code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def A__ ( snake_case_ : list ): if len(snake_case_ ) <= 1: return [tuple(snake_case_ )] SCREAMING_SNAKE_CASE__: str= [] def generate(snake_case_ : int , snake_case_ : list ): SCREAMING_SNAKE_CASE__: int= [0] * n res.append(tuple(snake_case_ ) ) SCREAMING_SNAKE_CASE__: Tuple= 0 while i < n: if c[i] < i: if i % 2 == 0: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Tuple= arr[i], arr[0] else: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: List[Any]= arr[i], arr[c[i]] res.append(tuple(snake_case_ ) ) c[i] += 1 SCREAMING_SNAKE_CASE__: Dict= 0 else: SCREAMING_SNAKE_CASE__: Any= 0 i += 1 generate(len(snake_case_ ) , snake_case_ ) return res if __name__ == "__main__": lowercase_ : Any = input('Enter numbers separated by a comma:\n').strip() lowercase_ : Optional[int] = [int(item) for item in user_input.split(',')] print(heaps(arr))
64
'''simple docstring''' def A_ ( snake_case = 1000 ): SCREAMING_SNAKE_CASE:Tuple = 2**power SCREAMING_SNAKE_CASE:Optional[int] = str(snake_case ) SCREAMING_SNAKE_CASE:int = list(snake_case ) SCREAMING_SNAKE_CASE:Optional[Any] = 0 for i in list_num: sum_of_num += int(snake_case ) return sum_of_num if __name__ == "__main__": A_ = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) A_ = solution(power) print("Sum of the digits is: ", result)
143
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger() @dataclass class _UpperCamelCase: __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : List[nn.Module] = field(default_factory=__lowerCamelCase ) __SCREAMING_SNAKE_CASE : list = field(default_factory=__lowerCamelCase ) def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tensor , SCREAMING_SNAKE_CASE__ : Tensor ): '''simple docstring''' __a : Optional[int] = len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE__ , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE__ ) def __call__( self : Any , SCREAMING_SNAKE_CASE__ : Tensor ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(SCREAMING_SNAKE_CASE__ ) [x.remove() for x in self.handles] return self @property def __lowerCAmelCase ( self : int ): '''simple docstring''' return list(filter(lambda SCREAMING_SNAKE_CASE__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _UpperCamelCase: __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : int = 1 __SCREAMING_SNAKE_CASE : List = field(default_factory=__lowerCamelCase ) __SCREAMING_SNAKE_CASE : List = field(default_factory=__lowerCamelCase ) __SCREAMING_SNAKE_CASE : bool = True def __call__( self : Any , SCREAMING_SNAKE_CASE__ : Tensor ): '''simple docstring''' __a : Optional[Any] = Tracker(self.dest )(SCREAMING_SNAKE_CASE__ ).parametrized __a : Union[str, Any] = Tracker(self.src )(SCREAMING_SNAKE_CASE__ ).parametrized __a : int = list(filter(lambda SCREAMING_SNAKE_CASE__ : type(SCREAMING_SNAKE_CASE__ ) not in self.src_skip , SCREAMING_SNAKE_CASE__ ) ) __a : Tuple = list(filter(lambda SCREAMING_SNAKE_CASE__ : type(SCREAMING_SNAKE_CASE__ ) not in self.dest_skip , SCREAMING_SNAKE_CASE__ ) ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ) and self.raise_if_mismatch: raise Exception( f'''Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE__ )} operations while''' f''' destination module has {len(SCREAMING_SNAKE_CASE__ )}.''' ) for dest_m, src_m in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) class _UpperCamelCase( nn.Module ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : nn.Module ): '''simple docstring''' super().__init__() __a : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), f'''Unexpected layer name {k}''' __a : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) + 1 feature_blocks.append((f'''res{block_index}''', v) ) __a : int = nn.ModuleDict(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Tensor ): '''simple docstring''' return get_trunk_forward_outputs( SCREAMING_SNAKE_CASE__ , out_feat_keys=SCREAMING_SNAKE_CASE__ , feature_blocks=self._feature_blocks , ) class _UpperCamelCase( __lowerCamelCase ): def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a : Optional[Any] = x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Any , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' if x not in self: __a : Dict = self.convert_name_to_timm(SCREAMING_SNAKE_CASE__ ) __a : Optional[int] = partial(lambda: (timm.create_model(SCREAMING_SNAKE_CASE__ , pretrained=SCREAMING_SNAKE_CASE__ ).eval(), None) ) else: __a : List[Any] = super().__getitem__(SCREAMING_SNAKE_CASE__ ) return val class _UpperCamelCase( __lowerCamelCase ): def __getitem__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' if "seer" in x and "in1k" not in x: __a : Optional[Any] = RegNetModel else: __a : int = RegNetForImageClassification return val def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Tuple[str, str]] ): for from_key, to_key in keys: __a : List[str] = from_state_dict[from_key].clone() print(f'''Copied key={from_key} to={to_key}''' ) return to_state_dict def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : Callable[[], nn.Module] , lowerCamelCase_ : Callable[[], nn.Module] , lowerCamelCase_ : RegNetConfig , lowerCamelCase_ : Path , lowerCamelCase_ : bool = True , ): print(f'''Converting {name}...''' ) with torch.no_grad(): __a , __a : Union[str, Any] = from_model_func() __a : List[str] = our_model_func(lowerCamelCase_ ).eval() __a : Dict = ModuleTransfer(src=lowerCamelCase_ , dest=lowerCamelCase_ , raise_if_mismatch=lowerCamelCase_ ) __a : int = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(lowerCamelCase_ ) if from_state_dict is not None: __a : List[Any] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __a : Dict = [('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] __a : Union[str, Any] = manually_copy_vissl_head(lowerCamelCase_ , our_model.state_dict() , lowerCamelCase_ ) our_model.load_state_dict(lowerCamelCase_ ) __a : Union[str, Any] = our_model(lowerCamelCase_ , output_hidden_states=lowerCamelCase_ ) __a : Tuple = ( our_outputs.logits if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else our_outputs.last_hidden_state ) __a : Any = from_model(lowerCamelCase_ ) __a : Optional[int] = from_output[-1] if type(lowerCamelCase_ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __a : str = our_outputs.hidden_states[-1] assert torch.allclose(lowerCamelCase_ , lowerCamelCase_ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) __a : Dict = 2_2_4 if 'seer' not in name else 3_8_4 # we can use the convnext one __a : Dict = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' , size=lowerCamelCase_ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) print(f'''Pushed {name}''' ) def UpperCAmelCase__ ( lowerCamelCase_ : Path , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = True ): __a : Tuple = 'imagenet-1k-id2label.json' __a : Any = 1_0_0_0 __a : Optional[int] = (1, num_labels) __a : Optional[int] = 'huggingface/label-files' __a : int = num_labels __a : str = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset' ) ) , 'r' ) ) __a : Optional[Any] = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} __a : int = idalabel __a : Union[str, Any] = {v: k for k, v in idalabel.items()} __a : Optional[Any] = partial(lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ ) __a : Dict = { 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 , layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 1_2] , hidden_sizes=[3_2, 6_4, 1_6_0, 3_8_4] , groups_width=1_6 , layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[4_8, 9_6, 2_4_0, 5_2_8] , groups_width=2_4 , layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[6_4, 1_2_8, 2_8_8, 6_7_2] , groups_width=1_6 , layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 2] , hidden_sizes=[7_2, 1_6_8, 4_0_8, 9_1_2] , groups_width=2_4 , layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 1_5, 2] , hidden_sizes=[9_6, 1_9_2, 4_3_2, 1_0_0_8] , groups_width=4_8 , layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 1_4, 2] , hidden_sizes=[8_0, 2_4_0, 5_6_0, 1_3_6_0] , groups_width=4_0 , layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 3_9_2, 7_8_4, 1_6_2_4] , groups_width=5_6 , layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 1_5, 1] , hidden_sizes=[8_0, 2_4_0, 7_2_0, 1_9_2_0] , groups_width=1_2_0 , layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 , layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 1_3, 1] , hidden_sizes=[2_5_6, 5_1_2, 8_9_6, 2_0_4_8] , groups_width=1_2_8 , layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 1_3, 1] , hidden_sizes=[3_3_6, 6_7_2, 1_3_4_4, 2_5_2_0] , groups_width=1_6_8 , layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[4_8, 1_0_4, 2_0_8, 4_4_0] , groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[4_8, 1_1_2, 2_5_6, 6_0_8] , groups_width=1_6 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[6_4, 1_2_8, 3_2_0, 7_6_8] , groups_width=1_6 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 1_7, 2] , hidden_sizes=[4_8, 1_2_0, 3_3_6, 8_8_8] , groups_width=2_4 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 1_3, 1] , hidden_sizes=[7_2, 2_1_6, 5_7_6, 1_5_1_2] , groups_width=2_4 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 1_2, 2] , hidden_sizes=[1_2_8, 1_9_2, 5_1_2, 1_0_8_8] , groups_width=6_4 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 1_4, 2] , hidden_sizes=[1_4_4, 2_8_8, 5_7_6, 1_2_9_6] , groups_width=7_2 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 4_4_8, 8_9_6, 2_0_1_6] , groups_width=5_6 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 1_2_3_2, 3_0_2_4] , groups_width=1_1_2 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), } __a : Optional[int] = NameToOurModelFuncMap() __a : List[Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCamelCase_ : str , lowerCamelCase_ : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: __a : List[str] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , model_dir=str(lowerCamelCase_ ) , map_location='cpu' ) __a : Optional[Any] = model_func() # check if we have a head, if yes add it __a : List[str] = files['classy_state_dict']['base_model']['model'] __a : List[str] = model_state_dict['trunk'] model.load_state_dict(lowerCamelCase_ ) return model.eval(), model_state_dict["heads"] # pretrained __a : Any = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __a : Optional[Any] = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __a : List[str] = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __a : List[Any] = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned __a : str = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __a : str = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __a : Union[str, Any] = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __a : List[Any] = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( lowerCamelCase_ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , lowerCamelCase_ , lowerCamelCase_ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowerCamelCase_ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) return config, expected_shape if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
577
def UpperCAmelCase__ ( lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 7 , lowerCamelCase_ : int = 1_0_0_0_0_0_0 ): __a : Optional[int] = 0 __a : Any = 1 for current_denominator in range(1 , limit + 1 ): __a : Optional[Any] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __a : int = current_numerator __a : List[str] = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
577
1
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: # Initialise PyTorch model __lowerCamelCase : List[Any] = BertConfig.from_json_file(lowerCamelCase__ ) print(F"Building PyTorch model from configuration: {config}" ) __lowerCamelCase : int = BertForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": a =argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
652
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : int = (UnCLIPScheduler,) def lowerCAmelCase ( self : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : List[Any]): __lowerCamelCase : Any = { 'num_train_timesteps': 1_0_0_0, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**SCREAMING_SNAKE_CASE__) return config def lowerCAmelCase ( self : Optional[Any]): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[Any]): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Union[str, Any]): for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Tuple): for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[Any]): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Dict): for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ ,prev_timestep=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Optional[int] = self.scheduler_classes[0] __lowerCamelCase : Any = self.get_scheduler_config(variance_type='fixed_small_log') __lowerCamelCase : Dict = scheduler_class(**SCREAMING_SNAKE_CASE__) assert torch.sum(torch.abs(scheduler._get_variance(0) - 1.00_00E-10)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7) - 0.0549625)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9) - 0.9994987)) < 1E-5 def lowerCAmelCase ( self : Any): __lowerCamelCase : Dict = self.scheduler_classes[0] __lowerCamelCase : List[str] = self.get_scheduler_config(variance_type='learned_range') __lowerCamelCase : int = scheduler_class(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = 0.5 assert scheduler._get_variance(1 ,predicted_variance=SCREAMING_SNAKE_CASE__) - -10.1712790 < 1E-5 assert scheduler._get_variance(4_8_7 ,predicted_variance=SCREAMING_SNAKE_CASE__) - -5.7998052 < 1E-5 assert scheduler._get_variance(9_9_9 ,predicted_variance=SCREAMING_SNAKE_CASE__) - -0.0010011 < 1E-5 def lowerCAmelCase ( self : List[str]): __lowerCamelCase : str = self.scheduler_classes[0] __lowerCamelCase : str = self.get_scheduler_config() __lowerCamelCase : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = scheduler.timesteps __lowerCamelCase : Union[str, Any] = self.dummy_model() __lowerCamelCase : Optional[Any] = self.dummy_sample_deter __lowerCamelCase : List[str] = torch.manual_seed(0) for i, t in enumerate(SCREAMING_SNAKE_CASE__): # 1. predict noise residual __lowerCamelCase : int = model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) # 2. predict previous mean of sample x_t-1 __lowerCamelCase : Optional[int] = scheduler.step(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__).prev_sample __lowerCamelCase : Optional[Any] = pred_prev_sample __lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__)) assert abs(result_sum.item() - 252.2682495) < 1E-2 assert abs(result_mean.item() - 0.3284743) < 1E-3 def lowerCAmelCase ( self : str): __lowerCamelCase : str = self.scheduler_classes[0] __lowerCamelCase : List[Any] = self.get_scheduler_config() __lowerCamelCase : int = scheduler_class(**SCREAMING_SNAKE_CASE__) scheduler.set_timesteps(2_5) __lowerCamelCase : int = scheduler.timesteps __lowerCamelCase : Tuple = self.dummy_model() __lowerCamelCase : Any = self.dummy_sample_deter __lowerCamelCase : Any = torch.manual_seed(0) for i, t in enumerate(SCREAMING_SNAKE_CASE__): # 1. predict noise residual __lowerCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) if i + 1 == timesteps.shape[0]: __lowerCamelCase : Optional[Any] = None else: __lowerCamelCase : Union[str, Any] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowerCamelCase : int = scheduler.step( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,prev_timestep=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__).prev_sample __lowerCamelCase : Union[str, Any] = pred_prev_sample __lowerCamelCase : Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__)) assert abs(result_sum.item() - 258.2044983) < 1E-2 assert abs(result_mean.item() - 0.3362038) < 1E-3 def lowerCAmelCase ( self : List[Any]): pass def lowerCAmelCase ( self : Union[str, Any]): pass
652
1
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowerCAmelCase__ = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } lowerCAmelCase__ = logging.WARNING def a__ ( ): '''simple docstring''' lowerCAmelCase : List[Any] = os.getenv("DATASETS_VERBOSITY" , SCREAMING_SNAKE_CASE ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def a__ ( ): '''simple docstring''' return __name__.split("." )[0] def a__ ( ): '''simple docstring''' return logging.getLogger(_get_library_name() ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[Any] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def a__ ( SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if name is None: lowerCAmelCase : Optional[int] = _get_library_name() return logging.getLogger(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return _get_library_root_logger().getEffectiveLevel() def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _get_library_root_logger().setLevel(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Dict = False def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , *snake_case__ , **snake_case__ ): # pylint: disable=unused-argument """simple docstring""" lowerCAmelCase : str = args[0] if args else None def __iter__( self ): """simple docstring""" return iter(self._iterator ) def __getattr__( self , snake_case__ ): """simple docstring""" def empty_fn(*snake_case__ , **snake_case__ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): """simple docstring""" return self def __exit__( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return lowerCAmelCase__ = True class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __call__( self , *snake_case__ , snake_case__=False , **snake_case__ ): """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*snake_case__ , **snake_case__ ) else: return EmptyTqdm(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*snake_case__ , **snake_case__ ) def lowercase__ ( self ): """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCAmelCase__ = _tqdm_cls() def a__ ( ): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def a__ ( ): '''simple docstring''' global _tqdm_active lowerCAmelCase : List[str] = True def a__ ( ): '''simple docstring''' global _tqdm_active lowerCAmelCase : int = False
681
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
681
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowercase : def __init__( self : List[str] ,A : List[Any] ,A : List[str]=13 ,A : Any=32 ,A : List[str]=3 ,A : Optional[int]=4 ,A : Optional[int]=[10, 20, 30, 40] ,A : str=[2, 2, 3, 2] ,A : Optional[Any]=True ,A : Dict=True ,A : Tuple=37 ,A : List[str]="gelu" ,A : Optional[int]=10 ,A : List[Any]=0.0_2 ,A : Optional[int]=["stage2", "stage3", "stage4"] ,A : List[Any]=[2, 3, 4] ,A : List[Any]=None ,): '''simple docstring''' UpperCAmelCase__ : List[Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Union[str, Any] = image_size UpperCAmelCase__ : Any = num_channels UpperCAmelCase__ : Optional[int] = num_stages UpperCAmelCase__ : str = hidden_sizes UpperCAmelCase__ : List[Any] = depths UpperCAmelCase__ : str = is_training UpperCAmelCase__ : Dict = use_labels UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : List[Any] = hidden_act UpperCAmelCase__ : Optional[Any] = num_labels UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : List[Any] = out_features UpperCAmelCase__ : Optional[Any] = out_indices UpperCAmelCase__ : Any = scope def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Tuple = None if self.use_labels: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size] ,self.num_labels ) UpperCAmelCase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowercase ( self : int ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_stages=self.num_stages ,hidden_act=self.hidden_act ,is_decoder=A ,initializer_range=self.initializer_range ,out_features=self.out_features ,out_indices=self.out_indices ,num_labels=self.num_labels ,) def __lowercase ( self : str ,A : List[Any] ,A : Union[str, Any] ,A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowercase ( self : Union[str, Any] ,A : Union[str, Any] ,A : Optional[Any] ,A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase__ : Optional[int] = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowercase ( self : int ,A : Optional[int] ,A : Optional[int] ,A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase__ : Tuple = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : str = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase__ : str = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = config_and_inputs UpperCAmelCase__ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Any = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = config_and_inputs UpperCAmelCase__ : Dict = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class __lowercase ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) snake_case_ = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def __lowercase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Tuple = ConvNextVaModelTester(self ) UpperCAmelCase__ : Any = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def __lowercase ( self : List[str] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self : List[str] ): '''simple docstring''' return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def __lowercase ( self : str ): '''simple docstring''' pass def __lowercase ( self : List[Any] ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase__ : int = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase__ : Tuple = model_class(A ) model.to(A ) model.train() UpperCAmelCase__ : List[Any] = self._prepare_for_class(A ,A ,return_labels=A ) UpperCAmelCase__ : Optional[int] = model(**A ).loss loss.backward() def __lowercase ( self : Tuple ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase__ : int = False UpperCAmelCase__ : List[Any] = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase__ : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase__ : Tuple = self._prepare_for_class(A ,A ,return_labels=A ) UpperCAmelCase__ : Optional[Any] = model(**A ).loss loss.backward() def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[Any] = model_class(A ) UpperCAmelCase__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Optional[Any] = [*signature.parameters.keys()] UpperCAmelCase__ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,A ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def __lowercase ( self : Any ): '''simple docstring''' def check_hidden_states_output(A : Optional[Any] ,A : Union[str, Any] ,A : str ): UpperCAmelCase__ : List[str] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase__ : int = model(**self._prepare_for_class(A ,A ) ) UpperCAmelCase__ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase__ : List[str] = self.model_tester.num_stages self.assertEqual(len(A ) ,expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : Tuple = True check_hidden_states_output(A ,A ,A ) def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): @cached_property def __lowercase ( self : int ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase__ : Any = self.default_image_processor UpperCAmelCase__ : str = prepare_img() UpperCAmelCase__ : List[Any] = preprocessor(images=A ,return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**A ) # verify the logits UpperCAmelCase__ : List[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,A ) UpperCAmelCase__ : Optional[Any] = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1e-4 ) )
65
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version __lowerCAmelCase = get_logger(__name__) class __magic_name__ : lowerCAmelCase : Optional[Any] = 'dummy_data' lowerCAmelCase : List[str] = 'datasets' lowerCAmelCase : str = False def __init__( self : Tuple ,_UpperCAmelCase : str ,_UpperCAmelCase : str ,_UpperCAmelCase : Union[Version, str] ,_UpperCAmelCase : Optional[str] = None ,_UpperCAmelCase : bool = False ,_UpperCAmelCase : bool = True ,_UpperCAmelCase : Optional[List[Callable]] = None ,): _a : int = 0 _a : str = dataset_name _a : Optional[int] = cache_dir _a : int = use_local_dummy_data _a : Optional[int] = config # download_callbacks take a single url as input _a : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _a : str = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _a : Optional[int] = str(_UpperCAmelCase ) # to be downloaded _a : Union[str, Any] = None _a : Dict = None @property def __lowercase ( self : Any ): if self._dummy_file is None: _a : Dict = self.download_dummy_data() return self._dummy_file @property def __lowercase ( self : Optional[int] ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' ,self.config.name ,self.version_name ) # structure is dummy / version_name return os.path.join('dummy' ,self.version_name ) @property def __lowercase ( self : Any ): return os.path.join(self.dummy_data_folder ,'dummy_data.zip' ) def __lowercase ( self : List[str] ): _a : Dict = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _a : Dict = cached_path( _UpperCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=_UpperCAmelCase ,force_extract=_UpperCAmelCase ) return os.path.join(_UpperCAmelCase ,self.dummy_file_name ) @property def __lowercase ( self : List[str] ): return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file ) @property def __lowercase ( self : Optional[Any] ): if self._bucket_url is None: _a : Any = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,'/' ) ) return self._bucket_url @property def __lowercase ( self : int ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep ,'/' ).split('/' )[:-1] ) def __lowercase ( self : Dict ,_UpperCAmelCase : str ,*_UpperCAmelCase : int ): if self.load_existing_dummy_data: # dummy data is downloaded and tested _a : List[Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _a : str = self.dummy_file_name # special case when data_url is a dict if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): return self.create_dummy_data_dict(_UpperCAmelCase ,_UpperCAmelCase ) elif isinstance(_UpperCAmelCase ,(list, tuple) ): return self.create_dummy_data_list(_UpperCAmelCase ,_UpperCAmelCase ) else: return self.create_dummy_data_single(_UpperCAmelCase ,_UpperCAmelCase ) def __lowercase ( self : List[str] ,_UpperCAmelCase : Optional[int] ,*_UpperCAmelCase : Optional[int] ): return self.download_and_extract(_UpperCAmelCase ) def __lowercase ( self : Tuple ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Optional[Any] ): return self.download_and_extract(_UpperCAmelCase ) def __lowercase ( self : List[str] ,_UpperCAmelCase : List[str] ,*_UpperCAmelCase : int ,**_UpperCAmelCase : Dict ): return path def __lowercase ( self : Optional[Any] ): return {} def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ): _a : int = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): for single_url in single_urls: download_callback(_UpperCAmelCase ) else: _a : Union[str, Any] = single_urls download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): _a : Optional[int] = [os.path.join(_UpperCAmelCase ,urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls] else: _a : Tuple = single_urls _a : Optional[Any] = os.path.join(_UpperCAmelCase ,urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) _a : Union[str, Any] = value # make sure that values are unique if all(isinstance(_UpperCAmelCase ,_UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _a : Dict = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __lowercase ( self : List[Any] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : List[str] ): _a : str = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _a : Tuple = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' ,_UpperCAmelCase ) ) for url in data_url ) _a : str = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _a : str = [data_url[0]] * len(_UpperCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _a : List[Any] = os.path.join(_UpperCAmelCase ,urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(_UpperCAmelCase ) return dummy_data_list def __lowercase ( self : List[Any] ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : List[str] ): for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _a : List[Any] = os.path.join(_UpperCAmelCase ,urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __lowercase ( self : Tuple ): pass def __lowercase ( self : Optional[int] ): pass def __lowercase ( self : List[str] ,_UpperCAmelCase : Dict ): def _iter_archive_members(_UpperCAmelCase : List[Any] ): # this preserves the order of the members inside the ZIP archive _a : int = Path(self.dummy_file ).parent _a : List[str] = path.relative_to(_UpperCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _a : List[Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_UpperCAmelCase ) _a : Dict = Path(_UpperCAmelCase ) _a : Dict = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' ) def __lowercase ( self : Any ,_UpperCAmelCase : Union[str, Any] ): if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): _a : str = [paths] for path in paths: if os.path.isfile(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(_UpperCAmelCase ): if filename.startswith(('.', '__') ): continue yield os.path.join(_UpperCAmelCase ,_UpperCAmelCase )
