURE_EXTRACTOR_MAPPING[type(UpperCAmelCase_ )] return feature_extractor_class.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) raise ValueError( f"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a " f"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following " f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}" ) @staticmethod def _SCREAMING_SNAKE_CASE ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str )-> Optional[Any]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(UpperCAmelCase_ , UpperCAmelCase_ )
554
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(_lowerCAmelCase ) class __a ( _lowerCAmelCase ): def __init__( self : str , **UpperCAmelCase_ : List[str] )-> Tuple: """simple docstring""" super().__init__(**UpperCAmelCase_ ) requires_backends(self , "vision" ) requires_backends(self , "torch" ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) self.check_model_type(UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , **UpperCAmelCase_ : int )-> List[str]: """simple docstring""" UpperCamelCase = {} UpperCamelCase = {} UpperCamelCase = {} # preprocess args if "points_per_batch" in kwargs: UpperCamelCase = kwargs["points_per_batch"] if "points_per_crop" in kwargs: UpperCamelCase = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: UpperCamelCase = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: UpperCamelCase = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: UpperCamelCase = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: UpperCamelCase = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: UpperCamelCase = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: UpperCamelCase = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: UpperCamelCase = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: UpperCamelCase = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: UpperCamelCase = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: UpperCamelCase = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Tuple=None , **UpperCAmelCase_ : str )-> Any: """simple docstring""" return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str=64 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : float = 512 / 1_500 , UpperCAmelCase_ : Optional[int] = 32 , UpperCAmelCase_ : Optional[int] = 1 , )-> List[Any]: """simple docstring""" UpperCamelCase = load_image(UpperCAmelCase_ ) UpperCamelCase = self.image_processor.size["longest_edge"] UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = self.image_processor(images=UpperCAmelCase_ , return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": UpperCamelCase = self.get_inference_context() with inference_context(): UpperCamelCase = self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device ) UpperCamelCase = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) UpperCamelCase = image_embeddings UpperCamelCase = grid_points.shape[1] UpperCamelCase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCamelCase = grid_points[:, i : i + points_per_batch, :, :] UpperCamelCase = input_labels[:, i : i + points_per_batch] UpperCamelCase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int=0.88 , UpperCAmelCase_ : Optional[int]=0.95 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : int=1 , )-> Any: """simple docstring""" UpperCamelCase = model_inputs.pop("input_boxes" ) UpperCamelCase = model_inputs.pop("is_last" ) UpperCamelCase = model_inputs.pop("original_sizes" ).tolist() UpperCamelCase = model_inputs.pop("reshaped_input_sizes" ).tolist() UpperCamelCase = self.model(**UpperCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCamelCase = model_outputs["pred_masks"] UpperCamelCase = self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_ ) UpperCamelCase = model_outputs["iou_scores"] UpperCamelCase , UpperCamelCase , UpperCamelCase = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Optional[int]=0.7 , )-> Dict: """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) UpperCamelCase = torch.cat(UpperCAmelCase_ ) UpperCamelCase = torch.cat(UpperCAmelCase_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = defaultdict(UpperCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_ ) UpperCamelCase = {} if output_rle_mask: UpperCamelCase = rle_mask if output_bboxes_mask: UpperCamelCase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
554
1
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class snake_case_ : @staticmethod def UpperCAmelCase__ ( *_snake_case : Optional[Any] , **_snake_case : List[Any] )->int: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class snake_case_ ( unittest.TestCase ): A_ = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def UpperCAmelCase__ ( self : Optional[int] , _snake_case : List[str] , _snake_case : int , _snake_case : Optional[Any] )->List[Any]: '''simple docstring''' __lowerCAmelCase : Tuple = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) __lowerCAmelCase : Any = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def UpperCAmelCase__ ( self : Any , _snake_case : str , _snake_case : Dict )->int: '''simple docstring''' __lowerCAmelCase : Optional[int] = vqa_pipeline(_snake_case , top_k=1 ) self.assertEqual( _snake_case , [ [{"""score""": ANY(_snake_case ), """answer""": ANY(_snake_case )}], [{"""score""": ANY(_snake_case ), """answer""": ANY(_snake_case )}], ] , ) @require_torch def UpperCAmelCase__ ( self : Optional[int] )->List[Any]: '''simple docstring''' __lowerCAmelCase : int = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) __lowerCAmelCase : Optional[Any] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __lowerCAmelCase : Union[str, Any] = """How many cats are there?""" __lowerCAmelCase : Dict = vqa_pipeline(image=_snake_case , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( _snake_case , [{"""score""": ANY(_snake_case ), """answer""": ANY(_snake_case )}, {"""score""": ANY(_snake_case ), """answer""": ANY(_snake_case )}] ) __lowerCAmelCase : List[Any] = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( _snake_case , [{"""score""": ANY(_snake_case ), """answer""": ANY(_snake_case )}, {"""score""": ANY(_snake_case ), """answer""": ANY(_snake_case )}] ) @slow @require_torch def UpperCAmelCase__ ( self : Tuple )->str: '''simple docstring''' __lowerCAmelCase : Tuple = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) __lowerCAmelCase : Dict = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __lowerCAmelCase : List[Any] = """How many cats are there?""" __lowerCAmelCase : Union[str, Any] = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{"""score""": 0.8_799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) __lowerCAmelCase : Union[str, Any] = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{"""score""": 0.8_799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) __lowerCAmelCase : int = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [[{"""score""": 0.8_799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def UpperCAmelCase__ ( self : List[str] )->List[str]: '''simple docstring''' pass
707
from __future__ import annotations from decimal import Decimal from numpy import array def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[float]] ) -> list[list[float]]: __lowerCAmelCase : Optional[int] = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(SCREAMING_SNAKE_CASE ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix __lowerCAmelCase : Optional[int] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements __lowerCAmelCase : List[Any] = [[0.0, 0.0], [0.0, 0.0]] __lowerCAmelCase , __lowerCAmelCase : str = matrix[1][1], matrix[0][0] __lowerCAmelCase , __lowerCAmelCase : str = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(SCREAMING_SNAKE_CASE ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(SCREAMING_SNAKE_CASE ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __lowerCAmelCase : Union[str, Any] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix __lowerCAmelCase : List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] __lowerCAmelCase : Optional[int] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) __lowerCAmelCase : str = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) __lowerCAmelCase : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) __lowerCAmelCase : Any = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) __lowerCAmelCase : List[str] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) __lowerCAmelCase : Dict = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) __lowerCAmelCase : Optional[Any] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) __lowerCAmelCase : Tuple = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) __lowerCAmelCase : Tuple = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) __lowerCAmelCase : Optional[Any] = array(SCREAMING_SNAKE_CASE ) for i in range(3 ): for j in range(3 ): __lowerCAmelCase : List[Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __lowerCAmelCase : List[Any] = array(SCREAMING_SNAKE_CASE ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(SCREAMING_SNAKE_CASE ) # Calculate the inverse of the matrix return [[float(d(SCREAMING_SNAKE_CASE ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
240
0
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __UpperCamelCase = Mapping[str, np.ndarray] __UpperCamelCase = Mapping[str, Any] # Is a nested dict. __UpperCamelCase = 0.01 @dataclasses.dataclass(frozen=__lowercase ) class _A : lowercase__: np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowercase__: np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowercase__: np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowercase__: np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowercase__: np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowercase__: Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowercase__: Optional[str] = None # Templates used to generate this protein (prediction-only) lowercase__: Optional[Sequence[str]] = None # Chain corresponding to each parent lowercase__: Optional[Sequence[int]] = None def _a ( _lowerCamelCase ) -> Protein: """simple docstring""" __snake_case : List[str] = R"""(\[[A-Z]+\]\n)""" __snake_case : List[str] = [tag.strip() for tag in re.split(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) > 0] __snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("""\n""" ) for l in tags[1::2]] ) __snake_case : List[str] = ["N", "CA", "C"] __snake_case : Union[str, Any] = None __snake_case : Optional[Any] = None __snake_case : str = None for g in groups: if "[PRIMARY]" == g[0]: __snake_case : Any = g[1][0].strip() for i in range(len(_lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: __snake_case : Union[str, Any] = """X""" # FIXME: strings are immutable __snake_case : Optional[Any] = np.array( [residue_constants.restype_order.get(_lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: __snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(_lowerCamelCase , g[1][axis].split() ) ) ) __snake_case : Optional[Any] = np.array(_lowerCamelCase ) __snake_case : Any = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_lowerCamelCase ): __snake_case : Union[str, Any] = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: __snake_case : Union[str, Any] = np.array(list(map({"""-""": 0, """+""": 1}.get , g[1][0].strip() ) ) ) __snake_case : List[str] = np.zeros( ( len(_lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_lowerCamelCase ): __snake_case : Optional[Any] = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_lowerCamelCase , atom_mask=_lowerCamelCase , aatype=_lowerCamelCase , residue_index=np.arange(len(_lowerCamelCase ) ) , b_factors=_lowerCamelCase , ) def _a ( _lowerCamelCase , _lowerCamelCase = 0 ) -> List[str]: """simple docstring""" __snake_case : List[str] = [] __snake_case : Tuple = prot.remark if remark is not None: pdb_headers.append(F'''REMARK {remark}''' ) __snake_case : Optional[int] = prot.parents __snake_case : Optional[int] = prot.parents_chain_index if parents is not None and parents_chain_index is not None: __snake_case : Any = [p for i, p in zip(_lowerCamelCase , _lowerCamelCase ) if i == chain_id] if parents is None or len(_lowerCamelCase ) == 0: __snake_case : str = ["""N/A"""] pdb_headers.append(F'''PARENT {" ".join(_lowerCamelCase )}''' ) return pdb_headers def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : List[str] = [] __snake_case : int = pdb_str.split("""\n""" ) __snake_case : Union[str, Any] = prot.remark if remark is not None: out_pdb_lines.append(F'''REMARK {remark}''' ) __snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: __snake_case : Union[str, Any] = [] if prot.parents_chain_index is not None: __snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(_lowerCamelCase ) , [] ) parent_dict[str(_lowerCamelCase )].append(_lowerCamelCase ) __snake_case : Optional[int] = max([int(_lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): __snake_case : Tuple = parent_dict.get(str(_lowerCamelCase ) , ["""N/A"""] ) parents_per_chain.append(_lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: __snake_case : Dict = [["""N/A"""]] def make_parent_line(_lowerCamelCase ) -> str: return F'''PARENT {" ".join(_lowerCamelCase )}''' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) __snake_case : Any = 0 for i, l in enumerate(_lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_lowerCamelCase ): __snake_case : int = parents_per_chain[chain_counter] else: __snake_case : int = ["""N/A"""] out_pdb_lines.append(make_parent_line(_lowerCamelCase ) ) return "\n".join(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> str: """simple docstring""" __snake_case : Optional[int] = residue_constants.restypes + ["""X"""] def res_atoa(_lowerCamelCase ) -> str: return residue_constants.restype_atoa.get(restypes[r] , """UNK""" ) __snake_case : Union[str, Any] = residue_constants.atom_types __snake_case : List[str] = [] __snake_case : int = prot.atom_mask __snake_case : Optional[int] = prot.aatype __snake_case : List[str] = prot.atom_positions __snake_case : str = prot.residue_index.astype(np.intaa ) __snake_case : Optional[int] = prot.b_factors __snake_case : str = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("""Invalid aatypes.""" ) __snake_case : Optional[int] = get_pdb_headers(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: pdb_lines.extend(_lowerCamelCase ) __snake_case : Dict = aatype.shape[0] __snake_case : Optional[int] = 1 __snake_case : List[str] = 0 __snake_case : Optional[Any] = string.ascii_uppercase __snake_case : Tuple = None # Add all atom sites. for i in range(_lowerCamelCase ): __snake_case : Optional[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue __snake_case : int = """ATOM""" __snake_case : int = atom_name if len(_lowerCamelCase ) == 4 else F''' {atom_name}''' __snake_case : List[str] = """""" __snake_case : Optional[Any] = """""" __snake_case : Any = 1.00 __snake_case : Optional[Any] = atom_name[0] # Protein supports only C, N, O, S, this works. __snake_case : List[Any] = """""" __snake_case : Tuple = """A""" if chain_index is not None: __snake_case : Optional[int] = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! __snake_case : Optional[int] = ( F'''{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}''' F'''{res_name_a:>3} {chain_tag:>1}''' F'''{residue_index[i]:>4}{insertion_code:>1} ''' F'''{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}''' F'''{occupancy:>6.2f}{b_factor:>6.2f} ''' F'''{element:>2}{charge:>2}''' ) pdb_lines.append(_lowerCamelCase ) atom_index += 1 __snake_case : List[str] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: __snake_case : Optional[Any] = True __snake_case : Union[str, Any] = chain_index[i + 1] if should_terminate: # Close the chain. __snake_case : Optional[Any] = """TER""" __snake_case : List[str] = ( F'''{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}''' ) pdb_lines.append(_lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_lowerCamelCase , _lowerCamelCase ) ) pdb_lines.append("""END""" ) pdb_lines.append("""""" ) return "\n".join(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) -> Protein: """simple docstring""" return Protein( aatype=features["""aatype"""] , atom_positions=result["""final_atom_positions"""] , atom_mask=result["""final_atom_mask"""] , residue_index=features["""residue_index"""] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["""final_atom_mask"""] ) , chain_index=_lowerCamelCase , remark=_lowerCamelCase , parents=_lowerCamelCase , parents_chain_index=_lowerCamelCase , )
26
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : jnp.ndarray a : jnp.ndarray class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" a : int a : Tuple[int] =(16, 32, 96, 2_56) a : jnp.dtype =jnp.floataa def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCAmelCase : List[Any] = [] for i in range(len(self.block_out_channels ) - 1 ): lowerCAmelCase : List[Any] = self.block_out_channels[i] lowerCAmelCase : Optional[int] = self.block_out_channels[i + 1] lowerCAmelCase : Tuple = nn.Conv( snake_case__ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(snake_case__ ) lowerCAmelCase : List[str] = nn.Conv( snake_case__ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(snake_case__ ) lowerCAmelCase : Tuple = blocks lowerCAmelCase : List[str] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = self.conv_in(snake_case__ ) lowerCAmelCase : Dict = nn.silu(snake_case__ ) for block in self.blocks: lowerCAmelCase : Any = block(snake_case__ ) lowerCAmelCase : Optional[Any] = nn.silu(snake_case__ ) lowerCAmelCase : Union[str, Any] = self.conv_out(snake_case__ ) return embedding @flax_register_to_config class SCREAMING_SNAKE_CASE__ ( nn.Module , lowercase , lowercase ): """simple docstring""" a : int =32 a : int =4 a : Tuple[str] =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) a : Union[bool, Tuple[bool]] =False a : Tuple[int] =(3_20, 6_40, 12_80, 12_80) a : int =2 a : Union[int, Tuple[int]] =8 a : Optional[Union[int, Tuple[int]]] =None a : int =12_80 a : float =0.0 a : bool =False a : jnp.dtype =jnp.floataa a : bool =True a : int =0 a : str ="rgb" a : Tuple[int] =(16, 32, 96, 2_56) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = (1, self.in_channels, self.sample_size, self.sample_size) lowerCAmelCase : List[Any] = jnp.zeros(snake_case__ , dtype=jnp.floataa ) lowerCAmelCase : int = jnp.ones((1,) , dtype=jnp.intaa ) lowerCAmelCase : str = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCAmelCase : int = (1, 3, self.sample_size * 8, self.sample_size * 8) lowerCAmelCase : Union[str, Any] = jnp.zeros(snake_case__ , dtype=jnp.floataa ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = jax.random.split(snake_case__ ) lowerCAmelCase : Union[str, Any] = {"params": params_rng, "dropout": dropout_rng} return self.init(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )["params"] def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.block_out_channels lowerCAmelCase : List[str] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCAmelCase : Optional[Any] = self.num_attention_heads or self.attention_head_dim # input lowerCAmelCase : Union[str, Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCAmelCase : Any = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCAmelCase : str = FlaxTimestepEmbedding(snake_case__ , dtype=self.dtype ) lowerCAmelCase : Union[str, Any] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCAmelCase : Any = self.only_cross_attention if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Dict = (num_attention_heads,) * len(self.down_block_types ) # down lowerCAmelCase : List[str] = [] lowerCAmelCase : str = [] lowerCAmelCase : int = block_out_channels[0] lowerCAmelCase : str = nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) for i, down_block_type in enumerate(self.down_block_types ): lowerCAmelCase : Dict = output_channel lowerCAmelCase : Any = block_out_channels[i] lowerCAmelCase : Tuple = i == len(snake_case__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCAmelCase : Union[str, Any] = FlaxCrossAttnDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCAmelCase : int = FlaxDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(snake_case__ ) for _ in range(self.layers_per_block ): lowerCAmelCase : Optional[int] = nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) if not is_final_block: lowerCAmelCase : Dict = nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) lowerCAmelCase : str = down_blocks lowerCAmelCase : Optional[int] = controlnet_down_blocks # mid lowerCAmelCase : Tuple = block_out_channels[-1] lowerCAmelCase : Optional[int] = FlaxUNetMidBlockaDCrossAttn( in_channels=snake_case__ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCAmelCase : Tuple = nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = 1.0 , snake_case__ = True , snake_case__ = False , ): """simple docstring""" lowerCAmelCase : List[str] = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCAmelCase : Optional[int] = jnp.flip(snake_case__ , axis=1 ) # 1. time if not isinstance(snake_case__ , jnp.ndarray ): lowerCAmelCase : Union[str, Any] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(snake_case__ , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCAmelCase : str = timesteps.astype(dtype=jnp.floataa ) lowerCAmelCase : Optional[int] = jnp.expand_dims(snake_case__ , 0 ) lowerCAmelCase : Union[str, Any] = self.time_proj(snake_case__ ) lowerCAmelCase : Tuple = self.time_embedding(snake_case__ ) # 2. pre-process lowerCAmelCase : Tuple = jnp.transpose(snake_case__ , (0, 2, 3, 1) ) lowerCAmelCase : Union[str, Any] = self.conv_in(snake_case__ ) lowerCAmelCase : List[Any] = jnp.transpose(snake_case__ , (0, 2, 3, 1) ) lowerCAmelCase : Optional[int] = self.controlnet_cond_embedding(snake_case__ ) sample += controlnet_cond # 3. down lowerCAmelCase : Union[str, Any] = (sample,) for down_block in self.down_blocks: if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase , lowerCAmelCase : Optional[Any] = down_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) else: lowerCAmelCase , lowerCAmelCase : int = down_block(snake_case__ , snake_case__ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCAmelCase : Union[str, Any] = self.mid_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) # 5. contronet blocks lowerCAmelCase : Optional[int] = () for down_block_res_sample, controlnet_block in zip(snake_case__ , self.controlnet_down_blocks ): lowerCAmelCase : Any = controlnet_block(snake_case__ ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCAmelCase : Dict = controlnet_down_block_res_samples lowerCAmelCase : Optional[Any] = self.controlnet_mid_block(snake_case__ ) # 6. scaling lowerCAmelCase : List[Any] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=snake_case__ , mid_block_res_sample=snake_case__ )
645
0
def __lowercase ( __lowerCAmelCase : Tuple ): # noqa: E741 a__ = len(__lowerCAmelCase ) a__ = 0 a__ = [0] * n a__ = [False] * n a__ = [False] * n def dfs(__lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple ): if parent == root: out_edge_count += 1 a__ = True a__ = at for to in l[at]: if to == parent: pass elif not visited[to]: a__ = dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) a__ = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: a__ = True # AP found via cycle if at == low[to]: a__ = True else: a__ = min(low[at] , __lowerCAmelCase ) return out_edge_count for i in range(__lowerCAmelCase ): if not visited[i]: a__ = 0 a__ = dfs(__lowerCAmelCase , __lowerCAmelCase , -1 , __lowerCAmelCase ) a__ = out_edge_count > 1 for x in range(len(__lowerCAmelCase ) ): if is_art[x] is True: print(__lowerCAmelCase ) # Adjacency list of graph snake_case : str = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
657
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand snake_case : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) snake_case : str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) snake_case : Tuple = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) snake_case : str = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) snake_case : Tuple = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) snake_case : int = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def __lowercase ( ): a__ , a__ = randrange(len(__lowerCAmelCase ) ), randrange(len(__lowerCAmelCase ) ) a__ = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] a__ , a__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowercase ( __lowerCAmelCase : int = 1_0_0 ): return (generate_random_hand() for _ in range(__lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): assert PokerHand(__lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): a__ = PokerHand(__lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , __lowerCAmelCase ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected def __lowercase ( ): a__ = [PokerHand(__lowerCAmelCase ) for hand in SORTED_HANDS] a__ = poker_hands.copy() shuffle(__lowerCAmelCase ) a__ = chain(sorted(__lowerCAmelCase ) ) for index, hand in enumerate(__lowerCAmelCase ): assert hand == poker_hands[index] def __lowercase ( ): # Test that five high straights are compared correctly. a__ = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowercase ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. a__ = PokerHand('2C 4S AS 3D 5C' ) a__ = True a__ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowercase ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file a__ = 0 a__ = os.path.abspath(os.path.dirname(__lowerCAmelCase ) ) a__ = os.path.join(__lowerCAmelCase , 'poker_hands.txt' ) with open(__lowerCAmelCase ) as file_hand: for line in file_hand: a__ = line[:1_4].strip() a__ = line[1_5:].strip() a__ , a__ = PokerHand(__lowerCAmelCase ), PokerHand(__lowerCAmelCase ) a__ = player.compare_with(__lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
657
1
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "nielsr/canine-s": 2_048, } # Unicode defines 1,114,112 total “codepoints” UpperCamelCase = 1_114_112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py UpperCamelCase = 0 UpperCamelCase = 0xe0_00 UpperCamelCase = 0xe0_01 UpperCamelCase = 0xe0_02 UpperCamelCase = 0xe0_03 UpperCamelCase = 0xe0_04 # Maps special codepoints to human-readable names. UpperCamelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. UpperCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :Tuple , lowerCamelCase__ :Optional[int]=chr(lowerCamelCase__ ) , lowerCamelCase__ :Optional[Any]=chr(lowerCamelCase__ ) , lowerCamelCase__ :Optional[Any]=chr(lowerCamelCase__ ) , lowerCamelCase__ :Dict=chr(lowerCamelCase__ ) , lowerCamelCase__ :List[Any]=chr(lowerCamelCase__ ) , lowerCamelCase__ :Dict=chr(lowerCamelCase__ ) , lowerCamelCase__ :Union[str, Any]=False , lowerCamelCase__ :int=20_48 , **lowerCamelCase__ :List[str] , ): UpperCamelCase__ :int = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else bos_token UpperCamelCase__ :List[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else eos_token UpperCamelCase__ :Any = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else sep_token UpperCamelCase__ :Any = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cls_token UpperCamelCase__ :Optional[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ :str = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , model_max_length=lowerCamelCase__ , **lowerCamelCase__ , ) # Creates a mapping for looking up the IDs of special symbols. UpperCamelCase__ :Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): UpperCamelCase__ :str = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. UpperCamelCase__ :Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } UpperCamelCase__ :Any = UNICODE_VOCAB_SIZE UpperCamelCase__ :List[str] = len(self._special_codepoints ) @property def __a ( self :Any ): return self._unicode_vocab_size def __a ( self :Optional[int] , lowerCamelCase__ :str ): return list(lowerCamelCase__ ) def __a ( self :List[str] , lowerCamelCase__ :str ): try: return ord(lowerCamelCase__ ) except TypeError: raise ValueError(f"""invalid token: '{token}'""" ) def __a ( self :Any , lowerCamelCase__ :int ): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(lowerCamelCase__ ) except TypeError: raise ValueError(f"""invalid id: {index}""" ) def __a ( self :Tuple , lowerCamelCase__ :Optional[int] ): return "".join(lowerCamelCase__ ) def __a ( self :Optional[int] , lowerCamelCase__ :List[int] , lowerCamelCase__ :Optional[List[int]] = None ): UpperCamelCase__ :Union[str, Any] = [self.sep_token_id] UpperCamelCase__ :Any = [self.cls_token_id] UpperCamelCase__ :Dict = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def __a ( self :Tuple , lowerCamelCase__ :List[int] , lowerCamelCase__ :Optional[List[int]] = None , lowerCamelCase__ :bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) UpperCamelCase__ :Tuple = [1] + ([0] * len(lowerCamelCase__ )) + [1] if token_ids_a is not None: result += ([0] * len(lowerCamelCase__ )) + [1] return result def __a ( self :int , lowerCamelCase__ :List[int] , lowerCamelCase__ :Optional[List[int]] = None ): UpperCamelCase__ :List[Any] = [self.sep_token_id] UpperCamelCase__ :Optional[Any] = [self.cls_token_id] UpperCamelCase__ :Tuple = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def __a ( self :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Optional[str] = None ): return ()
45
def A ( lowercase__ : int , lowercase__ : int ) -> int: return int(input_a == input_a == 0 ) def A ( ) -> None: print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
45
1
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE( snake_case_ : tuple[int, int] , snake_case_ : int ) ->list[tuple[int, int]]: '''simple docstring''' _lowercase , _lowercase : List[str] = position _lowercase : Dict = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _lowercase : Any = [] for position in positions: _lowercase , _lowercase : Any = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(snake_case_ ) return permissible_positions def _SCREAMING_SNAKE_CASE( snake_case_ : list[list[int]] ) ->bool: '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def _SCREAMING_SNAKE_CASE( snake_case_ : list[list[int]] , snake_case_ : tuple[int, int] , snake_case_ : int ) ->bool: '''simple docstring''' if is_complete(snake_case_ ): return True for position in get_valid_pos(snake_case_ , len(snake_case_ ) ): _lowercase , _lowercase : List[str] = position if board[y][x] == 0: _lowercase : Optional[int] = curr + 1 if open_knight_tour_helper(snake_case_ , snake_case_ , curr + 1 ): return True _lowercase : str = 0 return False def _SCREAMING_SNAKE_CASE( snake_case_ : int ) ->list[list[int]]: '''simple docstring''' _lowercase : Dict = [[0 for i in range(snake_case_ )] for j in range(snake_case_ )] for i in range(snake_case_ ): for j in range(snake_case_ ): _lowercase : List[str] = 1 if open_knight_tour_helper(snake_case_ , (i, j) , 1 ): return board _lowercase : Optional[int] = 0 _lowercase : str = F"Open Kight Tour cannot be performed on a board of size {n}" raise ValueError(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
411
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _lowerCAmelCase ( __A ): '''simple docstring''' def __init__( self : int ) -> int: '''simple docstring''' _lowercase : Union[str, Any] = [] def __lowercase ( self : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Any , **UpperCamelCase_ : List[str] ) -> str: '''simple docstring''' self.events.append('''on_init_end''' ) def __lowercase ( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , **UpperCamelCase_ : int ) -> int: '''simple docstring''' self.events.append('''on_train_begin''' ) def __lowercase ( self : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' self.events.append('''on_train_end''' ) def __lowercase ( self : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : str , **UpperCamelCase_ : Any ) -> str: '''simple docstring''' self.events.append('''on_epoch_begin''' ) def __lowercase ( self : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : str , **UpperCamelCase_ : Any ) -> Dict: '''simple docstring''' self.events.append('''on_epoch_end''' ) def __lowercase ( self : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Dict ) -> Tuple: '''simple docstring''' self.events.append('''on_step_begin''' ) def __lowercase ( self : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , **UpperCamelCase_ : Optional[Any] ) -> int: '''simple docstring''' self.events.append('''on_step_end''' ) def __lowercase ( self : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Dict ) -> Tuple: '''simple docstring''' self.events.append('''on_evaluate''' ) def __lowercase ( self : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , **UpperCamelCase_ : List[str] ) -> Union[str, Any]: '''simple docstring''' self.events.append('''on_predict''' ) def __lowercase ( self : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] , **UpperCamelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.events.append('''on_save''' ) def __lowercase ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , **UpperCamelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' self.events.append('''on_log''' ) def __lowercase ( self : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , **UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' self.events.append('''on_prediction_step''' ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowercase ( self : List[Any] ) -> int: '''simple docstring''' _lowercase : Dict = tempfile.mkdtemp() def __lowercase ( self : Dict ) -> str: '''simple docstring''' shutil.rmtree(self.output_dir ) def __lowercase ( self : Optional[int] , UpperCamelCase_ : List[Any]=0 , UpperCamelCase_ : Any=0 , UpperCamelCase_ : Dict=64 , UpperCamelCase_ : Optional[int]=64 , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Union[str, Any]=False , **UpperCamelCase_ : str ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = RegressionDataset(length=UpperCamelCase_ ) _lowercase : Any = RegressionDataset(length=UpperCamelCase_ ) _lowercase : int = RegressionModelConfig(a=UpperCamelCase_ , b=UpperCamelCase_ ) _lowercase : int = RegressionPreTrainedModel(UpperCamelCase_ ) _lowercase : int = TrainingArguments(self.output_dir , disable_tqdm=UpperCamelCase_ , report_to=[] , **UpperCamelCase_ ) return Trainer( UpperCamelCase_ , UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , callbacks=UpperCamelCase_ , ) def __lowercase ( self : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) # Order doesn't matter _lowercase : Tuple = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : cb.__name__ if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cb.__class__.__name__ ) _lowercase : Union[str, Any] = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : cb.__name__ if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cb.__class__.__name__ ) for cba, cba in zip(UpperCamelCase_ , UpperCamelCase_ ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and not isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(UpperCamelCase_ , cba.__class__ ) elif not isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(cba.__class__ , UpperCamelCase_ ) else: self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def __lowercase ( self : List[Any] , UpperCamelCase_ : Optional[Any] ) -> List[Any]: '''simple docstring''' _lowercase : Optional[Any] = ['''on_init_end''', '''on_train_begin'''] _lowercase : Optional[int] = 0 _lowercase : int = len(trainer.get_eval_dataloader() ) _lowercase : List[Any] = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(UpperCamelCase_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def __lowercase ( self : Dict ) -> List[str]: '''simple docstring''' _lowercase : Optional[Any] = self.get_trainer() _lowercase : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) # Callbacks passed at init are added to the default callbacks _lowercase : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback _lowercase : Optional[Any] = self.get_trainer(disable_tqdm=UpperCamelCase_ ) _lowercase : Dict = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) def __lowercase ( self : List[str] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] _lowercase : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(UpperCamelCase_ ) expected_callbacks.remove(UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) _lowercase : Dict = self.get_trainer() _lowercase : Dict = trainer.pop_callback(UpperCamelCase_ ) self.assertEqual(cb.__class__ , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) trainer.add_callback(UpperCamelCase_ ) expected_callbacks.insert(0 , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) # We can also add, pop, or remove by instance _lowercase : str = self.get_trainer() _lowercase : str = trainer.callback_handler.callbacks[0] trainer.remove_callback(UpperCamelCase_ ) expected_callbacks.remove(UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) _lowercase : Tuple = self.get_trainer() _lowercase : Dict = trainer.callback_handler.callbacks[0] _lowercase : Optional[int] = trainer.pop_callback(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) trainer.add_callback(UpperCamelCase_ ) expected_callbacks.insert(0 , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) def __lowercase ( self : Dict ) -> Any: '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' , category=UpperCamelCase_ ) _lowercase : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() _lowercase : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) # Independent log/save/eval _lowercase : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() _lowercase : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) _lowercase : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() _lowercase : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) _lowercase : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='''steps''' ) trainer.train() _lowercase : Optional[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) _lowercase : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='''epoch''' ) trainer.train() _lowercase : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) # A bit of everything _lowercase : Optional[int] = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='''steps''' , ) trainer.train() _lowercase : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: _lowercase : Union[str, Any] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(UpperCamelCase_ ) in warn_mock.call_args[0][0]
411
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) SCREAMING_SNAKE_CASE : List[Any] = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
89
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE : Optional[Any] = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ["ConditionalDetrFeatureExtractor"] SCREAMING_SNAKE_CASE : Optional[Any] = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Any = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
89
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : str = logging.get_logger() @dataclass class lowerCAmelCase_ : __a : nn.Module __a : List[nn.Module] = field(default_factory=lowerCamelCase_ ) __a : list = field(default_factory=lowerCamelCase_ ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = len(list(m.modules() ) ) == 1 or isinstance(snake_case__ ,nn.Convad ) or isinstance(snake_case__ ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case__ ) def __call__( self ,snake_case__ ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case__ ) [x.remove() for x in self.handles] return self @property def snake_case ( self ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case__ : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class lowerCAmelCase_ : __a : nn.Module __a : nn.Module __a : int = 0 __a : List = field(default_factory=lowerCamelCase_ ) __a : List = field(default_factory=lowerCamelCase_ ) def __call__( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = Tracker(self.dest )(snake_case__ ).parametrized SCREAMING_SNAKE_CASE_ : int = Tracker(self.src )(snake_case__ ).parametrized SCREAMING_SNAKE_CASE_ : Tuple = list(filter(lambda snake_case__ : type(snake_case__ ) not in self.src_skip ,snake_case__ ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = list(filter(lambda snake_case__ : type(snake_case__ ) not in self.dest_skip ,snake_case__ ) ) if len(snake_case__ ) != len(snake_case__ ): raise Exception( F'Numbers of operations are different. Source module has {len(snake_case__ )} operations while' F' destination module has {len(snake_case__ )}.' ) for dest_m, src_m in zip(snake_case__ ,snake_case__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : ResNetConfig , lowerCamelCase_ : Path , lowerCamelCase_ : bool = True ) -> List[Any]: """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : str = timm.create_model(lowerCamelCase_ , pretrained=lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE_ : Tuple = ResNetForImageClassification(lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE_ : Optional[int] = ModuleTransfer(src=lowerCamelCase_ , dest=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(lowerCamelCase_ ) assert torch.allclose(from_model(lowerCamelCase_ ) , our_model(lowerCamelCase_ ).logits ), "The model logits don't match the original one." SCREAMING_SNAKE_CASE_ : Tuple = F'resnet{"-".join(name.split("resnet" ) )}' print(lowerCamelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) # we can use the convnext one SCREAMING_SNAKE_CASE_ : Dict = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) print(F'Pushed {checkpoint_name}' ) def __UpperCAmelCase ( lowerCamelCase_ : Path , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = True ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE_ : Tuple = 10_00 SCREAMING_SNAKE_CASE_ : List[str] = (1, num_labels) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'huggingface/label-files' SCREAMING_SNAKE_CASE_ : List[str] = num_labels SCREAMING_SNAKE_CASE_ : int = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE_ : List[Any] = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE_ : Tuple = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ : Optional[int] = partial(lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(lowerCamelCase_ , names_to_config[model_name] , lowerCamelCase_ , lowerCamelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return config, expected_shape if __name__ == "__main__": UpperCamelCase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase__ : str = parser.parse_args() UpperCamelCase__ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
709
from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Tuple = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Any = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Dict = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] )
685
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase = TypeVar("""T""") UpperCAmelCase = TypeVar("""U""") class lowercase__ ( Generic[T, U] ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Union[str, Any]: _lowerCamelCase : Any = key _lowerCamelCase : Any = val _lowerCamelCase : DoubleLinkedListNode[T, U] | None = None _lowerCamelCase : DoubleLinkedListNode[T, U] | None = None def __repr__( self) -> str: return ( F'Node: key: {self.key}, val: {self.val}, ' F'has next: {bool(self.next)}, has prev: {bool(self.prev)}' ) class lowercase__ ( Generic[T, U] ): def __init__( self) -> None: _lowerCamelCase : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _lowerCamelCase : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _lowerCamelCase , _lowerCamelCase : Optional[int] = self.rear, self.head def __repr__( self) -> str: _lowerCamelCase : Union[str, Any] = ["""DoubleLinkedList"""] _lowerCamelCase : List[Any] = self.head while node.next is not None: rep.append(str(SCREAMING_SNAKE_CASE)) _lowerCamelCase : Optional[Any] = node.next rep.append(str(self.rear)) return ",\n ".join(SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> None: _lowerCamelCase : Dict = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _lowerCamelCase : Optional[int] = node _lowerCamelCase : List[str] = previous _lowerCamelCase : Dict = node _lowerCamelCase : str = self.rear def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> DoubleLinkedListNode[T, U] | None: if node.prev is None or node.next is None: return None _lowerCamelCase : Dict = node.next _lowerCamelCase : int = node.prev _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Any = None return node class lowercase__ ( Generic[T, U] ): __UpperCAmelCase = {} def __init__( self , SCREAMING_SNAKE_CASE) -> str: _lowerCamelCase : DoubleLinkedList[T, U] = DoubleLinkedList() _lowerCamelCase : Optional[int] = capacity _lowerCamelCase : int = 0 _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self) -> str: return ( F'CacheInfo(hits={self.hits}, misses={self.miss}, ' F'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self , SCREAMING_SNAKE_CASE) -> bool: return key in self.cache def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> U | None: # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 _lowerCamelCase : DoubleLinkedListNode[T, U] = self.cache[key] _lowerCamelCase : Dict = self.list.remove(self.cache[key]) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(SCREAMING_SNAKE_CASE) return node.val self.miss += 1 return None def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> None: if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _lowerCamelCase : int = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(SCREAMING_SNAKE_CASE) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _lowerCamelCase : str = DoubleLinkedListNode(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) self.list.add(self.cache[key]) self.num_keys += 1 else: # bump node to the end of the list, update value _lowerCamelCase : List[str] = self.list.remove(self.cache[key]) assert node is not None # node guaranteed to be in list _lowerCamelCase : Union[str, Any] = value self.list.add(SCREAMING_SNAKE_CASE) @classmethod def UpperCamelCase_ ( cls , SCREAMING_SNAKE_CASE = 128) -> Callable[[Callable[[T], U]], Callable[..., U]]: def cache_decorator_inner(SCREAMING_SNAKE_CASE) -> Callable[..., U]: def cache_decorator_wrapper(*SCREAMING_SNAKE_CASE) -> U: if func not in cls.decorator_function_to_instance_map: _lowerCamelCase : Union[str, Any] = LRUCache(SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0]) if result is None: _lowerCamelCase : Any = func(*SCREAMING_SNAKE_CASE) cls.decorator_function_to_instance_map[func].put(args[0] , SCREAMING_SNAKE_CASE) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(SCREAMING_SNAKE_CASE , """cache_info""" , SCREAMING_SNAKE_CASE) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
