code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowerCamelCase : int = datasets.utils.logging.get_logger(__name__) lowerCamelCase : Optional[Any] = ["names", "prefix"] lowerCamelCase : Optional[int] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] lowerCamelCase : Tuple = ["encoding_errors", "on_bad_lines"] lowerCamelCase : Union[str, Any] = ["date_format"] @dataclass class A( datasets.BuilderConfig ): '''simple docstring''' UpperCamelCase = "," UpperCamelCase = None UpperCamelCase = "infer" UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = True UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = False UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = True UpperCamelCase = True UpperCamelCase = False UpperCamelCase = True UpperCamelCase = None UpperCamelCase = "." UpperCamelCase = None UpperCamelCase = '"' UpperCamelCase = 0 UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = True UpperCamelCase = True UpperCamelCase = 0 UpperCamelCase = True UpperCamelCase = False UpperCamelCase = None UpperCamelCase = 1_0000 UpperCamelCase = None UpperCamelCase = "strict" UpperCamelCase = "error" UpperCamelCase = None def a__ ( self : int ) -> Any: """simple docstring""" if self.delimiter is not None: lowerCamelCase_ = self.delimiter if self.column_names is not None: lowerCamelCase_ = self.column_names @property def a__ ( self : Optional[Any] ) -> int: """simple docstring""" lowerCamelCase_ = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCamelCase_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A( datasets.ArrowBasedBuilder ): '''simple docstring''' UpperCamelCase = CsvConfig def a__ ( self : int ) -> List[Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def a__ ( self : List[str] , A_ : Dict ) -> Dict: """simple docstring""" if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) lowerCamelCase_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCamelCase_ , (str, list, tuple) ): lowerCamelCase_ = data_files if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCamelCase_ = [files] lowerCamelCase_ = [dl_manager.iter_files(lowerCamelCase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] lowerCamelCase_ = [] for split_name, files in data_files.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCamelCase_ = [files] lowerCamelCase_ = [dl_manager.iter_files(lowerCamelCase_ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCamelCase_ , gen_kwargs={'files': files} ) ) return splits def a__ ( self : List[str] , A_ : Dict ) -> pa.Table: """simple docstring""" if self.config.features is not None: lowerCamelCase_ = self.config.features.arrow_schema if all(not require_storage_cast(lowerCamelCase_ ) for feature in self.config.features.values() ): # cheaper cast lowerCamelCase_ = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCamelCase_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example lowerCamelCase_ = table_cast(lowerCamelCase_ , lowerCamelCase_ ) return pa_table def a__ ( self : List[Any] , A_ : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str lowerCamelCase_ = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCamelCase_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase_ ) ): lowerCamelCase_ = pd.read_csv(lowerCamelCase_ , iterator=lowerCamelCase_ , dtype=lowerCamelCase_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCamelCase_ ): lowerCamelCase_ = pa.Table.from_pandas(lowerCamelCase_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCamelCase_ ) except ValueError as e: logger.error(f"""Failed to read file \'{file}\' with error {type(lowerCamelCase_ )}: {e}""" ) raise
70
from __future__ import annotations class lowerCamelCase_ : def __init__( self , lowerCamelCase_ , lowerCamelCase_ ) -> int: """simple docstring""" _UpperCamelCase , _UpperCamelCase = text, pattern _UpperCamelCase , _UpperCamelCase = len(lowerCamelCase_ ), len(lowerCamelCase_ ) def lowercase ( self , lowerCamelCase_ ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def lowercase ( self , lowerCamelCase_ ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowercase ( self ) -> list[int]: """simple docstring""" _UpperCamelCase = [] for i in range(self.textLen - self.patLen + 1 ): _UpperCamelCase = self.mismatch_in_text(lowerCamelCase_ ) if mismatch_index == -1: positions.append(lowerCamelCase_ ) else: _UpperCamelCase = self.match_in_pattern(self.text[mismatch_index] ) _UpperCamelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __lowerCAmelCase = """ABAABA""" __lowerCAmelCase = """AB""" __lowerCAmelCase = BoyerMooreSearch(text, pattern) __lowerCAmelCase = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
147
0
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCamelCase : List[Any] = getLogger(__name__) UpperCamelCase : Tuple = """cuda""" if torch.cuda.is_available() else """cpu""" def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : str , snake_case : str , snake_case : int = 8 , snake_case : str = DEFAULT_DEVICE , snake_case : Optional[Any]=False , snake_case : List[Any]="summarization" , snake_case : Optional[int]=None , **snake_case : List[Any] , ) -> Dict: """simple docstring""" a : str = Path(snake_case__ ).open('w' , encoding='utf-8' ) a : Optional[int] = str(snake_case__ ) a : str = AutoModelForSeqaSeqLM.from_pretrained(snake_case__ ).to(snake_case__ ) if fpaa: a : str = model.half() a : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case__ ) logger.info(F"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. a : int = time.time() # update config with task specific params use_task_specific_params(snake_case__ , snake_case__ ) if prefix is None: a : Dict = prefix or getattr(model.config , 'prefix' , '' ) or """""" for examples_chunk in tqdm(list(chunks(snake_case__ , snake_case__ ) ) ): a : Optional[int] = [prefix + text for text in examples_chunk] a : Optional[int] = tokenizer(snake_case__ , return_tensors='pt' , truncation=snake_case__ , padding='longest' ).to(snake_case__ ) a : Optional[int] = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **snake_case__ , ) a : Union[str, Any] = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() a : Any = int(time.time() - start_time ) # seconds a : Union[str, Any] = len(snake_case__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def SCREAMING_SNAKE_CASE__ ( ) -> Dict: """simple docstring""" return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def SCREAMING_SNAKE_CASE__ ( snake_case : str=True ) -> Dict: """simple docstring""" a : int = argparse.ArgumentParser() parser.add_argument('model_name' , type=snake_case__ , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=snake_case__ , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=snake_case__ , help='where to save summaries' ) parser.add_argument('--reference_path' , type=snake_case__ , required=snake_case__ , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=snake_case__ , required=snake_case__ , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=snake_case__ , required=snake_case__ , default=snake_case__ , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=snake_case__ , required=snake_case__ , default=snake_case__ , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=snake_case__ , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=snake_case__ , default=8 , required=snake_case__ , help='batch size' ) parser.add_argument( '--n_obs' , type=snake_case__ , default=-1 , required=snake_case__ , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=snake_case__ , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate a : List[Any] = parser.parse_known_args() a : List[str] = parse_numeric_n_bool_cl_kwargs(snake_case__ ) if parsed_args and verbose: print(F"""parsed the following generate kwargs: {parsed_args}""" ) a : Optional[int] = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: a : str = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=snake_case__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) a : Any = generate_summaries_or_translations( snake_case__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **snake_case__ , ) if args.reference_path is None: return {} # Compute scores a : Union[str, Any] = calculate_bleu if """translation""" in args.task else calculate_rouge a : str = [x.rstrip() for x in open(args.save_path ).readlines()] a : Dict = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case__ )] a : dict = score_fn(snake_case__ , snake_case__ ) scores.update(snake_case__ ) if args.dump_args: scores.update(snake_case__ ) if args.info: a : Union[str, Any] = args.info if verbose: print(snake_case__ ) if args.score_path is not None: json.dump(snake_case__ , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
706
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : str = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCamelCase : Optional[int] = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", } } UpperCamelCase : List[str] = { """camembert-base""": 512, } UpperCamelCase : List[Any] = """▁""" class UpperCamelCase ( a_ ): """simple docstring""" A : Tuple = VOCAB_FILES_NAMES A : Any = PRETRAINED_VOCAB_FILES_MAP A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Any = ["input_ids", "attention_mask"] def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]="<s>" , UpperCAmelCase_ : Optional[Any]="</s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Optional[Any]="<s>" , UpperCAmelCase_ : int="<unk>" , UpperCAmelCase_ : int="<pad>" , UpperCAmelCase_ : Tuple="<mask>" , UpperCAmelCase_ : int=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" a : Dict = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token a : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCAmelCase_)) a : Tuple = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> a : str = {'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3} a : Optional[Any] = len(self.fairseq_tokens_to_ids) a : List[str] = len(self.sp_model) + len(self.fairseq_tokens_to_ids) a : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a : Optional[int] = [self.cls_token_id] a : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): """simple docstring""" a : List[Any] = [self.sep_token_id] a : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" return len(self.fairseq_tokens_to_ids) + len(self.sp_model) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : int = {self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : str): """simple docstring""" return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[str]): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCAmelCase_) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : List[Any]): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : List[Any]): """simple docstring""" a : List[str] = [] a : List[str] = '' a : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase_) + token a : Tuple = True a : Optional[Any] = [] else: current_sub_tokens.append(UpperCAmelCase_) a : int = False out_string += self.sp_model.decode(UpperCAmelCase_) return out_string.strip() def __getstate__( self : Union[str, Any]): """simple docstring""" a : str = self.__dict__.copy() a : List[Any] = None return state def __setstate__( self : List[Any] , UpperCAmelCase_ : Optional[Any]): """simple docstring""" a : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): a : Tuple = {} a : str = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): """simple docstring""" if not os.path.isdir(UpperCAmelCase_): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return a : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , 'wb') as fi: a : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,)
610
0
from typing import Any def __UpperCamelCase ( lowercase__ : list , lowercase__ : list , lowercase__ : dict , lowercase__ : dict , lowercase__ : dict , ) -> list: '''simple docstring''' _validation( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) # Creates data structures and fill initial step lowerCAmelCase_ : dict = {} lowerCAmelCase_ : dict = {} for state in states_space: lowerCAmelCase_ : Union[str, Any] = observations_space[0] lowerCAmelCase_ : Union[str, Any] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Optional[Any] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowercase__ ) ): lowerCAmelCase_ : str = observations_space[o] lowerCAmelCase_ : List[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase_ : Any = """""" lowerCAmelCase_ : Dict = -1 for k_state in states_space: lowerCAmelCase_ : List[Any] = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase_ : Tuple = probability lowerCAmelCase_ : Optional[int] = k_state # Update probabilities and pointers dicts lowerCAmelCase_ : Optional[Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : str = arg_max # The final observation lowerCAmelCase_ : Optional[int] = observations_space[len(lowercase__ ) - 1] # argmax for given final observation lowerCAmelCase_ : Union[str, Any] = """""" lowerCAmelCase_ : Optional[int] = -1 for k_state in states_space: lowerCAmelCase_ : Dict = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase_ : Optional[Any] = probability lowerCAmelCase_ : Dict = k_state lowerCAmelCase_ : int = arg_max # Process pointers backwards lowerCAmelCase_ : Dict = last_state lowerCAmelCase_ : Optional[int] = [] for o in range(len(lowercase__ ) - 1 , -1 , -1 ): result.append(lowercase__ ) lowerCAmelCase_ : Dict = pointers[previous, observations_space[o]] result.reverse() return result def __UpperCamelCase ( lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , ) -> None: '''simple docstring''' _validate_not_empty( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) _validate_lists(lowercase__ , lowercase__ ) _validate_dicts( lowercase__ , lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("""There's an empty parameter""" ) def __UpperCamelCase ( lowercase__ : Any , lowercase__ : Any ) -> None: '''simple docstring''' _validate_list(lowercase__ , """observations_space""" ) _validate_list(lowercase__ , """states_space""" ) def __UpperCamelCase ( lowercase__ : Any , lowercase__ : str ) -> None: '''simple docstring''' if not isinstance(_object , lowercase__ ): lowerCAmelCase_ : int = f'{var_name} must be a list' raise ValueError(lowercase__ ) else: for x in _object: if not isinstance(lowercase__ , lowercase__ ): lowerCAmelCase_ : Optional[int] = f'{var_name} must be a list of strings' raise ValueError(lowercase__ ) def __UpperCamelCase ( lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , ) -> None: '''simple docstring''' _validate_dict(lowercase__ , """initial_probabilities""" , lowercase__ ) _validate_nested_dict(lowercase__ , """transition_probabilities""" ) _validate_nested_dict(lowercase__ , """emission_probabilities""" ) def __UpperCamelCase ( lowercase__ : Any , lowercase__ : str ) -> None: '''simple docstring''' _validate_dict(_object , lowercase__ , lowercase__ ) for x in _object.values(): _validate_dict(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : Any , lowercase__ : str , lowercase__ : type , lowercase__ : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , lowercase__ ): lowerCAmelCase_ : List[str] = f'{var_name} must be a dict' raise ValueError(lowercase__ ) if not all(isinstance(lowercase__ , lowercase__ ) for x in _object ): lowerCAmelCase_ : Optional[Any] = f'{var_name} all keys must be strings' raise ValueError(lowercase__ ) if not all(isinstance(lowercase__ , lowercase__ ) for x in _object.values() ): lowerCAmelCase_ : Any = """nested dictionary """ if nested else """""" lowerCAmelCase_ : Union[str, Any] = f'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(lowercase__ ) if __name__ == "__main__": from doctest import testmod testmod()
600
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCamelCase ( lowercase__ : str ) -> None: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : str = analyze_text(lowercase__ ) lowerCAmelCase_ : Optional[int] = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. lowerCAmelCase_ : Any = sum(single_char_strings.values() ) # one length string lowerCAmelCase_ : Optional[Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCAmelCase_ : Union[str, Any] = single_char_strings[ch] lowerCAmelCase_ : Tuple = my_str / all_sum my_fir_sum += prob * math.loga(lowercase__ ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string lowerCAmelCase_ : Any = sum(two_char_strings.values() ) lowerCAmelCase_ : List[str] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCAmelCase_ : List[str] = cha + cha if sequence in two_char_strings: lowerCAmelCase_ : Any = two_char_strings[sequence] lowerCAmelCase_ : Optional[Any] = int(lowercase__ ) / all_sum my_sec_sum += prob * math.loga(lowercase__ ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __UpperCamelCase ( lowercase__ : str ) -> tuple[dict, dict]: '''simple docstring''' lowerCAmelCase_ : Any = Counter() # type: ignore lowerCAmelCase_ : Any = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowercase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCamelCase ( ) -> List[str]: '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
600
1
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE__ : Optional[int] = parse(importlib.metadata.version("torch")) def A_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) a : Dict = STR_OPERATION_TO_FUNC[operation] if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): a : List[str] = parse(importlib.metadata.version(UpperCAmelCase__ ) ) return operation(UpperCAmelCase__ , parse(UpperCAmelCase__ ) ) def A_ ( UpperCAmelCase__ , UpperCAmelCase__ ) -> int: return compare_versions(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
509
"""simple docstring""" from math import factorial, pi def A_ ( UpperCAmelCase__ , UpperCAmelCase__ = 30 ) -> float: if not isinstance(UpperCAmelCase__ , (int, float) ): raise ValueError('maclaurin_sin() requires either an int or float for theta' ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or accuracy <= 0: raise ValueError('maclaurin_sin() requires a positive int for accuracy' ) a : Tuple = float(UpperCAmelCase__ ) a : Any = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(UpperCAmelCase__ ) ) def A_ ( UpperCAmelCase__ , UpperCAmelCase__ = 30 ) -> float: if not isinstance(UpperCAmelCase__ , (int, float) ): raise ValueError('maclaurin_cos() requires either an int or float for theta' ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or accuracy <= 0: raise ValueError('maclaurin_cos() requires a positive int for accuracy' ) a : Dict = float(UpperCAmelCase__ ) a : List[str] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(UpperCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
509
1
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowercase = {'UserAgent': UserAgent().random} def __UpperCamelCase ( a : Any ) ->dict: snake_case = script.contents[0] snake_case = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _lowercase : def __init__( self , A__ ) -> str: snake_case = F"""https://www.instagram.com/{username}/""" snake_case = self.get_json() def UpperCamelCase ( self ) -> dict: snake_case = requests.get(self.url , headers=A__ ).text snake_case = BeautifulSoup(A__ , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ) -> str: return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self ) -> str: return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def UpperCamelCase ( self ) -> str: return self.user_data["username"] @property def UpperCamelCase ( self ) -> str: return self.user_data["full_name"] @property def UpperCamelCase ( self ) -> str: return self.user_data["biography"] @property def UpperCamelCase ( self ) -> str: return self.user_data["business_email"] @property def UpperCamelCase ( self ) -> str: return self.user_data["external_url"] @property def UpperCamelCase ( self ) -> int: return self.user_data["edge_followed_by"]["count"] @property def UpperCamelCase ( self ) -> int: return self.user_data["edge_follow"]["count"] @property def UpperCamelCase ( self ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def UpperCamelCase ( self ) -> str: return self.user_data["profile_pic_url_hd"] @property def UpperCamelCase ( self ) -> bool: return self.user_data["is_verified"] @property def UpperCamelCase ( self ) -> bool: return self.user_data["is_private"] def __UpperCamelCase ( a : str = "github" ) ->None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions snake_case = InstagramUser(a ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , a ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 12_0000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowercase = InstagramUser('github') print(instagram_user) print(f'{instagram_user.number_of_posts = }') print(f'{instagram_user.number_of_followers = }') print(f'{instagram_user.number_of_followings = }') print(f'{instagram_user.email = }') print(f'{instagram_user.website = }') print(f'{instagram_user.profile_picture_url = }') print(f'{instagram_user.is_verified = }') print(f'{instagram_user.is_private = }')
342
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig _lowercase = logging.get_logger(__name__) class _lowercase : def __init__( self , A__ , A__ ) -> Tuple: snake_case = question_encoder snake_case = generator snake_case = self.question_encoder def UpperCamelCase ( self , A__ ) -> int: if os.path.isfile(A__ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(A__ , exist_ok=A__ ) snake_case = os.path.join(A__ , '''question_encoder_tokenizer''' ) snake_case = os.path.join(A__ , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(A__ ) self.generator.save_pretrained(A__ ) @classmethod def UpperCamelCase ( cls , A__ , **A__ ) -> List[Any]: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer snake_case = kwargs.pop('''config''' , A__ ) if config is None: snake_case = RagConfig.from_pretrained(A__ ) snake_case = AutoTokenizer.from_pretrained( A__ , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) snake_case = AutoTokenizer.from_pretrained( A__ , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=A__ , generator=A__ ) def __call__( self , *A__ , **A__ ) -> Any: return self.current_tokenizer(*A__ , **A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Tuple: return self.generator.batch_decode(*A__ , **A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Tuple: return self.generator.decode(*A__ , **A__ ) def UpperCamelCase ( self ) -> Optional[Any]: snake_case = self.question_encoder def UpperCamelCase ( self ) -> str: snake_case = self.generator def UpperCamelCase ( self , A__ , A__ = None , A__ = None , A__ = None , A__ = "longest" , A__ = None , A__ = True , **A__ , ) -> BatchEncoding: warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , A__ , ) if max_length is None: snake_case = self.current_tokenizer.model_max_length snake_case = self( A__ , add_special_tokens=A__ , return_tensors=A__ , max_length=A__ , padding=A__ , truncation=A__ , **A__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case = self.current_tokenizer.model_max_length snake_case = self( text_target=A__ , add_special_tokens=A__ , return_tensors=A__ , padding=A__ , max_length=A__ , truncation=A__ , **A__ , ) snake_case = labels['''input_ids'''] return model_inputs
342
1
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = SwinConfig() _UpperCAmelCase = swin_name.split('_' ) _UpperCAmelCase = name_split[1] _UpperCAmelCase = int(name_split[4] ) _UpperCAmelCase = int(name_split[3][-1] ) if model_size == "tiny": _UpperCAmelCase = 96 _UpperCAmelCase = (2, 2, 6, 2) _UpperCAmelCase = (3, 6, 12, 24) elif model_size == "small": _UpperCAmelCase = 96 _UpperCAmelCase = (2, 2, 18, 2) _UpperCAmelCase = (3, 6, 12, 24) elif model_size == "base": _UpperCAmelCase = 128 _UpperCAmelCase = (2, 2, 18, 2) _UpperCAmelCase = (4, 8, 16, 32) else: _UpperCAmelCase = 192 _UpperCAmelCase = (2, 2, 18, 2) _UpperCAmelCase = (6, 12, 24, 48) if "in22k" in swin_name: _UpperCAmelCase = 2_1841 else: _UpperCAmelCase = 1000 _UpperCAmelCase = 'huggingface/label-files' _UpperCAmelCase = 'imagenet-1k-id2label.json' _UpperCAmelCase = json.load(open(hf_hub_download(A , A , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(A ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} _UpperCAmelCase = img_size _UpperCAmelCase = num_classes _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size return config def UpperCAmelCase ( A : List[str] ): '''simple docstring''' if "patch_embed.proj" in name: _UpperCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _UpperCAmelCase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: _UpperCAmelCase = 'encoder.' + name if "attn.proj" in name: _UpperCAmelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _UpperCAmelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: _UpperCAmelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _UpperCAmelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _UpperCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _UpperCAmelCase = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": _UpperCAmelCase = 'layernorm.weight' if name == "norm.bias": _UpperCAmelCase = 'layernorm.bias' if "head" in name: _UpperCAmelCase = name.replace('head' , 'classifier' ) else: _UpperCAmelCase = 'swin.' + name return name def UpperCAmelCase ( A : Dict , A : Tuple ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _UpperCAmelCase = orig_state_dict.pop(A ) if "mask" in key: continue elif "qkv" in key: _UpperCAmelCase = key.split('.' ) _UpperCAmelCase = int(key_split[1] ) _UpperCAmelCase = int(key_split[3] ) _UpperCAmelCase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _UpperCAmelCase = val[:dim, :] _UpperCAmelCase = val[ dim : dim * 2, : ] _UpperCAmelCase = val[-dim:, :] else: _UpperCAmelCase = val[ :dim ] _UpperCAmelCase = val[ dim : dim * 2 ] _UpperCAmelCase = val[ -dim: ] else: _UpperCAmelCase = val return orig_state_dict def UpperCAmelCase ( A : Optional[Any] , A : List[str] ): '''simple docstring''' _UpperCAmelCase = timm.create_model(A , pretrained=A ) timm_model.eval() _UpperCAmelCase = get_swin_config(A ) _UpperCAmelCase = SwinForImageClassification(A ) model.eval() _UpperCAmelCase = convert_state_dict(timm_model.state_dict() , A ) model.load_state_dict(A ) _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) _UpperCAmelCase = Image.open(requests.get(A , stream=A ).raw ) _UpperCAmelCase = image_processor(images=A , return_tensors='pt' ) _UpperCAmelCase = timm_model(inputs['pixel_values'] ) _UpperCAmelCase = model(**A ).logits assert torch.allclose(A , A , atol=1e-3 ) print(f'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(A ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(A ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowercase = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
24
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = DiTPipeline _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> str: torch.manual_seed(0 ) _UpperCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=snake_case , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=snake_case , ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> Optional[Any]: if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = pipe(**snake_case ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _UpperCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1E-3 ) def lowerCamelCase_ ( self ) -> Any: self._test_inference_batch_single_identical(relax_max_difference=snake_case , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCamelCase_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella', 'white shark', 'white wolf'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=40 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=25 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
24
1
'''simple docstring''' def _a (lowercase__ : list , lowercase__ : list , lowercase__ : int ) -> int: """simple docstring""" if len(lowercase__ ) != len(lowercase__ ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __snake_case = [p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order __snake_case = sorted(lowercase__ ) # declaring useful variables __snake_case = len(lowercase__ ) __snake_case = 0 __snake_case = 0 __snake_case = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __snake_case = sorted_profit_by_weight[length - i - 1] __snake_case = profit_by_weight.index(lowercase__ ) __snake_case = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( "Input profits, weights, and then max_weight (all positive ints) separated by " "spaces." ) _a : str = [int(x) for x in input("Input profits separated by spaces: ").split()] _a : str = [int(x) for x in input("Input weights separated by spaces: ").split()] _a : Any = int(input("Max weight allowed: ")) # Function Call calc_profit(profit, weight, max_weight)
56
"""simple docstring""" def _snake_case ( lowercase__ = 1 , lowercase__ = 1000 ): _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : List[Any] = 0 for divide_by_number in range(lowercase__ , digit + 1 ): _lowerCamelCase : list[int] = [] _lowerCamelCase : Dict = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(lowercase__ ): _lowerCamelCase : Any = len(lowercase__ ) _lowerCamelCase : Any = divide_by_number else: has_been_divided.append(lowercase__ ) _lowerCamelCase : int = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
630
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self: int , __UpperCamelCase: List[str] , __UpperCamelCase: Optional[Any]=7 , __UpperCamelCase: Union[str, Any]=3 , __UpperCamelCase: Dict=18 , __UpperCamelCase: Any=30 , __UpperCamelCase: Optional[int]=4_00 , __UpperCamelCase: List[Any]=True , __UpperCamelCase: Tuple=None , __UpperCamelCase: Union[str, Any]=True , ): '''simple docstring''' __magic_name__ = size if size is not None else {'height': 18, 'width': 18} __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = image_size __magic_name__ = min_resolution __magic_name__ = max_resolution __magic_name__ = do_resize __magic_name__ = size __magic_name__ = apply_ocr def _SCREAMING_SNAKE_CASE ( self: int ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : Optional[int] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _SCREAMING_SNAKE_CASE ( self: str ): '''simple docstring''' __magic_name__ = LayoutLMvaImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' __magic_name__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'apply_ocr' ) ) def _SCREAMING_SNAKE_CASE ( self: List[str] ): '''simple docstring''' __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self: Optional[Any] ): '''simple docstring''' __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , __UpperCamelCase ) self.assertIsInstance(encoding.boxes , __UpperCamelCase ) # Test batched __magic_name__ = image_processing(__UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _SCREAMING_SNAKE_CASE ( self: List[str] ): '''simple docstring''' __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __magic_name__ = image_processing(__UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _SCREAMING_SNAKE_CASE ( self: Optional[int] ): '''simple docstring''' __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __magic_name__ = image_processing(__UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _SCREAMING_SNAKE_CASE ( self: Any ): '''simple docstring''' __magic_name__ = LayoutLMvaImageProcessor() from datasets import load_dataset __magic_name__ = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __magic_name__ = Image.open(ds[0]['file'] ).convert('RGB' ) __magic_name__ = image_processing(__UpperCamelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __magic_name__ = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __magic_name__ = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __UpperCamelCase ) self.assertListEqual(encoding.boxes , __UpperCamelCase ) # with apply_OCR = False __magic_name__ = LayoutLMvaImageProcessor(apply_ocr=__UpperCamelCase ) __magic_name__ = image_processing(__UpperCamelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
184
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A__ = logging.get_logger(__name__) A__ = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class __UpperCamelCase ( SCREAMING_SNAKE_CASE ): _lowercase : Optional[Any] = "layoutlmv3" def __init__( self: Tuple , __UpperCamelCase: List[Any]=5_02_65 , __UpperCamelCase: Union[str, Any]=7_68 , __UpperCamelCase: Optional[int]=12 , __UpperCamelCase: List[str]=12 , __UpperCamelCase: List[Any]=30_72 , __UpperCamelCase: Union[str, Any]="gelu" , __UpperCamelCase: Union[str, Any]=0.1 , __UpperCamelCase: Union[str, Any]=0.1 , __UpperCamelCase: List[Any]=5_12 , __UpperCamelCase: int=2 , __UpperCamelCase: Union[str, Any]=0.02 , __UpperCamelCase: Dict=1E-5 , __UpperCamelCase: int=1 , __UpperCamelCase: Dict=0 , __UpperCamelCase: Tuple=2 , __UpperCamelCase: Any=10_24 , __UpperCamelCase: Union[str, Any]=1_28 , __UpperCamelCase: Dict=1_28 , __UpperCamelCase: Any=True , __UpperCamelCase: Any=32 , __UpperCamelCase: int=1_28 , __UpperCamelCase: List[str]=64 , __UpperCamelCase: Union[str, Any]=2_56 , __UpperCamelCase: int=True , __UpperCamelCase: Optional[int]=True , __UpperCamelCase: Union[str, Any]=True , __UpperCamelCase: Union[str, Any]=2_24 , __UpperCamelCase: Tuple=3 , __UpperCamelCase: Any=16 , __UpperCamelCase: List[Any]=None , **__UpperCamelCase: str , ): '''simple docstring''' super().__init__( vocab_size=__UpperCamelCase , hidden_size=__UpperCamelCase , num_hidden_layers=__UpperCamelCase , num_attention_heads=__UpperCamelCase , intermediate_size=__UpperCamelCase , hidden_act=__UpperCamelCase , hidden_dropout_prob=__UpperCamelCase , attention_probs_dropout_prob=__UpperCamelCase , max_position_embeddings=__UpperCamelCase , type_vocab_size=__UpperCamelCase , initializer_range=__UpperCamelCase , layer_norm_eps=__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase , ) __magic_name__ = max_ad_position_embeddings __magic_name__ = coordinate_size __magic_name__ = shape_size __magic_name__ = has_relative_attention_bias __magic_name__ = rel_pos_bins __magic_name__ = max_rel_pos __magic_name__ = has_spatial_attention_bias __magic_name__ = rel_ad_pos_bins __magic_name__ = max_rel_ad_pos __magic_name__ = text_embed __magic_name__ = visual_embed __magic_name__ = input_size __magic_name__ = num_channels __magic_name__ = patch_size __magic_name__ = classifier_dropout class __UpperCamelCase ( SCREAMING_SNAKE_CASE ): _lowercase : Any = version.parse("1.12" ) @property def _SCREAMING_SNAKE_CASE ( self: Any ): '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self: int ): '''simple docstring''' return 1E-5 @property def _SCREAMING_SNAKE_CASE ( self: Optional[int] ): '''simple docstring''' return 12 def _SCREAMING_SNAKE_CASE ( self: Tuple , __UpperCamelCase: "ProcessorMixin" , __UpperCamelCase: int = -1 , __UpperCamelCase: int = -1 , __UpperCamelCase: bool = False , __UpperCamelCase: Optional["TensorType"] = None , __UpperCamelCase: int = 3 , __UpperCamelCase: int = 40 , __UpperCamelCase: int = 40 , ): '''simple docstring''' setattr(processor.image_processor , 'apply_ocr' , __UpperCamelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __magic_name__ = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __magic_name__ = processor.tokenizer.num_special_tokens_to_add(__UpperCamelCase ) __magic_name__ = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCamelCase ) # Generate dummy inputs according to compute batch and sequence __magic_name__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __magic_name__ = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __magic_name__ = self._generate_dummy_images(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __magic_name__ = dict( processor( __UpperCamelCase , text=__UpperCamelCase , boxes=__UpperCamelCase , return_tensors=__UpperCamelCase , ) ) return inputs
184
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Union[str, Any] = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : List[str] = '''perceiver''' def __init__( self : Union[str, Any] , snake_case_ : List[str]=2_5_6 , snake_case_ : Dict=1_2_8_0 , snake_case_ : str=7_6_8 , snake_case_ : Any=1 , snake_case_ : Tuple=2_6 , snake_case_ : List[str]=8 , snake_case_ : Optional[int]=8 , snake_case_ : Dict=None , snake_case_ : Union[str, Any]=None , snake_case_ : Dict="kv" , snake_case_ : Optional[int]=1 , snake_case_ : List[str]=1 , snake_case_ : Any="gelu" , snake_case_ : Optional[Any]=0.1 , snake_case_ : Optional[int]=0.0_2 , snake_case_ : Dict=1e-12 , snake_case_ : str=True , snake_case_ : Tuple=2_6_2 , snake_case_ : List[Any]=2_0_4_8 , snake_case_ : str=5_6 , snake_case_ : Any=[3_6_8, 4_9_6] , snake_case_ : Dict=1_6 , snake_case_ : str=1_9_2_0 , snake_case_ : List[str]=1_6 , snake_case_ : Dict=[1, 1_6, 2_2_4, 2_2_4] , **snake_case_ : List[Any] , ): super().__init__(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = num_latents _UpperCAmelCase = d_latents _UpperCAmelCase = d_model _UpperCAmelCase = num_blocks _UpperCAmelCase = num_self_attends_per_block _UpperCAmelCase = num_self_attention_heads _UpperCAmelCase = num_cross_attention_heads _UpperCAmelCase = qk_channels _UpperCAmelCase = v_channels _UpperCAmelCase = cross_attention_shape_for_attention _UpperCAmelCase = self_attention_widening_factor _UpperCAmelCase = cross_attention_widening_factor _UpperCAmelCase = hidden_act _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = use_query_residual # masked language modeling attributes _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings # image classification attributes _UpperCAmelCase = image_size # flow attributes _UpperCAmelCase = train_size # multimodal autoencoding attributes _UpperCAmelCase = num_frames _UpperCAmelCase = audio_samples_per_frame _UpperCAmelCase = samples_per_patch _UpperCAmelCase = output_shape class A_ ( lowerCAmelCase_ ): @property def lowercase ( self : List[Any] ): if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def lowercase ( self : str ): return 1e-4 def lowercase ( self : Optional[int] , snake_case_ : List[str] , snake_case_ : Any = -1 , snake_case_ : str = -1 , snake_case_ : List[str] = -1 , snake_case_ : Optional[Any] = False , snake_case_ : Optional[Any] = None , snake_case_ : List[str] = 3 , snake_case_ : Optional[int] = 4_0 , snake_case_ : Optional[Any] = 4_0 , ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase = preprocessor.num_special_tokens_to_add(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase = [' '.join(["a"] ) * seq_length] * batch_size _UpperCAmelCase = dict(preprocessor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = inputs.pop("input_ids" ) return inputs elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension(_SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch ) _UpperCAmelCase = self._generate_dummy_images(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = dict(preprocessor(images=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
236
from __future__ import annotations import os from typing import Any import requests lowerCAmelCase : str = 'https://api.github.com' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowerCAmelCase : Optional[Any] = BASE_URL + '/user' # https://github.com/settings/tokens lowerCAmelCase : Optional[int] = os.environ.get('USER_TOKEN', '') def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = { 'Authorization': f"token {auth_token}", 'Accept': 'application/vnd.github.v3+json', } return requests.get(a , headers=a ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'{key}: {value}') else: raise ValueError('\'USER_TOKEN\' field cannot be empty.')
511
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'facebook/bart-large-mnli' __snake_case = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) __snake_case = 'text_classifier' __snake_case = AutoTokenizer __snake_case = AutoModelForSequenceClassification __snake_case = ['text', ['text']] __snake_case = ['text'] def UpperCamelCase_ ( self ) -> str: super().setup() _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model.config _SCREAMING_SNAKE_CASE : Optional[Any] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): _SCREAMING_SNAKE_CASE : Union[str, Any] = int(__lowerCamelCase ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> List[str]: _SCREAMING_SNAKE_CASE : str = labels return self.pre_processor( [text] * len(__lowerCamelCase ) , [F"""This example is {label}""" for label in labels] , return_tensors="pt" , padding="max_length" , ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : List[str] = outputs.logits _SCREAMING_SNAKE_CASE : List[str] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
718
from PIL import Image def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = image.size _SCREAMING_SNAKE_CASE : Tuple = 0 _SCREAMING_SNAKE_CASE : Dict = image.load() for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[Any] = pixels[j, i] mean += pixel mean //= width * height for j in range(__lowerCamelCase ): for i in range(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": UpperCamelCase__ =mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
381
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase_ : Any = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase_ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
673
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : List[str] = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase=False ): '''simple docstring''' UpperCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase = """""" else: UpperCAmelCase = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = dct.pop(lowerCAmelCase ) UpperCAmelCase = val def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase = 1000 UpperCAmelCase = """huggingface/label-files""" UpperCAmelCase = """imagenet-1k-id2label.json""" UpperCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase = {int(lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = int(deit_name[-6:-4] ) UpperCAmelCase = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): UpperCAmelCase = 192 UpperCAmelCase = 768 UpperCAmelCase = 12 UpperCAmelCase = 3 elif deit_name[9:].startswith("""small""" ): UpperCAmelCase = 384 UpperCAmelCase = 1536 UpperCAmelCase = 12 UpperCAmelCase = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): UpperCAmelCase = 1024 UpperCAmelCase = 4096 UpperCAmelCase = 24 UpperCAmelCase = 16 # load original model from timm UpperCAmelCase = timm.create_model(lowerCAmelCase , pretrained=lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase = timm_model.state_dict() UpperCAmelCase = create_rename_keys(lowerCAmelCase , lowerCAmelCase ) for src, dest in rename_keys: rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) read_in_q_k_v(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # load HuggingFace model UpperCAmelCase = DeiTForImageClassificationWithTeacher(lowerCAmelCase ).eval() model.load_state_dict(lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase = DeiTImageProcessor(size=lowerCAmelCase , crop_size=config.image_size ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors="""pt""" ) UpperCAmelCase = encoding["""pixel_values"""] UpperCAmelCase = model(lowerCAmelCase ) UpperCAmelCase = timm_model(lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase_ : str = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
673
1
from __future__ import annotations import numpy as np def __a ( __UpperCAmelCase ): return np.maximum(0 , A__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
714
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers a_ : str = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
148
0
def _SCREAMING_SNAKE_CASE ( lowercase : int = 10 ): '''simple docstring''' if not isinstance(lowercase , lowercase ) or n < 0: raise ValueError('Invalid input' ) lowerCamelCase_ = 10**n lowerCamelCase_ = 2_84_33 * (pow(2 , 7_83_04_57 , lowercase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
70
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCAmelCase : List[str] = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "facebook/nllb-200-distilled-600M" lowercase__ = ( "This is a tool that translates text from a language to another. It takes three inputs: `text`, which should " "be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, " "which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in " "plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`." ) lowercase__ = "translator" lowercase__ = AutoTokenizer lowercase__ = AutoModelForSeqaSeqLM lowercase__ = LANGUAGE_CODES lowercase__ = ["text", "text", "text"] lowercase__ = ["text"] def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple): """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''') if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''') lowercase_ = self.lang_to_code[src_lang] lowercase_ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase_ , return_tensors="""pt""" , src_lang=lowerCAmelCase_ , tgt_lang=lowerCAmelCase_) def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : int): """simple docstring""" return self.model.generate(**lowerCAmelCase_) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str): """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase_)
567
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : def __init__( self : Optional[int] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int]=12 , lowerCamelCase__ : Union[str, Any]=7 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Dict=99 , lowerCamelCase__ : str=32 , lowerCamelCase__ : List[str]=32 , lowerCamelCase__ : Dict=2 , lowerCamelCase__ : int=4 , lowerCamelCase__ : Any=37 , lowerCamelCase__ : Optional[Any]=0.1 , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Tuple=5_12 , lowerCamelCase__ : List[Any]=0.0_2 , lowerCamelCase__ : List[Any]=0 , lowerCamelCase__ : Optional[int]=None , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : Dict = is_training _UpperCAmelCase : str = use_input_mask _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : int = hidden_size _UpperCAmelCase : Optional[int] = projection_dim _UpperCAmelCase : Dict = num_hidden_layers _UpperCAmelCase : Optional[int] = num_attention_heads _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Optional[Any] = dropout _UpperCAmelCase : Optional[Any] = attention_dropout _UpperCAmelCase : Tuple = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : List[Any] = scope _UpperCAmelCase : int = bos_token_id def lowerCAmelCase__ ( self : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : str = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCAmelCase : int = input_mask.numpy() _UpperCAmelCase , _UpperCAmelCase : List[Any] = input_mask.shape _UpperCAmelCase : Dict = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[Any] = 0 _UpperCAmelCase : List[Any] = self.get_config() return config, input_ids, tf.convert_to_tensor(lowerCamelCase__ ) def lowerCAmelCase__ ( self : str ) ->List[str]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : str , lowerCamelCase__ : Tuple ) ->Dict: '''simple docstring''' _UpperCAmelCase : int = TFBlipTextModel(config=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , training=lowerCamelCase__ ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase__ ( self : Any ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = config_and_inputs _UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Tuple = (TFBlipTextModel,) if is_tf_available() else () lowerCAmelCase : List[str] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Optional[Any] = False def lowerCAmelCase__ ( self : str ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = BlipTextModelTester(self ) _UpperCAmelCase : Any = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Optional[int] ) ->Tuple: '''simple docstring''' _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Tuple ) ->Dict: '''simple docstring''' pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[str]: '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def lowerCAmelCase__ ( self : str ) ->Any: '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' pass @slow def lowerCAmelCase__ ( self : int ) ->Optional[Any]: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Tuple = TFBlipTextModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase__ ( self : str , lowerCamelCase__ : Tuple=True ) ->Dict: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=lowerCamelCase__ )
40
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None ): if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path _UpperCAmelCase : str = quote(__lowerCAmelCase ) return hfh.hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" , revision=__lowerCAmelCase )
40
1
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging a : str = logging.get_logger(__name__) a : List[str] = '''▁''' a : Any = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a : str = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } a : Tuple = { '''facebook/m2m100_418M''': 1_0_2_4, } # fmt: off a : List[str] = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class a_ ( _UpperCAmelCase ): a : Tuple = VOCAB_FILES_NAMES a : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Tuple = PRETRAINED_VOCAB_FILES_MAP a : Optional[Any] = ['input_ids', 'attention_mask'] a : List[int] = [] a : List[int] = [] def __init__( self : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : int="<s>" , __UpperCamelCase : Union[str, Any]="</s>" , __UpperCamelCase : int="</s>" , __UpperCamelCase : List[Any]="<pad>" , __UpperCamelCase : Union[str, Any]="<unk>" , __UpperCamelCase : Dict="m2m100" , __UpperCamelCase : Optional[Dict[str, Any]] = None , __UpperCamelCase : Union[str, Any]=8 , **__UpperCamelCase : Optional[int] , ) ->None: '''simple docstring''' _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _UpperCAmelCase = language_codes _UpperCAmelCase = FAIRSEQ_LANGUAGE_CODES[language_codes] _UpperCAmelCase = {lang_code: f"""__{lang_code}__""" for lang_code in fairseq_language_code} _UpperCAmelCase = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__UpperCamelCase ) for lang_code in fairseq_language_code if self.get_lang_token(__UpperCamelCase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__UpperCamelCase , tgt_lang=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , language_codes=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__UpperCamelCase , **__UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = load_json(__UpperCamelCase ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} _UpperCAmelCase = spm_file _UpperCAmelCase = load_spm(__UpperCamelCase , self.sp_model_kwargs ) _UpperCAmelCase = len(self.encoder ) _UpperCAmelCase = { self.get_lang_token(__UpperCamelCase ): self.encoder_size + i for i, lang_code in enumerate(__UpperCamelCase ) } _UpperCAmelCase = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__UpperCamelCase )} _UpperCAmelCase = {v: k for k, v in self.lang_token_to_id.items()} _UpperCAmelCase = src_lang if src_lang is not None else """en""" _UpperCAmelCase = tgt_lang _UpperCAmelCase = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _UpperCAmelCase = num_madeup_words @property def _snake_case ( self : Optional[int] ) ->int: '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def _snake_case ( self : Optional[Any] ) ->str: '''simple docstring''' return self._src_lang @src_lang.setter def _snake_case ( self : List[Any] , __UpperCamelCase : str ) ->None: '''simple docstring''' _UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self : List[str] , __UpperCamelCase : str ) ->List[str]: '''simple docstring''' return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def _snake_case ( self : Optional[Any] , __UpperCamelCase : Optional[Any] ) ->Dict: '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__UpperCamelCase , self.encoder[self.unk_token] ) def _snake_case ( self : Dict , __UpperCamelCase : int ) ->str: '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__UpperCamelCase , self.unk_token ) def _snake_case ( self : Optional[Any] , __UpperCamelCase : Any ) ->int: '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__UpperCamelCase ) + token _UpperCAmelCase = [] else: current_sub_tokens.append(__UpperCamelCase ) out_string += self.sp_model.decode(__UpperCamelCase ) return out_string.strip() def _snake_case ( self : Tuple , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) _UpperCAmelCase = [1] * len(self.prefix_tokens ) _UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCamelCase )) + ([0] * len(__UpperCamelCase )) + suffix_ones def _snake_case ( self : Any , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) ->Dict: '''simple docstring''' _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self : Dict , __UpperCamelCase : Dict ) ->None: '''simple docstring''' _UpperCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _UpperCAmelCase = {} _UpperCAmelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def _snake_case ( self : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' _UpperCAmelCase = Path(__UpperCamelCase ) if not save_dir.is_dir(): raise OSError(f"""{save_directory} should be a directory""" ) _UpperCAmelCase = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) _UpperCAmelCase = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , __UpperCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __UpperCamelCase ) elif not os.path.isfile(self.spm_file ): with open(__UpperCamelCase , """wb""" ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (str(__UpperCamelCase ), str(__UpperCamelCase )) def _snake_case ( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str = "en" , __UpperCamelCase : Optional[List[str]] = None , __UpperCamelCase : str = "ro" , **__UpperCamelCase : int , ) ->BatchEncoding: '''simple docstring''' _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def _snake_case ( self : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[str] , __UpperCamelCase : Optional[str] , **__UpperCamelCase : Any ) ->Optional[Any]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _UpperCAmelCase = src_lang _UpperCAmelCase = self(__UpperCamelCase , add_special_tokens=__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = self.get_lang_id(__UpperCamelCase ) _UpperCAmelCase = tgt_lang_id return inputs def _snake_case ( self : Dict ) ->Optional[int]: '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self : Dict , __UpperCamelCase : str ) ->None: '''simple docstring''' _UpperCAmelCase = self.get_lang_token(__UpperCamelCase ) _UpperCAmelCase = self.lang_token_to_id[lang_token] _UpperCAmelCase = [self.cur_lang_id] _UpperCAmelCase = [self.eos_token_id] def _snake_case ( self : Optional[Any] , __UpperCamelCase : str ) ->None: '''simple docstring''' _UpperCAmelCase = self.get_lang_token(__UpperCamelCase ) _UpperCAmelCase = self.lang_token_to_id[lang_token] _UpperCAmelCase = [self.cur_lang_id] _UpperCAmelCase = [self.eos_token_id] def _snake_case ( self : List[str] , __UpperCamelCase : str ) ->str: '''simple docstring''' return self.lang_code_to_token[lang] def _snake_case ( self : List[str] , __UpperCamelCase : str ) ->int: '''simple docstring''' _UpperCAmelCase = self.get_lang_token(__UpperCamelCase ) return self.lang_token_to_id[lang_token] def _UpperCamelCase ( _A , _A ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" _UpperCAmelCase = sentencepiece.SentencePieceProcessor(**_A ) spm.Load(str(_A ) ) return spm def _UpperCamelCase ( _A ) -> Union[Dict, List]: """simple docstring""" with open(_A , """r""" ) as f: return json.load(_A ) def _UpperCamelCase ( _A , _A ) -> None: """simple docstring""" with open(_A , """w""" ) as f: json.dump(_A , _A , indent=2 )
555
"""simple docstring""" import cva import numpy as np class a_ : def __init__( self : Optional[Any] , __UpperCamelCase : float , __UpperCamelCase : int ) ->Dict: '''simple docstring''' if k in (0.0_4, 0.0_6): _UpperCAmelCase = k _UpperCAmelCase = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Tuple ) ->str: '''simple docstring''' return str(self.k ) def _snake_case ( self : str , __UpperCamelCase : str ) ->tuple[cva.Mat, list[list[int]]]: '''simple docstring''' _UpperCAmelCase = cva.imread(__UpperCamelCase , 0 ) _UpperCAmelCase ,_UpperCAmelCase = img.shape _UpperCAmelCase = [] _UpperCAmelCase = img.copy() _UpperCAmelCase = cva.cvtColor(__UpperCamelCase , cva.COLOR_GRAY2RGB ) _UpperCAmelCase ,_UpperCAmelCase = np.gradient(__UpperCamelCase ) _UpperCAmelCase = dx**2 _UpperCAmelCase = dy**2 _UpperCAmelCase = dx * dy _UpperCAmelCase = 0.0_4 _UpperCAmelCase = self.window_size // 2 for y in range(__UpperCamelCase , h - offset ): for x in range(__UpperCamelCase , w - offset ): _UpperCAmelCase = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCAmelCase = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCAmelCase = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCAmelCase = (wxx * wyy) - (wxy**2) _UpperCAmelCase = wxx + wyy _UpperCAmelCase = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": a : List[Any] = HarrisCorner(0.04, 3) a , a : List[Any] = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
555
1
"""simple docstring""" __lowerCAmelCase : Any = range(2, 20 + 1) __lowerCAmelCase : Optional[int] = [10**k for k in range(ks[-1] + 1)] __lowerCAmelCase : dict[int, dict[int, list[list[int]]]] = {} def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Optional[int] = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) snake_case_ : str = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) snake_case_ , snake_case_ : str = 0, 0 snake_case_ : int = n - i snake_case_ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: snake_case_ : Any = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over snake_case_ : Optional[int] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: snake_case_ : Union[str, Any] = _k break if max_jump >= 0: snake_case_ , snake_case_ , snake_case_ : str = jumps[max_jump] # since the difference between jumps is cached, add c snake_case_ : List[str] = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): snake_case_ , snake_case_ : List[str] = divmod(__UpperCamelCase , 1_0 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: snake_case_ : Tuple = [] else: snake_case_ : List[Any] = {c: []} snake_case_ : Tuple = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps snake_case_ , snake_case_ : Tuple = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead snake_case_ , snake_case_ : List[str] = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped snake_case_ : Optional[int] = sub_memo[c] # keep jumps sorted by # of terms skipped snake_case_ : Union[str, Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : Any ): '''simple docstring''' if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) snake_case_ : str = i snake_case_ , snake_case_ , snake_case_ : List[str] = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 snake_case_ : Union[str, Any] = ds_c + ds_b diff += addend snake_case_ : Tuple = 0 for j in range(__UpperCamelCase ): snake_case_ : Any = a_i[j] + addend snake_case_ , snake_case_ : Optional[int] = divmod(__UpperCamelCase , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): '''simple docstring''' for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): snake_case_ : Tuple = digits[j] + addend if s >= 1_0: snake_case_ , snake_case_ : Optional[Any] = divmod(__UpperCamelCase , 1_0 ) snake_case_ : Dict = addend // 1_0 + quotient else: snake_case_ : Tuple = s snake_case_ : Union[str, Any] = addend // 1_0 if addend == 0: break while addend > 0: snake_case_ , snake_case_ : Dict = divmod(__UpperCamelCase , 1_0 ) digits.append(__UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : int = 1_0**1_5 ): '''simple docstring''' snake_case_ : List[str] = [1] snake_case_ : Any = 1 snake_case_ : str = 0 while True: snake_case_ , snake_case_ : int = next_term(__UpperCamelCase , 2_0 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break snake_case_ : Tuple = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