358
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : List[Any] = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' __magic_name__ : List[Any] = """wavlm""" def __init__( self : List[str] , UpperCamelCase__ : List[Any]=32 , UpperCamelCase__ : Dict=768 , UpperCamelCase__ : Any=12 , UpperCamelCase__ : Union[str, Any]=12 , UpperCamelCase__ : int=3072 , UpperCamelCase__ : Union[str, Any]="gelu" , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : Any=1E-5 , UpperCamelCase__ : Optional[Any]="group" , UpperCamelCase__ : str="gelu" , UpperCamelCase__ : str=(512, 512, 512, 512, 512, 512, 512) , UpperCamelCase__ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase__ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : str=128 , UpperCamelCase__ : str=16 , UpperCamelCase__ : Tuple=320 , UpperCamelCase__ : Union[str, Any]=800 , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[Any]=0.05 , UpperCamelCase__ : str=10 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : List[Any]=10 , UpperCamelCase__ : List[Any]=320 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : int=100 , UpperCamelCase__ : List[str]=256 , UpperCamelCase__ : Optional[int]=256 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Any="mean" , UpperCamelCase__ : Any=False , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Tuple=256 , UpperCamelCase__ : Any=(512, 512, 512, 512, 1500) , UpperCamelCase__ : int=(5, 3, 3, 1, 1) , UpperCamelCase__ : Optional[int]=(1, 2, 3, 1, 1) , UpperCamelCase__ : List[Any]=512 , UpperCamelCase__ : List[Any]=80 , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : Union[str, Any]=2 , UpperCamelCase__ : Optional[Any]=3 , UpperCamelCase__ : List[str]=None , **UpperCamelCase__ : Dict , ): super().__init__(**UpperCamelCase__ , pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) A__ : int =hidden_size A__ : Any =feat_extract_norm A__ : Optional[Any] =feat_extract_activation A__ : List[Any] =list(UpperCamelCase__ ) A__ : Optional[int] =list(UpperCamelCase__ ) A__ : int =list(UpperCamelCase__ ) A__ : int =conv_bias A__ : Union[str, Any] =num_buckets A__ : int =max_bucket_distance A__ : Optional[int] =num_conv_pos_embeddings A__ : Union[str, Any] =num_conv_pos_embedding_groups A__ : Any =len(self.conv_dim ) A__ : Dict =num_hidden_layers A__ : str =intermediate_size A__ : str =hidden_act A__ : Dict =num_attention_heads A__ : Dict =hidden_dropout A__ : Dict =attention_dropout A__ : Dict =activation_dropout A__ : List[Any] =feat_proj_dropout A__ : Optional[Any] =final_dropout A__ : int =layerdrop A__ : Union[str, Any] =layer_norm_eps A__ : List[str] =initializer_range A__ : Optional[Any] =num_ctc_classes A__ : Tuple =vocab_size A__ : str =do_stable_layer_norm A__ : List[Any] =use_weighted_layer_sum A__ : Optional[int] =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A__ : int =apply_spec_augment A__ : Tuple =mask_time_prob A__ : Optional[Any] =mask_time_length A__ : List[Any] =mask_time_min_masks A__ : Union[str, Any] =mask_feature_prob A__ : Union[str, Any] =mask_feature_length # parameters for pretraining with codevector quantized representations A__ : str =num_codevectors_per_group A__ : str =num_codevector_groups A__ : Optional[int] =contrastive_logits_temperature A__ : Any =num_negatives A__ : Union[str, Any] =codevector_dim A__ : Union[str, Any] =proj_codevector_dim A__ : List[Any] =diversity_loss_weight # ctc loss A__ : List[Any] =ctc_loss_reduction A__ : Optional[int] =ctc_zero_infinity # adapter A__ : int =add_adapter A__ : Dict =adapter_kernel_size A__ : Any =adapter_stride A__ : Union[str, Any] =num_adapter_layers A__ : List[Any] =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. A__ : List[Any] =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. A__ : Optional[Any] =list(UpperCamelCase__ ) A__ : str =list(UpperCamelCase__ ) A__ : Tuple =list(UpperCamelCase__ ) A__ : str =xvector_output_dim @property def _UpperCAmelCase ( self : Tuple ): return functools.reduce(operator.mul , self.conv_stride , 1 )
595
"""simple docstring""" from collections import defaultdict def lowercase ( UpperCamelCase : int ): """simple docstring""" A__ : Union[str, Any] =1 A__ : int =True for v in tree[start]: if v not in visited: ret += dfs(UpperCamelCase ) if ret % 2 == 0: cuts.append(UpperCamelCase ) return ret def lowercase ( ): """simple docstring""" dfs(1 ) if __name__ == "__main__": __A , __A : List[str] = 10, 9 __A : Dict = defaultdict(list) __A : dict[int, bool] = {} __A : list[int] = [] __A : List[str] = 0 __A : str = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
595
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowercase__ : Dict = logging.get_logger(__name__) lowercase__ : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowercase__ : List[str] = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } lowercase__ : Tuple = { 'roberta-base': 5_12, 'roberta-large': 5_12, 'roberta-large-mnli': 5_12, 'distilroberta-base': 5_12, 'roberta-base-openai-detector': 5_12, 'roberta-large-openai-detector': 5_12, } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[int] = VOCAB_FILES_NAMES _snake_case : Any = PRETRAINED_VOCAB_FILES_MAP _snake_case : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Dict = ['input_ids', 'attention_mask'] _snake_case : Any = RobertaTokenizer def __init__( self : List[Any] , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : List[str]="</s>" , lowerCAmelCase__ : Dict="</s>" , lowerCAmelCase__ : List[Any]="<s>" , lowerCAmelCase__ : List[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Optional[Any]="<mask>" , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[int]=True , **lowerCAmelCase__ : Tuple , ) -> Dict: '''simple docstring''' super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase__ ) != add_prefix_space: _UpperCamelCase = getattr(lowerCAmelCase__ , pre_tok_state.pop('''type''' ) ) _UpperCamelCase = add_prefix_space _UpperCamelCase = pre_tok_class(**lowerCAmelCase__ ) _UpperCamelCase = add_prefix_space _UpperCamelCase = '''post_processor''' _UpperCamelCase = getattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ ) if tokenizer_component_instance: _UpperCamelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _UpperCamelCase = tuple(state['''sep'''] ) if "cls" in state: _UpperCamelCase = tuple(state['''cls'''] ) _UpperCamelCase = False if state.get('''add_prefix_space''' , lowerCAmelCase__ ) != add_prefix_space: _UpperCamelCase = add_prefix_space _UpperCamelCase = True if state.get('''trim_offsets''' , lowerCAmelCase__ ) != trim_offsets: _UpperCamelCase = trim_offsets _UpperCamelCase = True if changes_to_apply: _UpperCamelCase = getattr(lowerCAmelCase__ , state.pop('''type''' ) ) _UpperCamelCase = component_class(**lowerCAmelCase__ ) setattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ ) @property def snake_case__ ( self : Optional[int] ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def snake_case__ ( self : str , lowerCAmelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else value _UpperCamelCase = value def snake_case__ ( self : Dict , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Dict ) -> BatchEncoding: '''simple docstring''' _UpperCamelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : int , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : List[str] ) -> BatchEncoding: '''simple docstring''' _UpperCamelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' _UpperCamelCase = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any=None ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case__ ( self : Dict , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
98
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING a_ : Dict = logging.get_logger(__name__) a_ : Dict = Dict[str, Any] a_ : str = List[Prediction] @add_end_docstrings(lowercase__ ) class __lowercase( lowercase__ ): '''simple docstring''' def __init__( self , *__a , **__a ): super().__init__(*__a , **__a ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def snake_case_ ( self , **__a ): __lowerCamelCase : List[str] = {} if "threshold" in kwargs: __lowerCamelCase : Optional[int] = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self , *__a , **__a ): return super().__call__(*__a , **__a ) def snake_case_ ( self , __a ): __lowerCamelCase : Optional[Any] = load_image(__a ) __lowerCamelCase : Any = torch.IntTensor([[image.height, image.width]] ) __lowerCamelCase : Any = self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: __lowerCamelCase : List[str] = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) __lowerCamelCase : Dict = target_size return inputs def snake_case_ ( self , __a ): __lowerCamelCase : Union[str, Any] = model_inputs.pop('target_size' ) __lowerCamelCase : Optional[Any] = self.model(**__a ) __lowerCamelCase : Any = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: __lowerCamelCase : Optional[Any] = model_inputs['bbox'] return model_outputs def snake_case_ ( self , __a , __a=0.9 ): __lowerCamelCase : Dict = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __lowerCamelCase , __lowerCamelCase : Dict = target_size[0].tolist() def unnormalize(__a ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) __lowerCamelCase , __lowerCamelCase : Tuple = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __lowerCamelCase : List[str] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __lowerCamelCase : Union[str, Any] = [unnormalize(__a ) for bbox in model_outputs['bbox'].squeeze(0 )] __lowerCamelCase : List[str] = ['score', 'label', 'box'] __lowerCamelCase : Tuple = [dict(zip(__a , __a ) ) for vals in zip(scores.tolist() , __a , __a ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __lowerCamelCase : Optional[int] = self.image_processor.post_process_object_detection(__a , __a , __a ) __lowerCamelCase : Any = raw_annotations[0] __lowerCamelCase : Any = raw_annotation['scores'] __lowerCamelCase : Tuple = raw_annotation['labels'] __lowerCamelCase : Union[str, Any] = raw_annotation['boxes'] __lowerCamelCase : List[str] = scores.tolist() __lowerCamelCase : str = [self.model.config.idalabel[label.item()] for label in labels] __lowerCamelCase : List[Any] = [self._get_bounding_box(__a ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __lowerCamelCase : int = ['score', 'label', 'box'] __lowerCamelCase : int = [ dict(zip(__a , __a ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def snake_case_ ( self , __a ): if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = box.int().tolist() __lowerCamelCase : Dict = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
594
0
from __future__ import annotations UpperCamelCase_ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class snake_case_ : '''simple docstring''' def __init__( self, A_, A_ ) -> None: UpperCAmelCase__ =graph # mapping node to its parent in resulting breadth first tree UpperCAmelCase__ ={} UpperCAmelCase__ =source_vertex def __UpperCAmelCase ( self ) -> None: UpperCAmelCase__ ={self.source_vertex} UpperCAmelCase__ =None UpperCAmelCase__ =[self.source_vertex] # first in first out queue while queue: UpperCAmelCase__ =queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(A_ ) UpperCAmelCase__ =vertex queue.append(A_ ) def __UpperCAmelCase ( self, A_ ) -> str: if target_vertex == self.source_vertex: return self.source_vertex UpperCAmelCase__ =self.parent.get(A_ ) if target_vertex_parent is None: UpperCAmelCase__ =( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(A_ ) return self.shortest_path(A_ ) + f"""->{target_vertex}""" if __name__ == "__main__": UpperCamelCase_ = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
510
import math def _UpperCAmelCase ( A , A ): '''simple docstring''' if ( not isinstance(A , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def _UpperCAmelCase ( A , A ): '''simple docstring''' if ( not isinstance(A , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
510
1
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = int(lowerCamelCase__ ) # Initialize Result lowerCAmelCase__ = [] # Traverse through all denomination for denomination in reversed(lowerCamelCase__ ): # Find denominations while int(lowerCamelCase__ ) >= int(lowerCamelCase__ ): total_value -= int(lowerCamelCase__ ) answer.append(lowerCamelCase__ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __lowerCAmelCase : str = [] __lowerCAmelCase : Any = """0""" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): __lowerCAmelCase : int = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(F"Denomination {i}: ").strip())) __lowerCAmelCase : Union[str, Any] = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter __lowerCAmelCase : Union[str, Any] = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] __lowerCAmelCase : str = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(F"Following is minimal change for {value}: ") __lowerCAmelCase : Union[str, Any] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
644
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a__ : Union[str, Any] = logging.get_logger(__name__) class lowercase ( UpperCAmelCase_ ): """simple docstring""" def _UpperCamelCase ( self : int , a_ : Union[str, Any] ): """simple docstring""" if isinstance(a_ , a_ ): lowerCamelCase__ = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self : Dict , a_ : Any , a_ : Optional[int] , a_ : Tuple ): """simple docstring""" if len(a_ ) == 0 or len(a_ ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(a_ ) ) if isinstance(a_ , a_ ): lowerCamelCase__ = [sequences] lowerCamelCase__ = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(a_ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase_ ) class lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Optional[int] , a_ : Tuple=ZeroShotClassificationArgumentHandler() , *a_ : Optional[Any] , **a_ : Optional[int] ): """simple docstring""" lowerCamelCase__ = args_parser super().__init__(*a_ , **a_ ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _UpperCamelCase ( self : str , a_ : List[Any] , a_ : Optional[Any]=True , a_ : List[Any]=True , a_ : str=TruncationStrategy.ONLY_FIRST , **a_ : Any ): """simple docstring""" lowerCamelCase__ = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) lowerCamelCase__ = self.tokenizer.eos_token try: lowerCamelCase__ = self.tokenizer( a_ , add_special_tokens=a_ , return_tensors=a_ , padding=a_ , truncation=a_ , ) except Exception as e: if "too short" in str(a_ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. lowerCamelCase__ = self.tokenizer( a_ , add_special_tokens=a_ , return_tensors=a_ , padding=a_ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _UpperCamelCase ( self : List[str] , **a_ : Union[str, Any] ): """simple docstring""" if kwargs.get("""multi_class""" , a_ ) is not None: lowerCamelCase__ = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) lowerCamelCase__ = {} if "candidate_labels" in kwargs: lowerCamelCase__ = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: lowerCamelCase__ = kwargs["""hypothesis_template"""] lowerCamelCase__ = {} if "multi_label" in kwargs: lowerCamelCase__ = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self : Any , a_ : Union[str, List[str]] , *a_ : str , **a_ : Dict , ): """simple docstring""" if len(a_ ) == 0: pass elif len(a_ ) == 1 and "candidate_labels" not in kwargs: lowerCamelCase__ = args[0] else: raise ValueError(F'''Unable to understand extra arguments {args}''' ) return super().__call__(a_ , **a_ ) def _UpperCamelCase ( self : Optional[int] , a_ : int , a_ : List[str]=None , a_ : Tuple="This example is {}." ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ = self._args_parser(a_ , a_ , a_ ) for i, (candidate_label, sequence_pair) in enumerate(zip(a_ , a_ ) ): lowerCamelCase__ = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(a_ ) - 1, **model_input, } def _UpperCamelCase ( self : Optional[Any] , a_ : Any ): """simple docstring""" lowerCamelCase__ = inputs["""candidate_label"""] lowerCamelCase__ = inputs["""sequence"""] lowerCamelCase__ = {k: inputs[k] for k in self.tokenizer.model_input_names} lowerCamelCase__ = self.model(**a_ ) lowerCamelCase__ = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _UpperCamelCase ( self : Union[str, Any] , a_ : List[Any] , a_ : Tuple=False ): """simple docstring""" lowerCamelCase__ = [outputs["""candidate_label"""] for outputs in model_outputs] lowerCamelCase__ = [outputs["""sequence"""] for outputs in model_outputs] lowerCamelCase__ = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) lowerCamelCase__ = logits.shape[0] lowerCamelCase__ = len(a_ ) lowerCamelCase__ = N // n lowerCamelCase__ = logits.reshape((num_sequences, n, -1) ) if multi_label or len(a_ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently lowerCamelCase__ = self.entailment_id lowerCamelCase__ = -1 if entailment_id == 0 else 0 lowerCamelCase__ = reshaped_outputs[..., [contradiction_id, entailment_id]] lowerCamelCase__ = np.exp(a_ ) / np.exp(a_ ).sum(-1 , keepdims=a_ ) lowerCamelCase__ = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels lowerCamelCase__ = reshaped_outputs[..., self.entailment_id] lowerCamelCase__ = np.exp(a_ ) / np.exp(a_ ).sum(-1 , keepdims=a_ ) lowerCamelCase__ = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
165
0
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py snake_case_ : Any = '.' if __name__ == "__main__": snake_case_ : List[str] = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') snake_case_ : Dict = [] snake_case_ : List[str] = [] with open(doctest_file_path) as fp: for line in fp: snake_case_ : Optional[int] = line.strip() snake_case_ : Optional[Any] = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: snake_case_ : Any = '\n'.join(non_existent_paths) raise ValueError(F'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
713
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = ['''image_processor''', '''tokenizer'''] _snake_case = '''BlipImageProcessor''' _snake_case = '''AutoTokenizer''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' super().__init__(lowerCamelCase__ , lowerCamelCase__ ) # add QFormer tokenizer UpperCamelCase = qformer_tokenizer def __call__( self , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = True , lowerCamelCase__ = None , **lowerCamelCase__ , ): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) UpperCamelCase = BatchFeature() if text is not None: UpperCamelCase = self.tokenizer( text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) encoding.update(lowerCamelCase__ ) UpperCamelCase = self.qformer_tokenizer( text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) UpperCamelCase = qformer_text_encoding.pop('''input_ids''' ) UpperCamelCase = qformer_text_encoding.pop('''attention_mask''' ) if images is not None: UpperCamelCase = self.image_processor(lowerCamelCase__ , return_tensors=lowerCamelCase__ ) encoding.update(lowerCamelCase__ ) return encoding def UpperCAmelCase ( self , *lowerCamelCase__ , **lowerCamelCase__ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase ( self , *lowerCamelCase__ , **lowerCamelCase__ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.tokenizer.model_input_names UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def UpperCAmelCase ( self , lowerCamelCase__ , **lowerCamelCase__ ): '''simple docstring''' if os.path.isfile(lowerCamelCase__ ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) UpperCamelCase = os.path.join(lowerCamelCase__ , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(lowerCamelCase__ ) return super().save_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) @classmethod def UpperCAmelCase ( cls , lowerCamelCase__ , **lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase__ , subfolder='''qformer_tokenizer''' ) UpperCamelCase = cls._get_arguments_from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) args.append(lowerCamelCase__ ) return cls(*lowerCamelCase__ )
350
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor SCREAMING_SNAKE_CASE: Tuple = logging.get_logger(__name__) class lowercase_ (__A ): def __init__( self : int , *snake_case__ : str , **snake_case__ : int ): """simple docstring""" warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
360
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __SCREAMING_SNAKE_CASE (__A ): """simple docstring""" _a : List[Any] = ['''image_processor''', '''tokenizer'''] _a : List[Any] = '''ViTImageProcessor''' _a : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ): """simple docstring""" a_ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase__ , ) a_ = kwargs.pop('feature_extractor' ) a_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ): """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: a_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if visual_prompt is not None: a_ = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if images is not None: a_ = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if visual_prompt is not None and images is not None: a_ = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: a_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: a_ = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def _a ( self , *UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def _a ( self , *UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def _a ( self ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCamelCase__ , ) return self.image_processor_class @property def _a ( self ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCamelCase__ , ) return self.image_processor
536
0
'''simple docstring''' from copy import deepcopy class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase = None , lowercase = None ): """simple docstring""" if arr is None and size is not None: A_ : Tuple = size A_ : List[Any] = [0] * size elif arr is not None: self.init(lowercase_ ) else: raise ValueError('Either arr or size must be specified' ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Tuple = len(lowercase_ ) A_ : List[str] = deepcopy(lowercase_ ) for i in range(1 , self.size ): A_ : int = self.next_(lowercase_ ) if j < self.size: self.tree[j] += self.tree[i] def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): A_ : str = self.next_(lowercase_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def lowerCAmelCase_ ( lowercase ): """simple docstring""" return index + (index & (-index)) @staticmethod def lowerCAmelCase_ ( lowercase ): """simple docstring""" return index - (index & (-index)) def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value A_ : Union[str, Any] = self.next_(lowercase_ ) def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" self.add(lowercase_ , value - self.get(lowercase_ ) ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if right == 0: return 0 A_ : List[Any] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] A_ : List[str] = self.prev(lowercase_ ) return result def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" return self.prefix(lowercase_ ) - self.prefix(lowercase_ ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return self.query(lowercase_ , index + 1 ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" value -= self.tree[0] if value < 0: return -1 A_ : int = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 A_ : int = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
703
def UpperCamelCase ( __lowercase : str ): '''simple docstring''' A_ : int = len(__lowercase ) A_ : List[Any] = sum(__lowercase ) A_ : List[str] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 ,n + 1 ): A_ : Optional[Any] = True for i in range(1 ,s + 1 ): A_ : Tuple = False for i in range(1 ,n + 1 ): for j in range(1 ,s + 1 ): A_ : Dict = dp[i][j - 1] if arr[i - 1] <= j: A_ : Dict = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) ,-1 ,-1 ): if dp[n][j] is True: A_ : List[Any] = s - 2 * j break return diff
70
0
"""simple docstring""" __A = {} def lowercase_ ( _lowerCamelCase: int , _lowerCamelCase: int , _lowerCamelCase: int ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __lowerCamelCase : str = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __lowerCamelCase : Optional[int] = _calculate(days - 1 , _lowerCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __lowerCamelCase : str = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __lowerCamelCase : List[Any] = _calculate(days - 1 , _lowerCamelCase , 0 ) __lowerCamelCase : Tuple = state_late + state_absent + state_ontime __lowerCamelCase : List[str] = prizestrings return prizestrings def lowercase_ ( _lowerCamelCase: int = 30 ) -> int: '''simple docstring''' return _calculate(_lowerCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
646