88
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo UpperCAmelCase = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ UpperCAmelCase = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ UpperCAmelCase = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCamelCase_ ( self) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""") , id="""sequence"""), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""") , id="""sequence""") , id="""references"""), }) , ) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=SCREAMING_SNAKE_CASE , hypotheses=SCREAMING_SNAKE_CASE , min_len=SCREAMING_SNAKE_CASE , max_len=SCREAMING_SNAKE_CASE) }
88
1
"""simple docstring""" from __future__ import annotations def lowercase ( A_ )-> str: '''simple docstring''' a : List[Any] = 2 a : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase__ ) if n > 1: factors.append(lowerCAmelCase__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
709
"""simple docstring""" import unittest from knapsack import knapsack as k class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Dict): a : Tuple = 0 a : Any = [0] a : List[Any] = [0] a : List[Any] = len(__UpperCAmelCase) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 0) a : List[str] = [60] a : Dict = [10] a : Optional[int] = len(__UpperCAmelCase) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 0) def __snake_case ( self : Optional[Any]): a : Union[str, Any] = 3 a : Any = [1, 2, 3] a : List[Any] = [3, 2, 1] a : Optional[Any] = len(__UpperCAmelCase) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 5) def __snake_case ( self : str): a : int = 50 a : Dict = [60, 100, 120] a : Tuple = [10, 20, 30] a : Optional[Any] = len(__UpperCAmelCase) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 220) if __name__ == "__main__": unittest.main()
135
0
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase ( a__ ): def __init__(self : Union[str, Any] ,*SCREAMING_SNAKE_CASE_ : Optional[Any] ,SCREAMING_SNAKE_CASE_ : Dict=None ,SCREAMING_SNAKE_CASE_ : Tuple=None ,**SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" super().__init__(*_A ,**_A ) lowerCAmelCase = eval_examples lowerCAmelCase = post_process_function def UpperCAmelCase (self : Any ,SCREAMING_SNAKE_CASE_ : List[Any] = None ,SCREAMING_SNAKE_CASE_ : List[Any]=None ,SCREAMING_SNAKE_CASE_ : Optional[Any] = None ,SCREAMING_SNAKE_CASE_ : Optional[Any] = "eval" ,**SCREAMING_SNAKE_CASE_ : Optional[Any] ,) -> Optional[int]: """simple docstring""" lowerCAmelCase = gen_kwargs.copy() lowerCAmelCase = ( gen_kwargs['max_length'] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) lowerCAmelCase = ( gen_kwargs['num_beams'] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) lowerCAmelCase = gen_kwargs lowerCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset lowerCAmelCase = self.get_eval_dataloader(_A ) lowerCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase = self.compute_metrics lowerCAmelCase = None lowerCAmelCase = time.time() lowerCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCAmelCase = eval_loop( _A ,description='''Evaluation''' ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=_A ,metric_key_prefix=_A ,) finally: lowerCAmelCase = compute_metrics lowerCAmelCase = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _A ,_A ,num_samples=output.num_samples ,num_steps=math.ceil(output.num_samples / total_batch_size ) ,) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCAmelCase = self.post_process_function(_A ,_A ,_A ) lowerCAmelCase = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): lowerCAmelCase = metrics.pop(_A ) metrics.update(output.metrics ) else: lowerCAmelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_A ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCAmelCase = self.callback_handler.on_evaluate(self.args ,self.state ,self.control ,_A ) return metrics def UpperCAmelCase (self : int ,SCREAMING_SNAKE_CASE_ : str ,SCREAMING_SNAKE_CASE_ : Union[str, Any] ,SCREAMING_SNAKE_CASE_ : List[str]=None ,SCREAMING_SNAKE_CASE_ : Dict = "test" ,**SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: """simple docstring""" lowerCAmelCase = gen_kwargs.copy() lowerCAmelCase = self.get_test_dataloader(_A ) # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase = self.compute_metrics lowerCAmelCase = None lowerCAmelCase = time.time() lowerCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCAmelCase = eval_loop( _A ,description='''Prediction''' ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=_A ,metric_key_prefix=_A ,) finally: lowerCAmelCase = compute_metrics lowerCAmelCase = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _A ,_A ,num_samples=output.num_samples ,num_steps=math.ceil(output.num_samples / total_batch_size ) ,) ) if self.post_process_function is None or self.compute_metrics is None: return output lowerCAmelCase = self.post_process_function(_A ,_A ,_A ,'''predict''' ) lowerCAmelCase = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): lowerCAmelCase = metrics.pop(_A ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions ,label_ids=predictions.label_ids ,metrics=_A )
535
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 100 , ): '''simple docstring''' _lowerCAmelCase : str = x_start _lowerCAmelCase : Optional[Any] = fnc(_lowerCamelCase ) _lowerCAmelCase : Dict = 0.0 for _ in range(_lowerCamelCase ): # Approximates curve as a sequence of linear lines and sums their length _lowerCAmelCase : Dict = (x_end - x_start) / steps + xa _lowerCAmelCase : Tuple = fnc(_lowerCamelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step _lowerCAmelCase : Optional[Any] = xa _lowerCAmelCase : Union[str, Any] = fxa return length if __name__ == "__main__": def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") _lowerCAmelCase = 1_0 while i <= 1_0_0_0_0_0: print(F'''With {i} steps: {line_length(f, -1_0, 1_0, i)}''') i *= 1_0
259
0
from math import factorial, radians def UpperCAmelCase__ ( _A , _A = 18 , _A = 10 ): """simple docstring""" a_ = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0) # Converting from degrees to radians a_ = radians(__lowerCAmelCase ) a_ = angle_in_radians a_ = 3 a_ = -1 for _ in range(__lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(__lowerCAmelCase ) a_ = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": __import__('''doctest''').testmod()
709
from math import pow def UpperCAmelCase__ ( _A , _A , _A , _A , _A , ): """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count a_ = int(pow(_A , _A ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n a_ , a_ = backtrack( _A , _A , current_number + 1 , _A , _A ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. a_ , a_ = backtrack( _A , _A , current_number + 1 , _A , _A ) return current_sum, solutions_count def UpperCAmelCase__ ( _A , _A ): """simple docstring""" if not (1 <= needed_sum <= 1_000 and 2 <= power <= 10): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(_A , _A , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
143
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a__ : Dict = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys a__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
368
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class __snake_case ( __magic_name__ ): @staticmethod @abstractmethod def _snake_case ( UpperCamelCase_ ) -> Dict: raise NotImplementedError() @abstractmethod def _snake_case ( self ) -> List[Any]: raise NotImplementedError()
368
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : int = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off UpperCAmelCase__ : str = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] UpperCAmelCase__ : Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class lowerCAmelCase_ ( lowercase_ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = """whisper""" SCREAMING_SNAKE_CASE_ : str = ["""past_key_values"""] SCREAMING_SNAKE_CASE_ : Any = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : int , UpperCAmelCase_ : List[str]=51865 , UpperCAmelCase_ : Any=80 , UpperCAmelCase_ : Dict=6 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Tuple=6 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Optional[int]=1536 , UpperCAmelCase_ : str=1536 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Any=50257 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[str]=1500 , UpperCAmelCase_ : Union[str, Any]=448 , UpperCAmelCase_ : Union[str, Any]=50256 , UpperCAmelCase_ : List[Any]=50256 , UpperCAmelCase_ : List[str]=50256 , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : List[Any]=[220, 50256] , UpperCAmelCase_ : int=False , UpperCAmelCase_ : str=256 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Tuple=0.05 , UpperCAmelCase_ : List[str]=10 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : List[str]=10 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : Optional[int]=7 , **UpperCAmelCase_ : Dict , ) -> str: '''simple docstring''' _UpperCAmelCase : Dict = vocab_size _UpperCAmelCase : List[Any] = num_mel_bins _UpperCAmelCase : int = d_model _UpperCAmelCase : int = encoder_layers _UpperCAmelCase : int = encoder_attention_heads _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Optional[Any] = decoder_attention_heads _UpperCAmelCase : List[str] = decoder_ffn_dim _UpperCAmelCase : Union[str, Any] = encoder_ffn_dim _UpperCAmelCase : Optional[Any] = dropout _UpperCAmelCase : Dict = attention_dropout _UpperCAmelCase : Any = activation_dropout _UpperCAmelCase : Any = activation_function _UpperCAmelCase : Any = init_std _UpperCAmelCase : List[Any] = encoder_layerdrop _UpperCAmelCase : List[Any] = decoder_layerdrop _UpperCAmelCase : Union[str, Any] = use_cache _UpperCAmelCase : str = encoder_layers _UpperCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : int = max_source_positions _UpperCAmelCase : List[str] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. _UpperCAmelCase : Optional[Any] = classifier_proj_size _UpperCAmelCase : Dict = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCAmelCase : str = apply_spec_augment _UpperCAmelCase : Union[str, Any] = mask_time_prob _UpperCAmelCase : Union[str, Any] = mask_time_length _UpperCAmelCase : Any = mask_time_min_masks _UpperCAmelCase : Tuple = mask_feature_prob _UpperCAmelCase : Optional[Any] = mask_feature_length _UpperCAmelCase : Optional[Any] = mask_feature_min_masks _UpperCAmelCase : List[str] = median_filter_width super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , suppress_tokens=UpperCAmelCase_ , begin_suppress_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) class lowerCAmelCase_ ( lowercase_ ): @property def a_ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' _UpperCAmelCase : Tuple = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: _UpperCAmelCase : Optional[Any] = {0: '''batch'''} else: _UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase_ , direction='''inputs''' ) return common_inputs def a_ ( self : Union[str, Any] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 22050 , UpperCAmelCase_ : float = 5.0 , UpperCAmelCase_ : int = 220 , ) -> Mapping[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = OrderedDict() _UpperCAmelCase : Optional[Any] = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=UpperCAmelCase_ , framework=UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , time_duration=UpperCAmelCase_ , frequency=UpperCAmelCase_ , ) _UpperCAmelCase : Tuple = encoder_inputs['''input_features'''].shape[2] _UpperCAmelCase : List[str] = encoder_sequence_length // 2 if self.use_past else seq_length _UpperCAmelCase : List[str] = super().generate_dummy_inputs( preprocessor.tokenizer , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCAmelCase : Dict = encoder_inputs.pop('''input_features''' ) _UpperCAmelCase : int = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: _UpperCAmelCase : Dict = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def a_ ( self : Union[str, Any] ) -> float: '''simple docstring''' return 1E-3
416
from typing import List from .keymap import KEYMAP, get_character def _A ( _UpperCamelCase ): def decorator(_UpperCamelCase ): _UpperCAmelCase : Optional[int] = getattr(_UpperCamelCase , '''handle_key''' , [] ) handle += [key] setattr(_UpperCamelCase , '''handle_key''' , _UpperCamelCase ) return func return decorator def _A ( *_UpperCamelCase ): def decorator(_UpperCamelCase ): _UpperCAmelCase : Any = getattr(_UpperCamelCase , '''handle_key''' , [] ) handle += keys setattr(_UpperCamelCase , '''handle_key''' , _UpperCamelCase ) return func return decorator class lowerCAmelCase_ ( lowercase_ ): def __new__( cls : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = super().__new__(cls , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if not hasattr(UpperCAmelCase_ , '''key_handler''' ): setattr(UpperCAmelCase_ , '''key_handler''' , {} ) setattr(UpperCAmelCase_ , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCAmelCase : List[str] = getattr(UpperCAmelCase_ , '''handle_key''' , [] ) for key in handled_keys: _UpperCAmelCase : Optional[Any] = value return new_cls @staticmethod def a_ ( cls : Optional[Any] ) -> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = get_character() if char != KEYMAP["undefined"]: _UpperCAmelCase : str = ord(UpperCAmelCase_ ) _UpperCAmelCase : str = cls.key_handler.get(UpperCAmelCase_ ) if handler: _UpperCAmelCase : Optional[int] = char return handler(cls ) else: return None def _A ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
416
1
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging UpperCAmelCase = logging.get_logger(__name__) class __snake_case: '''simple docstring''' UpperCAmelCase : str UpperCAmelCase : str = None @staticmethod def __snake_case ( ) -> List[str]: raise NotImplementedError def __snake_case ( self , A_ , A_ , A_ , **A_ ) -> Any: raise NotImplementedError def __snake_case ( self , A_ ) -> List[Any]: raise NotImplementedError def __snake_case ( self ) -> Union[str, Any]: if not self.is_available(): raise RuntimeError( f'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' ) @classmethod def __snake_case ( cls ) -> Any: return f'`pip install {cls.pip_package or cls.name}`' class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[str] = "optuna" @staticmethod def __snake_case ( ) -> Any: return is_optuna_available() def __snake_case ( self , A_ , A_ , A_ , **A_ ) -> Optional[int]: return run_hp_search_optuna(A_ , A_ , A_ , **A_ ) def __snake_case ( self , A_ ) -> Any: return default_hp_space_optuna(A_ ) class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[Any] = "ray" UpperCAmelCase : Tuple = "'ray[tune]'" @staticmethod def __snake_case ( ) -> List[Any]: return is_ray_available() def __snake_case ( self , A_ , A_ , A_ , **A_ ) -> Any: return run_hp_search_ray(A_ , A_ , A_ , **A_ ) def __snake_case ( self , A_ ) -> str: return default_hp_space_ray(A_ ) class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[str] = "sigopt" @staticmethod def __snake_case ( ) -> Dict: return is_sigopt_available() def __snake_case ( self , A_ , A_ , A_ , **A_ ) -> Tuple: return run_hp_search_sigopt(A_ , A_ , A_ , **A_ ) def __snake_case ( self , A_ ) -> List[str]: return default_hp_space_sigopt(A_ ) class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[Any] = "wandb" @staticmethod def __snake_case ( ) -> Tuple: return is_wandb_available() def __snake_case ( self , A_ , A_ , A_ , **A_ ) -> Dict: return run_hp_search_wandb(A_ , A_ , A_ , **A_ ) def __snake_case ( self , A_ ) -> Tuple: return default_hp_space_wandb(A_ ) UpperCAmelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def _snake_case ( ) -> str: """simple docstring""" lowerCAmelCase = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase = available_backends[0].name if len(_SCREAMING_SNAKE_CASE ) > 1: logger.info( f'{len(_SCREAMING_SNAKE_CASE )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( f' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
433
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } UpperCAmelCase = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } UpperCAmelCase = { 'ctrl': 256, } UpperCAmelCase = { 'Pregnancy': 16_8629, 'Christianity': 7675, 'Explain': 10_6423, 'Fitness': 6_3440, 'Saving': 6_3163, 'Ask': 2_7171, 'Ass': 9_5985, 'Joke': 16_3509, 'Questions': 4_5622, 'Thoughts': 4_9605, 'Retail': 5_2342, 'Feminism': 16_4338, 'Writing': 1_1992, 'Atheism': 19_2263, 'Netflix': 4_8616, 'Computing': 3_9639, 'Opinion': 4_3213, 'Alone': 4_4967, 'Funny': 5_8917, 'Gaming': 4_0358, 'Human': 4088, 'India': 1331, 'Joker': 7_7138, 'Diet': 3_6206, 'Legal': 1_1859, 'Norman': 4939, 'Tip': 7_2689, 'Weight': 5_2343, 'Movies': 4_6273, 'Running': 2_3425, 'Science': 2090, 'Horror': 3_7793, 'Confession': 6_0572, 'Finance': 1_2250, 'Politics': 1_6360, 'Scary': 19_1985, 'Support': 1_2654, 'Technologies': 3_2516, 'Teenage': 6_6160, 'Event': 3_2769, 'Learned': 6_7460, 'Notion': 18_2770, 'Wikipedia': 3_7583, 'Books': 6665, 'Extract': 7_6050, 'Confessions': 10_2701, 'Conspiracy': 7_5932, 'Links': 6_3674, 'Narcissus': 15_0425, 'Relationship': 5_4766, 'Relationships': 13_4796, 'Reviews': 4_1671, 'News': 4256, 'Translation': 2_6820, 'multilingual': 12_8406, } def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] ) -> Tuple: """simple docstring""" lowerCAmelCase = set() lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase = char lowerCAmelCase = set(_SCREAMING_SNAKE_CASE ) return pairs class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Tuple = VOCAB_FILES_NAMES UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : List[Any] = CONTROL_CODES def __init__( self , A_ , A_ , A_="<unk>" , **A_ ) -> int: super().__init__(unk_token=A_ , **A_ ) with open(A_ , encoding="""utf-8""" ) as vocab_handle: lowerCAmelCase = json.load(A_ ) lowerCAmelCase = {v: k for k, v in self.encoder.items()} with open(A_ , encoding="""utf-8""" ) as merges_handle: lowerCAmelCase = merges_handle.read().split("""\n""" )[1:-1] lowerCAmelCase = [tuple(merge.split() ) for merge in merges] lowerCAmelCase = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCAmelCase = {} @property def __snake_case ( self ) -> Optional[Any]: return len(self.encoder ) def __snake_case ( self ) -> int: return dict(self.encoder , **self.added_tokens_encoder ) def __snake_case ( self , A_ ) -> Union[str, Any]: if token in self.cache: return self.cache[token] lowerCAmelCase = tuple(A_ ) lowerCAmelCase = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) lowerCAmelCase = get_pairs(A_ ) if not pairs: return token while True: lowerCAmelCase = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase, lowerCAmelCase = bigram lowerCAmelCase = [] lowerCAmelCase = 0 while i < len(A_ ): try: lowerCAmelCase = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase = tuple(A_ ) lowerCAmelCase = new_word if len(A_ ) == 1: break else: lowerCAmelCase = get_pairs(A_ ) lowerCAmelCase = """@@ """.join(A_ ) lowerCAmelCase = word[:-4] lowerCAmelCase = word return word def __snake_case ( self , A_ ) -> int: lowerCAmelCase = [] lowerCAmelCase = re.findall(r"""\S+\n?""" , A_ ) for token in words: split_tokens.extend(list(self.bpe(A_ ).split(""" """ ) ) ) return split_tokens def __snake_case ( self , A_ ) -> Union[str, Any]: return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def __snake_case ( self , A_ ) -> Optional[int]: return self.decoder.get(A_ , self.unk_token ) def __snake_case ( self , A_ ) -> Any: lowerCAmelCase = """ """.join(A_ ).replace("""@@ """ , """""" ).strip() return out_string def __snake_case ( self , A_ , A_ = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase = os.path.join( A_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase = os.path.join( A_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(A_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + """\n""" ) lowerCAmelCase = 0 with open(A_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) lowerCAmelCase = token_index writer.write(""" """.join(A_ ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
433
1
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] ): __lowercase : Optional[int] = [] for part_id in partition_order: __lowercase : List[Any] = df.where(F"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(lowerCAmelCase_ ): expected_row_ids_and_row_dicts.append((F"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): __lowercase : Optional[int] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __lowercase : str = spark.range(100 ).repartition(1 ) __lowercase : str = Spark(lowerCAmelCase_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): __lowercase : List[Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __lowercase : List[str] = spark.range(10 ).repartition(2 ) __lowercase : List[Any] = [1, 0] __lowercase : Optional[int] = _generate_iterable_examples(lowerCAmelCase_ , lowerCAmelCase_ ) # Reverse the partitions. __lowercase : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase_ , lowerCAmelCase_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): __lowercase , __lowercase : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): __lowercase : List[Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __lowercase : Optional[Any] = spark.range(10 ).repartition(1 ) __lowercase : Dict = SparkExamplesIterable(lowerCAmelCase_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowerCAmelCase_ ): assert row_id == F"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): __lowercase : Optional[Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __lowercase : Optional[Any] = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: __lowercase : List[Any] = lambda lowerCAmelCase_ : x.reverse() __lowercase : Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase_ , [2, 1, 0] ) __lowercase : str = SparkExamplesIterable(lowerCAmelCase_ ).shuffle_data_sources(lowerCAmelCase_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowerCAmelCase_ ): __lowercase , __lowercase : List[str] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): __lowercase : Dict = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __lowercase : Dict = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 __lowercase : int = SparkExamplesIterable(lowerCAmelCase_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 __lowercase : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(lowerCAmelCase_ ): __lowercase , __lowercase : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 __lowercase : List[str] = SparkExamplesIterable(lowerCAmelCase_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 __lowercase : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(lowerCAmelCase_ ): __lowercase , __lowercase : Dict = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): __lowercase : Tuple = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __lowercase : Dict = spark.range(100 ).repartition(1 ) __lowercase : Tuple = Spark(lowerCAmelCase_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
649
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ ( lowerCAmelCase_ : Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowerCAmelCase ( __a ): '''simple docstring''' @staticmethod def lowerCAmelCase ( __a : ArgumentParser ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__a , default=__a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__a , help="""Name of the model to download""" ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = model __lowercase : List[Any] = cache __lowercase : Any = force __lowercase : Optional[int] = trust_remote_code def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
649
1
from __future__ import annotations def a ( A__ ) -> list[int]: '''simple docstring''' if len(A__ ) == 0: return array SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = min(A__ ), max(A__ ) # Compute the variables SCREAMING_SNAKE_CASE__ : Dict = _max - _min + 1 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: SCREAMING_SNAKE_CASE__ : List[str] = i - _min SCREAMING_SNAKE_CASE__ : Optional[Any] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 for i in range(A__ ): while holes_repeat[i] > 0: SCREAMING_SNAKE_CASE__ : str = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() a_ :Any = input('Enter numbers separated by comma:\n') a_ :Any = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
35
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a ( A__ ) -> List[Any]: '''simple docstring''' return 1 / (1 + np.exp(-z )) def a ( A__ , A__ ) -> Any: '''simple docstring''' return (-y * np.log(A__ ) - (1 - y) * np.log(1 - h )).mean() def a ( A__ , A__ , A__ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = np.dot(A__ , A__ ) return np.sum(y * scores - np.log(1 + np.exp(A__ ) ) ) def a ( A__ , A__ , A__ , A__=7_0_0_0_0 ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = np.zeros(x.shape[1] ) for iterations in range(A__ ): SCREAMING_SNAKE_CASE__ : List[Any] = np.dot(A__ , A__ ) SCREAMING_SNAKE_CASE__ : Dict = sigmoid_function(A__ ) SCREAMING_SNAKE_CASE__ : int = np.dot(x.T , h - y ) / y.size SCREAMING_SNAKE_CASE__ : Union[str, Any] = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE__ : Optional[int] = np.dot(A__ , A__ ) SCREAMING_SNAKE_CASE__ : int = sigmoid_function(A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = cost_function(A__ , A__ ) if iterations % 1_0_0 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a_ :str = datasets.load_iris() a_ :Dict = iris.data[:, :2] a_ :int = (iris.target != 0) * 1 a_ :Dict = 0.1 a_ :str = logistic_reg(alpha, x, y, max_iterations=7_00_00) print('theta: ', theta) # printing the theta i.e our weights vector def a ( A__ ) -> int: '''simple docstring''' return sigmoid_function( np.dot(A__ , A__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((a_) , (a_)) :str = (x[:, 0].min(), x[:, 0].max()) ((a_) , (a_)) :Tuple = (x[:, 1].min(), x[:, 1].max()) ((a_) , (a_)) :Dict = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a_ :Optional[int] = np.c_[xxa.ravel(), xxa.ravel()] a_ :Optional[int] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
35
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __lowerCAmelCase : Optional[Any] = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Path , __lowerCamelCase : Union[str, None] = None , __lowerCamelCase : Union[List[str], None] = None , __lowerCamelCase : Union[str, List[str], None] = None , __lowerCamelCase : bool = True , ) -> int: a = [file for file in os.listdir(__lowerCamelCase ) if os.path.isfile(os.path.join(__lowerCamelCase , __lowerCamelCase ) )] if identifier is not None: a = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__lowerCamelCase , __lowerCamelCase ): for n_ in n_identifier: a = [file for file in files if n_ not in file] else: a = [file for file in files if n_identifier not in file] a = ignore_files or [] ignore_files.append("__init__.py" ) a = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , __lowerCamelCase ) if only_modules: a = file.split("." )[0] try: a = getattr(__lowerCamelCase , __lowerCamelCase ) a = doctest.DocTestSuite(__lowerCamelCase ) a = unittest.TextTestRunner().run(__lowerCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f"""{module_identifier} is not a module.""" ) else: a = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __UpperCAmelCase ( self : List[str] ) -> str: a = Path("src/transformers" ) a = "modeling" a = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(__lowerCamelCase , identifier=__lowerCamelCase , ignore_files=__lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ) -> Any: a = Path("src/transformers" ) a = "tokenization" self.analyze_directory(__lowerCamelCase , identifier=__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: a = Path("src/transformers" ) a = "configuration" self.analyze_directory(__lowerCamelCase , identifier=__lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]: a = Path("src/transformers" ) a = ["configuration", "modeling", "tokenization"] self.analyze_directory(__lowerCamelCase , n_identifier=__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] ) -> List[Any]: a = Path("docs/source" ) a = ["favicon.ico"] self.analyze_directory(__lowerCamelCase , ignore_files=__lowerCamelCase , only_modules=__lowerCamelCase )
662
from typing import TYPE_CHECKING from ....utils import _LazyModule __lowerCAmelCase : int = {'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys __lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
662
1
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _a : def __init__( self: int , UpperCamelCase_: int , UpperCamelCase_: str=13 , UpperCamelCase_: int=7 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Union[str, Any]=False , UpperCamelCase_: Dict=True , UpperCamelCase_: Optional[Any]=99 , UpperCamelCase_: int=32 , UpperCamelCase_: Optional[Any]=5 , UpperCamelCase_: Any=4 , UpperCamelCase_: Optional[int]=37 , UpperCamelCase_: List[str]="gelu" , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: Union[str, Any]=512 , UpperCamelCase_: str=16 , UpperCamelCase_: str=2 , UpperCamelCase_: Any=0.02 , UpperCamelCase_: Tuple=3 , UpperCamelCase_: Optional[int]=4 , UpperCamelCase_: Tuple=None , ) -> Any: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Dict , UpperCamelCase_: List[Any] , UpperCamelCase_: Any ) -> Optional[int]: """simple docstring""" lowercase__ = LlamaModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Any , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple , ) -> Union[str, Any]: """simple docstring""" lowercase__ = True lowercase__ = LlamaModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) lowercase__ = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , ) lowercase__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: str , UpperCamelCase_: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[Any] , ) -> Tuple: """simple docstring""" lowercase__ = LlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: List[str] , ) -> Tuple: """simple docstring""" lowercase__ = True lowercase__ = True lowercase__ = LlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() # first forward pass lowercase__ = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ , ) lowercase__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase__ = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )['''hidden_states'''][0] lowercase__ = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )['''hidden_states'''][0] # select random slice lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) def lowerCamelCase_ ( self: List[str] ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _a ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _lowercase : Optional[int] = (LlamaForCausalLM,) if is_torch_available() else () _lowercase : Any = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) _lowercase : Optional[int] = False _lowercase : List[Any] = False def lowerCamelCase_ ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = LlamaModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self: Any ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self: Dict ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = 3 lowercase__ = input_dict['''input_ids'''] lowercase__ = input_ids.ne(1 ).to(UpperCamelCase_ ) lowercase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase__ = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase_ ( self: Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = 3 lowercase__ = '''single_label_classification''' lowercase__ = input_dict['''input_ids'''] lowercase__ = input_ids.ne(1 ).to(UpperCamelCase_ ) lowercase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase__ = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = 3 lowercase__ = '''multi_label_classification''' lowercase__ = input_dict['''input_ids'''] lowercase__ = input_ids.ne(1 ).to(UpperCamelCase_ ) lowercase__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase__ = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ids_tensor([1, 10] , config.vocab_size ) lowercase__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase__ = LlamaModel(UpperCamelCase_ ) original_model.to(UpperCamelCase_ ) original_model.eval() lowercase__ = original_model(UpperCamelCase_ ).last_hidden_state lowercase__ = original_model(UpperCamelCase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase__ = {'''type''': scaling_type, '''factor''': 10.0} lowercase__ = LlamaModel(UpperCamelCase_ ) scaled_model.to(UpperCamelCase_ ) scaled_model.eval() lowercase__ = scaled_model(UpperCamelCase_ ).last_hidden_state lowercase__ = scaled_model(UpperCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) @require_torch class _a ( unittest.TestCase ): @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase_ ( self: Dict ) -> Optional[int]: """simple docstring""" lowercase__ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowercase__ = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) lowercase__ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowercase__ = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase__ = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase_ ( self: Tuple ) -> Dict: """simple docstring""" lowercase__ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowercase__ = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) lowercase__ = model(torch.tensor(UpperCamelCase_ ) ) # Expected mean on dim = -1 lowercase__ = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase__ = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" lowercase__ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowercase__ = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) lowercase__ = model(torch.tensor(UpperCamelCase_ ) ) # Expected mean on dim = -1 lowercase__ = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase__ = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" lowercase__ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowercase__ = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) lowercase__ = model(torch.tensor(UpperCamelCase_ ) ) lowercase__ = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # fmt: off lowercase__ = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Model is curently gated''' ) @slow def lowerCamelCase_ ( self: str ) -> Optional[int]: """simple docstring""" lowercase__ = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' lowercase__ = '''Simply put, the theory of relativity states that ''' lowercase__ = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) lowercase__ = tokenizer.encode(UpperCamelCase_ , return_tensors='''pt''' ) lowercase__ = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=UpperCamelCase_ ) # greedy generation outputs lowercase__ = model.generate(UpperCamelCase_ , max_new_tokens=64 , top_p=UpperCamelCase_ , temperature=1 , do_sample=UpperCamelCase_ ) lowercase__ = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
43
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowercase_ ( unittest.TestCase ): def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase ( self ): _snake_case ,_snake_case : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2" , revision="bf16" , dtype=jnp.bfloataa , ) _snake_case : List[Any] = "A painting of a squirrel eating a burger" _snake_case : Union[str, Any] = jax.device_count() _snake_case : List[Any] = num_samples * [prompt] _snake_case : Tuple = sd_pipe.prepare_inputs(lowercase_ ) _snake_case : str = replicate(lowercase_ ) _snake_case : Dict = shard(lowercase_ ) _snake_case : List[Any] = jax.random.PRNGKey(0 ) _snake_case : List[Any] = jax.random.split(lowercase_ , jax.device_count() ) _snake_case : Tuple = sd_pipe(lowercase_ , lowercase_ , lowercase_ , num_inference_steps=25 , jit=lowercase_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _snake_case : List[Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _snake_case : str = images[0, 253:256, 253:256, -1] _snake_case : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _snake_case : Optional[Any] = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ): _snake_case : Optional[Any] = "stabilityai/stable-diffusion-2" _snake_case ,_snake_case : List[Any] = FlaxDPMSolverMultistepScheduler.from_pretrained(lowercase_ , subfolder="scheduler" ) _snake_case ,_snake_case : int = FlaxStableDiffusionPipeline.from_pretrained( lowercase_ , scheduler=lowercase_ , revision="bf16" , dtype=jnp.bfloataa , ) _snake_case : str = scheduler_params _snake_case : Dict = "A painting of a squirrel eating a burger" _snake_case : Dict = jax.device_count() _snake_case : Optional[int] = num_samples * [prompt] _snake_case : List[str] = sd_pipe.prepare_inputs(lowercase_ ) _snake_case : Optional[int] = replicate(lowercase_ ) _snake_case : Union[str, Any] = shard(lowercase_ ) _snake_case : List[Any] = jax.random.PRNGKey(0 ) _snake_case : Union[str, Any] = jax.random.split(lowercase_ , jax.device_count() ) _snake_case : str = sd_pipe(lowercase_ , lowercase_ , lowercase_ , num_inference_steps=25 , jit=lowercase_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _snake_case : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _snake_case : List[str] = images[0, 253:256, 253:256, -1] _snake_case : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _snake_case : Dict = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
670
0
'''simple docstring''' # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _snake_case : List[str] = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") _snake_case : Optional[Any] = ( subprocess.check_output(F"git diff --diff-filter=d --name-only {fork_point_sha}".split()).decode("""utf-8""").split() ) _snake_case : Optional[int] = """|""".join(sys.argv[1:]) _snake_case : int = re.compile(RF"^({joined_dirs}).*?\.py$") _snake_case : Union[str, Any] = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
493
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _snake_case : Optional[Any] = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def _a ( _SCREAMING_SNAKE_CASE : Tuple ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): from transformers.testing_utils import pytest_terminal_summary_main _SCREAMING_SNAKE_CASE = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_SCREAMING_SNAKE_CASE , id=_SCREAMING_SNAKE_CASE )
493
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging A__: Optional[Any] = logging.get_logger(__name__) def lowerCAmelCase_ ( A_=None ,A_=None): return field(default_factory=lambda: default ,metadata=A_) @dataclass class _a : """simple docstring""" UpperCamelCase__ = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) UpperCamelCase__ = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""}) UpperCamelCase__ = list_field( default=[8, 32, 128, 512] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) UpperCamelCase__ = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) UpperCamelCase__ = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) UpperCamelCase__ = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""}) UpperCamelCase__ = field(default=UpperCamelCase__ , metadata={"""help""": """Use FP16 to accelerate inference."""}) UpperCamelCase__ = field(default=UpperCamelCase__ , metadata={"""help""": """Benchmark training of model"""}) UpperCamelCase__ = field(default=UpperCamelCase__ , metadata={"""help""": """Verbose memory tracing"""}) UpperCamelCase__ = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) UpperCamelCase__ = field( default=UpperCamelCase__ , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) UpperCamelCase__ = field(default=UpperCamelCase__ , metadata={"""help""": """Trace memory line by line"""}) UpperCamelCase__ = field(default=UpperCamelCase__ , metadata={"""help""": """Save result to a CSV file"""}) UpperCamelCase__ = field(default=UpperCamelCase__ , metadata={"""help""": """Save all print statements in a log file"""}) UpperCamelCase__ = field(default=UpperCamelCase__ , metadata={"""help""": """Whether to print environment information"""}) UpperCamelCase__ = field( default=UpperCamelCase__ , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) UpperCamelCase__ = field( default=F'''inference_time_{round(time())}.csv''' , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) UpperCamelCase__ = field( default=F'''inference_memory_{round(time())}.csv''' , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) UpperCamelCase__ = field( default=F'''train_time_{round(time())}.csv''' , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) UpperCamelCase__ = field( default=F'''train_memory_{round(time())}.csv''' , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) UpperCamelCase__ = field( default=F'''env_info_{round(time())}.csv''' , metadata={"""help""": """CSV filename used if saving environment information."""} , ) UpperCamelCase__ = field( default=F'''log_{round(time())}.csv''' , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) UpperCamelCase__ = field(default=3 , metadata={"""help""": """Times an experiment will be run."""}) UpperCamelCase__ = field( default=UpperCamelCase__ , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' warnings.warn( F"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." , __lowerCamelCase , ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCAmelCase_ ( self: str ): '''simple docstring''' if len(self.models ) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = ['bert-base-cased']." ) return self.models @property def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU." ) return False else: return True
380
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A__: Union[str, Any] = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def lowerCAmelCase_ ( A_ ,A_=None): require_version(deps[pkg] ,A_)
380
1
'''simple docstring''' import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class UpperCAmelCase_ : """simple docstring""" def __init__( self : Dict , snake_case_ : Optional[int] , snake_case_ : Optional[Any]=13 , snake_case_ : Union[str, Any]=7 , snake_case_ : Optional[int]=True , snake_case_ : Any=True , snake_case_ : Union[str, Any]=True , snake_case_ : Tuple=True , snake_case_ : Union[str, Any]=99 , snake_case_ : List[Any]=32 , snake_case_ : List[Any]=5 , snake_case_ : Tuple=4 , snake_case_ : Optional[int]=4 , snake_case_ : Optional[int]="gelu" , snake_case_ : Union[str, Any]=0.0 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : List[Any]=True , snake_case_ : List[Any]=512 , snake_case_ : Tuple=16 , snake_case_ : Dict=2 , snake_case_ : str=0.02 , snake_case_ : Union[str, Any]=3 , snake_case_ : Any=4 , snake_case_ : Union[str, Any]=None , ): snake_case__ : Tuple = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : Optional[int] = is_training snake_case__ : List[Any] = use_input_mask snake_case__ : Any = use_token_type_ids snake_case__ : Dict = use_labels snake_case__ : List[str] = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : Optional[int] = num_attention_heads snake_case__ : List[str] = intermediate_multiple_size snake_case__ : List[str] = hidden_act snake_case__ : Dict = hidden_dropout snake_case__ : Union[str, Any] = attention_dropout snake_case__ : List[str] = weight_tying snake_case__ : Dict = max_position_embeddings snake_case__ : Union[str, Any] = type_vocab_size snake_case__ : Optional[Any] = type_sequence_label_size snake_case__ : str = initializer_range snake_case__ : List[Any] = num_labels snake_case__ : Optional[int] = num_choices snake_case__ : Dict = scope def lowerCamelCase ( self : str ): snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Any = None if self.use_input_mask: snake_case__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Union[str, Any] = self.get_config() return config, input_ids, input_mask, token_labels def lowerCamelCase ( self : int ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCamelCase ( self : List[Any] ): snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ : Dict = True return config, input_ids, input_mask, token_labels def lowerCamelCase ( self : Optional[int] , snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : Any ): snake_case__ : Optional[Any] = GPTNeoXJapaneseModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : int = model(snake_case_ , attention_mask=snake_case_ ) snake_case__ : Dict = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self : Tuple , snake_case_ : Tuple , snake_case_ : int , snake_case_ : Optional[Any] ): snake_case__ : Union[str, Any] = True snake_case__ : List[Any] = GPTNeoXJapaneseModel(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Dict = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self : Tuple , snake_case_ : int , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : str ): snake_case__ : str = GPTNeoXJapaneseForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self : List[Any] , snake_case_ : Any , snake_case_ : Dict , snake_case_ : List[str] ): snake_case__ : Any = True snake_case__ : Dict = GPTNeoXJapaneseForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() # first forward pass snake_case__ : int = model(snake_case_ , attention_mask=snake_case_ , use_cache=snake_case_ ) snake_case__ : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ : int = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ : Tuple = model(snake_case_ , attention_mask=snake_case_ , output_hidden_states=snake_case_ ) snake_case__ : Optional[Any] = output_from_no_past["""hidden_states"""][0] snake_case__ : List[str] = model( snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ , output_hidden_states=snake_case_ , )["""hidden_states"""][0] # select random slice snake_case__ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) def lowerCamelCase ( self : List[Any] ): snake_case__ : str = self.prepare_config_and_inputs() snake_case__ : List[str] = config_and_inputs snake_case__ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): """simple docstring""" lowercase = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowercase = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowercase = ( {"feature-extraction": GPTNeoXJapaneseModel, "text-generation": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def lowerCamelCase ( self : str ): snake_case__ : Any = GPTNeoXJapaneseModelTester(self ) snake_case__ : List[Any] = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCamelCase ( self : int ): self.config_tester.run_common_tests() def lowerCamelCase ( self : int ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase ( self : Dict ): # This regression test was failing with PyTorch < 1.3 snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case__ : Optional[int] = None self.model_tester.create_and_check_model_as_decoder(snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase ( self : Any ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase ( self : int ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*snake_case_ ) @slow def lowerCamelCase ( self : List[str] ): snake_case__ : Dict = """abeja/gpt-neox-japanese-2.7b""" snake_case__ : Optional[int] = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] snake_case__ : Dict = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] snake_case__ : Union[str, Any] = GPTNeoXJapaneseTokenizer.from_pretrained(snake_case_ ) snake_case__ : List[Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(snake_case_ ) snake_case__ : Optional[int] = [] for prompt in prompts: snake_case__ : Dict = tokenizer(snake_case_ , return_tensors="""pt""" ).input_ids snake_case__ : List[Any] = model.generate(snake_case_ , max_length=50 ) snake_case__ : List[Any] = tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) predicted_outputs += generated_string self.assertListEqual(snake_case_ , snake_case_ )