21
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case_ : Dict = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids snake_case_ : List[str] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids snake_case_ : Optional[Any] = shift_tokens_right(_lowercase , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case_ : Tuple = model(_lowercase , decoder_input_ids=_lowercase ).logits snake_case_ : Tuple = optax.softmax_cross_entropy(_lowercase , onehot(_lowercase , logits.shape[-1] ) ).mean() snake_case_ : List[str] = -(labels.shape[-1] * loss.item()) snake_case_ : Optional[int] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
21
1
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowercase__ ( A_ ): def UpperCamelCase_ ( self) -> Optional[int]: _lowerCamelCase : Dict = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """tf_padding""")) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """depth_multiplier""")) class lowercase__ : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=0.25 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=6 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="relu6" , SCREAMING_SNAKE_CASE=1280 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=None , ) -> Any: _lowerCamelCase : Optional[Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : Tuple = image_size _lowerCamelCase : Tuple = depth_multiplier _lowerCamelCase : int = depth_divisible_by _lowerCamelCase : Tuple = min_depth _lowerCamelCase : Any = expand_ratio _lowerCamelCase : int = tf_padding _lowerCamelCase : str = output_stride _lowerCamelCase : str = first_layer_is_expansion _lowerCamelCase : Optional[int] = finegrained_output _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : Optional[int] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier) _lowerCamelCase : Any = classifier_dropout_prob _lowerCamelCase : Any = use_labels _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = num_labels _lowerCamelCase : int = initializer_range _lowerCamelCase : List[str] = scope def UpperCamelCase_ ( self) -> Union[str, Any]: _lowerCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCamelCase : List[Any] = None _lowerCamelCase : str = None if self.use_labels: _lowerCamelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels) _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) _lowerCamelCase : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self) -> str: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> str: _lowerCamelCase : Tuple = MobileNetVaModel(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _lowerCamelCase : str = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Tuple: _lowerCamelCase : Tuple = self.num_labels _lowerCamelCase : Union[str, Any] = MobileNetVaForImageClassification(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _lowerCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> int: _lowerCamelCase : Tuple = self.num_labels _lowerCamelCase : List[str] = MobileNetVaForSemanticSegmentation(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _lowerCamelCase : int = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _lowerCamelCase : Tuple = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : Tuple = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = config_and_inputs _lowerCamelCase : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( A_ ,A_ ,unittest.TestCase ): __UpperCAmelCase = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : int = MobileNetVaModelTester(self) _lowerCamelCase : Dict = MobileNetVaConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""") def UpperCamelCase_ ( self) -> Optional[int]: pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""") def UpperCamelCase_ ( self) -> Dict: pass @unittest.skip(reason="""MobileNetV2 does not output attentions""") def UpperCamelCase_ ( self) -> Any: pass def UpperCamelCase_ ( self) -> List[Any]: _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE) _lowerCamelCase : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> int: _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> List[Any]: def check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): _lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): _lowerCamelCase : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)) _lowerCamelCase : Optional[Any] = outputs.hidden_states _lowerCamelCase : Tuple = 16 self.assertEqual(len(SCREAMING_SNAKE_CASE) , SCREAMING_SNAKE_CASE) _lowerCamelCase , _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Tuple: _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Dict: _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE) @slow def UpperCamelCase_ ( self) -> Tuple: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : str = MobileNetVaModel.from_pretrained(SCREAMING_SNAKE_CASE) self.assertIsNotNone(SCREAMING_SNAKE_CASE) def _snake_case ( ): """simple docstring""" _lowerCamelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self) -> Any: return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""") if is_vision_available() else None ) @slow def UpperCamelCase_ ( self) -> Dict: _lowerCamelCase : List[str] = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""").to(SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : Optional[Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="""pt""").to(SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): _lowerCamelCase : str = model(**SCREAMING_SNAKE_CASE) # verify the logits _lowerCamelCase : Optional[int] = torch.Size((1, 1001)) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE) _lowerCamelCase : Tuple = torch.tensor([0.24_45, -1.19_93, 0.19_05]).to(SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4)) @slow def UpperCamelCase_ ( self) -> List[str]: _lowerCamelCase : Optional[int] = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""") _lowerCamelCase : str = model.to(SCREAMING_SNAKE_CASE) _lowerCamelCase : Dict = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""") _lowerCamelCase : Union[str, Any] = prepare_img() _lowerCamelCase : Any = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="""pt""").to(SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): _lowerCamelCase : List[Any] = model(**SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[Any] = outputs.logits # verify the logits _lowerCamelCase : Union[str, Any] = torch.Size((1, 21, 65, 65)) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[Any] = torch.tensor( [ [[17.57_90, 17.75_81, 18.33_55], [18.32_57, 18.42_30, 18.89_73], [18.61_69, 18.86_50, 19.21_87]], [[-2.15_95, -2.09_77, -2.37_41], [-2.42_26, -2.30_28, -2.68_35], [-2.78_19, -2.59_91, -2.77_06]], [[4.20_58, 4.83_17, 4.76_38], [4.41_36, 5.03_61, 4.93_83], [4.50_28, 4.96_44, 4.87_34]], ] , device=SCREAMING_SNAKE_CASE , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4))
88
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : str = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='timesformer' def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ): super().__init__(**__a ) _a = image_size _a = patch_size _a = num_channels _a = num_frames _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = qkv_bias _a = attention_type _a = drop_path_rate
692
0
"""simple docstring""" a = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int ) -> str: '''simple docstring''' assert len(str(_snake_case ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _A = year // 1_00 _A = (5 * (century % 4) + 2) % 7 _A = year % 1_00 _A = centurian % 12 _A = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _A = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) _A = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
505
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def _snake_case ( _snake_case : List[Any] ) -> Any: '''simple docstring''' _A = {} _A = tokenizer(example['content'] , truncation=_snake_case )['input_ids'] _A = len(example['content'] ) / len(output['input_ids'] ) return output a = HfArgumentParser(PretokenizationArguments) a = parser.parse_args() if args.num_workers is None: a = multiprocessing.cpu_count() a = AutoTokenizer.from_pretrained(args.tokenizer_dir) a = time.time() a = load_dataset(args.dataset_name, split='''train''') print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') a = time.time() a = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') a = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
505
1
'''simple docstring''' from collections.abc import Sequence def _a (lowercase__ : Sequence[int] | None = None ) -> int: """simple docstring""" if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) __snake_case = nums[0] for i in range(1 , len(lowercase__ ) ): __snake_case = nums[i] __snake_case = max(lowercase__ , ans + num , lowercase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _a : int = int(input("Enter number of elements : ").strip()) _a : int = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
56
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowercase_ = KandinskyVaaPipeline lowercase_ = [ """image_embeds""", """negative_image_embeds""", ] lowercase_ = ["""image_embeds""", """negative_image_embeds"""] lowercase_ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowercase_ = False @property def __UpperCamelCase ( self ): '''simple docstring''' return 3_2 @property def __UpperCamelCase ( self ): '''simple docstring''' return 3_2 @property def __UpperCamelCase ( self ): '''simple docstring''' return self.time_input_dim @property def __UpperCamelCase ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def __UpperCamelCase ( self ): '''simple docstring''' return 1_0_0 @property def __UpperCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __A ={ '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __A =UNetaDConditionModel(**lowercase__ ) return model @property def __UpperCamelCase ( self ): '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __A =VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase ( self ): '''simple docstring''' __A =self.dummy_unet __A =self.dummy_movq __A =DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=lowercase__ , set_alpha_to_one=lowercase__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowercase__ , ) __A ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __UpperCamelCase ( self , lowercase__ , lowercase__=0 ): '''simple docstring''' __A =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) __A =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase__ ) if str(lowercase__ ).startswith('''mps''' ): __A =torch.manual_seed(lowercase__ ) else: __A =torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __A ={ '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __UpperCamelCase ( self ): '''simple docstring''' __A ='''cpu''' __A =self.get_dummy_components() __A =self.pipeline_class(**lowercase__ ) __A =pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __A =pipe(**self.get_dummy_inputs(lowercase__ ) ) __A =output.images __A =pipe( **self.get_dummy_inputs(lowercase__ ) , return_dict=lowercase__ , )[0] __A =image[0, -3:, -3:, -1] __A =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __A =np.array( [0.623_7976, 1.0, 0.3644_1332, 1.0, 0.7063_9634, 0.2987_7186, 0.8565_2125, 0.521_6843, 0.5445_4046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ): '''simple docstring''' __A =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) __A =KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowercase__ ) __A =KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) __A =pipeline.to(lowercase__ ) pipeline.set_progress_bar_config(disable=lowercase__ ) __A ='''red cat, 4k photo''' __A =torch.Generator(device='''cuda''' ).manual_seed(0 ) __A , __A =pipe_prior( lowercase__ , generator=lowercase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __A =torch.Generator(device='''cuda''' ).manual_seed(0 ) __A =pipeline( image_embeds=lowercase__ , negative_image_embeds=lowercase__ , generator=lowercase__ , num_inference_steps=1_0_0 , output_type='''np''' , ) __A =output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ )
184
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase : Tuple = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Dict = ["ConvNextFeatureExtractor"] __UpperCAmelCase : Dict = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Dict = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[str] = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __UpperCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure)
707
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> List[str]: # load base model __snake_case: str = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa) # load LoRA weight from .safetensors __snake_case: Dict = load_file(SCREAMING_SNAKE_CASE__) __snake_case: List[str] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __snake_case: Optional[int] = key.split(""".""")[0].split(LORA_PREFIX_TEXT_ENCODER + """_""")[-1].split("""_""") __snake_case: Union[str, Any] = pipeline.text_encoder else: __snake_case: Optional[int] = key.split(""".""")[0].split(LORA_PREFIX_UNET + """_""")[-1].split("""_""") __snake_case: List[Any] = pipeline.unet # find the target layer __snake_case: Optional[Any] = layer_infos.pop(0) while len(SCREAMING_SNAKE_CASE__) > -1: try: __snake_case: Optional[Any] = curr_layer.__getattr__(SCREAMING_SNAKE_CASE__) if len(SCREAMING_SNAKE_CASE__) > 0: __snake_case: Optional[int] = layer_infos.pop(0) elif len(SCREAMING_SNAKE_CASE__) == 0: break except Exception: if len(SCREAMING_SNAKE_CASE__) > 0: temp_name += "_" + layer_infos.pop(0) else: __snake_case: Tuple = layer_infos.pop(0) __snake_case: Any = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""")) pair_keys.append(SCREAMING_SNAKE_CASE__) else: pair_keys.append(SCREAMING_SNAKE_CASE__) pair_keys.append(key.replace("""lora_up""" , """lora_down""")) # update weight if len(state_dict[pair_keys[0]].shape) == 4: __snake_case: Union[str, Any] = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.floataa) __snake_case: Dict = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.floataa) curr_layer.weight.data += alpha * torch.mm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__).unsqueeze(2).unsqueeze(3) else: __snake_case: List[Any] = state_dict[pair_keys[0]].to(torch.floataa) __snake_case: Dict = state_dict[pair_keys[1]].to(torch.floataa) curr_layer.weight.data += alpha * torch.mm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) # update visited list for item in pair_keys: visited.append(SCREAMING_SNAKE_CASE__) return pipeline if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format." ) parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors" ) parser.add_argument( "--lora_prefix_text_encoder", default="lora_te", type=str, help="The prefix of text encoder weight in safetensors", ) parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW") parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not." ) parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") __UpperCAmelCase : str = parser.parse_args() __UpperCAmelCase : Union[str, Any] = args.base_model_path __UpperCAmelCase : str = args.checkpoint_path __UpperCAmelCase : List[str] = args.dump_path __UpperCAmelCase : Optional[int] = args.lora_prefix_unet __UpperCAmelCase : Optional[int] = args.lora_prefix_text_encoder __UpperCAmelCase : int = args.alpha __UpperCAmelCase : List[Any] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __UpperCAmelCase : Union[str, Any] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
155
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class UpperCamelCase__ : '''simple docstring''' _UpperCamelCase = PegasusConfig _UpperCamelCase = {} _UpperCamelCase = 'gelu' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=7 ,_lowerCAmelCase=True ,_lowerCAmelCase=False ,_lowerCAmelCase=99 ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=40 ,_lowerCAmelCase=2 ,_lowerCAmelCase=1 ,_lowerCAmelCase=0 ,): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = eos_token_id lowerCamelCase__ = pad_token_id lowerCamelCase__ = bos_token_id def UpperCamelCase_ ( self ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) lowerCamelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) lowerCamelCase__ = tf.concat([input_ids, eos_tensor] ,axis=1 ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCamelCase__ = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) lowerCamelCase__ = prepare_pegasus_inputs_dict(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) return config, inputs_dict def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = TFPegasusModel(config=_lowerCAmelCase ).get_decoder() lowerCamelCase__ = inputs_dict["""input_ids"""] lowerCamelCase__ = input_ids[:1, :] lowerCamelCase__ = inputs_dict["""attention_mask"""][:1, :] lowerCamelCase__ = inputs_dict["""head_mask"""] lowerCamelCase__ = 1 # first forward pass lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,head_mask=_lowerCAmelCase ,use_cache=_lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowerCamelCase__ = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and lowerCamelCase__ = tf.concat([input_ids, next_tokens] ,axis=-1 ) lowerCamelCase__ = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase )[0] lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,past_key_values=_lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice lowerCamelCase__ = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) lowerCamelCase__ = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCAmelCase ,_lowerCAmelCase ,rtol=1E-3 ) def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Dict=None , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : str=None , ): if attention_mask is None: lowerCamelCase__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () _UpperCamelCase = (TFPegasusForConditionalGeneration,) if is_tf_available() else () _UpperCamelCase = ( { 'conversational': TFPegasusForConditionalGeneration, 'feature-extraction': TFPegasusModel, 'summarization': TFPegasusForConditionalGeneration, 'text2text-generation': TFPegasusForConditionalGeneration, 'translation': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase_ ( self ): lowerCamelCase__ = TFPegasusModelTester(self ) lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ) def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' _UpperCamelCase = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] _UpperCamelCase = [ 'California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to' ' reduce the risk of wildfires.', 'N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.', ] # differs slightly from pytorch, likely due to numerical differences in linear layers _UpperCamelCase = 'google/pegasus-xsum' @cached_property def UpperCamelCase_ ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase_ ( self ): lowerCamelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCamelCase_ ( self ,**_lowerCAmelCase ): lowerCamelCase__ = self.translate_src_text(**_lowerCAmelCase ) assert self.expected_text == generated_words def UpperCamelCase_ ( self ,**_lowerCAmelCase ): lowerCamelCase__ = self.tokenizer(self.src_text ,**_lowerCAmelCase ,padding=_lowerCAmelCase ,return_tensors="""tf""" ) lowerCamelCase__ = self.model.generate( model_inputs.input_ids ,attention_mask=model_inputs.attention_mask ,num_beams=2 ,use_cache=_lowerCAmelCase ,) lowerCamelCase__ = self.tokenizer.batch_decode(generated_ids.numpy() ,skip_special_tokens=_lowerCAmelCase ) return generated_words @slow def UpperCamelCase_ ( self ): self._assert_generated_batch_equal_expected()
50
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
678
0
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging A = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=768 ): super().__init__(_UpperCAmelCase ) __a : str = proj_size __a : Optional[Any] = CLIPVisionModel(_UpperCAmelCase ) __a : List[Any] = PaintByExampleMapper(_UpperCAmelCase ) __a : int = nn.LayerNorm(config.hidden_size ) __a : List[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __a : int = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=False ): __a : str = self.model(pixel_values=_UpperCAmelCase ) __a : Union[str, Any] = clip_output.pooler_output __a : Optional[int] = self.mapper(latent_states[:, None] ) __a : int = self.final_layer_norm(_UpperCAmelCase ) __a : Optional[Any] = self.proj_out(_UpperCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class __lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _UpperCAmelCase ): super().__init__() __a : List[str] = (config.num_hidden_layers + 1) // 5 __a : Optional[Any] = config.hidden_size __a : str = 1 __a : Union[str, Any] = nn.ModuleList( [ BasicTransformerBlock(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , activation_fn='''gelu''' , attention_bias=_UpperCAmelCase ) for _ in range(_UpperCAmelCase ) ] ) def _lowerCamelCase ( self , _UpperCAmelCase ): for block in self.blocks: __a : Union[str, Any] = block(_UpperCAmelCase ) return hidden_states
712
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __A ( a_ :Tuple) -> Dict: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a_) def __A ( a_ :Any) -> int: from transformers.testing_utils import pytest_terminal_summary_main __a : str = terminalreporter.config.getoption('''--make-reports''') if make_reports: pytest_terminal_summary_main(a_ , id=a_)
101
0
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case_ : List[str] = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' lowerCamelCase = ["pixel_values"] def __init__( self : Dict , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 255 , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , __magic_name__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **__magic_name__ : Optional[Any] , ) -> None: super().__init__(**__magic_name__ ) lowerCamelCase_ : List[str] = size if size is not None else {"shortest_edge": 224} lowerCamelCase_ : Tuple = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) lowerCamelCase_ : str = crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCamelCase_ : List[Any] = get_size_dict(__magic_name__ , param_name="crop_size" ) lowerCamelCase_ : Optional[Any] = do_resize lowerCamelCase_ : str = size lowerCamelCase_ : Optional[Any] = resample lowerCamelCase_ : Optional[Any] = do_center_crop lowerCamelCase_ : Tuple = crop_size lowerCamelCase_ : Dict = do_rescale lowerCamelCase_ : List[Any] = rescale_factor lowerCamelCase_ : Dict = do_normalize lowerCamelCase_ : Optional[int] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ : Optional[int] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : int , ) -> np.ndarray: lowerCamelCase_ : str = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCamelCase_ : List[Any] = int((256 / 224) * size["shortest_edge"] ) lowerCamelCase_ : List[str] = get_resize_output_image_size(__magic_name__ , size=__magic_name__ , default_to_square=__magic_name__ ) lowerCamelCase_ : List[Any] = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}" ) return resize( __magic_name__ , size=(size_dict["height"], size_dict["width"]) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[int] , ) -> np.ndarray: lowerCamelCase_ : List[str] = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(F"Size dict must have keys 'height' and 'width'. Got {size.keys()}" ) return center_crop(__magic_name__ , size=(size["height"], size["width"]) , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : np.ndarray , __magic_name__ : Union[int, float] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[Any] , ) -> np.ndarray: return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Tuple , ) -> np.ndarray: return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : ImageInput , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Dict[str, int]] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Dict[str, int]] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[float] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[float, Iterable[float]]] = None , __magic_name__ : Optional[Union[float, Iterable[float]]] = None , __magic_name__ : Optional[TensorType] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Optional[Any] , ) -> BatchFeature: lowerCamelCase_ : List[str] = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ : Optional[Any] = resample if resample is not None else self.resample lowerCamelCase_ : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ : List[Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ : int = image_mean if image_mean is not None else self.image_mean lowerCamelCase_ : Optional[Any] = image_std if image_std is not None else self.image_std lowerCamelCase_ : Optional[int] = size if size is not None else self.size lowerCamelCase_ : List[Any] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) lowerCamelCase_ : List[Any] = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ : List[str] = get_size_dict(__magic_name__ , param_name="crop_size" ) lowerCamelCase_ : int = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowerCamelCase_ : Optional[Any] = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: lowerCamelCase_ : List[Any] = [self.resize(__magic_name__ , __magic_name__ , __magic_name__ ) for image in images] if do_center_crop: lowerCamelCase_ : Dict = [self.center_crop(__magic_name__ , __magic_name__ ) for image in images] if do_rescale: lowerCamelCase_ : str = [self.rescale(__magic_name__ , __magic_name__ ) for image in images] if do_normalize: lowerCamelCase_ : Optional[int] = [self.normalize(__magic_name__ , __magic_name__ , __magic_name__ ) for image in images] lowerCamelCase_ : str = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] lowerCamelCase_ : str = {"pixel_values": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
488
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class snake_case_ ( __A ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: lowerCamelCase_ : List[str] = tempfile.mkdtemp() lowerCamelCase_ : Dict = 8 # DPR tok lowerCamelCase_ : str = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCamelCase_ : Optional[int] = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowerCamelCase_ : List[str] = os.path.join(__magic_name__ , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok lowerCamelCase_ : Tuple = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowerCamelCase_ : str = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) lowerCamelCase_ : Optional[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCamelCase_ : Any = {"unk_token": "<unk>"} lowerCamelCase_ : Dict = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowerCamelCase_ : Tuple = os.path.join(__magic_name__ , BART_VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase_ : int = os.path.join(__magic_name__ , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__magic_name__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: lowerCamelCase_ : Optional[Any] = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: lowerCamelCase_ : str = self.get_dummy_dataset() lowerCamelCase_ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: lowerCamelCase_ : Tuple = dataset lowerCamelCase_ : Optional[int] = RagRetriever( __magic_name__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : bool ) -> List[Any]: lowerCamelCase_ : Optional[int] = self.get_dummy_dataset() lowerCamelCase_ : Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: lowerCamelCase_ : Union[str, Any] = os.path.join(self.tmpdirname , "dataset" ) lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , "index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) ) del dataset lowerCamelCase_ : Optional[int] = RagRetriever( __magic_name__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: lowerCamelCase_ : List[Any] = RagRetriever( __magic_name__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __magic_name__ ) , ) return retriever def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: lowerCamelCase_ : str = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase_ : List[str] = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) ) lowerCamelCase_ : List[str] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" ) lowerCamelCase_ : Optional[int] = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(__magic_name__ , open(__magic_name__ , "wb" ) ) lowerCamelCase_ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) lowerCamelCase_ : Any = RagRetriever( __magic_name__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: lowerCamelCase_ : Optional[Any] = 1 lowerCamelCase_ : int = self.get_dummy_canonical_hf_index_retriever() lowerCamelCase_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any = retriever.retrieve(__magic_name__ , n_docs=__magic_name__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__magic_name__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , __magic_name__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Any: lowerCamelCase_ : Dict = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: lowerCamelCase_ : Dict = self.get_dummy_dataset() retriever.save_pretrained(__magic_name__ ) lowerCamelCase_ : List[Any] = RagRetriever.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) lowerCamelCase_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ : List[str] = retriever.retrieve(__magic_name__ , n_docs=1 ) self.assertTrue(out is not None ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: lowerCamelCase_ : Optional[int] = 1 lowerCamelCase_ : List[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__magic_name__ ) lowerCamelCase_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[int] = retriever.retrieve(__magic_name__ , n_docs=__magic_name__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__magic_name__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , __magic_name__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: lowerCamelCase_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__magic_name__ ) lowerCamelCase_ : List[Any] = RagRetriever.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) lowerCamelCase_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ : int = retriever.retrieve(__magic_name__ , n_docs=1 ) self.assertTrue(out is not None ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: lowerCamelCase_ : Union[str, Any] = 1 lowerCamelCase_ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=__magic_name__ ) lowerCamelCase_ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[str] = retriever.retrieve(__magic_name__ , n_docs=__magic_name__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__magic_name__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , __magic_name__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: lowerCamelCase_ : List[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__magic_name__ ) lowerCamelCase_ : str = RagRetriever.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) lowerCamelCase_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ : List[Any] = retriever.retrieve(__magic_name__ , n_docs=1 ) self.assertTrue(out is not None ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: lowerCamelCase_ : Union[str, Any] = 1 lowerCamelCase_ : Dict = self.get_dummy_legacy_index_retriever() lowerCamelCase_ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[str] = retriever.retrieve(__magic_name__ , n_docs=__magic_name__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__magic_name__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) , __magic_name__ ) self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: lowerCamelCase_ : List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__magic_name__ ) lowerCamelCase_ : Optional[int] = RagRetriever.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) lowerCamelCase_ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ : Optional[Any] = retriever.retrieve(__magic_name__ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: import torch lowerCamelCase_ : Dict = 1 lowerCamelCase_ : List[str] = self.get_dummy_canonical_hf_index_retriever() lowerCamelCase_ : str = [[5, 7], [10, 11]] lowerCamelCase_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ : Dict = retriever(__magic_name__ , __magic_name__ , prefix=retriever.config.generator.prefix , n_docs=__magic_name__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__magic_name__ , __magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) self.assertIsInstance(__magic_name__ , np.ndarray ) lowerCamelCase_ : Dict = retriever( __magic_name__ , __magic_name__ , prefix=retriever.config.generator.prefix , n_docs=__magic_name__ , return_tensors="pt" , ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[Any] = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__magic_name__ , torch.Tensor ) self.assertIsInstance(__magic_name__ , torch.Tensor ) self.assertIsInstance(__magic_name__ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: lowerCamelCase_ : Optional[int] = self.get_dpr_ctx_encoder_tokenizer() lowerCamelCase_ : Any = 1 lowerCamelCase_ : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__magic_name__ ) retriever.set_ctx_encoder_tokenizer(__magic_name__ ) lowerCamelCase_ : List[Any] = [[5, 7], [10, 11]] lowerCamelCase_ : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCamelCase_ : int = retriever(__magic_name__ , __magic_name__ , prefix=retriever.config.generator.prefix , n_docs=__magic_name__ ) self.assertEqual( len(__magic_name__ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , __magic_name__ ) # check for doc token related keys in dictionary.
488
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class snake_case__ ( lowercase_): '''simple docstring''' lowerCamelCase : Optional[int] = "visual_bert" def __init__( self , a__=3_05_22 , a__=7_68 , a__=5_12 , a__=12 , a__=12 , a__=30_72 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_12 , a__=2 , a__=0.02 , a__=1e-12 , a__=False , a__=True , a__=1 , a__=0 , a__=2 , **a__ , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ ) __snake_case :Tuple = vocab_size __snake_case :Any = max_position_embeddings __snake_case :int = hidden_size __snake_case :List[str] = visual_embedding_dim __snake_case :List[str] = num_hidden_layers __snake_case :Tuple = num_attention_heads __snake_case :str = intermediate_size __snake_case :Union[str, Any] = hidden_act __snake_case :Union[str, Any] = hidden_dropout_prob __snake_case :str = attention_probs_dropout_prob __snake_case :Tuple = initializer_range __snake_case :str = type_vocab_size __snake_case :Optional[Any] = layer_norm_eps __snake_case :Union[str, Any] = bypass_transformer __snake_case :Tuple = special_visual_initialize
291
def UpperCamelCase ( snake_case__ : str ): '''simple docstring''' __snake_case :List[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) __snake_case :str = hex_num[0] == """-""" if is_negative: __snake_case :List[Any] = hex_num[1:] try: __snake_case :Tuple = int(snake_case__ ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) __snake_case :int = """""" while int_num > 0: __snake_case :Optional[int] = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
291
1
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup UpperCAmelCase_ : int = logging.get_logger(__name__) class lowerCAmelCase ( __lowerCAmelCase): def __init__( self , **__SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' requires_backends(self , ['''bs4'''] ) super().__init__(**__SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __snake_case = [] __snake_case = [] __snake_case = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __snake_case = parent.find_all(child.name , recursive=__SCREAMING_SNAKE_CASE ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__SCREAMING_SNAKE_CASE ) else next(i for i, s in enumerate(__SCREAMING_SNAKE_CASE , 1 ) if s is child ) ) __snake_case = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' __snake_case = BeautifulSoup(__SCREAMING_SNAKE_CASE , '''html.parser''' ) __snake_case = [] __snake_case = [] __snake_case = [] for element in html_code.descendants: if type(__SCREAMING_SNAKE_CASE ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __snake_case = html.unescape(__SCREAMING_SNAKE_CASE ).strip() if not text_in_this_tag: continue all_doc_strings.append(__SCREAMING_SNAKE_CASE ) __snake_case , __snake_case = self.xpath_soup(__SCREAMING_SNAKE_CASE ) stringaxtag_seq.append(__SCREAMING_SNAKE_CASE ) stringaxsubs_seq.append(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __snake_case = '''''' for tagname, subs in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): xpath += F'''/{tagname}''' if subs != 0: xpath += F'''[{subs}]''' return xpath def __call__( self , __SCREAMING_SNAKE_CASE ) -> BatchFeature: '''simple docstring''' __snake_case = False # Check that strings has a valid type if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case = True elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ): if len(__SCREAMING_SNAKE_CASE ) == 0 or isinstance(html_strings[0] , __SCREAMING_SNAKE_CASE ): __snake_case = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F'''but is of type {type(__SCREAMING_SNAKE_CASE )}.''' ) __snake_case = bool(isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(html_strings[0] , __SCREAMING_SNAKE_CASE )) ) if not is_batched: __snake_case = [html_strings] # Get nodes + xpaths __snake_case = [] __snake_case = [] for html_string in html_strings: __snake_case , __snake_case , __snake_case = self.get_three_from_single(__SCREAMING_SNAKE_CASE ) nodes.append(__SCREAMING_SNAKE_CASE ) __snake_case = [] for node, tag_list, sub_list in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case = self.construct_xpath(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) xpath_strings.append(__SCREAMING_SNAKE_CASE ) xpaths.append(__SCREAMING_SNAKE_CASE ) # return as Dict __snake_case = {'''nodes''': nodes, '''xpaths''': xpaths} __snake_case = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE ) return encoded_inputs
24
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCamelCase ()-> int: '''simple docstring''' __snake_case = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' __snake_case = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert('''RGB''' ) return image def _UpperCamelCase (_lowerCamelCase : Union[str, Any] )-> List[Any]: '''simple docstring''' __snake_case = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def _UpperCamelCase (_lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] )-> Tuple: '''simple docstring''' __snake_case = dct.pop(_lowerCamelCase ) __snake_case = val def _UpperCamelCase (_lowerCamelCase : List[Any] , _lowerCamelCase : Tuple )-> str: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __snake_case = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) __snake_case = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __snake_case = torch.cat((q_bias, torch.zeros_like(_lowerCamelCase , requires_grad=_lowerCamelCase ), v_bias) ) __snake_case = qkv_bias def _UpperCamelCase (_lowerCamelCase : Tuple , _lowerCamelCase : Tuple )-> Dict: '''simple docstring''' __snake_case = 3_64 if '''coco''' in model_name else 2_24 __snake_case = BlipaVisionConfig(image_size=_lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __snake_case = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=_lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: __snake_case = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=_lowerCamelCase ).to_dict() elif "t5-xl" in model_name: __snake_case = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __snake_case = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() __snake_case = BlipaConfig(vision_config=_lowerCamelCase , text_config=_lowerCamelCase ) return config, image_size @torch.no_grad() def _UpperCamelCase (_lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any]=None , _lowerCamelCase : Any=False )-> Dict: '''simple docstring''' __snake_case = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) __snake_case = tokenizer('''\n''' , add_special_tokens=_lowerCamelCase ).input_ids[0] __snake_case , __snake_case = get_blipa_config(_lowerCamelCase , eos_token_id=_lowerCamelCase ) __snake_case = BlipaForConditionalGeneration(_lowerCamelCase ).eval() __snake_case = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } __snake_case , __snake_case = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) __snake_case = '''cuda''' if torch.cuda.is_available() else '''cpu''' __snake_case , __snake_case , __snake_case = load_model_and_preprocess( name=_lowerCamelCase , model_type=_lowerCamelCase , is_eval=_lowerCamelCase , device=_lowerCamelCase ) original_model.eval() print('''Done!''' ) # update state dict keys __snake_case = original_model.state_dict() __snake_case = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __snake_case = state_dict.pop(_lowerCamelCase ) if key.startswith('''Qformer.bert''' ): __snake_case = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: __snake_case = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: __snake_case = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: __snake_case = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): __snake_case = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): __snake_case = key.replace('''t5''' , '''language''' ) __snake_case = val # read in qv biases read_in_q_v_bias(_lowerCamelCase , _lowerCamelCase ) __snake_case , __snake_case = hf_model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert len(_lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __snake_case = load_demo_image() __snake_case = vis_processors['''eval'''](_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) __snake_case = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(_lowerCamelCase ) # create processor __snake_case = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) __snake_case = BlipaProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) __snake_case = processor(images=_lowerCamelCase , return_tensors='''pt''' ).pixel_values.to(_lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) original_model.to(_lowerCamelCase ) hf_model.to(_lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: __snake_case = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits __snake_case = hf_model(_lowerCamelCase , _lowerCamelCase ).logits else: __snake_case = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits __snake_case = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) __snake_case = hf_model(_lowerCamelCase , _lowerCamelCase , labels=_lowerCamelCase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __snake_case = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , _lowerCamelCase , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": __snake_case = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_lowerCamelCase ) else: # cast to same type __snake_case = logits.dtype assert torch.allclose(original_logits.to(_lowerCamelCase ) , _lowerCamelCase , atol=1E-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) __snake_case = '''''' __snake_case = tokenizer(_lowerCamelCase , return_tensors='''pt''' ).input_ids.to(_lowerCamelCase ) __snake_case = original_model.generate({'''image''': original_pixel_values} ) __snake_case = hf_model.generate( _lowerCamelCase , _lowerCamelCase , do_sample=_lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , _lowerCamelCase ) __snake_case = input_ids.shape[1] __snake_case = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowerCamelCase ) __snake_case = [text.strip() for text in output_text] print('''HF generation:''' , _lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() UpperCAmelCase_ : Tuple = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) UpperCAmelCase_ : List[str] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
24
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" __snake_case : Union[str, Any] = """gpt_neo""" __snake_case : Optional[int] = ["""past_key_values"""] __snake_case : Optional[int] = {"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self :Any , __lowercase :Optional[Any]=5_0257 , __lowercase :Tuple=2048 , __lowercase :Optional[Any]=2048 , __lowercase :Any=24 , __lowercase :Optional[Any]=[[["global", "local"], 12]] , __lowercase :List[Any]=16 , __lowercase :Optional[int]=None , __lowercase :List[str]=256 , __lowercase :List[str]="gelu_new" , __lowercase :Union[str, Any]=0.0 , __lowercase :str=0.0 , __lowercase :int=0.0 , __lowercase :List[str]=0.1 , __lowercase :Union[str, Any]=1e-5 , __lowercase :List[Any]=0.02 , __lowercase :Dict=True , __lowercase :str=5_0256 , __lowercase :str=5_0256 , **__lowercase :Any , ): __lowerCamelCase : Dict =vocab_size __lowerCamelCase : Tuple =max_position_embeddings __lowerCamelCase : Dict =hidden_size __lowerCamelCase : Optional[Any] =num_layers __lowerCamelCase : str =num_heads __lowerCamelCase : Dict =intermediate_size __lowerCamelCase : List[Any] =window_size __lowerCamelCase : int =activation_function __lowerCamelCase : Any =resid_dropout __lowerCamelCase : str =embed_dropout __lowerCamelCase : Optional[Any] =attention_dropout __lowerCamelCase : Optional[Any] =classifier_dropout __lowerCamelCase : Optional[Any] =layer_norm_epsilon __lowerCamelCase : Union[str, Any] =initializer_range __lowerCamelCase : Dict =use_cache __lowerCamelCase : List[Any] =bos_token_id __lowerCamelCase : Any =eos_token_id __lowerCamelCase : str =attention_types __lowerCamelCase : int =self.expand_attention_types_params(__lowercase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.attention_layers)` == `config.num_layers` ''' f'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' f'`config.num_layers = {self.num_layers}`. ' '''`config.attention_layers` is prepared using `config.attention_types`. ''' '''Please verify the value of `config.attention_types` argument.''' ) super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) @staticmethod def __lowercase ( __lowercase :Optional[int] ): __lowerCamelCase : List[Any] =[] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' import torch __lowerCamelCase : Optional[Any] =input.size() __lowerCamelCase : Tuple =len(SCREAMING_SNAKE_CASE ) __lowerCamelCase : List[Any] =shape[dimension] __lowerCamelCase : Optional[Any] =torch.arange(0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCamelCase : Optional[int] =torch.div(sizedim - size , SCREAMING_SNAKE_CASE , rounding_mode='''floor''' ) + 1 __lowerCamelCase : Tuple =torch.arange(SCREAMING_SNAKE_CASE ) + low_indices[:min_length][:, None] __lowerCamelCase : int =[slice(SCREAMING_SNAKE_CASE )] * rank __lowerCamelCase : List[Any] =indices __lowerCamelCase : Dict =input[s] __lowerCamelCase : str =list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' import torch __lowerCamelCase : Tuple =torch.arange(1 , SCREAMING_SNAKE_CASE ) __lowerCamelCase : Optional[int] =torch.remainder(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCamelCase : Any =remainders == 0 __lowerCamelCase : Optional[int] =candidates[divisor_indices] __lowerCamelCase : List[str] =torch.max(SCREAMING_SNAKE_CASE ) return largest_divisor, torch.div(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , rounding_mode='''floor''' ) class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" @property def __lowercase ( self :List[Any] ): __lowerCamelCase : List[str] =OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__lowercase , direction='''inputs''' ) __lowerCamelCase : str ={0: '''batch''', 1: '''past_sequence + sequence'''} else: __lowerCamelCase : Union[str, Any] ={0: '''batch''', 1: '''sequence'''} return common_inputs @property def __lowercase ( self :List[Any] ): return self._config.num_heads def __lowercase ( self :Any , __lowercase :PreTrainedTokenizer , __lowercase :int = -1 , __lowercase :int = -1 , __lowercase :bool = False , __lowercase :Optional[TensorType] = None , ): __lowerCamelCase : Dict =super(__lowercase , self ).generate_dummy_inputs( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) # We need to order the input in the way they appears in the forward() __lowerCamelCase : Optional[int] =OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowerCamelCase , __lowerCamelCase : List[Any] =common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowerCamelCase : str =seqlen + 2 __lowerCamelCase : int =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCamelCase : int =[ (torch.zeros(__lowercase ), torch.zeros(__lowercase )) for _ in range(self.num_layers ) ] __lowerCamelCase : Optional[Any] =common_inputs['''attention_mask'''] if self.use_past: __lowerCamelCase : str =ordered_inputs['''attention_mask'''].dtype __lowerCamelCase : Any =torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__lowercase , __lowercase , dtype=__lowercase )] , dim=1 ) return ordered_inputs @property def __lowercase ( self :Tuple ): return 13
363
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _UpperCamelCase = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' _UpperCamelCase = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' _UpperCamelCase = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self :Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def __lowercase ( self :Optional[Any] , __lowercase :List[List[List[str]]] , __lowercase :List[List[str]] , __lowercase :int = 1 , __lowercase :int = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__lowercase , hypotheses=__lowercase , min_len=__lowercase , max_len=__lowercase ) }
363
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 1_8, 2] __A = True if 'large' in model_name or 'huge' in model_name else False __A = True if 'large' in model_name or 'huge' in model_name else False __A = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __A = [3, 3, 3, 3] __A = [5, 5, 5, 5] elif "fl4" in model_name: __A = [4, 4, 4, 4] __A = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __A = [3, 3, 3, 3] if "lrf" in model_name: __A = [3, 3, 3, 3] else: __A = [2, 2, 2, 2] if "tiny" in model_name: __A = 9_6 elif "small" in model_name: __A = 9_6 elif "base" in model_name: __A = 1_2_8 elif "large" in model_name: __A = 1_9_2 elif "xlarge" in model_name: __A = 2_5_6 elif "huge" in model_name: __A = 3_5_2 # set label information __A = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __A = 'imagenet-22k-id2label.json' else: __A = 'imagenet-1k-id2label.json' __A = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="dataset" ) , "r" ) ) __A = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} __A = {v: k for k, v in idalabel.items()} __A = FocalNetConfig( embed_dim=lowerCamelCase_ , depths=lowerCamelCase_ , focal_levels=lowerCamelCase_ , focal_windows=lowerCamelCase_ , use_conv_embed=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ , use_post_layernorm=lowerCamelCase_ , use_layerscale=lowerCamelCase_ , ) return config def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" if "patch_embed.proj" in name: __A = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __A = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __A = 'encoder.' + name if "encoder.layers" in name: __A = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: __A = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: __A = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __A = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __A = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __A = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": __A = 'layernorm.weight' if name == "norm.bias": __A = 'layernorm.bias' if "head" in name: __A = name.replace("head" , "classifier" ) else: __A = 'focalnet.' + name return name def UpperCAmelCase ( a_ , a_ , a_=False ) -> str: """simple docstring""" __A = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __A = model_name_to_url[model_name] print("Checkpoint URL: " , lowerCamelCase_ ) __A = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location="cpu" )['model'] # rename keys for key in state_dict.copy().keys(): __A = state_dict.pop(lowerCamelCase_ ) __A = val __A = get_focalnet_config(lowerCamelCase_ ) __A = FocalNetForImageClassification(lowerCamelCase_ ) model.eval() # load state dict model.load_state_dict(lowerCamelCase_ ) # verify conversion __A = 'http://images.cocodataset.org/val2017/000000039769.jpg' __A = BitImageProcessor( do_resize=lowerCamelCase_ , size={"shortest_edge": 2_5_6} , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCamelCase_ , crop_size=2_2_4 , do_normalize=lowerCamelCase_ , image_mean=lowerCamelCase_ , image_std=lowerCamelCase_ , ) __A = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) __A = processor(images=lowerCamelCase_ , return_tensors="pt" ) __A = transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __A = image_transforms(lowerCamelCase_ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , lowerCamelCase_ , atol=1E-4 ) __A = model(**lowerCamelCase_ ) __A = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __A = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": __A = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": __A = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": __A = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": __A = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": __A = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) SCREAMING_SNAKE_CASE :Optional[Any] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
55
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase_( lowerCamelCase_ ) -> int: _lowercase : List[str] = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] _lowercase : Tuple = True if 'large' in model_name or 'huge' in model_name else False _lowercase : Any = True if 'large' in model_name or 'huge' in model_name else False _lowercase : Dict = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: _lowercase : Any = [3, 3, 3, 3] _lowercase : Any = [5, 5, 5, 5] elif "fl4" in model_name: _lowercase : Dict = [4, 4, 4, 4] _lowercase : Tuple = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: _lowercase : str = [3, 3, 3, 3] if "lrf" in model_name: _lowercase : Optional[int] = [3, 3, 3, 3] else: _lowercase : Dict = [2, 2, 2, 2] if "tiny" in model_name: _lowercase : List[str] = 96 elif "small" in model_name: _lowercase : Dict = 96 elif "base" in model_name: _lowercase : Optional[int] = 128 elif "large" in model_name: _lowercase : List[Any] = 192 elif "xlarge" in model_name: _lowercase : Optional[Any] = 256 elif "huge" in model_name: _lowercase : Dict = 352 # set label information _lowercase : int = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: _lowercase : str = 'imagenet-22k-id2label.json' else: _lowercase : Tuple = 'imagenet-1k-id2label.json' _lowercase : Union[str, Any] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset' ) , 'r' ) ) _lowercase : int = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} _lowercase : Any = {v: k for k, v in idalabel.items()} _lowercase : Optional[Any] = FocalNetConfig( embed_dim=lowerCamelCase_ , depths=lowerCamelCase_ , focal_levels=lowerCamelCase_ , focal_windows=lowerCamelCase_ , use_conv_embed=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ , use_post_layernorm=lowerCamelCase_ , use_layerscale=lowerCamelCase_ , ) return config def UpperCamelCase_( lowerCamelCase_ ) -> Any: if "patch_embed.proj" in name: _lowercase : Optional[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowercase : str = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: _lowercase : Any = 'encoder.' + name if "encoder.layers" in name: _lowercase : int = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: _lowercase : Tuple = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: _lowercase : str = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: _lowercase : List[str] = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: _lowercase : int = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: _lowercase : Any = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": _lowercase : Any = 'layernorm.weight' if name == "norm.bias": _lowercase : Tuple = 'layernorm.bias' if "head" in name: _lowercase : Optional[int] = name.replace('head' , 'classifier' ) else: _lowercase : Optional[int] = 'focalnet.' + name return name def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ) -> str: # fmt: off _lowercase : Dict = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on _lowercase : Dict = model_name_to_url[model_name] print('Checkpoint URL: ' , lowerCamelCase_ ) _lowercase : List[str] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): _lowercase : Dict = state_dict.pop(lowerCamelCase_ ) _lowercase : Optional[int] = val _lowercase : Union[str, Any] = get_focalnet_config(lowerCamelCase_ ) _lowercase : Optional[Any] = FocalNetForImageClassification(lowerCamelCase_ ) model.eval() # load state dict model.load_state_dict(lowerCamelCase_ ) # verify conversion _lowercase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowercase : Any = BitImageProcessor( do_resize=lowerCamelCase_ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCamelCase_ , crop_size=224 , do_normalize=lowerCamelCase_ , image_mean=lowerCamelCase_ , image_std=lowerCamelCase_ , ) _lowercase : List[str] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) _lowercase : List[Any] = processor(images=lowerCamelCase_ , return_tensors='pt' ) _lowercase : str = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) _lowercase : List[str] = image_transforms(lowerCamelCase_ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , lowerCamelCase_ , atol=1e-4 ) _lowercase : Dict = model(**lowerCamelCase_ ) _lowercase : int = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": _lowercase : Optional[Any] = torch.tensor([0.21_66, -0.43_68, 0.21_91] ) elif model_name == "focalnet-tiny-lrf": _lowercase : int = torch.tensor([1.16_69, 0.01_25, -0.16_95] ) elif model_name == "focalnet-small": _lowercase : str = torch.tensor([0.49_17, -0.04_30, 0.13_41] ) elif model_name == "focalnet-small-lrf": _lowercase : Any = torch.tensor([-0.25_88, -0.53_42, -0.23_31] ) elif model_name == "focalnet-base": _lowercase : List[Any] = torch.tensor([-0.16_55, -0.40_90, -0.17_30] ) elif model_name == "focalnet-base-lrf": _lowercase : int = torch.tensor([0.53_06, -0.04_83, -0.39_28] ) assert torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