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _snake_case ( a__ ): snake_case__ = "deformable_detr" snake_case__ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : List[Any] , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=3 , UpperCAmelCase : Any=300 , UpperCAmelCase : List[Any]=1024 , UpperCAmelCase : str=6 , UpperCAmelCase : int=1024 , UpperCAmelCase : Optional[int]=8 , UpperCAmelCase : int=6 , UpperCAmelCase : Any=1024 , UpperCAmelCase : List[str]=8 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="relu" , UpperCAmelCase : List[str]=256 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.0 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=1.0 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : str=False , UpperCAmelCase : Dict="sine" , UpperCAmelCase : int="resnet50" , UpperCAmelCase : int=True , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Union[str, Any]=300 , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : int=1 , UpperCAmelCase : Union[str, Any]=5 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : int=1 , UpperCAmelCase : Union[str, Any]=1 , UpperCAmelCase : Tuple=5 , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : str=0.2_5 , UpperCAmelCase : str=False , **UpperCAmelCase : Dict , ): if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowerCamelCase : List[Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : Tuple = backbone_config.get("model_type" ) __lowerCamelCase : List[Any] = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase : Optional[Any] = config_class.from_dict(UpperCAmelCase ) __lowerCamelCase : Tuple = use_timm_backbone __lowerCamelCase : Any = backbone_config __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : Union[str, Any] = num_queries __lowerCamelCase : Any = max_position_embeddings __lowerCamelCase : Dict = d_model __lowerCamelCase : List[Any] = encoder_ffn_dim __lowerCamelCase : List[str] = encoder_layers __lowerCamelCase : Any = encoder_attention_heads __lowerCamelCase : int = decoder_ffn_dim __lowerCamelCase : int = decoder_layers __lowerCamelCase : str = decoder_attention_heads __lowerCamelCase : Union[str, Any] = dropout __lowerCamelCase : str = attention_dropout __lowerCamelCase : Any = activation_dropout __lowerCamelCase : Dict = activation_function __lowerCamelCase : Dict = init_std __lowerCamelCase : Dict = init_xavier_std __lowerCamelCase : List[str] = encoder_layerdrop __lowerCamelCase : int = auxiliary_loss __lowerCamelCase : List[Any] = position_embedding_type __lowerCamelCase : int = backbone __lowerCamelCase : Union[str, Any] = use_pretrained_backbone __lowerCamelCase : Any = dilation # deformable attributes __lowerCamelCase : Tuple = num_feature_levels __lowerCamelCase : Tuple = encoder_n_points __lowerCamelCase : Dict = decoder_n_points __lowerCamelCase : Tuple = two_stage __lowerCamelCase : Any = two_stage_num_proposals __lowerCamelCase : Tuple = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher __lowerCamelCase : Dict = class_cost __lowerCamelCase : Optional[Any] = bbox_cost __lowerCamelCase : Union[str, Any] = giou_cost # Loss coefficients __lowerCamelCase : Tuple = mask_loss_coefficient __lowerCamelCase : Tuple = dice_loss_coefficient __lowerCamelCase : Optional[Any] = bbox_loss_coefficient __lowerCamelCase : List[str] = giou_loss_coefficient __lowerCamelCase : List[Any] = eos_coefficient __lowerCamelCase : List[Any] = focal_alpha __lowerCamelCase : Tuple = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase ) @property def lowerCamelCase__ ( self : Any ): return self.encoder_attention_heads @property def lowerCamelCase__ ( self : Optional[Any] ): return self.d_model def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : Tuple = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowerCamelCase : Dict = self.backbone_config.to_dict() __lowerCamelCase : Union[str, Any] = self.__class__.model_type return output
646
1
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _SCREAMING_SNAKE_CASE ( _a ): __SCREAMING_SNAKE_CASE :Any = """Speech2TextFeatureExtractor""" __SCREAMING_SNAKE_CASE :Optional[int] = """Speech2TextTokenizer""" def __init__( self : str , a__ : List[Any] , a__ : List[str] ): super().__init__(_A , _A ) __magic_name__ = self.feature_extractor __magic_name__ = False def __call__( self : Any , *a__ : Dict , **a__ : Optional[Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) __magic_name__ = kwargs.pop('''raw_speech''' ) else: __magic_name__ = kwargs.pop('''audio''' , _A ) __magic_name__ = kwargs.pop('''sampling_rate''' , _A ) __magic_name__ = kwargs.pop('''text''' , _A ) if len(_A ) > 0: __magic_name__ = args[0] __magic_name__ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: __magic_name__ = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: __magic_name__ = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: __magic_name__ = encodings['''input_ids'''] return inputs def snake_case__ ( self : Any , *a__ : Optional[Any] , **a__ : Union[str, Any] ): return self.tokenizer.batch_decode(*_A , **_A ) def snake_case__ ( self : List[Any] , *a__ : Any , **a__ : Any ): return self.tokenizer.decode(*_A , **_A ) @contextmanager def snake_case__ ( self : List[str] ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) __magic_name__ = True __magic_name__ = self.tokenizer yield __magic_name__ = self.feature_extractor __magic_name__ = False
714
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCAmelCase = "\nHuman: <<task>>\n\nAssistant: " _lowerCAmelCase = "huggingface-tools/default-prompts" _lowerCAmelCase = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def UpperCamelCase ( a , a , a="run" ) -> str: '''simple docstring''' if prompt_or_repo_id is None: __magic_name__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('''\\s''' , a ) is not None: return prompt_or_repo_id __magic_name__ = cached_file( a , PROMPT_FILES[mode] , repo_type='''dataset''' , user_agent={'''agent''': agent_name} ) with open(a , '''r''' , encoding='''utf-8''' ) as f: return f.read()
245
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __UpperCamelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : List[Any] , _lowerCamelCase : WhisperForConditionalGeneration , _lowerCamelCase : WhisperProcessor , _lowerCamelCase : AutoencoderKL , _lowerCamelCase : CLIPTextModel , _lowerCamelCase : CLIPTokenizer , _lowerCamelCase : UNetaDConditionModel , _lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _lowerCamelCase : StableDiffusionSafetyChecker , _lowerCamelCase : CLIPImageProcessor , ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=_lowerCamelCase , speech_processor=_lowerCamelCase , vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , unet=_lowerCamelCase , scheduler=_lowerCamelCase , feature_extractor=_lowerCamelCase , ) def _snake_case ( self : int , _lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": __lowerCamelCase : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCamelCase ) def _snake_case ( self : Dict ): '''simple docstring''' self.enable_attention_slicing(_lowerCamelCase ) @torch.no_grad() def __call__( self : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int]=1_6_0_0_0 , _lowerCamelCase : int = 5_1_2 , _lowerCamelCase : int = 5_1_2 , _lowerCamelCase : int = 5_0 , _lowerCamelCase : float = 7.5 , _lowerCamelCase : Optional[Union[str, List[str]]] = None , _lowerCamelCase : Optional[int] = 1 , _lowerCamelCase : float = 0.0 , _lowerCamelCase : Optional[torch.Generator] = None , _lowerCamelCase : Optional[torch.FloatTensor] = None , _lowerCamelCase : Optional[str] = "pil" , _lowerCamelCase : bool = True , _lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _lowerCamelCase : int = 1 , **_lowerCamelCase : str , ): '''simple docstring''' __lowerCamelCase : List[Any] = self.speech_processor.feature_extractor( _lowerCamelCase , return_tensors="""pt""" , sampling_rate=_lowerCamelCase ).input_features.to(self.device ) __lowerCamelCase : Union[str, Any] = self.speech_model.generate(_lowerCamelCase , max_length=4_8_0_0_0_0 ) __lowerCamelCase : Tuple = self.speech_processor.tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , normalize=_lowerCamelCase )[ 0 ] if isinstance(_lowerCamelCase , _lowerCamelCase ): __lowerCamelCase : List[Any] = 1 elif isinstance(_lowerCamelCase , _lowerCamelCase ): __lowerCamelCase : str = len(_lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(_lowerCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowerCamelCase , _lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(_lowerCamelCase )}.""" ) # get prompt text embeddings __lowerCamelCase : int = self.tokenizer( _lowerCamelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __lowerCamelCase : Optional[int] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowerCamelCase : Optional[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __lowerCamelCase : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] __lowerCamelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = text_embeddings.shape __lowerCamelCase : Tuple = text_embeddings.repeat(1 , _lowerCamelCase , 1 ) __lowerCamelCase : Dict = text_embeddings.view(bs_embed * num_images_per_prompt , _lowerCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowerCamelCase : Union[str, Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowerCamelCase : List[str] if negative_prompt is None: __lowerCamelCase : List[str] = [""""""] * batch_size elif type(_lowerCamelCase ) is not type(_lowerCamelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(_lowerCamelCase )} !=""" F""" {type(_lowerCamelCase )}.""" ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): __lowerCamelCase : List[str] = [negative_prompt] elif batch_size != len(_lowerCamelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(_lowerCamelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: __lowerCamelCase : Any = negative_prompt __lowerCamelCase : Dict = text_input_ids.shape[-1] __lowerCamelCase : Dict = self.tokenizer( _lowerCamelCase , padding="""max_length""" , max_length=_lowerCamelCase , truncation=_lowerCamelCase , return_tensors="""pt""" , ) __lowerCamelCase : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCamelCase : List[str] = uncond_embeddings.shape[1] __lowerCamelCase : Optional[int] = uncond_embeddings.repeat(1 , _lowerCamelCase , 1 ) __lowerCamelCase : str = uncond_embeddings.view(batch_size * num_images_per_prompt , _lowerCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase : List[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowerCamelCase : Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __lowerCamelCase : str = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __lowerCamelCase : Tuple = torch.randn(_lowerCamelCase , generator=_lowerCamelCase , device="""cpu""" , dtype=_lowerCamelCase ).to( self.device ) else: __lowerCamelCase : Tuple = torch.randn(_lowerCamelCase , generator=_lowerCamelCase , device=self.device , dtype=_lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __lowerCamelCase : Any = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __lowerCamelCase : str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowerCamelCase : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowerCamelCase : Optional[int] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowerCamelCase : List[Any] = {} if accepts_eta: __lowerCamelCase : int = eta for i, t in enumerate(self.progress_bar(_lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance __lowerCamelCase : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase : List[Any] = self.scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) # predict the noise residual __lowerCamelCase : Any = self.unet(_lowerCamelCase , _lowerCamelCase , encoder_hidden_states=_lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: __lowerCamelCase , __lowerCamelCase : str = noise_pred.chunk(2 ) __lowerCamelCase : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase : List[Any] = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : Any = 1 / 0.18_215 * latents __lowerCamelCase : Dict = self.vae.decode(_lowerCamelCase ).sample __lowerCamelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowerCamelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowerCamelCase : Any = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_lowerCamelCase , nsfw_content_detected=_lowerCamelCase )
519
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCamelCase ( A,unittest.TestCase ): '''simple docstring''' a_ : Union[str, Any] = CodeGenTokenizer a_ : str = CodeGenTokenizerFast a_ : int = True a_ : str = {"add_prefix_space": True} a_ : Optional[int] = False def _snake_case ( self : int ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase : List[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] __lowerCamelCase : Union[str, Any] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) __lowerCamelCase : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowerCamelCase : Tuple = {"""unk_token""": """<unk>"""} __lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowerCamelCase ) ) def _snake_case ( self : int , **_lowerCamelCase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _snake_case ( self : Union[str, Any] , **_lowerCamelCase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _snake_case ( self : str , _lowerCamelCase : List[Any] ): '''simple docstring''' __lowerCamelCase : List[str] = """lower newer""" __lowerCamelCase : Tuple = """lower newer""" return input_text, output_text def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase : Tuple = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCamelCase : Optional[Any] = """lower newer""" __lowerCamelCase : Optional[int] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowerCamelCase : List[str] = tokenizer.tokenize(_lowerCamelCase , add_prefix_space=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : Tuple = tokens + [tokenizer.unk_token] __lowerCamelCase : Optional[int] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return __lowerCamelCase : List[str] = self.get_tokenizer() __lowerCamelCase : Tuple = self.get_rust_tokenizer(add_prefix_space=_lowerCamelCase ) __lowerCamelCase : Tuple = """lower newer""" # Testing tokenization __lowerCamelCase : Any = tokenizer.tokenize(_lowerCamelCase , add_prefix_space=_lowerCamelCase ) __lowerCamelCase : Tuple = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Testing conversion to ids without special tokens __lowerCamelCase : List[Any] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase , add_prefix_space=_lowerCamelCase ) __lowerCamelCase : Tuple = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Testing conversion to ids with special tokens __lowerCamelCase : List[str] = self.get_rust_tokenizer(add_prefix_space=_lowerCamelCase ) __lowerCamelCase : List[str] = tokenizer.encode(_lowerCamelCase , add_prefix_space=_lowerCamelCase ) __lowerCamelCase : Optional[Any] = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Testing the unknown token __lowerCamelCase : Any = tokens + [rust_tokenizer.unk_token] __lowerCamelCase : str = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def _snake_case ( self : List[Any] , *_lowerCamelCase : Union[str, Any] , **_lowerCamelCase : Union[str, Any] ): '''simple docstring''' pass def _snake_case ( self : Optional[int] , _lowerCamelCase : Dict=1_5 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) # Simple input __lowerCamelCase : Optional[int] = """This is a simple input""" __lowerCamelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] __lowerCamelCase : str = ("""This is a simple input""", """This is a pair""") __lowerCamelCase : Any = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) # Simple input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) # Simple input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" , ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) # Pair input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" , ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input __lowerCamelCase : Dict = """This is a simple input""" __lowerCamelCase : str = ["""This is a simple input looooooooong""", """This is a simple input"""] __lowerCamelCase : Tuple = ("""This is a simple input""", """This is a pair""") __lowerCamelCase : List[Any] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] __lowerCamelCase : List[Any] = tokenizer.pad_token_id __lowerCamelCase : Tuple = tokenizer(_lowerCamelCase , padding="""max_length""" , max_length=3_0 , return_tensors="""np""" ) __lowerCamelCase : Union[str, Any] = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , truncate=_lowerCamelCase , return_tensors="""np""" ) __lowerCamelCase : Optional[int] = tokenizer(*_lowerCamelCase , padding="""max_length""" , max_length=6_0 , return_tensors="""np""" ) __lowerCamelCase : Dict = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , truncate=_lowerCamelCase , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowerCamelCase : List[Any] = """$$$""" __lowerCamelCase : Optional[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=_lowerCamelCase , add_bos_token=_lowerCamelCase ) __lowerCamelCase : Any = """This is a simple input""" __lowerCamelCase : Any = ["""This is a simple input 1""", """This is a simple input 2"""] __lowerCamelCase : str = tokenizer.bos_token_id __lowerCamelCase : Union[str, Any] = tokenizer(_lowerCamelCase ) __lowerCamelCase : Tuple = tokenizer(_lowerCamelCase ) self.assertEqual(out_s.input_ids[0] , _lowerCamelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __lowerCamelCase : Any = tokenizer.decode(out_s.input_ids ) __lowerCamelCase : Tuple = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , _lowerCamelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def _snake_case ( self : Tuple ): '''simple docstring''' __lowerCamelCase : str = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) __lowerCamelCase : int = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" __lowerCamelCase : str = """\nif len_a > len_b: result = a\nelse: result = b""" __lowerCamelCase : Any = tokenizer.encode(_lowerCamelCase ) __lowerCamelCase : Dict = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] __lowerCamelCase : List[str] = tokenizer.decode(_lowerCamelCase , truncate_before_pattern=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' pass
519
1
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name _lowercase = ''' Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` ''' def _A (UpperCamelCase : Any , UpperCamelCase : Dict , UpperCamelCase : Optional[Any]=8 ) ->List[str]: '''simple docstring''' lowerCamelCase__ : Optional[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCamelCase__ : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _A (UpperCamelCase : str , UpperCamelCase : List[Any]=512 , UpperCamelCase : Union[str, Any]=512 ) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ : Optional[Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowerCamelCase__ : Union[str, Any] = np.array(pil_image.convert("""RGB""" ) ) lowerCamelCase__ : List[str] = arr.astype(np.floataa ) / 127.5 - 1 lowerCamelCase__ : str = np.transpose(UpperCamelCase , [2, 0, 1] ) lowerCamelCase__ : List[str] = torch.from_numpy(UpperCamelCase ).unsqueeze(0 ) return image class __A ( A_ ): def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , ): super().__init__() self.register_modules( unet=__magic_name__ , scheduler=__magic_name__ , movq=__magic_name__ , ) lowerCamelCase__ : Any = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ ): # get the original timestep using init_timestep lowerCamelCase__ : int = min(int(num_inference_steps * strength ) , __magic_name__ ) lowerCamelCase__ : List[Any] = max(num_inference_steps - init_timestep , 0 ) lowerCamelCase__ : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ): if not isinstance(__magic_name__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__magic_name__ )}" ) lowerCamelCase__ : List[str] = image.to(device=__magic_name__ , dtype=__magic_name__ ) lowerCamelCase__ : List[Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: lowerCamelCase__ : Optional[Any] = image else: if isinstance(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(__magic_name__ )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(__magic_name__ , __magic_name__ ): lowerCamelCase__ : Dict = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__magic_name__ ) ] lowerCamelCase__ : List[str] = torch.cat(__magic_name__ , dim=0 ) else: lowerCamelCase__ : List[Any] = self.movq.encode(__magic_name__ ).latent_dist.sample(__magic_name__ ) lowerCamelCase__ : Optional[Any] = self.movq.config.scaling_factor * init_latents lowerCamelCase__ : List[Any] = torch.cat([init_latents] , dim=0 ) lowerCamelCase__ : Dict = init_latents.shape lowerCamelCase__ : Dict = randn_tensor(__magic_name__ , generator=__magic_name__ , device=__magic_name__ , dtype=__magic_name__ ) # get latents lowerCamelCase__ : str = self.scheduler.add_noise(__magic_name__ , __magic_name__ , __magic_name__ ) lowerCamelCase__ : Any = init_latents return latents def _snake_case (self , __magic_name__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowerCamelCase__ : List[str] = torch.device(f"cuda:{gpu_id}" ) lowerCamelCase__ : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__magic_name__ , __magic_name__ ) def _snake_case (self , __magic_name__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) lowerCamelCase__ : str = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=__magic_name__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCamelCase__ : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: lowerCamelCase__ ,lowerCamelCase__ : int = cpu_offload_with_hook(__magic_name__ , __magic_name__ , prev_module_hook=__magic_name__ ) # We'll offload the last model manually. lowerCamelCase__ : Optional[int] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _snake_case (self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__magic_name__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__magic_name__ ) def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 512 , __magic_name__ = 512 , __magic_name__ = 100 , __magic_name__ = 4.0 , __magic_name__ = 0.3 , __magic_name__ = 1 , __magic_name__ = None , __magic_name__ = "pil" , __magic_name__ = True , ): lowerCamelCase__ : List[str] = self._execution_device lowerCamelCase__ : List[str] = guidance_scale > 1.0 if isinstance(__magic_name__ , __magic_name__ ): lowerCamelCase__ : int = torch.cat(__magic_name__ , dim=0 ) lowerCamelCase__ : Any = image_embeds.shape[0] if isinstance(__magic_name__ , __magic_name__ ): lowerCamelCase__ : Tuple = torch.cat(__magic_name__ , dim=0 ) if do_classifier_free_guidance: lowerCamelCase__ : Tuple = image_embeds.repeat_interleave(__magic_name__ , dim=0 ) lowerCamelCase__ : str = negative_image_embeds.repeat_interleave(__magic_name__ , dim=0 ) lowerCamelCase__ : Any = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__magic_name__ ) if not isinstance(__magic_name__ , __magic_name__ ): lowerCamelCase__ : Optional[int] = [image] if not all(isinstance(__magic_name__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(__magic_name__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowerCamelCase__ : List[str] = torch.cat([prepare_image(__magic_name__ , __magic_name__ , __magic_name__ ) for i in image] , dim=0 ) lowerCamelCase__ : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=__magic_name__ ) lowerCamelCase__ : Any = self.movq.encode(__magic_name__ )["""latents"""] lowerCamelCase__ : List[str] = latents.repeat_interleave(__magic_name__ , dim=0 ) self.scheduler.set_timesteps(__magic_name__ , device=__magic_name__ ) lowerCamelCase__ ,lowerCamelCase__ : str = self.get_timesteps(__magic_name__ , __magic_name__ , __magic_name__ ) lowerCamelCase__ : Dict = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowerCamelCase__ ,lowerCamelCase__ : Optional[Any] = downscale_height_and_width(__magic_name__ , __magic_name__ , self.movq_scale_factor ) lowerCamelCase__ : Union[str, Any] = self.prepare_latents( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , image_embeds.dtype , __magic_name__ , __magic_name__ ) for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase__ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase__ : Any = {"""image_embeds""": image_embeds} lowerCamelCase__ : List[str] = self.unet( sample=__magic_name__ , timestep=__magic_name__ , encoder_hidden_states=__magic_name__ , added_cond_kwargs=__magic_name__ , return_dict=__magic_name__ , )[0] if do_classifier_free_guidance: lowerCamelCase__ ,lowerCamelCase__ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) lowerCamelCase__ ,lowerCamelCase__ : List[str] = noise_pred.chunk(2 ) lowerCamelCase__ ,lowerCamelCase__ : List[Any] = variance_pred.chunk(2 ) lowerCamelCase__ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCamelCase__ : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCamelCase__ ,lowerCamelCase__ : int = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ : int = self.scheduler.step( __magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ , )[0] # post-processing lowerCamelCase__ : Union[str, Any] = self.movq.decode(__magic_name__ , force_not_quantize=__magic_name__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowerCamelCase__ : Tuple = image * 0.5 + 0.5 lowerCamelCase__ : List[Any] = image.clamp(0 , 1 ) lowerCamelCase__ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase__ : Optional[Any] = self.numpy_to_pil(__magic_name__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=__magic_name__ )
96
from ... import PretrainedConfig _lowercase = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class __A ( A_ ): UpperCamelCase :Optional[Any] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP UpperCamelCase :int = '''nezha''' def __init__(self , __magic_name__=21128 , __magic_name__=768 , __magic_name__=12 , __magic_name__=12 , __magic_name__=3072 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=512 , __magic_name__=64 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=1E-12 , __magic_name__=0.1 , __magic_name__=0 , __magic_name__=2 , __magic_name__=3 , __magic_name__=True , **__magic_name__ , ): super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) lowerCamelCase__ : List[str] = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : int = num_hidden_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : Dict = hidden_act lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_dropout_prob lowerCamelCase__ : Dict = attention_probs_dropout_prob lowerCamelCase__ : str = max_position_embeddings lowerCamelCase__ : Optional[Any] = max_relative_position lowerCamelCase__ : Optional[int] = type_vocab_size lowerCamelCase__ : Optional[Any] = initializer_range lowerCamelCase__ : Any = layer_norm_eps lowerCamelCase__ : Union[str, Any] = classifier_dropout lowerCamelCase__ : Union[str, Any] = use_cache
96
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase__ ={ 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =['OwlViTFeatureExtractor'] lowercase__ =['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowercase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
521