701
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("""repo_id""" , ["""canonical_dataset_name""", """org-name/dataset-name"""] ) @pytest.mark.parametrize("""path""" , ["""filename.csv""", """filename with blanks.csv"""] ) @pytest.mark.parametrize("""revision""" , [None, """v2"""] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: snake_case__ : Any = hf_hub_url(repo_id=_lowerCAmelCase , path=_lowerCAmelCase , revision=_lowerCAmelCase ) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(_lowerCAmelCase )}"
301
0
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCAmelCase__ ( __magic_name__ : str , __magic_name__ : str ): '''simple docstring''' lowerCAmelCase : Optional[Any] = old_name if "patch_embed" in old_name: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = old_name.split('''.''' ) if layer == "0": lowerCAmelCase : Union[str, Any] = old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": lowerCAmelCase : Any = old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": lowerCAmelCase : Optional[int] = old_name.replace('''3''' , '''convolution2''' ) else: lowerCAmelCase : Tuple = old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(R'''\d\.\d''' , __magic_name__ ): lowerCAmelCase : Optional[Any] = R'''\b\d{2}\b''' if bool(re.search(__magic_name__ , __magic_name__ ) ): lowerCAmelCase : Union[str, Any] = re.search(R'''\d\.\d\d.''' , __magic_name__ ).group() else: lowerCAmelCase : Tuple = re.search(R'''\d\.\d.''' , __magic_name__ ).group() if int(match[0] ) < 6: lowerCAmelCase : Optional[Any] = old_name.replace(__magic_name__ , '''''' ) lowerCAmelCase : List[str] = trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) lowerCAmelCase : Optional[int] = '''intermediate_stages.''' + trimmed_name else: lowerCAmelCase : str = old_name.replace(__magic_name__ , '''''' ) if int(match[2] ) < num_meta4D_last_stage: lowerCAmelCase : str = trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: lowerCAmelCase : int = str(int(match[2] ) - num_meta4D_last_stage ) lowerCAmelCase : int = trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: lowerCAmelCase : int = trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: lowerCAmelCase : int = trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: lowerCAmelCase : Any = trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: lowerCAmelCase : Tuple = trimmed_name.replace('''fc2''' , '''linear_out''' ) lowerCAmelCase : int = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(R'''.\d.''' , __magic_name__ ): lowerCAmelCase : Union[str, Any] = old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: lowerCAmelCase : List[str] = new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): lowerCAmelCase : List[Any] = new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): lowerCAmelCase : List[str] = new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: lowerCAmelCase : int = new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: lowerCAmelCase : Dict = new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: lowerCAmelCase : Dict = new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: lowerCAmelCase : Union[str, Any] = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": lowerCAmelCase : List[str] = new_name.replace('''norm''' , '''layernorm''' ) lowerCAmelCase : Optional[Any] = '''efficientformer.''' + new_name else: lowerCAmelCase : Optional[int] = '''efficientformer.encoder.''' + new_name return new_name def UpperCAmelCase__ ( __magic_name__ : Tuple , __magic_name__ : Optional[int] ): '''simple docstring''' for key in checkpoint.copy().keys(): lowerCAmelCase : Union[str, Any] = checkpoint.pop(__magic_name__ ) lowerCAmelCase : List[str] = val return checkpoint def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : str = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return image def UpperCAmelCase__ ( __magic_name__ : Path , __magic_name__ : Path , __magic_name__ : Path , __magic_name__ : bool ): '''simple docstring''' lowerCAmelCase : Any = torch.load(__magic_name__ , map_location='''cpu''' )['''model'''] lowerCAmelCase : Dict = EfficientFormerConfig.from_json_file(__magic_name__ ) lowerCAmelCase : List[str] = EfficientFormerForImageClassificationWithTeacher(__magic_name__ ) lowerCAmelCase : int = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) lowerCAmelCase : Tuple = config.depths[-1] - config.num_metaad_blocks + 1 lowerCAmelCase : List[Any] = convert_torch_checkpoint(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() lowerCAmelCase : Any = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image lowerCAmelCase : Any = prepare_img() lowerCAmelCase : List[str] = 2_56 lowerCAmelCase : Optional[Any] = 2_24 lowerCAmelCase : int = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) lowerCAmelCase : Tuple = processor(images=__magic_name__ , return_tensors='''pt''' ).pixel_values # original processing pipeline lowerCAmelCase : Any = Compose( [ Resize(__magic_name__ , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(__magic_name__ ), ToTensor(), Normalize(__magic_name__ , __magic_name__ ), ] ) lowerCAmelCase : Dict = image_transforms(__magic_name__ ).unsqueeze(0 ) assert torch.allclose(__magic_name__ , __magic_name__ ) lowerCAmelCase : int = model(__magic_name__ ) lowerCAmelCase : Optional[int] = outputs.logits lowerCAmelCase : Optional[Any] = (1, 10_00) if "l1" in model_name: lowerCAmelCase : Optional[Any] = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , __magic_name__ , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: lowerCAmelCase : List[str] = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , __magic_name__ , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: lowerCAmelCase : int = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) print(f'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(__magic_name__ ) print(f'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=f'''Bearnardd/{pytorch_dump_path}''' , commit_message='''Add model''' , use_temp_dir=__magic_name__ , ) processor.push_to_hub( repo_id=f'''Bearnardd/{pytorch_dump_path}''' , commit_message='''Add image processor''' , use_temp_dir=__magic_name__ , ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) __SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
348
from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=snake_case ): _lowerCAmelCase = ["flax"] def __init__( self : Any , *lowerCamelCase__ : Any , **lowerCamelCase__ : Any ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls : Union[str, Any] , *lowerCamelCase__ : str , **lowerCamelCase__ : List[str] ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls : Any , *lowerCamelCase__ : Optional[Any] , **lowerCamelCase__ : List[Any] ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=snake_case ): _lowerCAmelCase = ["flax"] def __init__( self : Union[str, Any] , *lowerCamelCase__ : int , **lowerCamelCase__ : Dict ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls : Union[str, Any] , *lowerCamelCase__ : str , **lowerCamelCase__ : Union[str, Any] ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls : Optional[Any] , *lowerCamelCase__ : Tuple , **lowerCamelCase__ : List[Any] ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=snake_case ): _lowerCAmelCase = ["flax"] def __init__( self : Tuple , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Any ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls : str , *lowerCamelCase__ : Any , **lowerCamelCase__ : Union[str, Any] ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls : str , *lowerCamelCase__ : int , **lowerCamelCase__ : Dict ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=snake_case ): _lowerCAmelCase = ["flax"] def __init__( self : List[str] , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : List[str] ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls : Optional[int] , *lowerCamelCase__ : Tuple , **lowerCamelCase__ : str ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls : str , *lowerCamelCase__ : int , **lowerCamelCase__ : List[Any] ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=snake_case ): _lowerCAmelCase = ["flax"] def __init__( self : str , *lowerCamelCase__ : Optional[Any] , **lowerCamelCase__ : Any ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls : Optional[int] , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Optional[Any] ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls : Optional[Any] , *lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : Optional[int] ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=snake_case ): _lowerCAmelCase = ["flax"] def __init__( self : Tuple , *lowerCamelCase__ : int , **lowerCamelCase__ : Dict ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls : Union[str, Any] , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls : int , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Optional[Any] ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=snake_case ): _lowerCAmelCase = ["flax"] def __init__( self : str , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : List[str] ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls : Optional[int] , *lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : Any ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls : int , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : str ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=snake_case ): _lowerCAmelCase = ["flax"] def __init__( self : List[Any] , *lowerCamelCase__ : Dict , **lowerCamelCase__ : List[Any] ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls : Dict , *lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls : Tuple , *lowerCamelCase__ : Tuple , **lowerCamelCase__ : Optional[int] ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=snake_case ): _lowerCAmelCase = ["flax"] def __init__( self : Dict , *lowerCamelCase__ : Any , **lowerCamelCase__ : Any ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls : Optional[int] , *lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : Optional[int] ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls : List[Any] , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : Tuple ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=snake_case ): _lowerCAmelCase = ["flax"] def __init__( self : List[str] , *lowerCamelCase__ : Dict , **lowerCamelCase__ : List[str] ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls : List[str] , *lowerCamelCase__ : Tuple , **lowerCamelCase__ : Optional[int] ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls : List[str] , *lowerCamelCase__ : Any , **lowerCamelCase__ : Optional[Any] ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=snake_case ): _lowerCAmelCase = ["flax"] def __init__( self : int , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : str ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls : Any , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Optional[int] ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls : Any , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Optional[Any] ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=snake_case ): _lowerCAmelCase = ["flax"] def __init__( self : str , *lowerCamelCase__ : int , **lowerCamelCase__ : Optional[int] ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls : List[Any] , *lowerCamelCase__ : int , **lowerCamelCase__ : List[Any] ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls : List[str] , *lowerCamelCase__ : Tuple , **lowerCamelCase__ : int ): requires_backends(cls , ['''flax'''] ) class __magic_name__ ( metaclass=snake_case ): _lowerCAmelCase = ["flax"] def __init__( self : int , *lowerCamelCase__ : List[Any] , **lowerCamelCase__ : List[str] ): requires_backends(self , ['''flax'''] ) @classmethod def _A ( cls : Union[str, Any] , *lowerCamelCase__ : Any , **lowerCamelCase__ : Optional[int] ): requires_backends(cls , ['''flax'''] ) @classmethod def _A ( cls : Dict , *lowerCamelCase__ : int , **lowerCamelCase__ : Any ): requires_backends(cls , ['''flax'''] )
348
1
'''simple docstring''' from manim import * class __SCREAMING_SNAKE_CASE (UpperCamelCase__ ): """simple docstring""" def UpperCamelCase__ ( self : List[str] ): _a = Rectangle(height=0.5 , width=0.5 ) _a = Rectangle(height=0.25 , width=0.25 ) _a = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _a = [mem.copy() for i in range(6 )] _a = [mem.copy() for i in range(6 )] _a = VGroup(*_a ).arrange(_a , buff=0 ) _a = VGroup(*_a ).arrange(_a , buff=0 ) _a = VGroup(_a , _a ).arrange(_a , buff=0 ) _a = Text("CPU" , font_size=24 ) _a = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_a ) _a = [mem.copy() for i in range(4 )] _a = VGroup(*_a ).arrange(_a , buff=0 ) _a = Text("GPU" , font_size=24 ) _a = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) gpu.move_to([-1, -1, 0] ) self.add(_a ) _a = [mem.copy() for i in range(6 )] _a = VGroup(*_a ).arrange(_a , buff=0 ) _a = Text("Model" , font_size=24 ) _a = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) model.move_to([3, -1.0, 0] ) self.add(_a ) _a = [] _a = [] _a = [] for i, rect in enumerate(_a ): rect.set_stroke(_a ) _a = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=_a , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=_a , buff=0.0 ) self.add(_a ) model_cpu_arr.append(_a ) self.add(*_a , *_a , *_a ) _a = [mem.copy() for i in range(6 )] _a = VGroup(*_a ).arrange(_a , buff=0 ) _a = Text("Loaded Checkpoint" , font_size=24 ) _a = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) checkpoint.move_to([3, 0.5, 0] ) self.add(_a ) _a = [] _a = [] for i, rect in enumerate(_a ): _a = fill.copy().set_fill(_a , opacity=0.7 ) target.move_to(_a ) ckpt_arr.append(_a ) _a = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(_a ) self.add(*_a , *_a ) _a = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _a = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_a , _a ) _a = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(_a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_a ) _a = MarkupText( f'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) _a = [meta_mem.copy() for i in range(6 )] _a = [meta_mem.copy() for i in range(6 )] _a = VGroup(*_a ).arrange(_a , buff=0 ) _a = VGroup(*_a ).arrange(_a , buff=0 ) _a = VGroup(_a , _a ).arrange(_a , buff=0 ) _a = Text("Disk" , font_size=24 ) _a = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(_a , run_time=3 ) , Write(_a , run_time=1 ) , Create(_a , run_time=1 ) ) _a = [] for i, rect in enumerate(_a ): _a = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(_a , run_time=1.5 ) ) self.play(*_a ) self.play(FadeOut(_a ) ) _a = MarkupText(f'Then, the checkpoint is removed from memory\nthrough garbage collection.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_a , run_time=3 ) ) self.play( FadeOut(_a , _a , *_a , *_a ) , ) self.wait()
710
'''simple docstring''' def _lowerCamelCase ( lowercase : int , lowercase : int ) -> int: return 1 if input_a == input_a else 0 def _lowerCamelCase ( ) -> None: assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
521
0
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCamelCase : """simple docstring""" @staticmethod def UpperCAmelCase__ ( *_A : Tuple , **_A : List[str] ): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def UpperCAmelCase__ ( self : Union[str, Any] , _A : List[Any] , _A : List[str] , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) __SCREAMING_SNAKE_CASE : str = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def UpperCAmelCase__ ( self : Any , _A : Dict , _A : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = vqa_pipeline(_A , top_k=1 ) self.assertEqual( _A , [ [{'''score''': ANY(_A ), '''answer''': ANY(_A )}], [{'''score''': ANY(_A ), '''answer''': ANY(_A )}], ] , ) @require_torch def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) __SCREAMING_SNAKE_CASE : Dict = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __SCREAMING_SNAKE_CASE : List[Any] = '''How many cats are there?''' __SCREAMING_SNAKE_CASE : str = vqa_pipeline(image=_A , question='''How many cats are there?''' , top_k=2 ) self.assertEqual( _A , [{'''score''': ANY(_A ), '''answer''': ANY(_A )}, {'''score''': ANY(_A ), '''answer''': ANY(_A )}] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( _A , [{'''score''': ANY(_A ), '''answer''': ANY(_A )}, {'''score''': ANY(_A ), '''answer''': ANY(_A )}] ) @slow @require_torch def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''' ) __SCREAMING_SNAKE_CASE : Any = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __SCREAMING_SNAKE_CASE : Optional[int] = '''How many cats are there?''' __SCREAMING_SNAKE_CASE : Union[str, Any] = vqa_pipeline(image=_A , question=_A , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [{'''score''': 0.87_99, '''answer''': '''2'''}, {'''score''': 0.2_96, '''answer''': '''1'''}] ) __SCREAMING_SNAKE_CASE : Any = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [{'''score''': 0.87_99, '''answer''': '''2'''}, {'''score''': 0.2_96, '''answer''': '''1'''}] ) __SCREAMING_SNAKE_CASE : Optional[int] = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [[{'''score''': 0.87_99, '''answer''': '''2'''}, {'''score''': 0.2_96, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''' ) def UpperCAmelCase__ ( self : str ): """simple docstring""" pass
74
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class UpperCAmelCase_ ( __A , __A ): """simple docstring""" UpperCamelCase_ = '''bit''' UpperCamelCase_ = ['''preactivation''', '''bottleneck'''] UpperCamelCase_ = ['''SAME''', '''VALID'''] def __init__( self : Any , UpperCAmelCase : Optional[int]=3 , UpperCAmelCase : Any=64 , UpperCAmelCase : List[str]=[256, 512, 1024, 2048] , UpperCAmelCase : Dict=[3, 4, 6, 3] , UpperCAmelCase : List[Any]="preactivation" , UpperCAmelCase : Tuple="relu" , UpperCAmelCase : Tuple=None , UpperCAmelCase : Tuple=32 , UpperCAmelCase : Optional[int]=0.0 , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Dict=32 , UpperCAmelCase : Any=1 , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : str , ) -> Dict: '''simple docstring''' super().__init__(**UpperCAmelCase ) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: lowercase : Any =global_padding.upper() else: raise ValueError(f'Padding strategy {global_padding} not supported' ) lowercase : List[Any] =num_channels lowercase : List[str] =embedding_size lowercase : Union[str, Any] =hidden_sizes lowercase : Union[str, Any] =depths lowercase : Optional[int] =layer_type lowercase : Optional[Any] =hidden_act lowercase : List[str] =global_padding lowercase : Dict =num_groups lowercase : Optional[Any] =drop_path_rate lowercase : Union[str, Any] =embedding_dynamic_padding lowercase : Any =output_stride lowercase : Union[str, Any] =width_factor lowercase : Union[str, Any] =['''stem'''] + [f'stage{idx}' for idx in range(1 , len(UpperCAmelCase ) + 1 )] lowercase , lowercase : List[str] =get_aligned_output_features_output_indices( out_features=UpperCAmelCase , out_indices=UpperCAmelCase , stage_names=self.stage_names )
94
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Any ="roberta-prelayernorm" def __init__( self , lowerCamelCase=50265 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.0_2 , lowerCamelCase=1e-12 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase="absolute" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __magic_name__ : Dict = vocab_size __magic_name__ : List[str] = hidden_size __magic_name__ : Optional[Any] = num_hidden_layers __magic_name__ : Tuple = num_attention_heads __magic_name__ : Optional[Any] = hidden_act __magic_name__ : Optional[int] = intermediate_size __magic_name__ : Dict = hidden_dropout_prob __magic_name__ : Optional[int] = attention_probs_dropout_prob __magic_name__ : Optional[int] = max_position_embeddings __magic_name__ : Optional[int] = type_vocab_size __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : Dict = layer_norm_eps __magic_name__ : str = position_embedding_type __magic_name__ : Optional[int] = use_cache __magic_name__ : List[Any] = classifier_dropout class A__ ( __SCREAMING_SNAKE_CASE ): @property def lowercase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __magic_name__ : Any = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __magic_name__ : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
713
from __future__ import annotations class A__ : def __init__( self , lowerCamelCase ) -> None: """simple docstring""" __magic_name__ : List[str] = data __magic_name__ : Node | None = None __magic_name__ : Node | None = None def lowerCAmelCase ( UpperCAmelCase ) ->None: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowerCAmelCase ( UpperCAmelCase ) ->int: """simple docstring""" return 1 + max(depth_of_tree(tree.left ), depth_of_tree(tree.right ) ) if tree else 0 def lowerCAmelCase ( UpperCAmelCase ) ->bool: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowerCAmelCase ( ) ->None: # Main function for testing. """simple docstring""" __magic_name__ : Tuple = Node(1 ) __magic_name__ : Union[str, Any] = Node(2 ) __magic_name__ : Tuple = Node(3 ) __magic_name__ : List[str] = Node(4 ) __magic_name__ : str = Node(5 ) __magic_name__ : List[Any] = Node(6 ) __magic_name__ : Optional[int] = Node(7 ) __magic_name__ : str = Node(8 ) __magic_name__ : str = Node(9 ) print(is_full_binary_tree(UpperCAmelCase ) ) print(depth_of_tree(UpperCAmelCase ) ) print('''Tree is: ''' ) display(UpperCAmelCase ) if __name__ == "__main__": main()
336
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def UpperCamelCase ( __magic_name__ : Union[dict, list, tuple, torch.Tensor] ) -> List[Tuple[int, ...]]: """simple docstring""" lowercase__ = [] if isinstance(__magic_name__ , __magic_name__ ): for v in tree.values(): shapes.extend(_fetch_dims(__magic_name__ ) ) elif isinstance(__magic_name__ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__magic_name__ ) ) elif isinstance(__magic_name__ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def UpperCamelCase ( __magic_name__ : int , __magic_name__ : Tuple[int, ...] ) -> Tuple[int, ...]: """simple docstring""" lowercase__ = [] for d in reversed(__magic_name__ ): idx.append(flat_idx % d ) lowercase__ = flat_idx // d return tuple(reversed(__magic_name__ ) ) @torch.jit.ignore def UpperCamelCase ( __magic_name__ : Sequence[int] , __magic_name__ : Sequence[int] , __magic_name__ : Sequence[int] , __magic_name__ : Optional[Sequence[bool]] = None , __magic_name__ : Optional[Sequence[bool]] = None , ) -> List[Tuple[slice, ...]]: """simple docstring""" def reduce_edge_list(__magic_name__ : List[bool] ) -> None: lowercase__ = True for i in range(len(__magic_name__ ) ): lowercase__ = -1 * (i + 1) l[reversed_idx] &= tally lowercase__ = l[reversed_idx] if start_edges is None: lowercase__ = [s == 0 for s in start] reduce_edge_list(__magic_name__ ) if end_edges is None: lowercase__ = [e == (d - 1) for e, d in zip(__magic_name__ , __magic_name__ )] reduce_edge_list(__magic_name__ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__magic_name__ ) == 0: return [()] elif len(__magic_name__ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] lowercase__ = [] lowercase__ = [] # Dimensions common to start and end can be selected directly for s, e in zip(__magic_name__ , __magic_name__ ): if s == e: path_list.append(slice(__magic_name__ , s + 1 ) ) else: break lowercase__ = tuple(__magic_name__ ) lowercase__ = len(__magic_name__ ) # start == end, and we're done if divergence_idx == len(__magic_name__ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None lowercase__ = start[divergence_idx] return tuple( path + (slice(__magic_name__ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None lowercase__ = end[divergence_idx] return tuple( path + (slice(__magic_name__ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) lowercase__ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def UpperCamelCase ( __magic_name__ : torch.Tensor , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> torch.Tensor: """simple docstring""" lowercase__ = t.shape[:no_batch_dims] lowercase__ = list(_flat_idx_to_idx(__magic_name__ , __magic_name__ ) ) # _get_minimal_slice_set is inclusive lowercase__ = list(_flat_idx_to_idx(flat_end - 1 , __magic_name__ ) ) # Get an ordered list of slices to perform lowercase__ = _get_minimal_slice_set( __magic_name__ , __magic_name__ , __magic_name__ , ) lowercase__ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def UpperCamelCase ( __magic_name__ : Callable , __magic_name__ : Dict[str, Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : bool = False , __magic_name__ : Any = None , __magic_name__ : bool = False , ) -> Any: """simple docstring""" if not (len(__magic_name__ ) > 0): raise ValueError("""Must provide at least one input""" ) lowercase__ = [shape[:no_batch_dims] for shape in _fetch_dims(__magic_name__ )] lowercase__ = tuple([max(__magic_name__ ) for s in zip(*__magic_name__ )] ) def _prep_inputs(__magic_name__ : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: lowercase__ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) lowercase__ = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: lowercase__ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t lowercase__ = tensor_tree_map(_prep_inputs , __magic_name__ ) lowercase__ = None if _out is not None: lowercase__ = tensor_tree_map(lambda __magic_name__ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) lowercase__ = 1 for d in orig_batch_dims: flat_batch_dim *= d lowercase__ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__magic_name__ : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t lowercase__ = 0 lowercase__ = prepped_outputs for _ in range(__magic_name__ ): # Chunk the input if not low_mem: lowercase__ = _select_chunk else: lowercase__ = partial( _chunk_slice , flat_start=__magic_name__ , flat_end=min(__magic_name__ , i + chunk_size ) , no_batch_dims=len(__magic_name__ ) , ) lowercase__ = tensor_tree_map(__magic_name__ , __magic_name__ ) # Run the layer on the chunk lowercase__ = layer(**__magic_name__ ) # Allocate space for the output if out is None: lowercase__ = tensor_tree_map(lambda __magic_name__ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __magic_name__ ) # Put the chunk in its pre-allocated space if isinstance(__magic_name__ , __magic_name__ ): def assign(__magic_name__ : dict , __magic_name__ : dict ) -> None: for k, v in da.items(): if isinstance(__magic_name__ , __magic_name__ ): assign(__magic_name__ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: lowercase__ = da[k] assign(__magic_name__ , __magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): for xa, xa in zip(__magic_name__ , __magic_name__ ): if _add_into_out: xa[i : i + chunk_size] += xa else: lowercase__ = xa elif isinstance(__magic_name__ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: lowercase__ = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size lowercase__ = tensor_tree_map(lambda __magic_name__ : t.view(orig_batch_dims + t.shape[1:] ) , __magic_name__ ) return out class A : '''simple docstring''' def __init__(self : List[str] , _UpperCAmelCase : int = 512 , ) -> str: """simple docstring""" lowercase__ = max_chunk_size lowercase__ = None lowercase__ = None def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Callable , _UpperCAmelCase : tuple , _UpperCAmelCase : int ) -> int: """simple docstring""" logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size lowercase__ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] lowercase__ = [c for c in candidates if c > min_chunk_size] lowercase__ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_UpperCAmelCase : int ) -> bool: try: with torch.no_grad(): fn(*_UpperCAmelCase , chunk_size=_UpperCAmelCase ) return True except RuntimeError: return False lowercase__ = 0 lowercase__ = len(_UpperCAmelCase ) - 1 while i > min_viable_chunk_size_index: lowercase__ = test_chunk_size(candidates[i] ) if not viable: lowercase__ = (min_viable_chunk_size_index + i) // 2 else: lowercase__ = i lowercase__ = (i + len(_UpperCAmelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Iterable , _UpperCAmelCase : Iterable ) -> bool: """simple docstring""" lowercase__ = True for aa, aa in zip(_UpperCAmelCase , _UpperCAmelCase ): assert type(_UpperCAmelCase ) == type(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , (list, tuple) ): consistent &= self._compare_arg_caches(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = [v for _, v in sorted(aa.items() , key=lambda _UpperCAmelCase : x[0] )] lowercase__ = [v for _, v in sorted(aa.items() , key=lambda _UpperCAmelCase : x[0] )] consistent &= self._compare_arg_caches(_UpperCAmelCase , _UpperCAmelCase ) else: consistent &= aa == aa return consistent def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Callable , _UpperCAmelCase : tuple , _UpperCAmelCase : int , ) -> int: """simple docstring""" lowercase__ = True lowercase__ = tree_map(lambda _UpperCAmelCase : a.shape if isinstance(_UpperCAmelCase , torch.Tensor ) else a , _UpperCAmelCase , _UpperCAmelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(_UpperCAmelCase ) lowercase__ = self._compare_arg_caches(self.cached_arg_data , _UpperCAmelCase ) else: # Otherwise, we can reuse the precomputed value lowercase__ = False if not consistent: lowercase__ = self._determine_favorable_chunk_size( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) lowercase__ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
15
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels a =object() # For specifying empty leaf dict `{}` a =object() def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> int: __lowerCamelCase : Tuple = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(lowerCamelCase__ ) - len(lowerCamelCase__ ) + 1 ): __lowerCamelCase : str = [x.match(lowerCamelCase__ ) for x, y in zip(lowerCamelCase__ , ks[i:] )] if matches and all(lowerCamelCase__ ): return True return False def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Tuple: def replace(lowerCamelCase__ , lowerCamelCase__ ): for rule, replacement in rules: if _match(lowerCamelCase__ , lowerCamelCase__ ): return replacement return val return replace def SCREAMING_SNAKE_CASE__ ( ) -> str: return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , lowerCamelCase__ )), (("transformer", "wte", "embedding"), P('mp' , lowerCamelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(lowerCamelCase__ , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , lowerCamelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(lowerCamelCase__ , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , lowerCamelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: __lowerCamelCase : List[str] = _get_partition_rules() __lowerCamelCase : Optional[Any] = _replacement_rules(lowerCamelCase__ ) __lowerCamelCase : Tuple = {k: _unmatched for k in flatten_dict(lowerCamelCase__ )} __lowerCamelCase : List[Any] = {k: replace(lowerCamelCase__ , lowerCamelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(lowerCamelCase__ ) )
652
0
def UpperCAmelCase__( __UpperCAmelCase : int = 10**12 ): __snake_case : List[Any] = 1 __snake_case : str = 0 __snake_case : str = 1 __snake_case : int = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F'''{solution() = }''')
721
from ....configuration_utils import PretrainedConfig from ....utils import logging __magic_name__ = logging.get_logger(__name__) # TODO: upload to AWS __magic_name__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "retribert" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Tuple = vocab_size __snake_case : Optional[int] = hidden_size __snake_case : str = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Any = hidden_act __snake_case : List[Any] = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Optional[int] = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : int = share_encoders __snake_case : Optional[Any] = projection_dim
679
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__ = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowercase : Union[str, Any] = '''facebook/nllb-200-distilled-600M''' __lowercase : Optional[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) __lowercase : Tuple = '''translator''' __lowercase : str = AutoTokenizer __lowercase : Tuple = AutoModelForSeqaSeqLM __lowercase : Optional[Any] = LANGUAGE_CODES __lowercase : Any = ['''text''', '''text''', '''text'''] __lowercase : Dict = ['''text'''] def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): if src_lang not in self.lang_to_code: raise ValueError(f"{src_lang} is not a supported language.") if tgt_lang not in self.lang_to_code: raise ValueError(f"{tgt_lang} is not a supported language.") __SCREAMING_SNAKE_CASE = self.lang_to_code[src_lang] __SCREAMING_SNAKE_CASE = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__): return self.model.generate(**lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__)
155
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): @slow def A_( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('google/mt5-small' ) SCREAMING_SNAKE_CASE_ = tokenizer('Hello there' , return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE_ = tokenizer('Hi I am' , return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ).loss SCREAMING_SNAKE_CASE_ = -tf.math.reduce_mean(SCREAMING_SNAKE_CASE ).numpy() SCREAMING_SNAKE_CASE_ = -2_1.2_2_8_1_6_8 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
205
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizer __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizerFast __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : int = True def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase__ ) , 1_008 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) lowercase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCamelCase__ , f.name ) lowercase_ = XGLMTokenizer(f.name , keep_accents=UpperCamelCase__ ) lowercase_ = pickle.dumps(UpperCamelCase__ ) pickle.loads(UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(UpperCamelCase__ ) lowercase_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """Hello World!""" lowercase_ = [2, 31_227, 4_447, 35] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowercase_ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = { """input_ids""": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""facebook/xglm-564M""" , padding=UpperCamelCase__ , )
650
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
650
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case : int = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys snake_case : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
566
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__( snake_case_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=9_9 , __UpperCAmelCase=3_2 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=3_7 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=1_6 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase="None" , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = relative_attention __lowercase = position_biased_input __lowercase = pos_att_type __lowercase = scope def __magic_name__ ( self ): """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.get_config() __lowercase = 3_0_0 return config def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __lowercase = DebertaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowercase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0] __lowercase = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0] __lowercase = model(__UpperCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __lowercase = DebertaForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowercase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __lowercase = self.num_labels __lowercase = DebertaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowercase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__UpperCAmelCase ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __lowercase = self.num_labels __lowercase = DebertaForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowercase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __lowercase = DebertaForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowercase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase__( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Tuple = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase : str = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase : List[Any] = True UpperCamelCase : Optional[Any] = False UpperCamelCase : List[Any] = False UpperCamelCase : Tuple = False UpperCamelCase : List[str] = False def __magic_name__ ( self ): """simple docstring""" __lowercase = DebertaModelTester(self ) __lowercase = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=3_7 ) def __magic_name__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self ): """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__UpperCAmelCase ) @slow def __magic_name__ ( self ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = DebertaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def __magic_name__ ( self ): """simple docstring""" pass @slow def __magic_name__ ( self ): """simple docstring""" __lowercase = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) __lowercase = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] # compare the actual values for a slice. __lowercase = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1E-4 ) , F'''{output[:, 1:4, 1:4]}''' )
566
1
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _a = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a , __a=None , __a=1) -> Dict: '''simple docstring''' _UpperCamelCase = tokenizer _UpperCamelCase = dataset _UpperCamelCase = len(__a) if n_tasks is None else n_tasks _UpperCamelCase = n_copies def __iter__( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = [] for task in range(self.n_tasks): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip()) _UpperCamelCase = self.tokenizer(__a , padding=__a , return_tensors='''pt''') for task in range(self.n_tasks): for _ in range(self.n_copies): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = start_length _UpperCamelCase = eof_strings _UpperCamelCase = tokenizer def __call__( self , __a , __a , **__a) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer.batch_decode(input_ids[:, self.start_length :]) _UpperCamelCase = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings)) return all(__a) def lowerCamelCase__ ( __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = re.split('''(%s)''' % '''|'''.join(__snake_case ), __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case=20, **__snake_case ) -> Any: """simple docstring""" _UpperCamelCase = defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): _UpperCamelCase = batch['''ids'''].shape[-1] _UpperCamelCase = accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']], num_return_sequences=__snake_case, **__snake_case ) # each task is generated batch_size times _UpperCamelCase = batch['''task_id'''].repeat(__snake_case ) _UpperCamelCase = accelerator.pad_across_processes( __snake_case, dim=1, pad_index=tokenizer.pad_token_id ) _UpperCamelCase , _UpperCamelCase = accelerator.gather((generated_tokens, generated_tasks) ) _UpperCamelCase = generated_tokens.cpu().numpy() _UpperCamelCase = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case, __snake_case ): gen_token_dict[task].append(__snake_case ) _UpperCamelCase = [[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _UpperCamelCase = tokenizer.decode(__snake_case, skip_special_tokens=__snake_case, clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = HfArgumentParser(__snake_case ) _UpperCamelCase = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _UpperCamelCase = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _UpperCamelCase = '''false''' if args.num_workers is None: _UpperCamelCase = multiprocessing.cpu_count() # Use dataset load to feed to accelerate _UpperCamelCase = Accelerator() set_seed(args.seed, device_specific=__snake_case ) # Load model and tokenizer _UpperCamelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCamelCase = tokenizer.eos_token _UpperCamelCase = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _UpperCamelCase = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0, __snake_case, __snake_case )] ), } # Load evaluation dataset and metric _UpperCamelCase = load_dataset('''openai_humaneval''' ) _UpperCamelCase = load_metric('''code_eval''' ) _UpperCamelCase = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _UpperCamelCase = args.n_samples // args.batch_size _UpperCamelCase = TokenizedDataset(__snake_case, human_eval['''test'''], n_copies=__snake_case, n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences _UpperCamelCase = DataLoader(__snake_case, batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _UpperCamelCase = code_eval_metric.compute(references=[''''''], predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _UpperCamelCase , _UpperCamelCase = accelerator.prepare(__snake_case, __snake_case ) _UpperCamelCase = complete_code( __snake_case, __snake_case, __snake_case, __snake_case, n_tasks=__snake_case, batch_size=args.batch_size, **__snake_case, ) if accelerator.is_main_process: _UpperCamelCase = [] for task in tqdm(range(__snake_case ) ): _UpperCamelCase = human_eval['''test'''][task]['''test'''] _UpperCamelCase = F'''check({human_eval["test"][task]["entry_point"]})''' references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _UpperCamelCase , _UpperCamelCase = code_eval_metric.compute( references=__snake_case, predictions=__snake_case, num_workers=args.num_workers ) print(F'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file, '''w''' ) as fp: json.dump(__snake_case, __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
78
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase( unittest.TestCase ): def __init__( self , __a , __a=7 , __a=3 , __a=18 , __a=30 , __a=4_00 , __a=True , __a=None , __a=True , __a=None , __a=True , ) -> int: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''shortest_edge''': 20} _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = image_size _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_flip_channel_order def UpperCAmelCase ( self) -> str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = MobileViTImageProcessor if is_vision_available() else None def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = MobileViTImageProcessingTester(self) @property def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__a , '''do_resize''')) self.assertTrue(hasattr(__a , '''size''')) self.assertTrue(hasattr(__a , '''do_center_crop''')) self.assertTrue(hasattr(__a , '''center_crop''')) self.assertTrue(hasattr(__a , '''do_flip_channel_order''')) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 20}) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18}) _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {'''shortest_edge''': 42}) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84}) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self) -> str: '''simple docstring''' # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a) for image in image_inputs: self.assertIsInstance(__a , Image.Image) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(__a , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a) for image in image_inputs: self.assertIsInstance(__a , np.ndarray) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(__a , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase ( self) -> int: '''simple docstring''' # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(__a , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