89
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowerCAmelCase =RobertaTokenizer _lowerCAmelCase =RobertaTokenizerFast _lowerCAmelCase =True _lowerCAmelCase ={"cls_token": "<s>"} def UpperCAmelCase__ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case__ : List[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] snake_case__ : Optional[Any] = dict(zip(A_ , range(len(A_ ) ) ) ) snake_case__ : Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] snake_case__ : Optional[int] = {'unk_token': '<unk>'} snake_case__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def UpperCAmelCase__ ( self : List[Any] , **_lowerCamelCase : str ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A_ ) def UpperCAmelCase__ ( self : List[str] , **_lowerCamelCase : Dict ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def UpperCAmelCase__ ( self : Optional[int] , _lowerCamelCase : str ): snake_case__ : Any = 'lower newer' snake_case__ : Optional[Any] = 'lower newer' return input_text, output_text def UpperCAmelCase__ ( self : Union[str, Any] ): snake_case__ : int = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case__ : Tuple = 'lower newer' snake_case__ : List[Any] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] snake_case__ : Union[str, Any] = tokenizer.tokenize(A_ ) # , add_prefix_space=True) self.assertListEqual(A_ , A_ ) snake_case__ : int = tokens + [tokenizer.unk_token] snake_case__ : Tuple = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) def UpperCAmelCase__ ( self : Union[str, Any] ): snake_case__ : str = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=A_ ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=A_ ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def UpperCAmelCase__ ( self : int ): snake_case__ : Tuple = self.tokenizer_class.from_pretrained('roberta-base' ) snake_case__ : Optional[int] = tokenizer.encode('sequence builders' , add_special_tokens=A_ ) snake_case__ : List[Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=A_ ) snake_case__ : Union[str, Any] = tokenizer.encode( 'sequence builders' , add_special_tokens=A_ , add_prefix_space=A_ ) snake_case__ : Union[str, Any] = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=A_ , add_prefix_space=A_ ) snake_case__ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A_ ) snake_case__ : List[Any] = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCAmelCase__ ( self : Any ): snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : List[Any] = 'Encode this sequence.' snake_case__ : List[Any] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments snake_case__ : Tuple = tokenizer.encode(A_ , add_special_tokens=A_ , add_prefix_space=A_ ) snake_case__ : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A_ , A_ ) snake_case__ : Optional[Any] = tokenizer.encode(A_ , add_special_tokens=A_ , add_prefix_space=A_ ) snake_case__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A_ , A_ ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) snake_case__ : Tuple = tokenizer.encode(A_ , add_special_tokens=A_ ) snake_case__ : str = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A_ , A_ ) # Testing spaces after special tokens snake_case__ : int = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(A_ , lstrip=A_ , rstrip=A_ )} ) # mask token has a left space snake_case__ : Dict = tokenizer.convert_tokens_to_ids(A_ ) snake_case__ : Optional[Any] = 'Encode <mask> sequence' snake_case__ : Optional[Any] = 'Encode <mask>sequence' snake_case__ : Dict = tokenizer.encode(A_ ) snake_case__ : Tuple = encoded.index(A_ ) snake_case__ : Tuple = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A_ , A_ ) snake_case__ : Optional[int] = tokenizer.encode(A_ ) snake_case__ : Tuple = encoded.index(A_ ) snake_case__ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A_ , A_ ) def UpperCAmelCase__ ( self : List[str] ): pass def UpperCAmelCase__ ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) snake_case__ : Union[str, Any] = self.tokenizer_class.from_pretrained(A_ , **A_ ) snake_case__ : List[str] = 'A, <mask> AllenNLP sentence.' snake_case__ : Optional[int] = tokenizer_r.encode_plus(A_ , add_special_tokens=A_ , return_token_type_ids=A_ ) snake_case__ : List[Any] = tokenizer_p.encode_plus(A_ , add_special_tokens=A_ , return_token_type_ids=A_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) snake_case__ : int = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) snake_case__ : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( A_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( A_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCAmelCase__ ( self : Union[str, Any] ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): snake_case__ : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) snake_case__ : Dict = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) snake_case__ : int = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , A_ ) self.assertEqual(post_processor_state['add_prefix_space'] , A_ ) self.assertEqual(post_processor_state['trim_offsets'] , A_ ) def UpperCAmelCase__ ( self : int ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case__ : Union[str, Any] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` snake_case__ : Optional[int] = F'''{text_of_1_token} {text_of_1_token}''' snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) snake_case__ : List[Any] = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A_ ) + 1, len(A_ ) + 1 + len(A_ )) , ) snake_case__ : List[str] = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) snake_case__ : Union[str, Any] = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A_ ) + 1, len(A_ ) + 1 + len(A_ )) , ) snake_case__ : int = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) snake_case__ : Any = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A_ ), len(A_ ) + 1 + len(A_ )) , ) snake_case__ : Dict = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) snake_case__ : List[Any] = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A_ ), len(A_ ) + 1 + len(A_ )) , ) snake_case__ : Optional[Any] = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) snake_case__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) snake_case__ : Optional[int] = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A_ ) + 1, 1 + len(A_ ) + 1 + len(A_ )) , ) snake_case__ : Any = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) snake_case__ : Optional[int] = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A_ ), 1 + len(A_ ) + 1 + len(A_ )) , ) snake_case__ : int = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) snake_case__ : List[Any] = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A_ ), 1 + len(A_ ) + 1 + len(A_ )) , )
703
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCamelCase : Any = get_tests_dir('fixtures') class snake_case__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : str ): # A mock response for an HTTP head request to emulate server down snake_case__ : int = mock.Mock() snake_case__ : Any = 5_0_0 snake_case__ : Dict = {} snake_case__ : List[str] = HTTPError snake_case__ : str = {} # Download this model to make sure it's in the cache. snake_case__ : List[str] = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=_lowerCamelCase ) as mock_head: snake_case__ : Dict = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase__ ( self : Optional[Any] ): # This test is for deprecated behavior and can be removed in v5 snake_case__ : List[Any] = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class snake_case__ ( unittest.TestCase ): @classmethod def UpperCAmelCase__ ( cls : str ): snake_case__ : Tuple = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def UpperCAmelCase__ ( cls : int ): try: delete_repo(token=cls._token , repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def UpperCAmelCase__ ( self : int ): snake_case__ : Dict = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token ) snake_case__ : Any = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCamelCase , repo_id='test-feature-extractor' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) snake_case__ : Any = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def UpperCAmelCase__ ( self : List[str] ): snake_case__ : str = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token ) snake_case__ : Dict = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCamelCase , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) snake_case__ : str = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def UpperCAmelCase__ ( self : List[Any] ): CustomFeatureExtractor.register_for_auto_class() snake_case__ : Optional[int] = CustomFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , ) snake_case__ : int = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor' )
303
0
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __lowerCAmelCase = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def _UpperCAmelCase ( __A : List[str] , __A : Dict ): warnings.warn(lowercase_ , lowercase_ ) requires_backends(lowercase_ , '''sklearn''' ) return (preds == labels).mean() def _UpperCAmelCase ( __A : Dict , __A : Union[str, Any] ): warnings.warn(lowercase_ , lowercase_ ) requires_backends(lowercase_ , '''sklearn''' ) a_ : List[Any] = simple_accuracy(lowercase_ , lowercase_ ) a_ : Union[str, Any] = fa_score(y_true=lowercase_ , y_pred=lowercase_ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def _UpperCAmelCase ( __A : str , __A : List[Any] ): warnings.warn(lowercase_ , lowercase_ ) requires_backends(lowercase_ , '''sklearn''' ) a_ : Tuple = pearsonr(lowercase_ , lowercase_ )[0] a_ : List[Any] = spearmanr(lowercase_ , lowercase_ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def _UpperCAmelCase ( __A : Union[str, Any] , __A : str , __A : Dict ): warnings.warn(lowercase_ , lowercase_ ) requires_backends(lowercase_ , '''sklearn''' ) assert len(lowercase_ ) == len(lowercase_ ), f'Predictions and labels have mismatched lengths {len(lowercase_ )} and {len(lowercase_ )}' if task_name == "cola": return {"mcc": matthews_corrcoef(lowercase_ , lowercase_ )} elif task_name == "sst-2": return {"acc": simple_accuracy(lowercase_ , lowercase_ )} elif task_name == "mrpc": return acc_and_fa(lowercase_ , lowercase_ ) elif task_name == "sts-b": return pearson_and_spearman(lowercase_ , lowercase_ ) elif task_name == "qqp": return acc_and_fa(lowercase_ , lowercase_ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowercase_ , lowercase_ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowercase_ , lowercase_ )} elif task_name == "qnli": return {"acc": simple_accuracy(lowercase_ , lowercase_ )} elif task_name == "rte": return {"acc": simple_accuracy(lowercase_ , lowercase_ )} elif task_name == "wnli": return {"acc": simple_accuracy(lowercase_ , lowercase_ )} elif task_name == "hans": return {"acc": simple_accuracy(lowercase_ , lowercase_ )} else: raise KeyError(lowercase_ ) def _UpperCAmelCase ( __A : str , __A : Union[str, Any] , __A : List[str] ): warnings.warn(lowercase_ , lowercase_ ) requires_backends(lowercase_ , '''sklearn''' ) if len(lowercase_ ) != len(lowercase_ ): raise ValueError(f'Predictions and labels have mismatched lengths {len(lowercase_ )} and {len(lowercase_ )}' ) if task_name == "xnli": return {"acc": simple_accuracy(lowercase_ , lowercase_ )} else: raise KeyError(lowercase_ )
466
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping __SCREAMING_SNAKE_CASE : str = tuple[int, int] class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = vertices _lowerCamelCase = { (min(lowerCamelCase__ ), max(lowerCamelCase__ )): weight for edge, weight in edges.items() } def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) _lowerCamelCase = weight def snake_case__ ( self ): _lowerCamelCase = Graph({min(self.vertices )} , {} ) _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 while len(subgraph.vertices ) < len(self.vertices ): _lowerCamelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: _lowerCamelCase = edge _lowerCamelCase = weight subgraph.add_edge(lowerCamelCase__ , lowerCamelCase__ ) return subgraph def lowerCAmelCase_( lowercase_ : str = "p107_network.txt" ) -> int: _lowerCamelCase = os.path.abspath(os.path.dirname(lowercase_ ) ) _lowerCamelCase = os.path.join(lowercase_ , lowercase_ ) _lowerCamelCase = {} _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 with open(lowercase_ ) as f: _lowerCamelCase = f.read().strip().split('''\n''' ) _lowerCamelCase = [line.split(''',''' ) for line in data] for edgea in range(1 , len(lowercase_ ) ): for edgea in range(lowercase_ ): if adjaceny_matrix[edgea][edgea] != "-": _lowerCamelCase = int(adjaceny_matrix[edgea][edgea] ) _lowerCamelCase = Graph(set(range(len(lowercase_ ) ) ) , lowercase_ ) _lowerCamelCase = graph.prims_algorithm() _lowerCamelCase = sum(graph.edges.values() ) _lowerCamelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"""{solution() = }""")
661
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : int = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
146
from __future__ import annotations from math import pow, sqrt def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> dict[str, float]: """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(UpperCamelCase__ , 2 ) - pow(UpperCamelCase__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(UpperCamelCase__ , 2 ) - pow(UpperCamelCase__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(UpperCamelCase__ , 2 ) + pow(UpperCamelCase__ , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
146
1
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,lowerCAmelCase_ ): @register_to_config def __init__( self : Any , *, A : int = 4 , A : int = 7_6_8 , A : int , A : Tuple , ) ->Any: super().__init__() lowerCamelCase__ : List[Any] = nn.Parameter(torch.zeros(A ) ) # parameters for additional clip time embeddings lowerCamelCase__ : Dict = nn.Linear(A , A ) lowerCamelCase__ : List[str] = nn.Linear(A , A ) # parameters for encoder hidden states lowerCamelCase__ : List[Any] = clip_extra_context_tokens lowerCamelCase__ : Optional[Any] = nn.Linear( A , self.clip_extra_context_tokens * cross_attention_dim ) lowerCamelCase__ : Optional[Any] = nn.Linear(A , A ) lowerCamelCase__ : Optional[int] = nn.LayerNorm(A ) def __lowerCamelCase ( self : int , *, A : List[str] , A : Optional[int] , A : Tuple , A : int ) ->Optional[Any]: if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings lowerCamelCase__ : Union[str, Any] = image_embeddings.shape[0] lowerCamelCase__ : str = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) lowerCamelCase__ : Union[str, Any] = classifier_free_guidance_embeddings.expand( A , -1 ) lowerCamelCase__ : str = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] lowerCamelCase__ : str = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... lowerCamelCase__ : Tuple = self.embedding_proj(A ) lowerCamelCase__ : Any = self.clip_image_embeddings_project_to_time_embeddings(A ) lowerCamelCase__ : Tuple = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" lowerCamelCase__ : Any = self.clip_extra_context_tokens_proj(A ) lowerCamelCase__ : Optional[Any] = clip_extra_context_tokens.reshape(A , -1 , self.clip_extra_context_tokens ) lowerCamelCase__ : List[Any] = clip_extra_context_tokens.permute(0 , 2 , 1 ) lowerCamelCase__ : Union[str, Any] = self.encoder_hidden_states_proj(A ) lowerCamelCase__ : str = self.text_encoder_hidden_states_norm(A ) lowerCamelCase__ : Optional[Any] = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
315
from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Dict = logging.get_logger(__name__) _A : Union[str, Any] = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = "luke" def __init__( self : int , A : Optional[int]=5_0_2_6_7 , A : Any=5_0_0_0_0_0 , A : Tuple=7_6_8 , A : List[Any]=2_5_6 , A : Any=1_2 , A : List[Any]=1_2 , A : Tuple=3_0_7_2 , A : str="gelu" , A : Optional[int]=0.1 , A : Tuple=0.1 , A : List[Any]=5_1_2 , A : Optional[int]=2 , A : Dict=0.02 , A : Union[str, Any]=1e-12 , A : Dict=True , A : Optional[Any]=None , A : Dict=1 , A : str=0 , A : int=2 , **A : Optional[int] , ) ->Optional[int]: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : Dict = entity_vocab_size lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : Optional[int] = entity_emb_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : List[str] = num_attention_heads lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : int = intermediate_size lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : Dict = attention_probs_dropout_prob lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : str = initializer_range lowerCamelCase__ : Optional[int] = layer_norm_eps lowerCamelCase__ : Dict = use_entity_aware_attention lowerCamelCase__ : Optional[int] = classifier_dropout
315
1
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase (unittest.TestCase ): def __snake_case ( self :Union[str, Any] , __magic_name__ :Union[str, Any] ) ->List[Any]: lowercase : Dict = 3 lowercase : Optional[Any] = 250 lowercase : int = ids_tensor((batch_size, length) , __magic_name__ ) lowercase : Tuple = torch.ones((batch_size, length) , device=__magic_name__ , dtype=torch.float ) / length return input_ids, scores def __snake_case ( self :Union[str, Any] ) ->Any: lowercase , lowercase : Any = self._get_tensors(5 ) lowercase : str = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(__magic_name__ , __magic_name__ ) ) lowercase , lowercase : List[str] = self._get_tensors(9 ) self.assertFalse(criteria(__magic_name__ , __magic_name__ ) ) lowercase , lowercase : Dict = self._get_tensors(10 ) self.assertTrue(criteria(__magic_name__ , __magic_name__ ) ) def __snake_case ( self :int ) ->List[Any]: lowercase : Union[str, Any] = MaxLengthCriteria(max_length=10 ) lowercase , lowercase : str = self._get_tensors(5 ) self.assertFalse(criteria(__magic_name__ , __magic_name__ ) ) lowercase , lowercase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(__magic_name__ , __magic_name__ ) ) lowercase , lowercase : Any = self._get_tensors(10 ) self.assertTrue(criteria(__magic_name__ , __magic_name__ ) ) def __snake_case ( self :Optional[int] ) ->Tuple: lowercase : str = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowercase , lowercase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(__magic_name__ , __magic_name__ ) ) lowercase , lowercase : int = self._get_tensors(9 ) self.assertFalse(criteria(__magic_name__ , __magic_name__ ) ) lowercase , lowercase : Dict = self._get_tensors(10 ) self.assertTrue(criteria(__magic_name__ , __magic_name__ ) ) lowercase : Tuple = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def __snake_case ( self :List[Any] ) ->Tuple: lowercase , lowercase : Union[str, Any] = self._get_tensors(5 ) lowercase : Dict = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(__magic_name__ , __magic_name__ ) ) lowercase : List[str] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(__magic_name__ , __magic_name__ ) ) def __snake_case ( self :int ) ->int: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(__magic_name__ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) lowercase : Any = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(__magic_name__ ) , 1 )
717
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { 'Visual-Attention-Network/van-base': ( 'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json' ), } class UpperCamelCase (__snake_case ): _SCREAMING_SNAKE_CASE : Dict = """van""" def __init__( self :List[Any] , __magic_name__ :Optional[Any]=224 , __magic_name__ :Union[str, Any]=3 , __magic_name__ :Dict=[7, 3, 3, 3] , __magic_name__ :int=[4, 2, 2, 2] , __magic_name__ :Optional[Any]=[64, 128, 320, 512] , __magic_name__ :List[str]=[3, 3, 12, 3] , __magic_name__ :Any=[8, 8, 4, 4] , __magic_name__ :str="gelu" , __magic_name__ :int=0.02 , __magic_name__ :List[Any]=1E-6 , __magic_name__ :Optional[Any]=1E-2 , __magic_name__ :Optional[Any]=0.0 , __magic_name__ :Any=0.0 , **__magic_name__ :Optional[Any] , ) ->Any: super().__init__(**__magic_name__ ) lowercase : Dict = image_size lowercase : Optional[int] = num_channels lowercase : List[str] = patch_sizes lowercase : List[Any] = strides lowercase : List[Any] = hidden_sizes lowercase : int = depths lowercase : str = mlp_ratios lowercase : Optional[Any] = hidden_act lowercase : Optional[Any] = initializer_range lowercase : Optional[Any] = layer_norm_eps lowercase : Optional[int] = layer_scale_init_value lowercase : Union[str, Any] = drop_path_rate lowercase : Tuple = dropout_rate
348
0
"""simple docstring""" import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class A_ ( _a ): def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCAmelCase ,"hidden_sizes" ) ) self.parent.assertTrue(hasattr(__lowerCAmelCase ,"neck_hidden_sizes" ) ) self.parent.assertTrue(hasattr(__lowerCAmelCase ,"num_attention_heads" ) ) class A_ : def __init__( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[Any]=13 ,__lowerCAmelCase: Any=32 ,__lowerCAmelCase: Optional[Any]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Any=640 ,__lowerCAmelCase: List[str]=4 ,__lowerCAmelCase: Dict="silu" ,__lowerCAmelCase: int=3 ,__lowerCAmelCase: str=32 ,__lowerCAmelCase: Dict=0.1 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: int=True ,__lowerCAmelCase: int=True ,__lowerCAmelCase: str=10 ,__lowerCAmelCase: List[str]=None ,): '''simple docstring''' _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Dict = batch_size _lowerCamelCase : int = image_size _lowerCamelCase : int = patch_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Optional[Any] = last_hidden_size _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = hidden_act _lowerCamelCase : Union[str, Any] = conv_kernel_size _lowerCamelCase : Any = output_stride _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : Optional[int] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = classifier_dropout_prob _lowerCamelCase : Union[str, Any] = use_labels _lowerCamelCase : Dict = is_training _lowerCamelCase : int = num_labels _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[int] = scope def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : Dict = None _lowerCamelCase : Union[str, Any] = None if self.use_labels: _lowerCamelCase : Dict = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) _lowerCamelCase : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def _lowercase ( self: str ): '''simple docstring''' return MobileViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_attention_heads=self.num_attention_heads ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : Optional[int] = MobileViTModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : List[Any] = self.num_labels _lowerCamelCase : str = MobileViTForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : List[str] = model(__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: int ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = self.num_labels _lowerCamelCase : Tuple = MobileViTForSemanticSegmentation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) _lowerCamelCase : Tuple = model(__lowerCAmelCase ,labels=__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs _lowerCamelCase : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase__ = ( { 'feature-extraction': MobileViTModel, 'image-classification': MobileViTForImageClassification, 'image-segmentation': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Optional[Any] = MobileViTModelTester(self ) _lowerCamelCase : Optional[int] = MobileViTConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViT does not use inputs_embeds" ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="MobileViT does not support input and output embeddings" ) def _lowercase ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="MobileViT does not output attentions" ) def _lowercase ( self: List[str] ): '''simple docstring''' pass def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : List[str] = [*signature.parameters.keys()] _lowerCamelCase : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self: List[Any] ): '''simple docstring''' pass def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: Tuple ): '''simple docstring''' def check_hidden_states_output(__lowerCAmelCase: int ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: int ): _lowerCamelCase : str = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : Dict = outputs.hidden_states _lowerCamelCase : Optional[Any] = 5 self.assertEqual(len(__lowerCAmelCase ) ,__lowerCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _lowerCamelCase : int = 2 for i in range(len(__lowerCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,) divisor *= 2 self.assertEqual(self.model_tester.output_stride ,divisor // 2 ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = True check_hidden_states_output(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Any = True check_hidden_states_output(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCAmelCase ) @slow def _lowercase ( self: List[Any] ): '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Union[str, Any] = MobileViTModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: Any ): '''simple docstring''' return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small" ) if is_vision_available() else None @slow def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Tuple = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small" ).to(__lowerCAmelCase ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : Union[str, Any] = prepare_img() _lowerCamelCase : List[Any] = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__lowerCAmelCase ) # verify the logits _lowerCamelCase : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Any = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__lowerCAmelCase ,atol=1e-4 ) ) @slow def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : str = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) _lowerCamelCase : Any = model.to(__lowerCAmelCase ) _lowerCamelCase : Tuple = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) _lowerCamelCase : Any = prepare_img() _lowerCamelCase : int = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): _lowerCamelCase : List[str] = model(**__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = outputs.logits # verify the logits _lowerCamelCase : List[str] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Dict = torch.tensor( [ [[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]], [[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]], [[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]], ] ,device=__lowerCAmelCase ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,__lowerCAmelCase ,atol=1e-4 ) ) @slow def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : str = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) _lowerCamelCase : Optional[Any] = model.to(__lowerCAmelCase ) _lowerCamelCase : Dict = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) _lowerCamelCase : int = prepare_img() _lowerCamelCase : Any = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = outputs.logits.detach().cpu() _lowerCamelCase : Dict = image_processor.post_process_semantic_segmentation(outputs=__lowerCAmelCase ,target_sizes=[(50, 60)] ) _lowerCamelCase : Optional[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape ,__lowerCAmelCase ) _lowerCamelCase : Any = image_processor.post_process_semantic_segmentation(outputs=__lowerCAmelCase ) _lowerCamelCase : List[str] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape ,__lowerCAmelCase )
46
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class snake_case__ : """simple docstring""" _SCREAMING_SNAKE_CASE = field( metadata={"""help""": """The output directory where the model will be written."""} , ) _SCREAMING_SNAKE_CASE = field( metadata={ """help""": ( """The encoder model checkpoint for weights initialization.""" """Don't set if you want to train an encoder model from scratch.""" ) } , ) _SCREAMING_SNAKE_CASE = field( metadata={ """help""": ( """The decoder model checkpoint for weights initialization.""" """Don't set if you want to train a decoder model from scratch.""" ) } , ) _SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} ) _SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} ) def lowercase_ (): snake_case__ : Optional[int] = HfArgumentParser((ModelArguments,) ) ((snake_case__) , ) : List[Any] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: snake_case__ : Any = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: snake_case__ : Dict = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: snake_case__ : str = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: snake_case__ : List[str] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed snake_case__ : Dict = True snake_case__ : int = True snake_case__ : Optional[int] = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=A , decoder_config=A , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens snake_case__ : Optional[int] = decoder_config.decoder_start_token_id snake_case__ : Tuple = decoder_config.pad_token_id if decoder_start_token_id is None: snake_case__ : List[str] = decoder_config.bos_token_id if pad_token_id is None: snake_case__ : str = decoder_config.eos_token_id # This is necessary to make Flax's generate() work snake_case__ : Optional[Any] = decoder_config.eos_token_id snake_case__ : List[str] = decoder_start_token_id snake_case__ : Optional[int] = pad_token_id snake_case__ : Any = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) snake_case__ : Tuple = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) snake_case__ : Any = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
478
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging _lowerCamelCase = logging.get_logger(__name__) class snake_case ( __UpperCAmelCase ): lowerCamelCase__ = ['''input_features''', '''attention_mask'''] def __init__( self :Any , _lowerCamelCase :str=8_0 , _lowerCamelCase :Dict=1_6_0_0_0 , _lowerCamelCase :Dict=0.0 , _lowerCamelCase :Optional[int]=1_0 , _lowerCamelCase :Optional[int]=2_5 , _lowerCamelCase :Optional[Any]="hamming_window" , _lowerCamelCase :Optional[int]=3_2_7_6_8.0 , _lowerCamelCase :List[str]=0.9_7 , _lowerCamelCase :Union[str, Any]=1.0 , _lowerCamelCase :Tuple=True , _lowerCamelCase :Dict=True , _lowerCamelCase :str=False , **_lowerCamelCase :str , ): super().__init__(feature_size=_lowerCamelCase , sampling_rate=_lowerCamelCase , padding_value=_lowerCamelCase , **_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = feature_size __SCREAMING_SNAKE_CASE : str = sampling_rate __SCREAMING_SNAKE_CASE : int = padding_value __SCREAMING_SNAKE_CASE : Optional[Any] = hop_length __SCREAMING_SNAKE_CASE : Union[str, Any] = win_length __SCREAMING_SNAKE_CASE : Optional[Any] = frame_signal_scale __SCREAMING_SNAKE_CASE : Optional[Any] = preemphasis_coeff __SCREAMING_SNAKE_CASE : int = mel_floor __SCREAMING_SNAKE_CASE : str = normalize_means __SCREAMING_SNAKE_CASE : int = normalize_vars __SCREAMING_SNAKE_CASE : List[str] = win_function __SCREAMING_SNAKE_CASE : List[str] = return_attention_mask __SCREAMING_SNAKE_CASE : Tuple = win_length * sampling_rate // 1_0_0_0 __SCREAMING_SNAKE_CASE : int = hop_length * sampling_rate // 1_0_0_0 __SCREAMING_SNAKE_CASE : Optional[Any] = optimal_fft_length(self.sample_size ) __SCREAMING_SNAKE_CASE : List[str] = (self.n_fft // 2) + 1 def SCREAMING_SNAKE_CASE_ ( self :int , _lowerCamelCase :np.array ): if self.win_function == "hamming_window": __SCREAMING_SNAKE_CASE : List[str] = window_function(window_length=self.sample_size , name=self.win_function , periodic=_lowerCamelCase ) else: __SCREAMING_SNAKE_CASE : int = window_function(window_length=self.sample_size , name=self.win_function ) __SCREAMING_SNAKE_CASE : int = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) __SCREAMING_SNAKE_CASE : str = spectrogram( one_waveform * self.frame_signal_scale , window=_lowerCamelCase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_lowerCamelCase , preemphasis=self.preemphasis_coeff , mel_filters=_lowerCamelCase , mel_floor=self.mel_floor , log_mel='''log''' , ) return msfc_features.T def SCREAMING_SNAKE_CASE_ ( self :Dict , _lowerCamelCase :Tuple , _lowerCamelCase :List[Any] , _lowerCamelCase :Any ): # make sure we normalize float32 arrays if self.normalize_means: __SCREAMING_SNAKE_CASE : Union[str, Any] = x[:input_length].mean(axis=0 ) __SCREAMING_SNAKE_CASE : List[Any] = np.subtract(_lowerCamelCase , _lowerCamelCase ) if self.normalize_vars: __SCREAMING_SNAKE_CASE : Dict = x[:input_length].std(axis=0 ) __SCREAMING_SNAKE_CASE : Optional[int] = np.divide(_lowerCamelCase , _lowerCamelCase ) if input_length < x.shape[0]: __SCREAMING_SNAKE_CASE : Any = padding_value # make sure array is in float32 __SCREAMING_SNAKE_CASE : int = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] , _lowerCamelCase :List[np.ndarray] , _lowerCamelCase :Optional[np.ndarray] = None ): __SCREAMING_SNAKE_CASE : str = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_lowerCamelCase , _lowerCamelCase , self.padding_value ) for x, n in zip(_lowerCamelCase , _lowerCamelCase )] def __call__( self :Dict , _lowerCamelCase :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _lowerCamelCase :Union[bool, str, PaddingStrategy] = False , _lowerCamelCase :Optional[int] = None , _lowerCamelCase :bool = False , _lowerCamelCase :Optional[int] = None , _lowerCamelCase :Optional[bool] = None , _lowerCamelCase :Optional[Union[str, TensorType]] = None , _lowerCamelCase :Optional[int] = None , **_lowerCamelCase :Union[str, Any] , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __SCREAMING_SNAKE_CASE : List[str] = isinstance(_lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __SCREAMING_SNAKE_CASE : Optional[int] = is_batched_numpy or ( isinstance(_lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __SCREAMING_SNAKE_CASE : List[Any] = [np.asarray(_lowerCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowerCamelCase , np.ndarray ): __SCREAMING_SNAKE_CASE : Any = np.asarray(_lowerCamelCase , dtype=np.floataa ) elif isinstance(_lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __SCREAMING_SNAKE_CASE : Optional[int] = [raw_speech] # extract fbank features __SCREAMING_SNAKE_CASE : Any = [self._extract_mfsc_features(_lowerCamelCase ) for one_waveform in raw_speech] # convert into correct format for padding __SCREAMING_SNAKE_CASE : Union[str, Any] = BatchFeature({'''input_features''': features} ) __SCREAMING_SNAKE_CASE : Dict = self.pad( _lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , truncation=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) # make sure list is in array format __SCREAMING_SNAKE_CASE : Optional[int] = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , _lowerCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = [np.asarray(_lowerCamelCase , dtype=np.floataa ) for feature in input_features] __SCREAMING_SNAKE_CASE : str = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: __SCREAMING_SNAKE_CASE : Optional[int] = [np.asarray(_lowerCamelCase , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: __SCREAMING_SNAKE_CASE : List[Any] = ( np.array(_lowerCamelCase , dtype=np.intaa ) if self._get_padding_strategies(_lowerCamelCase , max_length=_lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.normalize( padded_inputs['''input_features'''] , attention_mask=_lowerCamelCase ) if return_tensors is not None: __SCREAMING_SNAKE_CASE : List[Any] = padded_inputs.convert_to_tensors(_lowerCamelCase ) return padded_inputs
704
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowerCAmelCase_ ( lowercase_ : dict ): '''simple docstring''' return (data["data"], data["target"]) def lowerCAmelCase_ ( lowercase_ : np.ndarray , lowercase_ : np.ndarray ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Union[str, Any] = XGBClassifier() classifier.fit(lowercase_ , lowercase_ ) return classifier def lowerCAmelCase_ ( ): '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = load_iris() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = data_handling(lowercase_ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = train_test_split( lowercase_ , lowercase_ , test_size=0.25 ) __SCREAMING_SNAKE_CASE : Any = iris['''target_names'''] # Create an XGBoost Classifier from the training data __SCREAMING_SNAKE_CASE : Union[str, Any] = xgboost(lowercase_ , lowercase_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase_ , lowercase_ , lowercase_ , display_labels=lowercase_ , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
401
0
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): __magic_name__ : Optional[Any] =[redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: __magic_name__ : List[Any] =1 - (matter_density + radiation_density + dark_energy) __magic_name__ : str =( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) __magic_name__ : List[Any] =hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation UpperCAmelCase_ : Union[str, Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
21
UpperCAmelCase_ : Tuple = 0 # The first color of the flag. UpperCAmelCase_ : Any = 1 # The second color of the flag. UpperCAmelCase_ : str = 2 # The third color of the flag. UpperCAmelCase_ : Tuple = (red, white, blue) def lowerCAmelCase_ ( lowerCamelCase ): if not sequence: return [] if len(lowerCamelCase ) == 1: return list(lowerCamelCase ) __magic_name__ : int =0 __magic_name__ : str =len(lowerCamelCase ) - 1 __magic_name__ : Optional[Any] =0 while mid <= high: if sequence[mid] == colors[0]: __magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid] high -= 1 else: __magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values" raise ValueError(lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
21
1
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( __lowerCAmelCase , unittest.TestCase ): a__ = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def lowerCamelCase_ ( self , lowercase=0) -> str: '''simple docstring''' a__: Optional[Any] = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(lowercase)) a__: int = np.random.RandomState(lowercase) a__: Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowercase) a__: Dict = self.get_dummy_inputs() a__: List[Any] = pipe(**lowercase).images a__: str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) a__: Dict = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') a__: Optional[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase) pipe.set_progress_bar_config(disable=lowercase) a__: str = self.get_dummy_inputs() a__: Union[str, Any] = pipe(**lowercase).images a__: Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__: Union[str, Any] = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') a__: str = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase) # warmup pass to apply optimizations a__: List[str] = pipe(**self.get_dummy_inputs()) a__: int = self.get_dummy_inputs() a__: int = pipe(**lowercase).images a__: Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__: Union[str, Any] = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') a__: str = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase) a__: Optional[int] = self.get_dummy_inputs() a__: Any = pipe(**lowercase).images a__: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__: int = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') a__: Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase) a__: Any = self.get_dummy_inputs() a__: Dict = pipe(**lowercase).images a__: str = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__: Any = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') a__: str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase) a__: List[str] = self.get_dummy_inputs() a__: str = pipe(**lowercase).images a__: Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__: List[Any] = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase ): @property def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: Union[str, Any] = ort.SessionOptions() a__: str = False return options def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') a__: Union[str, Any] = init_image.resize((7_68, 5_12)) # using the PNDM scheduler by default a__: Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowercase , feature_extractor=lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase) a__: Optional[Any] = 'A fantasy landscape, trending on artstation' a__: Optional[int] = np.random.RandomState(0) a__: List[str] = pipe( prompt=lowercase , image=lowercase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase , output_type='np' , ) a__: int = output.images a__: Union[str, Any] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) a__: Dict = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') a__: Optional[int] = init_image.resize((7_68, 5_12)) a__: Tuple = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx') a__: List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowercase , safety_checker=lowercase , feature_extractor=lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase) a__: Union[str, Any] = 'A fantasy landscape, trending on artstation' a__: Optional[Any] = np.random.RandomState(0) a__: List[Any] = pipe( prompt=lowercase , image=lowercase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase , output_type='np' , ) a__: Any = output.images a__: Optional[int] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) a__: Dict = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
217
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __snake_case ( unittest.TestCase ): a__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> int: '''simple docstring''' a__: Optional[int] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset') a__: Optional[Any] = VideoClassificationPipeline(model=lowercase , image_processor=lowercase , top_k=2) a__: Optional[int] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def lowerCamelCase_ ( self , lowercase , lowercase) -> Optional[Any]: '''simple docstring''' for example in examples: a__: List[str] = video_classifier(lowercase) self.assertEqual( lowercase , [ {'score': ANY(lowercase), 'label': ANY(lowercase)}, {'score': ANY(lowercase), 'label': ANY(lowercase)}, ] , ) @require_torch def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: Dict = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' a__: Optional[Any] = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10}) a__: Any = pipeline( 'video-classification' , model=lowercase , feature_extractor=lowercase , frame_sampling_rate=4) a__: Union[str, Any] = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset') a__: Tuple = video_classifier(lowercase , top_k=2) self.assertEqual( nested_simplify(lowercase , decimals=4) , [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}] , ) a__: Optional[Any] = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowercase , decimals=4) , [ [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}], [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}], ] , ) @require_tf def lowerCamelCase_ ( self) -> str: '''simple docstring''' pass
217
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def lowercase (_snake_case ,_snake_case=False ,_snake_case=False ,_snake_case=False ) -> List[Any]: '''simple docstring''' __UpperCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""transformer.blocks.{i}.norm1.weight""", f"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm1.bias""", f"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.weight""", f"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.bias""", f"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.weight""", f"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.bias""", f"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.mlp.fc1.weight""", f"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc1.bias""", f"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.weight""", f"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.bias""", f"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def lowercase (_snake_case ,_snake_case ) -> List[str]: '''simple docstring''' for i in range(config.num_hidden_layers ): __UpperCamelCase = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __UpperCamelCase = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.weight""" ) __UpperCamelCase = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase = in_proj_weight[ : config.hidden_size, : ] __UpperCamelCase = in_proj_bias[: config.hidden_size] __UpperCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __UpperCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __UpperCamelCase = in_proj_weight[ -config.hidden_size :, : ] __UpperCamelCase = in_proj_bias[-config.hidden_size :] def lowercase (_snake_case ) -> int: '''simple docstring''' __UpperCamelCase = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_snake_case ,_snake_case ) def lowercase (_snake_case ,_snake_case ,_snake_case ) -> List[Any]: '''simple docstring''' __UpperCamelCase = dct.pop(_snake_case ) __UpperCamelCase = val @torch.no_grad() def lowercase (_snake_case ,_snake_case ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase = ViltConfig(image_size=384 ,patch_size=32 ,tie_word_embeddings=_snake_case ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False if "vqa" in checkpoint_url: __UpperCamelCase = True __UpperCamelCase = 3129 __UpperCamelCase = "huggingface/label-files" __UpperCamelCase = "vqa2-id2label.json" __UpperCamelCase = json.load(open(hf_hub_download(_snake_case ,_snake_case ,repo_type="dataset" ) ,"r" ) ) __UpperCamelCase = {int(_snake_case ): v for k, v in idalabel.items()} __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} __UpperCamelCase = ViltForQuestionAnswering(_snake_case ) elif "nlvr" in checkpoint_url: __UpperCamelCase = True __UpperCamelCase = 2 __UpperCamelCase = {0: "False", 1: "True"} __UpperCamelCase = {v: k for k, v in config.idalabel.items()} __UpperCamelCase = 3 __UpperCamelCase = ViltForImagesAndTextClassification(_snake_case ) elif "irtr" in checkpoint_url: __UpperCamelCase = True __UpperCamelCase = ViltForImageAndTextRetrieval(_snake_case ) elif "mlm_itm" in checkpoint_url: __UpperCamelCase = True __UpperCamelCase = ViltForMaskedLM(_snake_case ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys __UpperCamelCase = torch.hub.load_state_dict_from_url(_snake_case ,map_location="cpu" )["state_dict"] __UpperCamelCase = create_rename_keys(_snake_case ,_snake_case ,_snake_case ,_snake_case ) for src, dest in rename_keys: rename_key(_snake_case ,_snake_case ,_snake_case ) read_in_q_k_v(_snake_case ,_snake_case ) if mlm_model or irtr_model: __UpperCamelCase = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(_snake_case ,_snake_case ) # load state dict into HuggingFace model model.eval() if mlm_model: __UpperCamelCase , __UpperCamelCase = model.load_state_dict(_snake_case ,strict=_snake_case ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_snake_case ) # Define processor __UpperCamelCase = ViltImageProcessor(size=384 ) __UpperCamelCase = BertTokenizer.from_pretrained("bert-base-uncased" ) __UpperCamelCase = ViltProcessor(_snake_case ,_snake_case ) # Forward pass on example inputs (image + text) if nlvr_model: __UpperCamelCase = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" ,stream=_snake_case ).raw ) __UpperCamelCase = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" ,stream=_snake_case ).raw ) __UpperCamelCase = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) __UpperCamelCase = processor(_snake_case ,_snake_case ,return_tensors="pt" ) __UpperCamelCase = processor(_snake_case ,_snake_case ,return_tensors="pt" ) __UpperCamelCase = model( input_ids=encoding_a.input_ids ,pixel_values=encoding_a.pixel_values ,pixel_values_a=encoding_a.pixel_values ,) else: __UpperCamelCase = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" ,stream=_snake_case ).raw ) if mlm_model: __UpperCamelCase = "a bunch of [MASK] laying on a [MASK]." else: __UpperCamelCase = "How many cats are there?" __UpperCamelCase = processor(_snake_case ,_snake_case ,return_tensors="pt" ) __UpperCamelCase = model(**_snake_case ) # Verify outputs if mlm_model: __UpperCamelCase = torch.Size([1, 11, 30522] ) __UpperCamelCase = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] ,_snake_case ,atol=1e-4 ) # verify masked token prediction equals "cats" __UpperCamelCase = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: __UpperCamelCase = torch.Size([1, 3129] ) __UpperCamelCase = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] ,_snake_case ,atol=1e-4 ) # verify vqa prediction equals "2" __UpperCamelCase = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: __UpperCamelCase = torch.Size([1, 2] ) __UpperCamelCase = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _A = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
505
"""simple docstring""" def lowercase (_snake_case ) -> int: '''simple docstring''' __UpperCamelCase = len(_snake_case ) __UpperCamelCase = len(matrix[0] ) __UpperCamelCase = min(_snake_case ,_snake_case ) for row in range(_snake_case ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 ,_snake_case ): __UpperCamelCase = matrix[col][row] / matrix[row][row] for i in range(_snake_case ,_snake_case ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows __UpperCamelCase = True for i in range(row + 1 ,_snake_case ): if matrix[i][row] != 0: __UpperCamelCase , __UpperCamelCase = matrix[i], matrix[row] __UpperCamelCase = False break if reduce: rank -= 1 for i in range(_snake_case ): __UpperCamelCase = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
505
1
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1_00_00_00 , __lowerCAmelCase = 10 ) -> int: '''simple docstring''' lowercase_ = defaultdict(_UpperCamelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowercase_ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowercase_ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_UpperCamelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"{solution() = }")
715
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowercase__ = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 5_0_2_5_7 , lowerCAmelCase_ : int = 1_0_2_4 , lowerCAmelCase_ : int = 7_6_8 , lowerCAmelCase_ : int = 1_2 , lowerCAmelCase_ : int = 1_2 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : str = "gelu_new" , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 1E-5 , lowerCAmelCase_ : float = 0.02 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , ): """simple docstring""" super().__init__() lowercase_ = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' F''' `n_embd`: {n_embd} are not equal.''') lowercase_ = prefix_inner_dim lowercase_ = prefix_hidden_dim lowercase_ = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim) if self.prefix_hidden_dim is not None else nn.Identity() ) lowercase_ = ( nn.Linear(self.prefix_hidden_dim , lowerCAmelCase_) if self.prefix_hidden_dim is not None else nn.Identity() ) lowercase_ = GPTaConfig( vocab_size=lowerCAmelCase_ , n_positions=lowerCAmelCase_ , n_embd=lowerCAmelCase_ , n_layer=lowerCAmelCase_ , n_head=lowerCAmelCase_ , n_inner=lowerCAmelCase_ , activation_function=lowerCAmelCase_ , resid_pdrop=lowerCAmelCase_ , embd_pdrop=lowerCAmelCase_ , attn_pdrop=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ , initializer_range=lowerCAmelCase_ , scale_attn_weights=lowerCAmelCase_ , use_cache=lowerCAmelCase_ , scale_attn_by_inverse_layer_idx=lowerCAmelCase_ , reorder_and_upcast_attn=lowerCAmelCase_ , ) lowercase_ = GPTaLMHeadModel(lowerCAmelCase_) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : torch.Tensor , lowerCAmelCase_ : torch.Tensor , lowerCAmelCase_ : Optional[torch.Tensor] = None , lowerCAmelCase_ : Optional[torch.Tensor] = None , ): """simple docstring""" lowercase_ = self.transformer.transformer.wte(lowerCAmelCase_) lowercase_ = self.encode_prefix(lowerCAmelCase_) lowercase_ = self.decode_prefix(lowerCAmelCase_) lowercase_ = torch.cat((prefix_embeds, embedding_text) , dim=1) if labels is not None: lowercase_ = self.get_dummy_token(input_ids.shape[0] , input_ids.device) lowercase_ = torch.cat((dummy_token, input_ids) , dim=1) lowercase_ = self.transformer(inputs_embeds=lowerCAmelCase_ , labels=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) if self.prefix_hidden_dim is not None: return out, hidden else: return out def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : torch.device): """simple docstring""" return torch.zeros(lowerCAmelCase_ , self.prefix_length , dtype=torch.intaa , device=lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[Any]): """simple docstring""" return self.encode_prefix(lowerCAmelCase_) @torch.no_grad() def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = torch.split(lowerCAmelCase_ , 1 , dim=0) lowercase_ = [] lowercase_ = [] for feature in features: lowercase_ = self.decode_prefix(feature.to(lowerCAmelCase_)) # back to the clip feature # Only support beam search for now lowercase_ , lowercase_ = self.generate_beam( input_embeds=lowerCAmelCase_ , device=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_) generated_tokens.append(output_tokens[0]) generated_seq_lengths.append(seq_lengths[0]) lowercase_ = torch.stack(lowerCAmelCase_) lowercase_ = torch.stack(lowerCAmelCase_) return generated_tokens, generated_seq_lengths @torch.no_grad() def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int = 5 , lowerCAmelCase_ : int = 6_7 , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : Optional[int] = None , ): """simple docstring""" lowercase_ = eos_token_id lowercase_ = None lowercase_ = None lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=torch.int) lowercase_ = torch.zeros(lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=torch.bool) if input_embeds is not None: lowercase_ = input_embeds else: lowercase_ = self.transformer.transformer.wte(lowerCAmelCase_) for i in range(lowerCAmelCase_): lowercase_ = self.transformer(inputs_embeds=lowerCAmelCase_) lowercase_ = outputs.logits lowercase_ = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowercase_ = logits.softmax(-1).log() if scores is None: lowercase_ , lowercase_ = logits.topk(lowerCAmelCase_ , -1) lowercase_ = generated.expand(lowerCAmelCase_ , *generated.shape[1:]) lowercase_ , lowercase_ = next_tokens.permute(1 , 0), scores.squeeze(0) if tokens is None: lowercase_ = next_tokens else: lowercase_ = tokens.expand(lowerCAmelCase_ , *tokens.shape[1:]) lowercase_ = torch.cat((tokens, next_tokens) , dim=1) else: lowercase_ = -float(np.inf) lowercase_ = 0 lowercase_ = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowercase_ = scores_sum / seq_lengths[:, None] lowercase_ , lowercase_ = scores_sum_average.view(-1).topk(lowerCAmelCase_ , -1) lowercase_ = next_tokens // scores_sum.shape[1] lowercase_ = seq_lengths[next_tokens_source] lowercase_ = next_tokens % scores_sum.shape[1] lowercase_ = next_tokens.unsqueeze(1) lowercase_ = tokens[next_tokens_source] lowercase_ = torch.cat((tokens, next_tokens) , dim=1) lowercase_ = generated[next_tokens_source] lowercase_ = scores_sum_average * seq_lengths lowercase_ = is_stopped[next_tokens_source] lowercase_ = self.transformer.transformer.wte(next_tokens.squeeze()).view(generated.shape[0] , 1 , -1) lowercase_ = torch.cat((generated, next_token_embed) , dim=1) lowercase_ = is_stopped + next_tokens.eq(lowerCAmelCase_).squeeze() if is_stopped.all(): break lowercase_ = scores / seq_lengths lowercase_ = scores.argsort(descending=lowerCAmelCase_) # tokens tensors are already padded to max_seq_length lowercase_ = [tokens[i] for i in order] lowercase_ = torch.stack(lowerCAmelCase_ , dim=0) lowercase_ = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype) return output_texts, seq_lengths
100
0
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def lowerCamelCase () -> Tuple: lowercase :List[str] = argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=a_ , default=a_ , required=a_ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=a_ , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=a_ , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=a_ , default=42 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=a_ , default=0 , help='''cuda_id.''' , ) lowercase :Any = parser.parse_args() return args def lowerCamelCase (a_ :str , a_ :Tuple , a_ :Optional[int]) -> List[str]: if not len(a_) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''') lowercase , lowercase :Optional[Any] = imgs[0].size lowercase :Tuple = Image.new('''RGB''' , size=(cols * w, rows * h)) lowercase , lowercase :Union[str, Any] = grid.size for i, img in enumerate(a_): grid.paste(a_ , box=(i % cols * w, i // cols * h)) return grid def lowerCamelCase (a_ :int , a_ :List[str]="robotic cat with wings" , a_ :Tuple=7.5 , a_ :int=50 , a_ :List[str]=1 , a_ :str=42 , ) -> Any: lowercase :List[str] = torch.Generator(pipeline.device).manual_seed(a_) lowercase :Any = pipeline( a_ , guidance_scale=a_ , num_inference_steps=a_ , generator=a_ , num_images_per_prompt=a_ , ).images lowercase :List[str] = int(math.sqrt(a_)) lowercase :str = image_grid(a_ , rows=_rows , cols=num_images_per_prompt // _rows) return grid, images UpperCAmelCase = parse_args() # Load models and create wrapper for stable diffusion UpperCAmelCase = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') UpperCAmelCase = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') UpperCAmelCase = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') UpperCAmelCase = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') UpperCAmelCase = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) UpperCAmelCase = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): UpperCAmelCase = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: UpperCAmelCase = unet.to(torch.device('''cuda''', args.cuda_id)) UpperCAmelCase = pipeline.to(unet.device) UpperCAmelCase , UpperCAmelCase = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) UpperCAmelCase = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
677