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowercase__ =[ # (stable-diffusion, HF Diffusers) ('time_embed.0.weight', 'time_embedding.linear_1.weight'), ('time_embed.0.bias', 'time_embedding.linear_1.bias'), ('time_embed.2.weight', 'time_embedding.linear_2.weight'), ('time_embed.2.bias', 'time_embedding.linear_2.bias'), ('input_blocks.0.0.weight', 'conv_in.weight'), ('input_blocks.0.0.bias', 'conv_in.bias'), ('out.0.weight', 'conv_norm_out.weight'), ('out.0.bias', 'conv_norm_out.bias'), ('out.2.weight', 'conv_out.weight'), ('out.2.bias', 'conv_out.bias'), ] lowercase__ =[ # (stable-diffusion, HF Diffusers) ('in_layers.0', 'norm1'), ('in_layers.2', 'conv1'), ('out_layers.0', 'norm2'), ('out_layers.3', 'conv2'), ('emb_layers.1', 'time_emb_proj'), ('skip_connection', 'conv_shortcut'), ] lowercase__ =[] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowercase__ =F"""down_blocks.{i}.resnets.{j}.""" lowercase__ =F"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowercase__ =F"""down_blocks.{i}.attentions.{j}.""" lowercase__ =F"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowercase__ =F"""up_blocks.{i}.resnets.{j}.""" lowercase__ =F"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowercase__ =F"""up_blocks.{i}.attentions.{j}.""" lowercase__ =F"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowercase__ =F"""down_blocks.{i}.downsamplers.0.conv.""" lowercase__ =F"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowercase__ =F"""up_blocks.{i}.upsamplers.0.""" lowercase__ =F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowercase__ ='mid_block.attentions.0.' lowercase__ ='middle_block.1.' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowercase__ =F"""mid_block.resnets.{j}.""" lowercase__ =F"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] ): # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. __a : str = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: __a : Tuple = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: __a : Tuple = v.replace(lowerCAmelCase__ , lowerCAmelCase__ ) __a : Union[str, Any] = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: __a : int = v.replace(lowerCAmelCase__ , lowerCAmelCase__ ) __a : List[str] = v __a : Optional[int] = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowercase__ =[ # (stable-diffusion, HF Diffusers) ('nin_shortcut', 'conv_shortcut'), ('norm_out', 'conv_norm_out'), ('mid.attn_1.', 'mid_block.attentions.0.'), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowercase__ =F"""encoder.down_blocks.{i}.resnets.{j}.""" lowercase__ =F"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowercase__ =F"""down_blocks.{i}.downsamplers.0.""" lowercase__ =F"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowercase__ =F"""up_blocks.{i}.upsamplers.0.""" lowercase__ =F"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowercase__ =F"""decoder.up_blocks.{i}.resnets.{j}.""" lowercase__ =F"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowercase__ =F"""mid_block.resnets.{i}.""" lowercase__ =F"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowercase__ =[ # (stable-diffusion, HF Diffusers) ('norm.', 'group_norm.'), ('q.', 'query.'), ('k.', 'key.'), ('v.', 'value.'), ('proj_out.', 'proj_attn.'), ] def __UpperCamelCase ( lowerCAmelCase__ : int ): # convert HF linear weights to SD conv2d weights return w.reshape(*w.shape , 1 , 1 ) def __UpperCamelCase ( lowerCAmelCase__ : Tuple ): __a : List[str] = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: __a : Union[str, Any] = v.replace(lowerCAmelCase__ , lowerCAmelCase__ ) __a : Optional[Any] = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: __a : Optional[int] = v.replace(lowerCAmelCase__ , lowerCAmelCase__ ) __a : Optional[Any] = v __a : Union[str, Any] = {v: vae_state_dict[k] for k, v in mapping.items()} __a : List[str] = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"mid.attn_1.{weight_name}.weight" in k: print(f"Reshaping {k} for SD format" ) __a : Union[str, Any] = reshape_weight_for_sd(lowerCAmelCase__ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowercase__ =[ # (stable-diffusion, HF Diffusers) ('resblocks.', 'text_model.encoder.layers.'), ('ln_1', 'layer_norm1'), ('ln_2', 'layer_norm2'), ('.c_fc.', '.fc1.'), ('.c_proj.', '.fc2.'), ('.attn', '.self_attn'), ('ln_final.', 'transformer.text_model.final_layer_norm.'), ('token_embedding.weight', 'transformer.text_model.embeddings.token_embedding.weight'), ('positional_embedding', 'transformer.text_model.embeddings.position_embedding.weight'), ] lowercase__ ={re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowercase__ =re.compile('|'.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowercase__ ={'q': 0, 'k': 1, 'v': 2} def __UpperCamelCase ( lowerCAmelCase__ : int ): __a : Any = {} __a : List[str] = {} __a : List[Any] = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): __a : Tuple = k[: -len('''.q_proj.weight''' )] __a : List[Any] = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: __a : Any = [None, None, None] __a : List[str] = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): __a : str = k[: -len('''.q_proj.bias''' )] __a : Union[str, Any] = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: __a : Union[str, Any] = [None, None, None] __a : Any = v continue __a : Optional[Any] = textenc_pattern.sub(lambda lowerCAmelCase__ : protected[re.escape(m.group(0 ) )] , lowerCAmelCase__ ) __a : Any = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) __a : Tuple = textenc_pattern.sub(lambda lowerCAmelCase__ : protected[re.escape(m.group(0 ) )] , lowerCAmelCase__ ) __a : Tuple = torch.cat(lowerCAmelCase__ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) __a : List[str] = textenc_pattern.sub(lambda lowerCAmelCase__ : protected[re.escape(m.group(0 ) )] , lowerCAmelCase__ ) __a : List[str] = torch.cat(lowerCAmelCase__ ) return new_state_dict def __UpperCamelCase ( lowerCAmelCase__ : List[Any] ): return text_enc_dict if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--use_safetensors', action='store_true', help='Save weights use safetensors, default is ckpt.' ) lowercase__ =parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowercase__ =osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.safetensors') lowercase__ =osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.safetensors') lowercase__ =osp.join(args.model_path, 'text_encoder', 'model.safetensors') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowercase__ =load_file(unet_path, device='cpu') else: lowercase__ =osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.bin') lowercase__ =torch.load(unet_path, map_location='cpu') if osp.exists(vae_path): lowercase__ =load_file(vae_path, device='cpu') else: lowercase__ =osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.bin') lowercase__ =torch.load(vae_path, map_location='cpu') if osp.exists(text_enc_path): lowercase__ =load_file(text_enc_path, device='cpu') else: lowercase__ =osp.join(args.model_path, 'text_encoder', 'pytorch_model.bin') lowercase__ =torch.load(text_enc_path, map_location='cpu') # Convert the UNet model lowercase__ =convert_unet_state_dict(unet_state_dict) lowercase__ ={'model.diffusion_model.' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowercase__ =convert_vae_state_dict(vae_state_dict) lowercase__ ={'first_stage_model.' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowercase__ ='text_model.encoder.layers.22.layer_norm2.bias' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowercase__ ={'transformer.' + k: v for k, v in text_enc_dict.items()} lowercase__ =convert_text_enc_state_dict_vaa(text_enc_dict) lowercase__ ={'cond_stage_model.model.' + k: v for k, v in text_enc_dict.items()} else: lowercase__ =convert_text_enc_state_dict(text_enc_dict) lowercase__ ={'cond_stage_model.transformer.' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowercase__ ={**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowercase__ ={k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowercase__ ={'state_dict': state_dict} torch.save(state_dict, args.checkpoint_path)
521
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case = { 'configuration_blip': [ 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlipConfig', 'BlipTextConfig', 'BlipVisionConfig', ], 'processing_blip': ['BlipProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ['BlipImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ 'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlipModel', 'BlipPreTrainedModel', 'BlipForConditionalGeneration', 'BlipForQuestionAnswering', 'BlipVisionModel', 'BlipTextModel', 'BlipForImageTextRetrieval', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ 'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBlipModel', 'TFBlipPreTrainedModel', 'TFBlipForConditionalGeneration', 'TFBlipForQuestionAnswering', 'TFBlipVisionModel', 'TFBlipTextModel', 'TFBlipForImageTextRetrieval', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
711
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = 1.5 SCREAMING_SNAKE_CASE = int(factor * num_class_images ) SCREAMING_SNAKE_CASE = ClipClient( url='https://knn.laion.ai/knn-service', indice_name='laion_400m', num_images=SCREAMING_SNAKE_CASE_, aesthetic_weight=0.1 ) os.makedirs(f'''{class_data_dir}/images''', exist_ok=SCREAMING_SNAKE_CASE_ ) if len(list(Path(f'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: SCREAMING_SNAKE_CASE = client.query(text=SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) >= factor * num_class_images or num_images > 1E4: break else: SCREAMING_SNAKE_CASE = int(factor * num_images ) SCREAMING_SNAKE_CASE = ClipClient( url='https://knn.laion.ai/knn-service', indice_name='laion_400m', num_images=SCREAMING_SNAKE_CASE_, aesthetic_weight=0.1, ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = tqdm(desc='downloading real regularization images', total=SCREAMING_SNAKE_CASE_ ) with open(f'''{class_data_dir}/caption.txt''', 'w' ) as fa, open(f'''{class_data_dir}/urls.txt''', 'w' ) as fa, open( f'''{class_data_dir}/images.txt''', 'w' ) as fa: while total < num_class_images: SCREAMING_SNAKE_CASE = class_images[count] count += 1 try: SCREAMING_SNAKE_CASE = requests.get(images['url'] ) if img.status_code == 2_0_0: SCREAMING_SNAKE_CASE = Image.open(BytesIO(img.content ) ) with open(f'''{class_data_dir}/images/{total}.jpg''', 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(f'''{class_data_dir}/images/{total}.jpg''' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCamelCase_ ( ): SCREAMING_SNAKE_CASE = argparse.ArgumentParser('', add_help=SCREAMING_SNAKE_CASE_ ) parser.add_argument('--class_prompt', help='text prompt to retrieve images', required=SCREAMING_SNAKE_CASE_, type=SCREAMING_SNAKE_CASE_ ) parser.add_argument('--class_data_dir', help='path to save images', required=SCREAMING_SNAKE_CASE_, type=SCREAMING_SNAKE_CASE_ ) parser.add_argument('--num_class_images', help='number of images to download', default=2_0_0, type=SCREAMING_SNAKE_CASE_ ) return parser.parse_args() if __name__ == "__main__": snake_case = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
406
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType __a: Union[str, Any] = logging.get_logger(__name__) __a: List[str] = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = '''layoutlmv3''' def __init__( self : int , lowerCamelCase : Optional[int]=5_0265 , lowerCamelCase : Optional[int]=768 , lowerCamelCase : Optional[Any]=12 , lowerCamelCase : Any=12 , lowerCamelCase : Optional[int]=3072 , lowerCamelCase : Optional[Any]="gelu" , lowerCamelCase : Dict=0.1 , lowerCamelCase : Any=0.1 , lowerCamelCase : Any=512 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : int=0.02 , lowerCamelCase : List[Any]=1E-5 , lowerCamelCase : Tuple=1 , lowerCamelCase : Dict=0 , lowerCamelCase : Dict=2 , lowerCamelCase : Union[str, Any]=1024 , lowerCamelCase : List[Any]=128 , lowerCamelCase : Tuple=128 , lowerCamelCase : int=True , lowerCamelCase : str=32 , lowerCamelCase : Optional[int]=128 , lowerCamelCase : List[Any]=64 , lowerCamelCase : Optional[Any]=256 , lowerCamelCase : Any=True , lowerCamelCase : int=True , lowerCamelCase : str=True , lowerCamelCase : str=224 , lowerCamelCase : Any=3 , lowerCamelCase : List[Any]=16 , lowerCamelCase : int=None , **lowerCamelCase : Optional[Any] , ) -> Any: """simple docstring""" super().__init__( vocab_size=lowerCamelCase , hidden_size=lowerCamelCase , num_hidden_layers=lowerCamelCase , num_attention_heads=lowerCamelCase , intermediate_size=lowerCamelCase , hidden_act=lowerCamelCase , hidden_dropout_prob=lowerCamelCase , attention_probs_dropout_prob=lowerCamelCase , max_position_embeddings=lowerCamelCase , type_vocab_size=lowerCamelCase , initializer_range=lowerCamelCase , layer_norm_eps=lowerCamelCase , pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase , ) _UpperCAmelCase = max_ad_position_embeddings _UpperCAmelCase = coordinate_size _UpperCAmelCase = shape_size _UpperCAmelCase = has_relative_attention_bias _UpperCAmelCase = rel_pos_bins _UpperCAmelCase = max_rel_pos _UpperCAmelCase = has_spatial_attention_bias _UpperCAmelCase = rel_ad_pos_bins _UpperCAmelCase = max_rel_ad_pos _UpperCAmelCase = text_embed _UpperCAmelCase = visual_embed _UpperCAmelCase = input_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = classifier_dropout class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = version.parse('''1.12''' ) @property def lowerCamelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCamelCase ( self : Any ) -> float: """simple docstring""" return 1E-5 @property def lowerCamelCase ( self : str ) -> int: """simple docstring""" return 12 def lowerCamelCase ( self : List[str] , lowerCamelCase : "ProcessorMixin" , lowerCamelCase : int = -1 , lowerCamelCase : int = -1 , lowerCamelCase : bool = False , lowerCamelCase : Optional["TensorType"] = None , lowerCamelCase : int = 3 , lowerCamelCase : int = 40 , lowerCamelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , lowerCamelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension( lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase = processor.tokenizer.num_special_tokens_to_add(lowerCamelCase ) _UpperCAmelCase = compute_effective_axis_dimension( lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes _UpperCAmelCase = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) _UpperCAmelCase = self._generate_dummy_images(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = dict( processor( lowerCamelCase , text=lowerCamelCase , boxes=lowerCamelCase , return_tensors=lowerCamelCase , ) ) return inputs
108
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase(_lowercase ): __snake_case: jnp.ndarray __snake_case: jnp.ndarray class lowercase(nn.Module ): __snake_case: int __snake_case: Tuple[int] = (16, 32, 96, 256) __snake_case: jnp.dtype = jnp.floataa def lowercase__ ( self ) -> Dict: """simple docstring""" a__ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) a__ = [] for i in range(len(self.block_out_channels ) - 1 ): a__ = self.block_out_channels[i] a__ = self.block_out_channels[i + 1] a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__SCREAMING_SNAKE_CASE ) a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__SCREAMING_SNAKE_CASE ) a__ = blocks a__ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" a__ = self.conv_in(__SCREAMING_SNAKE_CASE ) a__ = nn.silu(__SCREAMING_SNAKE_CASE ) for block in self.blocks: a__ = block(__SCREAMING_SNAKE_CASE ) a__ = nn.silu(__SCREAMING_SNAKE_CASE ) a__ = self.conv_out(__SCREAMING_SNAKE_CASE ) return embedding @flax_register_to_config class lowercase(nn.Module , _lowercase , _lowercase ): __snake_case: int = 32 __snake_case: int = 4 __snake_case: Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __snake_case: Union[bool, Tuple[bool]] = False __snake_case: Tuple[int] = (320, 640, 1280, 1280) __snake_case: int = 2 __snake_case: Union[int, Tuple[int]] = 8 __snake_case: Optional[Union[int, Tuple[int]]] = None __snake_case: int = 1280 __snake_case: float = 0.0 __snake_case: bool = False __snake_case: jnp.dtype = jnp.floataa __snake_case: bool = True __snake_case: int = 0 __snake_case: str = "rgb" __snake_case: Tuple[int] = (16, 32, 96, 256) def lowercase__ ( self , __SCREAMING_SNAKE_CASE ) -> FrozenDict: """simple docstring""" a__ = (1, self.in_channels, self.sample_size, self.sample_size) a__ = jnp.zeros(__SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) a__ = jnp.ones((1,) , dtype=jnp.intaa ) a__ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) a__ = (1, 3, self.sample_size * 8, self.sample_size * 8) a__ = jnp.zeros(__SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) a__ , a__ = jax.random.split(__SCREAMING_SNAKE_CASE ) a__ = {'params': params_rng, 'dropout': dropout_rng} return self.init(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )["params"] def lowercase__ ( self ) -> str: """simple docstring""" a__ = self.block_out_channels a__ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. a__ = self.num_attention_heads or self.attention_head_dim # input a__ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time a__ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) a__ = FlaxTimestepEmbedding(__SCREAMING_SNAKE_CASE , dtype=self.dtype ) a__ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) a__ = self.only_cross_attention if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a__ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a__ = (num_attention_heads,) * len(self.down_block_types ) # down a__ = [] a__ = [] a__ = block_out_channels[0] a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__SCREAMING_SNAKE_CASE ) for i, down_block_type in enumerate(self.down_block_types ): a__ = output_channel a__ = block_out_channels[i] a__ = i == len(__SCREAMING_SNAKE_CASE ) - 1 if down_block_type == "CrossAttnDownBlock2D": a__ = FlaxCrossAttnDownBlockaD( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: a__ = FlaxDownBlockaD( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__SCREAMING_SNAKE_CASE ) for _ in range(self.layers_per_block ): a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__SCREAMING_SNAKE_CASE ) if not is_final_block: a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__SCREAMING_SNAKE_CASE ) a__ = down_blocks a__ = controlnet_down_blocks # mid a__ = block_out_channels[-1] a__ = FlaxUNetMidBlockaDCrossAttn( in_channels=__SCREAMING_SNAKE_CASE , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1.0 , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = False , ) -> Union[FlaxControlNetOutput, Tuple]: """simple docstring""" a__ = self.controlnet_conditioning_channel_order if channel_order == "bgr": a__ = jnp.flip(__SCREAMING_SNAKE_CASE , axis=1 ) # 1. time if not isinstance(__SCREAMING_SNAKE_CASE , jnp.ndarray ): a__ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__SCREAMING_SNAKE_CASE , jnp.ndarray ) and len(timesteps.shape ) == 0: a__ = timesteps.astype(dtype=jnp.floataa ) a__ = jnp.expand_dims(__SCREAMING_SNAKE_CASE , 0 ) a__ = self.time_proj(__SCREAMING_SNAKE_CASE ) a__ = self.time_embedding(__SCREAMING_SNAKE_CASE ) # 2. pre-process a__ = jnp.transpose(__SCREAMING_SNAKE_CASE , (0, 2, 3, 1) ) a__ = self.conv_in(__SCREAMING_SNAKE_CASE ) a__ = jnp.transpose(__SCREAMING_SNAKE_CASE , (0, 2, 3, 1) ) a__ = self.controlnet_cond_embedding(__SCREAMING_SNAKE_CASE ) sample += controlnet_cond # 3. down a__ = (sample,) for down_block in self.down_blocks: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a__ , a__ = down_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=not train ) else: a__ , a__ = down_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=not train ) down_block_res_samples += res_samples # 4. mid a__ = self.mid_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=not train ) # 5. contronet blocks a__ = () for down_block_res_sample, controlnet_block in zip(__SCREAMING_SNAKE_CASE , self.controlnet_down_blocks ): a__ = controlnet_block(__SCREAMING_SNAKE_CASE ) controlnet_down_block_res_samples += (down_block_res_sample,) a__ = controlnet_down_block_res_samples a__ = self.controlnet_mid_block(__SCREAMING_SNAKE_CASE ) # 6. scaling a__ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__SCREAMING_SNAKE_CASE , mid_block_res_sample=__SCREAMING_SNAKE_CASE )
273
0
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowercase : Optional[Any] = argparse.ArgumentParser("""Stable Diffusion script with intel optimization""", add_help=False) parser.add_argument("""--dpm""", action="""store_true""", help="""Enable DPMSolver or not""") parser.add_argument("""--steps""", default=None, type=int, help="""Num inference steps""") lowercase : Optional[Any] = parser.parse_args() lowercase : str = """cpu""" lowercase : int = """a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings""" lowercase : Dict = """path-to-your-trained-model""" lowercase : Optional[int] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowercase : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowercase : Dict = pipe.to(device) # to channels last lowercase : str = pipe.unet.to(memory_format=torch.channels_last) lowercase : Any = pipe.vae.to(memory_format=torch.channels_last) lowercase : Dict = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowercase : List[str] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowercase : Optional[Any] = torch.randn(2, 4, 6_4, 6_4) lowercase : Tuple = torch.rand(1) * 9_9_9 lowercase : List[Any] = torch.randn(2, 7_7, 7_6_8) lowercase : Optional[Any] = (sample, timestep, encoder_hidden_status) try: lowercase : Any = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowercase : List[str] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowercase : str = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowercase : int = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowercase : Tuple = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowercase : Optional[int] = 6_6_6 lowercase : List[str] = torch.Generator(device).manual_seed(seed) lowercase : str = {"""generator""": generator} if args.steps is not None: lowercase : Tuple = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowercase : Tuple = pipe(prompt, **generate_kwargs).images[0] # save image image.save("""generated.png""")
714
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a__ ( __SCREAMING_SNAKE_CASE ): _A = (EulerDiscreteScheduler,) _A = 10 def lowerCAmelCase ( self : Optional[Any] , **A_ : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_: Tuple = { """num_train_timesteps""": 11_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**A_ ) return config def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=A_ ) def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A_ ) def lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_: Any = self.scheduler_classes[0] lowerCamelCase_: Optional[int] = self.get_scheduler_config() lowerCamelCase_: Tuple = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_: Optional[Any] = torch.manual_seed(0 ) lowerCamelCase_: Optional[Any] = self.dummy_model() lowerCamelCase_: List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_: Optional[int] = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_: Dict = scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_: Tuple = model(A_ , A_ ) lowerCamelCase_: int = scheduler.step(A_ , A_ , A_ , generator=A_ ) lowerCamelCase_: Union[str, Any] = output.prev_sample lowerCamelCase_: int = torch.sum(torch.abs(A_ ) ) lowerCamelCase_: int = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_: Optional[int] = self.scheduler_classes[0] lowerCamelCase_: Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowerCamelCase_: Any = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_: Any = torch.manual_seed(0 ) lowerCamelCase_: Dict = self.dummy_model() lowerCamelCase_: Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_: Any = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_: int = scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_: Optional[Any] = model(A_ , A_ ) lowerCamelCase_: List[str] = scheduler.step(A_ , A_ , A_ , generator=A_ ) lowerCamelCase_: str = output.prev_sample lowerCamelCase_: int = torch.sum(torch.abs(A_ ) ) lowerCamelCase_: List[Any] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def lowerCAmelCase ( self : int ) -> int: """simple docstring""" lowerCamelCase_: Any = self.scheduler_classes[0] lowerCamelCase_: Optional[Any] = self.get_scheduler_config() lowerCamelCase_: int = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps , device=A_ ) lowerCamelCase_: Dict = torch.manual_seed(0 ) lowerCamelCase_: Union[str, Any] = self.dummy_model() lowerCamelCase_: str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCamelCase_: str = sample.to(A_ ) for t in scheduler.timesteps: lowerCamelCase_: str = scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_: str = model(A_ , A_ ) lowerCamelCase_: List[Any] = scheduler.step(A_ , A_ , A_ , generator=A_ ) lowerCamelCase_: int = output.prev_sample lowerCamelCase_: List[Any] = torch.sum(torch.abs(A_ ) ) lowerCamelCase_: Optional[int] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" lowerCamelCase_: Any = self.scheduler_classes[0] lowerCamelCase_: Dict = self.get_scheduler_config() lowerCamelCase_: int = scheduler_class(**A_ , use_karras_sigmas=A_ ) scheduler.set_timesteps(self.num_inference_steps , device=A_ ) lowerCamelCase_: List[str] = torch.manual_seed(0 ) lowerCamelCase_: Union[str, Any] = self.dummy_model() lowerCamelCase_: Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCamelCase_: List[str] = sample.to(A_ ) for t in scheduler.timesteps: lowerCamelCase_: int = scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_: int = model(A_ , A_ ) lowerCamelCase_: List[Any] = scheduler.step(A_ , A_ , A_ , generator=A_ ) lowerCamelCase_: List[Any] = output.prev_sample lowerCamelCase_: Optional[int] = torch.sum(torch.abs(A_ ) ) lowerCamelCase_: int = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
584
0
import math from collections.abc import Callable def _A ( __snake_case :Callable[[float], float] , __snake_case :float , __snake_case :float ) -> float: """simple docstring""" __SCREAMING_SNAKE_CASE = xa __SCREAMING_SNAKE_CASE = xa while True: if x_n == x_na or function(__snake_case ) == function(__snake_case ): raise ZeroDivisionError("float division by zero, could not find root" ) __SCREAMING_SNAKE_CASE = x_na - ( function(__snake_case ) / ((function(__snake_case ) - function(__snake_case )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na __SCREAMING_SNAKE_CASE = x_na __SCREAMING_SNAKE_CASE = x_na def _A ( __snake_case :float ) -> float: """simple docstring""" return math.pow(__snake_case , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
693
from __future__ import annotations _snake_case : str = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _snake_case : Optional[int] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def _A ( __snake_case :list[float] ) -> list[float]: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = len(__snake_case ) for i in range(__snake_case ): __SCREAMING_SNAKE_CASE = -1 for j in range(i + 1 , __snake_case ): if arr[i] < arr[j]: __SCREAMING_SNAKE_CASE = arr[j] break result.append(__snake_case ) return result def _A ( __snake_case :list[float] ) -> list[float]: """simple docstring""" __SCREAMING_SNAKE_CASE = [] for i, outer in enumerate(__snake_case ): __SCREAMING_SNAKE_CASE = -1 for inner in arr[i + 1 :]: if outer < inner: __SCREAMING_SNAKE_CASE = inner break result.append(__snake_case ) return result def _A ( __snake_case :list[float] ) -> list[float]: """simple docstring""" __SCREAMING_SNAKE_CASE = len(__snake_case ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [-1] * arr_size for index in reversed(range(__snake_case ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: __SCREAMING_SNAKE_CASE = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _snake_case : Optional[Any] = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
693
1
def _SCREAMING_SNAKE_CASE ( __lowercase : float ) -> float: """simple docstring""" if edge <= 0 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError("""Length must be a positive.""" ) return 3 * ((2_5 + 1_0 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _SCREAMING_SNAKE_CASE ( __lowercase : float ) -> float: """simple docstring""" if edge <= 0 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError("""Length must be a positive.""" ) return ((1_5 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
708