78
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class a_ ( UpperCAmelCase__ ): lowercase_ : Any = '''van''' def __init__( self : Dict , __lowerCAmelCase : Any=2_2_4 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : List[Any]=[7, 3, 3, 3] , __lowerCAmelCase : Tuple=[4, 2, 2, 2] , __lowerCAmelCase : Optional[Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , __lowerCAmelCase : Union[str, Any]=[3, 3, 1_2, 3] , __lowerCAmelCase : str=[8, 8, 4, 4] , __lowerCAmelCase : List[str]="gelu" , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[Any]=1E-6 , __lowerCAmelCase : int=1E-2 , __lowerCAmelCase : int=0.0 , __lowerCAmelCase : List[str]=0.0 , **__lowerCAmelCase : Any , ): super().__init__(**__lowerCAmelCase ) __snake_case = image_size __snake_case = num_channels __snake_case = patch_sizes __snake_case = strides __snake_case = hidden_sizes __snake_case = depths __snake_case = mlp_ratios __snake_case = hidden_act __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = layer_scale_init_value __snake_case = drop_path_rate __snake_case = dropout_rate
356
'''simple docstring''' from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class a_ : def __init__( self : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any]=1_3 , __lowerCAmelCase : int=7 , __lowerCAmelCase : int=True , __lowerCAmelCase : str=True , __lowerCAmelCase : str=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : List[Any]=9_9 , __lowerCAmelCase : List[str]=3_2 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : Any=4 , __lowerCAmelCase : Any=3_7 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Optional[int]=5_1_2 , __lowerCAmelCase : Optional[Any]=1_6 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Dict=0.02 , __lowerCAmelCase : Dict=False , __lowerCAmelCase : int=True , __lowerCAmelCase : Tuple="None" , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Optional[int]=4 , __lowerCAmelCase : Union[str, Any]=None , ): __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = relative_attention __snake_case = position_biased_input __snake_case = pos_att_type __snake_case = scope def lowercase__ ( self : Dict ): __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__lowerCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] ): __snake_case = TFDebertaVaModel(config=__lowerCAmelCase ) __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __snake_case = [input_ids, input_mask] __snake_case = model(__lowerCAmelCase ) __snake_case = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] ): __snake_case = TFDebertaVaForMaskedLM(config=__lowerCAmelCase ) __snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __snake_case = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): __snake_case = self.num_labels __snake_case = TFDebertaVaForSequenceClassification(config=__lowerCAmelCase ) __snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __snake_case = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : int ): __snake_case = self.num_labels __snake_case = TFDebertaVaForTokenClassification(config=__lowerCAmelCase ) __snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __snake_case = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] ): __snake_case = TFDebertaVaForQuestionAnswering(config=__lowerCAmelCase ) __snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __snake_case = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowercase_ : List[str] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowercase_ : Union[str, Any] = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowercase_ : int = False lowercase_ : List[Any] = False def lowercase__ ( self : Any ): __snake_case = TFDebertaVaModelTester(self ) __snake_case = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def lowercase__ ( self : Dict ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[int] ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def lowercase__ ( self : Union[str, Any] ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def lowercase__ ( self : List[Any] ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) def lowercase__ ( self : Any ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase ) def lowercase__ ( self : Dict ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def lowercase__ ( self : List[str] ): __snake_case = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class a_ ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def lowercase__ ( self : List[str] ): pass @slow def lowercase__ ( self : int ): __snake_case = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) __snake_case = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __snake_case = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __snake_case = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )[0] __snake_case = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __lowerCAmelCase , atol=1E-4 )
356
1
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel A = HfApi() A = {} # fmt: off A = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) A = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) A = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) A = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) A = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) A = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) A = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) A = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) A = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) A = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) A = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) A = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) A = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) A = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) A = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on A = api.list_models(filter='diffusers') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": A = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith('CompVis'): A = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet') else: A = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) A = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) A = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): A = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1E-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
707
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __a : '''simple docstring''' UpperCAmelCase__ : List[str] UpperCAmelCase__ : Optional[str] = None # Automatically constructed UpperCAmelCase__ : ClassVar[str] = "dict" UpperCAmelCase__ : ClassVar[Any] = None UpperCAmelCase__ : str = field(default="""Translation""" , init=__A , repr=__A ) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __snake_case ( self ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __a : '''simple docstring''' UpperCAmelCase__ : Optional[List] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[str] = None # Automatically constructed UpperCAmelCase__ : ClassVar[str] = "dict" UpperCAmelCase__ : ClassVar[Any] = None UpperCAmelCase__ : str = field(default="""TranslationVariableLanguages""" , init=__A , repr=__A ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = sorted(set(self.languages ) ) if self.languages else None SCREAMING_SNAKE_CASE_ : Dict = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def __snake_case ( self , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = set(self.languages ) if self.languages and set(UpperCamelCase__ ) - lang_set: raise ValueError( F'''Some languages in example ({', '.join(sorted(set(UpperCamelCase__ ) - lang_set ) )}) are not in valid set ({', '.join(UpperCamelCase__ )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. SCREAMING_SNAKE_CASE_ : List[str] = [] for lang, text in translation_dict.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = zip(*sorted(UpperCamelCase__ ) ) return {"language": languages, "translation": translations} def __snake_case ( self ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
97
0
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCAmelCase__ = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ = importlib.util.spec_from_file_location( 'transformers', os.path.join(PATH_TO_TRANSFORMERS, '__init__.py'), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) UpperCAmelCase__ = spec.loader.load_module() UpperCAmelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` UpperCAmelCase__ = re.compile('\[(.+?)\]\((https://huggingface\.co/.+?)\)') UpperCAmelCase__ = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def _UpperCAmelCase ( ) -> Dict: _snake_case = [] for config_class in list(CONFIG_MAPPING.values() ): _snake_case = False # source code of `config_class` _snake_case = inspect.getsource(_a ) _snake_case = _re_checkpoint.findall(_a ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _snake_case = checkpoint # verify the checkpoint name corresponds to the checkpoint link _snake_case = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: _snake_case = True break _snake_case = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_a ) if len(_a ) > 0: _snake_case = '''\n'''.join(sorted(_a ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
224
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP SCREAMING_SNAKE_CASE : Any = False try: SCREAMING_SNAKE_CASE : List[Any] = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ = None , UpperCamelCase_ = [] ): lowercase_ :str = 0 lowercase_ :str = choices lowercase_ :List[str] = prompt if sys.platform == "win32": lowercase_ :List[Any] = '''*''' else: lowercase_ :str = '''➔ ''' def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 32 , UpperCamelCase_ ) else: forceWrite(self.choices[index] , UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ ): if index == self.position: forceWrite(f" {self.arrow_char} " ) self.write_choice(UpperCamelCase_ ) else: forceWrite(f" {self.choices[index]}" ) reset_cursor() def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = 1 ): lowercase_ :Optional[Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(UpperCamelCase_ ) move_cursor(UpperCamelCase_ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def UpperCamelCase ( self ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def UpperCamelCase ( self ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def UpperCamelCase ( self ): move_cursor(len(self.choices ) - self.position , '''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def UpperCamelCase ( self ): move_cursor(len(self.choices ) - self.position , '''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(UpperCamelCase_ )] for number in range(10 )] ) def UpperCamelCase ( self ): lowercase_ :int = int(chr(self.current_selection ) ) lowercase_ :Optional[Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , UpperCamelCase_ ) else: return else: return def UpperCamelCase ( self , UpperCamelCase_ = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , '''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' ) lowercase_ :str = default_choice for i in range(len(self.choices ) ): self.print_choice(UpperCamelCase_ ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position , '''UP''' ) with cursor.hide(): while True: if in_colab: try: lowercase_ :Optional[Any] = int(builtins.input() ) except ValueError: lowercase_ :List[Any] = default_choice else: lowercase_ :List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , '''UP''' ) clear_line() self.write_choice(UpperCamelCase_ , '''\n''' ) return choice
257
0
from ...configuration_utils import PretrainedConfig class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ : List[str] = "bert-generation" def __init__( self : Dict , snake_case : Any=50358 , snake_case : Union[str, Any]=1024 , snake_case : str=24 , snake_case : int=16 , snake_case : List[str]=4096 , snake_case : Optional[Any]="gelu" , snake_case : Optional[int]=0.1 , snake_case : int=0.1 , snake_case : Union[str, Any]=512 , snake_case : List[str]=0.02 , snake_case : List[Any]=1E-12 , snake_case : Union[str, Any]=0 , snake_case : Optional[Any]=2 , snake_case : Union[str, Any]=1 , snake_case : List[Any]="absolute" , snake_case : Optional[int]=True , **snake_case : Union[str, Any] , ): super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache
700
import heapq import sys import numpy as np a_ = tuple[int, int] class _lowerCamelCase : """simple docstring""" def __init__( self : Dict ): __UpperCamelCase = [] __UpperCamelCase = set() def snake_case ( self : Dict ): if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case ( self : Optional[Any] ): return len(self.elements ) == 0 def snake_case ( self : Optional[int] , snake_case : Tuple , snake_case : Any ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(snake_case ) else: # update # print("update", item) __UpperCamelCase = [] ((__UpperCamelCase) , (__UpperCamelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCamelCase) , (__UpperCamelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case ( self : Any , snake_case : int ): if item in self.set: self.set.remove(snake_case ) __UpperCamelCase = [] ((__UpperCamelCase) , (__UpperCamelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCamelCase) , (__UpperCamelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case ( self : Tuple ): return self.elements[0][1] def snake_case ( self : List[str] ): ((__UpperCamelCase) , (__UpperCamelCase)) = heapq.heappop(self.elements ) self.set.remove(snake_case ) return (priority, item) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" __UpperCamelCase = np.array(lowercase_ ) __UpperCamelCase = np.array(lowercase_ ) return np.linalg.norm(a - b ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return consistent_heuristic(lowercase_ , lowercase_ ) // t def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: """simple docstring""" __UpperCamelCase = g_function[start] + Wa * heuristics[i](lowercase_ , lowercase_ ) return ans def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: """simple docstring""" __UpperCamelCase = np.chararray((n, n) ) for i in range(lowercase_ ): for j in range(lowercase_ ): __UpperCamelCase = '''*''' for i in range(lowercase_ ): for j in range(lowercase_ ): if (j, (n - 1) - i) in blocks: __UpperCamelCase = '''#''' __UpperCamelCase = '''-''' __UpperCamelCase = back_pointer[goal] while x != start: ((__UpperCamelCase) , (__UpperCamelCase)) = x # print(x) __UpperCamelCase = '''-''' __UpperCamelCase = back_pointer[x] __UpperCamelCase = '''-''' for i in range(lowercase_ ): for j in range(lowercase_ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCamelCase = back_pointer[goal] while x != start: print(lowercase_ , end=''' ''' ) __UpperCamelCase = back_pointer[x] print(lowercase_ ) sys.exit() def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]: """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple: """simple docstring""" for itera in range(lowercase_ ): open_list[itera].remove_element(lowercase_ ) # print("s", s) # print("j", j) ((__UpperCamelCase) , (__UpperCamelCase)) = s __UpperCamelCase = (x - 1, y) __UpperCamelCase = (x + 1, y) __UpperCamelCase = (x, y + 1) __UpperCamelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowercase_ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowercase_ ) __UpperCamelCase = -1 __UpperCamelCase = float('''inf''' ) if valid(lowercase_ ) and g_function[neighbours] > g_function[s] + 1: __UpperCamelCase = g_function[s] + 1 __UpperCamelCase = s if neighbours not in close_list_anchor: open_list[0].put(lowercase_ , key(lowercase_ , 0 , lowercase_ , lowercase_ ) ) if neighbours not in close_list_inad: for var in range(1 , lowercase_ ): if key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) <= Wa * key( lowercase_ , 0 , lowercase_ , lowercase_ ): open_list[j].put( lowercase_ , key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( ) -> str: """simple docstring""" __UpperCamelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a_ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ = make_common_ground() a_ = blocks_blk # hyper parameters a_ = 1 a_ = 1 a_ = 20 a_ = 3 # one consistent and two other inconsistent # start and end destination a_ = (0, 0) a_ = (n - 1, n - 1) a_ = 1 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: """simple docstring""" __UpperCamelCase = {start: 0, goal: float('''inf''' )} __UpperCamelCase = {start: -1, goal: -1} __UpperCamelCase = [] __UpperCamelCase = set() for i in range(lowercase_ ): open_list.append(PriorityQueue() ) open_list[i].put(lowercase_ , key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) ) __UpperCamelCase = [] __UpperCamelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , lowercase_ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(lowercase_ , lowercase_ , lowercase_ ) else: __UpperCamelCase , __UpperCamelCase = open_list[i].top_show() visited.add(lowercase_ ) expand_state( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) close_list_inad.append(lowercase_ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(lowercase_ , lowercase_ , lowercase_ ) else: __UpperCamelCase = open_list[0].top_show() visited.add(lowercase_ ) expand_state( lowercase_ , 0 , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) close_list_anchor.append(lowercase_ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowercase_ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
375
0
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def _UpperCAmelCase ( UpperCamelCase: Optional[Any] ): """simple docstring""" __lowerCAmelCase = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __lowerCAmelCase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , UpperCamelCase_ ) if matches: __lowerCAmelCase = float(matches[1] ) __lowerCAmelCase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowerCAmelCase = 1_0_0_1 __lowerCAmelCase = "imagenet-1k-id2label.json" __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(UpperCamelCase_ ) + 1: v for k, v in idalabel.items()} __lowerCAmelCase = "background" __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _UpperCAmelCase ( ): """simple docstring""" __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( UpperCamelCase: Optional[int] , UpperCamelCase: int , UpperCamelCase: int , UpperCamelCase: Union[str, Any]=False ): """simple docstring""" __lowerCAmelCase = get_mobilenet_va_config(UpperCamelCase_ ) # Load 🤗 model __lowerCAmelCase = MobileNetVaForImageClassification(UpperCamelCase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowerCAmelCase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) __lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowerCAmelCase = model(**UpperCamelCase_ ) __lowerCAmelCase = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": __lowerCAmelCase = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ) elif model_name == "mobilenet_v1_0.75_192": __lowerCAmelCase = torch.tensor([-3.9_440, -2.3_141, -0.3_333] ) else: __lowerCAmelCase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , UpperCamelCase_ , atol=1e-4 ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase_ ) if push_to_hub: print("Pushing to the hub..." ) __lowerCAmelCase = "google/" + model_name image_processor.push_to_hub(UpperCamelCase_ ) model.push_to_hub(UpperCamelCase_ ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase_ = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
611
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __lowerCAmelCase ( unittest.TestCase , lowercase ): """simple docstring""" def _UpperCAmelCase ( self : List[str] ): A_ = load_tool("text-classification" ) self.tool.setup() A_ = load_tool("text-classification" , remote=lowerCAmelCase ) def _UpperCAmelCase ( self : Union[str, Any] ): A_ = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(lowerCAmelCase , "positive" ) def _UpperCAmelCase ( self : str ): A_ = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(lowerCAmelCase , "positive" ) def _UpperCAmelCase ( self : str ): A_ = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(lowerCAmelCase , "positive" ) def _UpperCAmelCase ( self : List[Any] ): A_ = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(lowerCAmelCase , "positive" )
452
0
"""simple docstring""" def a__ ( a : int , a : int ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def a__ ( ): """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
87
"""simple docstring""" def a__ ( a : list , a : int , a : int = 0 , a : int = 0 ): """simple docstring""" _snake_case : Optional[int] = right or len(a ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(a , a , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
87
1
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase : Dict = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : str , UpperCamelCase : List[Any] ): '''simple docstring''' super().__init__() __UpperCAmelCase : List[Any] = torchvision.models.resnetaaa(pretrained=UpperCamelCase ) __UpperCAmelCase : List[str] = list(model.children() )[:-2] __UpperCAmelCase : Optional[Any] = nn.Sequential(*UpperCamelCase ) __UpperCAmelCase : str = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.pool(self.model(UpperCamelCase ) ) __UpperCAmelCase : Union[str, Any] = torch.flatten(UpperCamelCase , start_dim=2 ) __UpperCAmelCase : List[str] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : str = [json.loads(UpperCamelCase ) for l in open(UpperCamelCase )] __UpperCAmelCase : Optional[Any] = os.path.dirname(UpperCamelCase ) __UpperCAmelCase : Any = tokenizer __UpperCAmelCase : List[Any] = labels __UpperCAmelCase : Optional[int] = len(UpperCamelCase ) __UpperCAmelCase : List[str] = max_seq_length __UpperCAmelCase : int = transforms def __len__( self : int ): '''simple docstring''' return len(self.data ) def __getitem__( self : Tuple , UpperCamelCase : List[str] ): '''simple docstring''' __UpperCAmelCase : List[str] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=UpperCamelCase ) ) __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = sentence[0], sentence[1:-1], sentence[-1] __UpperCAmelCase : Dict = sentence[: self.max_seq_length] __UpperCAmelCase : Tuple = torch.zeros(self.n_classes ) __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Any = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) __UpperCAmelCase : Any = self.transforms(UpperCamelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def lowerCamelCase ( _UpperCamelCase : str ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [len(row["""sentence"""] ) for row in batch] __UpperCAmelCase ,__UpperCAmelCase : List[Any] = len(_UpperCamelCase ), max(_UpperCamelCase ) __UpperCAmelCase : str = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) __UpperCAmelCase : Tuple = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_UpperCamelCase , _UpperCamelCase ) ): __UpperCAmelCase : Tuple = input_row["""sentence"""] __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Tuple = torch.stack([row["""image"""] for row in batch] ) __UpperCAmelCase : List[str] = torch.stack([row["""label"""] for row in batch] ) __UpperCAmelCase : List[Any] = torch.stack([row["""image_start_token"""] for row in batch] ) __UpperCAmelCase : Any = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
139
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore UpperCAmelCase : List[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" UpperCAmelCase : List[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print('\n'.join(upper_files) + '\n') UpperCAmelCase : str = [file for file in filepaths if ' ' in file] if space_files: print(F"{len(space_files)} files contain space characters:") print('\n'.join(space_files) + '\n') UpperCAmelCase : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print('\n'.join(hyphen_files) + '\n') UpperCAmelCase : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print('\n'.join(nodir_files) + '\n') UpperCAmelCase : Optional[int] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
139
1
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = IFPipeline UpperCAmelCase_ = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} UpperCAmelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase_ = PipelineTesterMixin.required_optional_params - {"latents"} def A_ ( self : Optional[int] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def A_ ( self : Union[str, Any], _UpperCAmelCase : Dict, _UpperCAmelCase : Any=0 ) -> List[str]: """simple docstring""" if str(_UpperCAmelCase ).startswith("mps" ): SCREAMING_SNAKE_CASE__ : Any = torch.manual_seed(_UpperCAmelCase ) else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def A_ ( self : Optional[int] ) -> Any: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA" ) def A_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def A_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def A_ ( self : Dict ) -> List[str]: """simple docstring""" self._test_save_load_local() def A_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2, ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def A_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class lowerCamelCase (unittest.TestCase ): """simple docstring""" def A_ ( self : int ) -> List[Any]: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Any ) -> List[Any]: """simple docstring""" # if SCREAMING_SNAKE_CASE__ : Any = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Dict = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0", variant="fp16", torch_dtype=torch.floataa, text_encoder=_UpperCAmelCase, tokenizer=_UpperCAmelCase ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : str = pipe_a.encode_prompt("anime turtle", device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img SCREAMING_SNAKE_CASE__ : List[Any] = IFImgaImgPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE__ : Tuple = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting SCREAMING_SNAKE_CASE__ : int = IFInpaintingPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE__ : Optional[int] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def A_ ( self : Tuple, _UpperCAmelCase : Optional[int], _UpperCAmelCase : Dict, _UpperCAmelCase : List[str], _UpperCAmelCase : Union[str, Any] ) -> List[str]: """simple docstring""" # pipeline 1 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Dict = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = pipe_a( prompt_embeds=_UpperCAmelCase, negative_prompt_embeds=_UpperCAmelCase, num_inference_steps=2, generator=_UpperCAmelCase, output_type="np", ) SCREAMING_SNAKE_CASE__ : Optional[Any] = output.images[0] assert image.shape == (6_4, 6_4, 3) SCREAMING_SNAKE_CASE__ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 SCREAMING_SNAKE_CASE__ : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(_UpperCAmelCase, _UpperCAmelCase ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(0 ) ).to(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = pipe_a( prompt_embeds=_UpperCAmelCase, negative_prompt_embeds=_UpperCAmelCase, image=_UpperCAmelCase, generator=_UpperCAmelCase, num_inference_steps=2, output_type="np", ) SCREAMING_SNAKE_CASE__ : Tuple = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 SCREAMING_SNAKE_CASE__ : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(_UpperCAmelCase, _UpperCAmelCase ) def A_ ( self : str, _UpperCAmelCase : Optional[Any], _UpperCAmelCase : str, _UpperCAmelCase : Optional[Any], _UpperCAmelCase : str ) -> Tuple: """simple docstring""" # pipeline 1 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : List[str] = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(0 ) ).to(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = pipe_a( prompt_embeds=_UpperCAmelCase, negative_prompt_embeds=_UpperCAmelCase, image=_UpperCAmelCase, num_inference_steps=2, generator=_UpperCAmelCase, output_type="np", ) SCREAMING_SNAKE_CASE__ : Any = output.images[0] assert image.shape == (6_4, 6_4, 3) SCREAMING_SNAKE_CASE__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 SCREAMING_SNAKE_CASE__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(_UpperCAmelCase, _UpperCAmelCase ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6), rng=random.Random(0 ) ).to(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(0 ) ).to(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = pipe_a( prompt_embeds=_UpperCAmelCase, negative_prompt_embeds=_UpperCAmelCase, image=_UpperCAmelCase, original_image=_UpperCAmelCase, generator=_UpperCAmelCase, num_inference_steps=2, output_type="np", ) SCREAMING_SNAKE_CASE__ : List[str] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) SCREAMING_SNAKE_CASE__ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 SCREAMING_SNAKE_CASE__ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(_UpperCAmelCase, _UpperCAmelCase ) def A_ ( self : int, _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Optional[int], _UpperCAmelCase : Optional[int], _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" # pipeline 1 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(0 ) ).to(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(1 ) ).to(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[str] = pipe_a( prompt_embeds=_UpperCAmelCase, negative_prompt_embeds=_UpperCAmelCase, image=_UpperCAmelCase, mask_image=_UpperCAmelCase, num_inference_steps=2, generator=_UpperCAmelCase, output_type="np", ) SCREAMING_SNAKE_CASE__ : int = output.images[0] assert image.shape == (6_4, 6_4, 3) SCREAMING_SNAKE_CASE__ : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 SCREAMING_SNAKE_CASE__ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(_UpperCAmelCase, _UpperCAmelCase ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(0 ) ).to(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 2_5_6, 2_5_6), rng=random.Random(0 ) ).to(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6), rng=random.Random(1 ) ).to(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = pipe_a( prompt_embeds=_UpperCAmelCase, negative_prompt_embeds=_UpperCAmelCase, image=_UpperCAmelCase, mask_image=_UpperCAmelCase, original_image=_UpperCAmelCase, generator=_UpperCAmelCase, num_inference_steps=2, output_type="np", ) SCREAMING_SNAKE_CASE__ : List[Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 SCREAMING_SNAKE_CASE__ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(_UpperCAmelCase, _UpperCAmelCase ) def _a ( ) -> Optional[Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
157
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _lowerCamelCase : List[str] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model _lowerCamelCase : List[Any] = { # fairseq: '''wmt19-ru-en''': {'''length_penalty''': 1.1}, '''wmt19-en-ru''': {'''length_penalty''': 1.15}, '''wmt19-en-de''': {'''length_penalty''': 1.0}, '''wmt19-de-en''': {'''length_penalty''': 1.1}, # allenai: '''wmt16-en-de-dist-12-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-dist-6-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-12-1''': {'''length_penalty''': 0.8}, '''wmt19-de-en-6-6-base''': {'''length_penalty''': 0.6}, '''wmt19-de-en-6-6-big''': {'''length_penalty''': 0.6}, } # this remaps the different models to their organization names _lowerCamelCase : List[str] = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _lowerCamelCase : Optional[Any] = '''facebook''' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: _lowerCamelCase : Any = '''allenai''' def _a ( SCREAMING_SNAKE_CASE__ : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = dict((re.sub(R"@@$" , "" , SCREAMING_SNAKE_CASE__ ), v) if k.endswith("@@" ) else (re.sub(R"$" , "</w>" , SCREAMING_SNAKE_CASE__ ), v) for k, v in d.items() ) SCREAMING_SNAKE_CASE__ : Tuple = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] SCREAMING_SNAKE_CASE__ : int = d[k] # restore return da def _a ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any: '''simple docstring''' assert os.path.exists(SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models SCREAMING_SNAKE_CASE__ : str = basename(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = dirname(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel SCREAMING_SNAKE_CASE__ : List[str] = cls.hub_models() SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"bpe": "fastbpe", "tokenizer": "moses"} SCREAMING_SNAKE_CASE__ : List[str] = "." # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) SCREAMING_SNAKE_CASE__ : Dict = hub_utils.from_pretrained( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , archive_map=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = vars(chkpt["args"]["model"] ) SCREAMING_SNAKE_CASE__ : Dict = args["source_lang"] SCREAMING_SNAKE_CASE__ : Optional[int] = args["target_lang"] SCREAMING_SNAKE_CASE__ : int = dirname(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = basename(SCREAMING_SNAKE_CASE__ ) # dicts SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , f'''dict.{src_lang}.txt''' ) SCREAMING_SNAKE_CASE__ : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , f'''dict.{tgt_lang}.txt''' ) SCREAMING_SNAKE_CASE__ : List[Any] = Dictionary.load(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = rewrite_dict_keys(src_dict.indices ) SCREAMING_SNAKE_CASE__ : int = len(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , "vocab-src.json" ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab SCREAMING_SNAKE_CASE__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): SCREAMING_SNAKE_CASE__ : Optional[int] = False break SCREAMING_SNAKE_CASE__ : Dict = Dictionary.load(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = rewrite_dict_keys(tgt_dict.indices ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ , "vocab-tgt.json" ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # merges_file (bpecodes) SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ , VOCAB_FILES_NAMES["merges_file"] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" SCREAMING_SNAKE_CASE__ : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): break with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as fin: SCREAMING_SNAKE_CASE__ : Optional[Any] = fin.read() SCREAMING_SNAKE_CASE__ : Optional[Any] = re.sub(R" \d+$" , "" , SCREAMING_SNAKE_CASE__ , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as fout: fout.write(SCREAMING_SNAKE_CASE__ ) # model config SCREAMING_SNAKE_CASE__ : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , "config.json" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args["bpe"]}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args["tokenizer"]}''' SCREAMING_SNAKE_CASE__ : Optional[int] = { "architectures": ["FSMTForConditionalGeneration"], "model_type": "fsmt", "activation_dropout": args["activation_dropout"], "activation_function": "relu", "attention_dropout": args["attention_dropout"], "d_model": args["decoder_embed_dim"], "dropout": args["dropout"], "init_std": 0.0_2, "max_position_embeddings": args["max_source_positions"], "num_hidden_layers": args["encoder_layers"], "src_vocab_size": src_vocab_size, "tgt_vocab_size": tgt_vocab_size, "langs": [src_lang, tgt_lang], "encoder_attention_heads": args["encoder_attention_heads"], "encoder_ffn_dim": args["encoder_ffn_embed_dim"], "encoder_layerdrop": args["encoder_layerdrop"], "encoder_layers": args["encoder_layers"], "decoder_attention_heads": args["decoder_attention_heads"], "decoder_ffn_dim": args["decoder_ffn_embed_dim"], "decoder_layerdrop": args["decoder_layerdrop"], "decoder_layers": args["decoder_layers"], "bos_token_id": 0, "pad_token_id": 1, "eos_token_id": 2, "is_encoder_decoder": True, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_all_embeddings"], } # good hparam defaults to start with SCREAMING_SNAKE_CASE__ : Tuple = 5 SCREAMING_SNAKE_CASE__ : Dict = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: SCREAMING_SNAKE_CASE__ : str = best_score_hparams[model_dir]["length_penalty"] else: SCREAMING_SNAKE_CASE__ : Tuple = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # tokenizer config SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = { "langs": [src_lang, tgt_lang], "model_max_length": 10_24, "do_lower_case": do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # model SCREAMING_SNAKE_CASE__ : List[str] = chkpt["models"][0] SCREAMING_SNAKE_CASE__ : Dict = model.state_dict() # rename keys to start with 'model.' SCREAMING_SNAKE_CASE__ : str = OrderedDict(("model." + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys SCREAMING_SNAKE_CASE__ : List[str] = [ "model.model", "model.encoder.version", "model.decoder.version", "model.encoder_embed_tokens.weight", "model.decoder_embed_tokens.weight", "model.encoder.embed_positions._float_tensor", "model.decoder.embed_positions._float_tensor", ] for k in ignore_keys: model_state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = FSMTConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = FSMTForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) # check that it loads ok model_new.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) # save SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print("Conversion is done!" ) print("\nLast step is to upload the files to s3" ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fsmt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCamelCase : int = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
157
1
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput __UpperCAmelCase : List[Any] = "scheduler_config.json" class _snake_case ( _A ): _A = 1 _A = 2 _A = 3 _A = 4 _A = 5 _A = 6 _A = 7 _A = 8 _A = 9 _A = 10 _A = 11 _A = 12 _A = 13 _A = 14 @dataclass class _snake_case ( _A ): _A = 42 class _snake_case : _A = SCHEDULER_CONFIG_NAME _A = [] _A = True @classmethod def lowerCAmelCase_ ( cls ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase=False ,**UpperCamelCase ,) -> str: snake_case__ , snake_case__ , snake_case__ :str = cls.load_config( pretrained_model_name_or_path=UpperCamelCase ,subfolder=UpperCamelCase ,return_unused_kwargs=UpperCamelCase ,return_commit_hash=UpperCamelCase ,**UpperCamelCase ,) return cls.from_config(UpperCamelCase ,return_unused_kwargs=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = False ,**UpperCamelCase ) -> Dict: self.save_config(save_directory=UpperCamelCase ,push_to_hub=UpperCamelCase ,**UpperCamelCase ) @property def lowerCAmelCase_ ( self ) -> int: return self._get_compatibles() @classmethod def lowerCAmelCase_ ( cls ) -> Optional[int]: snake_case__ :Tuple = list(set([cls.__name__] + cls._compatibles ) ) snake_case__ :Dict = importlib.import_module(__name__.split("." )[0] ) snake_case__ :Optional[int] = [ getattr(UpperCamelCase ,UpperCamelCase ) for c in compatible_classes_str if hasattr(UpperCamelCase ,UpperCamelCase ) ] return compatible_classes
241
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case ( _A , unittest.TestCase ): _A = DDIMPipeline _A = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _A = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } _A = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _A = False def lowerCAmelCase_ ( self ) -> Any: torch.manual_seed(0 ) snake_case__ :List[str] = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("DownBlock2D", "AttnDownBlock2D") ,up_block_types=("AttnUpBlock2D", "UpBlock2D") ,) snake_case__ :int = DDIMScheduler() snake_case__ :List[Any] = {"unet": unet, "scheduler": scheduler} return components def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=0 ) -> Optional[Any]: if str(UpperCamelCase ).startswith("mps" ): snake_case__ :Dict = torch.manual_seed(UpperCamelCase ) else: snake_case__ :Union[str, Any] = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) snake_case__ :List[str] = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowerCAmelCase_ ( self ) -> int: snake_case__ :Tuple = "cpu" snake_case__ :int = self.get_dummy_components() snake_case__ :str = self.pipeline_class(**UpperCamelCase ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Optional[Any] = self.get_dummy_inputs(UpperCamelCase ) snake_case__ :Dict = pipe(**UpperCamelCase ).images snake_case__ :Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 32, 32, 3) ) snake_case__ :Tuple = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) snake_case__ :Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase ,1E-3 ) def lowerCAmelCase_ ( self ) -> Any: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCAmelCase_ ( self ) -> List[Any]: super().test_save_load_local(expected_max_difference=3E-3 ) def lowerCAmelCase_ ( self ) -> Tuple: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowerCAmelCase_ ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[int] = "google/ddpm-cifar10-32" snake_case__ :int = UNetaDModel.from_pretrained(UpperCamelCase ) snake_case__ :List[str] = DDIMScheduler() snake_case__ :Any = DDIMPipeline(unet=UpperCamelCase ,scheduler=UpperCamelCase ) ddim.to(UpperCamelCase ) ddim.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Dict = torch.manual_seed(0 ) snake_case__ :Optional[Any] = ddim(generator=UpperCamelCase ,eta=0.0 ,output_type="numpy" ).images snake_case__ :int = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case__ :str = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Any: snake_case__ :int = "google/ddpm-ema-bedroom-256" snake_case__ :Tuple = UNetaDModel.from_pretrained(UpperCamelCase ) snake_case__ :int = DDIMScheduler.from_pretrained(UpperCamelCase ) snake_case__ :Union[str, Any] = DDIMPipeline(unet=UpperCamelCase ,scheduler=UpperCamelCase ) ddpm.to(UpperCamelCase ) ddpm.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :int = torch.manual_seed(0 ) snake_case__ :Optional[int] = ddpm(generator=UpperCamelCase ,output_type="numpy" ).images snake_case__ :Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) snake_case__ :Optional[int] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
241
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowerCAmelCase = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowerCAmelCase = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" for tf_name, hf_name in patterns: lowercase__ = k.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return k def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = BigBirdPegasusConfig(**_SCREAMING_SNAKE_CASE ) lowercase__ = BigBirdPegasusForConditionalGeneration(_SCREAMING_SNAKE_CASE ) lowercase__ = torch_model.state_dict() lowercase__ = {} # separating decoder weights lowercase__ = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} lowercase__ = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): lowercase__ = [k.endswith(_SCREAMING_SNAKE_CASE ) for ending in KEYS_TO_IGNORE] if any(_SCREAMING_SNAKE_CASE ): continue lowercase__ = DECODER_PATTERNS lowercase__ = rename_state_dict_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): lowercase__ = v.T lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): lowercase__ = [k.endswith(_SCREAMING_SNAKE_CASE ) for ending in KEYS_TO_IGNORE] if any(_SCREAMING_SNAKE_CASE ): continue lowercase__ = REMAINING_PATTERNS lowercase__ = rename_state_dict_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): lowercase__ = v.T lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' lowercase__ = mapping['''model.embed_positions.weight'''] lowercase__ = mapping.pop('''model.embed_positions.weight''' ) lowercase__ , lowercase__ = torch_model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) lowercase__ = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = tf.train.list_variables(_SCREAMING_SNAKE_CASE ) lowercase__ = {} lowercase__ = ['''global_step'''] for name, shape in tqdm(_SCREAMING_SNAKE_CASE , desc='''converting tf checkpoint to dict''' ): lowercase__ = any(pat in name for pat in ignore_name ) if skip_key: continue lowercase__ = tf.train.load_variable(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = array return tf_weights def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = get_tf_weights_as_numpy(_SCREAMING_SNAKE_CASE ) lowercase__ = convert_bigbird_pegasus(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) torch_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase = parser.parse_args() lowerCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
702
lowerCAmelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = f'a bytes-like object is required, not \'{data.__class__.__name__}\'' raise TypeError(SCREAMING_SNAKE_CASE ) lowercase__ = ''''''.join(bin(SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data ) lowercase__ = len(SCREAMING_SNAKE_CASE ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase__ = B'''=''' * ((6 - len(SCREAMING_SNAKE_CASE ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(SCREAMING_SNAKE_CASE ) % 6) else: lowercase__ = B'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(SCREAMING_SNAKE_CASE ) , 6 ) ).encode() + padding ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = ( '''argument should be a bytes-like object or ASCII string, ''' f'not \'{encoded_data.__class__.__name__}\'' ) raise TypeError(SCREAMING_SNAKE_CASE ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): try: lowercase__ = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) lowercase__ = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase__ = encoded_data[:-padding] lowercase__ = ''''''.join( bin(B64_CHARSET.index(SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase__ = ''''''.join( bin(B64_CHARSET.index(SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data ) lowercase__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(SCREAMING_SNAKE_CASE ) , 8 ) ] return bytes(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