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets UpperCAmelCase = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' UpperCAmelCase = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' UpperCAmelCase = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def __snake_case ( self : int ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def __snake_case ( self : List[Any] , snake_case__ : str , snake_case__ : int , snake_case__ : str=None , snake_case__ : List[Any]="uniform_average" , snake_case__ : Dict=True ): '''simple docstring''' lowercase :Dict = mean_squared_error( snake_case__ , snake_case__ , sample_weight=snake_case__ , multioutput=snake_case__ , squared=snake_case__ ) return {"mse": mse}
677
1
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __lowerCAmelCase : Optional[int] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(_lowercase , _lowercase ): snake_case_ : Union[str, Any] = v.to_dict() return d
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowercase_ = numpy.array([0, 0]) lowercase_ = numpy.array([0.5, 0.866_0254]) lowercase_ = numpy.array([1, 0]) lowercase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Optional[Any] = initial_vectors for _ in range(__lowerCAmelCase ): __lowerCamelCase : Dict = iteration_step(__lowerCAmelCase ) return vectors def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : int = [] for i, start_vector in enumerate(vectors[:-1] ): __lowerCamelCase : Union[str, Any] = vectors[i + 1] new_vectors.append(__lowerCAmelCase ) __lowerCamelCase : Dict = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Optional[Any] = numpy.radians(__lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase : str = numpy.cos(__lowerCAmelCase ), numpy.sin(__lowerCAmelCase ) __lowerCamelCase : Optional[Any] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__lowerCAmelCase , __lowerCAmelCase ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Optional[Any] = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __lowerCamelCase , __lowerCamelCase : int = zip(*__lowerCAmelCase ) plt.plot(__lowerCAmelCase , __lowerCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
669
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } _SCREAMING_SNAKE_CASE = { "google/rembert": 256, } _SCREAMING_SNAKE_CASE = "▁" class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = RemBertTokenizer def __init__( self : List[Any] , __snake_case : int=None , __snake_case : Union[str, Any]=None , __snake_case : Tuple=True , __snake_case : Dict=True , __snake_case : str=False , __snake_case : Union[str, Any]="[CLS]" , __snake_case : Optional[int]="[SEP]" , __snake_case : str="<unk>" , __snake_case : Dict="[SEP]" , __snake_case : Dict="<pad>" , __snake_case : Union[str, Any]="[CLS]" , __snake_case : int="[MASK]" , **__snake_case : Optional[int] , )-> Tuple: # Mask token behave like a normal word, i.e. include the space before it snake_case = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( __snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , ) snake_case = do_lower_case snake_case = remove_space snake_case = keep_accents snake_case = vocab_file snake_case = False if not self.vocab_file else True def lowerCAmelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None )-> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False )-> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] def lowerCAmelCase ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None )-> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self : Tuple , __snake_case : str , __snake_case : Optional[str] = None )-> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error("""Vocabulary path ({}) should be a directory""".format(__snake_case ) ) return snake_case = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
369
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
100
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' while a != 0: lowercase_ , lowercase_ = b % a, a return b def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' if gcd(__lowerCAmelCase , __lowerCAmelCase ) != 1: lowercase_ = F'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(__lowerCAmelCase ) lowercase_ , lowercase_ , lowercase_ = 1, 0, a lowercase_ , lowercase_ , lowercase_ = 0, 1, m while va != 0: lowercase_ = ua // va lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
100
1
'''simple docstring''' from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class UpperCAmelCase ( lowercase_): """simple docstring""" lowerCAmelCase_ = """EncodecFeatureExtractor""" lowerCAmelCase_ = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self : str , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ) -> Optional[int]: super().__init__(UpperCamelCase__ , UpperCamelCase__ ) _UpperCamelCase =self.feature_extractor _UpperCamelCase =False def UpperCamelCase__ ( self : int , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : Any=True ) -> int: return self.tokenizer.get_decoder_prompt_ids(task=UpperCamelCase__ , language=UpperCamelCase__ , no_timestamps=UpperCamelCase__ ) def __call__( self : Optional[Any] , *UpperCamelCase__ : Tuple , **UpperCamelCase__ : List[Any] ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCamelCase__ , **UpperCamelCase__ ) _UpperCamelCase =kwargs.pop('''audio''' , UpperCamelCase__ ) _UpperCamelCase =kwargs.pop('''sampling_rate''' , UpperCamelCase__ ) _UpperCamelCase =kwargs.pop('''text''' , UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _UpperCamelCase =args[0] _UpperCamelCase =args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: _UpperCamelCase =self.tokenizer(UpperCamelCase__ , **UpperCamelCase__ ) if audio is not None: _UpperCamelCase =self.feature_extractor(UpperCamelCase__ , *UpperCamelCase__ , sampling_rate=UpperCamelCase__ , **UpperCamelCase__ ) if audio is None: return inputs elif text is None: return audio_inputs else: _UpperCamelCase =audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: _UpperCamelCase =audio_inputs['''padding_mask'''] return inputs def UpperCamelCase__ ( self : Optional[Any] , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : Optional[int] ) -> Optional[int]: _UpperCamelCase =kwargs.pop('''audio''' , UpperCamelCase__ ) _UpperCamelCase =kwargs.pop('''padding_mask''' , UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _UpperCamelCase =args[0] _UpperCamelCase =args[1:] if audio_values is not None: return self._decode_audio(UpperCamelCase__ , padding_mask=UpperCamelCase__ ) else: return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCamelCase__ ( self : Dict , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : List[Any] ) -> Any: return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCamelCase__ ( self : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional = None ) -> List[np.ndarray]: _UpperCamelCase =to_numpy(UpperCamelCase__ ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase =audio_values.shape if padding_mask is None: return list(UpperCamelCase__ ) _UpperCamelCase =to_numpy(UpperCamelCase__ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _UpperCamelCase =seq_len - padding_mask.shape[-1] _UpperCamelCase =1 - self.feature_extractor.padding_value _UpperCamelCase =np.pad(UpperCamelCase__ , ((0, 0), (0, difference)) , '''constant''' , constant_values=UpperCamelCase__ ) _UpperCamelCase =audio_values.tolist() for i in range(UpperCamelCase__ ): _UpperCamelCase =np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _UpperCamelCase =sliced_audio.reshape(UpperCamelCase__ , -1 ) return audio_values
404
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( lowercase_ , unittest.TestCase): """simple docstring""" lowerCAmelCase_ = GPTSanJapaneseTokenizer lowerCAmelCase_ = False lowerCAmelCase_ = {"""do_clean_text""": False, """add_prefix_space""": False} def UpperCamelCase__ ( self : Tuple ) -> Optional[Any]: super().setUp() # fmt: off _UpperCamelCase =['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on _UpperCamelCase ={'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 _UpperCamelCase ={'''unk_token''': '''<unk>'''} _UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(UpperCamelCase__ ) ) def UpperCamelCase__ ( self : Optional[Any] , **UpperCamelCase__ : List[Any] ) -> Dict: kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCamelCase__ ( self : str , UpperCamelCase__ : List[str] ) -> int: _UpperCamelCase ='''こんにちは、世界。 \nこんばんは、㔺界。😀''' _UpperCamelCase ='''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def UpperCamelCase__ ( self : Union[str, Any] , UpperCamelCase__ : List[Any] ) -> List[Any]: _UpperCamelCase , _UpperCamelCase =self.get_input_output_texts(UpperCamelCase__ ) _UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) _UpperCamelCase =tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) return text, ids def UpperCamelCase__ ( self : Tuple ) -> Dict: pass # TODO add if relevant def UpperCamelCase__ ( self : Union[str, Any] ) -> List[Any]: pass # TODO add if relevant def UpperCamelCase__ ( self : Tuple ) -> int: pass # TODO add if relevant def UpperCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase =self.get_tokenizer() # Testing tokenization _UpperCamelCase ='''こんにちは、世界。 こんばんは、㔺界。''' _UpperCamelCase =['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] _UpperCamelCase =tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) # Testing conversion to ids without special tokens _UpperCamelCase =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _UpperCamelCase =tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) # Testing conversion to ids with special tokens _UpperCamelCase =tokens + [tokenizer.unk_token] _UpperCamelCase =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] _UpperCamelCase =tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase__ ( self : Optional[Any] ) -> Optional[int]: _UpperCamelCase =self.get_tokenizer() # Testing tokenization _UpperCamelCase ='''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' _UpperCamelCase ='''こんにちは、、、、世界。こんばんは、、、、世界。''' _UpperCamelCase =tokenizer.encode(UpperCamelCase__ ) _UpperCamelCase =tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCamelCase__ ( self : str ) -> str: _UpperCamelCase =self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _UpperCamelCase ='''こんにちは、世界。''' _UpperCamelCase ='''こんばんは、㔺界。😀''' _UpperCamelCase ='''こんにちは、世界。こんばんは、世界。😀''' _UpperCamelCase =tokenizer.encode(prefix_text + input_text ) _UpperCamelCase =tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) _UpperCamelCase =tokenizer.encode(UpperCamelCase__ , prefix_text=UpperCamelCase__ ) _UpperCamelCase =tokenizer.decode(UpperCamelCase__ ) _UpperCamelCase =tokenizer.decode(UpperCamelCase__ ) _UpperCamelCase =tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCamelCase__ ( self : Optional[int] ) -> Any: _UpperCamelCase =self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization _UpperCamelCase ='''こんにちは、世界。''' _UpperCamelCase ='''こんばんは、㔺界。😀''' _UpperCamelCase =len(tokenizer.encode(UpperCamelCase__ ) ) - 2 _UpperCamelCase =len(tokenizer.encode(UpperCamelCase__ ) ) - 2 _UpperCamelCase =[1] + [0] * (len_prefix + len_text + 1) _UpperCamelCase =[1] * (len_prefix + len_text + 1) + [0] _UpperCamelCase =[1] + [1] * (len_prefix) + [0] * (len_text + 1) _UpperCamelCase =tokenizer(prefix_text + input_text ).token_type_ids _UpperCamelCase =tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids _UpperCamelCase =tokenizer(UpperCamelCase__ , prefix_text=UpperCamelCase__ ).token_type_ids self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCamelCase__ ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase =self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _UpperCamelCase =tokenizer.encode('''あンいワ''' ) _UpperCamelCase =tokenizer.encode('''''' , prefix_text='''あンいワ''' ) _UpperCamelCase =tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(UpperCamelCase__ ) , tokenizer.decode(UpperCamelCase__ ) ) self.assertEqual(tokenizer.decode(UpperCamelCase__ ) , tokenizer.decode(UpperCamelCase__ ) ) self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCamelCase__ ( self : Tuple ) -> Dict: _UpperCamelCase =self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) _UpperCamelCase =[['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] _UpperCamelCase =tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ ) _UpperCamelCase =tokenizer.batch_encode_plus(UpperCamelCase__ , padding=UpperCamelCase__ ) # fmt: off _UpperCamelCase =[[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] _UpperCamelCase =[[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _UpperCamelCase =[[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , UpperCamelCase__ ) self.assertListEqual(x_token.token_type_ids , UpperCamelCase__ ) self.assertListEqual(x_token.attention_mask , UpperCamelCase__ ) self.assertListEqual(x_token_a.input_ids , UpperCamelCase__ ) self.assertListEqual(x_token_a.token_type_ids , UpperCamelCase__ ) self.assertListEqual(x_token_a.attention_mask , UpperCamelCase__ ) def UpperCamelCase__ ( self : Optional[int] ) -> int: # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def UpperCamelCase__ ( self : Dict ) -> Optional[int]: # tokenizer has no padding token pass
404
1
"""simple docstring""" def lowercase__ ( snake_case_ :int = 2_000_000 ): __UpperCAmelCase = [0 for i in range(n + 1 )] __UpperCAmelCase = 1 __UpperCAmelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , snake_case__ ): __UpperCAmelCase = 1 __UpperCAmelCase = 0 for i in range(snake_case__ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f"""{solution() = }""")
700
"""simple docstring""" def lowercase__ ( snake_case_ :List[Any] , snake_case_ :str , snake_case_ :Tuple , snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[Any] ): if index == r: for j in range(snake_case_ ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __UpperCAmelCase = arr[i] combination_util(snake_case_ , snake_case_ , snake_case_ , index + 1 , snake_case_ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :str , snake_case_ :List[str] ): # A temporary array to store all combination one by one __UpperCAmelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(snake_case_ , snake_case_ , snake_case_ , 0 , snake_case_ , 0 ) if __name__ == "__main__": # Driver code to check the function above _lowercase : List[str] = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
397
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Any ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any]=True ): model.train() __UpperCAmelCase : Tuple = model(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = F.mse_loss(__lowerCamelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str=False ): set_seed(42 ) __UpperCAmelCase : Optional[int] = RegressionModel() __UpperCAmelCase : Tuple = deepcopy(__lowerCamelCase ) __UpperCAmelCase : Tuple = RegressionDataset(length=80 ) __UpperCAmelCase : Dict = DataLoader(__lowerCamelCase , batch_size=16 ) model.to(accelerator.device ) if sched: __UpperCAmelCase : Optional[Any] = AdamW(params=model.parameters() , lr=1E-3 ) __UpperCAmelCase : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __UpperCAmelCase : Any = LambdaLR(__lowerCamelCase , lr_lambda=lambda __lowerCamelCase : epoch**0.6_5 ) __UpperCAmelCase : str = LambdaLR(__lowerCamelCase , lr_lambda=lambda __lowerCamelCase : epoch**0.6_5 ) # Make a copy of `model` if sched: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = accelerator.prepare(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: __UpperCAmelCase , __UpperCAmelCase : Tuple = accelerator.prepare(__lowerCamelCase , __lowerCamelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ): # Test when on a single CPU or GPU that the context manager does nothing __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = get_training_setup(__lowerCamelCase ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = next(iter(__lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase : Tuple = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase : Any = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__lowerCamelCase ): step_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: # Sync grads step_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __UpperCAmelCase : Optional[Any] = ddp_input[torch.randperm(len(__lowerCamelCase ) )] def lowerCamelCase__ ( __lowerCamelCase : Any ): # Test on distributed setup that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = get_training_setup(__lowerCamelCase ) # Use a single batch __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = next(iter(__lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase : Tuple = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase : Tuple = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__lowerCamelCase ): step_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: # Sync grads step_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __UpperCAmelCase : str = ddp_input[torch.randperm(len(__lowerCamelCase ) )] def lowerCamelCase__ ( __lowerCamelCase : Dict=False , __lowerCamelCase : List[Any]=False ): __UpperCAmelCase : Tuple = Accelerator( split_batches=__lowerCamelCase , dispatch_batches=__lowerCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = get_training_setup(__lowerCamelCase ) for iteration, batch in enumerate(__lowerCamelCase ): __UpperCAmelCase , __UpperCAmelCase : List[str] = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase : List[str] = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase : List[str] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__lowerCamelCase ): step_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__lowerCamelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __UpperCAmelCase : Dict = ddp_input[torch.randperm(len(__lowerCamelCase ) )] GradientState._reset_state() def lowerCamelCase__ ( __lowerCamelCase : List[str]=False , __lowerCamelCase : Union[str, Any]=False ): __UpperCAmelCase : Optional[int] = Accelerator( split_batches=__lowerCamelCase , dispatch_batches=__lowerCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = get_training_setup(__lowerCamelCase , __lowerCamelCase ) for iteration, batch in enumerate(__lowerCamelCase ): __UpperCAmelCase , __UpperCAmelCase : str = batch.values() # Gather the distributed inputs and targs for the base model __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = accelerator.gather((ddp_input, ddp_target) ) __UpperCAmelCase , __UpperCAmelCase : Tuple = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__lowerCamelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__lowerCamelCase ): step_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n""" __UpperCAmelCase : Optional[Any] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__lowerCamelCase )) if accelerator.num_processes > 1: check_model_parameters(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def lowerCamelCase__ ( ): __UpperCAmelCase : List[str] = Accelerator() __UpperCAmelCase : Optional[Any] = RegressionDataset(length=80 ) __UpperCAmelCase : Any = DataLoader(__lowerCamelCase , batch_size=16 ) __UpperCAmelCase : Optional[Any] = RegressionDataset(length=96 ) __UpperCAmelCase : Union[str, Any] = DataLoader(__lowerCamelCase , batch_size=16 ) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = accelerator.prepare(__lowerCamelCase , __lowerCamelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCamelCase ) if iteration < len(__lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCamelCase ) if batch_num < len(__lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCamelCase__ ( ): __UpperCAmelCase : int = Accelerator() __UpperCAmelCase : Dict = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(__lowerCamelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(__lowerCamelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(__lowerCamelCase , __lowerCamelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(__lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
63
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Union[str, Any] = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class a ( lowercase__ ): """simple docstring""" a : Optional[int] = 'git_vision_model' def __init__( self : str , __lowercase : List[str]=768 , __lowercase : List[str]=3072 , __lowercase : List[Any]=12 , __lowercase : Dict=12 , __lowercase : int=3 , __lowercase : Any=224 , __lowercase : Optional[int]=16 , __lowercase : Dict="quick_gelu" , __lowercase : Any=1e-5 , __lowercase : str=0.0 , __lowercase : int=0.02 , **__lowercase : int , ) -> List[str]: super().__init__(**__lowercase ) __UpperCAmelCase : int = hidden_size __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : int = num_channels __UpperCAmelCase : str = patch_size __UpperCAmelCase : Tuple = image_size __UpperCAmelCase : int = initializer_range __UpperCAmelCase : Tuple = attention_dropout __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : List[Any] = hidden_act @classmethod def UpperCAmelCase ( cls : Dict , __lowercase : Union[str, os.PathLike] , **__lowercase : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__lowercase ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = cls.get_config_dict(__lowercase , **__lowercase ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": __UpperCAmelCase : str = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowercase , **__lowercase ) class a ( lowercase__ ): """simple docstring""" a : List[str] = 'git' def __init__( self : Optional[int] , __lowercase : List[Any]=None , __lowercase : Tuple=30522 , __lowercase : str=768 , __lowercase : Optional[int]=6 , __lowercase : Union[str, Any]=12 , __lowercase : Optional[int]=3072 , __lowercase : List[str]="gelu" , __lowercase : Tuple=0.1 , __lowercase : Optional[int]=0.1 , __lowercase : Optional[int]=1024 , __lowercase : Union[str, Any]=0.02 , __lowercase : Optional[Any]=1e-1_2 , __lowercase : List[Any]=0 , __lowercase : Dict="absolute" , __lowercase : Dict=True , __lowercase : Any=False , __lowercase : Optional[int]=101 , __lowercase : str=102 , __lowercase : Union[str, Any]=None , **__lowercase : Dict , ) -> Tuple: super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , pad_token_id=__lowercase , **__lowercase ) if vision_config is None: __UpperCAmelCase : Optional[int] = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) __UpperCAmelCase : Tuple = GitVisionConfig(**__lowercase ) __UpperCAmelCase : Dict = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : str = initializer_range __UpperCAmelCase : str = layer_norm_eps __UpperCAmelCase : Union[str, Any] = position_embedding_type __UpperCAmelCase : Dict = use_cache __UpperCAmelCase : int = tie_word_embeddings __UpperCAmelCase : Optional[int] = num_image_with_embedding __UpperCAmelCase : Optional[int] = bos_token_id __UpperCAmelCase : List[Any] = eos_token_id def UpperCAmelCase ( self : str ) -> int: __UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : List[str] = self.vision_config.to_dict() __UpperCAmelCase : Union[str, Any] = self.__class__.model_type return output
63
1
import numpy as np import datasets snake_case__ : int = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' snake_case__ : Optional[Any] = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' snake_case__ : Union[str, Any] = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def _UpperCAmelCase ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'X': datasets.Sequence(datasets.Value('float' , id='sequence' ) , id='X' ), } ) , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> int: UpperCamelCase_ = np.array(UpperCamelCase__ ) UpperCamelCase_ = np.array(UpperCamelCase__ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('Expected `X` to be a 2D vector' ) if len(reference_distribution.shape ) != 2: raise ValueError('Expected `reference_distribution` to be a 2D vector' ) if reference_distribution.shape[0] < 2: raise ValueError( 'Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension' ) # Get mahalanobis distance for each prediction UpperCamelCase_ = X - np.mean(UpperCamelCase__ ) UpperCamelCase_ = np.cov(reference_distribution.T ) try: UpperCamelCase_ = np.linalg.inv(UpperCamelCase__ ) except np.linalg.LinAlgError: UpperCamelCase_ = np.linalg.pinv(UpperCamelCase__ ) UpperCamelCase_ = np.dot(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase_ = np.dot(UpperCamelCase__ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
710
from typing import Any def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): _validation( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) # Creates data structures and fill initial step UpperCamelCase_ = {} UpperCamelCase_ = {} for state in states_space: UpperCamelCase_ = observations_space[0] UpperCamelCase_ = ( initial_probabilities[state] * emission_probabilities[state][observation] ) UpperCamelCase_ = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__lowercase)): UpperCamelCase_ = observations_space[o] UpperCamelCase_ = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function UpperCamelCase_ = '' UpperCamelCase_ = -1 for k_state in states_space: UpperCamelCase_ = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: UpperCamelCase_ = probability UpperCamelCase_ = k_state # Update probabilities and pointers dicts UpperCamelCase_ = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) UpperCamelCase_ = arg_max # The final observation UpperCamelCase_ = observations_space[len(__lowercase) - 1] # argmax for given final observation UpperCamelCase_ = '' UpperCamelCase_ = -1 for k_state in states_space: UpperCamelCase_ = probabilities[(k_state, final_observation)] if probability > max_probability: UpperCamelCase_ = probability UpperCamelCase_ = k_state UpperCamelCase_ = arg_max # Process pointers backwards UpperCamelCase_ = last_state UpperCamelCase_ = [] for o in range(len(__lowercase) - 1 , -1 , -1): result.append(__lowercase) UpperCamelCase_ = pointers[previous, observations_space[o]] result.reverse() return result def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): _validate_not_empty( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) _validate_lists(__lowercase , __lowercase) _validate_dicts( __lowercase , __lowercase , __lowercase) def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError('There\'s an empty parameter') def _snake_case (__lowercase , __lowercase): _validate_list(__lowercase , 'observations_space') _validate_list(__lowercase , 'states_space') def _snake_case (__lowercase , __lowercase): if not isinstance(_object , __lowercase): UpperCamelCase_ = f"""{var_name} must be a list""" raise ValueError(__lowercase) else: for x in _object: if not isinstance(__lowercase , __lowercase): UpperCamelCase_ = f"""{var_name} must be a list of strings""" raise ValueError(__lowercase) def _snake_case (__lowercase , __lowercase , __lowercase , ): _validate_dict(__lowercase , 'initial_probabilities' , __lowercase) _validate_nested_dict(__lowercase , 'transition_probabilities') _validate_nested_dict(__lowercase , 'emission_probabilities') def _snake_case (__lowercase , __lowercase): _validate_dict(_object , __lowercase , __lowercase) for x in _object.values(): _validate_dict(__lowercase , __lowercase , __lowercase , __lowercase) def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase = False): if not isinstance(_object , __lowercase): UpperCamelCase_ = f"""{var_name} must be a dict""" raise ValueError(__lowercase) if not all(isinstance(__lowercase , __lowercase) for x in _object): UpperCamelCase_ = f"""{var_name} all keys must be strings""" raise ValueError(__lowercase) if not all(isinstance(__lowercase , __lowercase) for x in _object.values()): UpperCamelCase_ = 'nested dictionary ' if nested else '' UpperCamelCase_ = f"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__lowercase) if __name__ == "__main__": from doctest import testmod testmod()
618
0
from __future__ import annotations from typing import Any def __A ( _lowercase ): '''simple docstring''' create_state_space_tree(_lowercase , [] , 0 ) def __A ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' if index == len(_lowercase ): print(_lowercase ) return create_state_space_tree(_lowercase , _lowercase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_lowercase , _lowercase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __A = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
484
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class _lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" lowerCAmelCase__ ='''efficientnet''' def __init__( self , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 600 , __SCREAMING_SNAKE_CASE = 2.0 , __SCREAMING_SNAKE_CASE = 3.1 , __SCREAMING_SNAKE_CASE = 8 , __SCREAMING_SNAKE_CASE = [3, 3, 5, 3, 5, 5, 3] , __SCREAMING_SNAKE_CASE = [32, 16, 24, 40, 80, 112, 192] , __SCREAMING_SNAKE_CASE = [16, 24, 40, 80, 112, 192, 320] , __SCREAMING_SNAKE_CASE = [] , __SCREAMING_SNAKE_CASE = [1, 2, 2, 2, 1, 2, 1] , __SCREAMING_SNAKE_CASE = [1, 2, 2, 3, 3, 4, 1] , __SCREAMING_SNAKE_CASE = [1, 6, 6, 6, 6, 6, 6] , __SCREAMING_SNAKE_CASE = 0.25 , __SCREAMING_SNAKE_CASE = "swish" , __SCREAMING_SNAKE_CASE = 2560 , __SCREAMING_SNAKE_CASE = "mean" , __SCREAMING_SNAKE_CASE = 0.02 , __SCREAMING_SNAKE_CASE = 0.001 , __SCREAMING_SNAKE_CASE = 0.99 , __SCREAMING_SNAKE_CASE = 0.5 , __SCREAMING_SNAKE_CASE = 0.2 , **__SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =num_channels snake_case__ : Tuple =image_size snake_case__ : int =width_coefficient snake_case__ : List[str] =depth_coefficient snake_case__ : Optional[int] =depth_divisor snake_case__ : Any =kernel_sizes snake_case__ : int =in_channels snake_case__ : Union[str, Any] =out_channels snake_case__ : Tuple =depthwise_padding snake_case__ : List[str] =strides snake_case__ : int =num_block_repeats snake_case__ : Optional[Any] =expand_ratios snake_case__ : List[Any] =squeeze_expansion_ratio snake_case__ : int =hidden_act snake_case__ : Union[str, Any] =hidden_dim snake_case__ : int =pooling_type snake_case__ : Union[str, Any] =initializer_range snake_case__ : str =batch_norm_eps snake_case__ : List[str] =batch_norm_momentum snake_case__ : Union[str, Any] =dropout_rate snake_case__ : List[Any] =drop_connect_rate snake_case__ : Any =sum(__SCREAMING_SNAKE_CASE ) * 4 class _lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" lowerCAmelCase__ =version.parse('''1.11''' ) @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase ( self ) -> float: """simple docstring""" return 1e-5
381
0
import math import tensorflow as tf from packaging import version def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =tf.convert_to_tensor(lowerCAmelCase_) _SCREAMING_SNAKE_CASE =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0) ,x.dtype))) return x * cdf def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =tf.convert_to_tensor(lowerCAmelCase_) _SCREAMING_SNAKE_CASE =tf.cast(math.pi ,x.dtype) _SCREAMING_SNAKE_CASE =tf.cast(0.04_4715 ,x.dtype) _SCREAMING_SNAKE_CASE =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi) * (x + coeff * tf.pow(lowerCAmelCase_ ,3)))) return x * cdf def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =tf.convert_to_tensor(lowerCAmelCase_) return x * tf.tanh(tf.math.softplus(lowerCAmelCase_)) def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =tf.convert_to_tensor(lowerCAmelCase_) _SCREAMING_SNAKE_CASE =tf.cast(0.04_4715 ,x.dtype) _SCREAMING_SNAKE_CASE =tf.cast(0.79_7884_5608 ,x.dtype) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x))) def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =tf.convert_to_tensor(lowerCAmelCase_) _SCREAMING_SNAKE_CASE =tf.cast(1.702 ,x.dtype) return x * tf.math.sigmoid(coeff * x) def lowerCamelCase( a__): return tf.clip_by_value(_gelu(lowerCAmelCase_) ,-10 ,10) def lowerCamelCase( a__ ,a__=-1): _SCREAMING_SNAKE_CASE =tf.split(lowerCAmelCase_ ,2 ,axis=lowerCAmelCase_) return a * tf.math.sigmoid(lowerCAmelCase_) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def lowerCamelCase( a__): return tf.keras.activations.gelu(lowerCAmelCase_ ,approximate=lowerCAmelCase_) snake_case_ : int = tf.keras.activations.gelu snake_case_ : Any = approximate_gelu_wrap else: snake_case_ : List[Any] = _gelu snake_case_ : Any = _gelu_new snake_case_ : int = { 'gelu': gelu, 'gelu_10': gelu_aa, 'gelu_fast': gelu_fast, 'gelu_new': gelu_new, 'glu': glu, 'mish': mish, 'quick_gelu': quick_gelu, 'relu': tf.keras.activations.relu, 'sigmoid': tf.keras.activations.sigmoid, 'silu': tf.keras.activations.swish, 'swish': tf.keras.activations.swish, 'tanh': tf.keras.activations.tanh, } def lowerCamelCase( a__): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys())}")
703
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = LEDTokenizer UpperCAmelCase = LEDTokenizerFast UpperCAmelCase = True def __UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" super().setUp() _SCREAMING_SNAKE_CASE =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _SCREAMING_SNAKE_CASE =dict(zip(_a , range(len(_a ) ) ) ) _SCREAMING_SNAKE_CASE =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _SCREAMING_SNAKE_CASE ={'''unk_token''': '''<unk>'''} _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_a ) ) def __UpperCamelCase ( self : str , **_a : int ) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : List[str] , **_a : List[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : Dict , _a : Any ) -> Dict: """simple docstring""" return "lower newer", "lower newer" @cached_property def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] _SCREAMING_SNAKE_CASE =[0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _SCREAMING_SNAKE_CASE =tokenizer(_a , max_length=len(_a ) , padding=_a , return_tensors='''pt''' ) self.assertIsInstance(_a , _a ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _SCREAMING_SNAKE_CASE =batch.input_ids.tolist()[0] self.assertListEqual(_a , _a ) @require_torch def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _SCREAMING_SNAKE_CASE =tokenizer(_a , padding=_a , return_tensors='''pt''' ) self.assertIn('''input_ids''' , _a ) self.assertIn('''attention_mask''' , _a ) self.assertNotIn('''labels''' , _a ) self.assertNotIn('''decoder_attention_mask''' , _a ) @require_torch def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =[ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _SCREAMING_SNAKE_CASE =tokenizer(text_target=_a , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def __UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _SCREAMING_SNAKE_CASE =tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=_a , truncation=_a , return_tensors='''pt''' ) self.assertIsInstance(_a , _a ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =['''A long paragraph for summarization.'''] _SCREAMING_SNAKE_CASE =[ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _SCREAMING_SNAKE_CASE =tokenizer(_a , return_tensors='''pt''' ) _SCREAMING_SNAKE_CASE =tokenizer(text_target=_a , return_tensors='''pt''' ) _SCREAMING_SNAKE_CASE =inputs['''input_ids'''] _SCREAMING_SNAKE_CASE =targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __UpperCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _SCREAMING_SNAKE_CASE =['''Summary of the text.''', '''Another summary.'''] _SCREAMING_SNAKE_CASE =[[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _SCREAMING_SNAKE_CASE =tokenizer(_a , padding=_a ) _SCREAMING_SNAKE_CASE =[[0] * len(_a ) for x in encoded_output['''input_ids''']] _SCREAMING_SNAKE_CASE =tokenizer.pad(_a ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , _a ) def __UpperCamelCase ( self : int ) -> List[str]: """simple docstring""" pass def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _SCREAMING_SNAKE_CASE =self.rust_tokenizer_class.from_pretrained(_a , **_a ) _SCREAMING_SNAKE_CASE =self.tokenizer_class.from_pretrained(_a , **_a ) _SCREAMING_SNAKE_CASE ='''A, <mask> AllenNLP sentence.''' _SCREAMING_SNAKE_CASE =tokenizer_r.encode_plus(_a , add_special_tokens=_a , return_token_type_ids=_a ) _SCREAMING_SNAKE_CASE =tokenizer_p.encode_plus(_a , add_special_tokens=_a , return_token_type_ids=_a ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _SCREAMING_SNAKE_CASE =tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _SCREAMING_SNAKE_CASE =tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( _a , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _a , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
191
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
560
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[str] = "dpt" def __init__( self : List[str] ,_snake_case : Union[str, Any]=768 ,_snake_case : int=12 ,_snake_case : int=12 ,_snake_case : List[str]=3_072 ,_snake_case : List[str]="gelu" ,_snake_case : str=0.0 ,_snake_case : int=0.0 ,_snake_case : Optional[Any]=0.02 ,_snake_case : Any=1e-12 ,_snake_case : Tuple=384 ,_snake_case : int=16 ,_snake_case : Tuple=3 ,_snake_case : Optional[int]=False ,_snake_case : int=True ,_snake_case : Optional[int]=[2, 5, 8, 11] ,_snake_case : List[str]="project" ,_snake_case : Any=[4, 2, 1, 0.5] ,_snake_case : Union[str, Any]=[96, 192, 384, 768] ,_snake_case : List[str]=256 ,_snake_case : int=-1 ,_snake_case : Any=False ,_snake_case : List[Any]=True ,_snake_case : Tuple=0.4 ,_snake_case : int=255 ,_snake_case : Dict=0.1 ,_snake_case : Dict=[1, 1_024, 24, 24] ,_snake_case : Optional[Any]=[0, 1] ,_snake_case : List[str]=None ,**_snake_case : Optional[int] ,) -> Optional[int]: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : Union[str, Any] = hidden_size lowercase__ : Union[str, Any] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) lowercase__ : Union[str, Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } lowercase__ : Dict = BitConfig(**_snake_case ) elif isinstance(_snake_case ,_snake_case ): logger.info('''Initializing the config with a `BiT` backbone.''' ) lowercase__ : Tuple = BitConfig(**_snake_case ) elif isinstance(_snake_case ,_snake_case ): lowercase__ : Optional[int] = backbone_config else: raise ValueError( f"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) lowercase__ : Optional[Any] = backbone_featmap_shape lowercase__ : Tuple = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: lowercase__ : List[str] = None lowercase__ : Any = None lowercase__ : Dict = [] lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : Any = hidden_dropout_prob lowercase__ : Union[str, Any] = attention_probs_dropout_prob lowercase__ : Optional[int] = initializer_range lowercase__ : List[str] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Any = patch_size lowercase__ : Any = num_channels lowercase__ : Optional[Any] = qkv_bias lowercase__ : Any = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) lowercase__ : str = readout_type lowercase__ : Union[str, Any] = reassemble_factors lowercase__ : int = neck_hidden_sizes lowercase__ : List[str] = fusion_hidden_size lowercase__ : Optional[int] = head_in_index lowercase__ : Dict = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowercase__ : Tuple = use_auxiliary_head lowercase__ : List[str] = auxiliary_loss_weight lowercase__ : Tuple = semantic_loss_ignore_index lowercase__ : Tuple = semantic_classifier_dropout def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowercase__ : List[Any] = self.backbone_config.to_dict() lowercase__ : List[str] = self.__class__.model_type return output
560
1
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class lowerCAmelCase_ : lowerCamelCase_ = 42 lowerCamelCase_ = None # Automatically constructed lowerCamelCase_ = "dict" lowerCamelCase_ = None lowerCamelCase_ = field(default='Translation' ,init=_a ,repr=_a) def __call__( self : Union[str, Any] ) ->Dict: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def _snake_case ( self : Tuple ) ->Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value("string" ) for k in sorted(self.languages )} @dataclass class lowerCAmelCase_ : lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None # Automatically constructed lowerCamelCase_ = "dict" lowerCamelCase_ = None lowerCamelCase_ = field(default='TranslationVariableLanguages' ,init=_a ,repr=_a) def _snake_case ( self : Optional[int] ) ->Tuple: """simple docstring""" a__ :Tuple = sorted(set(self.languages ) ) if self.languages else None a__ :Tuple = len(self.languages ) if self.languages else None def __call__( self : Dict ) ->Union[str, Any]: """simple docstring""" return pa.struct({"language": pa.list_(pa.string() ), "translation": pa.list_(pa.string() )} ) def _snake_case ( self : Optional[int] , __A : Union[str, Any] ) ->int: """simple docstring""" a__ :Optional[Any] = set(self.languages ) if self.languages and set(__A ) - lang_set: raise ValueError( F'''Some languages in example ({', '.join(sorted(set(__A ) - lang_set ) )}) are not in valid set ({', '.join(__A )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a__ :Union[str, Any] = [] for lang, text in translation_dict.items(): if isinstance(__A , __A ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. a__ , a__ :Optional[Any] = zip(*sorted(__A ) ) return {"language": languages, "translation": translations} def _snake_case ( self : int ) ->Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value("string" ) ), "translation": Sequence(Value("string" ) ), }
373
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowerCAmelCase_ : def __init__( self : str , __A : str = "cpu" , __A : str = "openai/clip-vit-large-patch14" ) ->None: """simple docstring""" a__ :List[str] = device a__ :Optional[Any] = CLIPTokenizerFast.from_pretrained(__A ) a__ :str = [0.48_145_466, 0.4_578_275, 0.40_821_073] a__ :Any = [0.26_862_954, 0.26_130_258, 0.27_577_711] a__ :Union[str, Any] = torchvision.transforms.Normalize(self.image_mean , self.image_std ) a__ :List[Any] = torchvision.transforms.Resize(224 ) a__ :Optional[Any] = torchvision.transforms.CenterCrop(224 ) def _snake_case ( self : int , __A : int ) ->List[Any]: """simple docstring""" a__ :List[str] = self.resize(__A ) a__ :Union[str, Any] = self.center_crop(__A ) a__ :List[str] = self.normalize(__A ) return images def __call__( self : Union[str, Any] , __A : Dict=None , __A : List[Any]=None , **__A : Union[str, Any] ) ->Tuple: """simple docstring""" a__ :Optional[int] = self.tokenizer(text=__A , **__A ) a__ :str = self.preprocess_img(__A ) a__ :Any = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowerCAmelCase_ ( nn.Module): def __init__( self : List[str] , __A : List[str]=10 , __A : List[Any]=0.01 , __A : Optional[int]=None , __A : List[str]=None , __A : Dict=None , __A : List[str]=None , __A : Tuple=None , __A : str=None , __A : Any=False , __A : Union[str, Any]=True , __A : Tuple="image" , __A : Tuple=True , __A : int=False , __A : Tuple=False , __A : Union[str, Any]=False , ) ->None: """simple docstring""" super().__init__() a__ :List[str] = None a__ :int = device if device else get_device() if vqgan: a__ :Any = vqgan else: a__ :Optional[int] = load_vqgan(self.device , conf_path=__A , ckpt_path=__A ) self.vqgan.eval() if clip: a__ :Dict = clip else: a__ :Any = CLIPModel.from_pretrained("openai/clip-vit-base-patch32" ) self.clip.to(self.device ) a__ :Optional[int] = ProcessorGradientFlow(device=self.device ) a__ :Any = iterations a__ :Any = lr a__ :List[str] = log a__ :List[Any] = make_grid a__ :Optional[int] = return_val a__ :Optional[Any] = quantize a__ :Any = self.vqgan.decoder.z_shape def _snake_case ( self : str , __A : str=None , __A : Optional[int]=None , __A : int=5 , __A : Any=True ) ->Optional[int]: """simple docstring""" a__ :Optional[int] = [] if output_path is None: a__ :Any = "./animation.gif" if input_path is None: a__ :Dict = self.save_path a__ :Dict = sorted(glob(input_path + "/*" ) ) if not len(__A ): raise ValueError( "No images found in save path, aborting (did you pass save_intermediate=True to the generate" " function?)" ) if len(__A ) == 1: print("Only one image found in save path, (did you pass save_intermediate=True to the generate function?)" ) a__ :str = total_duration / len(__A ) a__ :str = [frame_duration] * len(__A ) if extend_frames: a__ :Optional[Any] = 1.5 a__ :Optional[Any] = 3 for file_name in paths: if file_name.endswith(".png" ): images.append(imageio.imread(__A ) ) imageio.mimsave(__A , __A , duration=__A ) print(F'''gif saved to {output_path}''' ) def _snake_case ( self : str , __A : Tuple=None , __A : Optional[int]=None ) ->Optional[int]: """simple docstring""" if not (path or img): raise ValueError("Input either path or tensor" ) if img is not None: raise NotImplementedError a__ :List[Any] = preprocess(Image.open(__A ) , target_image_size=256 ).to(self.device ) a__ :List[str] = preprocess_vqgan(__A ) a__ , *a__ :Union[str, Any] = self.vqgan.encode(__A ) return z def _snake_case ( self : List[str] , __A : Any ) ->Optional[int]: """simple docstring""" a__ :Dict = self.latent.detach().requires_grad_() a__ :int = base_latent + transform_vector if self.quantize: a__ , *a__ :str = self.vqgan.quantize(__A ) else: a__ :List[str] = trans_latent return self.vqgan.decode(__A ) def _snake_case ( self : List[str] , __A : Optional[Any] , __A : Optional[Any] , __A : List[Any]=None ) ->str: """simple docstring""" a__ :Dict = self.clip_preprocessor(text=__A , images=__A , return_tensors="pt" , padding=__A ) a__ :List[str] = self.clip(**__A ) a__ :Optional[int] = clip_outputs.logits_per_image if weights is not None: a__ :Tuple = similarity_logits * weights return similarity_logits.sum() def _snake_case ( self : List[str] , __A : List[Any] , __A : Optional[int] , __A : Optional[int] ) ->int: """simple docstring""" a__ :str = self._get_clip_similarity(pos_prompts["prompts"] , __A , weights=(1 / pos_prompts["weights"]) ) if neg_prompts: a__ :Optional[int] = self._get_clip_similarity(neg_prompts["prompts"] , __A , weights=neg_prompts["weights"] ) else: a__ :Tuple = torch.tensor([1] , device=self.device ) a__ :Dict = -torch.log(__A ) + torch.log(__A ) return loss def _snake_case ( self : int , __A : Dict , __A : Union[str, Any] , __A : List[str] ) ->List[str]: """simple docstring""" a__ :List[Any] = torch.randn_like(self.latent , requires_grad=__A , device=self.device ) a__ :Optional[Any] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() a__ :Tuple = self._add_vector(__A ) a__ :Dict = loop_post_process(__A ) a__ :str = self._get_CLIP_loss(__A , __A , __A ) print("CLIP loss" , __A ) if self.log: wandb.log({"CLIP Loss": clip_loss} ) clip_loss.backward(retain_graph=__A ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def _snake_case ( self : Union[str, Any] , __A : Optional[Any] , __A : Union[str, Any] , __A : Optional[Any] ) ->Optional[int]: """simple docstring""" wandb.init(reinit=__A , project="face-editor" ) wandb.config.update({"Positive Prompts": positive_prompts} ) wandb.config.update({"Negative Prompts": negative_prompts} ) wandb.config.update({"lr": self.lr, "iterations": self.iterations} ) if image_path: a__ :List[str] = Image.open(__A ) a__ :Any = image.resize((256, 256) ) wandb.log("Original Image" , wandb.Image(__A ) ) def _snake_case ( self : Union[str, Any] , __A : Union[str, Any] ) ->int: """simple docstring""" if not prompts: return [] a__ :List[str] = [] a__ :Tuple = [] if isinstance(__A , __A ): a__ :Tuple = [prompt.strip() for prompt in prompts.split("|" )] for prompt in prompts: if isinstance(__A , (tuple, list) ): a__ :str = prompt[0] a__ :List[Any] = float(prompt[1] ) elif ":" in prompt: a__ , a__ :Tuple = prompt.split(":" ) a__ :Dict = float(__A ) else: a__ :int = prompt a__ :Any = 1.0 processed_prompts.append(__A ) weights.append(__A ) return { "prompts": processed_prompts, "weights": torch.tensor(__A , device=self.device ), } def _snake_case ( self : Optional[Any] , __A : Any , __A : int=None , __A : int=None , __A : str=True , __A : List[Any]=False , __A : Optional[int]=True , __A : Any=True , __A : Optional[Any]=None , ) ->Optional[Any]: """simple docstring""" if image_path: a__ :Optional[int] = self._get_latent(__A ) else: a__ :Dict = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(__A , __A , __A ) assert pos_prompts, "You must provide at least one positive prompt." a__ :int = self.process_prompts(__A ) a__ :Any = self.process_prompts(__A ) if save_final and save_path is None: a__ :Dict = os.path.join("./outputs/" , "_".join(pos_prompts["prompts"] ) ) if not os.path.exists(__A ): os.makedirs(__A ) else: a__ :str = save_path + "_" + get_timestamp() os.makedirs(__A ) a__ :Any = save_path a__ :Optional[int] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("Original Image" ) show_pil(custom_to_pil(__A ) ) a__ :List[str] = loop_post_process(__A ) for iter, transformed_img in enumerate(self._optimize_CLIP(__A , __A , __A ) ): if show_intermediate: show_pil(__A ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({"Image": wandb.Image(__A )} ) if show_final: show_pil(__A ) if save_final: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png''' ) )
373
1
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowerCAmelCase : '''simple docstring''' def __A ( self ) -> Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=a__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __A ( self ) -> Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=a__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(a__ ) SCREAMING_SNAKE_CASE = inputs['''prompt'''] SCREAMING_SNAKE_CASE = inputs['''generator'''] SCREAMING_SNAKE_CASE = inputs['''num_inference_steps'''] SCREAMING_SNAKE_CASE = inputs['''output_type'''] if "image" in inputs: SCREAMING_SNAKE_CASE = inputs['''image'''] else: SCREAMING_SNAKE_CASE = None if "mask_image" in inputs: SCREAMING_SNAKE_CASE = inputs['''mask_image'''] else: SCREAMING_SNAKE_CASE = None if "original_image" in inputs: SCREAMING_SNAKE_CASE = inputs['''original_image'''] else: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = pipe.encode_prompt(a__ ) # inputs with prompt converted to embeddings SCREAMING_SNAKE_CASE = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: SCREAMING_SNAKE_CASE = image if mask_image is not None: SCREAMING_SNAKE_CASE = mask_image if original_image is not None: SCREAMING_SNAKE_CASE = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(a__ , a__ , a__ ) SCREAMING_SNAKE_CASE = pipe(**a__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a__ ) SCREAMING_SNAKE_CASE = self.pipeline_class.from_pretrained(a__ ) pipe_loaded.to(a__ ) pipe_loaded.set_progress_bar_config(disable=a__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(a__ , a__ ) is None , F'`{optional_component}` did not stay set to None after loading.' , ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(a__ ) SCREAMING_SNAKE_CASE = inputs['''generator'''] SCREAMING_SNAKE_CASE = inputs['''num_inference_steps'''] SCREAMING_SNAKE_CASE = inputs['''output_type'''] # inputs with prompt converted to embeddings SCREAMING_SNAKE_CASE = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: SCREAMING_SNAKE_CASE = image if mask_image is not None: SCREAMING_SNAKE_CASE = mask_image if original_image is not None: SCREAMING_SNAKE_CASE = original_image SCREAMING_SNAKE_CASE = pipe_loaded(**a__ )[0] SCREAMING_SNAKE_CASE = np.abs(to_np(a__ ) - to_np(a__ ) ).max() self.assertLess(a__ , 1e-4 ) def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(a__ ) SCREAMING_SNAKE_CASE = pipe(**a__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a__ ) SCREAMING_SNAKE_CASE = self.pipeline_class.from_pretrained(a__ ) pipe_loaded.to(a__ ) pipe_loaded.set_progress_bar_config(disable=a__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests SCREAMING_SNAKE_CASE = self.get_dummy_inputs(a__ ) SCREAMING_SNAKE_CASE = pipe_loaded(**a__ )[0] SCREAMING_SNAKE_CASE = np.abs(to_np(a__ ) - to_np(a__ ) ).max() self.assertLess(a__ , 1e-4 )
247
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCAmelCase ( snake_case : int , snake_case : int , snake_case : float = 1 / sqrt(2 ) ): _lowerCAmelCase:Union[str, Any] = tau * frequency / samplerate _lowerCAmelCase:str = sin(snake_case ) _lowerCAmelCase:List[str] = cos(snake_case ) _lowerCAmelCase:Optional[int] = _sin / (2 * q_factor) _lowerCAmelCase:int = (1 - _cos) / 2 _lowerCAmelCase:Any = 1 - _cos _lowerCAmelCase:Any = 1 + alpha _lowerCAmelCase:Optional[Any] = -2 * _cos _lowerCAmelCase:str = 1 - alpha _lowerCAmelCase:Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase ( snake_case : int , snake_case : int , snake_case : float = 1 / sqrt(2 ) ): _lowerCAmelCase:Any = tau * frequency / samplerate _lowerCAmelCase:Dict = sin(snake_case ) _lowerCAmelCase:List[str] = cos(snake_case ) _lowerCAmelCase:Tuple = _sin / (2 * q_factor) _lowerCAmelCase:Tuple = (1 + _cos) / 2 _lowerCAmelCase:Dict = -1 - _cos _lowerCAmelCase:Optional[Any] = 1 + alpha _lowerCAmelCase:Any = -2 * _cos _lowerCAmelCase:List[str] = 1 - alpha _lowerCAmelCase:int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase ( snake_case : int , snake_case : int , snake_case : float = 1 / sqrt(2 ) ): _lowerCAmelCase:Any = tau * frequency / samplerate _lowerCAmelCase:Optional[Any] = sin(snake_case ) _lowerCAmelCase:Optional[int] = cos(snake_case ) _lowerCAmelCase:List[Any] = _sin / (2 * q_factor) _lowerCAmelCase:Any = _sin / 2 _lowerCAmelCase:Tuple = 0 _lowerCAmelCase:List[str] = -ba _lowerCAmelCase:Union[str, Any] = 1 + alpha _lowerCAmelCase:List[str] = -2 * _cos _lowerCAmelCase:Any = 1 - alpha _lowerCAmelCase:Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase ( snake_case : int , snake_case : int , snake_case : float = 1 / sqrt(2 ) ): _lowerCAmelCase:Optional[Any] = tau * frequency / samplerate _lowerCAmelCase:Dict = sin(snake_case ) _lowerCAmelCase:Optional[Any] = cos(snake_case ) _lowerCAmelCase:Optional[Any] = _sin / (2 * q_factor) _lowerCAmelCase:Union[str, Any] = 1 - alpha _lowerCAmelCase:int = -2 * _cos _lowerCAmelCase:Tuple = 1 + alpha _lowerCAmelCase:List[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCAmelCase ( snake_case : int , snake_case : int , snake_case : float , snake_case : float = 1 / sqrt(2 ) , ): _lowerCAmelCase:Dict = tau * frequency / samplerate _lowerCAmelCase:str = sin(snake_case ) _lowerCAmelCase:Optional[Any] = cos(snake_case ) _lowerCAmelCase:Optional[int] = _sin / (2 * q_factor) _lowerCAmelCase:Dict = 10 ** (gain_db / 40) _lowerCAmelCase:Optional[int] = 1 + alpha * big_a _lowerCAmelCase:Union[str, Any] = -2 * _cos _lowerCAmelCase:Optional[int] = 1 - alpha * big_a _lowerCAmelCase:List[Any] = 1 + alpha / big_a _lowerCAmelCase:Any = -2 * _cos _lowerCAmelCase:Dict = 1 - alpha / big_a _lowerCAmelCase:Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase ( snake_case : int , snake_case : int , snake_case : float , snake_case : float = 1 / sqrt(2 ) , ): _lowerCAmelCase:Optional[int] = tau * frequency / samplerate _lowerCAmelCase:List[str] = sin(snake_case ) _lowerCAmelCase:List[str] = cos(snake_case ) _lowerCAmelCase:Optional[int] = _sin / (2 * q_factor) _lowerCAmelCase:Dict = 10 ** (gain_db / 40) _lowerCAmelCase:List[Any] = (big_a + 1) - (big_a - 1) * _cos _lowerCAmelCase:Dict = (big_a + 1) + (big_a - 1) * _cos _lowerCAmelCase:Optional[Any] = (big_a - 1) - (big_a + 1) * _cos _lowerCAmelCase:Tuple = (big_a - 1) + (big_a + 1) * _cos _lowerCAmelCase:Dict = 2 * sqrt(snake_case ) * alpha _lowerCAmelCase:Tuple = big_a * (pmc + aaa) _lowerCAmelCase:List[str] = 2 * big_a * mpc _lowerCAmelCase:int = big_a * (pmc - aaa) _lowerCAmelCase:str = ppmc + aaa _lowerCAmelCase:List[Any] = -2 * pmpc _lowerCAmelCase:Dict = ppmc - aaa _lowerCAmelCase:Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase ( snake_case : int , snake_case : int , snake_case : float , snake_case : float = 1 / sqrt(2 ) , ): _lowerCAmelCase:int = tau * frequency / samplerate _lowerCAmelCase:List[str] = sin(snake_case ) _lowerCAmelCase:Tuple = cos(snake_case ) _lowerCAmelCase:Dict = _sin / (2 * q_factor) _lowerCAmelCase:Any = 10 ** (gain_db / 40) _lowerCAmelCase:List[Any] = (big_a + 1) - (big_a - 1) * _cos _lowerCAmelCase:List[Any] = (big_a + 1) + (big_a - 1) * _cos _lowerCAmelCase:Any = (big_a - 1) - (big_a + 1) * _cos _lowerCAmelCase:Dict = (big_a - 1) + (big_a + 1) * _cos _lowerCAmelCase:str = 2 * sqrt(snake_case ) * alpha _lowerCAmelCase:Union[str, Any] = big_a * (ppmc + aaa) _lowerCAmelCase:Optional[int] = -2 * big_a * pmpc _lowerCAmelCase:str = big_a * (ppmc - aaa) _lowerCAmelCase:Dict = pmc + aaa _lowerCAmelCase:Optional[Any] = 2 * mpc _lowerCAmelCase:Optional[int] = pmc - aaa _lowerCAmelCase:Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
227
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class _lowercase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = '''lxmert''' UpperCAmelCase_ : Tuple = {} def __init__( self ,lowerCamelCase_=30522 ,lowerCamelCase_=768 ,lowerCamelCase_=12 ,lowerCamelCase_=9500 ,lowerCamelCase_=1600 ,lowerCamelCase_=400 ,lowerCamelCase_=3072 ,lowerCamelCase_="gelu" ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.1 ,lowerCamelCase_=512 ,lowerCamelCase_=2 ,lowerCamelCase_=0.02 ,lowerCamelCase_=1e-12 ,lowerCamelCase_=9 ,lowerCamelCase_=5 ,lowerCamelCase_=5 ,lowerCamelCase_=2048 ,lowerCamelCase_=4 ,lowerCamelCase_=6.67 ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_=True ,**lowerCamelCase_ ,) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Optional[int] = vocab_size UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Any = num_attention_heads UpperCAmelCase__ : Optional[int] = hidden_act UpperCAmelCase__ : Optional[Any] = intermediate_size UpperCAmelCase__ : Tuple = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : Optional[int] = max_position_embeddings UpperCAmelCase__ : str = type_vocab_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : Tuple = layer_norm_eps UpperCAmelCase__ : Union[str, Any] = num_qa_labels UpperCAmelCase__ : List[Any] = num_object_labels UpperCAmelCase__ : int = num_attr_labels UpperCAmelCase__ : Tuple = l_layers UpperCAmelCase__ : Any = x_layers UpperCAmelCase__ : str = r_layers UpperCAmelCase__ : Dict = visual_feat_dim UpperCAmelCase__ : List[Any] = visual_pos_dim UpperCAmelCase__ : Union[str, Any] = visual_loss_normalizer UpperCAmelCase__ : Optional[int] = task_matched UpperCAmelCase__ : Any = task_mask_lm UpperCAmelCase__ : List[Any] = task_obj_predict UpperCAmelCase__ : int = task_qa UpperCAmelCase__ : Optional[Any] = visual_obj_loss UpperCAmelCase__ : Tuple = visual_attr_loss UpperCAmelCase__ : str = visual_feat_loss UpperCAmelCase__ : str = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**lowerCamelCase_ )
715