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __lowercase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any=13 , UpperCamelCase_ : int=7 , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Any=99 , UpperCamelCase_ : Dict=32 , UpperCamelCase_ : str=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : str=37 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : List[Any]=512 , UpperCamelCase_ : Optional[Any]=16 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Tuple=3 , UpperCamelCase_ : Optional[int]=4 , UpperCamelCase_ : str=None , ): """simple docstring""" __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = num_labels __A = num_choices __A = scope def lowerCAmelCase_ ( self : str ): """simple docstring""" __A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __A = None __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A = ids_tensor([self.batch_size] , self.num_choices ) __A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Dict ): """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : int , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any ): """simple docstring""" __A = LlamaModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) __A = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , ): """simple docstring""" __A = True __A = LlamaModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) __A = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , ) __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : str , ): """simple docstring""" __A = LlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , ): """simple docstring""" __A = True __A = True __A = LlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() # first forward pass __A = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ , ) __A = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __A = ids_tensor((self.batch_size, 3) , config.vocab_size ) __A = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __A = torch.cat([input_ids, next_tokens] , dim=-1 ) __A = torch.cat([input_mask, next_mask] , dim=-1 ) __A = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )["""hidden_states"""][0] __A = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )["""hidden_states"""][0] # select random slice __A = ids_tensor((1,) , output_from_past.shape[-1] ).item() __A = output_from_no_past[:, -3:, random_slice_idx].detach() __A = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-3 ) ) def lowerCAmelCase_ ( self : str ): """simple docstring""" __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE = (LlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A = LlamaModelTester(self ) __A = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Dict ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Any ): """simple docstring""" __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = 3 __A = input_dict["""input_ids"""] __A = input_ids.ne(1 ).to(UpperCamelCase_ ) __A = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __A = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = 3 __A = """single_label_classification""" __A = input_dict["""input_ids"""] __A = input_ids.ne(1 ).to(UpperCamelCase_ ) __A = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __A = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self : str ): """simple docstring""" __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = 3 __A = """multi_label_classification""" __A = input_dict["""input_ids"""] __A = input_ids.ne(1 ).to(UpperCamelCase_ ) __A = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __A = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def lowerCAmelCase_ ( self : List[str] , UpperCamelCase_ : Optional[Any] ): """simple docstring""" __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = ids_tensor([1, 10] , config.vocab_size ) __A = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __A = LlamaModel(UpperCamelCase_ ) original_model.to(UpperCamelCase_ ) original_model.eval() __A = original_model(UpperCamelCase_ ).last_hidden_state __A = original_model(UpperCamelCase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __A = {"""type""": scaling_type, """factor""": 10.0} __A = LlamaModel(UpperCamelCase_ ) scaled_model.to(UpperCamelCase_ ) scaled_model.eval() __A = scaled_model(UpperCamelCase_ ).last_hidden_state __A = scaled_model(UpperCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-5 ) ) @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def lowerCAmelCase_ ( self : Any ): """simple docstring""" __A = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __A = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) __A = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __A = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __A = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def lowerCAmelCase_ ( self : str ): """simple docstring""" __A = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __A = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) __A = model(torch.tensor(UpperCamelCase_ ) ) # Expected mean on dim = -1 __A = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __A = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __A = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) __A = model(torch.tensor(UpperCamelCase_ ) ) # Expected mean on dim = -1 __A = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __A = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1e-2 , rtol=1e-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __A = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) __A = model(torch.tensor(UpperCamelCase_ ) ) __A = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1e-2 , rtol=1e-2 ) # fmt: off __A = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Model is curently gated""" ) @slow def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" __A = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __A = """Simply put, the theory of relativity states that """ __A = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) __A = tokenizer.encode(UpperCamelCase_ , return_tensors="""pt""" ) __A = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=UpperCamelCase_ ) # greedy generation outputs __A = model.generate(UpperCamelCase_ , max_new_tokens=64 , top_p=UpperCamelCase_ , temperature=1 , do_sample=UpperCamelCase_ ) __A = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
199
0
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase_ : List[Any] = logging.get_logger(__name__) logging.set_verbosity_info() def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: a__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(_lowercase ) a__ , a__ = XLMProphetNetForConditionalGeneration.from_pretrained( _lowercase , output_loading_info=_lowercase ) else: a__ = ProphetNetForConditionalGenerationOld.from_pretrained(_lowercase ) a__ , a__ = ProphetNetForConditionalGeneration.from_pretrained( _lowercase , output_loading_info=_lowercase ) a__ = ["key_proj", "value_proj", "query_proj"] a__ = { "self_attn": "ngram_self_attn", "cross_attn": "encoder_attn", "cross_attn_layer_norm": "encoder_attn_layer_norm", "feed_forward_layer_norm": "final_layer_norm", "feed_forward": "", "intermediate": "fc1", "output": "fc2", "key_proj": "k_proj", "query_proj": "q_proj", "value_proj": "v_proj", "word_embeddings": "embed_tokens", "embeddings_layer_norm": "emb_layer_norm", "relative_pos_embeddings": "relative_linear", "ngram_embeddings": "ngram_input_embed", "position_embeddings": "embed_positions", } for key in loading_info["missing_keys"]: a__ = key.split("." ) if attributes[0] == "lm_head": a__ = prophet a__ = prophet_old else: a__ = prophet.prophetnet a__ = prophet_old.model a__ = False for attribute in attributes: if attribute in mapping: a__ = mapping[attribute] if not hasattr(_lowercase , _lowercase ) and len(_lowercase ) > 0: a__ = attribute elif hasattr(_lowercase , _lowercase ): a__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" a__ = old_model.weight logger.info(F'{attribute} is initialized.' ) a__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" a__ = old_model.bias logger.info(F'{attribute} is initialized' ) a__ = True break elif attribute in special_keys and hasattr(_lowercase , "in_proj_weight" ): a__ = old_model.in_proj_weight.shape[0] // 3 a__ = getattr(_lowercase , _lowercase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": a__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) a__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": a__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) a__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": a__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) a__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) a__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." a__ = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) a__ = True break if attribute.isdigit(): a__ = model[int(_lowercase )] a__ = old_model[int(_lowercase )] else: a__ = getattr(_lowercase , _lowercase ) if old_attribute == "": a__ = old_model else: if not hasattr(_lowercase , _lowercase ): raise ValueError(F'{old_model} does not have {old_attribute}' ) a__ = getattr(_lowercase , _lowercase ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(_lowercase ) if __name__ == "__main__": UpperCamelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCamelCase_ : Dict = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
331
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup UpperCamelCase_ : Optional[int] = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def _lowerCAmelCase (_lowercase = "mumbai" ): """simple docstring""" a__ = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): a__ = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() a__ = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F"Job {i:>2} is {job[0]} at {job[1]}")
331
1
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging A_ = ["bart.large", "bart.large.mnli", "bart.large.cnn", "bart_xsum/model.pt"] A_ = {"bart.large": BartModel, "bart.large.mnli": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("0.9.0"): raise Exception("requires fairseq >= 0.9.0") logging.set_verbosity_info() A_ = logging.get_logger(__name__) A_ = " Hello world! cécé herlolip" A_ = [ ("model.classification_heads.mnli.dense.weight", "classification_head.dense.weight"), ("model.classification_heads.mnli.dense.bias", "classification_head.dense.bias"), ("model.classification_heads.mnli.out_proj.weight", "classification_head.out_proj.weight"), ("model.classification_heads.mnli.out_proj.bias", "classification_head.out_proj.bias"), ] def __UpperCamelCase ( a) ->Tuple: lowerCamelCase__ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(a, a) def __UpperCamelCase ( a, a, a) ->Optional[int]: lowerCamelCase__ = dct.pop(a) lowerCamelCase__ = val def __UpperCamelCase ( a) ->Optional[int]: lowerCamelCase__ = torch.load(a, map_location="cpu") lowerCamelCase__ = torch.hub.load("pytorch/fairseq", "bart.large.cnn").eval() hub_interface.model.load_state_dict(sd["model"]) return hub_interface def __UpperCamelCase ( a) ->str: lowerCamelCase__ , lowerCamelCase__ = emb.weight.shape lowerCamelCase__ = nn.Linear(a, a, bias=a) lowerCamelCase__ = emb.weight.data return lin_layer @torch.no_grad() def __UpperCamelCase ( a, a, a=None) ->Any: if not os.path.exists(a): lowerCamelCase__ = torch.hub.load("pytorch/fairseq", a).eval() else: lowerCamelCase__ = load_xsum_checkpoint(a) bart.model.upgrade_state_dict(bart.model.state_dict()) if hf_checkpoint_name is None: lowerCamelCase__ = checkpoint_path.replace(".", "-") lowerCamelCase__ = BartConfig.from_pretrained(a) lowerCamelCase__ = bart.encode(a).unsqueeze(0) lowerCamelCase__ = BartTokenizer.from_pretrained(a).encode(a, return_tensors="pt").unsqueeze(0) if not torch.eq(a, a).all(): raise ValueError( f"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}") if checkpoint_path == "bart.large.mnli": lowerCamelCase__ = bart.state_dict() remove_ignore_keys_(a) lowerCamelCase__ = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(a, a, a) lowerCamelCase__ = BartForSequenceClassification(a).eval() model.load_state_dict(a) lowerCamelCase__ = bart.predict("mnli", a, return_logits=a) lowerCamelCase__ = model(a)[0] # logits else: # no classification heads to worry about lowerCamelCase__ = bart.model.state_dict() remove_ignore_keys_(a) lowerCamelCase__ = state_dict["decoder.embed_tokens.weight"] lowerCamelCase__ = bart.extract_features(a) if hf_checkpoint_name == "facebook/bart-large": lowerCamelCase__ = BartModel(a).eval() model.load_state_dict(a) lowerCamelCase__ = model(a).model[0] else: lowerCamelCase__ = BartForConditionalGeneration(a).eval() # an existing summarization ckpt model.model.load_state_dict(a) if hasattr(a, "lm_head"): lowerCamelCase__ = make_linear_from_emb(model.model.shared) lowerCamelCase__ = model.model(a)[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}") if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`") Path(a).mkdir(exist_ok=a) model.save_pretrained(a) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default=None, type=str, help="Which huggingface architecture to use: bart-large-xsum" ) A_ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
713
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def __UpperCamelCase ( a, a=False) ->Optional[Any]: lowerCamelCase__ = OmegaConf.load(a) if display: print(yaml.dump(OmegaConf.to_container(a))) return config def __UpperCamelCase ( a, a=None, a=None) ->List[Any]: if conf_path is None: lowerCamelCase__ = "./model_checkpoints/vqgan_only.yaml" lowerCamelCase__ = load_config(a, display=a) lowerCamelCase__ = VQModel(**config.model.params) if ckpt_path is None: lowerCamelCase__ = "./model_checkpoints/vqgan_only.pt" lowerCamelCase__ = torch.load(a, map_location=a) if ".ckpt" in ckpt_path: lowerCamelCase__ = sd["state_dict"] model.load_state_dict(a, strict=a) model.to(a) del sd return model def __UpperCamelCase ( a, a) ->int: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model.encode(a) print(f"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}") lowerCamelCase__ = model.decode(a) return xrec def __UpperCamelCase ( a, a=False) ->Dict: lowerCamelCase__ , lowerCamelCase__ = string.rsplit(".", 1) if reload: lowerCamelCase__ = importlib.import_module(a) importlib.reload(a) return getattr(importlib.import_module(a, package=a), cls) def __UpperCamelCase ( a) ->int: if "target" not in config: raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", {})) def __UpperCamelCase ( a, a, a=True, a=True) ->Optional[Any]: lowerCamelCase__ = instantiate_from_config(a) if sd is not None: model.load_state_dict(a) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def __UpperCamelCase ( a, a, a, a) ->Dict: # load the specified checkpoint if ckpt: lowerCamelCase__ = torch.load(a, map_location="cpu") lowerCamelCase__ = pl_sd["global_step"] print(f"loaded model from global step {global_step}.") else: lowerCamelCase__ = {"state_dict": None} lowerCamelCase__ = None lowerCamelCase__ = load_model_from_config(config.model, pl_sd["state_dict"], gpu=a, eval_mode=a)["model"] return model, global_step
360
0
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCAmelCase_ : Union[str, Any] = get_logger(__name__) class SCREAMING_SNAKE_CASE__ : snake_case__ : Any = '''dummy_data''' snake_case__ : Dict = '''datasets''' snake_case__ : str = False def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[Version, str] , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[List[Callable]] = None , ) -> Tuple: a_ : Optional[int] = 0 a_ : Dict = dataset_name a_ : Union[str, Any] = cache_dir a_ : Optional[Any] = use_local_dummy_data a_ : Tuple = config # download_callbacks take a single url as input a_ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root a_ : Optional[int] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general a_ : Tuple = str(SCREAMING_SNAKE_CASE__ ) # to be downloaded a_ : Union[str, Any] = None a_ : Optional[Any] = None @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: if self._dummy_file is None: a_ : List[str] = self.download_dummy_data() return self._dummy_file @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: a_ : Any = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) a_ : Union[str, Any] = cached_path( SCREAMING_SNAKE_CASE__ , cache_dir=self.cache_dir , extract_compressed_file=SCREAMING_SNAKE_CASE__ , force_extract=SCREAMING_SNAKE_CASE__ ) return os.path.join(SCREAMING_SNAKE_CASE__ , self.dummy_file_name ) @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: if self._bucket_url is None: a_ : Optional[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , *SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]: if self.load_existing_dummy_data: # dummy data is downloaded and tested a_ : Optional[Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned a_ : Any = self.dummy_file_name # special case when data_url is a dict if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return self.create_dummy_data_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): return self.create_dummy_data_list(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: return self.create_dummy_data_single(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , *SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: return self.download_and_extract(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: return self.download_and_extract(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Dict: return path def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: return {} def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: a_ : Optional[Any] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for single_url in single_urls: download_callback(SCREAMING_SNAKE_CASE__ ) else: a_ : List[Any] = single_urls download_callback(SCREAMING_SNAKE_CASE__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : Any = [os.path.join(SCREAMING_SNAKE_CASE__ , urllib.parse.quote_plus(Path(SCREAMING_SNAKE_CASE__ ).name ) ) for x in single_urls] else: a_ : int = single_urls a_ : str = os.path.join(SCREAMING_SNAKE_CASE__ , urllib.parse.quote_plus(Path(SCREAMING_SNAKE_CASE__ ).name ) ) a_ : Optional[Any] = value # make sure that values are unique if all(isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique a_ : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Dict: a_ : Tuple = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one a_ : List[str] = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , SCREAMING_SNAKE_CASE__ ) ) for url in data_url ) a_ : Any = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): a_ : List[str] = [data_url[0]] * len(SCREAMING_SNAKE_CASE__ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(SCREAMING_SNAKE_CASE__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a_ : Any = os.path.join(SCREAMING_SNAKE_CASE__ , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(SCREAMING_SNAKE_CASE__ ) return dummy_data_list def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> Dict: for download_callback in self.download_callbacks: download_callback(SCREAMING_SNAKE_CASE__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a_ : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(SCREAMING_SNAKE_CASE__ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: pass def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[int]: def _iter_archive_members(SCREAMING_SNAKE_CASE__ : Optional[Any] ): # this preserves the order of the members inside the ZIP archive a_ : Tuple = Path(self.dummy_file ).parent a_ : str = path.relative_to(SCREAMING_SNAKE_CASE__ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: a_ : Dict = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = Path(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = _iter_archive_members(SCREAMING_SNAKE_CASE__ ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(SCREAMING_SNAKE_CASE__ ).as_posix(), file_path.open('rb' ) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : List[str] = [paths] for path in paths: if os.path.isfile(SCREAMING_SNAKE_CASE__ ): if os.path.basename(SCREAMING_SNAKE_CASE__ ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(SCREAMING_SNAKE_CASE__ ): if os.path.basename(SCREAMING_SNAKE_CASE__ ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(SCREAMING_SNAKE_CASE__ ): if filename.startswith(('.', '__') ): continue yield os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
570
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Tuple = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } UpperCAmelCase_ : str = { 'facebook/nllb-large-en-ro': 1024, 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off UpperCAmelCase_ : Any = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Dict = VOCAB_FILES_NAMES snake_case__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Any = ['''input_ids''', '''attention_mask'''] snake_case__ : str = NllbTokenizer snake_case__ : List[int] = [] snake_case__ : List[int] = [] def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Optional[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Any="</s>" , SCREAMING_SNAKE_CASE__ : str="</s>" , SCREAMING_SNAKE_CASE__ : int="<s>" , SCREAMING_SNAKE_CASE__ : List[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : List[str]="<pad>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<mask>" , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : int=False , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it a_ : Union[str, Any] = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token a_ : Union[str, Any] = legacy_behaviour super().__init__( vocab_file=SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , src_lang=SCREAMING_SNAKE_CASE__ , tgt_lang=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , legacy_behaviour=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) a_ : Optional[Any] = vocab_file a_ : str = False if not self.vocab_file else True a_ : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) a_ : Optional[int] = { lang_code: self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } a_ : Tuple = src_lang if src_lang is not None else 'eng_Latn' a_ : Any = self.convert_tokens_to_ids(self._src_lang ) a_ : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : str ) -> None: a_ : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: a_ : Dict = [self.sep_token_id] a_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] , SCREAMING_SNAKE_CASE__ : Optional[str] , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) a_ : Any = src_lang a_ : Optional[Any] = self(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) a_ : Tuple = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) a_ : int = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str = "eng_Latn" , SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None , SCREAMING_SNAKE_CASE__ : str = "fra_Latn" , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> BatchEncoding: a_ : Union[str, Any] = src_lang a_ : int = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict ) -> None: a_ : str = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: a_ : Dict = [] a_ : Dict = [self.eos_token_id, self.cur_lang_code] else: a_ : Union[str, Any] = [self.cur_lang_code] a_ : List[str] = [self.eos_token_id] a_ : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) a_ : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) a_ : Optional[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str ) -> None: a_ : Any = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: a_ : Optional[Any] = [] a_ : Any = [self.eos_token_id, self.cur_lang_code] else: a_ : str = [self.cur_lang_code] a_ : str = [self.eos_token_id] a_ : str = self.convert_ids_to_tokens(self.prefix_tokens ) a_ : Any = self.convert_ids_to_tokens(self.suffix_tokens ) a_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return a_ : Optional[Any] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
570
1
def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): if len(UpperCamelCase__ ) <= 1: return lst UpperCamelCase__ : Union[str, Any] = 1 while i < len(UpperCamelCase__ ): if lst[i - 1] <= lst[i]: i += 1 else: UpperCamelCase__ ,UpperCamelCase__ : int = lst[i], lst[i - 1] i -= 1 if i == 0: UpperCamelCase__ : Dict = 1 return lst if __name__ == "__main__": lowerCamelCase =input("Enter numbers separated by a comma:\n").strip() lowerCamelCase =[int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
462
from __future__ import annotations from collections.abc import Callable def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1_0_0 , ): UpperCamelCase__ : Union[str, Any] = x_start UpperCamelCase__ : List[Any] = fnc(UpperCamelCase__ ) UpperCamelCase__ : Any = 0.0 for _ in range(UpperCamelCase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area UpperCamelCase__ : str = (x_end - x_start) / steps + xa UpperCamelCase__ : Dict = fnc(UpperCamelCase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step UpperCamelCase__ : Tuple = xa UpperCamelCase__ : Union[str, Any] = fxa return area if __name__ == "__main__": def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowerCamelCase =1_0 while i <= 1_0_0_0_0_0: print(F'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 1_0
462
1
from collections.abc import Callable import numpy as np def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): _a : Optional[int] = int(np.ceil((x_end - xa) / step_size ) ) _a : Any = np.zeros((n + 1,) ) _a : List[Any] = ya _a : List[str] = xa for k in range(UpperCamelCase_ ): _a : Optional[int] = y[k] + step_size * ode_func(UpperCamelCase_ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
471
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_=False ): _a : List[Any] = OmegaConf.load(UpperCamelCase_ ) if display: print(yaml.dump(OmegaConf.to_container(UpperCamelCase_ ) ) ) return config def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None ): if conf_path is None: _a : Tuple = '''./model_checkpoints/vqgan_only.yaml''' _a : Dict = load_config(UpperCamelCase_ , display=UpperCamelCase_ ) _a : Optional[int] = VQModel(**config.model.params ) if ckpt_path is None: _a : List[str] = '''./model_checkpoints/vqgan_only.pt''' _a : Optional[int] = torch.load(UpperCamelCase_ , map_location=UpperCamelCase_ ) if ".ckpt" in ckpt_path: _a : Dict = sd['''state_dict'''] model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) model.to(UpperCamelCase_ ) del sd return model def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): _a , _a , _a : Optional[Any] = model.encode(UpperCamelCase_ ) print(f"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) _a : List[str] = model.decode(UpperCamelCase_ ) return xrec def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_=False ): _a , _a : Tuple = string.rsplit('''.''' , 1 ) if reload: _a : int = importlib.import_module(UpperCamelCase_ ) importlib.reload(UpperCamelCase_ ) return getattr(importlib.import_module(UpperCamelCase_ , package=UpperCamelCase_ ) , cls ) def lowerCamelCase_ ( UpperCamelCase_ ): if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=True , UpperCamelCase_=True ): _a : List[Any] = instantiate_from_config(UpperCamelCase_ ) if sd is not None: model.load_state_dict(UpperCamelCase_ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): # load the specified checkpoint if ckpt: _a : Tuple = torch.load(UpperCamelCase_ , map_location='''cpu''' ) _a : int = pl_sd['''global_step'''] print(f"""loaded model from global step {global_step}.""" ) else: _a : Dict = {'''state_dict''': None} _a : List[str] = None _a : List[Any] = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=UpperCamelCase_ , eval_mode=UpperCamelCase_ )['''model'''] return model, global_step
471
1