429
0
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets lowerCamelCase__ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" lowerCamelCase__ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" lowerCamelCase__ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def _SCREAMING_SNAKE_CASE ( UpperCamelCase : List[str] ): def remove_articles(UpperCamelCase : List[Any] ): A__ = re.compile(R"""\b(a|an|the)\b""" , re.UNICODE ) return re.sub(UpperCamelCase , """ """ , UpperCamelCase ) def white_space_fix(UpperCamelCase : int ): return " ".join(text.split() ) def remove_punc(UpperCamelCase : Union[str, Any] ): A__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCamelCase : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase ) ) ) ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase : int , UpperCamelCase : str ): return int(normalize_answer(UpperCamelCase ) == normalize_answer(UpperCamelCase ) ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase : Tuple , UpperCamelCase : Optional[int] ): A__ = [any(compute_exact(UpperCamelCase , UpperCamelCase ) for ref in refs ) for pred, refs in zip(UpperCamelCase , UpperCamelCase )] return (sum(UpperCamelCase ) / len(UpperCamelCase )) * 100 def _SCREAMING_SNAKE_CASE ( UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : str ): A__ = [rgram for rgrams in rgramslist for rgram in rgrams] A__ = Counter(UpperCamelCase ) A__ = Counter(UpperCamelCase ) A__ = Counter() for sgram, scount in sgramcounter.items(): A__ = scount * numref A__ = Counter(UpperCamelCase ) A__ = Counter() for cgram, ccount in cgramcounter.items(): A__ = ccount * numref # KEEP A__ = sgramcounter_rep & cgramcounter_rep A__ = keepgramcounter_rep & rgramcounter A__ = sgramcounter_rep & rgramcounter A__ = 0 A__ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A__ = 1 A__ = 1 if len(UpperCamelCase ) > 0: A__ = keeptmpscorea / len(UpperCamelCase ) if len(UpperCamelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) A__ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) A__ = 0 if keepscore_precision > 0 or keepscore_recall > 0: A__ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION A__ = sgramcounter_rep - cgramcounter_rep A__ = delgramcounter_rep - rgramcounter A__ = sgramcounter_rep - rgramcounter A__ = 0 A__ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A__ = 1 if len(UpperCamelCase ) > 0: A__ = deltmpscorea / len(UpperCamelCase ) # ADDITION A__ = set(UpperCamelCase ) - set(UpperCamelCase ) A__ = set(UpperCamelCase ) & set(UpperCamelCase ) A__ = set(UpperCamelCase ) - set(UpperCamelCase ) A__ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A__ = 1 A__ = 1 if len(UpperCamelCase ) > 0: A__ = addtmpscore / len(UpperCamelCase ) if len(UpperCamelCase ) > 0: A__ = addtmpscore / len(UpperCamelCase ) A__ = 0 if addscore_precision > 0 or addscore_recall > 0: A__ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def _SCREAMING_SNAKE_CASE ( UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : Dict ): A__ = len(UpperCamelCase ) A__ = ssent.split(""" """ ) A__ = csent.split(""" """ ) A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] for rsent in rsents: A__ = rsent.split(""" """ ) A__ = [] A__ = [] A__ = [] ragramslist.append(UpperCamelCase ) for i in range(0 , len(UpperCamelCase ) - 1 ): if i < len(UpperCamelCase ) - 1: A__ = ragrams[i] + """ """ + ragrams[i + 1] ragrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 2: A__ = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] ragrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 3: A__ = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] + """ """ + ragrams[i + 3] ragrams.append(UpperCamelCase ) ragramslist.append(UpperCamelCase ) ragramslist.append(UpperCamelCase ) ragramslist.append(UpperCamelCase ) for i in range(0 , len(UpperCamelCase ) - 1 ): if i < len(UpperCamelCase ) - 1: A__ = sagrams[i] + """ """ + sagrams[i + 1] sagrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 2: A__ = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] sagrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 3: A__ = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] + """ """ + sagrams[i + 3] sagrams.append(UpperCamelCase ) for i in range(0 , len(UpperCamelCase ) - 1 ): if i < len(UpperCamelCase ) - 1: A__ = cagrams[i] + """ """ + cagrams[i + 1] cagrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 2: A__ = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] cagrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 3: A__ = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] + """ """ + cagrams[i + 3] cagrams.append(UpperCamelCase ) ((A__) ,(A__) ,(A__)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) ((A__) ,(A__) ,(A__)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) ((A__) ,(A__) ,(A__)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) ((A__) ,(A__) ,(A__)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) A__ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 A__ = sum([delascore, delascore, delascore, delascore] ) / 4 A__ = sum([addascore, addascore, addascore, addascore] ) / 4 A__ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def _SCREAMING_SNAKE_CASE ( UpperCamelCase : int , UpperCamelCase : bool = True , UpperCamelCase : str = "13a" , UpperCamelCase : bool = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: A__ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: A__ = sacrebleu.metrics.bleu._get_tokenizer(UpperCamelCase )()(UpperCamelCase ) else: A__ = sacrebleu.TOKENIZERS[tokenizer]()(UpperCamelCase ) elif tokenizer == "moses": A__ = sacremoses.MosesTokenizer().tokenize(UpperCamelCase , return_str=UpperCamelCase , escape=UpperCamelCase ) elif tokenizer == "penn": A__ = sacremoses.MosesTokenizer().penn_tokenize(UpperCamelCase , return_str=UpperCamelCase ) else: A__ = sentence if not return_str: A__ = normalized_sent.split() return normalized_sent def _SCREAMING_SNAKE_CASE ( UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ): if not (len(UpperCamelCase ) == len(UpperCamelCase ) == len(UpperCamelCase )): raise ValueError("""Sources length must match predictions and references lengths.""" ) A__ = 0 for src, pred, refs in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): sari_score += SARIsent(normalize(UpperCamelCase ) , normalize(UpperCamelCase ) , [normalize(UpperCamelCase ) for sent in refs] ) A__ = sari_score / len(UpperCamelCase ) return 100 * sari_score def _SCREAMING_SNAKE_CASE ( UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Dict="exp" , UpperCamelCase : str=None , UpperCamelCase : List[str]=False , UpperCamelCase : int=False , UpperCamelCase : List[Any]=False , ): A__ = len(references[0] ) if any(len(UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) A__ = [[refs[i] for refs in references] for i in range(UpperCamelCase )] A__ = sacrebleu.corpus_bleu( UpperCamelCase , UpperCamelCase , smooth_method=UpperCamelCase , smooth_value=UpperCamelCase , force=UpperCamelCase , lowercase=UpperCamelCase , use_effective_order=UpperCamelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _UpperCamelCase ( datasets.Metric): def A (self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=[ """https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py""", """https://github.com/cocoxu/simplification/blob/master/SARI.py""", """https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py""", """https://github.com/mjpost/sacreBLEU""", ] , reference_urls=[ """https://www.aclweb.org/anthology/Q16-1029.pdf""", """https://github.com/mjpost/sacreBLEU""", """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" A__ = {} result.update({"""sari""": compute_sari(sources=lowerCamelCase__ , predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) result.update({"""sacrebleu""": compute_sacrebleu(predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) result.update({"""exact""": compute_em(predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) return result
574
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCamelCase ( __snake_case , unittest.TestCase): __lowerCamelCase = LongformerTokenizer __lowerCamelCase = True __lowerCamelCase = LongformerTokenizerFast __lowerCamelCase = True def A (self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] A__ = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) A__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] A__ = {"""unk_token""": """<unk>"""} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase__ ) ) def A (self , **lowerCamelCase__ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def A (self , **lowerCamelCase__ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def A (self , lowerCamelCase__ ): """simple docstring""" A__ = """lower newer""" A__ = """lower newer""" return input_text, output_text def A (self ): """simple docstring""" A__ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) A__ = """lower newer""" A__ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] A__ = tokenizer.tokenize(lowerCamelCase__ ) # , add_prefix_space=True) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) A__ = tokens + [tokenizer.unk_token] A__ = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) def A (self ): """simple docstring""" A__ = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=lowerCamelCase__ ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=lowerCamelCase__ ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def A (self ): """simple docstring""" A__ = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) A__ = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCamelCase__ ) A__ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCamelCase__ ) A__ = tokenizer.encode( """sequence builders""" , add_special_tokens=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) A__ = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) A__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) A__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ , lowerCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def A (self ): """simple docstring""" A__ = self.get_tokenizer() A__ = """Encode this sequence.""" A__ = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments A__ = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) A__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCamelCase__ , lowerCamelCase__ ) A__ = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) A__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) A__ = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) A__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCamelCase__ , lowerCamelCase__ ) # Testing spaces after special tokens A__ = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ )} ) # mask token has a left space A__ = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) A__ = """Encode <mask> sequence""" A__ = """Encode <mask>sequence""" A__ = tokenizer.encode(lowerCamelCase__ ) A__ = encoded.index(lowerCamelCase__ ) A__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) A__ = tokenizer.encode(lowerCamelCase__ ) A__ = encoded.index(lowerCamelCase__ ) A__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCamelCase__ , lowerCamelCase__ ) def A (self ): """simple docstring""" pass def A (self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): A__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) A__ = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) A__ = """A, <mask> AllenNLP sentence.""" A__ = tokenizer_r.encode_plus(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ ) A__ = tokenizer_p.encode_plus(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) A__ = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) A__ = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( lowerCamelCase__ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( lowerCamelCase__ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def A (self ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): A__ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ ) A__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) A__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , lowerCamelCase__ ) self.assertEqual(post_processor_state["""add_prefix_space"""] , lowerCamelCase__ ) self.assertEqual(post_processor_state["""trim_offsets"""] , lowerCamelCase__ ) def A (self ): """simple docstring""" # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): A__ = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` A__ = F"""{text_of_1_token} {text_of_1_token}""" A__ = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ ) A__ = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase__ ) + 1, len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) A__ = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ ) A__ = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase__ ) + 1, len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) A__ = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ ) A__ = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase__ ), len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) A__ = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ ) A__ = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase__ ), len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) A__ = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) A__ = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ ) A__ = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase__ ) + 1, 1 + len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) A__ = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ ) A__ = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase__ ), 1 + len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) A__ = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ ) A__ = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase__ ), 1 + len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , )
574
1
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def A__ ( self ): __lowerCAmelCase = inspect.getfile(accelerate.test_utils ) __lowerCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) __lowerCAmelCase = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def A__ ( self ): __lowerCAmelCase = F""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() __lowerCAmelCase = [sys.executable] + distributed_args execute_subprocess_async(_A , env=os.environ.copy() )
701
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class snake_case_ ( _a ): """simple docstring""" __UpperCAmelCase =42 class snake_case_ ( _a , _a ): """simple docstring""" __UpperCAmelCase =True @register_to_config def __init__( self , _A = 3 , _A = 3 , _A = ("DownEncoderBlock2D",) , _A = ("UpDecoderBlock2D",) , _A = (6_4,) , _A = 1 , _A = "silu" , _A = 4 , _A = 3_2 , _A = 3_2 , _A = 0.1_8215 , ): super().__init__() # pass init params to Encoder __lowerCAmelCase = Encoder( in_channels=_A , out_channels=_A , down_block_types=_A , block_out_channels=_A , layers_per_block=_A , act_fn=_A , norm_num_groups=_A , double_z=_A , ) # pass init params to Decoder __lowerCAmelCase = Decoder( in_channels=_A , out_channels=_A , up_block_types=_A , block_out_channels=_A , layers_per_block=_A , norm_num_groups=_A , act_fn=_A , ) __lowerCAmelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __lowerCAmelCase = nn.Convad(_A , _A , 1 ) __lowerCAmelCase = False __lowerCAmelCase = False # only relevant if vae tiling is enabled __lowerCAmelCase = self.config.sample_size __lowerCAmelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __lowerCAmelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowerCAmelCase = 0.25 def A__ ( self , _A , _A=False ): if isinstance(_A , (Encoder, Decoder) ): __lowerCAmelCase = value def A__ ( self , _A = True ): __lowerCAmelCase = use_tiling def A__ ( self ): self.enable_tiling(_A ) def A__ ( self ): __lowerCAmelCase = True def A__ ( self ): __lowerCAmelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A__ ( self ): __lowerCAmelCase = {} def fn_recursive_add_processors(_A , _A , _A ): if hasattr(_A , 'set_processor' ): __lowerCAmelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , _A , _A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A , _A , _A ) return processors def A__ ( self , _A ): __lowerCAmelCase = len(self.attn_processors.keys() ) if isinstance(_A , _A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A , _A , _A ): if hasattr(_A , 'set_processor' ): if not isinstance(_A , _A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , _A , _A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A , _A , _A ) def A__ ( self ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def A__ ( self , _A , _A = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_A , return_dict=_A ) if self.use_slicing and x.shape[0] > 1: __lowerCAmelCase = [self.encoder(_A ) for x_slice in x.split(1 )] __lowerCAmelCase = torch.cat(_A ) else: __lowerCAmelCase = self.encoder(_A ) __lowerCAmelCase = self.quant_conv(_A ) __lowerCAmelCase = DiagonalGaussianDistribution(_A ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_A ) def A__ ( self , _A , _A = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_A , return_dict=_A ) __lowerCAmelCase = self.post_quant_conv(_A ) __lowerCAmelCase = self.decoder(_A ) if not return_dict: return (dec,) return DecoderOutput(sample=_A ) @apply_forward_hook def A__ ( self , _A , _A = True ): if self.use_slicing and z.shape[0] > 1: __lowerCAmelCase = [self._decode(_A ).sample for z_slice in z.split(1 )] __lowerCAmelCase = torch.cat(_A ) else: __lowerCAmelCase = self._decode(_A ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_A ) def A__ ( self , _A , _A , _A ): __lowerCAmelCase = min(a.shape[2] , b.shape[2] , _A ) for y in range(_A ): __lowerCAmelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def A__ ( self , _A , _A , _A ): __lowerCAmelCase = min(a.shape[3] , b.shape[3] , _A ) for x in range(_A ): __lowerCAmelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def A__ ( self , _A , _A = True ): __lowerCAmelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowerCAmelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowerCAmelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowerCAmelCase = [] for i in range(0 , x.shape[2] , _A ): __lowerCAmelCase = [] for j in range(0 , x.shape[3] , _A ): __lowerCAmelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowerCAmelCase = self.encoder(_A ) __lowerCAmelCase = self.quant_conv(_A ) row.append(_A ) rows.append(_A ) __lowerCAmelCase = [] for i, row in enumerate(_A ): __lowerCAmelCase = [] for j, tile in enumerate(_A ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCAmelCase = self.blend_v(rows[i - 1][j] , _A , _A ) if j > 0: __lowerCAmelCase = self.blend_h(row[j - 1] , _A , _A ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_A , dim=3 ) ) __lowerCAmelCase = torch.cat(_A , dim=2 ) __lowerCAmelCase = DiagonalGaussianDistribution(_A ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_A ) def A__ ( self , _A , _A = True ): __lowerCAmelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowerCAmelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowerCAmelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowerCAmelCase = [] for i in range(0 , z.shape[2] , _A ): __lowerCAmelCase = [] for j in range(0 , z.shape[3] , _A ): __lowerCAmelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowerCAmelCase = self.post_quant_conv(_A ) __lowerCAmelCase = self.decoder(_A ) row.append(_A ) rows.append(_A ) __lowerCAmelCase = [] for i, row in enumerate(_A ): __lowerCAmelCase = [] for j, tile in enumerate(_A ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCAmelCase = self.blend_v(rows[i - 1][j] , _A , _A ) if j > 0: __lowerCAmelCase = self.blend_h(row[j - 1] , _A , _A ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_A , dim=3 ) ) __lowerCAmelCase = torch.cat(_A , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_A ) def A__ ( self , _A , _A = False , _A = True , _A = None , ): __lowerCAmelCase = sample __lowerCAmelCase = self.encode(_A ).latent_dist if sample_posterior: __lowerCAmelCase = posterior.sample(generator=_A ) else: __lowerCAmelCase = posterior.mode() __lowerCAmelCase = self.decode(_A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_A )
102
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ :Any = logging.get_logger(__name__) lowercase__ :Any = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : Any = 'decision_transformer' _A : Optional[Any] = ['past_key_values'] _A : Tuple = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Dict , __lowercase : Optional[int]=17 , __lowercase : Optional[Any]=4 , __lowercase : int=128 , __lowercase : Any=4_096 , __lowercase : Optional[Any]=True , __lowercase : Optional[int]=1 , __lowercase : Union[str, Any]=1_024 , __lowercase : List[str]=3 , __lowercase : Optional[Any]=1 , __lowercase : List[Any]=None , __lowercase : List[Any]="relu" , __lowercase : Union[str, Any]=0.1 , __lowercase : Any=0.1 , __lowercase : Union[str, Any]=0.1 , __lowercase : Union[str, Any]=1e-5 , __lowercase : Dict=0.0_2 , __lowercase : Tuple=True , __lowercase : Tuple=True , __lowercase : str=50_256 , __lowercase : List[str]=50_256 , __lowercase : List[Any]=False , __lowercase : Union[str, Any]=False , **__lowercase : List[str] , ): '''simple docstring''' __UpperCAmelCase : Tuple = state_dim __UpperCAmelCase : List[str] = act_dim __UpperCAmelCase : int = hidden_size __UpperCAmelCase : Tuple = max_ep_len __UpperCAmelCase : Tuple = action_tanh __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Optional[Any] = n_positions __UpperCAmelCase : Any = n_layer __UpperCAmelCase : Tuple = n_head __UpperCAmelCase : Union[str, Any] = n_inner __UpperCAmelCase : List[str] = activation_function __UpperCAmelCase : Optional[int] = resid_pdrop __UpperCAmelCase : List[str] = embd_pdrop __UpperCAmelCase : Optional[int] = attn_pdrop __UpperCAmelCase : Tuple = layer_norm_epsilon __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : Optional[int] = scale_attn_weights __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : List[str] = scale_attn_by_inverse_layer_idx __UpperCAmelCase : str = reorder_and_upcast_attn __UpperCAmelCase : Tuple = bos_token_id __UpperCAmelCase : List[Any] = eos_token_id super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
522
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() lowercase__ :List[Any] = logging.get_logger(__name__) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Optional[Any]: """simple docstring""" __UpperCAmelCase : Any = WavaVecaForSequenceClassification.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) __UpperCAmelCase : Any = downstream_dict['''projector.weight'''] __UpperCAmelCase : List[Any] = downstream_dict['''projector.bias'''] __UpperCAmelCase : str = downstream_dict['''model.post_net.linear.weight'''] __UpperCAmelCase : Dict = downstream_dict['''model.post_net.linear.bias'''] return model def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Optional[Any]: """simple docstring""" __UpperCAmelCase : List[Any] = WavaVecaForAudioFrameClassification.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) __UpperCAmelCase : str = downstream_dict['''model.linear.weight'''] __UpperCAmelCase : List[Any] = downstream_dict['''model.linear.bias'''] return model def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Dict: """simple docstring""" __UpperCAmelCase : Tuple = WavaVecaForXVector.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = downstream_dict['''connector.weight'''] __UpperCAmelCase : Optional[Any] = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __UpperCAmelCase : List[str] = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] __UpperCAmelCase : Optional[int] = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] __UpperCAmelCase : Dict = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __UpperCAmelCase : Union[str, Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __UpperCAmelCase : Dict = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __UpperCAmelCase : Tuple = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __UpperCAmelCase : Optional[Any] = downstream_dict['''objective.W'''] return model @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Union[str, Any]: """simple docstring""" __UpperCAmelCase : str = torch.load(UpperCAmelCase_ , map_location='''cpu''' ) __UpperCAmelCase : List[Any] = checkpoint['''Downstream'''] __UpperCAmelCase : int = WavaVecaConfig.from_pretrained(UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , do_normalize=UpperCAmelCase_ ) __UpperCAmelCase : int = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __UpperCAmelCase : int = convert_classification(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __UpperCAmelCase : Optional[int] = convert_diarization(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif arch.endswith('''ForXVector''' ): __UpperCAmelCase : int = convert_xvector(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: __UpperCAmelCase : Tuple = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(UpperCAmelCase_ ) hf_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ :Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') lowercase__ :Any = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
522
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _A : List[Any] = """data2vec-vision""" def __init__(self , lowerCAmelCase_=768 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=3072 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1e-1_2 , lowerCAmelCase_=224 , lowerCAmelCase_=16 , lowerCAmelCase_=3 , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=True , lowerCAmelCase_=[3, 5, 7, 11] , lowerCAmelCase_=[1, 2, 3, 6] , lowerCAmelCase_=True , lowerCAmelCase_=0.4 , lowerCAmelCase_=256 , lowerCAmelCase_=1 , lowerCAmelCase_=False , lowerCAmelCase_=255 , **lowerCAmelCase_ , ): super().__init__(**lowerCAmelCase_ ) A_ : Optional[Any] = hidden_size A_ : Dict = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : str = intermediate_size A_ : List[Any] = hidden_act A_ : int = hidden_dropout_prob A_ : Any = attention_probs_dropout_prob A_ : Tuple = initializer_range A_ : Union[str, Any] = layer_norm_eps A_ : Optional[Any] = image_size A_ : int = patch_size A_ : List[Any] = num_channels A_ : str = use_mask_token A_ : int = use_absolute_position_embeddings A_ : Any = use_relative_position_bias A_ : Union[str, Any] = use_shared_relative_position_bias A_ : str = layer_scale_init_value A_ : Optional[Any] = drop_path_rate A_ : List[str] = use_mean_pooling # decode head attributes (semantic segmentation) A_ : List[Any] = out_indices A_ : List[Any] = pool_scales # auxiliary head attributes (semantic segmentation) A_ : List[str] = use_auxiliary_head A_ : Dict = auxiliary_loss_weight A_ : List[str] = auxiliary_channels A_ : Optional[int] = auxiliary_num_convs A_ : Any = auxiliary_concat_input A_ : Union[str, Any] = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _A : Any = version.parse("""1.11""" ) @property def lowerCamelCase(self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase(self ): return 1e-4
480
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _A : List[str] = """deta""" _A : Tuple = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__(self , lowerCAmelCase_=None , lowerCAmelCase_=900 , lowerCAmelCase_=2048 , lowerCAmelCase_=6 , lowerCAmelCase_=2048 , lowerCAmelCase_=8 , lowerCAmelCase_=6 , lowerCAmelCase_=1024 , lowerCAmelCase_=8 , lowerCAmelCase_=0.0 , lowerCAmelCase_=True , lowerCAmelCase_="relu" , lowerCAmelCase_=256 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1.0 , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_="sine" , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=4 , lowerCAmelCase_=True , lowerCAmelCase_=300 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=1 , lowerCAmelCase_=5 , lowerCAmelCase_=2 , lowerCAmelCase_=1 , lowerCAmelCase_=1 , lowerCAmelCase_=5 , lowerCAmelCase_=2 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.25 , **lowerCAmelCase_ , ): if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A_ : Any = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A_ : List[str] = backbone_config.pop("""model_type""" ) A_ : List[str] = CONFIG_MAPPING[backbone_model_type] A_ : Tuple = config_class.from_dict(lowerCAmelCase_ ) A_ : List[Any] = backbone_config A_ : List[str] = num_queries A_ : List[Any] = max_position_embeddings A_ : int = d_model A_ : Optional[Any] = encoder_ffn_dim A_ : Optional[Any] = encoder_layers A_ : List[Any] = encoder_attention_heads A_ : int = decoder_ffn_dim A_ : Dict = decoder_layers A_ : Dict = decoder_attention_heads A_ : Optional[Any] = dropout A_ : str = attention_dropout A_ : Any = activation_dropout A_ : Union[str, Any] = activation_function A_ : int = init_std A_ : List[Any] = init_xavier_std A_ : List[Any] = encoder_layerdrop A_ : Any = auxiliary_loss A_ : Tuple = position_embedding_type # deformable attributes A_ : List[str] = num_feature_levels A_ : Tuple = encoder_n_points A_ : str = decoder_n_points A_ : List[Any] = two_stage A_ : Optional[Any] = two_stage_num_proposals A_ : Union[str, Any] = with_box_refine A_ : Optional[int] = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher A_ : List[Any] = class_cost A_ : str = bbox_cost A_ : Tuple = giou_cost # Loss coefficients A_ : int = mask_loss_coefficient A_ : Union[str, Any] = dice_loss_coefficient A_ : Union[str, Any] = bbox_loss_coefficient A_ : Optional[Any] = giou_loss_coefficient A_ : List[str] = eos_coefficient A_ : Optional[Any] = focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowerCamelCase(self ): return self.encoder_attention_heads @property def lowerCamelCase(self ): return self.d_model def lowerCamelCase(self ): A_ : str = copy.deepcopy(self.__dict__ ) A_ : int = self.backbone_config.to_dict() A_ : Dict = self.__class__.model_type return output
480
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : Optional[Any] = { 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = 'wavlm' def __init__( self : Dict , SCREAMING_SNAKE_CASE : List[Any]=3_2 , SCREAMING_SNAKE_CASE : List[str]=7_6_8 , SCREAMING_SNAKE_CASE : Dict=1_2 , SCREAMING_SNAKE_CASE : Tuple=1_2 , SCREAMING_SNAKE_CASE : List[str]=3_0_7_2 , SCREAMING_SNAKE_CASE : int="gelu" , SCREAMING_SNAKE_CASE : Any=0.1 , SCREAMING_SNAKE_CASE : str=0.1 , SCREAMING_SNAKE_CASE : List[Any]=0.1 , SCREAMING_SNAKE_CASE : Dict=0.0 , SCREAMING_SNAKE_CASE : int=0.1 , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : Optional[Any]=0.0_2 , SCREAMING_SNAKE_CASE : Any=1E-5 , SCREAMING_SNAKE_CASE : List[Any]="group" , SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE : List[str]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , SCREAMING_SNAKE_CASE : List[str]=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE : List[Any]=(1_0, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : int=1_2_8 , SCREAMING_SNAKE_CASE : str=1_6 , SCREAMING_SNAKE_CASE : Optional[Any]=3_2_0 , SCREAMING_SNAKE_CASE : Union[str, Any]=8_0_0 , SCREAMING_SNAKE_CASE : Union[str, Any]=False , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : Optional[int]=0.0_5 , SCREAMING_SNAKE_CASE : str=1_0 , SCREAMING_SNAKE_CASE : str=2 , SCREAMING_SNAKE_CASE : str=0.0 , SCREAMING_SNAKE_CASE : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE : Optional[int]=3_2_0 , SCREAMING_SNAKE_CASE : Optional[Any]=2 , SCREAMING_SNAKE_CASE : List[str]=0.1 , SCREAMING_SNAKE_CASE : Union[str, Any]=1_0_0 , SCREAMING_SNAKE_CASE : List[str]=2_5_6 , SCREAMING_SNAKE_CASE : Union[str, Any]=2_5_6 , SCREAMING_SNAKE_CASE : List[Any]=0.1 , SCREAMING_SNAKE_CASE : Any="mean" , SCREAMING_SNAKE_CASE : List[str]=False , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : Dict=2_5_6 , SCREAMING_SNAKE_CASE : Optional[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , SCREAMING_SNAKE_CASE : Union[str, Any]=(5, 3, 3, 1, 1) , SCREAMING_SNAKE_CASE : Optional[Any]=(1, 2, 3, 1, 1) , SCREAMING_SNAKE_CASE : Any=5_1_2 , SCREAMING_SNAKE_CASE : str=8_0 , SCREAMING_SNAKE_CASE : Any=0 , SCREAMING_SNAKE_CASE : Dict=1 , SCREAMING_SNAKE_CASE : Optional[int]=2 , SCREAMING_SNAKE_CASE : Tuple=False , SCREAMING_SNAKE_CASE : Dict=3 , SCREAMING_SNAKE_CASE : List[str]=2 , SCREAMING_SNAKE_CASE : Tuple=3 , SCREAMING_SNAKE_CASE : Union[str, Any]=None , **SCREAMING_SNAKE_CASE : List[Any] , ) -> Dict: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE , pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE ) lowerCAmelCase = hidden_size lowerCAmelCase = feat_extract_norm lowerCAmelCase = feat_extract_activation lowerCAmelCase = list(SCREAMING_SNAKE_CASE ) lowerCAmelCase = list(SCREAMING_SNAKE_CASE ) lowerCAmelCase = list(SCREAMING_SNAKE_CASE ) lowerCAmelCase = conv_bias lowerCAmelCase = num_buckets lowerCAmelCase = max_bucket_distance lowerCAmelCase = num_conv_pos_embeddings lowerCAmelCase = num_conv_pos_embedding_groups lowerCAmelCase = len(self.conv_dim ) lowerCAmelCase = num_hidden_layers lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = feat_proj_dropout lowerCAmelCase = final_dropout lowerCAmelCase = layerdrop lowerCAmelCase = layer_norm_eps lowerCAmelCase = initializer_range lowerCAmelCase = num_ctc_classes lowerCAmelCase = vocab_size lowerCAmelCase = do_stable_layer_norm lowerCAmelCase = use_weighted_layer_sum lowerCAmelCase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase = apply_spec_augment lowerCAmelCase = mask_time_prob lowerCAmelCase = mask_time_length lowerCAmelCase = mask_time_min_masks lowerCAmelCase = mask_feature_prob lowerCAmelCase = mask_feature_length # parameters for pretraining with codevector quantized representations lowerCAmelCase = num_codevectors_per_group lowerCAmelCase = num_codevector_groups lowerCAmelCase = contrastive_logits_temperature lowerCAmelCase = num_negatives lowerCAmelCase = codevector_dim lowerCAmelCase = proj_codevector_dim lowerCAmelCase = diversity_loss_weight # ctc loss lowerCAmelCase = ctc_loss_reduction lowerCAmelCase = ctc_zero_infinity # adapter lowerCAmelCase = add_adapter lowerCAmelCase = adapter_kernel_size lowerCAmelCase = adapter_stride lowerCAmelCase = num_adapter_layers lowerCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCAmelCase = list(SCREAMING_SNAKE_CASE ) lowerCAmelCase = list(SCREAMING_SNAKE_CASE ) lowerCAmelCase = list(SCREAMING_SNAKE_CASE ) lowerCAmelCase = xvector_output_dim @property def __A ( self : Dict ) -> List[str]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
649
'''simple docstring''' def __a ( A__ = 1000 ) -> int: lowerCAmelCase = 3 lowerCAmelCase = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"{solution() = }")
649
1
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer SCREAMING_SNAKE_CASE__ : Any = ["gpt2"] SCREAMING_SNAKE_CASE__ : str = "gpt2" if is_tf_available(): class A_ ( tf.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase ) -> Optional[Any]: super().__init__() a : Any = tokenizer a : Any = AutoConfig.from_pretrained(__UpperCAmelCase ) a : str = TFGPTaLMHeadModel.from_config(__UpperCAmelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def lowercase_ ( self , __UpperCAmelCase ) -> Dict: a : Tuple = self.tokenizer(__UpperCAmelCase ) a : List[Any] = tokenized['input_ids'].to_tensor() a : List[Any] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) a : Optional[Any] = self.model(input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase )['logits'] return outputs @require_tf @require_keras_nlp class A_ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> List[str]: super().setUp() a : Any = [GPTaTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] a : Union[str, Any] = [TFGPTaTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) a : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] a : Union[str, Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowercase_ ( self ) -> str: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: a : Optional[Any] = tokenizer([test_inputs] , return_tensors='tf' ) a : List[str] = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors a : List[Any] = python_outputs[key].numpy() a : str = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__UpperCAmelCase , tf.intaa ) == tf_outputs_values ) ) @slow def lowercase_ ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: a : Optional[Any] = tf.function(__UpperCAmelCase ) for test_inputs in self.test_sentences: a : Dict = tf.constant(__UpperCAmelCase ) a : List[str] = compiled_tokenizer(__UpperCAmelCase ) a : List[Any] = tf_tokenizer(__UpperCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowercase_ ( self ) -> Optional[Any]: for tf_tokenizer in self.tf_tokenizers: a : Union[str, Any] = ModelToSave(tokenizer=__UpperCAmelCase ) a : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) a : Union[str, Any] = model.serving(__UpperCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: a : Optional[int] = Path(__UpperCAmelCase ) / 'saved.model' tf.saved_model.save(__UpperCAmelCase , __UpperCAmelCase , signatures={'serving_default': model.serving} ) a : Union[str, Any] = tf.saved_model.load(__UpperCAmelCase ) a : Optional[int] = loaded_model.signatures['serving_default'](__UpperCAmelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def lowercase_ ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: a : Optional[int] = tf.convert_to_tensor([self.test_sentences[0]] ) a : Optional[Any] = tf_tokenizer(__UpperCAmelCase ) # Build model with some sample inputs a : Optional[int] = tf_tokenizer.get_config() a : str = TFGPTaTokenizer.from_config(__UpperCAmelCase ) a : Dict = model_from_config(__UpperCAmelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def lowercase_ ( self ) -> int: for tf_tokenizer in self.tf_tokenizers: # for the test to run a : Optional[Any] = 12_31_23 for max_length in [3, 5, 10_24]: a : Any = tf.convert_to_tensor([self.test_sentences[0]] ) a : List[Any] = tf_tokenizer(__UpperCAmelCase , max_length=__UpperCAmelCase ) a : Optional[int] = out['input_ids'].numpy().shape[1] assert out_length == max_length
509
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer SCREAMING_SNAKE_CASE__ : Any = ["gpt2"] SCREAMING_SNAKE_CASE__ : str = "gpt2" if is_tf_available(): class A_ ( tf.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase ) -> Optional[Any]: super().__init__() a : Any = tokenizer a : Any = AutoConfig.from_pretrained(__UpperCAmelCase ) a : str = TFGPTaLMHeadModel.from_config(__UpperCAmelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def lowercase_ ( self , __UpperCAmelCase ) -> Dict: a : Tuple = self.tokenizer(__UpperCAmelCase ) a : List[Any] = tokenized['input_ids'].to_tensor() a : List[Any] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) a : Optional[Any] = self.model(input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase )['logits'] return outputs @require_tf @require_keras_nlp class A_ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> List[str]: super().setUp() a : Any = [GPTaTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] a : Union[str, Any] = [TFGPTaTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) a : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] a : Union[str, Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowercase_ ( self ) -> str: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: a : Optional[Any] = tokenizer([test_inputs] , return_tensors='tf' ) a : List[str] = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors a : List[Any] = python_outputs[key].numpy() a : str = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__UpperCAmelCase , tf.intaa ) == tf_outputs_values ) ) @slow def lowercase_ ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: a : Optional[Any] = tf.function(__UpperCAmelCase ) for test_inputs in self.test_sentences: a : Dict = tf.constant(__UpperCAmelCase ) a : List[str] = compiled_tokenizer(__UpperCAmelCase ) a : List[Any] = tf_tokenizer(__UpperCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowercase_ ( self ) -> Optional[Any]: for tf_tokenizer in self.tf_tokenizers: a : Union[str, Any] = ModelToSave(tokenizer=__UpperCAmelCase ) a : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) a : Union[str, Any] = model.serving(__UpperCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: a : Optional[int] = Path(__UpperCAmelCase ) / 'saved.model' tf.saved_model.save(__UpperCAmelCase , __UpperCAmelCase , signatures={'serving_default': model.serving} ) a : Union[str, Any] = tf.saved_model.load(__UpperCAmelCase ) a : Optional[int] = loaded_model.signatures['serving_default'](__UpperCAmelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def lowercase_ ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: a : Optional[int] = tf.convert_to_tensor([self.test_sentences[0]] ) a : Optional[Any] = tf_tokenizer(__UpperCAmelCase ) # Build model with some sample inputs a : Optional[int] = tf_tokenizer.get_config() a : str = TFGPTaTokenizer.from_config(__UpperCAmelCase ) a : Dict = model_from_config(__UpperCAmelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def lowercase_ ( self ) -> int: for tf_tokenizer in self.tf_tokenizers: # for the test to run a : Optional[Any] = 12_31_23 for max_length in [3, 5, 10_24]: a : Any = tf.convert_to_tensor([self.test_sentences[0]] ) a : List[Any] = tf_tokenizer(__UpperCAmelCase , max_length=__UpperCAmelCase ) a : Optional[int] = out['input_ids'].numpy().shape[1] assert out_length == max_length
509
1
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ = 10**9 ): __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
155
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __magic_name__ = "<<<<<<< This should probably be modified because it mentions: " __magic_name__ = "=======\n>>>>>>>\n" __magic_name__ = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] __magic_name__ = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def _lowerCAmelCase ( UpperCamelCase_ ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" @staticmethod def snake_case_ ( lowerCAmelCase__): __SCREAMING_SNAKE_CASE = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to the HuggingFace Datasets folder.""") train_parser.set_defaults(func=lowerCAmelCase__) def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__): __SCREAMING_SNAKE_CASE = get_logger("""datasets-cli/converting""") __SCREAMING_SNAKE_CASE = tfds_path __SCREAMING_SNAKE_CASE = datasets_directory def snake_case_ ( self): if os.path.isdir(self._tfds_path): __SCREAMING_SNAKE_CASE = os.path.abspath(self._tfds_path) elif os.path.isfile(self._tfds_path): __SCREAMING_SNAKE_CASE = os.path.dirname(self._tfds_path) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""") __SCREAMING_SNAKE_CASE = os.path.abspath(self._datasets_directory) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}") __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = {} if os.path.isdir(self._tfds_path): __SCREAMING_SNAKE_CASE = os.listdir(lowerCAmelCase__) else: __SCREAMING_SNAKE_CASE = [os.path.basename(self._tfds_path)] for f_name in file_names: self._logger.info(f"Looking at file {f_name}") __SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , lowerCAmelCase__) if not os.path.isfile(lowerCAmelCase__) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""") continue with open(lowerCAmelCase__ , encoding="""utf-8""") as f: __SCREAMING_SNAKE_CASE = f.readlines() __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = [] for line in lines: __SCREAMING_SNAKE_CASE = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __SCREAMING_SNAKE_CASE = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here __SCREAMING_SNAKE_CASE = """""" continue elif "from absl import logging" in out_line: __SCREAMING_SNAKE_CASE = """from datasets import logging\n""" elif "getLogger" in out_line: __SCREAMING_SNAKE_CASE = out_line.replace("""getLogger""" , """get_logger""") elif any(expression in out_line for expression in TO_HIGHLIGHT): __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = list(filter(lambda lowerCAmelCase__: e in out_line , lowerCAmelCase__)) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCAmelCase__) + """\n""") out_lines.append(lowerCAmelCase__) out_lines.append(lowerCAmelCase__) continue else: for pattern, replacement in TO_CONVERT: __SCREAMING_SNAKE_CASE = re.sub(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __SCREAMING_SNAKE_CASE = re.match(R"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , lowerCAmelCase__) tfds_imports.extend(imp.strip() for imp in match.group(1).split(""",""")) __SCREAMING_SNAKE_CASE = """from . import """ + match.group(1) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}") if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __SCREAMING_SNAKE_CASE = True out_lines.append(lowerCAmelCase__) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __SCREAMING_SNAKE_CASE = f_name.replace(""".py""" , """""") __SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , lowerCAmelCase__) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__) self._logger.info(f"Adding directory {output_dir}") imports_to_builder_map.update({imp: output_dir for imp in tfds_imports}) else: # Utilities will be moved at the end utils_files.append(lowerCAmelCase__) if needs_manual_update: with_manual_update.append(lowerCAmelCase__) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""") as f: f.writelines(lowerCAmelCase__) self._logger.info(f"Converted in {output_file}") for utils_file in utils_files: try: __SCREAMING_SNAKE_CASE = os.path.basename(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = imports_to_builder_map[f_name.replace(""".py""" , """""")] self._logger.info(f"Moving {dest_folder} to {utils_file}") shutil.copy(lowerCAmelCase__ , lowerCAmelCase__) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually.") if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.")