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def __UpperCamelCase( _A : str ): '''simple docstring''' return 1 / (1 + np.exp(-z )) def __UpperCamelCase( _A : int , _A : str ): '''simple docstring''' return (-y * np.log(_A ) - (1 - y) * np.log(1 - h )).mean() def __UpperCamelCase( _A : Optional[Any] , _A : Tuple , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = np.dot(_A , _A ) return np.sum(y * scores - np.log(1 + np.exp(_A ) ) ) def __UpperCamelCase( _A : Dict , _A : Optional[int] , _A : List[Any] , _A : str=7_00_00 ): '''simple docstring''' UpperCAmelCase__ : List[Any] = np.zeros(x.shape[1] ) for iterations in range(_A ): UpperCAmelCase__ : Tuple = np.dot(_A , _A ) UpperCAmelCase__ : Optional[Any] = sigmoid_function(_A ) UpperCAmelCase__ : Optional[int] = np.dot(x.T , h - y ) / y.size UpperCAmelCase__ : List[Any] = theta - alpha * gradient # updating the weights UpperCAmelCase__ : Tuple = np.dot(_A , _A ) UpperCAmelCase__ : Tuple = sigmoid_function(_A ) UpperCAmelCase__ : Optional[int] = cost_function(_A , _A ) if iterations % 1_00 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase__ : str = datasets.load_iris() UpperCamelCase__ : Tuple = iris.data[:, :2] UpperCamelCase__ : str = (iris.target != 0) * 1 UpperCamelCase__ : Any = 0.1 UpperCamelCase__ : List[str] = logistic_reg(alpha, x, y, max_iterations=70_000) print('theta: ', theta) # printing the theta i.e our weights vector def __UpperCamelCase( _A : Any ): '''simple docstring''' return sigmoid_function( np.dot(_A , _A ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((UpperCamelCase__) , (UpperCamelCase__)) : Any = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase__) , (UpperCamelCase__)) : Optional[Any] = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase__) , (UpperCamelCase__)) : Any = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase__ : str = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase__ : Union[str, Any] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
496
0
def __UpperCAmelCase ( lowerCamelCase_ : str ) -> str: """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(snake_case__ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
105
import tensorflow as tf from ...tf_utils import shape_list class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1 , lowerCAmelCase_=False , **lowerCAmelCase_ ) -> Union[str, Any]: super().__init__(**lowerCAmelCase_ ) _A = vocab_size _A = d_embed _A = d_proj _A = cutoffs + [vocab_size] _A = [0] + self.cutoffs _A = div_val _A = self.cutoffs[0] _A = len(self.cutoffs ) - 1 _A = self.shortlist_size + self.n_clusters _A = keep_order _A = [] _A = [] def UpperCAmelCase ( self , lowerCAmelCase_ ) -> List[Any]: if self.n_clusters > 0: _A = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=lowerCAmelCase_ , name="""cluster_weight""" ) _A = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=lowerCAmelCase_ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: _A = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=lowerCAmelCase_ , name=F'''out_projs_._{i}''' , ) self.out_projs.append(lowerCAmelCase_ ) else: self.out_projs.append(lowerCAmelCase_ ) _A = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=lowerCAmelCase_ , name=F'''out_layers_._{i}_._weight''' , ) _A = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=lowerCAmelCase_ , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): _A , _A = self.cutoff_ends[i], self.cutoff_ends[i + 1] _A = self.d_embed // (self.div_val**i) _A = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=lowerCAmelCase_ , name=F'''out_projs_._{i}''' ) self.out_projs.append(lowerCAmelCase_ ) _A = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=lowerCAmelCase_ , name=F'''out_layers_._{i}_._weight''' , ) _A = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=lowerCAmelCase_ , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(lowerCAmelCase_ ) @staticmethod def UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ) -> List[Any]: _A = x if proj is not None: _A = tf.einsum("""ibd,ed->ibe""" , lowerCAmelCase_ , lowerCAmelCase_ ) return tf.einsum("""ibd,nd->ibn""" , lowerCAmelCase_ , lowerCAmelCase_ ) + b @staticmethod def UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _A = shape_list(lowerCAmelCase_ ) _A = tf.range(lp_size[0] , dtype=target.dtype ) _A = tf.stack([r, target] , 1 ) return tf.gather_nd(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=False ) -> Optional[Any]: _A = 0 if self.n_clusters == 0: _A = self._logit(lowerCAmelCase_ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: _A = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=lowerCAmelCase_ , logits=lowerCAmelCase_ ) _A = tf.nn.log_softmax(lowerCAmelCase_ , axis=-1 ) else: _A = shape_list(lowerCAmelCase_ ) _A = [] _A = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): _A , _A = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: _A = (target >= l_idx) & (target < r_idx) _A = tf.where(lowerCAmelCase_ ) _A = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) - l_idx if self.div_val == 1: _A = self.out_layers[0][0][l_idx:r_idx] _A = self.out_layers[0][1][l_idx:r_idx] else: _A = self.out_layers[i][0] _A = self.out_layers[i][1] if i == 0: _A = tf.concat([cur_W, self.cluster_weight] , 0 ) _A = tf.concat([cur_b, self.cluster_bias] , 0 ) _A = self._logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.out_projs[0] ) _A = tf.nn.log_softmax(lowerCAmelCase_ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: _A = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _A = self._gather_logprob(lowerCAmelCase_ , lowerCAmelCase_ ) else: _A = self._logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.out_projs[i] ) _A = tf.nn.log_softmax(lowerCAmelCase_ ) _A = self.cutoffs[0] + i - 1 # No probability for the head cluster _A = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(lowerCAmelCase_ ) if target is not None: _A = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _A = tf.boolean_mask(lowerCAmelCase_ , lowerCAmelCase_ ) _A = self._gather_logprob(lowerCAmelCase_ , lowerCAmelCase_ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(lowerCAmelCase_ , -cur_logprob , shape_list(lowerCAmelCase_ ) ) _A = tf.concat(lowerCAmelCase_ , axis=-1 ) if target is not None: if return_mean: _A = tf.reduce_mean(lowerCAmelCase_ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(lowerCAmelCase_ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(lowerCAmelCase_ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
401
0
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version __SCREAMING_SNAKE_CASE : Tuple =version.parse(importlib_metadata.version('''nltk''')) if NLTK_VERSION >= version.Version('''3.6.4'''): from nltk import word_tokenize __SCREAMING_SNAKE_CASE : str ='''\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } ''' __SCREAMING_SNAKE_CASE : List[str] ='''\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. ''' __SCREAMING_SNAKE_CASE : Optional[Any] =''' Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: \'meteor\': meteor score. Examples: >>> meteor = datasets.load_metric(\'meteor\') >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"] >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results["meteor"], 4)) 0.6944 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"""] , reference_urls=[ """https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score""", """https://en.wikipedia.org/wiki/METEOR""", ] , ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case__ : str ): import nltk nltk.download("""wordnet""" ) if NLTK_VERSION >= version.Version("""3.6.5""" ): nltk.download("""punkt""" ) if NLTK_VERSION >= version.Version("""3.6.6""" ): nltk.download("""omw-1.4""" ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case__ : str , snake_case__ : str , snake_case__ : int=0.9 , snake_case__ : List[Any]=3 , snake_case__ : Any=0.5 ): if NLTK_VERSION >= version.Version("""3.6.5""" ): lowercase = [ meteor_score.single_meteor_score( word_tokenize(snake_case__ ) , word_tokenize(snake_case__ ) , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] else: lowercase = [ meteor_score.single_meteor_score(snake_case__ , snake_case__ , alpha=snake_case__ , beta=snake_case__ , gamma=snake_case__ ) for ref, pred in zip(snake_case__ , snake_case__ ) ] return {"meteor": np.mean(snake_case__ )}
72
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __SCREAMING_SNAKE_CASE : List[str] =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any =OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __SCREAMING_SNAKE_CASE : Tuple =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def UpperCamelCase__ ( lowerCAmelCase__ ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowercase = model_type_to_module_name(lowerCAmelCase__ ) lowercase = importlib.import_module(f""".{module_name}""" ,"""transformers.models""" ) try: return getattr(lowerCAmelCase__ ,lowerCAmelCase__ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(lowerCAmelCase__ ,"""__name__""" ,lowerCAmelCase__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowercase = importlib.import_module("""transformers""" ) if hasattr(lowerCAmelCase__ ,lowerCAmelCase__ ): return getattr(lowerCAmelCase__ ,lowerCAmelCase__ ) return None def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ = None ,lowerCAmelCase__ = False ,lowerCAmelCase__ = False ,lowerCAmelCase__ = None ,lowerCAmelCase__ = None ,lowerCAmelCase__ = None ,lowerCAmelCase__ = False ,**lowerCAmelCase__ ,): lowercase = get_file_from_repo( lowerCAmelCase__ ,lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,use_auth_token=lowerCAmelCase__ ,revision=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(lowerCAmelCase__ ,encoding="""utf-8""" ) as reader: return json.load(lowerCAmelCase__ ) class A_ : def __init__( self : List[Any] ): raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( cls : Dict , snake_case__ : Tuple , **snake_case__ : int ): lowercase = kwargs.pop("""config""" , snake_case__ ) lowercase = kwargs.pop("""trust_remote_code""" , snake_case__ ) lowercase = True lowercase , lowercase = FeatureExtractionMixin.get_feature_extractor_dict(snake_case__ , **snake_case__ ) lowercase = config_dict.get("""feature_extractor_type""" , snake_case__ ) lowercase = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): lowercase = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(snake_case__ , snake_case__ ): lowercase = AutoConfig.from_pretrained(snake_case__ , **snake_case__ ) # It could be in `config.feature_extractor_type`` lowercase = getattr(snake_case__ , """feature_extractor_type""" , snake_case__ ) if hasattr(snake_case__ , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: lowercase = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: lowercase = feature_extractor_class_from_name(snake_case__ ) lowercase = feature_extractor_auto_map is not None lowercase = feature_extractor_class is not None or type(snake_case__ ) in FEATURE_EXTRACTOR_MAPPING lowercase = resolve_trust_remote_code( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if has_remote_code and trust_remote_code: lowercase = get_class_from_dynamic_module( snake_case__ , snake_case__ , **snake_case__ ) lowercase = kwargs.pop("""code_revision""" , snake_case__ ) if os.path.isdir(snake_case__ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(snake_case__ , **snake_case__ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(snake_case__ , **snake_case__ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(snake_case__ ) in FEATURE_EXTRACTOR_MAPPING: lowercase = FEATURE_EXTRACTOR_MAPPING[type(snake_case__ )] return feature_extractor_class.from_dict(snake_case__ , **snake_case__ ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case__ : Optional[int] , snake_case__ : List[str] ): FEATURE_EXTRACTOR_MAPPING.register(snake_case__ , snake_case__ )
72
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = "gpt_neo" UpperCAmelCase__ = ["past_key_values"] UpperCAmelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : Union[str, Any] , __snake_case : Tuple=5_0_2_5_7 , __snake_case : Optional[int]=2_0_4_8 , __snake_case : List[str]=2_0_4_8 , __snake_case : List[Any]=2_4 , __snake_case : List[str]=[[["global", "local"], 1_2]] , __snake_case : Union[str, Any]=1_6 , __snake_case : str=None , __snake_case : List[Any]=2_5_6 , __snake_case : Any="gelu_new" , __snake_case : Any=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : List[Any]=0.1 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]=0.02 , __snake_case : Union[str, Any]=True , __snake_case : Any=5_0_2_5_6 , __snake_case : str=5_0_2_5_6 , **__snake_case : Any , ) -> Union[str, Any]: __magic_name__: Union[str, Any] = vocab_size __magic_name__: List[str] = max_position_embeddings __magic_name__: List[str] = hidden_size __magic_name__: List[Any] = num_layers __magic_name__: Dict = num_heads __magic_name__: int = intermediate_size __magic_name__: Tuple = window_size __magic_name__: List[str] = activation_function __magic_name__: List[str] = resid_dropout __magic_name__: List[Any] = embed_dropout __magic_name__: Any = attention_dropout __magic_name__: int = classifier_dropout __magic_name__: Any = layer_norm_epsilon __magic_name__: Tuple = initializer_range __magic_name__: Any = use_cache __magic_name__: Any = bos_token_id __magic_name__: int = eos_token_id __magic_name__: Optional[Any] = attention_types __magic_name__: List[Any] = self.expand_attention_types_params(__snake_case ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ F'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' F'`config.num_layers = {self.num_layers}`. ' """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @staticmethod def lowerCamelCase__ ( __snake_case : Optional[Any] ) -> Any: __magic_name__: List[Any] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def a ( __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple ) -> Dict: import torch __magic_name__: List[str] = input.size() __magic_name__: Dict = len(__UpperCAmelCase ) __magic_name__: Tuple = shape[dimension] __magic_name__: Tuple = torch.arange(0 , __UpperCAmelCase , __UpperCAmelCase ) __magic_name__: Optional[int] = torch.div(sizedim - size , __UpperCAmelCase , rounding_mode="""floor""" ) + 1 __magic_name__: Optional[int] = torch.arange(__UpperCAmelCase ) + low_indices[:min_length][:, None] __magic_name__: Optional[int] = [slice(__UpperCAmelCase )] * rank __magic_name__: str = indices __magic_name__: Optional[Any] = input[s] __magic_name__: List[str] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__UpperCAmelCase ) def a ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] ) -> List[str]: import torch __magic_name__: Union[str, Any] = torch.arange(1 , __UpperCAmelCase ) __magic_name__: str = torch.remainder(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: List[str] = remainders == 0 __magic_name__: Any = candidates[divisor_indices] __magic_name__: str = torch.max(__UpperCAmelCase ) return largest_divisor, torch.div(__UpperCAmelCase , __UpperCAmelCase , rounding_mode="""floor""" ) class __A ( SCREAMING_SNAKE_CASE_ ): @property def lowerCamelCase__ ( self : str ) -> Mapping[str, Mapping[int, str]]: __magic_name__: Union[str, Any] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__snake_case , direction="""inputs""" ) __magic_name__: Union[str, Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: __magic_name__: List[str] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self : Optional[Any] ) -> int: return self._config.num_heads def lowerCamelCase__ ( self : str , __snake_case : PreTrainedTokenizer , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional[TensorType] = None , ) -> Mapping[str, Any]: __magic_name__: Dict = super(__snake_case , self ).generate_dummy_inputs( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) # We need to order the input in the way they appears in the forward() __magic_name__: Optional[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __magic_name__, __magic_name__: Tuple = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __magic_name__: Optional[int] = seqlen + 2 __magic_name__: Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __magic_name__: int = [ (torch.zeros(__snake_case ), torch.zeros(__snake_case )) for _ in range(self.num_layers ) ] __magic_name__: Union[str, Any] = common_inputs["""attention_mask"""] if self.use_past: __magic_name__: Optional[Any] = ordered_inputs["""attention_mask"""].dtype __magic_name__: Union[str, Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__snake_case , __snake_case , dtype=__snake_case )] , dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self : Union[str, Any] ) -> int: return 1_3
96
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = ["image_processor", "tokenizer"] _UpperCAmelCase :Union[str, Any] = "BlipImageProcessor" _UpperCAmelCase :Union[str, Any] = "AutoTokenizer" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): super().__init__(_UpperCAmelCase , _UpperCAmelCase ) # add QFormer tokenizer lowercase__: Tuple = qformer_tokenizer def __call__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = True , _UpperCAmelCase = None , **_UpperCAmelCase , ): if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) lowercase__: Tuple = BatchFeature() if text is not None: lowercase__: List[str] = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) encoding.update(_UpperCAmelCase ) lowercase__: str = self.qformer_tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__: List[str] = qformer_text_encoding.pop('''input_ids''' ) lowercase__: int = qformer_text_encoding.pop('''attention_mask''' ) if images is not None: lowercase__: Optional[int] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase ) encoding.update(_UpperCAmelCase ) return encoding def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _snake_case ( self ): lowercase__: List[str] = self.tokenizer.model_input_names lowercase__: str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _snake_case ( self , _UpperCAmelCase , **_UpperCAmelCase ): if os.path.isfile(_UpperCAmelCase ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) lowercase__: Any = os.path.join(_UpperCAmelCase , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(_UpperCAmelCase ) return super().save_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def _snake_case ( cls , _UpperCAmelCase , **_UpperCAmelCase ): lowercase__: Optional[int] = AutoTokenizer.from_pretrained(_UpperCAmelCase , subfolder='''qformer_tokenizer''' ) lowercase__: Union[str, Any] = cls._get_arguments_from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) args.append(_UpperCAmelCase ) return cls(*_UpperCAmelCase )
586
0
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Any = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') _snake_case : Dict = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) _snake_case : Tuple = model.state_dict() def to_tf_var_name(lowerCAmelCase_ ): for patt, repl in iter(lowerCAmelCase_ ): _snake_case : List[Any] = name.replace(lowerCAmelCase_ , lowerCAmelCase_ ) return f'''bert/{name}''' def create_tf_var(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Optional[int] = tf.dtypes.as_dtype(tensor.dtype ) _snake_case : Any = tf.get_variable(dtype=lowerCAmelCase_ , shape=tensor.shape , name=lowerCAmelCase_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowerCAmelCase_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _snake_case : Dict = to_tf_var_name(lowerCAmelCase_ ) _snake_case : Tuple = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _snake_case : Any = torch_tensor.T _snake_case : Dict = create_tf_var(tensor=lowerCAmelCase_ , name=lowerCAmelCase_ , session=lowerCAmelCase_ ) tf.keras.backend.set_value(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Optional[Any] = session.run(lowerCAmelCase_ ) print(f'''Successfully created {tf_name}: {np.allclose(lowerCAmelCase_ , lowerCAmelCase_ )}''' ) _snake_case : Optional[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def _a ( lowerCAmelCase_=None ): """simple docstring""" _snake_case : Tuple = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=lowerCAmelCase_ , default=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Directory in which to save tensorflow model''' ) _snake_case : Any = parser.parse_args(lowerCAmelCase_ ) _snake_case : Tuple = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowerCAmelCase_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
47
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : Any = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } UpperCAmelCase : Optional[Any] = { 'gpt-neox-20b': 2_0_4_8, } class lowerCamelCase (a__ ): _lowercase : Optional[int] = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]: """simple docstring""" super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) _snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: _snake_case : int = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) _snake_case : int = add_prefix_space _snake_case : Optional[Any] = pre_tok_class(**lowercase__ ) _snake_case : List[str] = add_prefix_space def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: """simple docstring""" _snake_case : Optional[int] = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]: """simple docstring""" _snake_case : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: _snake_case : Dict = input_ids[-self.model_max_length :] return input_ids
47
1
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCamelCase : Optional[Any] = numpy.array([0, 0]) lowerCamelCase : Optional[int] = numpy.array([0.5, 0.866_0254]) lowerCamelCase : Optional[Any] = numpy.array([1, 0]) lowerCamelCase : Dict = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def _SCREAMING_SNAKE_CASE ( lowercase : list[numpy.ndarray] , lowercase : int ): '''simple docstring''' lowerCamelCase_ = initial_vectors for _ in range(lowercase ): lowerCamelCase_ = iteration_step(lowercase ) return vectors def _SCREAMING_SNAKE_CASE ( lowercase : list[numpy.ndarray] ): '''simple docstring''' lowerCamelCase_ = [] for i, start_vector in enumerate(vectors[:-1] ): lowerCamelCase_ = vectors[i + 1] new_vectors.append(lowercase ) lowerCamelCase_ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def _SCREAMING_SNAKE_CASE ( lowercase : numpy.ndarray , lowercase : float ): '''simple docstring''' lowerCamelCase_ = numpy.radians(lowercase ) lowerCamelCase_ , lowerCamelCase_ = numpy.cos(lowercase ), numpy.sin(lowercase ) lowerCamelCase_ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowercase , lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : list[numpy.ndarray] ): '''simple docstring''' lowerCamelCase_ = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowerCamelCase_ , lowerCamelCase_ = zip(*lowercase ) plt.plot(lowercase , lowercase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Union[str, Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
70
import argparse import json import subprocess def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = ( f"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) lowerCamelCase_ = subprocess.run(lowercase , shell=lowercase , stdout=subprocess.PIPE ) lowerCamelCase_ = output.stdout.decode('utf-8' ) lowerCamelCase_ = json.loads(lowercase ) lowerCamelCase_ = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(lowercase ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(lowercase ) ) if len(lowercase ) > 0: lowerCamelCase_ = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(f"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' return values.split(',' ) lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) lowerCamelCase : Optional[int] = parser.parse_args() get_runner_status(args.target_runners, args.token)
70
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =LDMTextToImagePipeline UpperCAmelCase_ =TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } UpperCAmelCase_ =PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } UpperCAmelCase_ =TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase_ =False def _UpperCamelCase ( self ) -> List[str]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE_ = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE_ = CLIPTextModel(_A ) SCREAMING_SNAKE_CASE_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE_ = { '''unet''': unet, '''scheduler''': scheduler, '''vqvae''': vae, '''bert''': text_encoder, '''tokenizer''': tokenizer, } return components def _UpperCamelCase ( self , _A , _A=0 ) -> int: if str(_A ).startswith('''mps''' ): SCREAMING_SNAKE_CASE_ = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = LDMTextToImagePipeline(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs(_A ) SCREAMING_SNAKE_CASE_ = pipe(**_A ).images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) SCREAMING_SNAKE_CASE_ = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self , _A , _A=torch.floataa , _A=0 ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = torch.manual_seed(_A ) SCREAMING_SNAKE_CASE_ = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) SCREAMING_SNAKE_CASE_ = torch.from_numpy(_A ).to(device=_A , dtype=_A ) SCREAMING_SNAKE_CASE_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = self.get_inputs(_A ) SCREAMING_SNAKE_CASE_ = pipe(**_A ).images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE_ = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] ) SCREAMING_SNAKE_CASE_ = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self , _A , _A=torch.floataa , _A=0 ) -> Any: SCREAMING_SNAKE_CASE_ = torch.manual_seed(_A ) SCREAMING_SNAKE_CASE_ = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) SCREAMING_SNAKE_CASE_ = torch.from_numpy(_A ).to(device=_A , dtype=_A ) SCREAMING_SNAKE_CASE_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 50, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = self.get_inputs(_A ) SCREAMING_SNAKE_CASE_ = pipe(**_A ).images[0] SCREAMING_SNAKE_CASE_ = load_numpy( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy''' ) SCREAMING_SNAKE_CASE_ = np.abs(expected_image - image ).max() assert max_diff < 1E-3
703
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A__ ( __lowerCamelCase = "laptop" ): SCREAMING_SNAKE_CASE_ = F'''https://www.amazon.in/laptop/s?k={product}''' SCREAMING_SNAKE_CASE_ = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } SCREAMING_SNAKE_CASE_ = BeautifulSoup(requests.get(__lowerCamelCase, headers=__lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles SCREAMING_SNAKE_CASE_ = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''', attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''}, ), soup.find_all('''div''', attrs={'''class''': '''a-row a-size-base a-color-base'''} ), ): try: SCREAMING_SNAKE_CASE_ = item.ha.text SCREAMING_SNAKE_CASE_ = '''https://www.amazon.in/''' + item.ha.a['''href'''] SCREAMING_SNAKE_CASE_ = item.find('''span''', attrs={'''class''': '''a-offscreen'''} ).text try: SCREAMING_SNAKE_CASE_ = item.find('''span''', attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: SCREAMING_SNAKE_CASE_ = '''Not available''' try: SCREAMING_SNAKE_CASE_ = ( '''₹''' + item.find( '''span''', attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: SCREAMING_SNAKE_CASE_ = '''''' try: SCREAMING_SNAKE_CASE_ = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''', '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''', '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''', '''''' ) ) ) * 1_00 ) except ValueError: SCREAMING_SNAKE_CASE_ = float('''nan''' ) except AttributeError: pass SCREAMING_SNAKE_CASE_ = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] SCREAMING_SNAKE_CASE_ = ''' ''' SCREAMING_SNAKE_CASE_ = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": __UpperCAmelCase = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
597
0
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
21
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool: __magic_name__ : Dict =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __magic_name__ : Union[str, Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __magic_name__ : List[Any] =proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): def identity_function(lowerCamelCase ) -> float: return x __magic_name__ : Optional[int] =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __magic_name__ : str =(max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print("""******************""" ) def lowerCAmelCase_ ( lowerCamelCase ): def function_to_integrate(lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __magic_name__ : Dict =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase__ = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class A__ ( _lowerCamelCase): A_ : Union[PIL.Image.Image, np.ndarray] class A__ ( _lowerCamelCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): super().__init__() self.register_modules( prior=_SCREAMING_SNAKE_CASE , image_encoder=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , renderer=_SCREAMING_SNAKE_CASE , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if latents is None: __lowerCAmelCase : List[str] = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) __lowerCAmelCase : Any = latents.to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = latents * scheduler.init_noise_sigma return latents def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __lowerCAmelCase : Tuple = torch.device(f"cuda:{gpu_id}" ) __lowerCAmelCase : Union[str, Any] = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @property def __lowerCamelCase ( self ): if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_SCREAMING_SNAKE_CASE , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(image[0] , torch.Tensor ): __lowerCAmelCase : str = torch.cat(_SCREAMING_SNAKE_CASE , axis=0 ) if image[0].ndim == 4 else torch.stack(_SCREAMING_SNAKE_CASE , axis=0 ) if not isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): __lowerCAmelCase : Optional[int] = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) __lowerCAmelCase : Dict = image.to(dtype=self.image_encoder.dtype , device=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = self.image_encoder(_SCREAMING_SNAKE_CASE )['last_hidden_state'] __lowerCAmelCase : Optional[int] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 __lowerCAmelCase : Tuple = image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: __lowerCAmelCase : List[Any] = torch.zeros_like(_SCREAMING_SNAKE_CASE ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCAmelCase : Any = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 25 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 4.0 , _SCREAMING_SNAKE_CASE = 64 , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , ): if isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): __lowerCAmelCase : Union[str, Any] = 1 elif isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): __lowerCAmelCase : Tuple = image.shape[0] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): __lowerCAmelCase : Any = len(_SCREAMING_SNAKE_CASE ) else: raise ValueError( f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_SCREAMING_SNAKE_CASE )}" ) __lowerCAmelCase : Optional[Any] = self._execution_device __lowerCAmelCase : Optional[Any] = batch_size * num_images_per_prompt __lowerCAmelCase : Any = guidance_scale > 1.0 __lowerCAmelCase : List[Any] = self._encode_image(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # prior self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = self.scheduler.timesteps __lowerCAmelCase : Optional[int] = self.prior.config.num_embeddings __lowerCAmelCase : List[str] = self.prior.config.embedding_dim __lowerCAmelCase : Any = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim __lowerCAmelCase : str = latents.reshape(latents.shape[0] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance __lowerCAmelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCAmelCase : Optional[int] = self.scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = self.prior( _SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , proj_embedding=_SCREAMING_SNAKE_CASE , ).predicted_image_embedding # remove the variance __lowerCAmelCase : Tuple = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: __lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) __lowerCAmelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) __lowerCAmelCase : Dict = self.scheduler.step( _SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , sample=_SCREAMING_SNAKE_CASE , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = [] for i, latent in enumerate(_SCREAMING_SNAKE_CASE ): print() __lowerCAmelCase : int = self.renderer.decode( latent[None, :] , _SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = torch.stack(_SCREAMING_SNAKE_CASE ) if output_type not in ["np", "pil"]: raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}" ) __lowerCAmelCase : int = images.cpu().numpy() if output_type == "pil": __lowerCAmelCase : Dict = [self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_SCREAMING_SNAKE_CASE )
712
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
549
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class snake_case_ ( lowerCAmelCase ): __lowerCamelCase : List[str] = (EulerDiscreteScheduler,) __lowerCamelCase : Any = 10 def __A ( self , **__lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = { 'num_train_timesteps': 1_100, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**A_ ) return config def __A ( self ): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=A_ ) def __A ( self ): for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def __A ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A_ ) def __A ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Any = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Any = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = self.dummy_model() SCREAMING_SNAKE_CASE_ : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE_ : str = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler.scale_model_input(A_ , A_ ) SCREAMING_SNAKE_CASE_ : List[str] = model(A_ , A_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler.step(A_ , A_ , A_ , generator=A_ ) SCREAMING_SNAKE_CASE_ : Any = output.prev_sample SCREAMING_SNAKE_CASE_ : Tuple = torch.sum(torch.abs(A_ ) ) SCREAMING_SNAKE_CASE_ : str = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 10.08_07 ) < 1e-2 assert abs(result_mean.item() - 0.01_31 ) < 1e-3 def __A ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : str = self.get_scheduler_config(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE_ : int = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Any = self.dummy_model() SCREAMING_SNAKE_CASE_ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE_ : int = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE_ : Tuple = scheduler.scale_model_input(A_ , A_ ) SCREAMING_SNAKE_CASE_ : Dict = model(A_ , A_ ) SCREAMING_SNAKE_CASE_ : Tuple = scheduler.step(A_ , A_ , A_ , generator=A_ ) SCREAMING_SNAKE_CASE_ : int = output.prev_sample SCREAMING_SNAKE_CASE_ : Optional[int] = torch.sum(torch.abs(A_ ) ) SCREAMING_SNAKE_CASE_ : int = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 0.00_02 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps , device=A_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[str] = self.dummy_model() SCREAMING_SNAKE_CASE_ : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE_ : Union[str, Any] = sample.to(A_ ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE_ : Tuple = scheduler.scale_model_input(A_ , A_ ) SCREAMING_SNAKE_CASE_ : List[Any] = model(A_ , A_ ) SCREAMING_SNAKE_CASE_ : List[Any] = scheduler.step(A_ , A_ , A_ , generator=A_ ) SCREAMING_SNAKE_CASE_ : Dict = output.prev_sample SCREAMING_SNAKE_CASE_ : Tuple = torch.sum(torch.abs(A_ ) ) SCREAMING_SNAKE_CASE_ : List[str] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 10.08_07 ) < 1e-2 assert abs(result_mean.item() - 0.01_31 ) < 1e-3 def __A ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Tuple = scheduler_class(**A_ , use_karras_sigmas=A_ ) scheduler.set_timesteps(self.num_inference_steps , device=A_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Any = self.dummy_model() SCREAMING_SNAKE_CASE_ : int = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE_ : Dict = sample.to(A_ ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler.scale_model_input(A_ , A_ ) SCREAMING_SNAKE_CASE_ : int = model(A_ , A_ ) SCREAMING_SNAKE_CASE_ : List[Any] = scheduler.step(A_ , A_ , A_ , generator=A_ ) SCREAMING_SNAKE_CASE_ : List[Any] = output.prev_sample SCREAMING_SNAKE_CASE_ : str = torch.sum(torch.abs(A_ ) ) SCREAMING_SNAKE_CASE_ : int = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1_24.52_29_94_99_51_17_19 ) < 1e-2 assert abs(result_mean.item() - 0.1_62_13_93_26_33_39_99_63 ) < 1e-3
345
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. snake_case : Tuple = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _SCREAMING_SNAKE_CASE = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase__ ,id=UpperCAmelCase__ )
605
0
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 _UpperCamelCase : Tuple = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 128, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class _snake_case ( unittest.TestCase ): @classmethod def _SCREAMING_SNAKE_CASE ( cls ): '''simple docstring''' lowerCAmelCase = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) lowerCAmelCase = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id='test-config' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) lowerCAmelCase = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) lowerCAmelCase = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='valid_org/test-config-org' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) lowerCAmelCase = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCAmelCase = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCAmelCase = AutoConfig.from_pretrained(F'{USER}/test-dynamic-config' , trust_remote_code=_SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class _snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCAmelCase = c.n_embd + 1 # int lowerCAmelCase = c.resid_pdrop + 1.0 # float lowerCAmelCase = not c.scale_attn_weights # bool lowerCAmelCase = c.summary_type + 'foo' # str c.update_from_string( F'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}' ) self.assertEqual(_SCREAMING_SNAKE_CASE , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(_SCREAMING_SNAKE_CASE , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(_SCREAMING_SNAKE_CASE , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(_SCREAMING_SNAKE_CASE , c.summary_type , 'mismatch for key: summary_type' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = PretrainedConfig() lowerCAmelCase = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _SCREAMING_SNAKE_CASE , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCAmelCase = [key for key, value in config_common_kwargs.items() if value == getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' F' {", ".join(_SCREAMING_SNAKE_CASE )}.' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): # config is in subfolder, the following should not work without specifying the subfolder lowerCAmelCase = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCAmelCase = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = mock.Mock() lowerCAmelCase = 5_00 lowerCAmelCase = {} lowerCAmelCase = HTTPError lowerCAmelCase = {} # Download this model to make sure it's in the cache. lowerCAmelCase = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=_SCREAMING_SNAKE_CASE ) as mock_head: lowerCAmelCase = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = AutoConfig.from_pretrained('bert-base-cased' ) lowerCAmelCase = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = 2 json.dump(configuration.to_dict() , open(os.path.join(_SCREAMING_SNAKE_CASE , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCAmelCase = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCAmelCase = ['config.42.0.0.json'] lowerCAmelCase = 7_68 configuration.save_pretrained(_SCREAMING_SNAKE_CASE ) shutil.move(os.path.join(_SCREAMING_SNAKE_CASE , 'config.4.0.0.json' ) , os.path.join(_SCREAMING_SNAKE_CASE , 'config.42.0.0.json' ) ) lowerCAmelCase = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCAmelCase = 'v4.0.0' lowerCAmelCase , lowerCAmelCase = new_transformers.models.auto.AutoConfig.from_pretrained( _SCREAMING_SNAKE_CASE , return_unused_kwargs=_SCREAMING_SNAKE_CASE ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_SCREAMING_SNAKE_CASE , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCAmelCase = 'v3.0.0' lowerCAmelCase = old_transformers.models.auto.AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertEqual(old_configuration.hidden_size , 7_68 )
707
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( a_ ): SCREAMING_SNAKE_CASE : List[Any] = (IPNDMScheduler,) SCREAMING_SNAKE_CASE : Optional[Any] = (('''num_inference_steps''', 50),) def _SCREAMING_SNAKE_CASE ( self , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = {'num_train_timesteps': 10_00} config.update(**_SCREAMING_SNAKE_CASE ) return config def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=0 , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('num_inference_steps' , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals lowerCAmelCase = dummy_past_residuals[:] if time_step is None: lowerCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler_class.from_pretrained(_SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals lowerCAmelCase = dummy_past_residuals[:] lowerCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample lowerCAmelCase = new_scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample lowerCAmelCase = new_scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=0 , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('num_inference_steps' , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase = dummy_past_residuals[:] if time_step is None: lowerCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler_class.from_pretrained(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase = dummy_past_residuals[:] lowerCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample lowerCAmelCase = new_scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample lowerCAmelCase = new_scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _SCREAMING_SNAKE_CASE ( self , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = 10 lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample return sample def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('num_inference_steps' , _SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(_SCREAMING_SNAKE_CASE , 'set_timesteps' ): scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(_SCREAMING_SNAKE_CASE , 'set_timesteps' ): lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowerCAmelCase = dummy_past_residuals[:] lowerCAmelCase = scheduler.timesteps[5] lowerCAmelCase = scheduler.timesteps[6] lowerCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample lowerCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample lowerCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE , time_step=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=_SCREAMING_SNAKE_CASE , time_step=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.full_loop() lowerCAmelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 2_54_05_29 ) < 10
514
0
"""simple docstring""" from typing import List import numpy as np def __lowercase ( snake_case_ : dict ) ->int: '''simple docstring''' __A : Optional[int] = {key: len(snake_case_ ) for key, value in gen_kwargs.items() if isinstance(snake_case_ ,snake_case_ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F"""\t- key {key} has length {length}""" for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) __A : int = max(lists_lengths.values() ,default=0 ) return max(1 ,snake_case_ ) def __lowercase ( snake_case_ : int ,snake_case_ : int ) ->List[range]: '''simple docstring''' __A : Any = [] for group_idx in range(snake_case_ ): __A : Optional[int] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break __A : Optional[Any] = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 __A : List[str] = range(snake_case_ ,start + num_shards_to_add ) shards_indices_per_group.append(snake_case_ ) return shards_indices_per_group def __lowercase ( snake_case_ : dict ,snake_case_ : int ) ->List[dict]: '''simple docstring''' __A : List[str] = _number_of_shards_in_gen_kwargs(snake_case_ ) if num_shards == 1: return [dict(snake_case_ )] else: __A : Dict = _distribute_shards(num_shards=snake_case_ ,max_num_jobs=snake_case_ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(snake_case_ ,snake_case_ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(snake_case_ ) ) ] def __lowercase ( snake_case_ : List[dict] ) ->dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] ,snake_case_ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __lowercase ( snake_case_ : np.random.Generator ,snake_case_ : dict ) ->dict: '''simple docstring''' __A : Dict = {len(snake_case_ ) for value in gen_kwargs.values() if isinstance(snake_case_ ,snake_case_ )} __A : Optional[int] = {} for size in list_sizes: __A : Optional[Any] = list(range(snake_case_ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes __A : Tuple = dict(snake_case_ ) for key, value in shuffled_kwargs.items(): if isinstance(snake_case_ ,snake_case_ ): __A : List[Any] = [value[i] for i in indices_per_size[len(snake_case_ )]] return shuffled_kwargs
177
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets a_ = """\ @inproceedings{lin-2004-rouge, title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\", author = \"Lin, Chin-Yew\", booktitle = \"Text Summarization Branches Out\", month = jul, year = \"2004\", address = \"Barcelona, Spain\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W04-1013\", pages = \"74--81\", } """ a_ = """\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge """ a_ = """ Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring, `\"rougeL\"`: Longest common subsequence based scoring. `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric('rouge') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] >>> print(results[\"rouge1\"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results[\"rouge1\"].mid.fmeasure) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=False ): '''simple docstring''' if rouge_types is None: __A : Dict = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] __A : Dict = rouge_scorer.RougeScorer(rouge_types=__lowerCamelCase , use_stemmer=__lowerCamelCase ) if use_aggregator: __A : Dict = scoring.BootstrapAggregator() else: __A : Optional[Any] = [] for ref, pred in zip(__lowerCamelCase , __lowerCamelCase ): __A : List[Any] = scorer.score(__lowerCamelCase , __lowerCamelCase ) if use_aggregator: aggregator.add_scores(__lowerCamelCase ) else: scores.append(__lowerCamelCase ) if use_aggregator: __A : Optional[Any] = aggregator.aggregate() else: __A : List[Any] = {} for key in scores[0]: __A : Tuple = [score[key] for score in scores] return result
177
1
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __A = logging.get_logger(__name__) __A = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class _snake_case : def __init__( self : str , UpperCAmelCase : str=None , **UpperCAmelCase : Optional[Any] ): logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) __lowerCamelCase : Optional[Any] = model __lowerCamelCase : Optional[Any] = kwargs.get("model_save_dir" , UpperCAmelCase ) __lowerCamelCase : List[str] = kwargs.get("latest_model_name" , UpperCAmelCase ) def __call__( self : str , **UpperCAmelCase : int ): __lowerCamelCase : Optional[Any] = {k: np.array(UpperCAmelCase ) for k, v in kwargs.items()} return self.model.run(UpperCAmelCase , UpperCAmelCase ) @staticmethod def lowerCamelCase__ ( UpperCAmelCase : Union[str, Path] , UpperCAmelCase : List[str]=None , UpperCAmelCase : Dict=None ): if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) __lowerCamelCase : List[Any] = "CPUExecutionProvider" return ort.InferenceSession(UpperCAmelCase , providers=[provider] , sess_options=UpperCAmelCase ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Union[str, Path] , UpperCAmelCase : Optional[str] = None , **UpperCAmelCase : Tuple ): __lowerCamelCase : str = file_name if file_name is not None else ONNX_WEIGHTS_NAME __lowerCamelCase : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) __lowerCamelCase : Optional[Any] = Path(UpperCAmelCase ).joinpath(UpperCAmelCase ) try: shutil.copyfile(UpperCAmelCase , UpperCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __lowerCamelCase : Optional[int] = self.model_save_dir.joinpath(UpperCAmelCase ) if src_path.exists(): __lowerCamelCase : Tuple = Path(UpperCAmelCase ).joinpath(UpperCAmelCase ) try: shutil.copyfile(UpperCAmelCase , UpperCAmelCase ) except shutil.SameFileError: pass def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Union[str, os.PathLike] , **UpperCAmelCase : Any , ): if os.path.isfile(UpperCAmelCase ): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) # saving model weights/files self._save_pretrained(UpperCAmelCase , **UpperCAmelCase ) @classmethod def lowerCamelCase__ ( cls : List[str] , UpperCAmelCase : Union[str, Path] , UpperCAmelCase : Optional[Union[bool, str, None]] = None , UpperCAmelCase : Optional[Union[str, None]] = None , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional["ort.SessionOptions"] = None , **UpperCAmelCase : str , ): __lowerCamelCase : str = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(UpperCAmelCase ): __lowerCamelCase : Union[str, Any] = OnnxRuntimeModel.load_model( os.path.join(UpperCAmelCase , UpperCAmelCase ) , provider=UpperCAmelCase , sess_options=UpperCAmelCase ) __lowerCamelCase : List[Any] = Path(UpperCAmelCase ) # load model from hub else: # download model __lowerCamelCase : List[Any] = hf_hub_download( repo_id=UpperCAmelCase , filename=UpperCAmelCase , use_auth_token=UpperCAmelCase , revision=UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , ) __lowerCamelCase : Union[str, Any] = Path(UpperCAmelCase ).parent __lowerCamelCase : Tuple = Path(UpperCAmelCase ).name __lowerCamelCase : Dict = OnnxRuntimeModel.load_model(UpperCAmelCase , provider=UpperCAmelCase , sess_options=UpperCAmelCase ) return cls(model=UpperCAmelCase , **UpperCAmelCase ) @classmethod def lowerCamelCase__ ( cls : List[Any] , UpperCAmelCase : Union[str, Path] , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , **UpperCAmelCase : Optional[int] , ): __lowerCamelCase : List[Any] = None if len(str(UpperCAmelCase ).split("@" ) ) == 2: __lowerCamelCase , __lowerCamelCase : Tuple = model_id.split("@" ) return cls._from_pretrained( model_id=UpperCAmelCase , revision=UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , use_auth_token=UpperCAmelCase , **UpperCAmelCase , )
366
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __A = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def lowercase_ ( _lowerCamelCase: List[Any] ) -> Union[str, Any]: '''simple docstring''' config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" ) config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" ) config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" ) config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" ) config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" ) config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" ) def lowercase_ ( _lowerCamelCase: Union[str, Any] ) -> Any: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowerCamelCase ) def lowercase_ ( _lowerCamelCase: Optional[int] ) -> Tuple: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main __lowerCamelCase : Any = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase ) def lowercase_ ( _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Tuple ) -> Dict: '''simple docstring''' if exitstatus == 5: __lowerCamelCase : Optional[int] = 0 # Doctest custom flag to ignore output. __A = doctest.register_optionflag('''IGNORE_RESULT''') __A = doctest.OutputChecker class _snake_case ( a__ ): def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : int ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __A = CustomOutputChecker __A = HfDoctestModule __A = HfDocTestParser
366
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( __snake_case : Dict ): if not head: return True # split the list to two parts _A , _A = head.next, head while fast and fast.next: _A = fast.next.next _A = slow.next _A = slow.next _A = None # Don't forget here! But forget still works! # reverse the second part _A = None while second: _A = second.next _A = node _A = second _A = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False _A = node.next _A = head.next return True def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] ): if not head or not head.next: return True # 1. Get the midpoint (slow) _A = _A = _A = head while fast and fast.next: _A , _A = fast.next.next, slow.next # 2. Push the second half into the stack _A = [slow.val] while slow.next: _A = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False _A = cur.next return True def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] ): if not head or not head.next: return True _A = {} _A = 0 while head: if head.val in d: d[head.val].append(__snake_case ) else: _A = [pos] _A = head.next pos += 1 _A = pos - 1 _A = 0 for v in d.values(): if len(__snake_case ) % 2 != 0: middle += 1 else: _A = 0 for i in range(0 , len(__snake_case ) ): if v[i] + v[len(__snake_case ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
107
'''simple docstring''' import os lowercase : Tuple = {'I': 1, 'V': 5, 'X': 1_0, 'L': 5_0, 'C': 1_0_0, 'D': 5_0_0, 'M': 1_0_0_0} def __a ( A__ ) -> int: lowerCAmelCase = 0 lowerCAmelCase = 0 while index < len(A__ ) - 1: lowerCAmelCase = SYMBOLS[numerals[index]] lowerCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __a ( A__ ) -> str: lowerCAmelCase = "" lowerCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 lowerCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowerCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __a ( A__ = "/p089_roman.txt" ) -> int: lowerCAmelCase = 0 with open(os.path.dirname(A__ ) + roman_numerals_filename ) as filea: lowerCAmelCase = filea.readlines() for line in lines: lowerCAmelCase = line.strip() lowerCAmelCase = parse_roman_numerals(A__ ) lowerCAmelCase = generate_roman_numerals(A__ ) savings += len(A__ ) - len(A__ ) return savings if __name__ == "__main__": print(f"{solution() = }")
649
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase : Union[str, Any] =logging.get_logger(__name__) _lowercase : Union[str, Any] ="▁" _lowercase : str ={"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} _lowercase : Tuple ={ "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } _lowercase : Optional[int] ={"vinai/bartpho-syllable": 1_0_2_4} class SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase ): '''simple docstring''' lowercase : Optional[Any] = VOCAB_FILES_NAMES lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP lowercase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Tuple = ["input_ids", "attention_mask"] def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<s>" , SCREAMING_SNAKE_CASE__ : int="<unk>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[Any]="<mask>" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : int , ) -> int: # Mask token behave like a normal word, i.e. include the space before it A : int =AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token A : Any ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) A : Tuple =vocab_file A : Any =monolingual_vocab_file A : Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility A : Dict ={} A : Optional[int] =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowercase_ ) not in self.fairseq_tokens_to_ids: A : List[Any] =cnt cnt += 1 with open(lowercase_ , 'r' , encoding='utf-8' ) as f: for line in f.readlines(): A : int =line.strip().split()[0] A : Dict =len(self.fairseq_tokens_to_ids ) if str(lowercase_ ) not in self.fairseq_tokens_to_ids: A : Optional[Any] =len(self.fairseq_tokens_to_ids ) A : Tuple ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : str ) -> Optional[Any]: A : List[str] =self.__dict__.copy() A : Optional[Any] =None A : str =self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: A : int =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): A : int ={} A : List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> Optional[Any]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A : Optional[int] =[self.cls_token_id] A : str =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> int: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[str]: A : Any =[self.sep_token_id] A : Tuple =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any: return len(self.fairseq_ids_to_tokens ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[Any]: A : Dict ={self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]: return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> Any: return self.fairseq_ids_to_tokens[index] def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any: A : Union[str, Any] ="""""".join(lowercase_ ).replace(lowercase_ , ' ' ).strip() return out_string def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Optional[int]: if not os.path.isdir(lowercase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A : Optional[int] =os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A : str =os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , 'wb' ) as fi: A : Optional[Any] =self.sp_model.serialized_model_proto() fi.write(lowercase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowercase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowercase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowercase_ , 'w' , encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'{str(lowercase_ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
708
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : int =logging.get_logger(__name__) _lowercase : Dict ={ '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''', # See all XGLM models at https://huggingface.co/models?filter=xglm } class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Optional[int] = "xglm" lowercase : Any = ["past_key_values"] lowercase : Dict = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=25_60_08 , SCREAMING_SNAKE_CASE__ : Dict=20_48 , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : str=40_96 , SCREAMING_SNAKE_CASE__ : Optional[int]=24 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> int: A : str =vocab_size A : Union[str, Any] =max_position_embeddings A : Optional[Any] =d_model A : Optional[int] =ffn_dim A : int =num_layers A : Any =attention_heads A : Dict =activation_function A : List[Any] =dropout A : str =attention_dropout A : List[Any] =activation_dropout A : List[Any] =layerdrop A : List[Any] =init_std A : Union[str, Any] =scale_embedding # scale factor will be sqrt(d_model) if True A : List[str] =use_cache super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