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = LEDTokenizer lowerCAmelCase__ = LEDTokenizerFast lowerCAmelCase__ = True def _lowercase ( self: Tuple ): '''simple docstring''' super().setUp() _lowerCamelCase : Any = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] _lowerCamelCase : List[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : Tuple = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : List[Any] = {"unk_token": "<unk>"} _lowerCamelCase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(__lowerCAmelCase ) ) def _lowercase ( self: Tuple ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: List[str] ,**__lowerCAmelCase: List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: Dict ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def _lowercase ( self: List[Any] ): '''simple docstring''' return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def _lowercase ( self: List[str] ): '''simple docstring''' return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] _lowerCamelCase : Optional[Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : int = tokenizer(__lowerCAmelCase ,max_length=len(__lowerCAmelCase ) ,padding=__lowerCAmelCase ,return_tensors="pt" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _lowerCamelCase : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) @require_torch def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : List[str] = tokenizer(__lowerCAmelCase ,padding=__lowerCAmelCase ,return_tensors="pt" ) self.assertIn("input_ids" ,__lowerCAmelCase ) self.assertIn("attention_mask" ,__lowerCAmelCase ) self.assertNotIn("labels" ,__lowerCAmelCase ) self.assertNotIn("decoder_attention_mask" ,__lowerCAmelCase ) @require_torch def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : Dict = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : List[str] = tokenizer(text_target=__lowerCAmelCase ,max_length=32 ,padding="max_length" ,return_tensors="pt" ) self.assertEqual(32 ,targets["input_ids"].shape[1] ) @require_torch def _lowercase ( self: int ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : Union[str, Any] = tokenizer( ["I am a small frog" * 1_024, "I am a small frog"] ,padding=__lowerCAmelCase ,truncation=__lowerCAmelCase ,return_tensors="pt" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(batch.input_ids.shape ,(2, 5_122) ) @require_torch def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = ["A long paragraph for summarization."] _lowerCamelCase : Union[str, Any] = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : List[Any] = tokenizer(__lowerCAmelCase ,return_tensors="pt" ) _lowerCamelCase : Tuple = tokenizer(text_target=__lowerCAmelCase ,return_tensors="pt" ) _lowerCamelCase : int = inputs["input_ids"] _lowerCamelCase : int = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _lowercase ( self: Dict ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : Optional[Any] = ["Summary of the text.", "Another summary."] _lowerCamelCase : Tuple = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowerCamelCase : Dict = tokenizer(__lowerCAmelCase ,padding=__lowerCAmelCase ) _lowerCamelCase : str = [[0] * len(__lowerCAmelCase ) for x in encoded_output["input_ids"]] _lowerCamelCase : Tuple = tokenizer.pad(__lowerCAmelCase ) self.assertSequenceEqual(outputs["global_attention_mask"] ,__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' pass def _lowercase ( self: Optional[Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowerCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : Any = self.tokenizer_class.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "A, <mask> AllenNLP sentence." _lowerCamelCase : int = tokenizer_r.encode_plus(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ,return_token_type_ids=__lowerCAmelCase ) _lowerCamelCase : List[str] = tokenizer_p.encode_plus(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ,return_token_type_ids=__lowerCAmelCase ) self.assertEqual(sum(tokens_r["token_type_ids"] ) ,sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) ,sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) ,) _lowerCamelCase : Optional[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) _lowerCamelCase : Optional[int] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] ,[0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] ,[0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( __lowerCAmelCase ,["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( __lowerCAmelCase ,["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
712
"""simple docstring""" import math def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' return math.pow(_lowerCamelCase , 2 ) - a def lowerCamelCase_( _lowerCamelCase ) -> float: '''simple docstring''' return 2 * x def lowerCamelCase_( _lowerCamelCase ) -> float: '''simple docstring''' _lowerCamelCase : Tuple = 2.0 while start <= a: _lowerCamelCase : int = math.pow(_lowerCamelCase , 2 ) return start def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = 9999 , _lowerCamelCase = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 ) -> float: '''simple docstring''' if a < 0: raise ValueError("math domain error" ) _lowerCamelCase : Any = get_initial_point(_lowerCamelCase ) for _ in range(_lowerCamelCase ): _lowerCamelCase : List[str] = value _lowerCamelCase : Tuple = value - fx(_lowerCamelCase , _lowerCamelCase ) / fx_derivative(_lowerCamelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
386
0
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 10**-10 ) -> float: '''simple docstring''' __snake_case = a while True: __snake_case = Decimal(_lowerCAmelCase ) - ( Decimal(eval(_lowerCAmelCase ) ) / Decimal(eval(str(diff(_lowerCAmelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowerCAmelCase ) ) < precision: # noqa: S307 return float(_lowerCAmelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(f'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(f'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(f'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
371
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class UpperCamelCase( unittest.TestCase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any]=7 , SCREAMING_SNAKE_CASE : Dict=3 , SCREAMING_SNAKE_CASE : Any=3_0 , SCREAMING_SNAKE_CASE : List[str]=4_0_0 , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : int=0.9 , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : Union[str, Any]=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE : Optional[Any]=[0.5, 0.5, 0.5] , ) -> Union[str, Any]: '''simple docstring''' __snake_case = size if size is not None else {"shortest_edge": 3_0} __snake_case = crop_size if crop_size is not None else {"height": 3_0, "width": 3_0} __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize_and_center_crop __snake_case = size __snake_case = crop_pct __snake_case = crop_size __snake_case = do_normalize __snake_case = image_mean __snake_case = image_std def SCREAMING_SNAKE_CASE_ ( self : str ) -> Any: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCamelCase( _a , unittest.TestCase ): snake_case_ : List[str] = PoolFormerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> str: '''simple docstring''' __snake_case = PoolFormerImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_resize_and_center_crop" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "size" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "crop_pct" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_normalize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_mean" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_std" ) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' __snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 3_0} ) self.assertEqual(image_processor.crop_size , {"height": 3_0, "width": 3_0} ) __snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __snake_case = image_processing(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __snake_case = image_processing(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __snake_case = image_processing(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
371
1
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE__ ( _a , _a , _a ): _a = [r'h\.\d+\.attn\.bias', r'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : int = 5_0257 , lowerCAmelCase : int = 1024 , lowerCAmelCase : int = 768 , lowerCAmelCase : int = 12 , lowerCAmelCase : int = 12 , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : str = "gelu_new" , lowerCAmelCase : float = 0.1 , lowerCAmelCase : float = 0.1 , lowerCAmelCase : float = 0.1 , lowerCAmelCase : float = 1e-5 , lowerCAmelCase : float = 0.02 , lowerCAmelCase : bool = True , lowerCAmelCase : bool = True , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , ): super().__init__() lowerCAmelCase = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) lowerCAmelCase = prefix_inner_dim lowerCAmelCase = prefix_hidden_dim lowerCAmelCase = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCAmelCase = ( nn.Linear(self.prefix_hidden_dim , UpperCamelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCAmelCase = GPTaConfig( vocab_size=UpperCamelCase_ , n_positions=UpperCamelCase_ , n_embd=UpperCamelCase_ , n_layer=UpperCamelCase_ , n_head=UpperCamelCase_ , n_inner=UpperCamelCase_ , activation_function=UpperCamelCase_ , resid_pdrop=UpperCamelCase_ , embd_pdrop=UpperCamelCase_ , attn_pdrop=UpperCamelCase_ , layer_norm_epsilon=UpperCamelCase_ , initializer_range=UpperCamelCase_ , scale_attn_weights=UpperCamelCase_ , use_cache=UpperCamelCase_ , scale_attn_by_inverse_layer_idx=UpperCamelCase_ , reorder_and_upcast_attn=UpperCamelCase_ , ) lowerCAmelCase = GPTaLMHeadModel(UpperCamelCase_ ) def __lowercase ( self : str , lowerCAmelCase : torch.Tensor , lowerCAmelCase : torch.Tensor , lowerCAmelCase : Optional[torch.Tensor] = None , lowerCAmelCase : Optional[torch.Tensor] = None , ): lowerCAmelCase = self.transformer.transformer.wte(UpperCamelCase_ ) lowerCAmelCase = self.encode_prefix(UpperCamelCase_ ) lowerCAmelCase = self.decode_prefix(UpperCamelCase_ ) lowerCAmelCase = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: lowerCAmelCase = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) lowerCAmelCase = torch.cat((dummy_token, input_ids) , dim=1 ) lowerCAmelCase = self.transformer(inputs_embeds=UpperCamelCase_ , labels=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def __lowercase ( self : List[str] , lowerCAmelCase : int , lowerCAmelCase : torch.device ): return torch.zeros(UpperCamelCase_ , self.prefix_length , dtype=torch.intaa , device=UpperCamelCase_ ) def __lowercase ( self : int , lowerCAmelCase : Optional[Any] ): return self.encode_prefix(UpperCamelCase_ ) @torch.no_grad() def __lowercase ( self : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] ): lowerCAmelCase = torch.split(UpperCamelCase_ , 1 , dim=0 ) lowerCAmelCase = [] lowerCAmelCase = [] for feature in features: lowerCAmelCase = self.decode_prefix(feature.to(UpperCamelCase_ ) ) # back to the clip feature # Only support beam search for now lowerCAmelCase = self.generate_beam( input_embeds=UpperCamelCase_ , device=UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) lowerCAmelCase = torch.stack(UpperCamelCase_ ) lowerCAmelCase = torch.stack(UpperCamelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def __lowercase ( self : Any , lowerCAmelCase : int=None , lowerCAmelCase : int=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : int = 5 , lowerCAmelCase : int = 67 , lowerCAmelCase : float = 1.0 , lowerCAmelCase : Optional[int] = None , ): lowerCAmelCase = eos_token_id lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ , dtype=torch.int ) lowerCAmelCase = torch.zeros(UpperCamelCase_ , device=UpperCamelCase_ , dtype=torch.bool ) if input_embeds is not None: lowerCAmelCase = input_embeds else: lowerCAmelCase = self.transformer.transformer.wte(UpperCamelCase_ ) for i in range(UpperCamelCase_ ): lowerCAmelCase = self.transformer(inputs_embeds=UpperCamelCase_ ) lowerCAmelCase = outputs.logits lowerCAmelCase = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowerCAmelCase = logits.softmax(-1 ).log() if scores is None: lowerCAmelCase = logits.topk(UpperCamelCase_ , -1 ) lowerCAmelCase = generated.expand(UpperCamelCase_ , *generated.shape[1:] ) lowerCAmelCase = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: lowerCAmelCase = next_tokens else: lowerCAmelCase = tokens.expand(UpperCamelCase_ , *tokens.shape[1:] ) lowerCAmelCase = torch.cat((tokens, next_tokens) , dim=1 ) else: lowerCAmelCase = -float(np.inf ) lowerCAmelCase = 0 lowerCAmelCase = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowerCAmelCase = scores_sum / seq_lengths[:, None] lowerCAmelCase = scores_sum_average.view(-1 ).topk(UpperCamelCase_ , -1 ) lowerCAmelCase = next_tokens // scores_sum.shape[1] lowerCAmelCase = seq_lengths[next_tokens_source] lowerCAmelCase = next_tokens % scores_sum.shape[1] lowerCAmelCase = next_tokens.unsqueeze(1 ) lowerCAmelCase = tokens[next_tokens_source] lowerCAmelCase = torch.cat((tokens, next_tokens) , dim=1 ) lowerCAmelCase = generated[next_tokens_source] lowerCAmelCase = scores_sum_average * seq_lengths lowerCAmelCase = is_stopped[next_tokens_source] lowerCAmelCase = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) lowerCAmelCase = torch.cat((generated, next_token_embed) , dim=1 ) lowerCAmelCase = is_stopped + next_tokens.eq(UpperCamelCase_ ).squeeze() if is_stopped.all(): break lowerCAmelCase = scores / seq_lengths lowerCAmelCase = scores.argsort(descending=UpperCamelCase_ ) # tokens tensors are already padded to max_seq_length lowerCAmelCase = [tokens[i] for i in order] lowerCAmelCase = torch.stack(UpperCamelCase_ , dim=0 ) lowerCAmelCase = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
704
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
529
0
"""simple docstring""" import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg""" UpperCAmelCase = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ).convert("""RGB""" ) UpperCAmelCase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073) , (0.26862954, 0.26130258, 0.27577711) ), ] ) UpperCAmelCase = transform(_snake_case ).unsqueeze(0 ).to(_snake_case ) return image def _a ( _snake_case ): """simple docstring""" if "visual_encoder" in key: UpperCAmelCase = re.sub("""visual_encoder*""" , """vision_model.encoder""" , _snake_case ) if "blocks" in key: UpperCAmelCase = re.sub(R"""blocks""" , """layers""" , _snake_case ) if "attn" in key: UpperCAmelCase = re.sub(R"""attn""" , """self_attn""" , _snake_case ) if "norm1" in key: UpperCAmelCase = re.sub(R"""norm1""" , """layer_norm1""" , _snake_case ) if "norm2" in key: UpperCAmelCase = re.sub(R"""norm2""" , """layer_norm2""" , _snake_case ) if "encoder.norm" in key: UpperCAmelCase = re.sub(R"""encoder.norm""" , """post_layernorm""" , _snake_case ) if "encoder.patch_embed.proj" in key: UpperCAmelCase = re.sub(R"""encoder.patch_embed.proj""" , """embeddings.patch_embedding""" , _snake_case ) if "encoder.pos_embed" in key: UpperCAmelCase = re.sub(R"""encoder.pos_embed""" , """embeddings.position_embedding""" , _snake_case ) if "encoder.cls_token" in key: UpperCAmelCase = re.sub(R"""encoder.cls_token""" , """embeddings.class_embedding""" , _snake_case ) if "self_attn" in key: UpperCAmelCase = re.sub(R"""self_attn.proj""" , """self_attn.projection""" , _snake_case ) return key @torch.no_grad() def _a ( _snake_case , _snake_case=None ): """simple docstring""" if config_path is not None: UpperCAmelCase = BlipConfig.from_pretrained(_snake_case ) else: UpperCAmelCase = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) UpperCAmelCase = BlipForConditionalGeneration(_snake_case ).eval() UpperCAmelCase = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth""" UpperCAmelCase = blip_decoder(pretrained=_snake_case , image_size=384 , vit="""base""" ) UpperCAmelCase = pt_model.eval() UpperCAmelCase = pt_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase = modified_state_dict.pop(_snake_case ) UpperCAmelCase = rename_key(_snake_case ) UpperCAmelCase = value hf_model.load_state_dict(_snake_case ) UpperCAmelCase = 384 UpperCAmelCase = load_demo_image(image_size=_snake_case , device="""cpu""" ) UpperCAmelCase = BertTokenizer.from_pretrained("""bert-base-uncased""" ) UpperCAmelCase = tokenizer(["""a picture of"""] ).input_ids UpperCAmelCase = hf_model.generate(_snake_case , _snake_case ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] UpperCAmelCase = hf_model.generate(_snake_case ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(_snake_case ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' UpperCAmelCase = ( """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth""" ) UpperCAmelCase = blip_vqa(pretrained=_snake_case , image_size=_snake_case , vit="""base""" ) vqa_model.eval() UpperCAmelCase = vqa_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase = modified_state_dict.pop(_snake_case ) UpperCAmelCase = rename_key(_snake_case ) UpperCAmelCase = value UpperCAmelCase = BlipForQuestionAnswering(_snake_case ) hf_vqa_model.load_state_dict(_snake_case ) UpperCAmelCase = ["""How many dogs are in this image?"""] UpperCAmelCase = tokenizer(_snake_case , return_tensors="""pt""" ).input_ids UpperCAmelCase = hf_vqa_model.generate(_snake_case , _snake_case ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + """_vqa""" ) UpperCAmelCase = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth""" UpperCAmelCase = blip_itm(pretrained=_snake_case , image_size=_snake_case , vit="""base""" ) itm_model.eval() UpperCAmelCase = itm_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase = modified_state_dict.pop(_snake_case ) UpperCAmelCase = rename_key(_snake_case ) UpperCAmelCase = value UpperCAmelCase = BlipForImageTextRetrieval(_snake_case ) UpperCAmelCase = ["""A picture of a woman with a dog sitting in a beach"""] UpperCAmelCase = tokenizer( _snake_case , return_tensors="""pt""" , padding="""max_length""" , truncation=_snake_case , max_length=35 , ).input_ids hf_itm_model.load_state_dict(_snake_case ) hf_itm_model.eval() UpperCAmelCase = hf_itm_model(_snake_case , _snake_case , use_itm_head=_snake_case ) UpperCAmelCase = hf_itm_model(_snake_case , _snake_case , use_itm_head=_snake_case ) assert out[0].item() == 0.2110687494277954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45698845386505127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + """_itm""" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") _UpperCamelCase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
341
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowerCamelCase__ : def __init__( self ,A ,A=13 ,A=7 ,A=True ,A=True ,A=True ,A=99 ,A=32 ,A=5 ,A=4 ,A=37 ,A="gelu" ,A=0.1 ,A=0.1 ,A=512 ,A=16 ,A=2 ,A=0.02 ,A=3 ,A=4 ,A=None ,): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope UpperCAmelCase = self.vocab_size - 1 def _UpperCamelCase ( self ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) UpperCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _UpperCamelCase ( self ,A ,A ,A ,A ,*A ): UpperCAmelCase = OpenAIGPTModel(config=A ) model.to(A ) model.eval() UpperCAmelCase = model(A ,token_type_ids=A ,head_mask=A ) UpperCAmelCase = model(A ,token_type_ids=A ) UpperCAmelCase = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,*A ): UpperCAmelCase = OpenAIGPTLMHeadModel(A ) model.to(A ) model.eval() UpperCAmelCase = model(A ,token_type_ids=A ,labels=A ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,*A ): UpperCAmelCase = OpenAIGPTDoubleHeadsModel(A ) model.to(A ) model.eval() UpperCAmelCase = model(A ,token_type_ids=A ,labels=A ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,*A ): UpperCAmelCase = self.num_labels UpperCAmelCase = OpenAIGPTForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase = model(A ,token_type_ids=A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ): UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class lowerCamelCase__ ( snake_case , snake_case , snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _UpperCamelCase ( self ,A ,A ,A=False ): UpperCAmelCase = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=A ,) UpperCAmelCase = inputs_dict["""labels"""] UpperCAmelCase = inputs_dict["""labels"""] UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=A ,) UpperCAmelCase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) return inputs_dict def _UpperCamelCase ( self ): UpperCAmelCase = OpenAIGPTModelTester(self ) UpperCAmelCase = ConfigTester(self ,config_class=A ,n_embd=37 ) def _UpperCamelCase ( self ): self.config_tester.run_common_tests() def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*A ) @slow def _UpperCamelCase ( self ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = OpenAIGPTModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class lowerCamelCase__ ( unittest.TestCase ): @slow def _UpperCamelCase ( self ): UpperCAmelCase = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(A ) UpperCAmelCase = torch.tensor([[481, 4_735, 544]] ,dtype=torch.long ,device=A ) # the president is UpperCAmelCase = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the UpperCAmelCase = model.generate(A ,do_sample=A ) self.assertListEqual(output_ids[0].tolist() ,A )
341
1
import math def lowerCamelCase_ ( UpperCamelCase__ : Any ): '''simple docstring''' UpperCamelCase__ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] = 1 / 1_2345 ): '''simple docstring''' UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = 3 while True: UpperCamelCase__ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(UpperCamelCase__ ): UpperCamelCase__ = int(UpperCamelCase__ ) total_partitions += 1 if check_partition_perfect(UpperCamelCase__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(UpperCamelCase__ ) integer += 1 if __name__ == "__main__": print(f'{solution() = }')
703
def lowerCamelCase_ ( UpperCamelCase__ : list, UpperCamelCase__ : list, UpperCamelCase__ : int ): '''simple docstring''' if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError('''The length of profit and weight must be same.''' ) if max_weight <= 0: raise ValueError('''max_weight must greater than zero.''' ) if any(p < 0 for p in profit ): raise ValueError('''Profit can not be negative.''' ) if any(w < 0 for w in weight ): raise ValueError('''Weight can not be negative.''' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCamelCase__ = [p / w for p, w in zip(UpperCamelCase__, UpperCamelCase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCamelCase__ = sorted(UpperCamelCase__ ) # declaring useful variables UpperCamelCase__ = len(UpperCamelCase__ ) UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCamelCase__ = sorted_profit_by_weight[length - i - 1] UpperCamelCase__ = profit_by_weight.index(UpperCamelCase__ ) UpperCamelCase__ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) lowercase = [int(x) for x in input("""Input profits separated by spaces: """).split()] lowercase = [int(x) for x in input("""Input weights separated by spaces: """).split()] lowercase = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
591
0
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process SCREAMING_SNAKE_CASE__ : Optional[int] = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) SCREAMING_SNAKE_CASE__ : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : __lowerCamelCase = field( default=lowerCAmelCase__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __lowerCamelCase = field( default=lowerCAmelCase__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(lowerCAmelCase__ )} , ) __lowerCamelCase = field( default=lowerCAmelCase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowerCamelCase = field( default=lowerCAmelCase__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowerCamelCase = field( default=lowerCAmelCase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class UpperCAmelCase_ : __lowerCamelCase = field( default=lowerCAmelCase__ , metadata={'help': 'The input training data file (a text file).'} ) __lowerCamelCase = field( default=lowerCAmelCase__ , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __lowerCamelCase = field( default=lowerCAmelCase__ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __lowerCamelCase = field( default=lowerCAmelCase__ , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __lowerCamelCase = field( default=lowerCAmelCase__ , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __lowerCamelCase = field( default=lowerCAmelCase__ , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __lowerCamelCase = field( default=lowerCAmelCase__ , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __lowerCamelCase = field(default=lowerCAmelCase__ , metadata={'help': 'Whether ot not to use whole word mask.'} ) __lowerCamelCase = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __lowerCamelCase = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __lowerCamelCase = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __lowerCamelCase = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __lowerCamelCase = field( default=lowerCAmelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = False , __lowerCamelCase = None , ) -> Optional[int]: '''simple docstring''' def _dataset(__lowerCamelCase , __lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=__lowerCamelCase , file_path=__lowerCamelCase , block_size=args.block_size , ref_path=__lowerCamelCase , ) return LineByLineTextDataset(tokenizer=__lowerCamelCase , file_path=__lowerCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=__lowerCamelCase , file_path=__lowerCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=__lowerCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(__lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCamelCase ( ) -> str: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase__ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , __lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase__ : Dict = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCAmelCase__ : Optional[int] = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: UpperCAmelCase__ : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) UpperCAmelCase__ : Tuple = AutoModelWithLMHead.from_config(__lowerCamelCase ) model.resize_token_embeddings(len(__lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: UpperCAmelCase__ : Union[str, Any] = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase__ : List[Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCAmelCase__ : Dict = ( get_dataset(__lowerCamelCase , tokenizer=__lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase__ : Union[str, Any] = ( get_dataset(__lowerCamelCase , tokenizer=__lowerCamelCase , evaluate=__lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase__ : Union[str, Any] = DataCollatorForPermutationLanguageModeling( tokenizer=__lowerCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase__ : Optional[int] = DataCollatorForWholeWordMask( tokenizer=__lowerCamelCase , mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase__ : Any = DataCollatorForLanguageModeling( tokenizer=__lowerCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase__ : int = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , data_collator=__lowerCamelCase , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , prediction_loss_only=__lowerCamelCase , ) # Training if training_args.do_train: UpperCAmelCase__ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=__lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase__ : Optional[int] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCAmelCase__ : Union[str, Any] = trainer.evaluate() UpperCAmelCase__ : str = math.exp(eval_output["""eval_loss"""] ) UpperCAmelCase__ : Optional[int] = {"""perplexity""": perplexity} UpperCAmelCase__ : int = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(__lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , __lowerCamelCase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(__lowerCamelCase ) return results def _lowerCamelCase ( __lowerCamelCase ) -> str: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
79