155
1
'''simple docstring''' import gc import threading import time import psutil import torch class lowerCamelCase_ : def __init__( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = psutil.Process() UpperCAmelCase__ : int = False def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = -1 while True: UpperCAmelCase__ : Dict = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Tuple = threading.Thread(target=self.peak_monitor ) UpperCAmelCase__ : List[Any] = True self.thread.start() def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Tuple = False self.thread.join() return self.cpu_memory_peak UpperCamelCase__ = PeakCPUMemory() def a__ ( ) -> Dict: # Time UpperCAmelCase__ : str = {'''time''': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem UpperCAmelCase__ : str = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): UpperCAmelCase__ : str = torch.cuda.memory_allocated(lowerCAmelCase__ ) torch.cuda.reset_peak_memory_stats() return measures def a__ ( lowerCAmelCase__ ) -> Optional[Any]: # Time UpperCAmelCase__ : Optional[Any] = {'''time''': time.time() - start_measures['''time''']} gc.collect() torch.cuda.empty_cache() # CPU mem UpperCAmelCase__ : str = (psutil.Process().memory_info().rss - start_measures['''cpu''']) / 2**20 UpperCAmelCase__ : str = (cpu_peak_tracker.stop() - start_measures['''cpu''']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): UpperCAmelCase__ : Optional[Any] = (torch.cuda.memory_allocated(lowerCAmelCase__ ) - start_measures[str(lowerCAmelCase__ )]) / 2**20 UpperCAmelCase__ : List[Any] = (torch.cuda.max_memory_allocated(lowerCAmelCase__ ) - start_measures[str(lowerCAmelCase__ )]) / 2**20 return measures def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> int: print(F"""{description}:""" ) print(F"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(lowerCAmelCase__ )]:.2f}MiB""" ) UpperCAmelCase__ : Optional[Any] = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
703
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch UpperCamelCase__ = logging.get_logger(__name__) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = ['pixel_values'] def __init__( self : Tuple , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , **_A : List[str] , ): '''simple docstring''' super().__init__(**_A ) UpperCAmelCase__ : List[Any] = size if size is not None else {'''shortest_edge''': 224} UpperCAmelCase__ : Optional[Any] = get_size_dict(_A , default_to_square=_A ) UpperCAmelCase__ : Optional[int] = crop_size if crop_size is not None else {'''height''': 256, '''width''': 256} UpperCAmelCase__ : Tuple = get_size_dict(_A , param_name='''crop_size''' ) UpperCAmelCase__ : Tuple = do_resize UpperCAmelCase__ : Union[str, Any] = size UpperCAmelCase__ : Tuple = resample UpperCAmelCase__ : Optional[Any] = do_rescale UpperCAmelCase__ : Optional[int] = rescale_factor UpperCAmelCase__ : int = do_center_crop UpperCAmelCase__ : Tuple = crop_size UpperCAmelCase__ : List[str] = do_flip_channel_order def lowercase_ ( self : List[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PIL.Image.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): '''simple docstring''' UpperCAmelCase__ : Tuple = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase__ : Dict = get_resize_output_image_size(_A , size=size['''shortest_edge'''] , default_to_square=_A ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def lowercase_ ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def lowercase_ ( self : Optional[Any] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[int] , ): '''simple docstring''' return rescale(_A , scale=_A , data_format=_A , **_A ) def lowercase_ ( self : Union[str, Any] , _A : np.ndarray , _A : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' return flip_channel_order(_A , data_format=_A ) def lowercase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : List[Any] , ): '''simple docstring''' UpperCAmelCase__ : Any = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : Any = resample if resample is not None else self.resample UpperCAmelCase__ : str = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : str = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ : Tuple = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCAmelCase__ : Dict = size if size is not None else self.size UpperCAmelCase__ : Any = get_size_dict(_A , default_to_square=_A ) UpperCAmelCase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ : List[Any] = get_size_dict(_A , param_name='''crop_size''' ) UpperCAmelCase__ : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase__ : Union[str, Any] = [to_numpy_array(_A ) for image in images] if do_resize: UpperCAmelCase__ : List[str] = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: UpperCAmelCase__ : int = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: UpperCAmelCase__ : Any = [self.rescale(image=_A , scale=_A ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCAmelCase__ : Optional[Any] = [self.flip_channel_order(image=_A ) for image in images] UpperCAmelCase__ : Any = [to_channel_dimension_format(_A , _A ) for image in images] UpperCAmelCase__ : List[str] = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A ) def lowercase_ ( self : Dict , _A : Dict , _A : List[Tuple] = None ): '''simple docstring''' UpperCAmelCase__ : int = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_A ) != len(_A ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_A ): UpperCAmelCase__ : int = target_sizes.numpy() UpperCAmelCase__ : Any = [] for idx in range(len(_A ) ): UpperCAmelCase__ : List[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_A ) UpperCAmelCase__ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_A ) else: UpperCAmelCase__ : Optional[Any] = logits.argmax(dim=1 ) UpperCAmelCase__ : List[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
312
0
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin A__ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Optional[Any] = BartphoTokenizer __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : List[Any] = True def __lowerCamelCase ( self :Dict ): super().setUp() snake_case__ : Any = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] snake_case__ : Optional[Any] = dict(zip(__lowercase ,range(len(__lowercase ) ) ) ) snake_case__ : Union[str, Any] = {'''unk_token''': '''<unk>'''} snake_case__ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) snake_case__ : Any = BartphoTokenizer(__lowercase ,self.monolingual_vocab_file ,**self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self :Optional[Any] ,**__lowercase :Dict ): kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname ,**__lowercase ) def __lowerCamelCase ( self :List[str] ,__lowercase :List[Any] ): snake_case__ : str = '''This is a là test''' snake_case__ : List[str] = '''This is a<unk><unk> test''' return input_text, output_text def __lowerCamelCase ( self :Tuple ): snake_case__ : Tuple = BartphoTokenizer(__lowercase ,self.monolingual_vocab_file ,**self.special_tokens_map ) snake_case__ : Dict = '''This is a là test''' snake_case__ : int = '''▁This ▁is ▁a ▁l à ▁t est'''.split() snake_case__ : Dict = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase ,__lowercase ) snake_case__ : int = tokens + [tokenizer.unk_token] snake_case__ : Optional[int] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) ,__lowercase )
252
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
252
1
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def A (): _lowerCAmelCase = { """repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""], """path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""], """content""": ["""a """ * 20, """a """ * 30, """b """ * 7], } _lowerCAmelCase = Dataset.from_dict(__lowerCamelCase ) return dataset class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = get_dataset() _lowerCAmelCase = make_duplicate_clusters(_lowercase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = get_dataset() _lowerCAmelCase , _lowerCAmelCase = deduplicate_dataset(_lowercase ) self.assertEqual(len(_lowercase ) , 2 ) print(_lowercase ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , _lowercase )
162
'''simple docstring''' def A (__lowerCamelCase :int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase = f'Input value of [number={number}] must be an integer' raise TypeError(__lowerCamelCase ) if number < 1: _lowerCAmelCase = f'Input value of [number={number}] must be > 0' raise ValueError(__lowerCamelCase ) _lowerCAmelCase = 1 for i in range(1 , __lowerCamelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
162
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : List[str] = {"""vocab_file""": """spiece.model"""} a__ : List[str] = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } a__ : Optional[Any] = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } a__ : Union[str, Any] = """▁""" class __magic_name__ ( _UpperCamelCase ): UpperCamelCase : List[Any] = VOCAB_FILES_NAMES UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __magic_name__ , __magic_name__=True , __magic_name__=True , __magic_name__=False , __magic_name__="[CLS]" , __magic_name__="[SEP]" , __magic_name__="<unk>" , __magic_name__="[SEP]" , __magic_name__="<pad>" , __magic_name__="[CLS]" , __magic_name__="[MASK]" , __magic_name__ = None , **__magic_name__ , ): """simple docstring""" _lowerCAmelCase = ( AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ , normalized=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token ) _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__magic_name__ , remove_space=__magic_name__ , keep_accents=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__magic_name__ ) @property def _lowerCamelCase ( self ): """simple docstring""" return len(self.sp_model ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" if self.remove_space: _lowerCAmelCase = ' '.join(inputs.strip().split() ) else: _lowerCAmelCase = inputs _lowerCAmelCase = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: _lowerCAmelCase = unicodedata.normalize('NFKD' , __magic_name__ ) _lowerCAmelCase = ''.join([c for c in outputs if not unicodedata.combining(__magic_name__ )] ) if self.do_lower_case: _lowerCAmelCase = outputs.lower() return outputs def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase = self.preprocess_text(__magic_name__ ) _lowerCAmelCase = self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) _lowerCAmelCase = [] for piece in pieces: if len(__magic_name__ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(__magic_name__ , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase = cur_pieces[1:] else: _lowerCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__magic_name__ ) else: new_pieces.append(__magic_name__ ) return new_pieces def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" return self.sp_model.PieceToId(__magic_name__ ) def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" return self.sp_model.IdToPiece(__magic_name__ ) def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = '' _lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__magic_name__ ) + token _lowerCAmelCase = True _lowerCAmelCase = [] else: current_sub_tokens.append(__magic_name__ ) _lowerCAmelCase = False out_string += self.sp_model.decode(__magic_name__ ) return out_string.strip() def _lowerCamelCase ( self , __magic_name__ , __magic_name__ = None ): """simple docstring""" _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self , __magic_name__ , __magic_name__ = None , __magic_name__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) if token_ids_a is not None: return [1] + ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1] return [1] + ([0] * len(__magic_name__ )) + [1] def _lowerCamelCase ( self , __magic_name__ , __magic_name__ = None ): """simple docstring""" _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self , __magic_name__ , __magic_name__ = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase = os.path.join( __magic_name__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , 'wb' ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,)
589
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __magic_name__ ( _UpperCamelCase ,unittest.TestCase ): UpperCamelCase : Optional[Any] = XLMRobertaTokenizer UpperCamelCase : Any = XLMRobertaTokenizerFast UpperCamelCase : Tuple = True UpperCamelCase : Tuple = True def _lowerCamelCase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase = XLMRobertaTokenizer(__magic_name__ , keep_accents=__magic_name__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = '<pad>' _lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(__magic_name__ ) , 1_0_0_2 ) def _lowerCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_2 ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = XLMRobertaTokenizer(__magic_name__ , keep_accents=__magic_name__ ) _lowerCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(__magic_name__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _lowerCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __magic_name__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCAmelCase = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual( __magic_name__ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _lowerCAmelCase = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def _lowerCamelCase ( self ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCAmelCase = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) _lowerCAmelCase = self.tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = tokenizer_r.save_pretrained(__magic_name__ ) _lowerCAmelCase = tokenizer_p.save_pretrained(__magic_name__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCAmelCase = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__magic_name__ , __magic_name__ ) # Checks everything loads correctly in the same way _lowerCAmelCase = tokenizer_r.from_pretrained(__magic_name__ ) _lowerCAmelCase = tokenizer_p.from_pretrained(__magic_name__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__magic_name__ , __magic_name__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__magic_name__ ) # Save tokenizer rust, legacy_format=True _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = tokenizer_r.save_pretrained(__magic_name__ , legacy_format=__magic_name__ ) _lowerCAmelCase = tokenizer_p.save_pretrained(__magic_name__ ) # Checks it save with the same files self.assertSequenceEqual(__magic_name__ , __magic_name__ ) # Checks everything loads correctly in the same way _lowerCAmelCase = tokenizer_r.from_pretrained(__magic_name__ ) _lowerCAmelCase = tokenizer_p.from_pretrained(__magic_name__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__magic_name__ , __magic_name__ ) ) shutil.rmtree(__magic_name__ ) # Save tokenizer rust, legacy_format=False _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = tokenizer_r.save_pretrained(__magic_name__ , legacy_format=__magic_name__ ) _lowerCAmelCase = tokenizer_p.save_pretrained(__magic_name__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCAmelCase = tokenizer_r.from_pretrained(__magic_name__ ) _lowerCAmelCase = tokenizer_p.from_pretrained(__magic_name__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__magic_name__ , __magic_name__ ) ) shutil.rmtree(__magic_name__ ) @cached_property def _lowerCamelCase ( self ): """simple docstring""" return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def _lowerCamelCase ( self ): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__magic_name__ , f.name ) _lowerCAmelCase = XLMRobertaTokenizer(f.name , keep_accents=__magic_name__ ) _lowerCAmelCase = pickle.dumps(__magic_name__ ) pickle.loads(__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = 'I was born in 92000, and this is falsé.' _lowerCAmelCase = tokenizer.tokenize(__magic_name__ ) _lowerCAmelCase = rust_tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) _lowerCAmelCase = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) _lowerCAmelCase = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = tokenizer.encode(__magic_name__ ) _lowerCAmelCase = rust_tokenizer.encode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'Hello World!' _lowerCAmelCase = [0, 3_5_3_7_8, 6_6_6_1, 3_8, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) _lowerCAmelCase = [ 0, 3_2_9_3, 8_3, 1_0, 4_5_5_2, 4_9_8_9, 7_9_8_6, 6_7_8, 1_0, 5_9_1_5, 1_1_1, 1_7_9_4_5_9, 1_2_4_8_5_0, 4, 6_0_4_4, 2_3_7, 1_2, 6, 5, 6, 4, 6_7_8_0, 7_0_5, 1_5, 1_3_8_8, 4_4, 3_7_8, 1_0_1_1_4, 7_1_1, 1_5_2, 2_0, 6, 5, 2_2_3_7_6, 6_4_2, 1_2_2_1, 1_5_1_9_0, 3_4_1_5_3, 4_5_0, 5_6_0_8, 9_5_9, 1_1_1_9, 5_7_7_0_2, 1_3_6, 1_8_6, 4_7, 1_0_9_8, 2_9_3_6_7, 4_7, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_0_4_4, 2_3_7, 6_2_8_4, 5_0_9_0_1, 5_2_8, 3_1, 9_0, 3_4, 9_2_7, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = {'input_ids': [[0, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [0, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
589
1
import os def UpperCamelCase__ ( ) -> Dict: """simple docstring""" with open(os.path.dirname(UpperCAmelCase ) + '''/p022_names.txt''' ) as file: _a : Optional[Any] = str(file.readlines()[0] ) _a : Tuple = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() _a : Tuple = 0 _a : int = 0 for i, name in enumerate(UpperCAmelCase ): for letter in name: name_score += ord(UpperCAmelCase ) - 64 total_score += (i + 1) * name_score _a : List[str] = 0 return total_score if __name__ == "__main__": print(solution())
307
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar __lowerCamelCase = TypeVar('T') __lowerCamelCase = TypeVar('U') class UpperCamelCase_ ( Generic[T, U] ): def __init__( self , lowercase , lowercase ) -> Any: _a : Optional[Any] = key _a : List[str] = val _a : DoubleLinkedListNode[T, U] | None = None _a : DoubleLinkedListNode[T, U] | None = None def __repr__( self ) -> str: return ( F'Node: key: {self.key}, val: {self.val}, ' F'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class UpperCamelCase_ ( Generic[T, U] ): def __init__( self ) -> None: _a : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase , lowercase ) _a : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase , lowercase ) _a , _a : Optional[Any] = self.rear, self.head def __repr__( self ) -> str: _a : List[Any] = ['''DoubleLinkedList'''] _a : List[str] = self.head while node.next is not None: rep.append(str(lowercase ) ) _a : Any = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase ) def snake_case__( self , lowercase ) -> None: _a : int = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _a : str = node _a : List[str] = previous _a : List[Any] = node _a : Tuple = self.rear def snake_case__( self , lowercase ) -> DoubleLinkedListNode[T, U] | None: if node.prev is None or node.next is None: return None _a : str = node.next _a : Tuple = node.prev _a : Dict = None _a : List[str] = None return node class UpperCamelCase_ ( Generic[T, U] ): lowercase = {} def __init__( self , lowercase ) -> int: _a : DoubleLinkedList[T, U] = DoubleLinkedList() _a : Optional[Any] = capacity _a : Dict = 0 _a : Optional[int] = 0 _a : Dict = 0 _a : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ) -> str: return ( F'CacheInfo(hits={self.hits}, misses={self.miss}, ' F'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self , lowercase ) -> bool: return key in self.cache def snake_case__( self , lowercase ) -> U | None: # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 _a : DoubleLinkedListNode[T, U] = self.cache[key] _a : Dict = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase ) return node.val self.miss += 1 return None def snake_case__( self , lowercase , lowercase ) -> None: if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _a : Optional[Any] = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _a : Union[str, Any] = DoubleLinkedListNode(lowercase , lowercase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _a : List[str] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _a : Dict = value self.list.add(lowercase ) @classmethod def snake_case__( cls , lowercase = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: def cache_decorator_inner(lowercase ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase ) -> U: if func not in cls.decorator_function_to_instance_map: _a : str = LRUCache(lowercase ) _a : List[str] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _a : Optional[int] = func(*lowercase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase , '''cache_info''' , lowercase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
307
1
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : Optional[Any] = (DDPMParallelScheduler,) def lowerCamelCase_ ( self : int , **snake_case : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**snake_case ) return config def lowerCamelCase_ ( self : Dict ): '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case , beta_end=snake_case ) def lowerCamelCase_ ( self : str ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' self.check_over_configs(thresholding=snake_case ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case , prediction_type=snake_case , sample_max_value=snake_case , ) def lowerCamelCase_ ( self : str ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=snake_case ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : int = scheduler_class(**snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**snake_case ) SCREAMING_SNAKE_CASE : List[str] = len(snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_model() SCREAMING_SNAKE_CASE : int = self.dummy_sample_deter SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter + 0.1 SCREAMING_SNAKE_CASE : Dict = self.dummy_sample_deter - 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = samplea.shape[0] SCREAMING_SNAKE_CASE : str = torch.stack([samplea, samplea, samplea] , dim=0 ) SCREAMING_SNAKE_CASE : Tuple = torch.arange(snake_case )[0:3, None].repeat(1 , snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) SCREAMING_SNAKE_CASE : Dict = scheduler.batch_step_no_noise(snake_case , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.sum(torch.abs(snake_case ) ) SCREAMING_SNAKE_CASE : str = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Dict = scheduler_class(**snake_case ) SCREAMING_SNAKE_CASE : Tuple = len(snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_sample_deter SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE : List[str] = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE : Any = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample SCREAMING_SNAKE_CASE : Tuple = pred_prev_sample SCREAMING_SNAKE_CASE : List[str] = torch.sum(torch.abs(snake_case ) ) SCREAMING_SNAKE_CASE : Dict = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE : Any = scheduler_class(**snake_case ) SCREAMING_SNAKE_CASE : str = len(snake_case ) SCREAMING_SNAKE_CASE : Dict = self.dummy_model() SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE : Any = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE : List[Any] = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample SCREAMING_SNAKE_CASE : Tuple = pred_prev_sample SCREAMING_SNAKE_CASE : List[str] = torch.sum(torch.abs(snake_case ) ) SCREAMING_SNAKE_CASE : List[Any] = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Any = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Dict = scheduler_class(**snake_case ) SCREAMING_SNAKE_CASE : Any = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=snake_case ) SCREAMING_SNAKE_CASE : str = scheduler.timesteps for i, timestep in enumerate(snake_case ): if i == len(snake_case ) - 1: SCREAMING_SNAKE_CASE : Optional[int] = -1 else: SCREAMING_SNAKE_CASE : Union[str, Any] = timesteps[i + 1] SCREAMING_SNAKE_CASE : Tuple = scheduler.previous_timestep(snake_case ) SCREAMING_SNAKE_CASE : int = prev_t.item() self.assertEqual(snake_case , snake_case ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**snake_case ) SCREAMING_SNAKE_CASE : Any = [100, 87, 50, 51, 0] with self.assertRaises(snake_case , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=snake_case ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE : str = scheduler_class(**snake_case ) SCREAMING_SNAKE_CASE : List[Any] = [100, 87, 50, 1, 0] SCREAMING_SNAKE_CASE : Optional[Any] = len(snake_case ) with self.assertRaises(snake_case , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=snake_case , timesteps=snake_case ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : str = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**snake_case ) SCREAMING_SNAKE_CASE : List[str] = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=snake_case )
352
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def __a ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: # load base model SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors SCREAMING_SNAKE_CASE : Any = load_file(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: SCREAMING_SNAKE_CASE : Dict = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) SCREAMING_SNAKE_CASE : Tuple = pipeline.text_encoder else: SCREAMING_SNAKE_CASE : Any = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) SCREAMING_SNAKE_CASE : Dict = pipeline.unet # find the target layer SCREAMING_SNAKE_CASE : Union[str, Any] = layer_infos.pop(0 ) while len(__lowerCAmelCase ) > -1: try: SCREAMING_SNAKE_CASE : List[Any] = curr_layer.__getattr__(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE : Optional[int] = layer_infos.pop(0 ) elif len(__lowerCAmelCase ) == 0: break except Exception: if len(__lowerCAmelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: SCREAMING_SNAKE_CASE : List[str] = layer_infos.pop(0 ) SCREAMING_SNAKE_CASE : str = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(__lowerCAmelCase ) else: pair_keys.append(__lowerCAmelCase ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: SCREAMING_SNAKE_CASE : Any = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) SCREAMING_SNAKE_CASE : str = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__lowerCAmelCase , __lowerCAmelCase ).unsqueeze(2 ).unsqueeze(3 ) else: SCREAMING_SNAKE_CASE : List[Any] = state_dict[pair_keys[0]].to(torch.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__lowerCAmelCase , __lowerCAmelCase ) # update visited list for item in pair_keys: visited.append(__lowerCAmelCase ) return pipeline if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _lowerCamelCase : List[Any] = parser.parse_args() _lowerCamelCase : List[str] = args.base_model_path _lowerCamelCase : str = args.checkpoint_path _lowerCamelCase : Dict = args.dump_path _lowerCamelCase : Any = args.lora_prefix_unet _lowerCamelCase : List[Any] = args.lora_prefix_text_encoder _lowerCamelCase : List[Any] = args.alpha _lowerCamelCase : Optional[Any] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _lowerCamelCase : Optional[Any] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
352
1
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: _lowerCAmelCase : Any = None try: import msvcrt except ImportError: _lowerCAmelCase : Tuple = None try: import fcntl except ImportError: _lowerCAmelCase : Any = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _lowerCAmelCase : List[str] = OSError # Data # ------------------------------------------------ _lowerCAmelCase : Optional[Any] = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] _lowerCAmelCase : Union[str, Any] = "3.0.12" _lowerCAmelCase : Dict = None def _A ( ): global _logger snake_case__ : Tuple = _logger or logging.getLogger(__name__ ) return _logger class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase ) -> str: """simple docstring""" snake_case__ : int = lock_file return None def __str__( self ) -> str: """simple docstring""" snake_case__ : Dict = f'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class snake_case : """simple docstring""" def __init__( self , lowerCamelCase ) -> Dict: """simple docstring""" snake_case__ : str = lock return None def __enter__( self ) -> Tuple: """simple docstring""" return self.lock def __exit__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" self.lock.release() return None class snake_case : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=-1 , lowerCamelCase=None ) -> int: """simple docstring""" snake_case__ : Tuple = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long snake_case__ : int = self.hash_filename_if_too_long(lowerCamelCase , lowerCamelCase ) # The path to the lock file. snake_case__ : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. snake_case__ : Dict = None # The default timeout value. snake_case__ : Any = timeout # We use this lock primarily for the lock counter. snake_case__ : int = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. snake_case__ : Any = 0 return None @property def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" return self._lock_file @property def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" return self._timeout @timeout.setter def lowercase__ ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" snake_case__ : Optional[int] = float(lowerCamelCase ) return None def lowercase__ ( self ) -> int: """simple docstring""" raise NotImplementedError() def lowercase__ ( self ) -> Optional[int]: """simple docstring""" raise NotImplementedError() @property def lowercase__ ( self ) -> Dict: """simple docstring""" return self._lock_file_fd is not None def lowercase__ ( self , lowerCamelCase=None , lowerCamelCase=0.05 ) -> str: """simple docstring""" if timeout is None: snake_case__ : Dict = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 snake_case__ : Tuple = id(self ) snake_case__ : Any = self._lock_file snake_case__ : int = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(f'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( f'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(lowerCamelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: snake_case__ : List[Any] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowercase__ ( self , lowerCamelCase=False ) -> str: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: snake_case__ : str = id(self ) snake_case__ : Tuple = self._lock_file logger().debug(f'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() snake_case__ : List[Any] = 0 logger().debug(f'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self ) -> Optional[Any]: """simple docstring""" self.acquire() return self def __exit__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: """simple docstring""" self.release() return None def __del__( self ) -> Any: """simple docstring""" self.release(force=lowerCamelCase ) return None def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> str: """simple docstring""" snake_case__ : List[str] = os.path.basename(lowerCamelCase ) if len(lowerCamelCase ) > max_length and max_length > 0: snake_case__ : int = os.path.dirname(lowerCamelCase ) snake_case__ : List[str] = str(hash(lowerCamelCase ) ) snake_case__ : Optional[int] = filename[: max_length - len(lowerCamelCase ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(lowerCamelCase , lowerCamelCase ) else: return path class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=-1 , lowerCamelCase=None ) -> List[str]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(lowerCamelCase , timeout=lowerCamelCase , max_filename_length=lowerCamelCase ) snake_case__ : int = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ : Union[str, Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: snake_case__ : Optional[Any] = os.open(self._lock_file , lowerCamelCase ) except OSError: pass else: try: msvcrt.locking(lowerCamelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowerCamelCase ) else: snake_case__ : Optional[Any] = fd return None def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ : List[str] = self._lock_file_fd snake_case__ : Tuple = None msvcrt.locking(lowerCamelCase , msvcrt.LK_UNLCK , 1 ) os.close(lowerCamelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=-1 , lowerCamelCase=None ) -> Dict: """simple docstring""" snake_case__ : str = os.statvfs(os.path.dirname(lowerCamelCase ) ).f_namemax super().__init__(lowerCamelCase , timeout=lowerCamelCase , max_filename_length=lowerCamelCase ) def lowercase__ ( self ) -> Tuple: """simple docstring""" snake_case__ : int = os.O_RDWR | os.O_CREAT | os.O_TRUNC snake_case__ : Any = os.open(self._lock_file , lowerCamelCase ) try: fcntl.flock(lowerCamelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowerCamelCase ) else: snake_case__ : Optional[Any] = fd return None def lowercase__ ( self ) -> int: """simple docstring""" snake_case__ : Tuple = self._lock_file_fd snake_case__ : int = None fcntl.flock(lowerCamelCase , fcntl.LOCK_UN ) os.close(lowerCamelCase ) return None class snake_case ( __lowerCamelCase ): """simple docstring""" def lowercase__ ( self ) -> List[Any]: """simple docstring""" snake_case__ : Optional[int] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: snake_case__ : List[Any] = os.open(self._lock_file , lowerCamelCase ) except OSError: pass else: snake_case__ : Any = fd return None def lowercase__ ( self ) -> Optional[int]: """simple docstring""" os.close(self._lock_file_fd ) snake_case__ : Tuple = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _lowerCAmelCase : Tuple = None if msvcrt: _lowerCAmelCase : Tuple = WindowsFileLock elif fcntl: _lowerCAmelCase : List[Any] = UnixFileLock else: _lowerCAmelCase : int = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
694
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _lowerCAmelCase : str = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") _lowerCAmelCase : Optional[int] = parser.parse_args() _lowerCAmelCase : Union[str, Any] = "cpu" _lowerCAmelCase : List[str] = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" _lowerCAmelCase : Union[str, Any] = "path-to-your-trained-model" _lowerCAmelCase : Tuple = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _lowerCAmelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _lowerCAmelCase : Optional[Any] = pipe.to(device) # to channels last _lowerCAmelCase : Optional[int] = pipe.unet.to(memory_format=torch.channels_last) _lowerCAmelCase : str = pipe.vae.to(memory_format=torch.channels_last) _lowerCAmelCase : List[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _lowerCAmelCase : List[Any] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _lowerCAmelCase : Optional[int] = torch.randn(2, 4, 6_4, 6_4) _lowerCAmelCase : List[str] = torch.rand(1) * 9_9_9 _lowerCAmelCase : Optional[int] = torch.randn(2, 7_7, 7_6_8) _lowerCAmelCase : List[Any] = (sample, timestep, encoder_hidden_status) try: _lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _lowerCAmelCase : List[Any] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _lowerCAmelCase : List[Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _lowerCAmelCase : List[str] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _lowerCAmelCase : Tuple = 6_6_6 _lowerCAmelCase : str = torch.Generator(device).manual_seed(seed) _lowerCAmelCase : Dict = {"generator": generator} if args.steps is not None: _lowerCAmelCase : Tuple = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _lowerCAmelCase : Any = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
694
1
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: Tuple =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Optional[int] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> int: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: List[Any] =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Tuple =tmp_path / "cache" lowerCamelCase__: Optional[Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Dict: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Tuple =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Optional[Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: Tuple =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: Tuple =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: List[Any] =features.copy() if features else default_expected_features lowerCamelCase__: int =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Optional[Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Union[str, Any]: """simple docstring""" if split: lowerCamelCase__: Any ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Any ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: str =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> int: """simple docstring""" lowerCamelCase__: List[str] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: List[str] =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: List[str] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[str]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: Optional[Any] =Features({"image": Image()} ) lowerCamelCase__: Optional[int] =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Dict =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: Optional[Any] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert get_writer_batch_size(__a ) == expected
59
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCAmelCase ( self ) -> List[Any]: _a = 1 _a = 3 _a = (3_2, 3_2) _a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case_ ) return image @property def __lowerCAmelCase ( self ) -> int: torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=snake_case_ , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def __lowerCAmelCase ( self ) -> List[Any]: torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def __lowerCAmelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) return CLIPTextModel(snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet_upscale _a = DDPMScheduler() _a = DDIMScheduler(prediction_type="v_prediction" ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _a = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(snake_case_ ) ).convert("RGB" ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk _a = StableDiffusionUpscalePipeline( unet=snake_case_ , low_res_scheduler=snake_case_ , scheduler=snake_case_ , vae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , max_noise_level=3_5_0 , ) _a = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _a = "A painting of a squirrel eating a burger" _a = torch.Generator(device=snake_case_ ).manual_seed(0 ) _a = sd_pipe( [prompt] , image=snake_case_ , generator=snake_case_ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) _a = output.images _a = torch.Generator(device=snake_case_ ).manual_seed(0 ) _a = sd_pipe( [prompt] , image=snake_case_ , generator=snake_case_ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , return_dict=snake_case_ , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] _a = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _a = np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self ) -> int: _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet_upscale _a = DDPMScheduler() _a = DDIMScheduler(prediction_type="v_prediction" ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _a = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(snake_case_ ) ).convert("RGB" ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk _a = StableDiffusionUpscalePipeline( unet=snake_case_ , low_res_scheduler=snake_case_ , scheduler=snake_case_ , vae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , max_noise_level=3_5_0 , ) _a = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _a = "A painting of a squirrel eating a burger" _a = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) _a = output.images assert image.shape[0] == 2 _a = torch.Generator(device=snake_case_ ).manual_seed(0 ) _a = sd_pipe( [prompt] , image=snake_case_ , generator=snake_case_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) _a = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def __lowerCAmelCase ( self ) -> Any: _a = self.dummy_cond_unet_upscale _a = DDPMScheduler() _a = DDIMScheduler(prediction_type="v_prediction" ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _a = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(snake_case_ ) ).convert("RGB" ).resize((6_4, 6_4) ) # put models in fp16, except vae as it overflows in fp16 _a = unet.half() _a = text_encoder.half() # make sure here that pndm scheduler skips prk _a = StableDiffusionUpscalePipeline( unet=snake_case_ , low_res_scheduler=snake_case_ , scheduler=snake_case_ , vae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , max_noise_level=3_5_0 , ) _a = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _a = "A painting of a squirrel eating a burger" _a = torch.manual_seed(0 ) _a = sd_pipe( [prompt] , image=snake_case_ , generator=snake_case_ , num_inference_steps=2 , output_type="np" , ).images _a = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> Optional[int]: _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) _a = "stabilityai/stable-diffusion-x4-upscaler" _a = StableDiffusionUpscalePipeline.from_pretrained(snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() _a = "a cat sitting on a park bench" _a = torch.manual_seed(0 ) _a = pipe( prompt=snake_case_ , image=snake_case_ , generator=snake_case_ , output_type="np" , ) _a = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1E-3 def __lowerCAmelCase ( self ) -> Optional[Any]: _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) _a = "stabilityai/stable-diffusion-x4-upscaler" _a = StableDiffusionUpscalePipeline.from_pretrained( snake_case_ , torch_dtype=torch.floataa , ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() _a = "a cat sitting on a park bench" _a = torch.manual_seed(0 ) _a = pipe( prompt=snake_case_ , image=snake_case_ , generator=snake_case_ , output_type="np" , ) _a = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __lowerCAmelCase ( self ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _a = "stabilityai/stable-diffusion-x4-upscaler" _a = StableDiffusionUpscalePipeline.from_pretrained( snake_case_ , torch_dtype=torch.floataa , ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _a = "a cat sitting on a park bench" _a = torch.manual_seed(0 ) _a = pipe( prompt=snake_case_ , image=snake_case_ , generator=snake_case_ , num_inference_steps=5 , output_type="np" , ) _a = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