661
0
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar __magic_name__ : Optional[Any] = TypeVar("""T""") class lowercase__ ( Generic[T] ): """simple docstring""" def __init__( self , _A ): '''simple docstring''' UpperCamelCase : List[str] = data UpperCamelCase : List[str] = self UpperCamelCase : int = 0 class lowercase__ ( Generic[T] ): """simple docstring""" def __init__( self ): '''simple docstring''' UpperCamelCase : dict[T, DisjointSetTreeNode[T]] = {} def _a ( self , _A ): '''simple docstring''' UpperCamelCase : Optional[int] = DisjointSetTreeNode(_A ) def _a ( self , _A ): '''simple docstring''' UpperCamelCase : Any = self.map[data] if elem_ref != elem_ref.parent: UpperCamelCase : Dict = self.find_set(elem_ref.parent.data ) return elem_ref.parent def _a ( self , _A , _A ): '''simple docstring''' if nodea.rank > nodea.rank: UpperCamelCase : Optional[int] = nodea else: UpperCamelCase : str = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def _a ( self , _A , _A ): '''simple docstring''' self.link(self.find_set(_A ) , self.find_set(_A ) ) class lowercase__ ( Generic[T] ): """simple docstring""" def __init__( self ): '''simple docstring''' UpperCamelCase : dict[T, dict[T, int]] = {} def _a ( self , _A ): '''simple docstring''' if node not in self.connections: UpperCamelCase : List[str] = {} def _a ( self , _A , _A , _A ): '''simple docstring''' self.add_node(_A ) self.add_node(_A ) UpperCamelCase : int = weight UpperCamelCase : Optional[int] = weight def _a ( self ): '''simple docstring''' UpperCamelCase : Tuple = [] UpperCamelCase : List[Any] = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda _A : x[2] ) # creating the disjoint set UpperCamelCase : Dict = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(_A ) # MST generation UpperCamelCase : List[Any] = 0 UpperCamelCase : int = 0 UpperCamelCase : int = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = edges[index] index += 1 UpperCamelCase : Optional[int] = disjoint_set.find_set(_A ) UpperCamelCase : Union[str, Any] = disjoint_set.find_set(_A ) if parent_u != parent_v: num_edges += 1 graph.add_edge(_A , _A , _A ) disjoint_set.union(_A , _A ) return graph
102
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { """configuration_table_transformer""": [ """TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TableTransformerConfig""", """TableTransformerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TableTransformerForObjectDetection""", """TableTransformerModel""", """TableTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
413
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule __lowerCamelCase :Optional[Any] = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys __lowerCamelCase :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
702
"""simple docstring""" import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : """simple docstring""" def __init__( self: List[Any] , __a: List[str] , __a: Optional[int]=13 , __a: List[str]=32 , __a: int=2 , __a: List[str]=3 , __a: Union[str, Any]=16 , __a: int=[32, 64, 128] , __a: Optional[Any]=[1, 2, 1] , __a: Optional[int]=[2, 2, 4] , __a: Tuple=2 , __a: Dict=2.0 , __a: List[str]=True , __a: Optional[Any]=0.0 , __a: Any=0.0 , __a: List[Any]=0.1 , __a: List[str]="gelu" , __a: Tuple=False , __a: Union[str, Any]=True , __a: Optional[int]=0.02 , __a: Tuple=1e-5 , __a: int=True , __a: List[Any]=None , __a: Optional[int]=True , __a: Dict=10 , __a: List[str]=8 , __a: Any=["stage1", "stage2"] , __a: Union[str, Any]=[1, 2] , )-> Dict: lowerCamelCase : Dict = parent lowerCamelCase : Optional[Any] = batch_size lowerCamelCase : Union[str, Any] = image_size lowerCamelCase : Optional[int] = patch_size lowerCamelCase : Any = num_channels lowerCamelCase : Any = embed_dim lowerCamelCase : Dict = hidden_sizes lowerCamelCase : List[Any] = depths lowerCamelCase : Tuple = num_heads lowerCamelCase : List[Any] = window_size lowerCamelCase : str = mlp_ratio lowerCamelCase : str = qkv_bias lowerCamelCase : str = hidden_dropout_prob lowerCamelCase : Dict = attention_probs_dropout_prob lowerCamelCase : Tuple = drop_path_rate lowerCamelCase : Dict = hidden_act lowerCamelCase : Tuple = use_absolute_embeddings lowerCamelCase : List[str] = patch_norm lowerCamelCase : List[str] = layer_norm_eps lowerCamelCase : str = initializer_range lowerCamelCase : Tuple = is_training lowerCamelCase : int = scope lowerCamelCase : Union[str, Any] = use_labels lowerCamelCase : List[str] = type_sequence_label_size lowerCamelCase : str = encoder_stride lowerCamelCase : List[str] = out_features lowerCamelCase : Optional[int] = out_indices def a__ ( self: Optional[Any] )-> Union[str, Any]: lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : str = None if self.use_labels: lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : str = self.get_config() return config, pixel_values, labels def a__ ( self: List[Any] )-> Optional[int]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__ ( self: Tuple , __a: Optional[int] , __a: Optional[int] , __a: Optional[int] )-> List[str]: lowerCamelCase : Tuple = FocalNetModel(config=__a ) model.to(__a ) model.eval() lowerCamelCase : Tuple = model(__a ) lowerCamelCase : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__ ( self: Optional[int] , __a: Dict , __a: Tuple , __a: List[Any] )-> int: lowerCamelCase : List[Any] = FocalNetBackbone(config=__a ) model.to(__a ) model.eval() lowerCamelCase : Optional[Any] = model(__a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase : Dict = None lowerCamelCase : Dict = FocalNetBackbone(config=__a ) model.to(__a ) model.eval() lowerCamelCase : Any = model(__a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self: Optional[int] , __a: Optional[int] , __a: Optional[int] , __a: Optional[int] )-> List[str]: lowerCamelCase : Tuple = FocalNetForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() lowerCamelCase : List[str] = model(__a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase : List[str] = 1 lowerCamelCase : Any = FocalNetForMaskedImageModeling(__a ) model.to(__a ) model.eval() lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase : Tuple = model(__a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self: str , __a: Optional[Any] , __a: Optional[Any] , __a: Tuple )-> str: lowerCamelCase : Optional[Any] = self.type_sequence_label_size lowerCamelCase : Optional[Any] = FocalNetForImageClassification(__a ) model.to(__a ) model.eval() lowerCamelCase : List[str] = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase : int = 1 lowerCamelCase : List[Any] = FocalNetForImageClassification(__a ) model.to(__a ) model.eval() lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase : Optional[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self: int )-> Optional[int]: lowerCamelCase : str = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[int] = config_and_inputs lowerCamelCase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A__ ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" snake_case__ : List[str] =( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) snake_case__ : Optional[int] =( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) snake_case__ : Tuple =False snake_case__ : Dict =False snake_case__ : Dict =False snake_case__ : Tuple =False snake_case__ : Optional[int] =False def a__ ( self: Union[str, Any] )-> Optional[int]: lowerCamelCase : List[str] = FocalNetModelTester(self ) lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=__a , embed_dim=37 , has_text_modality=__a ) def a__ ( self: List[str] )-> List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self: List[str] )-> Union[str, Any]: return def a__ ( self: Tuple )-> Tuple: lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def a__ ( self: List[Any] )-> Dict: lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__a ) def a__ ( self: List[Any] )-> Tuple: lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def a__ ( self: List[str] )-> Dict: lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def a__ ( self: Optional[Any] )-> str: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def a__ ( self: Optional[Any] )-> Dict: pass def a__ ( self: Optional[Any] )-> Dict: lowerCamelCase , lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase : Any = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def a__ ( self: Tuple )-> Optional[int]: lowerCamelCase , lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase : int = model_class(__a ) lowerCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : Any = [*signature.parameters.keys()] lowerCamelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def a__ ( self: str , __a: Union[str, Any] , __a: int , __a: Tuple , __a: List[str] )-> Union[str, Any]: lowerCamelCase : List[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): lowerCamelCase : List[str] = model(**self._prepare_for_class(__a , __a ) ) lowerCamelCase : List[str] = outputs.hidden_states lowerCamelCase : Tuple = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__a ) , __a ) # FocalNet has a different seq_length lowerCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase : Optional[Any] = outputs.reshaped_hidden_states self.assertEqual(len(__a ) , __a ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[int] = reshaped_hidden_states[0].shape lowerCamelCase : Tuple = ( reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__ ( self: Any )-> Any: lowerCamelCase , lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase : List[str] = True self.check_hidden_states_output(__a , __a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase : List[Any] = True self.check_hidden_states_output(__a , __a , __a , __a ) def a__ ( self: str )-> Union[str, Any]: lowerCamelCase , lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : List[str] = 3 lowerCamelCase : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase : Optional[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase : str = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase : Union[str, Any] = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) @slow def a__ ( self: Optional[int] )-> List[Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : List[str] = FocalNetModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def a__ ( self: str )-> Any: lowerCamelCase , lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : int = _config_zero_init(__a ) for model_class in self.all_model_classes: lowerCamelCase : int = model_class(config=__a ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class A__ ( unittest.TestCase): """simple docstring""" @cached_property def a__ ( self: Optional[int] )-> Optional[Any]: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def a__ ( self: int )-> Optional[Any]: lowerCamelCase : Tuple = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(__a ) lowerCamelCase : Any = self.default_image_processor lowerCamelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCamelCase : int = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): lowerCamelCase : Any = model(**__a ) # verify the logits lowerCamelCase : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __a ) lowerCamelCase : List[str] = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class A__ ( __lowercase , unittest.TestCase): """simple docstring""" snake_case__ : str =(FocalNetBackbone,) if is_torch_available() else () snake_case__ : Optional[int] =FocalNetConfig snake_case__ : str =False def a__ ( self: Union[str, Any] )-> Tuple: lowerCamelCase : str = FocalNetModelTester(self )
42
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase__: Any = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class snake_case_ ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __A ( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = {} SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} if prompt is not None: SCREAMING_SNAKE_CASE_ : List[str] = prompt if generate_kwargs is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: SCREAMING_SNAKE_CASE_ : int = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) SCREAMING_SNAKE_CASE_ : Dict = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ): return super().__call__(UpperCAmelCase__ , **UpperCAmelCase__ ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase=None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = load_image(UpperCAmelCase__ ) if prompt is not None: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError( F'Received an invalid text input, got - {type(UpperCAmelCase__ )} - but expected a single string. ' 'Note also that one single text can be provided for conditional image to text generation.' ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.model.config.model_type if model_type == "git": SCREAMING_SNAKE_CASE_ : str = self.image_processor(images=UpperCAmelCase__ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer(text=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ).input_ids SCREAMING_SNAKE_CASE_ : List[str] = [self.tokenizer.cls_token_id] + input_ids SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor(UpperCAmelCase__ ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": SCREAMING_SNAKE_CASE_ : List[str] = self.image_processor(images=UpperCAmelCase__ , header_text=UpperCAmelCase__ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processor(images=UpperCAmelCase__ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE_ : Any = self.tokenizer(UpperCAmelCase__ , return_tensors=self.framework ) model_inputs.update(UpperCAmelCase__ ) else: raise ValueError(F'Model type {model_type} does not support conditional text generation' ) else: SCREAMING_SNAKE_CASE_ : int = self.image_processor(images=UpperCAmelCase__ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = None return model_inputs def __A ( self , __lowerCAmelCase , __lowerCAmelCase=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , UpperCAmelCase__ ) and all(x is None for x in model_inputs['input_ids'] ) ): SCREAMING_SNAKE_CASE_ : Dict = None if generate_kwargs is None: SCREAMING_SNAKE_CASE_ : List[str] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. SCREAMING_SNAKE_CASE_ : str = model_inputs.pop(self.model.main_input_name ) SCREAMING_SNAKE_CASE_ : int = self.model.generate(UpperCAmelCase__ , **UpperCAmelCase__ , **UpperCAmelCase__ ) return model_outputs def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for output_ids in model_outputs: SCREAMING_SNAKE_CASE_ : List[str] = { '''generated_text''': self.tokenizer.decode( UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , ) } records.append(UpperCAmelCase__ ) return records
345
import unittest from transformers import DonutProcessor _a : Optional[int] = 'naver-clova-ix/donut-base' class a_ ( unittest.TestCase ): def lowerCAmelCase( self : Tuple ): """simple docstring""" snake_case : Optional[Any] = DonutProcessor.from_pretrained(UpperCAmelCase__ ) def lowerCAmelCase( self : Optional[Any] ): """simple docstring""" snake_case : Union[str, Any] = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } snake_case : Optional[Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) snake_case : Any = self.processor.tokenajson(UpperCAmelCase__ ) self.assertDictEqual(UpperCAmelCase__ , UpperCAmelCase__ )
598
0
import warnings warnings.warn( '''memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ''' '''`from accelerate import find_executable_batch_size` to avoid this warning.''', FutureWarning, )
189
def __lowerCAmelCase ( snake_case : int = 1000000 ) -> int: __lowerCamelCase: Union[str, Any] = set(range(3 , snake_case , 2 ) ) primes.add(2 ) for p in range(3 , snake_case , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , snake_case , snake_case ) ) ) __lowerCamelCase: Any = [float(snake_case ) for n in range(limit + 1 )] for p in primes: for n in range(snake_case , limit + 1 , snake_case ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"""{solution() = }""")
189
1
"""simple docstring""" __lowerCAmelCase : List[Any] =[ """Audio""", """Array2D""", """Array3D""", """Array4D""", """Array5D""", """ClassLabel""", """Features""", """Sequence""", """Value""", """Image""", """Translation""", """TranslationVariableLanguages""", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
359
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : int =logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] ={ """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class _A ( lowerCAmelCase ): snake_case__ : Optional[int] = 'mra' def __init__( self , __lowerCAmelCase=5_0265 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=1 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-5 , __lowerCAmelCase="absolute" , __lowerCAmelCase=4 , __lowerCAmelCase="full" , __lowerCAmelCase=0 , __lowerCAmelCase=0 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) lowercase = vocab_size lowercase = max_position_embeddings lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = type_vocab_size lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = block_per_row lowercase = approx_mode lowercase = initial_prior_first_n_blocks lowercase = initial_prior_diagonal_n_blocks
359
1
'''simple docstring''' from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
713
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _snake_case : Union[str, Any] = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _snake_case : Tuple = concatenate_datasets _snake_case : Any = DownloadConfig _snake_case : List[Any] = DownloadManager _snake_case : Union[str, Any] = DownloadMode _snake_case : Dict = DownloadConfig _snake_case : List[str] = DownloadMode _snake_case : Union[str, Any] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
493
0
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase : int = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase : Any = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def __a ( A__ , A__ , A__=8 ) -> Dict: lowerCAmelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCAmelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : UNetaDConditionModel , SCREAMING_SNAKE_CASE : DDPMScheduler , SCREAMING_SNAKE_CASE : VQModel , ) -> Union[str, Any]: """simple docstring""" super().__init__() self.register_modules( unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , movq=SCREAMING_SNAKE_CASE , ) lowerCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple ) -> Tuple: """simple docstring""" if latents is None: lowerCAmelCase = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) lowerCAmelCase = latents.to(SCREAMING_SNAKE_CASE ) lowerCAmelCase = latents * scheduler.init_noise_sigma return latents def __A ( self : Dict , SCREAMING_SNAKE_CASE : Dict=0 ) -> List[str]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowerCAmelCase = torch.device(f"cuda:{gpu_id}" ) lowerCAmelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __A ( self : Any , SCREAMING_SNAKE_CASE : Any=0 ) -> Union[str, Any]: """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowerCAmelCase = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCAmelCase = None for cpu_offloaded_model in [self.unet, self.movq]: lowerCAmelCase , lowerCAmelCase = cpu_offload_with_hook(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prev_module_hook=SCREAMING_SNAKE_CASE ) # We'll offload the last model manually. lowerCAmelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self : Any ) -> List[Any]: """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(SCREAMING_SNAKE_CASE , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(SCREAMING_SNAKE_CASE ) def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE : Union[torch.FloatTensor, List[torch.FloatTensor]] , SCREAMING_SNAKE_CASE : Union[torch.FloatTensor, List[torch.FloatTensor]] , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : int = 5_1_2 , SCREAMING_SNAKE_CASE : int = 5_1_2 , SCREAMING_SNAKE_CASE : int = 1_0_0 , SCREAMING_SNAKE_CASE : float = 4.0 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE : Optional[str] = "pil" , SCREAMING_SNAKE_CASE : bool = True , ) -> int: """simple docstring""" lowerCAmelCase = self._execution_device lowerCAmelCase = guidance_scale > 1.0 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = torch.cat(SCREAMING_SNAKE_CASE , dim=0 ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = torch.cat(SCREAMING_SNAKE_CASE , dim=0 ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = torch.cat(SCREAMING_SNAKE_CASE , dim=0 ) lowerCAmelCase = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: lowerCAmelCase = image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE , dim=0 ) lowerCAmelCase = negative_image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE , dim=0 ) lowerCAmelCase = hint.repeat_interleave(SCREAMING_SNAKE_CASE , dim=0 ) lowerCAmelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=SCREAMING_SNAKE_CASE ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.scheduler.timesteps lowerCAmelCase = self.movq.config.latent_channels lowerCAmelCase , lowerCAmelCase = downscale_height_and_width(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.movq_scale_factor ) # create initial latent lowerCAmelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.scheduler , ) for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase = {"image_embeds": image_embeds, "hint": hint} lowerCAmelCase = self.unet( sample=SCREAMING_SNAKE_CASE , timestep=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , added_cond_kwargs=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , )[0] if do_classifier_free_guidance: lowerCAmelCase , lowerCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) lowerCAmelCase , lowerCAmelCase = noise_pred.chunk(2 ) lowerCAmelCase , lowerCAmelCase = variance_pred.chunk(2 ) lowerCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCAmelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCAmelCase , lowerCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase = self.scheduler.step( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , )[0] # post-processing lowerCAmelCase = self.movq.decode(SCREAMING_SNAKE_CASE , force_not_quantize=SCREAMING_SNAKE_CASE )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowerCAmelCase = image * 0.5 + 0.5 lowerCAmelCase = image.clamp(0 , 1 ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE )
649
'''simple docstring''' def __a ( A__ , A__ ) -> int: return int((input_a, input_a).count(0 ) == 0 ) def __a ( ) -> None: assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase : Any = TypeVar('T') UpperCAmelCase : str = TypeVar('U') class lowerCamelCase (Generic[T, U] ): def __init__( self , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : str = key _snake_case : Optional[int] = val _snake_case : DoubleLinkedListNode[T, U] | None = None _snake_case : DoubleLinkedListNode[T, U] | None = None def __repr__( self ) -> str: """simple docstring""" return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class lowerCamelCase (Generic[T, U] ): def __init__( self ) -> None: """simple docstring""" _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = self.rear, self.head def __repr__( self ) -> str: """simple docstring""" _snake_case : List[Any] = ['''DoubleLinkedList'''] _snake_case : str = self.head while node.next is not None: rep.append(str(lowercase__ ) ) _snake_case : List[str] = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Tuple = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _snake_case : Union[str, Any] = node _snake_case : Optional[Any] = previous _snake_case : int = node _snake_case : Union[str, Any] = self.rear def UpperCAmelCase_ ( self , lowercase__ ) -> DoubleLinkedListNode[T, U] | None: """simple docstring""" if node.prev is None or node.next is None: return None _snake_case : Optional[int] = node.next _snake_case : Any = node.prev _snake_case : List[str] = None _snake_case : Optional[int] = None return node class lowerCamelCase (Generic[T, U] ): _lowercase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , lowercase__ ) -> Union[str, Any]: """simple docstring""" _snake_case : DoubleLinkedList[T, U] = DoubleLinkedList() _snake_case : Union[str, Any] = capacity _snake_case : int = 0 _snake_case : Dict = 0 _snake_case : Union[str, Any] = 0 _snake_case : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ) -> str: """simple docstring""" return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , lowercase__ ) -> bool: """simple docstring""" return key in self.cache def UpperCAmelCase_ ( self , lowercase__ ) -> U | None: """simple docstring""" if key in self.cache: self.hits += 1 _snake_case : DoubleLinkedListNode[T, U] = self.cache[key] _snake_case : Tuple = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase__ ) return node.val self.miss += 1 return None def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _snake_case : Dict = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _snake_case : Optional[int] = DoubleLinkedListNode(lowercase__ , lowercase__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _snake_case : Optional[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _snake_case : Optional[Any] = value self.list.add(lowercase__ ) @classmethod def UpperCAmelCase_ ( cls , lowercase__ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: """simple docstring""" def cache_decorator_inner(lowercase__ ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase__ ) -> U: if func not in cls.decorator_function_to_instance_map: _snake_case : Optional[Any] = LRUCache(lowercase__ ) _snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _snake_case : Tuple = func(*lowercase__ ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase__ , '''cache_info''' , lowercase__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
705
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase : str = logging.getLogger(__name__) UpperCAmelCase : Dict = 5_0 # max width of layer names UpperCAmelCase : Union[str, Any] = 7_0 # max width of quantizer names def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=lowerCAmelCase_ , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=lowerCAmelCase_ , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=lowerCAmelCase_ , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=lowerCAmelCase_ , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=lowerCAmelCase_ , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=lowerCAmelCase_ , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def _a ( lowerCAmelCase_ ): """simple docstring""" if args.calibrator == "max": _snake_case : Optional[int] = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) _snake_case : Tuple = '''histogram''' elif args.calibrator == "mse": _snake_case : int = '''histogram''' else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) _snake_case : Tuple = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase_ ) _snake_case : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ): """simple docstring""" logger.info('''Configuring Model for Quantization''' ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCAmelCase_ , ['''embeddings'''] , which='''weight''' , _disabled=lowerCAmelCase_ ) if args.quant_disable: set_quantizer_by_name(lowerCAmelCase_ , [''''''] , _disabled=lowerCAmelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCAmelCase_ , args.quant_disable_keyword , _disabled=lowerCAmelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=lowerCAmelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=lowerCAmelCase_ ) if args.recalibrate_weights: recalibrate_weights(lowerCAmelCase_ ) if args.fuse_qkv: fuse_qkv(lowerCAmelCase_ , lowerCAmelCase_ ) if args.clip_gelu: clip_gelu(lowerCAmelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" def fusea(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): for mod in [qq, qk, qv]: if not hasattr(lowerCAmelCase_ , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return _snake_case : Tuple = qq._amax.detach().item() _snake_case : Tuple = qk._amax.detach().item() _snake_case : List[Any] = qv._amax.detach().item() _snake_case : List[str] = max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) qq._amax.fill_(lowerCAmelCase_ ) qk._amax.fill_(lowerCAmelCase_ ) qv._amax.fill_(lowerCAmelCase_ ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): _snake_case : List[Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase_ ) _snake_case : List[str] = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: _snake_case : Dict = mod.weight.shape[0] _snake_case : Optional[int] = mod._weight_quantizer._amax.detach() _snake_case : Optional[int] = torch.ones(lowerCAmelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _snake_case : int = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _snake_case : Dict = set(range(len(mod.weight.size() ) ) ) - axis_set _snake_case : Optional[int] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase_ , keepdims=lowerCAmelCase_ ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _snake_case : Tuple = amax def _a ( lowerCAmelCase_ , lowerCAmelCase_=25 , lowerCAmelCase_=180 , lowerCAmelCase_=None ): """simple docstring""" if ignore is None: _snake_case : Dict = [] elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Optional[int] = [ignore] _snake_case : str = 0 for name, mod in model.named_modules(): if not hasattr(lowerCAmelCase_ , '''weight''' ): continue _snake_case : Optional[int] = max(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) for name, mod in model.named_modules(): _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ ) _snake_case : Tuple = getattr(lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ ) if not hasattr(lowerCAmelCase_ , '''weight''' ): continue if type(lowerCAmelCase_ ) in ignore: continue if [True for s in ignore if type(lowerCAmelCase_ ) is str and s in name]: continue _snake_case : Optional[int] = f'''Act:{input_q.extra_repr()}''' _snake_case : Any = f'''Wgt:{weight_q.extra_repr()}''' _snake_case : Optional[int] = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(lowerCAmelCase_ ) <= line_width: logger.info(lowerCAmelCase_ ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{" ":{name_width}} {wgt_str}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : str = 0 for name, mod in model.named_modules(): if isinstance(lowerCAmelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if quantizer_mod is not None: assert hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: logger.warning(f'''{name} has no {quantizer}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="both" , **lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) if which in ["weight", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_input_quantizer''' ) or hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): set_quantizers(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Any = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ )
47
0
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore lowerCAmelCase__ = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" lowerCAmelCase__ = [file for file in filepaths if file != file.lower()] if upper_files: print(f"""{len(upper_files)} files contain uppercase characters:""") print("""\n""".join(upper_files) + """\n""") lowerCAmelCase__ = [file for file in filepaths if """ """ in file] if space_files: print(f"""{len(space_files)} files contain space characters:""") print("""\n""".join(space_files) + """\n""") lowerCAmelCase__ = [file for file in filepaths if """-""" in file] if hyphen_files: print(f"""{len(hyphen_files)} files contain hyphen characters:""") print("""\n""".join(hyphen_files) + """\n""") lowerCAmelCase__ = [file for file in filepaths if os.sep not in file] if nodir_files: print(f"""{len(nodir_files)} files are not in a directory:""") print("""\n""".join(nodir_files) + """\n""") lowerCAmelCase__ = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
514
from PIL import Image def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Image , SCREAMING_SNAKE_CASE_: int ) -> Image: '''simple docstring''' A__ = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level)) def contrast(SCREAMING_SNAKE_CASE_: int ) -> int: return int(1_2_8 + factor * (c - 1_2_8) ) return img.point(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change contrast to 170 lowerCAmelCase__ = change_contrast(img, 1_7_0) cont_img.save("""image_data/lena_high_contrast.png""", format="""png""")
514
1
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str ) -> list[int]: return [ord(UpperCAmelCase_ ) - 9_6 for elem in plain] def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : list[int] ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def SCREAMING_SNAKE_CASE_ ( ) -> None: SCREAMING_SNAKE_CASE_ : int =encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , UpperCAmelCase_ ) print('''Decoded:''' , decode(UpperCAmelCase_ ) ) if __name__ == "__main__": main()
431
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowercase_ : def __init__( self , __A , __A=14 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=3 , __A=4 , __A=None , ) -> Tuple: SCREAMING_SNAKE_CASE_ : int =parent SCREAMING_SNAKE_CASE_ : Dict =batch_size SCREAMING_SNAKE_CASE_ : int =seq_length SCREAMING_SNAKE_CASE_ : Tuple =is_training SCREAMING_SNAKE_CASE_ : int =use_token_type_ids SCREAMING_SNAKE_CASE_ : str =use_input_mask SCREAMING_SNAKE_CASE_ : Tuple =use_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] =use_mc_token_ids SCREAMING_SNAKE_CASE_ : Union[str, Any] =vocab_size SCREAMING_SNAKE_CASE_ : List[Any] =hidden_size SCREAMING_SNAKE_CASE_ : Tuple =num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[Any] =num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[int] =intermediate_size SCREAMING_SNAKE_CASE_ : Tuple =hidden_act SCREAMING_SNAKE_CASE_ : Dict =hidden_dropout_prob SCREAMING_SNAKE_CASE_ : int =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict =max_position_embeddings SCREAMING_SNAKE_CASE_ : List[str] =type_vocab_size SCREAMING_SNAKE_CASE_ : List[Any] =type_sequence_label_size SCREAMING_SNAKE_CASE_ : str =initializer_range SCREAMING_SNAKE_CASE_ : Tuple =num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] =num_choices SCREAMING_SNAKE_CASE_ : Optional[Any] =scope SCREAMING_SNAKE_CASE_ : str =self.vocab_size - 1 def _snake_case ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Tuple =None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : int =None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Dict =None if self.use_mc_token_ids: SCREAMING_SNAKE_CASE_ : Any =ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) SCREAMING_SNAKE_CASE_ : Tuple =None SCREAMING_SNAKE_CASE_ : int =None SCREAMING_SNAKE_CASE_ : Optional[Any] =None if self.use_labels: SCREAMING_SNAKE_CASE_ : Dict =ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Dict =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ : Optional[Any] =ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ : Optional[Any] =self.get_config() SCREAMING_SNAKE_CASE_ : Union[str, Any] =ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _snake_case ( self ) -> List[Any]: return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _snake_case ( self , __A , __A , __A , __A , __A , *__A ) -> int: SCREAMING_SNAKE_CASE_ : List[str] =CTRLModel(config=__A ) model.to(__A ) model.eval() model(__A , token_type_ids=__A , head_mask=__A ) model(__A , token_type_ids=__A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def _snake_case ( self , __A , __A , __A , __A , __A , *__A ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : Dict =CTRLLMHeadModel(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE_ : int =model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self ) -> str: SCREAMING_SNAKE_CASE_ : Dict =self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : int =config_and_inputs SCREAMING_SNAKE_CASE_ : int ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def _snake_case ( self , __A , __A , __A , __A , *__A ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : Any =self.num_labels SCREAMING_SNAKE_CASE_ : Optional[Any] =CTRLForSequenceClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Dict =model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class lowercase_ ( A , A , A , unittest.TestCase ): __lowerCamelCase = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () __lowerCamelCase = (CTRLLMHeadModel,) if is_torch_available() else () __lowerCamelCase = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False def _snake_case ( self , __A , __A , __A , __A , __A ) -> Optional[int]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _snake_case ( self ) -> int: SCREAMING_SNAKE_CASE_ : Tuple =CTRLModelTester(self ) SCREAMING_SNAKE_CASE_ : Dict =ConfigTester(self , config_class=__A , n_embd=37 ) def _snake_case ( self ) -> Union[str, Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> List[str]: self.config_tester.run_common_tests() def _snake_case ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__A ) def _snake_case ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _snake_case ( self ) -> Optional[int]: pass @slow def _snake_case ( self ) -> List[Any]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : str =CTRLModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def _snake_case ( self ) -> Optional[int]: pass @require_torch class lowercase_ ( unittest.TestCase ): def _snake_case ( self ) -> List[Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _snake_case ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ : Any =CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(__A ) SCREAMING_SNAKE_CASE_ : Any =torch.tensor( [[11_859, 0, 1_611, 8]] , dtype=torch.long , device=__A ) # Legal the president is SCREAMING_SNAKE_CASE_ : Optional[Any] =[ 11_859, 0, 1_611, 8, 5, 150, 26_449, 2, 19, 348, 469, 3, 2_595, 48, 20_740, 246_533, 246_533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a SCREAMING_SNAKE_CASE_ : Dict =model.generate(__A , do_sample=__A ) self.assertListEqual(output_ids[0].tolist() , __A )
431
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel snake_case__ : Union[str, Any] = False snake_case__ : int = True snake_case__ : List[str] = False if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--repo_path''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') snake_case__ : List[str] = parser.parse_args() snake_case__ : Optional[Any] = { '''image_size''': '''sample_size''', '''num_res_blocks''': '''layers_per_block''', '''block_channels''': '''block_out_channels''', '''down_blocks''': '''down_block_types''', '''up_blocks''': '''up_block_types''', '''downscale_freq_shift''': '''freq_shift''', '''resnet_num_groups''': '''norm_num_groups''', '''resnet_act_fn''': '''act_fn''', '''resnet_eps''': '''norm_eps''', '''num_head_channels''': '''attention_head_dim''', } snake_case__ : Dict = { '''time_steps''': '''time_proj''', '''mid''': '''mid_block''', '''downsample_blocks''': '''down_blocks''', '''upsample_blocks''': '''up_blocks''', } snake_case__ : Optional[int] = '''''' if has_file(args.repo_path, '''config.json''') else '''unet''' with open(os.path.join(args.repo_path, subfolder, '''config.json'''), '''r''', encoding='''utf-8''') as reader: snake_case__ : Any = reader.read() snake_case__ : Optional[Any] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, '''config.json'''): snake_case__ : Any = UNetaDModel(**config) else: snake_case__ : Any = UNetaDConditionModel if '''ldm-text2im-large-256''' in args.repo_path else UNetaDModel snake_case__ : Optional[Any] = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) snake_case__ : Optional[int] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: snake_case__ : Optional[int] = config[key] del config[key] snake_case__ : List[str] = [k.replace('''UNetRes''', '''''') for k in config['''down_block_types''']] snake_case__ : Dict = [k.replace('''UNetRes''', '''''') for k in config['''up_block_types''']] if do_only_weights: snake_case__ : Tuple = torch.load(os.path.join(args.repo_path, subfolder, '''diffusion_pytorch_model.bin''')) snake_case__ : Optional[int] = {} for param_key, param_value in state_dict.items(): if param_key.endswith('''.op.bias''') or param_key.endswith('''.op.weight'''): continue snake_case__ : List[str] = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('''.''')[0] == key: snake_case__ : Tuple = param_value snake_case__ : Optional[Any] = True if not has_changed: snake_case__ : Optional[Any] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
392
def lowercase ( _lowerCAmelCase ): UpperCAmelCase__ = len(_lowerCAmelCase ) while cur > 1: # Find the maximum number in arr UpperCAmelCase__ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi UpperCAmelCase__ = arr[mi::-1] + arr[mi + 1 : len(_lowerCAmelCase )] # Reverse whole list UpperCAmelCase__ = arr[cur - 1 :: -1] + arr[cur : len(_lowerCAmelCase )] cur -= 1 return arr if __name__ == "__main__": snake_case__ : List[str] = input('''Enter numbers separated by a comma:\n''').strip() snake_case__ : str = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
392
1
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __snake_case :str = logging.get_logger(__name__) __snake_case :str = ['''model.decoder.embed_positions.weights'''] def __snake_case ( _UpperCAmelCase ): if "emb" in name: __a = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: __a = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: __a = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: __a = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: __a = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: __a = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: __a = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: __a = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: __a = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: __a = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: __a = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = list(state_dict.keys() ) __a = {} for key in keys: __a = state_dict.pop(_UpperCAmelCase ) __a = rename_keys(_UpperCAmelCase ) if "in_proj_weight" in key: # split fused qkv proj __a = val[:hidden_size, :] __a = val[hidden_size : 2 * hidden_size, :] __a = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __a = val else: __a = val return state_dict, enc_dec_proj_state_dict def __snake_case ( _UpperCAmelCase ): if checkpoint == "small": # default config values __a = 1024 __a = 24 __a = 16 elif checkpoint == "medium": __a = 1536 __a = 48 __a = 24 elif checkpoint == "large": __a = 2048 __a = 48 __a = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) __a = MusicgenDecoderConfig( hidden_size=_UpperCAmelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , ) return config @torch.no_grad() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="cpu" ): __a = MusicGen.get_pretrained(_UpperCAmelCase , device=_UpperCAmelCase ) __a = decoder_config_from_checkpoint(_UpperCAmelCase ) __a = fairseq_model.lm.state_dict() __a , __a = rename_state_dict( _UpperCAmelCase , hidden_size=decoder_config.hidden_size ) __a = TaEncoderModel.from_pretrained('''t5-base''' ) __a = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) __a = MusicgenForCausalLM(_UpperCAmelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __a , __a = decoder.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(_UpperCAmelCase ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model __a = MusicgenForConditionalGeneration(text_encoder=_UpperCAmelCase , audio_encoder=_UpperCAmelCase , decoder=_UpperCAmelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_UpperCAmelCase ) # check we can do a forward pass __a = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __a = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __a = model(input_ids=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor __a = AutoTokenizer.from_pretrained('''t5-base''' ) __a = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) __a = MusicgenProcessor(feature_extractor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # set the appropriate bos/pad token ids __a = 2048 __a = 2048 # set other default generation config params __a = int(30 * audio_encoder.config.frame_rate ) __a = True __a = 3.0 if pytorch_dump_folder is not None: Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(_UpperCAmelCase ) processor.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": __snake_case :int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) __snake_case :Optional[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
717
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __snake_case :List[str] = re.compile(r'''^(?P<major>\d+)''' r'''\.(?P<minor>\d+)''' r'''\.(?P<patch>\d+)$''') @total_ordering @dataclass class _A : UpperCamelCase__ : str UpperCamelCase__ : Optional[str] = None UpperCamelCase__ : Optional[Union[str, int]] = None UpperCamelCase__ : Optional[Union[str, int]] = None UpperCamelCase__ : Optional[Union[str, int]] = None def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a , __a , __a = _str_to_version_tuple(self.version_str) def __repr__( self : Tuple): '''simple docstring''' return F'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' return self.major, self.minor, self.patch def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): return Version(__SCREAMING_SNAKE_CASE) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): return other raise TypeError(F'{other} (type {type(__SCREAMING_SNAKE_CASE)}) cannot be compared to version.') def __eq__( self : int , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' try: __a = self._validate_operand(__SCREAMING_SNAKE_CASE) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : str , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a = self._validate_operand(__SCREAMING_SNAKE_CASE) return self.tuple < other.tuple def __hash__( self : Optional[Any]): '''simple docstring''' return hash(_version_tuple_to_str(self.tuple)) @classmethod def _lowerCamelCase ( cls : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' __a = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in dic.items() if k in field_names}) def _lowerCamelCase ( self : int): '''simple docstring''' return self.version_str def __snake_case ( _UpperCAmelCase ): __a = _VERSION_REG.match(_UpperCAmelCase ) if not res: raise ValueError(f'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(_UpperCAmelCase ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] ) def __snake_case ( _UpperCAmelCase ): return ".".join(str(_UpperCAmelCase ) for v in version_tuple )
60
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule __SCREAMING_SNAKE_CASE = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
688
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class lowerCAmelCase__ : """simple docstring""" def __init__( self : str ) -> Dict: '''simple docstring''' a__ : List[str] = False def __lowerCAmelCase ( self : Tuple , A__ : Optional[int] , A__ : Optional[Any] , A__ : List[str] , A__ : Tuple ) -> Optional[int]: '''simple docstring''' if not self.initialized: a__ : Optional[Any] = RagRetriever( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , ) a__ : Union[str, Any] = True def __lowerCAmelCase ( self : Tuple ) -> Tuple: '''simple docstring''' self.retriever.index.init_index() def __lowerCAmelCase ( self : List[Any] , A__ : List[Any] , A__ : Optional[int] ) -> List[Any]: '''simple docstring''' a__ , a__ : Optional[Any] = self.retriever._main_retrieve(A__ , A__ ) return doc_ids, retrieved_doc_embeds class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : str , A__ : Optional[int] , A__ : List[Any] , A__ : List[Any] , A__ : str , A__ : Any=None ) -> Optional[Any]: '''simple docstring''' if index is not None and index.is_initialized() and len(A__ ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , ) a__ : List[str] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A__ , A__ , A__ , A__ ) for worker in self.retrieval_workers ] ) def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCAmelCase ( self : Optional[int] , A__ : Optional[int] , A__ : int ) -> Dict: '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. a__ : List[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] a__ , a__ : Tuple = ray.get(random_worker.retrieve.remote(A__ , A__ ) ) else: a__ , a__ : int = self._main_retrieve(A__ , A__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A__ ) @classmethod def __lowerCAmelCase ( cls : int , A__ : Optional[Any] , A__ : Any=None , **A__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' return super(A__ , cls ).get_tokenizers(A__ , A__ , **A__ ) @classmethod def __lowerCAmelCase ( cls : int , A__ : Optional[int] , A__ : Union[str, Any] , A__ : Union[str, Any]=None , **A__ : Dict ) -> List[Any]: '''simple docstring''' a__ : Dict = kwargs.pop('''config''' , A__ ) or RagConfig.from_pretrained(A__ , **A__ ) a__ : Dict = RagTokenizer.from_pretrained(A__ , config=A__ ) a__ : str = rag_tokenizer.question_encoder a__ : List[str] = rag_tokenizer.generator if indexed_dataset is not None: a__ : List[Any] = '''custom''' a__ : List[Any] = CustomHFIndex(config.retrieval_vector_size , A__ ) else: a__ : Optional[Any] = cls._build_index(A__ ) return cls( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , retrieval_workers=A__ , index=A__ , )
688
1
from math import isqrt, loga def snake_case__ ( UpperCAmelCase : int ): lowerCAmelCase__ :Optional[int] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase__ :int = False return [i for i in range(2 , UpperCAmelCase ) if is_prime[i]] def snake_case__ ( UpperCAmelCase : int = 8_0_0_8_0_0 , UpperCAmelCase : int = 8_0_0_8_0_0 ): lowerCAmelCase__ :str = degree * loga(UpperCAmelCase ) lowerCAmelCase__ :Any = int(UpperCAmelCase ) lowerCAmelCase__ :List[Any] = calculate_prime_numbers(UpperCAmelCase ) lowerCAmelCase__ :List[str] = 0 lowerCAmelCase__ :List[str] = 0 lowerCAmelCase__ :Optional[Any] = len(UpperCAmelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"""{solution() = }""")
111
def snake_case__ ( UpperCAmelCase : float ): if edge <= 0 or not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((2_5 + 1_0 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def snake_case__ ( UpperCAmelCase : float ): if edge <= 0 or not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((1_5 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
111
1
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel _UpperCamelCase = logging.getLogger(__name__) def _a ( _snake_case , _snake_case ): """simple docstring""" if os.path.exists(lowerCamelCase__ ): if os.path.exists(os.path.join(lowerCamelCase__ , """config.json""" ) ) and os.path.isfile( os.path.join(lowerCamelCase__ , """config.json""" ) ): os.remove(os.path.join(lowerCamelCase__ , """config.json""" ) ) if os.path.exists(os.path.join(lowerCamelCase__ , """pytorch_model.bin""" ) ) and os.path.isfile( os.path.join(lowerCamelCase__ , """pytorch_model.bin""" ) ): os.remove(os.path.join(lowerCamelCase__ , """pytorch_model.bin""" ) ) else: os.makedirs(lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) def _a ( _snake_case , _snake_case=False ): """simple docstring""" UpperCAmelCase = 2 if unlogit: UpperCAmelCase = torch.pow(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase = p * torch.log(lowerCamelCase__ ) UpperCAmelCase = 0 return -plogp.sum(dim=-1 ) def _a ( _snake_case ): """simple docstring""" logger.info("""lv, h >\t""" + """\t""".join(F'''{x + 1}''' for x in range(len(lowerCamelCase__ ) ) ) ) for row in range(len(lowerCamelCase__ ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case=True , _snake_case=True , _snake_case=None , _snake_case=False ): """simple docstring""" UpperCAmelCase = model.config.num_hidden_layers, model.config.num_attention_heads UpperCAmelCase = torch.zeros(lowerCamelCase__ , lowerCamelCase__ ).to(args.device ) UpperCAmelCase = torch.zeros(lowerCamelCase__ , lowerCamelCase__ ).to(args.device ) if head_mask is None: UpperCAmelCase = torch.ones(lowerCamelCase__ , lowerCamelCase__ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCamelCase__ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: UpperCAmelCase = None UpperCAmelCase = 0.0 UpperCAmelCase = 0.0 for step, inputs in enumerate(tqdm(lowerCamelCase__ , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ): UpperCAmelCase = tuple(t.to(args.device ) for t in inputs ) (UpperCAmelCase ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) UpperCAmelCase = model(lowerCamelCase__ , labels=lowerCamelCase__ , head_mask=lowerCamelCase__ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) UpperCAmelCase = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCamelCase__ ): UpperCAmelCase = entropy(attn.detach() , lowerCamelCase__ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCamelCase__ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: UpperCAmelCase = 2 UpperCAmelCase = torch.pow(torch.pow(lowerCamelCase__ , lowerCamelCase__ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: UpperCAmelCase = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("""Attention entropies""" ) print_ad_tensor(lowerCamelCase__ ) if compute_importance: logger.info("""Head importance scores""" ) print_ad_tensor(lowerCamelCase__ ) logger.info("""Head ranked by importance scores""" ) UpperCAmelCase = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) UpperCAmelCase = torch.arange( head_importance.numel() , device=args.device ) UpperCAmelCase = head_ranks.view_as(lowerCamelCase__ ) print_ad_tensor(lowerCamelCase__ ) return attn_entropy, head_importance, total_loss def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = compute_heads_importance(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , compute_entropy=lowerCamelCase__ ) UpperCAmelCase = 1 / loss # instead of downsteam score use the LM loss logger.info("""Pruning: original score: %f, threshold: %f""" , lowerCamelCase__ , original_score * args.masking_threshold ) UpperCAmelCase = torch.ones_like(lowerCamelCase__ ) UpperCAmelCase = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) UpperCAmelCase = original_score while current_score >= original_score * args.masking_threshold: UpperCAmelCase = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads UpperCAmelCase = float("""Inf""" ) UpperCAmelCase = head_importance.view(-1 ).sort()[1] if len(lowerCamelCase__ ) <= num_to_mask: print("""BREAK BY num_to_mask""" ) break # mask heads UpperCAmelCase = current_heads_to_mask[:num_to_mask] logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) ) UpperCAmelCase = new_head_mask.view(-1 ) UpperCAmelCase = 0.0 UpperCAmelCase = new_head_mask.view_as(lowerCamelCase__ ) UpperCAmelCase = new_head_mask.clone().detach() print_ad_tensor(lowerCamelCase__ ) # Compute metric and head importance again UpperCAmelCase = compute_heads_importance( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , compute_entropy=lowerCamelCase__ , head_mask=lowerCamelCase__ ) UpperCAmelCase = 1 / loss logger.info( """Masking: current score: %f, remaining heads %d (%.1f percents)""" , lowerCamelCase__ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("""Final head mask""" ) print_ad_tensor(lowerCamelCase__ ) np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() ) return head_mask def _a ( _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = datetime.now() UpperCAmelCase = compute_heads_importance( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , compute_entropy=lowerCamelCase__ , compute_importance=lowerCamelCase__ , head_mask=lowerCamelCase__ ) UpperCAmelCase = 1 / loss UpperCAmelCase = datetime.now() - before_time UpperCAmelCase = sum(p.numel() for p in model.parameters() ) UpperCAmelCase = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCamelCase__ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCAmelCase = [ v, ] assert sum(len(lowerCamelCase__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCamelCase__ ) UpperCAmelCase = sum(p.numel() for p in model.parameters() ) UpperCAmelCase = datetime.now() UpperCAmelCase = compute_heads_importance( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , compute_entropy=lowerCamelCase__ , compute_importance=lowerCamelCase__ , head_mask=lowerCamelCase__ , actually_pruned=lowerCamelCase__ , ) UpperCAmelCase = 1 / loss UpperCAmelCase = datetime.now() - before_time logger.info( """Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , lowerCamelCase__ , lowerCamelCase__ , pruned_num_params / original_num_params * 100 , ) logger.info("""Pruning: score with masking: %f score with pruning: %f""" , lowerCamelCase__ , lowerCamelCase__ ) logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 100 ) save_model(lowerCamelCase__ , args.output_dir ) def _a ( ): """simple docstring""" UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--data_dir""" , default=lowerCamelCase__ , type=lowerCamelCase__ , required=lowerCamelCase__ , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , ) parser.add_argument( """--model_name_or_path""" , default=lowerCamelCase__ , type=lowerCamelCase__ , required=lowerCamelCase__ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--output_dir""" , default=lowerCamelCase__ , type=lowerCamelCase__ , required=lowerCamelCase__ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) # Other parameters parser.add_argument( """--config_name""" , default="""""" , type=lowerCamelCase__ , help="""Pretrained config name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--tokenizer_name""" , default="""""" , type=lowerCamelCase__ , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--cache_dir""" , default=lowerCamelCase__ , type=lowerCamelCase__ , help="""Where do you want to store the pre-trained models downloaded from s3""" , ) parser.add_argument( """--data_subset""" , type=lowerCamelCase__ , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" ) parser.add_argument( """--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) parser.add_argument( """--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don\'t normalize importance score by layers""" ) parser.add_argument( """--dont_normalize_global_importance""" , action="""store_true""" , help="""Don\'t normalize all importance scores between 0 and 1""" , ) parser.add_argument( """--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" ) parser.add_argument( """--masking_threshold""" , default=0.9 , type=lowerCamelCase__ , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , ) parser.add_argument( """--masking_amount""" , default=0.1 , type=lowerCamelCase__ , help="""Amount to heads to masking at each masking step.""" ) parser.add_argument("""--metric_name""" , default="""acc""" , type=lowerCamelCase__ , help="""Metric to use for head masking.""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=lowerCamelCase__ , help=( """The maximum total input sequence length after WordPiece tokenization. \n""" """Sequences longer than this will be truncated, sequences shorter padded.""" ) , ) parser.add_argument("""--batch_size""" , default=1 , type=lowerCamelCase__ , help="""Batch size.""" ) parser.add_argument("""--seed""" , type=lowerCamelCase__ , default=42 ) parser.add_argument("""--local_rank""" , type=lowerCamelCase__ , default=-1 , help="""local_rank for distributed training on gpus""" ) parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" ) parser.add_argument("""--server_ip""" , type=lowerCamelCase__ , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=lowerCamelCase__ , default="""""" , help="""Can be used for distant debugging.""" ) UpperCAmelCase = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCamelCase__ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: UpperCAmelCase = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" ) UpperCAmelCase = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) UpperCAmelCase = torch.device("""cuda""" , args.local_rank ) UpperCAmelCase = 1 torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) UpperCAmelCase = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: UpperCAmelCase = nn.parallel.DistributedDataParallel( lowerCamelCase__ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCamelCase__ ) elif args.n_gpu > 1: UpperCAmelCase = nn.DataParallel(lowerCamelCase__ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCamelCase__ ) torch.save(lowerCamelCase__ , os.path.join(args.output_dir , """run_args.bin""" ) ) logger.info("""Training/evaluation parameters %s""" , lowerCamelCase__ ) # Prepare dataset UpperCAmelCase = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) UpperCAmelCase = (torch.from_numpy(lowerCamelCase__ ),) UpperCAmelCase = TensorDataset(*lowerCamelCase__ ) UpperCAmelCase = RandomSampler(lowerCamelCase__ ) UpperCAmelCase = DataLoader(lowerCamelCase__ , sampler=lowerCamelCase__ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: UpperCAmelCase = mask_heads(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) prune_heads(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