"""simple docstring""" from math import ceil, sqrt def SCREAMING_SNAKE_CASE_ ( snake_case : int = 1_000_000 )-> int: _lowerCamelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: _lowerCamelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: _lowerCamelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
650
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ): """simple docstring""" __UpperCAmelCase = {} if train_file is not None: __UpperCAmelCase = [train_file] if eval_file is not None: __UpperCAmelCase = [eval_file] if test_file is not None: __UpperCAmelCase = [test_file] __UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ ) __UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase = features_name.pop(UpperCamelCase__ ) __UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )} __UpperCAmelCase = tokenizer.model_input_names __UpperCAmelCase = {} if len(UpperCamelCase__ ) == 1: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , ) elif len(UpperCamelCase__ ) == 2: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class A : a_ = field(metadata={'''help''': '''Which column contains the label'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} ) a_ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : a_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict: __UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase = TFTrainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate() __UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(UpperCamelCase__ ) return results if __name__ == "__main__": main()
704
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class A ( nn.Module ): def __init__( self : Optional[Any] ) -> int: super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def snake_case__ ( self : List[str] , __a : Optional[int] ) -> Optional[int]: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class A ( unittest.TestCase ): def snake_case__ ( self : Optional[int] ) -> Any: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) def snake_case__ ( self : str ) -> int: __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(__a , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def snake_case__ ( self : Any ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : Optional[int] ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : Any ) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def snake_case__ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__a : str , __a : Union[str, Any] , __a : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def snake_case__ ( self : Tuple ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__a : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def snake_case__ ( self : Any ) -> List[Any]: __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) __UpperCAmelCase = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
654
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __SCREAMING_SNAKE_CASE : @staticmethod def lowerCamelCase_ ( *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Optional[int] ): '''simple docstring''' pass def _lowerCAmelCase ( __magic_name__ : str ) -> List[str]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. UpperCamelCase_ = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): lowerCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def lowerCamelCase_ ( self : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ): '''simple docstring''' lowercase : List[Any] =pipeline( '''document-question-answering''' , model=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) lowercase : str =INVOICE_URL lowercase : Dict =list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ) , UpperCAmelCase__ , '''''' ) ) ) lowercase : Optional[int] ='''What is the placebo?''' lowercase : Optional[int] =[ { '''image''': load_image(UpperCAmelCase__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] ): '''simple docstring''' lowercase : Dict =dqa_pipeline(UpperCAmelCase__ , top_k=2 ) self.assertEqual( UpperCAmelCase__ , [ [ {'''score''': ANY(UpperCAmelCase__ ), '''answer''': ANY(UpperCAmelCase__ ), '''start''': ANY(UpperCAmelCase__ ), '''end''': ANY(UpperCAmelCase__ )}, {'''score''': ANY(UpperCAmelCase__ ), '''answer''': ANY(UpperCAmelCase__ ), '''start''': ANY(UpperCAmelCase__ ), '''end''': ANY(UpperCAmelCase__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : str =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) lowercase : List[str] =INVOICE_URL lowercase : Tuple ='''How many cats are there?''' lowercase : str =[ {'''score''': 0.00_01, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.00_01, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase__ , question=UpperCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__ , decimals=4 ) , UpperCAmelCase__ ) lowercase : Union[str, Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__ , decimals=4 ) , UpperCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Any =dqa_pipeline(image=UpperCAmelCase__ , question=UpperCAmelCase__ , top_k=2 ) self.assertEqual(UpperCAmelCase__ , [] ) # We can optionnally pass directly the words and bounding boxes lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Dict =[] lowercase : List[Any] =[] lowercase : Dict =dqa_pipeline(image=UpperCAmelCase__ , question=UpperCAmelCase__ , words=UpperCAmelCase__ , boxes=UpperCAmelCase__ , top_k=2 ) self.assertEqual(UpperCAmelCase__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : List[Any] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) lowercase : Union[str, Any] =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Dict =dqa_pipeline(image=UpperCAmelCase__ , question=UpperCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=4 ) , [ {'''score''': 0.99_44, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.00_09, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=4 ) , [ {'''score''': 0.99_44, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.00_09, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Any =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.99_44, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.00_09, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def lowerCamelCase_ ( self : str ): '''simple docstring''' lowercase : Any =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) lowercase : Optional[int] =INVOICE_URL lowercase : Dict ='''What is the invoice number?''' lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase__ , question=UpperCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=4 ) , [ {'''score''': 0.99_74, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.99_48, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Optional[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=4 ) , [ {'''score''': 0.99_74, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.99_48, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Optional[Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.99_74, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.99_48, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def lowerCamelCase_ ( self : str ): '''simple docstring''' lowercase : Optional[int] =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase__ ) lowercase : Optional[Any] =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase__ , revision='''3dc6de3''' , ) lowercase : Dict =INVOICE_URL lowercase : Union[str, Any] ='''What is the invoice number?''' lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase__ , question=UpperCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=4 ) , [ {'''score''': 0.42_51, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.08_19, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=4 ) , [ {'''score''': 0.42_51, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.08_19, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : Dict =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.42_51, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.08_19, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) lowercase : Dict =list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ) , UpperCAmelCase__ , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : int =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=4 ) , [ {'''score''': 0.42_51, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.08_19, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : List[str] =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase__ ) lowercase : Any =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase__ , revision='''3dc6de3''' , max_seq_len=50 , ) lowercase : Union[str, Any] =INVOICE_URL lowercase : List[str] ='''What is the invoice number?''' lowercase : Dict =dqa_pipeline(image=UpperCAmelCase__ , question=UpperCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=4 ) , [ {'''score''': 0.99_99, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.99_98, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Tuple =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.99_99, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.99_98, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) lowercase : List[Any] =list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ) , UpperCAmelCase__ , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : str =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=4 ) , [ {'''score''': 0.99_99, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.99_98, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : Tuple =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) lowercase : Tuple =INVOICE_URL lowercase : str ='''What is the invoice number?''' lowercase : str =dqa_pipeline(image=UpperCAmelCase__ , question=UpperCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' pass
92
from math import factorial, radians def lowercase_ ( __snake_case : float , __snake_case : int = 18 , __snake_case : int = 10 ) -> float: '''simple docstring''' snake_case__ :Optional[int] = angle_in_degrees - ((angle_in_degrees // 3_6_0.0) * 3_6_0.0) # Converting from degrees to radians snake_case__ :Optional[int] = radians(__snake_case ) snake_case__ :Optional[Any] = angle_in_radians snake_case__ :Optional[int] = 3 snake_case__ :Union[str, Any] = -1 for _ in range(__snake_case ): result += (b * (angle_in_radians**a)) / factorial(__snake_case ) snake_case__ :Optional[int] = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(__snake_case , __snake_case ) if __name__ == "__main__": __import__("doctest").testmod()
241
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __A ( UpperCamelCase_ ): '''simple docstring''' a_ = (DEISMultistepScheduler,) a_ = (("""num_inference_steps""", 25),) def SCREAMING_SNAKE_CASE__ ( self , **_snake_case ): _lowerCAmelCase : int = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, } config.update(**_a ) return config def SCREAMING_SNAKE_CASE__ ( self , _snake_case=0 , **_snake_case ): _lowerCAmelCase : Dict = dict(self.forward_default_kwargs ) _lowerCAmelCase : Optional[Any] = kwargs.pop("num_inference_steps" , _a ) _lowerCAmelCase : Optional[int] = self.dummy_sample _lowerCAmelCase : str = 0.1 * sample _lowerCAmelCase : str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_a ) _lowerCAmelCase : Dict = scheduler_class(**_a ) scheduler.set_timesteps(_a ) # copy over dummy past residuals _lowerCAmelCase : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_a ) _lowerCAmelCase : Tuple = scheduler_class.from_pretrained(_a ) new_scheduler.set_timesteps(_a ) # copy over dummy past residuals _lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : Any = sample, sample for t in range(_a , time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase : str = scheduler.step(_a , _a , _a , **_a ).prev_sample _lowerCAmelCase : Any = new_scheduler.step(_a , _a , _a , **_a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self , _snake_case=0 , **_snake_case ): _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop("num_inference_steps" , _a ) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : Any = 0.1 * sample _lowerCAmelCase : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Union[str, Any] = self.get_scheduler_config() _lowerCAmelCase : int = scheduler_class(**_a ) scheduler.set_timesteps(_a ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_a ) _lowerCAmelCase : Tuple = scheduler_class.from_pretrained(_a ) # copy over dummy past residuals new_scheduler.set_timesteps(_a ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : Any = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : List[Any] = scheduler.step(_a , _a , _a , **_a ).prev_sample _lowerCAmelCase : str = new_scheduler.step(_a , _a , _a , **_a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self , _snake_case=None , **_snake_case ): if scheduler is None: _lowerCAmelCase : Optional[int] = self.scheduler_classes[0] _lowerCAmelCase : Any = self.get_scheduler_config(**_a ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_a ) _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : List[Any] = self.get_scheduler_config(**_a ) _lowerCAmelCase : str = scheduler_class(**_a ) _lowerCAmelCase : str = 10 _lowerCAmelCase : Optional[int] = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter scheduler.set_timesteps(_a ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : str = model(_a , _a ) _lowerCAmelCase : Tuple = scheduler.step(_a , _a , _a ).prev_sample return sample def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Any = dict(self.forward_default_kwargs ) _lowerCAmelCase : List[str] = kwargs.pop("num_inference_steps" , _a ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : List[str] = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**_a ) _lowerCAmelCase : Optional[int] = self.dummy_sample _lowerCAmelCase : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(_a , "set_timesteps" ): scheduler.set_timesteps(_a ) elif num_inference_steps is not None and not hasattr(_a , "set_timesteps" ): _lowerCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.10] _lowerCAmelCase : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : Optional[int] = scheduler.timesteps[5] _lowerCAmelCase : Any = scheduler.timesteps[6] _lowerCAmelCase : Optional[Any] = scheduler.step(_a , _a , _a , **_a ).prev_sample _lowerCAmelCase : str = scheduler.step(_a , _a , _a , **_a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : str = DEISMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase : Tuple = self.full_loop(scheduler=_a ) _lowerCAmelCase : List[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1E-3 _lowerCAmelCase : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Tuple = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : str = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : str = self.full_loop(scheduler=_a ) _lowerCAmelCase : List[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self ): self.check_over_configs(thresholding=_a ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_a , prediction_type=_a , sample_max_value=_a , algorithm_type="deis" , solver_order=_a , solver_type=_a , ) def SCREAMING_SNAKE_CASE__ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def SCREAMING_SNAKE_CASE__ ( self ): for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_a , solver_type=_a , prediction_type=_a , algorithm_type=_a , ) _lowerCAmelCase : Optional[int] = self.full_loop( solver_order=_a , solver_type=_a , prediction_type=_a , algorithm_type=_a , ) assert not torch.isnan(_a ).any(), "Samples have nan numbers" def SCREAMING_SNAKE_CASE__ ( self ): self.check_over_configs(lower_order_final=_a ) self.check_over_configs(lower_order_final=_a ) def SCREAMING_SNAKE_CASE__ ( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_a , time_step=0 ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Any = self.full_loop() _lowerCAmelCase : Dict = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Dict = self.full_loop(prediction_type="v_prediction" ) _lowerCAmelCase : List[str] = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.091 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : List[Any] = self.get_scheduler_config(thresholding=_a , dynamic_thresholding_ratio=0 ) _lowerCAmelCase : Optional[Any] = scheduler_class(**_a ) _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Union[str, Any] = self.dummy_model() _lowerCAmelCase : List[str] = self.dummy_sample_deter.half() scheduler.set_timesteps(_a ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : List[Any] = model(_a , _a ) _lowerCAmelCase : int = scheduler.step(_a , _a , _a ).prev_sample assert sample.dtype == torch.floataa
712
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __A ( snake_case__ ,snake_case__ ,unittest.TestCase ): '''simple docstring''' a_ = StableDiffusionXLImgaImgPipeline a_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} a_ = PipelineTesterMixin.required_optional_params - {'''latents'''} a_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , attention_head_dim=(2, 4) , use_linear_projection=_snake_case , addition_embed_type="text_time" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _lowerCAmelCase : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , steps_offset=1 , beta_schedule="scaled_linear" , timestep_spacing="leading" , ) torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _lowerCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=32 , ) _lowerCAmelCase : Optional[Any] = CLIPTextModel(_snake_case ) _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=_snake_case ) _lowerCAmelCase : Optional[int] = CLIPTextModelWithProjection(_snake_case ) _lowerCAmelCase : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=_snake_case ) _lowerCAmelCase : str = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_a, "tokenizer_2": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case=0 ): _lowerCAmelCase : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) _lowerCAmelCase : str = image / 2 + 0.5 if str(_snake_case ).startswith("mps" ): _lowerCAmelCase : str = torch.manual_seed(_snake_case ) else: _lowerCAmelCase : str = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _lowerCAmelCase : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.75, } return inputs def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : List[Any] = self.get_dummy_components() _lowerCAmelCase : str = StableDiffusionXLImgaImgPipeline(**_snake_case ) _lowerCAmelCase : List[str] = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase : Union[str, Any] = sd_pipe(**_snake_case ).images _lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase : Dict = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def SCREAMING_SNAKE_CASE__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = StableDiffusionXLImgaImgPipeline(**_snake_case ) _lowerCAmelCase : int = sd_pipe.to(_snake_case ) _lowerCAmelCase : Any = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) # forward without prompt embeds _lowerCAmelCase : Dict = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase : str = 3 * ["this is a negative prompt"] _lowerCAmelCase : str = negative_prompt _lowerCAmelCase : Dict = 3 * [inputs["prompt"]] _lowerCAmelCase : Tuple = sd_pipe(**_snake_case ) _lowerCAmelCase : Optional[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds _lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase : int = 3 * ["this is a negative prompt"] _lowerCAmelCase : List[str] = 3 * [inputs.pop("prompt" )] ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Optional[Any] = sd_pipe.encode_prompt(_snake_case , negative_prompt=_snake_case ) _lowerCAmelCase : int = sd_pipe( **_snake_case , prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , pooled_prompt_embeds=_snake_case , negative_pooled_prompt_embeds=_snake_case , ) _lowerCAmelCase : Union[str, Any] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class __A ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case="cpu" , _snake_case=torch.floataa , _snake_case=0 ): _lowerCAmelCase : List[str] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _lowerCAmelCase : Any = np.random.RandomState(_snake_case ).standard_normal((1, 4, 64, 64) ) _lowerCAmelCase : Tuple = torch.from_numpy(_snake_case ).to(device=_snake_case , dtype=_snake_case ) _lowerCAmelCase : Optional[int] = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Dict = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base" ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase : int = self.get_inputs(_snake_case ) _lowerCAmelCase : List[str] = pipe(**_snake_case ).images _lowerCAmelCase : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Any = np.array([0.4_9493, 0.4_7896, 0.4_0798, 0.5_4214, 0.5_3212, 0.4_8202, 0.4_7656, 0.4_6329, 0.4_8506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
587
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowercase__ = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
508
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
508
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def _lowerCAmelCase ( _a : Optional[int] , _a : Tuple=False ) -> List[str]: lowerCAmelCase_ : List[Any] = OmegaConf.load(__snake_case ) if display: print(yaml.dump(OmegaConf.to_container(__snake_case ) ) ) return config def _lowerCAmelCase ( _a : Optional[int] , _a : Dict=None , _a : Tuple=None ) -> Optional[int]: if conf_path is None: lowerCAmelCase_ : str = "./model_checkpoints/vqgan_only.yaml" lowerCAmelCase_ : Tuple = load_config(__snake_case , display=__snake_case ) lowerCAmelCase_ : str = VQModel(**config.model.params ) if ckpt_path is None: lowerCAmelCase_ : Union[str, Any] = "./model_checkpoints/vqgan_only.pt" lowerCAmelCase_ : List[Any] = torch.load(__snake_case , map_location=__snake_case ) if ".ckpt" in ckpt_path: lowerCAmelCase_ : List[Any] = sd["state_dict"] model.load_state_dict(__snake_case , strict=__snake_case ) model.to(__snake_case ) del sd return model def _lowerCAmelCase ( _a : int , _a : Optional[Any] ) -> List[str]: lowerCAmelCase_ : Union[str, Any] = model.encode(__snake_case ) print(F'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) lowerCAmelCase_ : str = model.decode(__snake_case ) return xrec def _lowerCAmelCase ( _a : int , _a : Dict=False ) -> Tuple: lowerCAmelCase_ : List[Any] = string.rsplit(""".""" , 1 ) if reload: lowerCAmelCase_ : Optional[Any] = importlib.import_module(__snake_case ) importlib.reload(__snake_case ) return getattr(importlib.import_module(__snake_case , package=__snake_case ) , cls ) def _lowerCAmelCase ( _a : Optional[Any] ) -> Tuple: if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def _lowerCAmelCase ( _a : Tuple , _a : List[Any] , _a : Optional[Any]=True , _a : Any=True ) -> int: lowerCAmelCase_ : str = instantiate_from_config(__snake_case ) if sd is not None: model.load_state_dict(__snake_case ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def _lowerCAmelCase ( _a : List[str] , _a : Tuple , _a : Union[str, Any] , _a : Optional[Any] ) -> Tuple: if ckpt: lowerCAmelCase_ : int = torch.load(__snake_case , map_location="""cpu""" ) lowerCAmelCase_ : Optional[int] = pl_sd["global_step"] print(F'loaded model from global step {global_step}.' ) else: lowerCAmelCase_ : Optional[int] = {"state_dict": None} lowerCAmelCase_ : Optional[Any] = None lowerCAmelCase_ : Dict = load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=__snake_case , eval_mode=__snake_case )["model"] return model, global_step
713
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : int = {"""configuration_plbart""": ["""PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PLBartConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ["""PLBartTokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ """PLBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """PLBartForCausalLM""", """PLBartForConditionalGeneration""", """PLBartForSequenceClassification""", """PLBartModel""", """PLBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys UpperCAmelCase_ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
440
0
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __UpperCAmelCase = logging.getLogger(__name__) class __lowercase ( __lowerCamelCase ): snake_case_ = """sequence-classification""" def __init__( self : str ,A : int ): '''simple docstring''' if type(A ) == dict: UpperCAmelCase__ : Tuple = Namespace(**A ) UpperCAmelCase__ : List[str] = glue_output_modes[hparams.task] UpperCAmelCase__ : Optional[int] = glue_tasks_num_labels[hparams.task] super().__init__(A ,A ,self.mode ) def __lowercase ( self : int ,**A : Dict ): '''simple docstring''' return self.model(**A ) def __lowercase ( self : Dict ,A : Any ,A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCAmelCase__ : Optional[int] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None UpperCAmelCase__ : Union[str, Any] = self(**A ) UpperCAmelCase__ : Dict = outputs[0] UpperCAmelCase__ : Union[str, Any] = self.trainer.lr_schedulers[0]["""scheduler"""] UpperCAmelCase__ : Optional[Any] = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = self.hparams UpperCAmelCase__ : str = processors[args.task]() UpperCAmelCase__ : List[Any] = processor.get_labels() for mode in ["train", "dev"]: UpperCAmelCase__ : Union[str, Any] = self._feature_file(A ) if os.path.exists(A ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,A ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) UpperCAmelCase__ : Optional[int] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) UpperCAmelCase__ : Tuple = convert_examples_to_features( A ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,A ) torch.save(A ,A ) def __lowercase ( self : List[Any] ,A : str ,A : int ,A : bool = False ): '''simple docstring''' UpperCAmelCase__ : str = """dev""" if mode == """test""" else mode UpperCAmelCase__ : Dict = self._feature_file(A ) logger.info("""Loading features from cached file %s""" ,A ) UpperCAmelCase__ : Any = torch.load(A ) UpperCAmelCase__ : Dict = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) UpperCAmelCase__ : Dict = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": UpperCAmelCase__ : str = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": UpperCAmelCase__ : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(A ,A ,A ,A ) ,batch_size=A ,shuffle=A ,) def __lowercase ( self : List[str] ,A : Union[str, Any] ,A : str ): '''simple docstring''' UpperCAmelCase__ : Dict = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCAmelCase__ : List[Any] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None UpperCAmelCase__ : Dict = self(**A ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = outputs[:2] UpperCAmelCase__ : Optional[Any] = logits.detach().cpu().numpy() UpperCAmelCase__ : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __lowercase ( self : Dict ,A : Any ): '''simple docstring''' UpperCAmelCase__ : str = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() UpperCAmelCase__ : Optional[int] = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": UpperCAmelCase__ : str = np.argmax(A ,axis=1 ) elif self.hparams.glue_output_mode == "regression": UpperCAmelCase__ : Dict = np.squeeze(A ) UpperCAmelCase__ : List[str] = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) UpperCAmelCase__ : Optional[Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase__ : int = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase__ : List[Any] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,A ,A )} UpperCAmelCase__ : Any = dict(results.items() ) UpperCAmelCase__ : Optional[int] = results return ret, preds_list, out_label_list def __lowercase ( self : int ,A : list ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = self._eval_end(A ) UpperCAmelCase__ : str = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __lowercase ( self : Any ,A : int ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self._eval_end(A ) UpperCAmelCase__ : Union[str, Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __lowercase ( A : List[str] ,A : Union[str, Any] ): '''simple docstring''' BaseTransformer.add_model_specific_args(A ,A ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=A ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=A ,required=A ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=A ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : List[str] = argparse.ArgumentParser() add_generic_args(__UpperCamelCase , os.getcwd() ) UpperCAmelCase__ : Tuple = GLUETransformer.add_model_specific_args(__UpperCamelCase , os.getcwd() ) UpperCAmelCase__ : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: UpperCAmelCase__ : Optional[int] = os.path.join( """./results""" , F"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" , ) os.makedirs(args.output_dir ) UpperCAmelCase__ : str = GLUETransformer(__UpperCamelCase ) UpperCAmelCase__ : Tuple = generic_train(__UpperCamelCase , __UpperCamelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: UpperCAmelCase__ : Tuple = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=__UpperCamelCase ) ) UpperCAmelCase__ : Optional[int] = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__UpperCamelCase ) if __name__ == "__main__": main()