131
0
def lowerCamelCase ( UpperCamelCase : int ) -> bool: _lowerCamelCase = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCamelCase ( UpperCamelCase : int = 50_00 ) -> int: _lowerCamelCase = [(i * (3 * i - 1)) // 2 for i in range(1 , UpperCamelCase )] for i, pentagonal_i in enumerate(UpperCamelCase ): for j in range(UpperCamelCase , len(UpperCamelCase ) ): _lowerCamelCase = pentagonal_nums[j] _lowerCamelCase = pentagonal_i + pentagonal_j _lowerCamelCase = pentagonal_j - pentagonal_i if is_pentagonal(UpperCamelCase ) and is_pentagonal(UpperCamelCase ): return b return -1 if __name__ == "__main__": print(F'''{solution() = }''')
708
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowerCamelCase ( UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int]=10_24 ) -> int: _lowerCamelCase , _lowerCamelCase = [], [] _lowerCamelCase = list(zip(UpperCamelCase , UpperCamelCase ) ) _lowerCamelCase , _lowerCamelCase = sorted_examples[0] def is_too_big(UpperCamelCase : Union[str, Any] ): return tok(UpperCamelCase , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): _lowerCamelCase = new_src + ' ' + src _lowerCamelCase = new_tgt + ' ' + tgt if is_too_big(UpperCamelCase ) or is_too_big(UpperCamelCase ): # cant fit, finalize example finished_src.append(UpperCamelCase ) finished_tgt.append(UpperCamelCase ) _lowerCamelCase , _lowerCamelCase = src, tgt else: # can fit, keep adding _lowerCamelCase , _lowerCamelCase = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(UpperCamelCase ) finished_tgt.append(UpperCamelCase ) return finished_src, finished_tgt def lowerCamelCase ( UpperCamelCase : str , UpperCamelCase : Path , UpperCamelCase : int , UpperCamelCase : Optional[Any] ) -> List[Any]: _lowerCamelCase = Path(UpperCamelCase ) save_path.mkdir(exist_ok=UpperCamelCase ) for split in ["train"]: _lowerCamelCase , _lowerCamelCase = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" _lowerCamelCase = [x.rstrip() for x in Path(UpperCamelCase ).open().readlines()] _lowerCamelCase = [x.rstrip() for x in Path(UpperCamelCase ).open().readlines()] _lowerCamelCase , _lowerCamelCase = pack_examples(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) print(F"""packed {split} split from {len(UpperCamelCase )} examples -> {len(UpperCamelCase )}.""" ) Path(save_path / F"""{split}.source""" ).open('w' ).write('\n'.join(UpperCamelCase ) ) Path(save_path / F"""{split}.target""" ).open('w' ).write('\n'.join(UpperCamelCase ) ) for split in ["val", "test"]: _lowerCamelCase , _lowerCamelCase = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(UpperCamelCase , save_path / F"""{split}.source""" ) shutil.copyfile(UpperCamelCase , save_path / F"""{split}.target""" ) def lowerCamelCase ( ) -> int: _lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--tok_name' , type=UpperCamelCase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=UpperCamelCase , default=1_28 ) parser.add_argument('--data_dir' , type=UpperCamelCase ) parser.add_argument('--save_path' , type=UpperCamelCase ) _lowerCamelCase = parser.parse_args() _lowerCamelCase = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(UpperCamelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
234
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): A_ : List[str] = ShapEPipeline A_ : Dict = ['prompt'] A_ : Dict = ['prompt'] A_ : Union[str, Any] = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] A_ : List[Any] = False @property def __UpperCamelCase ( self : int ) -> str: return 32 @property def __UpperCamelCase ( self : Tuple ) -> Optional[int]: return 32 @property def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: return self.time_input_dim * 4 @property def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: return 8 @property def __UpperCamelCase ( self : List[str] ) -> Dict: A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict: torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(__UpperCamelCase ) @property def __UpperCamelCase ( self : Dict ) -> List[Any]: torch.manual_seed(0 ) A = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } A = PriorTransformer(**__UpperCamelCase ) return model @property def __UpperCamelCase ( self : Any ) -> str: torch.manual_seed(0 ) A = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } A = ShapERenderer(**__UpperCamelCase ) return model def __UpperCamelCase ( self : List[str] ) -> int: A = self.dummy_prior A = self.dummy_text_encoder A = self.dummy_tokenizer A = self.dummy_renderer A = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=__UpperCamelCase , clip_sample=__UpperCamelCase , clip_sample_range=1.0 , ) A = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict=0 ) -> Any: if str(__UpperCamelCase ).startswith('mps' ): A = torch.manual_seed(__UpperCamelCase ) else: A = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) A = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: A = 'cpu' A = self.get_dummy_components() A = self.pipeline_class(**__UpperCamelCase ) A = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) A = output.images[0] A = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) A = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : Tuple ) -> Optional[int]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __UpperCamelCase ( self : List[Any] ) -> str: A = torch_device == 'cpu' A = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__UpperCamelCase , relax_max_difference=__UpperCamelCase , ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: A = self.get_dummy_components() A = self.pipeline_class(**__UpperCamelCase ) A = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = 1 A = 2 A = self.get_dummy_inputs(__UpperCamelCase ) for key in inputs.keys(): if key in self.batch_params: A = batch_size * [inputs[key]] A = pipe(**__UpperCamelCase , num_images_per_prompt=__UpperCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Any ) -> int: A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) A = ShapEPipeline.from_pretrained('openai/shap-e' ) A = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) A = pipe( 'a shark' , generator=__UpperCamelCase , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
106
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : List[str] = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
170
0
import os import re import shutil import sys import tempfile import unittest import black lowercase : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowercase : Any = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class __A( unittest.TestCase ): def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir, '''models/bert/''' ) ) _UpperCamelCase = self.transformer_dir shutil.copy( os.path.join(A, '''src/transformers/models/bert/modeling_bert.py''' ), os.path.join(self.transformer_dir, '''models/bert/modeling_bert.py''' ), ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def _UpperCamelCase ( self, A, A, A, A=None ): """simple docstring""" _UpperCamelCase = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _UpperCamelCase = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119 ) _UpperCamelCase = black.format_str(A, mode=A ) _UpperCamelCase = os.path.join(self.transformer_dir, '''new_code.py''' ) with open(A, '''w''', newline='''\n''' ) as f: f.write(A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name, overwrite=A ) with open(A, '''r''' ) as f: self.assertTrue(f.read(), A ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(A, A ) def _UpperCamelCase ( self ): """simple docstring""" self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''', '''BertLMPredictionHead''', REFERENCE_CODE + '''\n''', ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''', '''BertLMPredictionHead''', A, ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''', '''TestModelLMPredictionHead''', re.sub('''Bert''', '''TestModel''', A ), ) # Copy consistency with a really long name _UpperCamelCase = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''', F'''{long_class_name}LMPredictionHead''', re.sub('''Bert''', A, A ), ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''', '''TestModelLMPredictionHead''', A, overwrite_result=re.sub('''Bert''', '''TestModel''', A ), ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] _UpperCamelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) _UpperCamelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) _UpperCamelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) _UpperCamelCase , _UpperCamelCase = check_copies.convert_to_localized_md( A, A, localized_readme['''format_model_list'''] ) self.assertFalse(A ) self.assertEqual(A, A ) _UpperCamelCase , _UpperCamelCase = check_copies.convert_to_localized_md( A, A, localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(A ) _UpperCamelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) _UpperCamelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) _UpperCamelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) _UpperCamelCase , _UpperCamelCase = check_copies.convert_to_localized_md( A, A, localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(A, A )
105
def SCREAMING_SNAKE_CASE ( lowerCAmelCase ): _UpperCamelCase = 0 for ch in input_str: _UpperCamelCase = ord(lowerCAmelCase ) _UpperCamelCase = pow(2 , lowerCAmelCase ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
105
1
from __future__ import annotations _lowercase : Optional[int] =1.6021E-19 # units = C def lowerCAmelCase_ ( _lowercase : float , _lowercase : float , _lowercase : float , ) -> tuple[str, float]: """simple docstring""" if (conductivity, electron_conc, mobility).count(0) != 1: raise ValueError("""You cannot supply more or less than 2 values""") elif conductivity < 0: raise ValueError("""Conductivity cannot be negative""") elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative""") elif mobility < 0: raise ValueError("""mobility cannot be negative""") elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
136
from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase_ ( _lowercase : str , _lowercase : str) -> str | Literal[False]: """simple docstring""" a__ : Optional[int] = list(_lowercase) a__ : List[Any] = list(_lowercase) a__ : List[str] = 0 for i in range(len(_lowercase)): if lista[i] != lista[i]: count += 1 a__ : Dict = """_""" if count > 1: return False else: return "".join(_lowercase) def lowerCAmelCase_ ( _lowercase : list[str]) -> list[str]: """simple docstring""" a__ : str = [] while True: a__ : int = ["""$"""] * len(_lowercase) a__ : int = [] for i in range(len(_lowercase)): for j in range(i + 1 , len(_lowercase)): a__ : Union[str, Any] = compare_string(binary[i] , binary[j]) if k is False: a__ : Union[str, Any] = """*""" a__ : int = """*""" temp.append("""X""") for i in range(len(_lowercase)): if checka[i] == "$": pi.append(binary[i]) if len(_lowercase) == 0: return pi a__ : str = list(set(_lowercase)) def lowerCAmelCase_ ( _lowercase : int , _lowercase : Sequence[float]) -> list[str]: """simple docstring""" a__ : Optional[Any] = [] for minterm in minterms: a__ : List[Any] = """""" for _ in range(_lowercase): a__ : str = str(minterm % 2) + string minterm //= 2 temp.append(_lowercase) return temp def lowerCAmelCase_ ( _lowercase : str , _lowercase : str , _lowercase : int) -> bool: """simple docstring""" a__ : List[Any] = list(_lowercase) a__ : Any = list(_lowercase) a__ : Dict = 0 for i in range(len(_lowercase)): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase_ ( _lowercase : list[list[int]] , _lowercase : list[str]) -> list[str]: """simple docstring""" a__ : Optional[int] = [] a__ : str = [0] * len(_lowercase) for i in range(len(chart[0])): a__ : Any = 0 a__ : Dict = -1 for j in range(len(_lowercase)): if chart[j][i] == 1: count += 1 a__ : Dict = j if count == 1: a__ : Dict = 1 for i in range(len(_lowercase)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(_lowercase)): a__ : Tuple = 0 temp.append(prime_implicants[i]) while True: a__ : Any = 0 a__ : List[str] = -1 a__ : int = 0 for i in range(len(_lowercase)): a__ : Any = chart[i].count(1) if count_n > max_n: a__ : int = count_n a__ : Any = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(_lowercase)): a__ : Optional[Any] = 0 def lowerCAmelCase_ ( _lowercase : list[str] , _lowercase : list[str]) -> list[list[int]]: """simple docstring""" a__ : Dict = [[0 for x in range(len(_lowercase))] for x in range(len(_lowercase))] for i in range(len(_lowercase)): a__ : List[Any] = prime_implicants[i].count("""_""") for j in range(len(_lowercase)): if is_for_table(prime_implicants[i] , binary[j] , _lowercase): a__ : List[str] = 1 return chart def lowerCAmelCase_ ( ) -> None: """simple docstring""" a__ : Dict = int(input("""Enter the no. of variables\n""")) a__ : Optional[int] = [ float(_lowercase) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""").split() ] a__ : List[str] = decimal_to_binary(_lowercase , _lowercase) a__ : Optional[int] = check(_lowercase) print("""Prime Implicants are:""") print(_lowercase) a__ : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase) a__ : int = selection(_lowercase , _lowercase) print("""Essential Prime Implicants are:""") print(_lowercase) if __name__ == "__main__": import doctest doctest.testmod() main()
136
1
"""simple docstring""" def __UpperCAmelCase ( _snake_case : int = 5_0 ): _lowercase = [1] * (length + 1) for row_length in range(3, length + 1 ): for block_length in range(3, row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
227
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class UpperCAmelCase_ ( lowercase__ ): snake_case_ = """trocr""" snake_case_ = ["""past_key_values"""] snake_case_ = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self : Dict , _lowercase : Dict=5_0_2_6_5 , _lowercase : Tuple=1_0_2_4 , _lowercase : int=1_2 , _lowercase : Dict=1_6 , _lowercase : Any=4_0_9_6 , _lowercase : Optional[int]="gelu" , _lowercase : int=5_1_2 , _lowercase : List[Any]=0.1 , _lowercase : Dict=0.0 , _lowercase : int=0.0 , _lowercase : Any=2 , _lowercase : Tuple=0.02 , _lowercase : Dict=0.0 , _lowercase : int=True , _lowercase : Tuple=False , _lowercase : Dict=True , _lowercase : Union[str, Any]=True , _lowercase : Optional[int]=1 , _lowercase : Tuple=0 , _lowercase : str=2 , **_lowercase : Tuple , ) -> str: _lowercase = vocab_size _lowercase = d_model _lowercase = decoder_layers _lowercase = decoder_attention_heads _lowercase = decoder_ffn_dim _lowercase = activation_function _lowercase = max_position_embeddings _lowercase = dropout _lowercase = attention_dropout _lowercase = activation_dropout _lowercase = init_std _lowercase = decoder_layerdrop _lowercase = use_cache _lowercase = scale_embedding _lowercase = use_learned_position_embeddings _lowercase = layernorm_embedding super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , decoder_start_token_id=_lowercase , **_lowercase , )
227
1
UpperCamelCase : str = """ # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCamelCase : Tuple = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCamelCase : Optional[int] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
37
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A_ : '''simple docstring''' def __init__( self: Optional[int] , a: Union[str, Any] , a: Union[str, Any]=2 , a: str=3 , a: Any=4 , a: Union[str, Any]=2 , a: Tuple=7 , a: int=True , a: Tuple=True , a: List[str]=True , a: Union[str, Any]=True , a: str=99 , a: Tuple=36 , a: int=2 , a: Dict=4 , a: Union[str, Any]=37 , a: List[str]="gelu" , a: List[Any]=0.1 , a: Optional[int]=0.1 , a: Dict=512 , a: Union[str, Any]=16 , a: str=2 , a: int=0.0_2 , a: Optional[Any]=6 , a: Optional[int]=6 , a: Dict=3 , a: Optional[Any]=4 , a: Optional[Any]=None , a: Dict=1000 , ): __lowerCamelCase : List[str] = parent __lowerCamelCase : Optional[Any] = batch_size __lowerCamelCase : Optional[int] = num_channels __lowerCamelCase : str = image_size __lowerCamelCase : int = patch_size __lowerCamelCase : List[str] = is_training __lowerCamelCase : Dict = use_input_mask __lowerCamelCase : Any = use_token_type_ids __lowerCamelCase : List[str] = use_labels __lowerCamelCase : str = vocab_size __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : Any = num_attention_heads __lowerCamelCase : List[Any] = intermediate_size __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : Any = hidden_dropout_prob __lowerCamelCase : Optional[int] = attention_probs_dropout_prob __lowerCamelCase : Dict = max_position_embeddings __lowerCamelCase : Tuple = type_vocab_size __lowerCamelCase : int = type_sequence_label_size __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : List[str] = coordinate_size __lowerCamelCase : int = shape_size __lowerCamelCase : Union[str, Any] = num_labels __lowerCamelCase : int = num_choices __lowerCamelCase : int = scope __lowerCamelCase : Any = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowerCamelCase : Any = text_seq_length __lowerCamelCase : Optional[Any] = (image_size // patch_size) ** 2 + 1 __lowerCamelCase : Any = self.text_seq_length + self.image_seq_length def _snake_case ( self: List[str] ): __lowerCamelCase : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __lowerCamelCase : int = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCamelCase : List[str] = bbox[i, j, 3] __lowerCamelCase : str = bbox[i, j, 1] __lowerCamelCase : Dict = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCamelCase : Tuple = bbox[i, j, 2] __lowerCamelCase : Any = bbox[i, j, 0] __lowerCamelCase : List[str] = tmp_coordinate __lowerCamelCase : str = tf.constant(a ) __lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : Any = None if self.use_input_mask: __lowerCamelCase : int = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowerCamelCase : Tuple = None if self.use_token_type_ids: __lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowerCamelCase : Dict = None __lowerCamelCase : Union[str, Any] = None if self.use_labels: __lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowerCamelCase : Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _snake_case ( self: Tuple , a: List[Any] , a: Any , a: List[str] , a: Dict , a: Optional[Any] , a: Dict ): __lowerCamelCase : Optional[Any] = TFLayoutLMvaModel(config=a ) # text + image __lowerCamelCase : Optional[Any] = model(a , pixel_values=a , training=a ) __lowerCamelCase : int = model( a , bbox=a , pixel_values=a , attention_mask=a , token_type_ids=a , training=a , ) __lowerCamelCase : List[Any] = model(a , bbox=a , pixel_values=a , training=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowerCamelCase : List[Any] = model(a , training=a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowerCamelCase : Optional[Any] = model({'pixel_values': pixel_values} , training=a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _snake_case ( self: Dict , a: Dict , a: Optional[Any] , a: int , a: Optional[int] , a: List[str] , a: List[str] , a: List[str] ): __lowerCamelCase : List[str] = self.num_labels __lowerCamelCase : str = TFLayoutLMvaForSequenceClassification(config=a ) __lowerCamelCase : int = model( a , bbox=a , pixel_values=a , attention_mask=a , token_type_ids=a , labels=a , training=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self: Optional[int] , a: Union[str, Any] , a: Union[str, Any] , a: Dict , a: Optional[Any] , a: Tuple , a: Optional[Any] , a: List[Any] ): __lowerCamelCase : Union[str, Any] = self.num_labels __lowerCamelCase : Any = TFLayoutLMvaForTokenClassification(config=a ) __lowerCamelCase : Optional[Any] = model( a , bbox=a , pixel_values=a , attention_mask=a , token_type_ids=a , labels=a , training=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _snake_case ( self: Dict , a: Optional[Any] , a: str , a: Dict , a: Union[str, Any] , a: List[Any] , a: Optional[int] , a: List[str] ): __lowerCamelCase : List[Any] = 2 __lowerCamelCase : Any = TFLayoutLMvaForQuestionAnswering(config=a ) __lowerCamelCase : Any = model( a , bbox=a , pixel_values=a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , training=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self: List[Any] ): __lowerCamelCase : str = self.prepare_config_and_inputs() ((__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase)) : List[Any] = config_and_inputs __lowerCamelCase : Tuple = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class A_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) __snake_case = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) __snake_case = False __snake_case = False __snake_case = False def _snake_case ( self: int , a: List[str] , a: Any , a: Optional[Any] , a: Tuple , a: Tuple ): return True def _snake_case ( self: str , a: Any , a: Any , a: Optional[int]=False ): __lowerCamelCase : List[str] = copy.deepcopy(a ) if model_class in get_values(a ): __lowerCamelCase : Tuple = { k: tf.tile(tf.expand_dims(a , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(a , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(a ): __lowerCamelCase : Any = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(a ): __lowerCamelCase : Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __lowerCamelCase : Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(a ): __lowerCamelCase : str = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(a ): __lowerCamelCase : Dict = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def _snake_case ( self: Tuple ): __lowerCamelCase : int = TFLayoutLMvaModelTester(self ) __lowerCamelCase : str = ConfigTester(self , config_class=a , hidden_size=37 ) def _snake_case ( self: Union[str, Any] ): self.config_tester.run_common_tests() def _snake_case ( self: Union[str, Any] ): __lowerCamelCase , __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : int = model_class(a ) if getattr(a , 'hf_compute_loss' , a ): # The number of elements in the loss should be the same as the number of elements in the label __lowerCamelCase : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , a , return_labels=a ) __lowerCamelCase : int = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=a )[0] ] __lowerCamelCase : Dict = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __lowerCamelCase : Optional[int] = self._prepare_for_class(inputs_dict.copy() , a , return_labels=a ) __lowerCamelCase : Dict = prepared_for_class.pop('input_ids' ) __lowerCamelCase : str = model(a , **a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __lowerCamelCase : List[Any] = self._prepare_for_class(inputs_dict.copy() , a , return_labels=a ) __lowerCamelCase : List[str] = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __lowerCamelCase : int = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __lowerCamelCase : Tuple = -100 __lowerCamelCase : Tuple = tf.convert_to_tensor(a ) __lowerCamelCase : Tuple = model(a , **a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __lowerCamelCase : int = self._prepare_for_class(inputs_dict.copy() , a , return_labels=a ) __lowerCamelCase : str = model(a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __lowerCamelCase : str = self._prepare_for_class(inputs_dict.copy() , a , return_labels=a ) # Get keys that were added with the _prepare_for_class function __lowerCamelCase : Optional[Any] = prepared_for_class.keys() - inputs_dict.keys() __lowerCamelCase : List[Any] = inspect.signature(model.call ).parameters __lowerCamelCase : List[str] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __lowerCamelCase : Optional[int] = {0: 'input_ids'} for label_key in label_keys: __lowerCamelCase : Dict = signature_names.index(a ) __lowerCamelCase : str = label_key __lowerCamelCase : List[str] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __lowerCamelCase : Optional[int] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __lowerCamelCase : Optional[int] = prepared_for_class[value] __lowerCamelCase : Any = tuple(a ) # Send to model __lowerCamelCase : int = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def _snake_case ( self: List[str] ): ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(a , a , a , a , a , a ) def _snake_case ( self: int ): ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCamelCase : Union[str, Any] = type self.model_tester.create_and_check_model(a , a , a , a , a , a ) def _snake_case ( self: Dict ): ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( a , a , a , a , a , a , a ) def _snake_case ( self: str ): ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( a , a , a , a , a , a , a ) def _snake_case ( self: str ): ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( a , a , a , a , a , a , a ) @slow def _snake_case ( self: int ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Dict = TFLayoutLMvaModel.from_pretrained(a ) self.assertIsNotNone(a ) def UpperCamelCase__ ( ): __lowerCamelCase : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self: Optional[int] ): return LayoutLMvaImageProcessor(apply_ocr=a ) if is_vision_available() else None @slow def _snake_case ( self: Optional[Any] ): __lowerCamelCase : Tuple = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __lowerCamelCase : Union[str, Any] = self.default_image_processor __lowerCamelCase : List[Any] = prepare_img() __lowerCamelCase : str = image_processor(images=a , return_tensors='tf' ).pixel_values __lowerCamelCase : Union[str, Any] = tf.constant([[1, 2]] ) __lowerCamelCase : str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __lowerCamelCase : int = model(input_ids=a , bbox=a , pixel_values=a , training=a ) # verify the logits __lowerCamelCase : Optional[int] = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , a ) __lowerCamelCase : Any = tf.constant( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , a , atol=1e-4 ) )
669
0
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = torch.load(_lowercase , map_location="cpu" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = chkpt['model'] # We have the base model one level deeper than the original XLM repository SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} for k, v in state_dict.items(): if "pred_layer" in k: SCREAMING_SNAKE_CASE_ : int = v else: SCREAMING_SNAKE_CASE_ : Tuple = v SCREAMING_SNAKE_CASE_ : Tuple = chkpt['params'] SCREAMING_SNAKE_CASE_ : Any = {n: v for n, v in config.items() if not isinstance(_lowercase , (torch.FloatTensor, numpy.ndarray) )} SCREAMING_SNAKE_CASE_ : int = chkpt['dico_word2id'] SCREAMING_SNAKE_CASE_ : Any = {s + '</w>' if s.find("@@" ) == -1 and i > 1_3 else s.replace("@@" , "" ): i for s, i in vocab.items()} # Save pytorch-model SCREAMING_SNAKE_CASE_ : int = pytorch_dump_folder_path + '/' + WEIGHTS_NAME SCREAMING_SNAKE_CASE_ : Union[str, Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME SCREAMING_SNAKE_CASE_ : str = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(_lowercase , _lowercase ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(_lowercase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_lowercase , indent=2 ) + "\n" ) print(F"Save vocab file to {pytorch_config_dump_path}" ) with open(_lowercase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_lowercase , indent=2 ) + "\n" ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) snake_case_ = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
704
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=18 , lowercase__=30 , lowercase__=400 , lowercase__=True , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=True , lowercase__=[0.48145466, 0.4578275, 0.40821073] , lowercase__=[0.26862954, 0.26130258, 0.27577711] , lowercase__=True , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = size if size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE_ : Optional[Any] = crop_size if crop_size is not None else {"height": 18, "width": 18} SCREAMING_SNAKE_CASE_ : str = parent SCREAMING_SNAKE_CASE_ : List[Any] = batch_size SCREAMING_SNAKE_CASE_ : Dict = num_channels SCREAMING_SNAKE_CASE_ : Any = image_size SCREAMING_SNAKE_CASE_ : Tuple = min_resolution SCREAMING_SNAKE_CASE_ : Optional[Any] = max_resolution SCREAMING_SNAKE_CASE_ : Tuple = do_resize SCREAMING_SNAKE_CASE_ : List[str] = size SCREAMING_SNAKE_CASE_ : str = do_center_crop SCREAMING_SNAKE_CASE_ : List[str] = crop_size SCREAMING_SNAKE_CASE_ : int = do_normalize SCREAMING_SNAKE_CASE_ : Optional[int] = image_mean SCREAMING_SNAKE_CASE_ : Dict = image_std SCREAMING_SNAKE_CASE_ : List[Any] = do_convert_rgb def __lowerCamelCase ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def __lowerCamelCase ( self , lowercase__=False , lowercase__=False , lowercase__=False ): """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: SCREAMING_SNAKE_CASE_ : str = [] for i in range(self.batch_size ): SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Optional[Any] = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension SCREAMING_SNAKE_CASE_ : str = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs] if torchify: SCREAMING_SNAKE_CASE_ : List[str] = [torch.from_numpy(lowercase__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase,unittest.TestCase ): _A = ChineseCLIPImageProcessor if is_vision_available() else None def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ChineseCLIPImageProcessingTester(self , do_center_crop=lowercase__ ) @property def __lowerCamelCase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , "do_resize" ) ) self.assertTrue(hasattr(lowercase__ , "size" ) ) self.assertTrue(hasattr(lowercase__ , "do_center_crop" ) ) self.assertTrue(hasattr(lowercase__ , "center_crop" ) ) self.assertTrue(hasattr(lowercase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowercase__ , "image_mean" ) ) self.assertTrue(hasattr(lowercase__ , "image_std" ) ) self.assertTrue(hasattr(lowercase__ , "do_convert_rgb" ) ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 224, "width": 224} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) SCREAMING_SNAKE_CASE_ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def __lowerCamelCase ( self ): """simple docstring""" pass def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(lowercase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ , numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE_ : List[str] = image_processing(lowercase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : List[str] = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ , torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE_ : int = image_processing(lowercase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase,unittest.TestCase ): _A = ChineseCLIPImageProcessor if is_vision_available() else None def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=lowercase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 3 @property def __lowerCamelCase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , "do_resize" ) ) self.assertTrue(hasattr(lowercase__ , "size" ) ) self.assertTrue(hasattr(lowercase__ , "do_center_crop" ) ) self.assertTrue(hasattr(lowercase__ , "center_crop" ) ) self.assertTrue(hasattr(lowercase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowercase__ , "image_mean" ) ) self.assertTrue(hasattr(lowercase__ , "image_std" ) ) self.assertTrue(hasattr(lowercase__ , "do_convert_rgb" ) ) def __lowerCamelCase ( self ): """simple docstring""" pass def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE_ : List[str] = image_processing(lowercase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
68
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = """ZinengTang/tvlt-base""" lowerCamelCase__ = tempfile.mkdtemp() def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return TvltImageProcessor.from_pretrained(self.checkpoint ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return TvltFeatureExtractor.from_pretrained(self.checkpoint ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_feature_extractor() lowerCamelCase__ = TvltProcessor(image_processor=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor ,_lowerCAmelCase ) self.assertIsInstance(processor.image_processor ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_feature_extractor() lowerCamelCase__ = TvltProcessor(image_processor=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase ) lowerCamelCase__ = np.ones([1_20_00] ) lowerCamelCase__ = feature_extractor(_lowerCAmelCase ,return_tensors="""np""" ) lowerCamelCase__ = processor(audio=_lowerCAmelCase ,return_tensors="""np""" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_feature_extractor() lowerCamelCase__ = TvltProcessor(image_processor=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase ) lowerCamelCase__ = np.ones([3, 2_24, 2_24] ) lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" ) lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_feature_extractor() lowerCamelCase__ = TvltProcessor(image_processor=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase ) lowerCamelCase__ = np.ones([1_20_00] ) lowerCamelCase__ = np.ones([3, 2_24, 2_24] ) lowerCamelCase__ = processor(audio=_lowerCAmelCase ,images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_feature_extractor() lowerCamelCase__ = TvltProcessor(image_processor=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase ) self.assertListEqual( processor.model_input_names ,image_processor.model_input_names + feature_extractor.model_input_names ,msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" ,)
50
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _a ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" snake_case =StableDiffusionControlNetImgaImgPipeline snake_case =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} snake_case =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case =IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) snake_case =IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) _UpperCAmelCase =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) _UpperCAmelCase =ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) _UpperCAmelCase =DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) _UpperCAmelCase =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _UpperCAmelCase =CLIPTextModel(_snake_case ) _UpperCAmelCase =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase ={ "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case=0 ): if str(_snake_case ).startswith("mps" ): _UpperCAmelCase =torch.manual_seed(_snake_case ) else: _UpperCAmelCase =torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _UpperCAmelCase =2 _UpperCAmelCase =randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ) _UpperCAmelCase =floats_tensor(control_image.shape , rng=random.Random(_snake_case ) ).to(_snake_case ) _UpperCAmelCase =image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase =Image.fromarray(np.uinta(_snake_case ) ).convert("RGB" ).resize((64, 64) ) _UpperCAmelCase ={ "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def SCREAMING_SNAKE_CASE ( self ): return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def SCREAMING_SNAKE_CASE ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def SCREAMING_SNAKE_CASE ( self ): self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class _a ( A__ , A__ , unittest.TestCase ): """simple docstring""" snake_case =StableDiffusionControlNetImgaImgPipeline snake_case =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} snake_case =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case =frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) _UpperCAmelCase =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(_snake_case ): if isinstance(_snake_case , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _UpperCAmelCase =ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) _UpperCAmelCase =ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) _UpperCAmelCase =DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) _UpperCAmelCase =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _UpperCAmelCase =CLIPTextModel(_snake_case ) _UpperCAmelCase =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase =MultiControlNetModel([controlneta, controlneta] ) _UpperCAmelCase ={ "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case=0 ): if str(_snake_case ).startswith("mps" ): _UpperCAmelCase =torch.manual_seed(_snake_case ) else: _UpperCAmelCase =torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _UpperCAmelCase =2 _UpperCAmelCase =[ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ), ] _UpperCAmelCase =floats_tensor(control_image[0].shape , rng=random.Random(_snake_case ) ).to(_snake_case ) _UpperCAmelCase =image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase =Image.fromarray(np.uinta(_snake_case ) ).convert("RGB" ).resize((64, 64) ) _UpperCAmelCase ={ "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.get_dummy_components() _UpperCAmelCase =self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) _UpperCAmelCase =10.0 _UpperCAmelCase =4 _UpperCAmelCase =self.get_dummy_inputs(_snake_case ) _UpperCAmelCase =steps _UpperCAmelCase =scale _UpperCAmelCase =pipe(**_snake_case )[0] _UpperCAmelCase =self.get_dummy_inputs(_snake_case ) _UpperCAmelCase =steps _UpperCAmelCase =scale _UpperCAmelCase =pipe(**_snake_case , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] _UpperCAmelCase =self.get_dummy_inputs(_snake_case ) _UpperCAmelCase =steps _UpperCAmelCase =scale _UpperCAmelCase =pipe(**_snake_case , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] _UpperCAmelCase =self.get_dummy_inputs(_snake_case ) _UpperCAmelCase =steps _UpperCAmelCase =scale _UpperCAmelCase =pipe(**_snake_case , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def SCREAMING_SNAKE_CASE ( self ): return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def SCREAMING_SNAKE_CASE ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def SCREAMING_SNAKE_CASE ( self ): self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.get_dummy_components() _UpperCAmelCase =self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_snake_case ) except NotImplementedError: pass @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny" ) _UpperCAmelCase =StableDiffusionControlNetImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , safety_checker=_snake_case , controlnet=_snake_case ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase =torch.Generator(device="cpu" ).manual_seed(0 ) _UpperCAmelCase ="evil space-punk bird" _UpperCAmelCase =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((512, 512) ) _UpperCAmelCase =load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((512, 512) ) _UpperCAmelCase =pipe( _snake_case , _snake_case , control_image=_snake_case , generator=_snake_case , output_type="np" , num_inference_steps=50 , strength=0.6 , ) _UpperCAmelCase =output.images[0] assert image.shape == (512, 512, 3) _UpperCAmelCase =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image ).max() < 9E-2
408
0
'''simple docstring''' import torch def __a ( ) -> int: if torch.cuda.is_available(): lowerCAmelCase = torch.cuda.device_count() else: lowerCAmelCase = 0 print(f"Successfully ran on {num_gpus} GPUs" ) if __name__ == "__main__": main()
708