341
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="""%(message)s""") def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> np.ndarray: return input_array.reshape((input_array.size, 1) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> np.ndarray: __lowerCamelCase : str = np.nan for i in range(lowerCamelCase__ ): __lowerCamelCase : int = features[:, labels == i] __lowerCamelCase : Optional[int] = data.mean(1 ) # Centralize the data of class i __lowerCamelCase : int = data - column_reshape(lowerCamelCase__ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(lowerCamelCase__ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) __lowerCamelCase : Union[str, Any] = np.dot(lowerCamelCase__ , centered_data.T ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> np.ndarray: __lowerCamelCase : Optional[Any] = features.mean(1 ) __lowerCamelCase : Union[str, Any] = np.nan for i in range(lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = features[:, labels == i] __lowerCamelCase : Union[str, Any] = data.shape[1] __lowerCamelCase : Union[str, Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(lowerCamelCase__ ) - column_reshape(lowerCamelCase__ ) , (column_reshape(lowerCamelCase__ ) - column_reshape(lowerCamelCase__ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) __lowerCamelCase : List[str] = device_data * np.dot( column_reshape(lowerCamelCase__ ) - column_reshape(lowerCamelCase__ ) , (column_reshape(lowerCamelCase__ ) - column_reshape(lowerCamelCase__ )).T , ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> np.ndarray: # Check if the features have been loaded if features.any(): __lowerCamelCase : Tuple = features.mean(1 ) # Center the dataset __lowerCamelCase : Any = features - np.reshape(lowerCamelCase__ , (data_mean.size, 1) ) __lowerCamelCase : Optional[int] = np.dot(lowerCamelCase__ , centered_data.T ) / features.shape[1] __lowerCamelCase , __lowerCamelCase : List[Any] = np.linalg.eigh(lowerCamelCase__ ) # Take all the columns in the reverse order (-1), and then takes only the first __lowerCamelCase : Dict = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space __lowerCamelCase : int = np.dot(filtered_eigenvectors.T , lowerCamelCase__ ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=lowerCamelCase__ ) logging.error('Dataset empty' ) raise AssertionError def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> np.ndarray: assert classes > dimensions # Check if features have been already loaded if features.any: __lowerCamelCase , __lowerCamelCase : Dict = eigh( covariance_between_classes(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , covariance_within_classes(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , ) __lowerCamelCase : Union[str, Any] = eigenvectors[:, ::-1][:, :dimensions] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = np.linalg.svd(lowerCamelCase__ ) __lowerCamelCase : int = svd_matrix[:, 0:dimensions] __lowerCamelCase : Optional[int] = np.dot(filtered_svd_matrix.T , lowerCamelCase__ ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=lowerCamelCase__ ) logging.error('Dataset empty' ) raise AssertionError def SCREAMING_SNAKE_CASE__ ( ) -> None: # Create dummy dataset with 2 classes and 3 features __lowerCamelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) __lowerCamelCase : Optional[int] = np.array([0, 0, 0, 1, 1] ) __lowerCamelCase : Optional[Any] = 2 __lowerCamelCase : Tuple = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(lowerCamelCase__ ) as error_info: __lowerCamelCase : int = linear_discriminant_analysis( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if isinstance(lowerCamelCase__ , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def SCREAMING_SNAKE_CASE__ ( ) -> None: __lowerCamelCase : Dict = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) __lowerCamelCase : Dict = 2 __lowerCamelCase : int = np.array([[6.9282_0323, 8.6602_5404, 10.3923_0485], [3.0, 3.0, 3.0]] ) with pytest.raises(lowerCamelCase__ ) as error_info: __lowerCamelCase : Optional[Any] = principal_component_analysis(lowerCamelCase__ , lowerCamelCase__ ) if not np.allclose(lowerCamelCase__ , lowerCamelCase__ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
652
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __a ( unittest.TestCase ): """simple docstring""" def __A ( self : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =0 def __A ( self : List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(_UpperCamelCase ,_UpperCamelCase ) def __A ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ =Path(_UpperCamelCase ) / """preprocessor_config.json""" SCREAMING_SNAKE_CASE__ =Path(_UpperCamelCase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(_UpperCamelCase ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(_UpperCamelCase ,"""w""" ) ) SCREAMING_SNAKE_CASE__ =AutoImageProcessor.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase ,_UpperCamelCase ) def __A ( self : str ) -> Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ =Path(_UpperCamelCase ) / """preprocessor_config.json""" SCREAMING_SNAKE_CASE__ =Path(_UpperCamelCase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} ,open(_UpperCamelCase ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(_UpperCamelCase ,"""w""" ) ) SCREAMING_SNAKE_CASE__ =AutoImageProcessor.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase ,_UpperCamelCase ) def __A ( self : Optional[int] ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ =CLIPConfig() # Create a dummy config file with image_proceesor_type SCREAMING_SNAKE_CASE__ =Path(_UpperCamelCase ) / """preprocessor_config.json""" SCREAMING_SNAKE_CASE__ =Path(_UpperCamelCase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(_UpperCamelCase ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(_UpperCamelCase ,"""w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally SCREAMING_SNAKE_CASE__ =AutoImageProcessor.from_pretrained(_UpperCamelCase ).to_dict() config_dict.pop("""image_processor_type""" ) SCREAMING_SNAKE_CASE__ =CLIPImageProcessor(**_UpperCamelCase ) # save in new folder model_config.save_pretrained(_UpperCamelCase ) config.save_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =AutoImageProcessor.from_pretrained(_UpperCamelCase ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE__ =json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(_UpperCamelCase ,_UpperCamelCase ) def __A ( self : Tuple ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ =Path(_UpperCamelCase ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(_UpperCamelCase ,"""w""" ) ,) SCREAMING_SNAKE_CASE__ =AutoImageProcessor.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase ,_UpperCamelCase ) def __A ( self : str ) -> int: '''simple docstring''' with self.assertRaisesRegex( _UpperCamelCase ,"""clip-base is not a local folder and is not a valid model identifier""" ): SCREAMING_SNAKE_CASE__ =AutoImageProcessor.from_pretrained("""clip-base""" ) def __A ( self : Tuple ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( _UpperCamelCase ,r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): SCREAMING_SNAKE_CASE__ =AutoImageProcessor.from_pretrained(_UpperCamelCase ,revision="""aaaaaa""" ) def __A ( self : Dict ) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( _UpperCamelCase ,"""hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" ,): SCREAMING_SNAKE_CASE__ =AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __A ( self : Any ) -> Dict: '''simple docstring''' with self.assertRaises(_UpperCamelCase ): SCREAMING_SNAKE_CASE__ =AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_UpperCamelCase ): SCREAMING_SNAKE_CASE__ =AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=_UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =AutoImageProcessor.from_pretrained(_UpperCamelCase ,trust_remote_code=_UpperCamelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ ,"""NewImageProcessor""" ) def __A ( self : List[Any] ) -> Optional[int]: '''simple docstring''' try: AutoConfig.register("""custom""" ,_UpperCamelCase ) AutoImageProcessor.register(_UpperCamelCase ,_UpperCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCamelCase ): AutoImageProcessor.register(_UpperCamelCase ,_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ =Path(_UpperCamelCase ) / """preprocessor_config.json""" SCREAMING_SNAKE_CASE__ =Path(_UpperCamelCase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} ,open(_UpperCamelCase ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(_UpperCamelCase ,"""w""" ) ) SCREAMING_SNAKE_CASE__ =CustomImageProcessor.from_pretrained(_UpperCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =AutoImageProcessor.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase ,_UpperCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __A ( self : int ) -> Dict: '''simple docstring''' class __a ( __lowerCamelCase ): """simple docstring""" _A : Dict = True try: AutoConfig.register("""custom""" ,_UpperCamelCase ) AutoImageProcessor.register(_UpperCamelCase ,_UpperCamelCase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE__ =AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE__ =AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=_UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE__ =AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=_UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(not hasattr(_UpperCamelCase ,"""is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
588
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __a ( __lowerCamelCase ): """simple docstring""" _A : torch.FloatTensor class __a ( __lowerCamelCase , __lowerCamelCase ): """simple docstring""" @register_to_config def __init__( self : str ,_UpperCamelCase : int = 3_2 ,_UpperCamelCase : int = 6_4 ,_UpperCamelCase : int = 2_0 ,_UpperCamelCase : int = 7_6_8 ,_UpperCamelCase : Tuple=7_7 ,_UpperCamelCase : List[str]=4 ,_UpperCamelCase : float = 0.0 ,_UpperCamelCase : str = "silu" ,_UpperCamelCase : Optional[str] = None ,_UpperCamelCase : Optional[str] = None ,_UpperCamelCase : Optional[str] = "linear" ,_UpperCamelCase : Optional[str] = "prd" ,_UpperCamelCase : Optional[int] = None ,_UpperCamelCase : Optional[int] = None ,_UpperCamelCase : Optional[int] = None ,) -> int: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE__ =num_attention_heads SCREAMING_SNAKE_CASE__ =attention_head_dim SCREAMING_SNAKE_CASE__ =num_attention_heads * attention_head_dim SCREAMING_SNAKE_CASE__ =additional_embeddings SCREAMING_SNAKE_CASE__ =time_embed_dim or inner_dim SCREAMING_SNAKE_CASE__ =embedding_proj_dim or embedding_dim SCREAMING_SNAKE_CASE__ =clip_embed_dim or embedding_dim SCREAMING_SNAKE_CASE__ =Timesteps(_UpperCamelCase ,_UpperCamelCase ,0 ) SCREAMING_SNAKE_CASE__ =TimestepEmbedding(_UpperCamelCase ,_UpperCamelCase ,out_dim=_UpperCamelCase ,act_fn=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =nn.Linear(_UpperCamelCase ,_UpperCamelCase ) if embedding_proj_norm_type is None: SCREAMING_SNAKE_CASE__ =None elif embedding_proj_norm_type == "layer": SCREAMING_SNAKE_CASE__ =nn.LayerNorm(_UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) SCREAMING_SNAKE_CASE__ =nn.Linear(_UpperCamelCase ,_UpperCamelCase ) if encoder_hid_proj_type is None: SCREAMING_SNAKE_CASE__ =None elif encoder_hid_proj_type == "linear": SCREAMING_SNAKE_CASE__ =nn.Linear(_UpperCamelCase ,_UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) SCREAMING_SNAKE_CASE__ =nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_UpperCamelCase ) ) if added_emb_type == "prd": SCREAMING_SNAKE_CASE__ =nn.Parameter(torch.zeros(1 ,1 ,_UpperCamelCase ) ) elif added_emb_type is None: SCREAMING_SNAKE_CASE__ =None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) SCREAMING_SNAKE_CASE__ =nn.ModuleList( [ BasicTransformerBlock( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,dropout=_UpperCamelCase ,activation_fn="""gelu""" ,attention_bias=_UpperCamelCase ,) for d in range(_UpperCamelCase ) ] ) if norm_in_type == "layer": SCREAMING_SNAKE_CASE__ =nn.LayerNorm(_UpperCamelCase ) elif norm_in_type is None: SCREAMING_SNAKE_CASE__ =None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) SCREAMING_SNAKE_CASE__ =nn.LayerNorm(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =nn.Linear(_UpperCamelCase ,_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0000.0 ) causal_attention_mask.triu_(1 ) SCREAMING_SNAKE_CASE__ =causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" ,_UpperCamelCase ,persistent=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =nn.Parameter(torch.zeros(1 ,_UpperCamelCase ) ) SCREAMING_SNAKE_CASE__ =nn.Parameter(torch.zeros(1 ,_UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __A ( self : Dict ) -> Dict[str, AttentionProcessor]: '''simple docstring''' SCREAMING_SNAKE_CASE__ ={} def fn_recursive_add_processors(_UpperCamelCase : str ,_UpperCamelCase : torch.nn.Module ,_UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(_UpperCamelCase ,"""set_processor""" ): SCREAMING_SNAKE_CASE__ =module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" ,_UpperCamelCase ,_UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) return processors def __A ( self : Dict ,_UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =len(self.attn_processors.keys() ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) and len(_UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(_UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_UpperCamelCase : str ,_UpperCamelCase : torch.nn.Module ,_UpperCamelCase : Optional[Any] ): if hasattr(_UpperCamelCase ,"""set_processor""" ): if not isinstance(_UpperCamelCase ,_UpperCamelCase ): module.set_processor(_UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" ,_UpperCamelCase ,_UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) def __A ( self : Any ) -> str: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __A ( self : Optional[Any] ,_UpperCamelCase : List[str] ,_UpperCamelCase : Union[torch.Tensor, float, int] ,_UpperCamelCase : torch.FloatTensor ,_UpperCamelCase : Optional[torch.FloatTensor] = None ,_UpperCamelCase : Optional[torch.BoolTensor] = None ,_UpperCamelCase : bool = True ,) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ =hidden_states.shape[0] SCREAMING_SNAKE_CASE__ =timestep if not torch.is_tensor(_UpperCamelCase ): SCREAMING_SNAKE_CASE__ =torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_UpperCamelCase ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE__ =timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE__ =timesteps * torch.ones(_UpperCamelCase ,dtype=timesteps.dtype ,device=timesteps.device ) SCREAMING_SNAKE_CASE__ =self.time_proj(_UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. SCREAMING_SNAKE_CASE__ =timesteps_projected.to(dtype=self.dtype ) SCREAMING_SNAKE_CASE__ =self.time_embedding(_UpperCamelCase ) if self.embedding_proj_norm is not None: SCREAMING_SNAKE_CASE__ =self.embedding_proj_norm(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =self.embedding_proj(_UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: SCREAMING_SNAKE_CASE__ =self.encoder_hidden_states_proj(_UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) SCREAMING_SNAKE_CASE__ =self.proj_in(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =self.positional_embedding.to(hidden_states.dtype ) SCREAMING_SNAKE_CASE__ =[] SCREAMING_SNAKE_CASE__ =0 if encoder_hidden_states is not None: additional_embeds.append(_UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: SCREAMING_SNAKE_CASE__ =proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: SCREAMING_SNAKE_CASE__ =hidden_states[:, None, :] SCREAMING_SNAKE_CASE__ =additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: SCREAMING_SNAKE_CASE__ =self.prd_embedding.to(hidden_states.dtype ).expand(_UpperCamelCase ,-1 ,-1 ) additional_embeds.append(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =torch.cat( _UpperCamelCase ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens SCREAMING_SNAKE_CASE__ =additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: SCREAMING_SNAKE_CASE__ =F.pad( _UpperCamelCase ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) SCREAMING_SNAKE_CASE__ =hidden_states + positional_embeddings if attention_mask is not None: SCREAMING_SNAKE_CASE__ =(1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 SCREAMING_SNAKE_CASE__ =F.pad(_UpperCamelCase ,(0, self.additional_embeddings) ,value=0.0 ) SCREAMING_SNAKE_CASE__ =(attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) SCREAMING_SNAKE_CASE__ =attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: SCREAMING_SNAKE_CASE__ =self.norm_in(_UpperCamelCase ) for block in self.transformer_blocks: SCREAMING_SNAKE_CASE__ =block(_UpperCamelCase ,attention_mask=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =self.norm_out(_UpperCamelCase ) if self.prd_embedding is not None: SCREAMING_SNAKE_CASE__ =hidden_states[:, -1] else: SCREAMING_SNAKE_CASE__ =hidden_states[:, additional_embeddings_len:] SCREAMING_SNAKE_CASE__ =self.proj_to_clip_embeddings(_UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_UpperCamelCase ) def __A ( self : Union[str, Any] ,_UpperCamelCase : Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =(prior_latents * self.clip_std) + self.clip_mean return prior_latents
588
1
from ..utils import DummyObject, requires_backends class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) def A__ ( *__A : Any , **__A : int ) ->Any: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : Any , **__A : str ) ->int: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : str , **__A : Tuple ) ->Dict: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : Tuple , **__A : Dict ) ->Dict: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : int , **__A : Optional[int] ) ->List[Any]: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : List[str] , **__A : Optional[int] ) ->Any: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : str , **__A : List[Any] ) ->str: requires_backends(__A , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] )
184
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _lowerCamelCase : List[Any] = logging.getLogger(__name__) class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self , lowercase__=-1 ): '''simple docstring''' __A =label_idx def __UpperCamelCase ( self , lowercase__ , lowercase__ ): '''simple docstring''' if isinstance(lowercase__ , lowercase__ ): __A =mode.value __A =os.path.join(lowercase__ , f'''{mode}.txt''' ) __A =1 __A =[] with open(lowercase__ , encoding='''utf-8''' ) as f: __A =[] __A =[] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 __A =[] __A =[] else: __A =line.split(''' ''' ) words.append(splits[0] ) if len(lowercase__ ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowercase__ , labels=lowercase__ ) ) return examples def __UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' __A =0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(lowercase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: __A =line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(lowercase__ ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' if path: with open(lowercase__ , '''r''' ) as f: __A =f.read().splitlines() if "O" not in labels: __A =['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' if path: with open(lowercase__ , '''r''' ) as f: __A =f.read().splitlines() if "O" not in labels: __A =['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __UpperCamelCase ( self , lowercase__ , lowercase__ ): '''simple docstring''' if isinstance(lowercase__ , lowercase__ ): __A =mode.value __A =os.path.join(lowercase__ , f'''{mode}.txt''' ) __A =1 __A =[] with open(lowercase__ , encoding='''utf-8''' ) as f: for sentence in parse_incr(lowercase__ ): __A =[] __A =[] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(lowercase__ ) == len(lowercase__ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 return examples def __UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' __A =0 for sentence in parse_incr(lowercase__ ): __A =preds_list[example_id] __A ='''''' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowercase__ ) example_id += 1 def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' if path: with open(lowercase__ , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
184
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = SamImageProcessor() UpperCAmelCase = SamProcessor(lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__( self : List[Any] , **lowerCAmelCase : int )-> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase ).image_processor def a__( self : Any )-> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__( self : List[str] )-> str: """simple docstring""" UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase = [Image.fromarray(np.moveaxis(lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__( self : Union[str, Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = self.get_image_processor(do_normalize=lowerCAmelCase , padding_value=1.0 ) UpperCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase ) def a__( self : str )-> str: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = SamProcessor(image_processor=lowerCAmelCase ) UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = image_processor(lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = processor(images=lowerCAmelCase , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def a__( self : List[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = SamProcessor(image_processor=lowerCAmelCase ) UpperCAmelCase = [torch.ones((1, 3, 5, 5) )] UpperCAmelCase = [[1764, 2646]] UpperCAmelCase = [[683, 1024]] UpperCAmelCase = processor.post_process_masks(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) UpperCAmelCase = processor.post_process_masks( lowerCAmelCase , torch.tensor(lowerCAmelCase ) , torch.tensor(lowerCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np UpperCAmelCase = [np.ones((1, 3, 5, 5) )] UpperCAmelCase = processor.post_process_masks(lowerCAmelCase , np.array(lowerCAmelCase ) , np.array(lowerCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) UpperCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(lowerCAmelCase ): UpperCAmelCase = processor.post_process_masks(lowerCAmelCase , np.array(lowerCAmelCase ) , np.array(lowerCAmelCase ) ) @require_vision @require_tf class UpperCamelCase__( unittest.TestCase ): def a__( self : int )-> str: """simple docstring""" UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = SamImageProcessor() UpperCAmelCase = SamProcessor(lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__( self : Any , **lowerCAmelCase : Union[str, Any] )-> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase ).image_processor def a__( self : Optional[int] )-> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__( self : Any )-> List[str]: """simple docstring""" UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase = [Image.fromarray(np.moveaxis(lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = self.get_image_processor(do_normalize=lowerCAmelCase , padding_value=1.0 ) UpperCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = SamProcessor(image_processor=lowerCAmelCase ) UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = image_processor(lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = processor(images=lowerCAmelCase , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = SamProcessor(image_processor=lowerCAmelCase ) UpperCAmelCase = [tf.ones((1, 3, 5, 5) )] UpperCAmelCase = [[1764, 2646]] UpperCAmelCase = [[683, 1024]] UpperCAmelCase = processor.post_process_masks(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) UpperCAmelCase = processor.post_process_masks( lowerCAmelCase , tf.convert_to_tensor(lowerCAmelCase ) , tf.convert_to_tensor(lowerCAmelCase ) , return_tensors='''tf''' , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np UpperCAmelCase = [np.ones((1, 3, 5, 5) )] UpperCAmelCase = processor.post_process_masks( lowerCAmelCase , np.array(lowerCAmelCase ) , np.array(lowerCAmelCase ) , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) UpperCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): UpperCAmelCase = processor.post_process_masks( lowerCAmelCase , np.array(lowerCAmelCase ) , np.array(lowerCAmelCase ) , return_tensors='''tf''' ) @require_vision @require_torchvision class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = SamImageProcessor() UpperCAmelCase = SamProcessor(lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__( self : str , **lowerCAmelCase : Optional[int] )-> int: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase ).image_processor def a__( self : List[Any] )-> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__( self : int )-> Any: """simple docstring""" UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase = [Image.fromarray(np.moveaxis(lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def a__( self : int )-> Tuple: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = SamProcessor(image_processor=lowerCAmelCase ) UpperCAmelCase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) UpperCAmelCase = [tf.convert_to_tensor(lowerCAmelCase )] UpperCAmelCase = [torch.tensor(lowerCAmelCase )] UpperCAmelCase = [[1764, 2646]] UpperCAmelCase = [[683, 1024]] UpperCAmelCase = processor.post_process_masks( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , return_tensors='''tf''' ) UpperCAmelCase = processor.post_process_masks( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , return_tensors='''pt''' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def a__( self : Dict )-> List[Any]: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = SamProcessor(image_processor=lowerCAmelCase ) UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = image_processor(lowerCAmelCase , return_tensors='''pt''' )['''pixel_values'''].numpy() UpperCAmelCase = processor(images=lowerCAmelCase , return_tensors='''pt''' )['''pixel_values'''].numpy() UpperCAmelCase = image_processor(lowerCAmelCase , return_tensors='''tf''' )['''pixel_values'''].numpy() UpperCAmelCase = processor(images=lowerCAmelCase , return_tensors='''tf''' )['''pixel_values'''].numpy() self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase ) ) self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase ) ) self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase ) )
50
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"], "tokenization_perceiver": ["PerceiverTokenizer"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["PerceiverFeatureExtractor"] _snake_case = ["PerceiverImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST", "PerceiverForImageClassificationConvProcessing", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationLearned", "PerceiverForMaskedLM", "PerceiverForMultimodalAutoencoding", "PerceiverForOpticalFlow", "PerceiverForSequenceClassification", "PerceiverLayer", "PerceiverModel", "PerceiverPreTrainedModel", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
307
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase__ =logging.get_logger(__name__) class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = ['pixel_values'] def __init__( self , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = PILImageResampling.BICUBIC , __lowerCamelCase = True , __lowerCamelCase = True , __lowerCamelCase = 1 / 2_5_5 , __lowerCamelCase = None , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = None , **__lowerCamelCase , ) -> None: super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = size if size is not None else {"height": 2_2_4, "width": 2_2_4} _SCREAMING_SNAKE_CASE : int = get_size_dict(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} _SCREAMING_SNAKE_CASE : Tuple = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase , param_name="crop_size" ) _SCREAMING_SNAKE_CASE : Optional[Any] = do_resize _SCREAMING_SNAKE_CASE : str = do_rescale _SCREAMING_SNAKE_CASE : Tuple = do_normalize _SCREAMING_SNAKE_CASE : Any = do_center_crop _SCREAMING_SNAKE_CASE : Dict = crop_size _SCREAMING_SNAKE_CASE : Optional[int] = size _SCREAMING_SNAKE_CASE : int = resample _SCREAMING_SNAKE_CASE : Optional[Any] = rescale_factor _SCREAMING_SNAKE_CASE : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _SCREAMING_SNAKE_CASE : Any = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = PILImageResampling.BILINEAR , __lowerCamelCase = None , **__lowerCamelCase , ) -> np.ndarray: _SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(__lowerCamelCase ) if "shortest_edge" in size: _SCREAMING_SNAKE_CASE : Any = get_resize_output_image_size(__lowerCamelCase , size=size["shortest_edge"] , default_to_square=__lowerCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _SCREAMING_SNAKE_CASE : Optional[Any] = (size["height"], size["width"]) else: raise ValueError(F"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase , ) -> np.ndarray: _SCREAMING_SNAKE_CASE : Tuple = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__lowerCamelCase , size=(size["height"], size["width"]) , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase ) -> np.ndarray: return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase , ) -> np.ndarray: return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = ChannelDimension.FIRST , **__lowerCamelCase , ) -> BatchFeature: _SCREAMING_SNAKE_CASE : str = do_resize if do_resize is not None else self.do_resize _SCREAMING_SNAKE_CASE : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale _SCREAMING_SNAKE_CASE : List[Any] = do_normalize if do_normalize is not None else self.do_normalize _SCREAMING_SNAKE_CASE : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _SCREAMING_SNAKE_CASE : Dict = crop_size if crop_size is not None else self.crop_size _SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(__lowerCamelCase , param_name="crop_size" , default_to_square=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = resample if resample is not None else self.resample _SCREAMING_SNAKE_CASE : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _SCREAMING_SNAKE_CASE : List[Any] = image_mean if image_mean is not None else self.image_mean _SCREAMING_SNAKE_CASE : Any = image_std if image_std is not None else self.image_std _SCREAMING_SNAKE_CASE : List[Any] = size if size is not None else self.size _SCREAMING_SNAKE_CASE : Dict = get_size_dict(__lowerCamelCase ) if not is_batched(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = [images] if not valid_images(__lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. _SCREAMING_SNAKE_CASE : str = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: _SCREAMING_SNAKE_CASE : Optional[int] = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_center_crop: _SCREAMING_SNAKE_CASE : Any = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase ) for image in images] if do_rescale: _SCREAMING_SNAKE_CASE : int = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_normalize: _SCREAMING_SNAKE_CASE : Any = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images] _SCREAMING_SNAKE_CASE : List[Any] = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] _SCREAMING_SNAKE_CASE : Optional[Any] = {"pixel_values": images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
249
0
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowerCamelCase_ : Dict = HfApi() lowerCamelCase_ : str = {} # fmt: off lowerCamelCase_ : Tuple = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) lowerCamelCase_ : List[str] = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) lowerCamelCase_ : Dict = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) lowerCamelCase_ : Optional[Any] = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) lowerCamelCase_ : str = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) lowerCamelCase_ : Optional[int] = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) lowerCamelCase_ : Optional[int] = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) lowerCamelCase_ : Union[str, Any] = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) lowerCamelCase_ : int = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) lowerCamelCase_ : Any = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) lowerCamelCase_ : Optional[Any] = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) lowerCamelCase_ : List[str] = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) lowerCamelCase_ : str = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) lowerCamelCase_ : Optional[Any] = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) lowerCamelCase_ : Optional[int] = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on lowerCamelCase_ : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowerCamelCase_ : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): lowerCamelCase_ : str = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: lowerCamelCase_ : int = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowerCamelCase_ : Union[str, Any] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowerCamelCase_ : Union[str, Any] = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowerCamelCase_ : Union[str, Any] = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
710
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
345
0
"""simple docstring""" import os def A_ ( snake_case_ : Any ): '''simple docstring''' UpperCamelCase : str = len(grid[0] ) UpperCamelCase : int = len(snake_case_ ) UpperCamelCase : Optional[int] = 0 UpperCamelCase : Union[str, Any] = 0 UpperCamelCase : Optional[Any] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(snake_case_ ): for j in range(n_rows - 3 ): UpperCamelCase : Optional[int] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] UpperCamelCase : List[str] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: UpperCamelCase : Any = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: UpperCamelCase : str = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) UpperCamelCase : str = max( snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) if max_product > largest: UpperCamelCase : Optional[int] = max_product return largest def A_ ( ): '''simple docstring''' UpperCamelCase : List[str] = [] with open(os.path.dirname(snake_case_ ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) UpperCamelCase : int = [[int(snake_case_ ) for i in grid[j]] for j in range(len(snake_case_ ) )] return largest_product(snake_case_ ) if __name__ == "__main__": print(solution())
499
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __A : List[str] = get_logger(__name__) __A : Optional[int] = Path(__file__).parent / '''model_card_template.md''' __A : Tuple = uuida().hex __A : Optional[int] = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES __A : List[Any] = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES __A : str = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def A_ ( snake_case_ : Union[Dict, str, None] = None ): '''simple docstring''' UpperCamelCase : Optional[Any] = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'; torch/{_torch_version}' if is_flax_available(): ua += f'; jax/{_jax_version}' ua += f'; flax/{_flax_version}' if is_onnx_available(): ua += f'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get("""DIFFUSERS_IS_CI""" ,"""""" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(snake_case_ ,snake_case_ ): ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(snake_case_ ,snake_case_ ): ua += "; " + user_agent return ua def A_ ( snake_case_ : str ,snake_case_ : Optional[str] = None ,snake_case_ : Optional[str] = None ): '''simple docstring''' if token is None: UpperCamelCase : Tuple = HfFolder.get_token() if organization is None: UpperCamelCase : Optional[Any] = whoami(snake_case_ )["""name"""] return f'{username}/{model_id}' else: return f'{organization}/{model_id}' def A_ ( snake_case_ : str ,snake_case_ : Any ): '''simple docstring''' if not is_jinja_available(): raise ValueError( """Modelcard rendering is based on Jinja templates.""" """ Please make sure to have `jinja` installed before using `create_model_card`.""" """ To install it, please run `pip install Jinja2`.""" ) if hasattr(snake_case_ ,"""local_rank""" ) and args.local_rank not in [-1, 0]: return UpperCamelCase : Tuple = args.hub_token if hasattr(snake_case_ ,"""hub_token""" ) else None UpperCamelCase : List[str] = get_full_repo_name(snake_case_ ,token=snake_case_ ) UpperCamelCase : Union[str, Any] = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="""en""" ,license="""apache-2.0""" ,library_name="""diffusers""" ,tags=[] ,datasets=args.dataset_name ,metrics=[] ,) ,template_path=snake_case_ ,model_name=snake_case_ ,repo_name=snake_case_ ,dataset_name=args.dataset_name if hasattr(snake_case_ ,"""dataset_name""" ) else None ,learning_rate=args.learning_rate ,train_batch_size=args.train_batch_size ,eval_batch_size=args.eval_batch_size ,gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(snake_case_ ,"""gradient_accumulation_steps""" ) else None ) ,adam_betaa=args.adam_betaa if hasattr(snake_case_ ,"""adam_beta1""" ) else None ,adam_betaa=args.adam_betaa if hasattr(snake_case_ ,"""adam_beta2""" ) else None ,adam_weight_decay=args.adam_weight_decay if hasattr(snake_case_ ,"""adam_weight_decay""" ) else None ,adam_epsilon=args.adam_epsilon if hasattr(snake_case_ ,"""adam_epsilon""" ) else None ,lr_scheduler=args.lr_scheduler if hasattr(snake_case_ ,"""lr_scheduler""" ) else None ,lr_warmup_steps=args.lr_warmup_steps if hasattr(snake_case_ ,"""lr_warmup_steps""" ) else None ,ema_inv_gamma=args.ema_inv_gamma if hasattr(snake_case_ ,"""ema_inv_gamma""" ) else None ,ema_power=args.ema_power if hasattr(snake_case_ ,"""ema_power""" ) else None ,ema_max_decay=args.ema_max_decay if hasattr(snake_case_ ,"""ema_max_decay""" ) else None ,mixed_precision=args.mixed_precision ,) UpperCamelCase : str = os.path.join(args.output_dir ,"""README.md""" ) model_card.save(snake_case_ ) def A_ ( snake_case_ : Optional[str] ,snake_case_ : Optional[str] = None ): '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash UpperCamelCase : List[str] = str(Path(snake_case_ ).as_posix() ) UpperCamelCase : Any = re.search(R"""snapshots/([^/]+)/""" ,snake_case_ ) if search is None: return None UpperCamelCase : List[Any] = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(snake_case_ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __A : Union[str, Any] = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) __A : Optional[Any] = os.path.join(hf_cache_home, '''diffusers''') def A_ ( snake_case_ : Optional[str] = None ,snake_case_ : Optional[str] = None ): '''simple docstring''' if new_cache_dir is None: UpperCamelCase : int = DIFFUSERS_CACHE if old_cache_dir is None: UpperCamelCase : Optional[Any] = old_diffusers_cache UpperCamelCase : Tuple = Path(snake_case_ ).expanduser() UpperCamelCase : Tuple = Path(snake_case_ ).expanduser() for old_blob_path in old_cache_dir.glob("""**/blobs/*""" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): UpperCamelCase : str = new_cache_dir / old_blob_path.relative_to(snake_case_ ) new_blob_path.parent.mkdir(parents=snake_case_ ,exist_ok=snake_case_ ) os.replace(snake_case_ ,snake_case_ ) try: os.symlink(snake_case_ ,snake_case_ ) except OSError: logger.warning( """Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.""" ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __A : str = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): __A : Tuple = 0 else: with open(cache_version_file) as f: try: __A : Optional[int] = int(f.read()) except ValueError: __A : Union[str, Any] = 0 if cache_version < 1: __A : List[str] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: __A : Optional[int] = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( F'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( F'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' '''the directory exists and can be written to.''' ) def A_ ( snake_case_ : str ,snake_case_ : Optional[str] = None ): '''simple docstring''' if variant is not None: UpperCamelCase : Any = weights_name.split(""".""" ) UpperCamelCase : Optional[int] = splits[:-1] + [variant] + splits[-1:] UpperCamelCase : int = """.""".join(snake_case_ ) return weights_name def A_ ( snake_case_ : int ,*, snake_case_ : Dict ,snake_case_ : Optional[Any] ,snake_case_ : Any ,snake_case_ : str ,snake_case_ : List[str] ,snake_case_ : Dict ,snake_case_ : List[str] ,snake_case_ : str ,snake_case_ : Dict ,snake_case_ : Tuple ,snake_case_ : Union[str, Any]=None ,): '''simple docstring''' UpperCamelCase : str = str(snake_case_ ) if os.path.isfile(snake_case_ ): return pretrained_model_name_or_path elif os.path.isdir(snake_case_ ): if os.path.isfile(os.path.join(snake_case_ ,snake_case_ ) ): # Load from a PyTorch checkpoint UpperCamelCase : Optional[Any] = os.path.join(snake_case_ ,snake_case_ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(snake_case_ ,snake_case_ ,snake_case_ ) ): UpperCamelCase : List[Any] = os.path.join(snake_case_ ,snake_case_ ,snake_case_ ) return model_file else: raise EnvironmentError( f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(snake_case_ ).base_version ) >= version.parse("""0.20.0""" ) ): try: UpperCamelCase : List[Any] = hf_hub_download( snake_case_ ,filename=_add_variant(snake_case_ ,snake_case_ ) ,cache_dir=snake_case_ ,force_download=snake_case_ ,proxies=snake_case_ ,resume_download=snake_case_ ,local_files_only=snake_case_ ,use_auth_token=snake_case_ ,user_agent=snake_case_ ,subfolder=snake_case_ ,revision=revision or commit_hash ,) warnings.warn( f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' ,snake_case_ ,) return model_file except: # noqa: E722 warnings.warn( f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(snake_case_ ,snake_case_ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(snake_case_ ,snake_case_ )}\' so that the correct variant file can be added.' ,snake_case_ ,) try: # 2. Load model file as usual UpperCamelCase : int = hf_hub_download( snake_case_ ,filename=snake_case_ ,cache_dir=snake_case_ ,force_download=snake_case_ ,proxies=snake_case_ ,resume_download=snake_case_ ,local_files_only=snake_case_ ,use_auth_token=snake_case_ ,user_agent=snake_case_ ,subfolder=snake_case_ ,revision=revision or commit_hash ,) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' """listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a """ """token having permission to this repo with `use_auth_token` or log in with `huggingface-cli """ """login`.""" ) except RevisionNotFoundError: raise EnvironmentError( f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' """this model name. Check the model page at """ f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' f' directory containing a file named {weights_name} or' """ \nCheckout your internet connection or see how to run the library in""" """ offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'.""" ) except EnvironmentError: raise EnvironmentError( f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' """'https://huggingface.co/models', make sure you don't have a local directory with the same name. """ f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' f'containing a file named {weights_name}' )
499
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowerCAmelCase_ = get_tests_dir("fixtures") class snake_case_ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self): # A mock response for an HTTP head request to emulate server down lowerCamelCase__ = mock.Mock() lowerCamelCase__ = 5_00 lowerCamelCase__ = {} lowerCamelCase__ = HTTPError lowerCamelCase__ = {} # Download this model to make sure it's in the cache. lowerCamelCase__ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=UpperCamelCase) as mock_head: lowerCamelCase__ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") # This check we did call the fake head request mock_head.assert_called() def __UpperCAmelCase ( self): # This test is for deprecated behavior and can be removed in v5 lowerCamelCase__ = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json") def __UpperCAmelCase ( self): with self.assertRaises(UpperCamelCase): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants") lowerCamelCase__ = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor") self.assertIsNotNone(UpperCamelCase) @is_staging_test class snake_case_ ( unittest.TestCase ): """simple docstring""" @classmethod def __UpperCAmelCase ( cls): lowerCamelCase__ = TOKEN HfFolder.save_token(UpperCamelCase) @classmethod def __UpperCAmelCase ( cls): try: delete_repo(token=cls._token , repo_id="test-image-processor") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor") except HTTPError: pass def __UpperCAmelCase ( self): lowerCamelCase__ = ViTImageProcessor.from_pretrained(UpperCamelCase) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token) lowerCamelCase__ = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""") for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCamelCase , getattr(UpperCamelCase , UpperCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( UpperCamelCase , repo_id="test-image-processor" , push_to_hub=UpperCamelCase , use_auth_token=self._token) lowerCamelCase__ = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""") for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCamelCase , getattr(UpperCamelCase , UpperCamelCase)) def __UpperCAmelCase ( self): lowerCamelCase__ = ViTImageProcessor.from_pretrained(UpperCamelCase) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token) lowerCamelCase__ = ViTImageProcessor.from_pretrained("valid_org/test-image-processor") for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCamelCase , getattr(UpperCamelCase , UpperCamelCase)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( UpperCamelCase , repo_id="valid_org/test-image-processor-org" , push_to_hub=UpperCamelCase , use_auth_token=self._token) lowerCamelCase__ = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org") for k, v in image_processor.__dict__.items(): self.assertEqual(UpperCamelCase , getattr(UpperCamelCase , UpperCamelCase)) def __UpperCAmelCase ( self): CustomImageProcessor.register_for_auto_class() lowerCamelCase__ = CustomImageProcessor.from_pretrained(UpperCamelCase) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) lowerCamelCase__ = AutoImageProcessor.from_pretrained( f"""{USER}/test-dynamic-image-processor""" , trust_remote_code=UpperCamelCase) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor")
426
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class snake_case_ ( A__ ): """simple docstring""" __lowerCAmelCase : BigBirdConfig __lowerCAmelCase : jnp.dtype =jnp.floataa __lowerCAmelCase : bool =True def __UpperCAmelCase ( self): super().setup() lowerCamelCase__ = nn.Dense(5 , dtype=self.dtype) def __call__( self , *UpperCamelCase , **UpperCamelCase): lowerCamelCase__ = super().__call__(*UpperCamelCase , **UpperCamelCase) lowerCamelCase__ = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class snake_case_ ( A__ ): """simple docstring""" __lowerCAmelCase : Optional[int] =FlaxBigBirdForNaturalQuestionsModule def lowerCAmelCase( a__ : List[str] , a__ : Dict , a__ : Optional[Any] , a__ : List[str] , a__ : str , a__ : Optional[int] ): '''simple docstring''' def cross_entropy(a__ : Union[str, Any] , a__ : Any , a__ : List[Any]=None ): lowerCamelCase__ = logits.shape[-1] lowerCamelCase__ = (labels[..., None] == jnp.arange(a__ )[None]).astype("f4" ) lowerCamelCase__ = jax.nn.log_softmax(a__ , axis=-1 ) lowerCamelCase__ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowerCamelCase__ = reduction(a__ ) return loss lowerCamelCase__ = partial(a__ , reduction=jnp.mean ) lowerCamelCase__ = cross_entropy(a__ , a__ ) lowerCamelCase__ = cross_entropy(a__ , a__ ) lowerCamelCase__ = cross_entropy(a__ , a__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class snake_case_ : """simple docstring""" __lowerCAmelCase : str ="google/bigbird-roberta-base" __lowerCAmelCase : int =3_0_0_0 __lowerCAmelCase : int =1_0_5_0_0 __lowerCAmelCase : int =1_2_8 __lowerCAmelCase : int =3 __lowerCAmelCase : int =1 __lowerCAmelCase : int =5 # tx_args __lowerCAmelCase : float =3e-5 __lowerCAmelCase : float =0.0 __lowerCAmelCase : int =2_0_0_0_0 __lowerCAmelCase : float =0.0095 __lowerCAmelCase : str ="bigbird-roberta-natural-questions" __lowerCAmelCase : str ="training-expt" __lowerCAmelCase : str ="data/nq-training.jsonl" __lowerCAmelCase : str ="data/nq-validation.jsonl" def __UpperCAmelCase ( self): os.makedirs(self.base_dir , exist_ok=UpperCamelCase) lowerCamelCase__ = os.path.join(self.base_dir , self.save_dir) lowerCamelCase__ = self.batch_size_per_device * jax.device_count() @dataclass class snake_case_ : """simple docstring""" __lowerCAmelCase : int __lowerCAmelCase : int =4_0_9_6 # no dynamic padding on TPUs def __call__( self , UpperCamelCase): lowerCamelCase__ = self.collate_fn(UpperCamelCase) lowerCamelCase__ = jax.tree_util.tree_map(UpperCamelCase , UpperCamelCase) return batch def __UpperCAmelCase ( self , UpperCamelCase): lowerCamelCase__ , lowerCamelCase__ = self.fetch_inputs(features["input_ids"]) lowerCamelCase__ = { "input_ids": jnp.array(UpperCamelCase , dtype=jnp.intaa), "attention_mask": jnp.array(UpperCamelCase , dtype=jnp.intaa), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa), } return batch def __UpperCAmelCase ( self , UpperCamelCase): lowerCamelCase__ = [self._fetch_inputs(UpperCamelCase) for ids in input_ids] return zip(*UpperCamelCase) def __UpperCAmelCase ( self , UpperCamelCase): lowerCamelCase__ = [1 for _ in range(len(UpperCamelCase))] while len(UpperCamelCase) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def lowerCAmelCase( a__ : List[Any] , a__ : Tuple , a__ : Any=None ): '''simple docstring''' if seed is not None: lowerCamelCase__ = dataset.shuffle(seed=a__ ) for i in range(len(a__ ) // batch_size ): lowerCamelCase__ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(a__ ) @partial(jax.pmap , axis_name="batch" ) def lowerCAmelCase( a__ : List[Any] , a__ : Tuple , **a__ : Union[str, Any] ): '''simple docstring''' def loss_fn(a__ : str ): lowerCamelCase__ = model_inputs.pop("start_labels" ) lowerCamelCase__ = model_inputs.pop("end_labels" ) lowerCamelCase__ = model_inputs.pop("pooled_labels" ) lowerCamelCase__ = state.apply_fn(**a__ , params=a__ , dropout_rng=a__ , train=a__ ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = outputs return state.loss_fn( a__ , a__ , a__ , a__ , a__ , a__ , ) lowerCamelCase__ , lowerCamelCase__ = jax.random.split(a__ ) lowerCamelCase__ = jax.value_and_grad(a__ ) lowerCamelCase__ , lowerCamelCase__ = grad_fn(state.params ) lowerCamelCase__ = jax.lax.pmean({"loss": loss} , axis_name="batch" ) lowerCamelCase__ = jax.lax.pmean(a__ , "batch" ) lowerCamelCase__ = state.apply_gradients(grads=a__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def lowerCAmelCase( a__ : int , **a__ : Tuple ): '''simple docstring''' lowerCamelCase__ = model_inputs.pop("start_labels" ) lowerCamelCase__ = model_inputs.pop("end_labels" ) lowerCamelCase__ = model_inputs.pop("pooled_labels" ) lowerCamelCase__ = state.apply_fn(**a__ , params=state.params , train=a__ ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = outputs lowerCamelCase__ = state.loss_fn(a__ , a__ , a__ , a__ , a__ , a__ ) lowerCamelCase__ = jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class snake_case_ ( train_state.TrainState ): """simple docstring""" __lowerCAmelCase : Callable =struct.field(pytree_node=A__ ) @dataclass class snake_case_ : """simple docstring""" __lowerCAmelCase : Args __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : wandb __lowerCAmelCase : Callable =None def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None): lowerCamelCase__ = model.params lowerCamelCase__ = TrainState.create( apply_fn=model.__call__ , params=UpperCamelCase , tx=UpperCamelCase , loss_fn=UpperCamelCase , ) if ckpt_dir is not None: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = restore_checkpoint(UpperCamelCase , UpperCamelCase) lowerCamelCase__ = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } lowerCamelCase__ , lowerCamelCase__ = build_tx(**UpperCamelCase) lowerCamelCase__ = train_state.TrainState( step=UpperCamelCase , apply_fn=model.__call__ , params=UpperCamelCase , tx=UpperCamelCase , opt_state=UpperCamelCase , ) lowerCamelCase__ = args lowerCamelCase__ = data_collator lowerCamelCase__ = lr lowerCamelCase__ = params lowerCamelCase__ = jax_utils.replicate(UpperCamelCase) return state def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = self.args lowerCamelCase__ = len(UpperCamelCase) // args.batch_size lowerCamelCase__ = jax.random.PRNGKey(0) lowerCamelCase__ = jax.random.split(UpperCamelCase , jax.device_count()) for epoch in range(args.max_epochs): lowerCamelCase__ = jnp.array(0 , dtype=jnp.floataa) lowerCamelCase__ = get_batched_dataset(UpperCamelCase , args.batch_size , seed=UpperCamelCase) lowerCamelCase__ = 0 for batch in tqdm(UpperCamelCase , total=UpperCamelCase , desc=f"""Running EPOCH-{epoch}"""): lowerCamelCase__ = self.data_collator(UpperCamelCase) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.train_step_fn(UpperCamelCase , UpperCamelCase , **UpperCamelCase) running_loss += jax_utils.unreplicate(metrics["loss"]) i += 1 if i % args.logging_steps == 0: lowerCamelCase__ = jax_utils.unreplicate(state.step) lowerCamelCase__ = running_loss.item() / i lowerCamelCase__ = self.scheduler_fn(state_step - 1) lowerCamelCase__ = self.evaluate(UpperCamelCase , UpperCamelCase) lowerCamelCase__ = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(UpperCamelCase)) self.logger.log(UpperCamelCase , commit=UpperCamelCase) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"""-e{epoch}-s{i}""" , state=UpperCamelCase) def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = get_batched_dataset(UpperCamelCase , self.args.batch_size) lowerCamelCase__ = len(UpperCamelCase) // self.args.batch_size lowerCamelCase__ = jnp.array(0 , dtype=jnp.floataa) lowerCamelCase__ = 0 for batch in tqdm(UpperCamelCase , total=UpperCamelCase , desc="Evaluating ... "): lowerCamelCase__ = self.data_collator(UpperCamelCase) lowerCamelCase__ = self.val_step_fn(UpperCamelCase , **UpperCamelCase) running_loss += jax_utils.unreplicate(metrics["loss"]) i += 1 return running_loss / i def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = jax_utils.unreplicate(UpperCamelCase) print(f"""SAVING CHECKPOINT IN {save_dir}""" , end=" ... ") self.model_save_fn(UpperCamelCase , params=state.params) with open(os.path.join(UpperCamelCase , "opt_state.msgpack") , "wb") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(UpperCamelCase , "args.joblib")) joblib.dump(self.data_collator , os.path.join(UpperCamelCase , "data_collator.joblib")) with open(os.path.join(UpperCamelCase , "training_state.json") , "w") as f: json.dump({"step": state.step.item()} , UpperCamelCase) print("DONE") def lowerCAmelCase( a__ : str , a__ : Optional[int] ): '''simple docstring''' print(f"""RESTORING CHECKPOINT FROM {save_dir}""" , end=" ... " ) with open(os.path.join(a__ , "flax_model.msgpack" ) , "rb" ) as f: lowerCamelCase__ = from_bytes(state.params , f.read() ) with open(os.path.join(a__ , "opt_state.msgpack" ) , "rb" ) as f: lowerCamelCase__ = from_bytes(state.opt_state , f.read() ) lowerCamelCase__ = joblib.load(os.path.join(a__ , "args.joblib" ) ) lowerCamelCase__ = joblib.load(os.path.join(a__ , "data_collator.joblib" ) ) with open(os.path.join(a__ , "training_state.json" ) , "r" ) as f: lowerCamelCase__ = json.load(a__ ) lowerCamelCase__ = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def lowerCAmelCase( a__ : Union[str, Any] , a__ : List[str] , a__ : Tuple , a__ : Optional[int] ): '''simple docstring''' lowerCamelCase__ = num_train_steps - warmup_steps lowerCamelCase__ = optax.linear_schedule(init_value=a__ , end_value=a__ , transition_steps=a__ ) lowerCamelCase__ = optax.linear_schedule(init_value=a__ , end_value=1E-7 , transition_steps=a__ ) lowerCamelCase__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def lowerCAmelCase( a__ : Any , a__ : Union[str, Any] , a__ : Optional[int] , a__ : List[str] , a__ : Union[str, Any] ): '''simple docstring''' def weight_decay_mask(a__ : str ): lowerCamelCase__ = traverse_util.flatten_dict(a__ ) lowerCamelCase__ = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(a__ ) lowerCamelCase__ = scheduler_fn(a__ , a__ , a__ , a__ ) lowerCamelCase__ = optax.adamw(learning_rate=a__ , weight_decay=a__ , mask=a__ ) return tx, lr
426
1
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _snake_case = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def __snake_case ( SCREAMING_SNAKE_CASE: str = "mumbai" ): """simple docstring""" _lowerCAmelCase = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): _lowerCAmelCase = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() _lowerCAmelCase = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(f'Job {i:>2} is {job[0]} at {job[1]}')
580
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCamelCase = logging.get_logger(__name__) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = ["pixel_values"] def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : float = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 255 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = size if size is not None else {"shortest_edge": 384} lowerCAmelCase__ = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size # Default value set here for backwards compatibility where the value in config is None lowerCAmelCase__ = crop_pct if crop_pct is not None else 224 / 256 lowerCAmelCase__ = resample lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : int , ) -> np.ndarray: lowerCAmelCase__ = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) if "shortest_edge" not in size: raise ValueError(f'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) lowerCAmelCase__ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct lowerCAmelCase__ = int(shortest_edge / crop_pct ) lowerCAmelCase__ = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=SCREAMING_SNAKE_CASE__ , size=(shortest_edge, shortest_edge) , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( SCREAMING_SNAKE_CASE__ , size=(shortest_edge, shortest_edge) , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def a ( self : int , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Union[int, float] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> List[Any]: return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : ImageInput , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : float = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : float = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : ChannelDimension = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ : Dict , ) -> PIL.Image.Image: lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = crop_pct if crop_pct is not None else self.crop_pct lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: lowerCAmelCase__ = [self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , crop_pct=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] lowerCAmelCase__ = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
61
0
def UpperCamelCase( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def UpperCamelCase( lowercase_ , lowercase_=0 ) -> str: '''simple docstring''' return sorted(lowerCAmelCase__ , key=lambda lowercase_ : x[column] ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_=float("""inf""" ) ) -> List[str]: '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , lowerCAmelCase__ ): snake_case_ = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: snake_case_ = current_dis return min_dis def UpperCamelCase( lowercase_ , lowercase_ , lowercase_=float("""inf""" ) ) -> Tuple: '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , lowerCAmelCase__ ): for j in range(max(0 , i - 6 ) , lowerCAmelCase__ ): snake_case_ = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: snake_case_ = current_dis return min_dis def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(lowerCAmelCase__ , lowerCAmelCase__ ) # recursion snake_case_ = points_counts // 2 snake_case_ = closest_pair_of_points_sqr( lowerCAmelCase__ , points_sorted_on_y[:mid] , lowerCAmelCase__ ) snake_case_ = closest_pair_of_points_sqr( lowerCAmelCase__ , points_sorted_on_y[mid:] , points_counts - mid ) snake_case_ = min(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowerCAmelCase__ ) snake_case_ = dis_between_closest_in_strip( lowerCAmelCase__ , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) return min(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' snake_case_ = column_based_sort(lowerCAmelCase__ , column=0 ) snake_case_ = column_based_sort(lowerCAmelCase__ , column=1 ) return ( closest_pair_of_points_sqr( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) ** 0.5 if __name__ == "__main__": lowerCamelCase_ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
721
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Optional[Any] = 'openai/whisper-base' lowerCamelCase_ : Union[str, Any] = ( 'This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ' 'transcribed text.' ) lowerCamelCase_ : int = 'transcriber' lowerCamelCase_ : List[Any] = WhisperProcessor lowerCamelCase_ : Optional[Any] = WhisperForConditionalGeneration lowerCamelCase_ : Optional[int] = ['audio'] lowerCamelCase_ : Union[str, Any] = ['text'] def lowerCAmelCase_ ( self , lowerCamelCase ) -> Tuple: return self.pre_processor(lowerCamelCase , return_tensors="""pt""" ).input_features def lowerCAmelCase_ ( self , lowerCamelCase ) -> int: return self.model.generate(inputs=lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase ) -> Optional[Any]: return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
161
0
'''simple docstring''' import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def _snake_case ( A , A=False ) -> Optional[Any]: try: lowerCAmelCase__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowerCAmelCase__ = default else: # KEY is set, convert it to True or False. try: lowerCAmelCase__ = strtobool(A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __UpperCAmelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def _snake_case ( A ) -> List[Any]: return unittest.skip('''Test was skipped''' )(A ) def _snake_case ( A ) -> Tuple: return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(A ) def _snake_case ( A ) -> Any: return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(A ) def _snake_case ( A ) -> str: return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(A ) def _snake_case ( A ) -> str: return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(A ) def _snake_case ( A ) -> Dict: return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(A ) def _snake_case ( A ) -> Tuple: return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(A ) def _snake_case ( A ) -> Dict: return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(A ) def _snake_case ( A ) -> Optional[Any]: return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(A ) def _snake_case ( A ) -> Optional[int]: return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(A ) def _snake_case ( A ) -> List[str]: return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(A ) def _snake_case ( A ) -> List[Any]: return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(A ) def _snake_case ( A ) -> str: return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(A ) def _snake_case ( A ) -> Any: return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(A ) def _snake_case ( A ) -> Optional[int]: return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(A ) def _snake_case ( A ) -> Union[str, Any]: return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(A ) def _snake_case ( A=None , A=None ) -> Union[str, Any]: if test_case is None: return partial(A , version=A ) return unittest.skipUnless(is_torch_version('''>=''' , A ) , F"""test requires torch version >= {version}""" )(A ) def _snake_case ( A ) -> List[str]: return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(A ) def _snake_case ( A ) -> Optional[int]: return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(A ) def _snake_case ( A ) -> Optional[int]: return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(A ) __UpperCAmelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def _snake_case ( A ) -> Optional[int]: return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(A ) class a__ ( unittest.TestCase ): '''simple docstring''' lowercase__ : List[Any] = True @classmethod def __SCREAMING_SNAKE_CASE ( cls ) -> str: lowerCAmelCase__ = tempfile.mkdtemp() @classmethod def __SCREAMING_SNAKE_CASE ( cls ) -> str: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __SCREAMING_SNAKE_CASE ( self ) -> str: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowerCamelCase_ ) class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> List[Any]: lowerCAmelCase__ = mocks if isinstance(lowerCamelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def _snake_case ( A ) -> int: lowerCAmelCase__ = AcceleratorState() lowerCAmelCase__ = tensor[None].clone().to(state.device ) lowerCAmelCase__ = gather(A ).cpu() lowerCAmelCase__ = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , A ): return False return True class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: lowerCAmelCase__ = returncode lowerCAmelCase__ = stdout lowerCAmelCase__ = stderr async def _snake_case ( A , A ) -> Union[str, Any]: while True: lowerCAmelCase__ = await stream.readline() if line: callback(A ) else: break async def _snake_case ( A , A=None , A=None , A=None , A=False , A=False ) -> _RunOutput: if echo: print('''\nRunning: ''' , ''' '''.join(A ) ) lowerCAmelCase__ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=A , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowerCAmelCase__ = [] lowerCAmelCase__ = [] def tee(A , A , A , A="" ): lowerCAmelCase__ = line.decode('''utf-8''' ).rstrip() sink.append(A ) if not quiet: print(A , A , file=A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda A : tee(A , A , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda A : tee(A , A , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=A , ) return _RunOutput(await p.wait() , A , A ) def _snake_case ( A , A=None , A=None , A=180 , A=False , A=True ) -> _RunOutput: lowerCAmelCase__ = asyncio.get_event_loop() lowerCAmelCase__ = loop.run_until_complete( _stream_subprocess(A , env=A , stdin=A , timeout=A , quiet=A , echo=A ) ) lowerCAmelCase__ = ''' '''.join(A ) if result.returncode > 0: lowerCAmelCase__ = '''\n'''.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) return result class a__ ( a__ ): '''simple docstring''' pass def _snake_case ( A , A=False ) -> Optional[int]: try: lowerCAmelCase__ = subprocess.check_output(A , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(A , '''decode''' ): lowerCAmelCase__ = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"""Command `{" ".join(A )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
90
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = '''ylacombe/bark-small''' SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = '''en_speaker_1''' SCREAMING_SNAKE_CASE__ = '''This is a test string''' SCREAMING_SNAKE_CASE__ = '''speaker_embeddings_path.json''' SCREAMING_SNAKE_CASE__ = '''speaker_embeddings''' def lowercase_ ( self : Union[str, Any] , **__lowerCamelCase : Dict ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **__lowerCamelCase ) def lowercase_ ( self : Optional[int] ) -> List[str]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Dict ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = BarkProcessor(tokenizer=__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowercase_ ( self : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowercase_ ( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) SCREAMING_SNAKE_CASE__ = 35 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = { '''semantic_prompt''': np.ones(__lowerCamelCase ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset SCREAMING_SNAKE_CASE__ = processor(text=self.input_string , voice_preset=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowerCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = processor(text=self.input_string , voice_preset=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowerCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub SCREAMING_SNAKE_CASE__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowercase_ ( self : str ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = BarkProcessor(tokenizer=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = processor(text=self.input_string ) SCREAMING_SNAKE_CASE__ = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
493
0
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" SCREAMING_SNAKE_CASE_ : Any = False if num < 0: SCREAMING_SNAKE_CASE_ : Optional[int] = True SCREAMING_SNAKE_CASE_ : Any = -num SCREAMING_SNAKE_CASE_ : Optional[Any] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(SCREAMING_SNAKE_CASE ) for e in binary ) return "0b" + "".join(str(SCREAMING_SNAKE_CASE ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
705
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: stooge(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) - 1 ) return arr def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: SCREAMING_SNAKE_CASE_ : Any = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE , i + t , (SCREAMING_SNAKE_CASE) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , (h - t) ) if __name__ == "__main__": lowerCAmelCase__: List[Any] = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase__: Optional[Any] = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
311
0
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __SCREAMING_SNAKE_CASE ={ """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = "maskformer" SCREAMING_SNAKE_CASE__ : Optional[int] = {"hidden_size": "mask_feature_size"} SCREAMING_SNAKE_CASE__ : Dict = ["resnet", "swin"] SCREAMING_SNAKE_CASE__ : Optional[int] = ["detr"] def __init__( self: List[str] , _lowerCamelCase: int = 2_56 , _lowerCamelCase: int = 2_56 , _lowerCamelCase: float = 0.1 , _lowerCamelCase: bool = False , _lowerCamelCase: Optional[Dict] = None , _lowerCamelCase: Optional[Dict] = None , _lowerCamelCase: float = 0.02 , _lowerCamelCase: float = 1.0 , _lowerCamelCase: float = 1.0 , _lowerCamelCase: float = 1.0 , _lowerCamelCase: float = 20.0 , _lowerCamelCase: Optional[bool] = None , **_lowerCamelCase: Any , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k SCREAMING_SNAKE_CASE_ = SwinConfig( image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE_ = backbone_config.pop('''model_type''' ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_ = config_class.from_dict(_lowerCamelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. " f"Supported model types: {','.join(self.backbones_supported )}" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 SCREAMING_SNAKE_CASE_ = DetrConfig() else: # verify that the decoder is supported SCREAMING_SNAKE_CASE_ = ( decoder_config.pop('''model_type''' ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"Transformer Decoder {decoder_type} not supported, please use one of" f" {','.join(self.decoders_supported )}" ) if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[decoder_type] SCREAMING_SNAKE_CASE_ = config_class.from_dict(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = backbone_config SCREAMING_SNAKE_CASE_ = decoder_config # main feature dimension for the model SCREAMING_SNAKE_CASE_ = fpn_feature_size SCREAMING_SNAKE_CASE_ = mask_feature_size # initializer SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = init_xavier_std # Hungarian matcher && loss SCREAMING_SNAKE_CASE_ = cross_entropy_weight SCREAMING_SNAKE_CASE_ = dice_weight SCREAMING_SNAKE_CASE_ = mask_weight SCREAMING_SNAKE_CASE_ = use_auxiliary_loss SCREAMING_SNAKE_CASE_ = no_object_weight SCREAMING_SNAKE_CASE_ = output_auxiliary_logits SCREAMING_SNAKE_CASE_ = self.decoder_config.encoder_attention_heads SCREAMING_SNAKE_CASE_ = self.decoder_config.num_hidden_layers super().__init__(**_lowerCamelCase ) @classmethod def _A ( cls: Any , _lowerCamelCase: PretrainedConfig , _lowerCamelCase: PretrainedConfig , **_lowerCamelCase: Any ): return cls( backbone_config=_lowerCamelCase , decoder_config=_lowerCamelCase , **_lowerCamelCase , ) def _A ( self: int ): SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE_ = self.decoder_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output
234
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def a (): SCREAMING_SNAKE_CASE_ = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) SCREAMING_SNAKE_CASE_ = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(_lowerCAmelCase ) DownloadCommand.register_subcommand(_lowerCAmelCase ) EnvironmentCommand.register_subcommand(_lowerCAmelCase ) RunCommand.register_subcommand(_lowerCAmelCase ) ServeCommand.register_subcommand(_lowerCAmelCase ) UserCommands.register_subcommand(_lowerCAmelCase ) AddNewModelCommand.register_subcommand(_lowerCAmelCase ) AddNewModelLikeCommand.register_subcommand(_lowerCAmelCase ) LfsCommands.register_subcommand(_lowerCAmelCase ) PTtoTFCommand.register_subcommand(_lowerCAmelCase ) # Let's go SCREAMING_SNAKE_CASE_ = parser.parse_args() if not hasattr(_lowerCAmelCase , '''func''' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE_ = args.func(_lowerCAmelCase ) service.run() if __name__ == "__main__": main()
234
1
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class a ( lowercase ): UpperCamelCase : "DiagonalGaussianDistribution" class a ( lowercase , lowercase ): UpperCamelCase : Optional[int] = True @register_to_config def __init__( self , UpperCamelCase_ = 3 , UpperCamelCase_ = 3 , UpperCamelCase_ = ("DownEncoderBlock2D",) , UpperCamelCase_ = ("UpDecoderBlock2D",) , UpperCamelCase_ = (64,) , UpperCamelCase_ = 1 , UpperCamelCase_ = "silu" , UpperCamelCase_ = 4 , UpperCamelCase_ = 32 , UpperCamelCase_ = 32 , UpperCamelCase_ = 0.18215 , ): super().__init__() # pass init params to Encoder UpperCAmelCase__ : Any = Encoder( in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , down_block_types=UpperCamelCase_ , block_out_channels=UpperCamelCase_ , layers_per_block=UpperCamelCase_ , act_fn=UpperCamelCase_ , norm_num_groups=UpperCamelCase_ , double_z=UpperCamelCase_ , ) # pass init params to Decoder UpperCAmelCase__ : Dict = Decoder( in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , up_block_types=UpperCamelCase_ , block_out_channels=UpperCamelCase_ , layers_per_block=UpperCamelCase_ , norm_num_groups=UpperCamelCase_ , act_fn=UpperCamelCase_ , ) UpperCAmelCase__ : Any = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) UpperCAmelCase__ : Union[str, Any] = nn.Convad(UpperCamelCase_ , UpperCamelCase_ , 1 ) UpperCAmelCase__ : str = False UpperCAmelCase__ : Tuple = False # only relevant if vae tiling is enabled UpperCAmelCase__ : List[str] = self.config.sample_size UpperCAmelCase__ : Optional[Any] = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) UpperCAmelCase__ : Tuple = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCAmelCase__ : Optional[int] = 0.25 def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False ): if isinstance(UpperCamelCase_ , (Encoder, Decoder) ): UpperCAmelCase__ : Optional[Any] = value def __snake_case ( self , UpperCamelCase_ = True ): UpperCAmelCase__ : int = use_tiling def __snake_case ( self ): self.enable_tiling(UpperCamelCase_ ) def __snake_case ( self ): UpperCAmelCase__ : Union[str, Any] = True def __snake_case ( self ): UpperCAmelCase__ : Any = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __snake_case ( self ): UpperCAmelCase__ : Optional[int] = {} def fn_recursive_add_processors(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if hasattr(UpperCamelCase_ , 'set_processor' ): UpperCAmelCase__ : Dict = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , UpperCamelCase_ , UpperCamelCase_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return processors def __snake_case ( self , UpperCamelCase_ ): UpperCAmelCase__ : Optional[Any] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(UpperCamelCase_ )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if hasattr(UpperCamelCase_ , 'set_processor' ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): module.set_processor(UpperCamelCase_ ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , UpperCamelCase_ , UpperCamelCase_ ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __snake_case ( self ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(UpperCamelCase_ , return_dict=UpperCamelCase_ ) if self.use_slicing and x.shape[0] > 1: UpperCAmelCase__ : Optional[int] = [self.encoder(UpperCamelCase_ ) for x_slice in x.split(1 )] UpperCAmelCase__ : Optional[Any] = torch.cat(UpperCamelCase_ ) else: UpperCAmelCase__ : Dict = self.encoder(UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = self.quant_conv(UpperCamelCase_ ) UpperCAmelCase__ : int = DiagonalGaussianDistribution(UpperCamelCase_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(UpperCamelCase_ , return_dict=UpperCamelCase_ ) UpperCAmelCase__ : Optional[int] = self.post_quant_conv(UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = self.decoder(UpperCamelCase_ ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase_ ) @apply_forward_hook def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = True ): if self.use_slicing and z.shape[0] > 1: UpperCAmelCase__ : Tuple = [self._decode(UpperCamelCase_ ).sample for z_slice in z.split(1 )] UpperCAmelCase__ : Optional[Any] = torch.cat(UpperCamelCase_ ) else: UpperCAmelCase__ : Union[str, Any] = self._decode(UpperCamelCase_ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : Dict = min(a.shape[2] , b.shape[2] , UpperCamelCase_ ) for y in range(UpperCamelCase_ ): UpperCAmelCase__ : str = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : int = min(a.shape[3] , b.shape[3] , UpperCamelCase_ ) for x in range(UpperCamelCase_ ): UpperCAmelCase__ : Dict = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = True ): UpperCAmelCase__ : List[str] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase__ : Optional[Any] = int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCAmelCase__ : Any = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCAmelCase__ : Any = [] for i in range(0 , x.shape[2] , UpperCamelCase_ ): UpperCAmelCase__ : List[Any] = [] for j in range(0 , x.shape[3] , UpperCamelCase_ ): UpperCAmelCase__ : Optional[int] = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCAmelCase__ : Any = self.encoder(UpperCamelCase_ ) UpperCAmelCase__ : Tuple = self.quant_conv(UpperCamelCase_ ) row.append(UpperCamelCase_ ) rows.append(UpperCamelCase_ ) UpperCAmelCase__ : Any = [] for i, row in enumerate(UpperCamelCase_ ): UpperCAmelCase__ : Any = [] for j, tile in enumerate(UpperCamelCase_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase__ : Any = self.blend_v(rows[i - 1][j] , UpperCamelCase_ , UpperCamelCase_ ) if j > 0: UpperCAmelCase__ : Tuple = self.blend_h(row[j - 1] , UpperCamelCase_ , UpperCamelCase_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(UpperCamelCase_ , dim=3 ) ) UpperCAmelCase__ : Optional[Any] = torch.cat(UpperCamelCase_ , dim=2 ) UpperCAmelCase__ : List[Any] = DiagonalGaussianDistribution(UpperCamelCase_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = True ): UpperCAmelCase__ : Tuple = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase__ : Any = int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCAmelCase__ : List[Any] = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCAmelCase__ : List[Any] = [] for i in range(0 , z.shape[2] , UpperCamelCase_ ): UpperCAmelCase__ : Union[str, Any] = [] for j in range(0 , z.shape[3] , UpperCamelCase_ ): UpperCAmelCase__ : str = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCAmelCase__ : Dict = self.post_quant_conv(UpperCamelCase_ ) UpperCAmelCase__ : List[str] = self.decoder(UpperCamelCase_ ) row.append(UpperCamelCase_ ) rows.append(UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = [] for i, row in enumerate(UpperCamelCase_ ): UpperCAmelCase__ : List[str] = [] for j, tile in enumerate(UpperCamelCase_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase__ : List[Any] = self.blend_v(rows[i - 1][j] , UpperCamelCase_ , UpperCamelCase_ ) if j > 0: UpperCAmelCase__ : int = self.blend_h(row[j - 1] , UpperCamelCase_ , UpperCamelCase_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(UpperCamelCase_ , dim=3 ) ) UpperCAmelCase__ : Any = torch.cat(UpperCamelCase_ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = True , UpperCamelCase_ = None , ): UpperCAmelCase__ : str = sample UpperCAmelCase__ : int = self.encode(UpperCamelCase_ ).latent_dist if sample_posterior: UpperCAmelCase__ : int = posterior.sample(generator=UpperCamelCase_ ) else: UpperCAmelCase__ : List[str] = posterior.mode() UpperCAmelCase__ : Tuple = self.decode(UpperCamelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase_ )
254
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class a ( lowercase , lowercase , lowercase ): UpperCamelCase : Any = [r"""h\.\d+\.attn\.bias""", r"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = 50_257 , UpperCamelCase_ = 1_024 , UpperCamelCase_ = 768 , UpperCamelCase_ = 12 , UpperCamelCase_ = 12 , UpperCamelCase_ = None , UpperCamelCase_ = "gelu_new" , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 1E-5 , UpperCamelCase_ = 0.02 , UpperCamelCase_ = True , UpperCamelCase_ = True , UpperCamelCase_ = False , UpperCamelCase_ = False , ): super().__init__() UpperCAmelCase__ : List[Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' F''' `n_embd`: {n_embd} are not equal.''' ) UpperCAmelCase__ : Dict = prefix_inner_dim UpperCAmelCase__ : List[Any] = prefix_hidden_dim UpperCAmelCase__ : List[Any] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCAmelCase__ : Any = ( nn.Linear(self.prefix_hidden_dim , UpperCamelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCAmelCase__ : Union[str, Any] = GPTaConfig( vocab_size=UpperCamelCase_ , n_positions=UpperCamelCase_ , n_embd=UpperCamelCase_ , n_layer=UpperCamelCase_ , n_head=UpperCamelCase_ , n_inner=UpperCamelCase_ , activation_function=UpperCamelCase_ , resid_pdrop=UpperCamelCase_ , embd_pdrop=UpperCamelCase_ , attn_pdrop=UpperCamelCase_ , layer_norm_epsilon=UpperCamelCase_ , initializer_range=UpperCamelCase_ , scale_attn_weights=UpperCamelCase_ , use_cache=UpperCamelCase_ , scale_attn_by_inverse_layer_idx=UpperCamelCase_ , reorder_and_upcast_attn=UpperCamelCase_ , ) UpperCAmelCase__ : List[str] = GPTaLMHeadModel(UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , ): UpperCAmelCase__ : Optional[Any] = self.transformer.transformer.wte(UpperCamelCase_ ) UpperCAmelCase__ : str = self.encode_prefix(UpperCamelCase_ ) UpperCAmelCase__ : Tuple = self.decode_prefix(UpperCamelCase_ ) UpperCAmelCase__ : List[str] = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: UpperCAmelCase__ : List[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) UpperCAmelCase__ : List[Any] = torch.cat((dummy_token, input_ids) , dim=1 ) UpperCAmelCase__ : List[str] = self.transformer(inputs_embeds=UpperCamelCase_ , labels=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): return torch.zeros(UpperCamelCase_ , self.prefix_length , dtype=torch.intaa , device=UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ ): return self.encode_prefix(UpperCamelCase_ ) @torch.no_grad() def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : List[str] = torch.split(UpperCamelCase_ , 1 , dim=0 ) UpperCAmelCase__ : Any = [] UpperCAmelCase__ : Optional[Any] = [] for feature in features: UpperCAmelCase__ : List[str] = self.decode_prefix(feature.to(UpperCamelCase_ ) ) # back to the clip feature # Only support beam search for now UpperCAmelCase__ , UpperCAmelCase__ : int = self.generate_beam( input_embeds=UpperCamelCase_ , device=UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) UpperCAmelCase__ : Optional[int] = torch.stack(UpperCamelCase_ ) UpperCAmelCase__ : Any = torch.stack(UpperCamelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def __snake_case ( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_ = 5 , UpperCamelCase_ = 67 , UpperCamelCase_ = 1.0 , UpperCamelCase_ = None , ): UpperCAmelCase__ : Optional[int] = eos_token_id UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : List[str] = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ , dtype=torch.int ) UpperCAmelCase__ : str = torch.zeros(UpperCamelCase_ , device=UpperCamelCase_ , dtype=torch.bool ) if input_embeds is not None: UpperCAmelCase__ : List[Any] = input_embeds else: UpperCAmelCase__ : Union[str, Any] = self.transformer.transformer.wte(UpperCamelCase_ ) for i in range(UpperCamelCase_ ): UpperCAmelCase__ : Tuple = self.transformer(inputs_embeds=UpperCamelCase_ ) UpperCAmelCase__ : Dict = outputs.logits UpperCAmelCase__ : List[Any] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) UpperCAmelCase__ : int = logits.softmax(-1 ).log() if scores is None: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = logits.topk(UpperCamelCase_ , -1 ) UpperCAmelCase__ : List[Any] = generated.expand(UpperCamelCase_ , *generated.shape[1:] ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: UpperCAmelCase__ : Dict = next_tokens else: UpperCAmelCase__ : Optional[int] = tokens.expand(UpperCamelCase_ , *tokens.shape[1:] ) UpperCAmelCase__ : List[Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: UpperCAmelCase__ : str = -float(np.inf ) UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : int = scores[:, None] + logits seq_lengths[~is_stopped] += 1 UpperCAmelCase__ : Optional[int] = scores_sum / seq_lengths[:, None] UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = scores_sum_average.view(-1 ).topk(UpperCamelCase_ , -1 ) UpperCAmelCase__ : List[Any] = next_tokens // scores_sum.shape[1] UpperCAmelCase__ : str = seq_lengths[next_tokens_source] UpperCAmelCase__ : str = next_tokens % scores_sum.shape[1] UpperCAmelCase__ : Optional[Any] = next_tokens.unsqueeze(1 ) UpperCAmelCase__ : List[str] = tokens[next_tokens_source] UpperCAmelCase__ : List[str] = torch.cat((tokens, next_tokens) , dim=1 ) UpperCAmelCase__ : Any = generated[next_tokens_source] UpperCAmelCase__ : Tuple = scores_sum_average * seq_lengths UpperCAmelCase__ : Tuple = is_stopped[next_tokens_source] UpperCAmelCase__ : List[Any] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) UpperCAmelCase__ : Optional[int] = torch.cat((generated, next_token_embed) , dim=1 ) UpperCAmelCase__ : List[Any] = is_stopped + next_tokens.eq(UpperCamelCase_ ).squeeze() if is_stopped.all(): break UpperCAmelCase__ : Dict = scores / seq_lengths UpperCAmelCase__ : Optional[Any] = scores.argsort(descending=UpperCamelCase_ ) # tokens tensors are already padded to max_seq_length UpperCAmelCase__ : Dict = [tokens[i] for i in order] UpperCAmelCase__ : Optional[Any] = torch.stack(UpperCamelCase_ , dim=0 ) UpperCAmelCase__ : List[str] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
254
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowercase__ : '''simple docstring''' _snake_case = 42 _snake_case = None _snake_case = None snake_case_ : Dict = namedtuple('CoinsDistribResult', 'moves excess') def __snake_case ( _UpperCAmelCase : Any): if root is None: return 0 # Validation def count_nodes(_UpperCAmelCase : Tuple) -> int: if node is None: return 0 return count_nodes(node.left) + count_nodes(node.right) + 1 def count_coins(_UpperCAmelCase : Tuple) -> int: if node is None: return 0 return count_coins(node.left) + count_coins(node.right) + node.data if count_nodes(_UpperCAmelCase) != count_coins(_UpperCAmelCase): raise ValueError('''The nodes number should be same as the number of coins''') # Main calculation def get_distrib(_UpperCAmelCase : str) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0, 1) UpperCamelCase = get_distrib(node.left) UpperCamelCase = get_distrib(node.right) UpperCamelCase = 1 - left_distrib_excess UpperCamelCase = 1 - right_distrib_excess UpperCamelCase = ( left_distrib_moves + right_distrib_moves + abs(_UpperCAmelCase) + abs(_UpperCAmelCase) ) UpperCamelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_UpperCAmelCase, _UpperCAmelCase) return get_distrib(_UpperCAmelCase)[0] if __name__ == "__main__": import doctest doctest.testmod()
212
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def snake_case__ ( UpperCamelCase=None ) -> Optional[int]: if subparsers is not None: _UpperCamelCase : Dict = subparsers.add_parser('''env''' ) else: _UpperCamelCase : Tuple = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' ,default=UpperCamelCase ,help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase ) return parser def snake_case__ ( UpperCamelCase ) -> Any: _UpperCamelCase : int = torch.__version__ _UpperCamelCase : int = torch.cuda.is_available() _UpperCamelCase : List[str] = is_xpu_available() _UpperCamelCase : Dict = is_npu_available() _UpperCamelCase : Optional[Any] = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(UpperCamelCase ): _UpperCamelCase : List[str] = load_config_from_file(args.config_file ).to_dict() _UpperCamelCase : List[Any] = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': f'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(UpperCamelCase ), '''PyTorch NPU available''': str(UpperCamelCase ), '''System RAM''': f'''{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB''', } if pt_cuda_available: _UpperCamelCase : int = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([f'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) _UpperCamelCase : Union[str, Any] = ( '''\n'''.join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase ,UpperCamelCase ) else f'''\t{accelerate_config}''' ) print(UpperCamelCase ) _UpperCamelCase : str = accelerate_config return info def snake_case__ ( ) -> int: _UpperCamelCase : str = env_command_parser() _UpperCamelCase : Any = parser.parse_args() env_command(UpperCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
683
0
import math def __lowerCamelCase ( __a : int ) -> list[int]: _lowercase =[] _lowercase =2 _lowercase =int(math.sqrt(__a ) ) # Size of every segment _lowercase =[True] * (end + 1) _lowercase =[] while start <= end: if temp[start] is True: in_prime.append(__a ) for i in range(start * start , end + 1 , __a ): _lowercase =False start += 1 prime += in_prime _lowercase =end + 1 _lowercase =min(2 * end , __a ) while low <= n: _lowercase =[True] * (high - low + 1) for each in in_prime: _lowercase =math.floor(low / each ) * each if t < low: t += each for j in range(__a , high + 1 , __a ): _lowercase =False for j in range(len(__a ) ): if temp[j] is True: prime.append(j + low ) _lowercase =high + 1 _lowercase =min(high + end , __a ) return prime print(sieve(1_0**6))
594
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCAmelCase__ = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowerCAmelCase__ = {"facebook/blenderbot-3B": 1_2_8} class _a ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE = BlenderbotTokenizer def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_="replace" , lowerCAmelCase_="<s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="<s>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="<mask>" , lowerCAmelCase_=False , lowerCAmelCase_=True , **lowerCAmelCase_ , ): super().__init__( lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ , **lowerCAmelCase_ , ) _lowercase =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCAmelCase_ ) != add_prefix_space: _lowercase =getattr(lowerCAmelCase_ , pre_tok_state.pop("type" ) ) _lowercase =add_prefix_space _lowercase =pre_tok_class(**lowerCAmelCase_ ) _lowercase =add_prefix_space _lowercase ="post_processor" _lowercase =getattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_ ) if tokenizer_component_instance: _lowercase =json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowercase =tuple(state["sep"] ) if "cls" in state: _lowercase =tuple(state["cls"] ) _lowercase =False if state.get("add_prefix_space" , lowerCAmelCase_ ) != add_prefix_space: _lowercase =add_prefix_space _lowercase =True if state.get("trim_offsets" , lowerCAmelCase_ ) != trim_offsets: _lowercase =trim_offsets _lowercase =True if changes_to_apply: _lowercase =getattr(lowerCAmelCase_ , state.pop("type" ) ) _lowercase =component_class(**lowerCAmelCase_ ) setattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __lowerCAmelCase ( self ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else value _lowercase =value def __lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): _lowercase =kwargs.get("is_split_into_words" , lowerCAmelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): _lowercase =kwargs.get("is_split_into_words" , lowerCAmelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): _lowercase =self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ ) def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): _lowercase =[self.sep_token_id] _lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): return token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =[] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(lowerCAmelCase_ ) _lowercase =" ".join(lowerCAmelCase_ ) _lowercase =self.encode(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > self.model_max_length: _lowercase =input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
594
1
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase ( snake_case_ , snake_case_ , snake_case_ ): _lowercase: Dict = [r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self : Optional[int] , __snake_case : int , __snake_case : int , __snake_case : Optional[int] = None , __snake_case : int = 5_02_57 , __snake_case : int = 10_24 , __snake_case : int = 7_68 , __snake_case : int = 12 , __snake_case : int = 12 , __snake_case : Optional[int] = None , __snake_case : str = "gelu_new" , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : float = 1E-5 , __snake_case : float = 0.02 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = False , __snake_case : bool = False , ) -> List[str]: super().__init__() _lowerCAmelCase = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" f" `n_embd`: {n_embd} are not equal." ) _lowerCAmelCase = prefix_inner_dim _lowerCAmelCase = prefix_hidden_dim _lowerCAmelCase = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) _lowerCAmelCase = ( nn.Linear(self.prefix_hidden_dim , __snake_case ) if self.prefix_hidden_dim is not None else nn.Identity() ) _lowerCAmelCase = GPTaConfig( vocab_size=__snake_case , n_positions=__snake_case , n_embd=__snake_case , n_layer=__snake_case , n_head=__snake_case , n_inner=__snake_case , activation_function=__snake_case , resid_pdrop=__snake_case , embd_pdrop=__snake_case , attn_pdrop=__snake_case , layer_norm_epsilon=__snake_case , initializer_range=__snake_case , scale_attn_weights=__snake_case , use_cache=__snake_case , scale_attn_by_inverse_layer_idx=__snake_case , reorder_and_upcast_attn=__snake_case , ) _lowerCAmelCase = GPTaLMHeadModel(__snake_case ) def lowercase__ ( self : Optional[Any] , __snake_case : torch.Tensor , __snake_case : torch.Tensor , __snake_case : Optional[torch.Tensor] = None , __snake_case : Optional[torch.Tensor] = None , ) -> Tuple: _lowerCAmelCase = self.transformer.transformer.wte(__snake_case ) _lowerCAmelCase = self.encode_prefix(__snake_case ) _lowerCAmelCase = self.decode_prefix(__snake_case ) _lowerCAmelCase = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: _lowerCAmelCase = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) _lowerCAmelCase = torch.cat((dummy_token, input_ids) , dim=1 ) _lowerCAmelCase = self.transformer(inputs_embeds=__snake_case , labels=__snake_case , attention_mask=__snake_case ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowercase__ ( self : str , __snake_case : int , __snake_case : torch.device ) -> torch.Tensor: return torch.zeros(__snake_case , self.prefix_length , dtype=torch.intaa , device=__snake_case ) def lowercase__ ( self : Optional[int] , __snake_case : Optional[int] ) -> Optional[int]: return self.encode_prefix(__snake_case ) @torch.no_grad() def lowercase__ ( self : Any , __snake_case : str , __snake_case : List[str] , __snake_case : Any ) -> Tuple: _lowerCAmelCase = torch.split(__snake_case , 1 , dim=0 ) _lowerCAmelCase = [] _lowerCAmelCase = [] for feature in features: _lowerCAmelCase = self.decode_prefix(feature.to(__snake_case ) ) # back to the clip feature # Only support beam search for now _lowerCAmelCase , _lowerCAmelCase = self.generate_beam( input_embeds=__snake_case , device=__snake_case , eos_token_id=__snake_case ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) _lowerCAmelCase = torch.stack(__snake_case ) _lowerCAmelCase = torch.stack(__snake_case ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowercase__ ( self : str , __snake_case : List[str]=None , __snake_case : Dict=None , __snake_case : List[str]=None , __snake_case : int = 5 , __snake_case : int = 67 , __snake_case : float = 1.0 , __snake_case : Optional[int] = None , ) -> int: _lowerCAmelCase = eos_token_id _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = torch.ones(__snake_case , device=__snake_case , dtype=torch.int ) _lowerCAmelCase = torch.zeros(__snake_case , device=__snake_case , dtype=torch.bool ) if input_embeds is not None: _lowerCAmelCase = input_embeds else: _lowerCAmelCase = self.transformer.transformer.wte(__snake_case ) for i in range(__snake_case ): _lowerCAmelCase = self.transformer(inputs_embeds=__snake_case ) _lowerCAmelCase = outputs.logits _lowerCAmelCase = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) _lowerCAmelCase = logits.softmax(-1 ).log() if scores is None: _lowerCAmelCase , _lowerCAmelCase = logits.topk(__snake_case , -1 ) _lowerCAmelCase = generated.expand(__snake_case , *generated.shape[1:] ) _lowerCAmelCase , _lowerCAmelCase = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: _lowerCAmelCase = next_tokens else: _lowerCAmelCase = tokens.expand(__snake_case , *tokens.shape[1:] ) _lowerCAmelCase = torch.cat((tokens, next_tokens) , dim=1 ) else: _lowerCAmelCase = -float(np.inf ) _lowerCAmelCase = 0 _lowerCAmelCase = scores[:, None] + logits seq_lengths[~is_stopped] += 1 _lowerCAmelCase = scores_sum / seq_lengths[:, None] _lowerCAmelCase , _lowerCAmelCase = scores_sum_average.view(-1 ).topk(__snake_case , -1 ) _lowerCAmelCase = next_tokens // scores_sum.shape[1] _lowerCAmelCase = seq_lengths[next_tokens_source] _lowerCAmelCase = next_tokens % scores_sum.shape[1] _lowerCAmelCase = next_tokens.unsqueeze(1 ) _lowerCAmelCase = tokens[next_tokens_source] _lowerCAmelCase = torch.cat((tokens, next_tokens) , dim=1 ) _lowerCAmelCase = generated[next_tokens_source] _lowerCAmelCase = scores_sum_average * seq_lengths _lowerCAmelCase = is_stopped[next_tokens_source] _lowerCAmelCase = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) _lowerCAmelCase = torch.cat((generated, next_token_embed) , dim=1 ) _lowerCAmelCase = is_stopped + next_tokens.eq(__snake_case ).squeeze() if is_stopped.all(): break _lowerCAmelCase = scores / seq_lengths _lowerCAmelCase = scores.argsort(descending=__snake_case ) # tokens tensors are already padded to max_seq_length _lowerCAmelCase = [tokens[i] for i in order] _lowerCAmelCase = torch.stack(__snake_case , dim=0 ) _lowerCAmelCase = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
207
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : int ={ '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] =[ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys A__ : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
207
1
import qiskit def lowerCamelCase_ ( lowerCamelCase__ = 2 ): lowerCamelCase_ = qubits # Using Aer's simulator lowerCamelCase_ = qiskit.Aer.get_backend("aer_simulator" ) # Creating a Quantum Circuit acting on the q register lowerCamelCase_ = qiskit.QuantumCircuit(__A , __A ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , __A ): # Adding CX (CNOT) gate circuit.cx(i - 1 , __A ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(__A ) ) , list(range(__A ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator lowerCamelCase_ = qiskit.execute(__A , __A , shots=1_0_0_0 ) return job.result().get_counts(__A ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
715
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase=13 , lowercase=10 , lowercase=3 , lowercase=2 , lowercase=2 , lowercase=True , lowercase=True , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.0_2 , lowercase="divided_space_time" , lowercase=None , ) -> Dict: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = patch_size lowerCamelCase_ = num_frames lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = attention_type lowerCamelCase_ = initializer_range lowerCamelCase_ = scope lowerCamelCase_ = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token lowerCamelCase_ = (image_size // patch_size) ** 2 lowerCamelCase_ = (num_frames) * self.num_patches_per_frame + 1 def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) lowerCamelCase_ = self.num_labels return config def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> Dict: lowerCamelCase_ = TimesformerModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> Dict: lowerCamelCase_ = TimesformerForVideoClassification(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase ) # verify the logits shape lowerCamelCase_ = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowerCAmelCase__ = ( {'feature-extraction': TimesformerModel, 'video-classification': TimesformerForVideoClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = TimesformerModelTester(self ) lowerCamelCase_ = ConfigTester( self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=False ) -> Optional[int]: lowerCamelCase_ = copy.deepcopy(lowercase ) if return_labels: if model_class in get_values(lowercase ): lowerCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def SCREAMING_SNAKE_CASE_( self ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: pass def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(lowercase ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> int: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TimesformerModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: if not self.has_attentions: pass else: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = True for model_class in self.all_model_classes: lowerCamelCase_ = self.model_tester.seq_length lowerCamelCase_ = self.model_tester.num_frames lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = True lowerCamelCase_ = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(lowercase , lowercase ) ) lowerCamelCase_ = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase_ = True lowerCamelCase_ = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(lowercase , lowercase ) ) lowerCamelCase_ = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) lowerCamelCase_ = len(lowercase ) # Check attention is always last and order is fine lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + 1 , len(lowercase ) ) lowerCamelCase_ = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: def check_hidden_states_output(lowercase , lowercase , lowercase ): lowerCamelCase_ = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(lowercase , lowercase ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase ) , lowercase ) lowerCamelCase_ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(lowercase , lowercase , lowercase ) def lowerCamelCase_ ( ): lowerCamelCase_ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) lowerCamelCase_ = np.load(lowerCamelCase__ ) return list(lowerCamelCase__ ) @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( lowercase ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_video() lowerCamelCase_ = image_processor(video[:8] , return_tensors="pt" ).to(lowercase ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**lowercase ) # verify the logits lowerCamelCase_ = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , lowercase ) lowerCamelCase_ = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4 ) )
313
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Optional[Any] =logging.get_logger(__name__) _lowercase : Dict ={ '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : List[str] = "roberta" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int]=5_02_65 , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE__ : int=30_72 , SCREAMING_SNAKE_CASE__ : str="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=5_12 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : Any=0.0_2 , SCREAMING_SNAKE_CASE__ : Dict=1e-12 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Tuple=None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Dict: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =vocab_size A : List[Any] =hidden_size A : Union[str, Any] =num_hidden_layers A : Optional[int] =num_attention_heads A : Tuple =hidden_act A : Tuple =intermediate_size A : Optional[int] =hidden_dropout_prob A : str =attention_probs_dropout_prob A : Any =max_position_embeddings A : int =type_vocab_size A : List[str] =initializer_range A : List[Any] =layer_norm_eps A : Dict =position_embedding_type A : str =use_cache A : str =classifier_dropout class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A : Optional[int] ={0: 'batch', 1: 'choice', 2: 'sequence'} else: A : Union[str, Any] ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
305
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _lowercase : str =logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : '''simple docstring''' lowercase : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) lowercase : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) lowercase : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowercase : bool = field( default=lowerCAmelCase_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[str]: A : Tuple =self.task_name.lower() class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Optional[int] = "train" lowercase : int = "dev" lowercase : Union[str, Any] = "test" class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : GlueDataTrainingArguments lowercase : str lowercase : List[InputFeatures] def __init__( self : str , SCREAMING_SNAKE_CASE__ : GlueDataTrainingArguments , SCREAMING_SNAKE_CASE__ : PreTrainedTokenizerBase , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Union[str, Split] = Split.train , SCREAMING_SNAKE_CASE__ : Optional[str] = None , ) -> List[Any]: warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , SCREAMING_SNAKE_CASE__ , ) A : Any =args A : Union[str, Any] =glue_processors[args.task_name]() A : Union[str, Any] =glue_output_modes[args.task_name] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): try: A : Any =Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file A : Tuple =os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) A : Optional[Any] =self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) A , A : str =label_list[2], label_list[1] A : Tuple =label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A : int =cached_features_file + '.lock' with FileLock(SCREAMING_SNAKE_CASE__ ): if os.path.exists(SCREAMING_SNAKE_CASE__ ) and not args.overwrite_cache: A : Optional[Any] =time.time() A : str =torch.load(SCREAMING_SNAKE_CASE__ ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(f'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: A : int =self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: A : Dict =self.processor.get_test_examples(args.data_dir ) else: A : Optional[Any] =self.processor.get_train_examples(args.data_dir ) if limit_length is not None: A : Optional[int] =examples[:limit_length] A : int =glue_convert_examples_to_features( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , max_length=args.max_seq_length , label_list=SCREAMING_SNAKE_CASE__ , output_mode=self.output_mode , ) A : List[Any] =time.time() torch.save(self.features , SCREAMING_SNAKE_CASE__ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[Any] ) -> Union[str, Any]: return len(self.features ) def __getitem__( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> InputFeatures: return self.features[i] def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]: return self.label_list
305
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1_00 ) -> int: '''simple docstring''' lowercase_ = set() lowercase_ = 0 lowercase_ = n + 1 # maximum limit for a in range(2 , __lowerCAmelCase ): for b in range(2 , __lowerCAmelCase ): lowercase_ = a**b # calculates the current power collect_powers.add(__lowerCAmelCase ) # adds the result to the set return len(__lowerCAmelCase ) if __name__ == "__main__": print("Number of terms ", solution(int(str(input()).strip())))
100
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def _UpperCAmelCase ( *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Tuple): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""") lowercase_ = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = object_detector(examples[0] , threshold=0.0) lowercase_ = len(lowerCAmelCase_) self.assertGreater(lowerCAmelCase_ , 0) self.assertEqual( lowerCAmelCase_ , [ { """score""": ANY(lowerCAmelCase_), """label""": ANY(lowerCAmelCase_), """box""": {"""xmin""": ANY(lowerCAmelCase_), """ymin""": ANY(lowerCAmelCase_), """xmax""": ANY(lowerCAmelCase_), """ymax""": ANY(lowerCAmelCase_)}, } for i in range(lowerCAmelCase_) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""") def _UpperCAmelCase ( self : Any): """simple docstring""" pass @require_torch def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""") lowercase_ = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.7_235, """label""": """cat""", """box""": {"""xmin""": 2_0_4, """ymin""": 1_6_7, """xmax""": 2_3_2, """ymax""": 1_9_0}}, {"""score""": 0.7_218, """label""": """remote""", """box""": {"""xmin""": 2_0_4, """ymin""": 1_6_7, """xmax""": 2_3_2, """ymax""": 1_9_0}}, {"""score""": 0.7_184, """label""": """couch""", """box""": {"""xmin""": 2_0_4, """ymin""": 1_6_7, """xmax""": 2_3_2, """ymax""": 1_9_0}}, {"""score""": 0.6_748, """label""": """remote""", """box""": {"""xmin""": 5_7_1, """ymin""": 8_3, """xmax""": 5_9_8, """ymax""": 1_0_3}}, {"""score""": 0.6_656, """label""": """cat""", """box""": {"""xmin""": 5_7_1, """ymin""": 8_3, """xmax""": 5_9_8, """ymax""": 1_0_3}}, {"""score""": 0.6_614, """label""": """couch""", """box""": {"""xmin""": 5_7_1, """ymin""": 8_3, """xmax""": 5_9_8, """ymax""": 1_0_3}}, {"""score""": 0.6_456, """label""": """remote""", """box""": {"""xmin""": 4_9_4, """ymin""": 1_0_5, """xmax""": 5_2_1, """ymax""": 1_2_7}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 6_7, """ymin""": 2_7_4, """xmax""": 9_3, """ymax""": 2_9_7}}, {"""score""": 0.6_419, """label""": """cat""", """box""": {"""xmin""": 4_9_4, """ymin""": 1_0_5, """xmax""": 5_2_1, """ymax""": 1_2_7}}, ] , ) lowercase_ = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ [ {"""score""": 0.7_235, """label""": """cat""", """box""": {"""xmin""": 2_0_4, """ymin""": 1_6_7, """xmax""": 2_3_2, """ymax""": 1_9_0}}, {"""score""": 0.7_218, """label""": """remote""", """box""": {"""xmin""": 2_0_4, """ymin""": 1_6_7, """xmax""": 2_3_2, """ymax""": 1_9_0}}, {"""score""": 0.7_184, """label""": """couch""", """box""": {"""xmin""": 2_0_4, """ymin""": 1_6_7, """xmax""": 2_3_2, """ymax""": 1_9_0}}, {"""score""": 0.6_748, """label""": """remote""", """box""": {"""xmin""": 5_7_1, """ymin""": 8_3, """xmax""": 5_9_8, """ymax""": 1_0_3}}, {"""score""": 0.6_656, """label""": """cat""", """box""": {"""xmin""": 5_7_1, """ymin""": 8_3, """xmax""": 5_9_8, """ymax""": 1_0_3}}, {"""score""": 0.6_614, """label""": """couch""", """box""": {"""xmin""": 5_7_1, """ymin""": 8_3, """xmax""": 5_9_8, """ymax""": 1_0_3}}, {"""score""": 0.6_456, """label""": """remote""", """box""": {"""xmin""": 4_9_4, """ymin""": 1_0_5, """xmax""": 5_2_1, """ymax""": 1_2_7}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 6_7, """ymin""": 2_7_4, """xmax""": 9_3, """ymax""": 2_9_7}}, {"""score""": 0.6_419, """label""": """cat""", """box""": {"""xmin""": 4_9_4, """ymin""": 1_0_5, """xmax""": 5_2_1, """ymax""": 1_2_7}}, ] ] , ) @require_torch @slow def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = pipeline("""zero-shot-object-detection""") lowercase_ = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 3_2_4, """ymin""": 2_0, """xmax""": 6_4_0, """ymax""": 3_7_3}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_2, """xmax""": 1_7_7, """ymax""": 1_1_5}}, {"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 5_5, """xmax""": 3_1_5, """ymax""": 4_7_2}}, {"""score""": 0.1_474, """label""": """remote""", """box""": {"""xmin""": 3_3_5, """ymin""": 7_4, """xmax""": 3_7_1, """ymax""": 1_8_7}}, {"""score""": 0.1_208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 6_4_2, """ymax""": 4_7_6}}, ] , ) lowercase_ = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 3_2_4, """ymin""": 2_0, """xmax""": 6_4_0, """ymax""": 3_7_3}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_2, """xmax""": 1_7_7, """ymax""": 1_1_5}}, {"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 5_5, """xmax""": 3_1_5, """ymax""": 4_7_2}}, {"""score""": 0.1_474, """label""": """remote""", """box""": {"""xmin""": 3_3_5, """ymin""": 7_4, """xmax""": 3_7_1, """ymax""": 1_8_7}}, {"""score""": 0.1_208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 6_4_2, """ymax""": 4_7_6}}, ], [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 3_2_4, """ymin""": 2_0, """xmax""": 6_4_0, """ymax""": 3_7_3}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_2, """xmax""": 1_7_7, """ymax""": 1_1_5}}, {"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 5_5, """xmax""": 3_1_5, """ymax""": 4_7_2}}, {"""score""": 0.1_474, """label""": """remote""", """box""": {"""xmin""": 3_3_5, """ymin""": 7_4, """xmax""": 3_7_1, """ymax""": 1_8_7}}, {"""score""": 0.1_208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 6_4_2, """ymax""": 4_7_6}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""") def _UpperCAmelCase ( self : List[Any]): """simple docstring""" pass @require_torch @slow def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = 0.2 lowercase_ = pipeline("""zero-shot-object-detection""") lowercase_ = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=lowerCAmelCase_ , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 3_2_4, """ymin""": 2_0, """xmax""": 6_4_0, """ymax""": 3_7_3}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_2, """xmax""": 1_7_7, """ymax""": 1_1_5}}, {"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 5_5, """xmax""": 3_1_5, """ymax""": 4_7_2}}, ] , ) @require_torch @slow def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = 2 lowercase_ = pipeline("""zero-shot-object-detection""") lowercase_ = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=lowerCAmelCase_ , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 3_2_4, """ymin""": 2_0, """xmax""": 6_4_0, """ymax""": 3_7_3}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_2, """xmax""": 1_7_7, """ymax""": 1_1_5}}, ] , )
100
1