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm lowercase : List[str] = logging.get_logger(__name__) @dataclass class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : int , **SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowerCAmelCase = deprecated_arg[3:] setattr(self , SCREAMING_SNAKE_CASE , not kwargs.pop(SCREAMING_SNAKE_CASE ) ) logger.warning( f"{deprecated_arg} is depreciated. Please use --no_{positive_arg} or" f" {positive_arg}={kwargs[positive_arg]}" ) lowerCAmelCase = kwargs.pop("torchscript" , self.torchscript ) lowerCAmelCase = kwargs.pop("torch_xla_tpu_print_metrics" , self.torch_xla_tpu_print_metrics ) lowerCAmelCase = kwargs.pop("fp16_opt_level" , self.fpaa_opt_level ) super().__init__(**SCREAMING_SNAKE_CASE ) lowerCAmelCase = field(default=UpperCamelCase_ , metadata={'help': 'Trace the models using torchscript'} ) lowerCAmelCase = field(default=UpperCamelCase_ , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) lowerCAmelCase = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def __A ( self : str ) -> Tuple["torch.device", int]: """simple docstring""" requires_backends(self , ["torch"] ) logger.info("PyTorch: setting up devices" ) if not self.cuda: lowerCAmelCase = torch.device("cpu" ) lowerCAmelCase = 0 elif is_torch_tpu_available(): lowerCAmelCase = xm.xla_device() lowerCAmelCase = 0 else: lowerCAmelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowerCAmelCase = torch.cuda.device_count() return device, n_gpu @property def __A ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return is_torch_tpu_available() and self.tpu @property def __A ( self : Optional[int] ) -> int: """simple docstring""" requires_backends(self , ["torch"] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __A ( self : Optional[int] ) -> "torch.device": """simple docstring""" requires_backends(self , ["torch"] ) return self._setup_devices[0] @property def __A ( self : str ) -> Any: """simple docstring""" requires_backends(self , ["torch"] ) return self._setup_devices[1] @property def __A ( self : Optional[Any] ) -> Tuple: """simple docstring""" return self.n_gpu > 0
159
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->str: '''simple docstring''' a : List[Any] = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->dict[str, str]: '''simple docstring''' a : List[Any] = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key a : Union[str, Any] = remove_duplicates(key.upper() ) a : List[str] = len(_lowercase ) # First fill cipher with key characters a : str = {alphabet[i]: char for i, char in enumerate(_lowercase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_lowercase ) , 26 ): a : Optional[int] = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 a : Optional[int] = alphabet[i - offset] a : Optional[int] = char return cipher_alphabet def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : dict[str, str] ) ->str: '''simple docstring''' return "".join(cipher_map.get(_lowercase , _lowercase ) for ch in message.upper() ) def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : dict[str, str] ) ->str: '''simple docstring''' a : List[str] = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_lowercase , _lowercase ) for ch in message.upper() ) def _SCREAMING_SNAKE_CASE ( ) ->None: '''simple docstring''' a : Optional[Any] = input("Enter message to encode or decode: " ).strip() a : Tuple = input("Enter keyword: " ).strip() a : List[Any] = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: a : Optional[int] = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) a : Union[str, Any] = create_cipher_map(_lowercase ) print(func(_lowercase , _lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
633
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] ) ->Dict: '''simple docstring''' a : Any = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] a : str = True if "large" in model_name or "huge" in model_name else False a : Optional[Any] = True if "large" in model_name or "huge" in model_name else False a : Dict = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: a : Union[str, Any] = [3, 3, 3, 3] a : List[str] = [5, 5, 5, 5] elif "fl4" in model_name: a : Any = [4, 4, 4, 4] a : Optional[Any] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: a : Dict = [3, 3, 3, 3] if "lrf" in model_name: a : Optional[int] = [3, 3, 3, 3] else: a : Tuple = [2, 2, 2, 2] if "tiny" in model_name: a : List[str] = 96 elif "small" in model_name: a : Union[str, Any] = 96 elif "base" in model_name: a : Dict = 128 elif "large" in model_name: a : Union[str, Any] = 192 elif "xlarge" in model_name: a : Tuple = 256 elif "huge" in model_name: a : List[str] = 352 # set label information a : List[Any] = "huggingface/label-files" if "large" in model_name or "huge" in model_name: a : Optional[int] = "imagenet-22k-id2label.json" else: a : List[str] = "imagenet-1k-id2label.json" a : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="dataset" ) , "r" ) ) a : str = {int(_lowercase ): v for k, v in idalabel.items()} a : List[str] = {v: k for k, v in idalabel.items()} a : Dict = FocalNetConfig( embed_dim=_lowercase , depths=_lowercase , focal_levels=_lowercase , focal_windows=_lowercase , use_conv_embed=_lowercase , idalabel=_lowercase , labelaid=_lowercase , use_post_layernorm=_lowercase , use_layerscale=_lowercase , ) return config def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] ) ->List[Any]: '''simple docstring''' if "patch_embed.proj" in name: a : Any = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a : List[str] = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: a : List[Any] = "encoder." + name if "encoder.layers" in name: a : int = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: a : Any = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: a : str = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: a : Union[str, Any] = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: a : Dict = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: a : Any = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": a : str = "layernorm.weight" if name == "norm.bias": a : Optional[Any] = "layernorm.bias" if "head" in name: a : Tuple = name.replace("head" , "classifier" ) else: a : int = "focalnet." + name return name def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple , _lowercase : Optional[Any] , _lowercase : Tuple=False ) ->str: '''simple docstring''' a : List[Any] = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on a : str = model_name_to_url[model_name] print("Checkpoint URL: " , _lowercase ) a : Any = torch.hub.load_state_dict_from_url(_lowercase , map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): a : Any = state_dict.pop(_lowercase ) a : Any = val a : Any = get_focalnet_config(_lowercase ) a : Optional[int] = FocalNetForImageClassification(_lowercase ) model.eval() # load state dict model.load_state_dict(_lowercase ) # verify conversion a : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" a : Optional[int] = BitImageProcessor( do_resize=_lowercase , size={"shortest_edge": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=_lowercase , crop_size=224 , do_normalize=_lowercase , image_mean=_lowercase , image_std=_lowercase , ) a : int = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) a : Dict = processor(images=_lowercase , return_tensors="pt" ) a : Optional[int] = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) a : str = image_transforms(_lowercase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _lowercase , atol=1E-4 ) a : Dict = model(**_lowercase ) a : List[str] = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": a : Union[str, Any] = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": a : Union[str, Any] = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": a : Dict = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": a : Dict = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": a : Any = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": a : str = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": a : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) a : Tuple = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
633
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = StableDiffusionXLImgaImgPipeline UpperCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} UpperCamelCase__ = PipelineTesterMixin.required_optional_params - {"""latents"""} UpperCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : Tuple )->int: torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=__UpperCamelCase , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) _UpperCAmelCase = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=3_2 , ) _UpperCAmelCase = CLIPTextModel(__UpperCamelCase ) _UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__UpperCamelCase ) _UpperCAmelCase = CLIPTextModelWithProjection(__UpperCamelCase ) _UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__UpperCamelCase ) _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def lowercase__ ( self : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : int=0 )->Any: _UpperCAmelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) _UpperCAmelCase = image / 2 + 0.5 if str(__UpperCamelCase ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(__UpperCamelCase ) else: _UpperCAmelCase = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) _UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.7_5, } return inputs def lowercase__ ( self : Any )->int: _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionXLImgaImgPipeline(**__UpperCamelCase ) _UpperCAmelCase = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(__UpperCamelCase ) _UpperCAmelCase = sd_pipe(**__UpperCamelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _UpperCAmelCase = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : Optional[Any] )->Optional[int]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def lowercase__ ( self : Optional[Any] )->List[Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase__ ( self : List[str] )->str: pass def lowercase__ ( self : Dict )->List[str]: _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionXLImgaImgPipeline(**__UpperCamelCase ) _UpperCAmelCase = sd_pipe.to(__UpperCamelCase ) _UpperCAmelCase = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) # forward without prompt embeds _UpperCAmelCase = self.get_dummy_inputs(__UpperCamelCase ) _UpperCAmelCase = 3 * ['''this is a negative prompt'''] _UpperCAmelCase = negative_prompt _UpperCAmelCase = 3 * [inputs['''prompt''']] _UpperCAmelCase = sd_pipe(**__UpperCamelCase ) _UpperCAmelCase = output.images[0, -3:, -3:, -1] # forward with prompt embeds _UpperCAmelCase = self.get_dummy_inputs(__UpperCamelCase ) _UpperCAmelCase = 3 * ['''this is a negative prompt'''] _UpperCAmelCase = 3 * [inputs.pop('''prompt''' )] ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = sd_pipe.encode_prompt(__UpperCamelCase , negative_prompt=__UpperCamelCase ) _UpperCAmelCase = sd_pipe( **__UpperCamelCase , prompt_embeds=__UpperCamelCase , negative_prompt_embeds=__UpperCamelCase , pooled_prompt_embeds=__UpperCamelCase , negative_pooled_prompt_embeds=__UpperCamelCase , ) _UpperCAmelCase = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] )->Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict="cpu" , __UpperCamelCase : int=torch.floataa , __UpperCamelCase : Optional[Any]=0 )->Union[str, Any]: _UpperCAmelCase = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) _UpperCAmelCase = np.random.RandomState(__UpperCamelCase ).standard_normal((1, 4, 6_4, 6_4) ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase , dtype=__UpperCamelCase ) _UpperCAmelCase = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowercase__ ( self : Optional[Any] )->Optional[Any]: _UpperCAmelCase = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = self.get_inputs(__UpperCamelCase ) _UpperCAmelCase = pipe(**__UpperCamelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
703
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Tuple , __UpperCamelCase : str )->Tuple: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): _UpperCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Optional[Any]: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : Tuple )->Optional[Any]: _UpperCAmelCase = '''sgugger/tiny-distilbert-classification''' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , only_pretrain_model=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : Tuple )->str: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , torchscript=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , fpaa=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : Tuple )->Any: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) # set architectures equal to `None` _UpperCAmelCase = None _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def lowercase__ ( self : List[str] )->int: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__UpperCamelCase , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase__ ( self : str )->Dict: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : Optional[int] )->Optional[Any]: _UpperCAmelCase = '''sshleifer/tinier_bart''' _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : List[str] )->str: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = '''sshleifer/tinier_bart''' _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase__ ( self : Optional[Any] )->int: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , save_to_csv=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__UpperCamelCase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(__UpperCamelCase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(__UpperCamelCase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(__UpperCamelCase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(__UpperCamelCase , '''env.csv''' ) , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCamelCase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , '''env.csv''' ) ).exists() ) def lowercase__ ( self : Tuple )->List[Any]: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(__UpperCamelCase : str ): self.assertTrue(hasattr(__UpperCamelCase , '''sequential''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''cumulative''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''current''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__UpperCamelCase , '''log.txt''' ) , log_print=__UpperCamelCase , trace_memory_line_by_line=__UpperCamelCase , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(__UpperCamelCase , '''log.txt''' ) ).exists() )
95
0
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class _a (unittest.TestCase): """simple docstring""" def __init__( self , A__ , A__=7 , A__=3 , A__=18 , A__=30 , A__=4_00 , A__=True , A__=None , A__=True , ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 18, """width""": 18} _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = min_resolution _SCREAMING_SNAKE_CASE = max_resolution _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size _SCREAMING_SNAKE_CASE = do_normalize def UpperCamelCase ( self ) -> List[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804], [-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class _a (_lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = ImageGPTImageProcessor if is_vision_available() else None def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = ImageGPTImageProcessingTester(self ) @property def UpperCamelCase ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ , """clusters""" ) ) self.assertTrue(hasattr(A__ , """do_resize""" ) ) self.assertTrue(hasattr(A__ , """size""" ) ) self.assertTrue(hasattr(A__ , """do_normalize""" ) ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) _SCREAMING_SNAKE_CASE = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(A__ , obj[key] ) ) else: self.assertEqual(obj[key] , A__ ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE = os.path.join(A__ , """image_processor.json""" ) image_processor_first.to_json_file(A__ ) _SCREAMING_SNAKE_CASE = self.image_processing_class.from_json_file(A__ ).to_dict() _SCREAMING_SNAKE_CASE = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , A__ ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(A__ ) _SCREAMING_SNAKE_CASE = self.image_processing_class.from_pretrained(A__ ).to_dict() _SCREAMING_SNAKE_CASE = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , A__ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def UpperCamelCase ( self ) -> str: pass def lowerCAmelCase_ ( ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) _SCREAMING_SNAKE_CASE = Image.open(dataset[4]["""file"""] ) _SCREAMING_SNAKE_CASE = Image.open(dataset[5]["""file"""] ) _SCREAMING_SNAKE_CASE = [imagea, imagea] return images @require_vision @require_torch class _a (unittest.TestCase): """simple docstring""" @slow def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) _SCREAMING_SNAKE_CASE = prepare_images() # test non-batched _SCREAMING_SNAKE_CASE = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 10_24) ) _SCREAMING_SNAKE_CASE = [3_06, 1_91, 1_91] self.assertEqual(encoding.input_ids[0, :3].tolist() , A__ ) # test batched _SCREAMING_SNAKE_CASE = image_processing(A__ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 10_24) ) _SCREAMING_SNAKE_CASE = [3_03, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , A__ )
591
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _a : """simple docstring""" def __init__( self , A__ = None ) -> None: if components is None: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = list(A__ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A__ , self.__components ) ) + ")" def __add__( self , A__ ) -> Vector: _SCREAMING_SNAKE_CASE = len(self ) if size == len(A__ ): _SCREAMING_SNAKE_CASE = [self.__components[i] + other.component(A__ ) for i in range(A__ )] return Vector(A__ ) else: raise Exception("""must have the same size""" ) def __sub__( self , A__ ) -> Vector: _SCREAMING_SNAKE_CASE = len(self ) if size == len(A__ ): _SCREAMING_SNAKE_CASE = [self.__components[i] - other.component(A__ ) for i in range(A__ )] return Vector(A__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , A__ ) -> Vector: ... @overload def __mul__( self , A__ ) -> float: ... def __mul__( self , A__ ) -> float | Vector: if isinstance(A__ , (float, int) ): _SCREAMING_SNAKE_CASE = [c * other for c in self.__components] return Vector(A__ ) elif isinstance(A__ , A__ ) and len(self ) == len(A__ ): _SCREAMING_SNAKE_CASE = len(self ) _SCREAMING_SNAKE_CASE = [self.__components[i] * other.component(A__ ) for i in range(A__ )] return sum(A__ ) else: # error case raise Exception("""invalid operand!""" ) def UpperCamelCase ( self ) -> Vector: return Vector(self.__components ) def UpperCamelCase ( self , A__ ) -> float: if isinstance(A__ , A__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def UpperCamelCase ( self , A__ , A__ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) _SCREAMING_SNAKE_CASE = value def UpperCamelCase ( self ) -> float: if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) _SCREAMING_SNAKE_CASE = [c**2 for c in self.__components] return math.sqrt(sum(A__ ) ) def UpperCamelCase ( self , A__ , A__ = False ) -> float: _SCREAMING_SNAKE_CASE = self * other _SCREAMING_SNAKE_CASE = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Vector: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return Vector([0] * dimension ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Vector: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and (isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )) _SCREAMING_SNAKE_CASE = [0] * dimension _SCREAMING_SNAKE_CASE = 1 return Vector(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Vector: """simple docstring""" assert ( isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and (isinstance(SCREAMING_SNAKE_CASE_ , (int, float) )) ) return x * scalar + y def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Vector: """simple docstring""" random.seed(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = [random.randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ )] return Vector(SCREAMING_SNAKE_CASE_ ) class _a : """simple docstring""" def __init__( self , A__ , A__ , A__ ) -> None: _SCREAMING_SNAKE_CASE = matrix _SCREAMING_SNAKE_CASE = w _SCREAMING_SNAKE_CASE = h def __str__( self ) -> str: _SCREAMING_SNAKE_CASE = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): _SCREAMING_SNAKE_CASE = [] for i in range(self.__height ): _SCREAMING_SNAKE_CASE = [ self.__matrix[i][j] + other.component(A__ , A__ ) for j in range(self.__width ) ] matrix.append(A__ ) return Matrix(A__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , A__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): _SCREAMING_SNAKE_CASE = [] for i in range(self.__height ): _SCREAMING_SNAKE_CASE = [ self.__matrix[i][j] - other.component(A__ , A__ ) for j in range(self.__width ) ] matrix.append(A__ ) return Matrix(A__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , A__ ) -> Matrix: ... @overload def __mul__( self , A__ ) -> Vector: ... def __mul__( self , A__ ) -> Vector | Matrix: if isinstance(A__ , A__ ): # matrix-vector if len(A__ ) == self.__width: _SCREAMING_SNAKE_CASE = zero_vector(self.__height ) for i in range(self.__height ): _SCREAMING_SNAKE_CASE = [ self.__matrix[i][j] * other.component(A__ ) for j in range(self.__width ) ] ans.change_component(A__ , sum(A__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(A__ , (int, float) ): # matrix-scalar _SCREAMING_SNAKE_CASE = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A__ , self.__width , self.__height ) return None def UpperCamelCase ( self ) -> int: return self.__height def UpperCamelCase ( self ) -> int: return self.__width def UpperCamelCase ( self , A__ , A__ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def UpperCamelCase ( self , A__ , A__ , A__ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: _SCREAMING_SNAKE_CASE = value else: raise Exception("""change_component: indices out of bounds""" ) def UpperCamelCase ( self , A__ , A__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) _SCREAMING_SNAKE_CASE = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A__ ) ): _SCREAMING_SNAKE_CASE = minor[i][:y] + minor[i][y + 1 :] return Matrix(A__ , self.__width - 1 , self.__height - 1 ).determinant() def UpperCamelCase ( self , A__ , A__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A__ , A__ ) else: raise Exception("""Indices out of bounds""" ) def UpperCamelCase ( self ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: _SCREAMING_SNAKE_CASE = [ self.__matrix[0][y] * self.cofactor(0 , A__ ) for y in range(self.__width ) ] return sum(A__ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Matrix: """simple docstring""" _SCREAMING_SNAKE_CASE = [[0] * n for _ in range(SCREAMING_SNAKE_CASE_ )] return Matrix(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Matrix: """simple docstring""" random.seed(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = [ [random.randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ )] for _ in range(SCREAMING_SNAKE_CASE_ ) ] return Matrix(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
591
1
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCamelCase : int = logging.get_logger(__name__) _UpperCamelCase : Union[str, Any] = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} _UpperCamelCase : Tuple = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } _UpperCamelCase : Optional[Any] = { 'abeja/gpt-neox-japanese-2.7b': 2_0_4_8, } def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] , __snake_case : Union[str, Any] ): '''simple docstring''' with open(__snake_case , 'r' , encoding='utf-8' ) as f: lowercase = json.loads(f.read() ) lowercase = collections.OrderedDict() lowercase = collections.OrderedDict() lowercase = collections.OrderedDict() with open(__snake_case , 'r' , encoding='utf-8' ) as f: lowercase = f.readlines() lowercase = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(__snake_case ): lowercase = b lowercase = idx for wd in b: lowercase = idx return vocab, raw_vocab, ids_to_tokens, emoji class a ( a_ ): UpperCAmelCase_ : Optional[int] =VOCAB_FILES_NAMES UpperCAmelCase_ : Any =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Optional[Any] =["input_ids", "attention_mask"] def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="<|endoftext|>" , _lowerCamelCase="<|endoftext|>" , _lowerCamelCase="<|startoftext|>" , _lowerCamelCase="<|endoftext|>" , _lowerCamelCase=False , **_lowerCamelCase , ): super().__init__( unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , do_clean_text=_lowerCamelCase , **_lowerCamelCase , ) if not os.path.isfile(_lowerCamelCase ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(_lowerCamelCase ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) lowercase = do_clean_text lowercase , lowercase , lowercase , lowercase = load_vocab_and_emoji(_lowerCamelCase , _lowerCamelCase ) lowercase = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCamelCase_ ( self ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def UpperCamelCase_ ( self ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCamelCase_ ( self , _lowerCamelCase ): return self.subword_tokenizer.tokenize(_lowerCamelCase , clean=self.do_clean_text ) def UpperCamelCase_ ( self , _lowerCamelCase ): return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) ) def UpperCamelCase_ ( self , _lowerCamelCase ): return self.subword_tokenizer.convert_id_to_token(_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = ''.join(_lowerCamelCase ).strip() return out_string def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: lowercase = input_ids[-self.model_max_length :] return input_ids def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ): lowercase = 0 if os.path.isdir(_lowerCamelCase ): lowercase = os.path.join( _lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowercase = os.path.join( _lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: lowercase = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) lowercase = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) lowercase = token_index writer.write(','.join(_lowerCamelCase ) + '\n' ) index += 1 with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , _lowerCamelCase ) return vocab_file, emoji_file class a ( a_ ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowercase = vocab # same as swe lowercase = ids_to_tokens # same as bpe lowercase = emoji lowercase = np.max([len(_lowerCamelCase ) for w in self.vocab.keys()] ) lowercase = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) lowercase = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) lowercase = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) lowercase = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) lowercase = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) lowercase = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) lowercase = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' lowercase = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' lowercase = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self ): return len(self.ids_to_tokens ) def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = self.content_repattera.sub('<URL>' , _lowerCamelCase ) lowercase = self.content_repattera.sub('<EMAIL>' , _lowerCamelCase ) lowercase = self.content_repattera.sub('<TEL>' , _lowerCamelCase ) lowercase = self.content_repattera.sub('<DATE>' , _lowerCamelCase ) lowercase = self.content_repattera.sub('<DATE>' , _lowerCamelCase ) lowercase = self.content_repattera.sub('<PRICE>' , _lowerCamelCase ) lowercase = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowercase = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False ): lowercase = text.replace(' ' , '<SP>' ) lowercase = text.replace(' ' , '<SP>' ) lowercase = text.replace('\r\n' , '<BR>' ) lowercase = text.replace('\n' , '<BR>' ) lowercase = text.replace('\r' , '<BR>' ) lowercase = text.replace('\t' , '<TAB>' ) lowercase = text.replace('—' , 'ー' ) lowercase = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: lowercase = text.replace(_lowerCamelCase , _lowerCamelCase ) if clean: lowercase = self.clean_text(_lowerCamelCase ) def check_simbol(_lowerCamelCase ): lowercase = x.encode() if len(_lowerCamelCase ) == 1 and len(_lowerCamelCase ) == 2: lowercase = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2_A1 and c <= 0XC2_BF) or (c >= 0XC7_80 and c <= 0XC7_83) or (c >= 0XCA_B9 and c <= 0XCB_BF) or (c >= 0XCC_80 and c <= 0XCD_A2) ): return True return False def checkuae(_lowerCamelCase ): lowercase = x.encode() if len(_lowerCamelCase ) == 1 and len(_lowerCamelCase ) == 3: lowercase = (int(e[0] ) << 1_6) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_80_80 and c <= 0XE2_B0_7F: return True return False lowercase = 0 lowercase = [] while pos < len(_lowerCamelCase ): lowercase = min(len(_lowerCamelCase ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 lowercase = [] # (token_id, token, pos) for e in range(_lowerCamelCase , _lowerCamelCase , -1 ): lowercase = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_lowerCamelCase ) > 2: lowercase = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_lowerCamelCase ) > 0: # the smallest token_id is adopted lowercase , lowercase , lowercase = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[0] )[0] result.append(_lowerCamelCase ) lowercase = e else: lowercase = pos + 1 lowercase = text[pos:end] if check_simbol(_lowerCamelCase ): result.append('<KIGOU>' ) elif checkuae(_lowerCamelCase ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) lowercase = end return result def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase="\n" ): lowercase = [] lowercase = [] lowercase = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_lowerCamelCase ) > 0: words.append(bytearray(_lowerCamelCase ).decode('utf-8' , errors='replace' ) ) lowercase = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(_lowerCamelCase ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: words.append(bytearray(_lowerCamelCase ).decode('utf-8' , errors='replace' ) ) lowercase = ''.join(_lowerCamelCase ) return text
134
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _UpperCamelCase : Optional[Any] = Lock() def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__snake_case ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowercase = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowercase = min(__snake_case , __snake_case ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__snake_case ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowercase = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowercase = max(__snake_case , __snake_case ) # after all swaps are performed, send the values back to main result_pipe[1].send(__snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] ): '''simple docstring''' lowercase = [] lowercase = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowercase = Pipe() lowercase = Pipe() process_array_.append( Process( target=__snake_case , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowercase = temp_rs lowercase = temp_rr for i in range(1 , len(__snake_case ) - 1 ): lowercase = Pipe() lowercase = Pipe() process_array_.append( Process( target=__snake_case , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowercase = temp_rs lowercase = temp_rr process_array_.append( Process( target=__snake_case , args=( len(__snake_case ) - 1, arr[len(__snake_case ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__snake_case ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__snake_case ) ): lowercase = result_pipe[p][0].recv() process_array_[p].join() return arr def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*__snake_case ) lowercase = odd_even_transposition(__snake_case ) print('Sorted List\n' ) print(*__snake_case ) if __name__ == "__main__": main()
134
1
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor _lowercase = logging.get_logger(__name__) class __A ( A_ ): def __init__(self , *__magic_name__ , **__magic_name__ ): warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
157
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _lowercase = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model _lowercase = { # fairseq: '''wmt19-ru-en''': {'''length_penalty''': 1.1}, '''wmt19-en-ru''': {'''length_penalty''': 1.15}, '''wmt19-en-de''': {'''length_penalty''': 1.0}, '''wmt19-de-en''': {'''length_penalty''': 1.1}, # allenai: '''wmt16-en-de-dist-12-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-dist-6-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-12-1''': {'''length_penalty''': 0.8}, '''wmt19-de-en-6-6-base''': {'''length_penalty''': 0.6}, '''wmt19-de-en-6-6-big''': {'''length_penalty''': 0.6}, } # this remaps the different models to their organization names _lowercase = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _lowercase = '''facebook''' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: _lowercase = '''allenai''' def _A (UpperCamelCase : Tuple ) ->Any: '''simple docstring''' lowerCamelCase__ : str = dict((re.sub(r"""@@$""" , """""" , UpperCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , UpperCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : List[Any] = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[f"{k}</w>"] lowerCamelCase__ : List[str] = d[k] # restore return da def _A (UpperCamelCase : str , UpperCamelCase : List[str] ) ->int: '''simple docstring''' assert os.path.exists(UpperCamelCase ) os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) print(f"Writing results to {pytorch_dump_folder_path}" ) # handle various types of models lowerCamelCase__ : str = basename(UpperCamelCase ) lowerCamelCase__ : str = dirname(UpperCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : Tuple = cls.hub_models() lowerCamelCase__ : Optional[int] = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} lowerCamelCase__ : List[Any] = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"using checkpoint {checkpoint_file}" ) lowerCamelCase__ : List[str] = hub_utils.from_pretrained( UpperCamelCase , UpperCamelCase , UpperCamelCase , archive_map=UpperCamelCase , **UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = vars(chkpt["""args"""]["""model"""] ) lowerCamelCase__ : Union[str, Any] = args["""source_lang"""] lowerCamelCase__ : Dict = args["""target_lang"""] lowerCamelCase__ : List[Any] = dirname(UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(UpperCamelCase ) # dicts lowerCamelCase__ : int = os.path.join(UpperCamelCase , f"dict.{src_lang}.txt" ) lowerCamelCase__ : Optional[Any] = os.path.join(UpperCamelCase , f"dict.{tgt_lang}.txt" ) lowerCamelCase__ : Any = Dictionary.load(UpperCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : Optional[Any] = len(UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = os.path.join(UpperCamelCase , """vocab-src.json""" ) print(f"Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase , ensure_ascii=UpperCamelCase , indent=UpperCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Dict = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : Tuple = False break lowerCamelCase__ : Union[str, Any] = Dictionary.load(UpperCamelCase ) lowerCamelCase__ : List[str] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : str = len(UpperCamelCase ) lowerCamelCase__ : List[str] = os.path.join(UpperCamelCase , """vocab-tgt.json""" ) print(f"Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase , ensure_ascii=UpperCamelCase , indent=UpperCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[str] = os.path.join(UpperCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Union[str, Any] = os.path.join(UpperCamelCase , UpperCamelCase ) if os.path.exists(UpperCamelCase ): break with open(UpperCamelCase , encoding="""utf-8""" ) as fin: lowerCamelCase__ : Dict = fin.read() lowerCamelCase__ : Tuple = re.sub(r""" \d+$""" , """""" , UpperCamelCase , 0 , re.M ) # remove frequency number print(f"Generating {merges_file}" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as fout: fout.write(UpperCamelCase ) # model config lowerCamelCase__ : Optional[Any] = os.path.join(UpperCamelCase , """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"need to extend tokenizer to support bpe={args['bpe']}" assert args["tokenizer"] == "moses", f"need to extend tokenizer to support bpe={args['tokenizer']}" lowerCamelCase__ : str = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with lowerCamelCase__ : Dict = 5 lowerCamelCase__ : Optional[Any] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : Any = best_score_hparams[model_dir]["""length_penalty"""] else: lowerCamelCase__ : Union[str, Any] = 1.0 print(f"Generating {fsmt_model_config_file}" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase , ensure_ascii=UpperCamelCase , indent=UpperCamelCase ) ) # tokenizer config lowerCamelCase__ : Union[str, Any] = os.path.join(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Any = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1024, """do_lower_case""": do_lower_case, } print(f"Generating {fsmt_tokenizer_config_file}" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase , ensure_ascii=UpperCamelCase , indent=UpperCamelCase ) ) # model lowerCamelCase__ : Tuple = chkpt["""models"""][0] lowerCamelCase__ : Tuple = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : Tuple = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Tuple = FSMTConfig.from_pretrained(UpperCamelCase ) lowerCamelCase__ : List[str] = FSMTForConditionalGeneration(UpperCamelCase ) # check that it loads ok model_new.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) # save lowerCamelCase__ : Any = os.path.join(UpperCamelCase , UpperCamelCase ) print(f"Generating {pytorch_weights_dump_path}" ) torch.save(UpperCamelCase , UpperCamelCase ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(f"cd {data_root}" ) print(f"transformers-cli upload {model_dir}" ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fsmt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowercase = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
157
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ : Optional[Any] = logging.get_logger(__name__) A__ : Union[str, Any] = {'vocab_file': 'spm_char.model'} A__ : Dict = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } A__ : Tuple = { 'microsoft/speecht5_asr': 10_24, 'microsoft/speecht5_tts': 10_24, 'microsoft/speecht5_vc': 10_24, } class _UpperCAmelCase ( __A ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] def __init__( self : str, lowerCamelCase : Optional[Any], lowerCamelCase : Any="<s>", lowerCamelCase : List[str]="</s>", lowerCamelCase : List[Any]="<unk>", lowerCamelCase : Optional[int]="<pad>", lowerCamelCase : Optional[Any] = None, **lowerCamelCase : List[Any], ): '''simple docstring''' lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase__, eos_token=UpperCamelCase__, unk_token=UpperCamelCase__, pad_token=UpperCamelCase__, sp_model_kwargs=self.sp_model_kwargs, **UpperCamelCase__, ) lowercase__ = vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return self.sp_model.get_piece_size() def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ): '''simple docstring''' lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self : Any, lowerCamelCase : Any ): '''simple docstring''' lowercase__ = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : List[Any], lowerCamelCase : Dict ): '''simple docstring''' return self.sp_model.encode(UpperCamelCase__, out_type=UpperCamelCase__ ) def lowercase__ ( self : str, lowerCamelCase : Dict ): '''simple docstring''' return self.sp_model.piece_to_id(UpperCamelCase__ ) def lowercase__ ( self : int, lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = self.sp_model.IdToPiece(UpperCamelCase__ ) return token def lowercase__ ( self : List[Any], lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = [] lowercase__ = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase__ ) + token lowercase__ = [] else: current_sub_tokens.append(UpperCamelCase__ ) out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def lowercase__ ( self : Dict, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any]=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self : Any, lowerCamelCase : Union[str, Any], lowerCamelCase : List[str] = None, lowerCamelCase : Dict = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__, token_ids_a=UpperCamelCase__, already_has_special_tokens=UpperCamelCase__ ) lowercase__ = [1] if token_ids_a is None: return ([0] * len(UpperCamelCase__ )) + suffix_ones return ([0] * len(UpperCamelCase__ )) + ([0] * len(UpperCamelCase__ )) + suffix_ones def lowercase__ ( self : int, lowerCamelCase : int, lowerCamelCase : str = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( UpperCamelCase__, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__, '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
709
from itertools import count def a ( lowerCamelCase_ = 50 ): '''simple docstring''' lowercase__ = [1] * min_block_length for n in count(lowerCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"{solution() = }")
671
0