65
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Tuple = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
557
0
'''simple docstring''' import argparse import os import re _lowerCAmelCase = "src/diffusers" # Pattern that looks at the indentation in a line. _lowerCAmelCase = re.compile(r"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. _lowerCAmelCase = re.compile(r"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCAmelCase = re.compile(r"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. _lowerCAmelCase = re.compile(r"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCAmelCase = re.compile(r"\[([^\]]+)\]") def UpperCamelCase ( a ) -> int: '''simple docstring''' __magic_name__ = _re_indent.search(a ) return "" if search is None else search.groups()[0] def UpperCamelCase ( a , a="" , a=None , a=None ) -> Any: '''simple docstring''' __magic_name__ = 0 __magic_name__ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(a ): index += 1 __magic_name__ = ['''\n'''.join(lines[:index] )] else: __magic_name__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __magic_name__ = [lines[index]] index += 1 while index < len(a ) and (end_prompt is None or not lines[index].startswith(a )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(a ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(a ) ) if index < len(a ) - 1: __magic_name__ = [lines[index + 1]] index += 1 else: __magic_name__ = [] else: blocks.append('''\n'''.join(a ) ) __magic_name__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(a ) > 0: blocks.append('''\n'''.join(a ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(a ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def UpperCamelCase ( a ) -> Tuple: '''simple docstring''' def _inner(a ): return key(a ).lower().replace('''_''' , '''''' ) return _inner def UpperCamelCase ( a , a=None ) -> Union[str, Any]: '''simple docstring''' # If no key is provided, we use a noop. def noop(a ): return x if key is None: __magic_name__ = noop # Constants are all uppercase, they go first. __magic_name__ = [obj for obj in objects if key(a ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __magic_name__ = [obj for obj in objects if key(a )[0].isupper() and not key(a ).isupper()] # Functions begin with a lowercase, they go last. __magic_name__ = [obj for obj in objects if not key(a )[0].isupper()] __magic_name__ = ignore_underscore(a ) return sorted(a , key=a ) + sorted(a , key=a ) + sorted(a , key=a ) def UpperCamelCase ( a ) -> List[Any]: '''simple docstring''' # This inner function sort imports between [ ]. def _replace(a ): __magic_name__ = match.groups()[0] if "," not in imports: return F'''[{imports}]''' __magic_name__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __magic_name__ = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(a )] ) + "]" __magic_name__ = import_statement.split('''\n''' ) if len(a ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __magic_name__ = 2 if lines[1].strip() == '''[''' else 1 __magic_name__ = [(i, _re_strip_line.search(a ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __magic_name__ = sort_objects(a , key=lambda a : x[1] ) __magic_name__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(a ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __magic_name__ = _re_bracket_content.sub(_replace , lines[1] ) else: __magic_name__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __magic_name__ = keys[:-1] __magic_name__ = get_indent(lines[1] ) + ''', '''.join([F'''"{k}"''' for k in sort_objects(a )] ) return "\n".join(a ) else: # Finally we have to deal with imports fitting on one line __magic_name__ = _re_bracket_content.sub(_replace , a ) return import_statement def UpperCamelCase ( a , a=True ) -> str: '''simple docstring''' with open(a , '''r''' ) as f: __magic_name__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __magic_name__ = split_code_in_indented_blocks( a , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(a ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __magic_name__ = main_blocks[block_idx] __magic_name__ = block.split('''\n''' ) # Get to the start of the imports. __magic_name__ = 0 while line_idx < len(a ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __magic_name__ = len(a ) else: line_idx += 1 if line_idx >= len(a ): continue # Ignore beginning and last line: they don't contain anything. __magic_name__ = '''\n'''.join(block_lines[line_idx:-1] ) __magic_name__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __magic_name__ = split_code_in_indented_blocks(a , indent_level=a ) # We have two categories of import key: list or _import_structure[key].append/extend __magic_name__ = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __magic_name__ = [(pattern.search(a ).groups()[0] if pattern.search(a ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __magic_name__ = [(i, key) for i, key in enumerate(a ) if key is not None] __magic_name__ = [x[0] for x in sorted(a , key=lambda a : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __magic_name__ = 0 __magic_name__ = [] for i in range(len(a ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __magic_name__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(a ) count += 1 # And we put our main block back together with its first and last line. __magic_name__ = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(a ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(a , '''w''' ) as f: f.write('''\n'''.join(a ) ) def UpperCamelCase ( a=True ) -> Dict: '''simple docstring''' __magic_name__ = [] for root, _, files in os.walk(a ): if "__init__.py" in files: __magic_name__ = sort_imports(os.path.join(a , '''__init__.py''' ) , check_only=a ) if result: __magic_name__ = [os.path.join(a , '''__init__.py''' )] if len(a ) > 0: raise ValueError(F'''Would overwrite {len(a )} files, run `make style`.''' ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") _lowerCAmelCase = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
245
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self : Any , a__ : Union[str, Any] , a__ : Optional[Any]=3 , a__ : Optional[Any]=7 , a__ : List[str]=True , a__ : List[Any]=True , a__ : List[str]=False , a__ : List[Any]=True , a__ : Tuple=99 , a__ : Optional[int]=32 , a__ : List[Any]=5 , a__ : Tuple=4 , a__ : Tuple=37 , a__ : int="gelu" , a__ : Optional[int]=0.1 , a__ : Union[str, Any]=0.1 , a__ : Optional[Any]=512 , a__ : int=16 , a__ : Union[str, Any]=2 , a__ : Optional[Any]=0.02 , a__ : Any=3 , a__ : Dict=4 , a__ : Optional[Any]=None , ): __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_input_mask __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_labels __magic_name__ = num_choices __magic_name__ = scope def snake_case__ ( self : Dict ): __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_input_mask: __magic_name__ = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Tuple ): return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=a__ , ) def snake_case__ ( self : Any , a__ : Optional[int] , a__ : Any , a__ : Tuple , a__ : Optional[Any] , a__ : str , a__ : Optional[Any] , a__ : Any ): __magic_name__ = FalconModel(config=a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ , attention_mask=a__ ) __magic_name__ = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Union[str, Any] , a__ : Union[str, Any] , a__ : Tuple , a__ : int , a__ : List[Any] , a__ : Union[str, Any] , a__ : List[str] , a__ : Optional[Any] , a__ : Tuple , a__ : Optional[Any] , ): __magic_name__ = True __magic_name__ = FalconModel(a__ ) model.to(a__ ) model.eval() __magic_name__ = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , ) __magic_name__ = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , ) __magic_name__ = model(a__ , attention_mask=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : List[Any] , a__ : Any , a__ : str , a__ : Any , a__ : Union[str, Any] , a__ : List[Any] , a__ : List[Any] , a__ : Dict , a__ : int , a__ : Dict , ): __magic_name__ = FalconForCausalLM(config=a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : int , a__ : Any , a__ : int , a__ : Tuple , a__ : List[Any] , a__ : Any , a__ : Optional[int] , a__ : List[str] , a__ : Any , a__ : Any , ): __magic_name__ = True __magic_name__ = True __magic_name__ = FalconForCausalLM(config=a__ ) model.to(a__ ) model.eval() # first forward pass __magic_name__ = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , use_cache=a__ , ) __magic_name__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __magic_name__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) __magic_name__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __magic_name__ = torch.cat([input_ids, next_tokens] , dim=-1 ) __magic_name__ = torch.cat([input_mask, next_mask] , dim=-1 ) __magic_name__ = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , output_hidden_states=a__ , )['''hidden_states'''][0] __magic_name__ = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , past_key_values=a__ , output_hidden_states=a__ , )['''hidden_states'''][0] # select random slice __magic_name__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() __magic_name__ = output_from_no_past[:, -3:, random_slice_idx].detach() __magic_name__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a__ , a__ , atol=1E-3 ) ) def snake_case__ ( self : Optional[int] ): __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __a ,__a ,__a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :Union[str, Any] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE :str = (FalconForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE :List[str] = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE :str = False __SCREAMING_SNAKE_CASE :Union[str, Any] = False def snake_case__ ( self : Union[str, Any] ): __magic_name__ = FalconModelTester(self ) __magic_name__ = ConfigTester(self , config_class=a__ , hidden_size=37 ) def snake_case__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def snake_case__ ( self : Optional[int] ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def snake_case__ ( self : int ): __magic_name__ , *__magic_name__ = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: __magic_name__ = alibi self.model_tester.create_and_check_model(a__ , *a__ ) def snake_case__ ( self : List[Any] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = 3 __magic_name__ = input_dict['''input_ids'''] __magic_name__ = input_ids.ne(1 ).to(a__ ) __magic_name__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __magic_name__ = FalconForSequenceClassification(a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__ ( self : Optional[int] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = 3 __magic_name__ = '''single_label_classification''' __magic_name__ = input_dict['''input_ids'''] __magic_name__ = input_ids.ne(1 ).to(a__ ) __magic_name__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __magic_name__ = FalconForSequenceClassification(a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__ ( self : Tuple ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = input_dict['''input_ids'''] __magic_name__ = FalconForCausalLM(a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ , use_cache=a__ ) __magic_name__ = input_ids.shape[0] __magic_name__ = model._convert_to_rw_cache(result.past_key_values ) __magic_name__ = model._convert_cache_to_standard_format(a__ , a__ ) for layer in range(len(a__ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def snake_case__ ( self : Dict ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = 3 __magic_name__ = '''multi_label_classification''' __magic_name__ = input_dict['''input_ids'''] __magic_name__ = input_ids.ne(1 ).to(a__ ) __magic_name__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __magic_name__ = FalconForSequenceClassification(a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__ ( self : str ): # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(a__ , '''use_cache''' ): return __magic_name__ = model_class(a__ ).to(a__ ) if "use_cache" not in inputs: __magic_name__ = True __magic_name__ = model(**a__ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return __magic_name__ = ( getattr(a__ , '''decoder_layers''' , a__ ) or getattr(a__ , '''num_decoder_layers''' , a__ ) or config.num_hidden_layers ) __magic_name__ = getattr(a__ , '''num_kv_heads''' , config.num_attention_heads ) __magic_name__ = getattr(a__ , '''d_model''' , config.hidden_size ) __magic_name__ = embed_dim // num_attention_heads __magic_name__ = outputs['''past_key_values'''] self.assertEqual(len(a__ ) , a__ ) __magic_name__ , __magic_name__ = inputs['''input_ids'''].shape for i in range(a__ ): if config.new_decoder_architecture: __magic_name__ = config.num_attention_heads elif config.multi_query: __magic_name__ = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def snake_case__ ( self : List[Any] ): __magic_name__ = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) __magic_name__ = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(a__ ) __magic_name__ = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(a__ ) __magic_name__ = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) __magic_name__ = model.generate(**a__ , do_sample=a__ , max_new_tokens=19 ) __magic_name__ = tokenizer.batch_decode(a__ )[0] self.assertEqual(a__ , a__ ) @slow def snake_case__ ( self : Optional[int] ): # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: __magic_name__ = AutoTokenizer.from_pretrained(a__ ) __magic_name__ = FalconForCausalLM.from_pretrained(a__ ) model.eval() model.to(a__ ) __magic_name__ = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(a__ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**a__ , do_sample=a__ , max_new_tokens=4 ) model.generate(**a__ , do_sample=a__ , max_new_tokens=4 ) model.generate(**a__ , num_beams=2 , max_new_tokens=4 ) @slow def snake_case__ ( self : Optional[Any] ): # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: __magic_name__ = AutoTokenizer.from_pretrained(a__ ) __magic_name__ = FalconForCausalLM.from_pretrained(a__ ) model.eval() model.to(device=a__ ) __magic_name__ = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(a__ ) # Test results are the same with and without cache __magic_name__ = model.generate(**a__ , do_sample=a__ , max_new_tokens=20 , use_cache=a__ ) __magic_name__ = model.generate(**a__ , do_sample=a__ , max_new_tokens=20 , use_cache=a__ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
245
1
from collections import namedtuple import requests from lxml import html # type: ignore __A = namedtuple("covid_data", "cases deaths recovered") def lowerCAmelCase_ ( __a = "https://www.worldometers.info/coronavirus/" ) -> covid_data: """simple docstring""" lowerCamelCase__: int ="//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(__a ).content ).xpath(__a ) ) __A = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
59
"""simple docstring""" __SCREAMING_SNAKE_CASE =range(2, 20 + 1) __SCREAMING_SNAKE_CASE =[10**k for k in range(ks[-1] + 1)] __SCREAMING_SNAKE_CASE ={} def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ): lowercase_ : int = sum(a_i[j] for j in range(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ) ) lowercase_ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) ) ) lowercase_ , lowercase_ : str = 0, 0 lowercase_ : Optional[int] = n - i lowercase_ : Any = memo.get(__SCREAMING_SNAKE_CASE ) if sub_memo is not None: lowercase_ : List[str] = sub_memo.get(__SCREAMING_SNAKE_CASE ) if jumps is not None and len(__SCREAMING_SNAKE_CASE ) > 0: # find and make the largest jump without going over lowercase_ : Optional[Any] = -1 for _k in range(len(__SCREAMING_SNAKE_CASE ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowercase_ : List[str] = _k break if max_jump >= 0: lowercase_ , lowercase_ , lowercase_ : List[str] = jumps[max_jump] # since the difference between jumps is cached, add c lowercase_ : List[Any] = diff + c for j in range(min(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ) ): lowercase_ , lowercase_ : Optional[int] = divmod(__SCREAMING_SNAKE_CASE , 10 ) if new_c > 0: add(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: lowercase_ : Dict = [] else: lowercase_ : List[Any] = {c: []} lowercase_ : Optional[Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowercase_ , lowercase_ : Union[str, Any] = next_term(__SCREAMING_SNAKE_CASE , k - 1 , i + dn , __SCREAMING_SNAKE_CASE ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowercase_ , lowercase_ : List[str] = compute(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + dn , __SCREAMING_SNAKE_CASE ) diff += _diff dn += terms_jumped lowercase_ : str = sub_memo[c] # keep jumps sorted by # of terms skipped lowercase_ : Union[str, Any] = 0 while j < len(__SCREAMING_SNAKE_CASE ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__SCREAMING_SNAKE_CASE , (diff, dn, k) ) return (diff, dn) def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict ): if i >= n: return 0, i if k > len(__SCREAMING_SNAKE_CASE ): a_i.extend([0 for _ in range(k - len(__SCREAMING_SNAKE_CASE ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowercase_ : str = i lowercase_ , lowercase_ , lowercase_ : Optional[Any] = 0, 0, 0 for j in range(len(__SCREAMING_SNAKE_CASE ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowercase_ : Tuple = ds_c + ds_b diff += addend lowercase_ : Tuple = 0 for j in range(__SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = a_i[j] + addend lowercase_ , lowercase_ : List[str] = divmod(__SCREAMING_SNAKE_CASE , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return diff, i - start_i def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] ): for j in range(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ): lowercase_ : Optional[int] = digits[j] + addend if s >= 10: lowercase_ , lowercase_ : str = divmod(__SCREAMING_SNAKE_CASE , 10 ) lowercase_ : Optional[int] = addend // 10 + quotient else: lowercase_ : Optional[int] = s lowercase_ : Any = addend // 10 if addend == 0: break while addend > 0: lowercase_ , lowercase_ : str = divmod(__SCREAMING_SNAKE_CASE , 10 ) digits.append(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int = 10**15 ): lowercase_ : Dict = [1] lowercase_ : Any = 1 lowercase_ : List[Any] = 0 while True: lowercase_ , lowercase_ : Tuple = next_term(__SCREAMING_SNAKE_CASE , 20 , i + dn , __SCREAMING_SNAKE_CASE ) dn += terms_jumped if dn == n - i: break lowercase_ : List[str] = 0 for j in range(len(__SCREAMING_SNAKE_CASE ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"{solution() = }")
425
0
'''simple docstring''' def a ( A__ : list ) -> list: """simple docstring""" _lowercase =len(A__ ) for i in range(1 , A__ ): _lowercase =collection[i] _lowercase =0 _lowercase =i - 1 while low <= high: _lowercase =(low + high) // 2 if val < collection[mid]: _lowercase =mid - 1 else: _lowercase =mid + 1 for j in range(A__ , A__ , -1 ): _lowercase =collection[j - 1] _lowercase =val return collection if __name__ == "__main__": lowercase_ = input('Enter numbers separated by a comma:\n').strip() lowercase_ = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
715
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) lowercase_ = logging.getLogger(__name__) lowercase_ = {'facebook/bart-base': BartForConditionalGeneration} lowercase_ = {'facebook/bart-base': BartTokenizer} def a ( ) -> Optional[Any]: """simple docstring""" _lowercase =argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=A__ , default=A__ , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=A__ , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=A__ , default=A__ , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=A__ , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=A__ , ) parser.add_argument( '--config_name' , type=A__ , default=A__ , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=A__ , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=A__ , default=A__ , help='Where to store the final ONNX file.' ) _lowercase =parser.parse_args() return args def a ( A__ : int , A__ : Optional[int]="cpu" ) -> Optional[int]: """simple docstring""" _lowercase =model_dict[model_name].from_pretrained(A__ ).to(A__ ) _lowercase =tokenizer_dict[model_name].from_pretrained(A__ ) if model_name in ["facebook/bart-base"]: _lowercase =0 _lowercase =None _lowercase =0 return huggingface_model, tokenizer def a ( A__ : List[str] , A__ : Optional[Any] , A__ : List[Any] , A__ : Dict , A__ : Tuple ) -> List[str]: """simple docstring""" model.eval() _lowercase =None _lowercase =torch.jit.script(BARTBeamSearchGenerator(A__ ) ) with torch.no_grad(): _lowercase ='My friends are cool but they eat too many carbs.' _lowercase =tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='pt' ).to(model.device ) _lowercase =model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=A__ , max_length=A__ , early_stopping=A__ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( A__ , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , A__ , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=A__ , ) logger.info('Model exported to {}'.format(A__ ) ) _lowercase =remove_dup_initializers(os.path.abspath(A__ ) ) logger.info('Deduplicated and optimized model written to {}'.format(A__ ) ) _lowercase =onnxruntime.InferenceSession(A__ ) _lowercase =ort_sess.run( A__ , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(A__ ), 'max_length': np.array(A__ ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def a ( ) -> int: """simple docstring""" _lowercase =parse_args() _lowercase =5 _lowercase =4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _lowercase =torch.device(args.device ) _lowercase , _lowercase =load_model_tokenizer(args.model_name_or_path , A__ ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(A__ ) if args.max_length: _lowercase =args.max_length if args.num_beams: _lowercase =args.num_beams if args.output_file_path: _lowercase =args.output_file_path else: _lowercase ='BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(A__ , A__ , A__ , A__ , A__ ) if __name__ == "__main__": main()
380
0
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image SCREAMING_SNAKE_CASE_: int =['text', 'image', 'audio'] def lowerCAmelCase_ ( snake_case_ : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((5_12, 5_12) ) ) elif input_type == "audio": inputs.append(torch.ones(30_00 ) ) elif isinstance(snake_case_ , snake_case_ ): inputs.append(create_inputs(snake_case_ ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def lowerCAmelCase_ ( snake_case_ : List ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = [] for output in outputs: if isinstance(snake_case_ , (str, AgentText) ): output_types.append("text" ) elif isinstance(snake_case_ , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(snake_case_ , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class __A : def _lowercase (self : Optional[Any] ): self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) UpperCAmelCase_ = self.tool.inputs for _input in inputs: if isinstance(_input , __a ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) UpperCAmelCase_ = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _lowercase (self : List[str] ): UpperCAmelCase_ = create_inputs(self.tool.inputs ) UpperCAmelCase_ = self.tool(*__a ) # There is a single output if len(self.tool.outputs ) == 1: UpperCAmelCase_ = [outputs] self.assertListEqual(output_types(__a ) , self.tool.outputs ) def _lowercase (self : str ): self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _lowercase (self : Tuple ): UpperCAmelCase_ = create_inputs(self.tool.inputs ) UpperCAmelCase_ = self.tool(*__a ) if not isinstance(__a , __a ): UpperCAmelCase_ = [outputs] self.assertEqual(len(__a ) , len(self.tool.outputs ) ) for output, output_type in zip(__a , self.tool.outputs ): UpperCAmelCase_ = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(__a , __a ) ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = create_inputs(self.tool.inputs ) UpperCAmelCase_ = [] for _input, input_type in zip(__a , self.tool.inputs ): if isinstance(__a , __a ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error UpperCAmelCase_ = self.tool(*__a ) if not isinstance(__a , __a ): UpperCAmelCase_ = [outputs] self.assertEqual(len(__a ) , len(self.tool.outputs ) )
78
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __A ( UpperCamelCase__ ): a__ : List[str] = """Salesforce/blip-image-captioning-base""" a__ : Optional[Any] = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) a__ : str = """image_captioner""" a__ : List[str] = AutoModelForVisionaSeq a__ : int = ["""image"""] a__ : Optional[Any] = ["""text"""] def __init__(self : Any , *__a : Dict , **__a : Union[str, Any] ): requires_backends(self , ["vision"] ) super().__init__(*__a , **__a ) def _lowercase (self : Union[str, Any] , __a : "Image" ): return self.pre_processor(images=__a , return_tensors="pt" ) def _lowercase (self : List[str] , __a : Dict ): return self.model.generate(**__a ) def _lowercase (self : int , __a : Optional[Any] ): return self.pre_processor.batch_decode(__a , skip_special_tokens=__a )[0].strip()
78
1
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=5 ): '''simple docstring''' assert masked_input.count('<mask>' ) == 1 lowercase__ : Tuple = torch.tensor(tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ).unsqueeze(0 ) # Batch size 1 lowercase__ : str = model(_lowerCAmelCase )[0] # The last hidden-state is the first element of the output tuple lowercase__ : List[Any] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() lowercase__ : Optional[int] = logits[0, masked_index, :] lowercase__ : Dict = logits.softmax(dim=0 ) lowercase__ , lowercase__ : Optional[Any] = prob.topk(k=_lowerCAmelCase , dim=0 ) lowercase__ : Dict = ' '.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_lowerCAmelCase ) )] ) lowercase__ : int = tokenizer.mask_token lowercase__ : Union[str, Any] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(' ' ) ): lowercase__ : List[str] = predicted_token_bpe.replace('\u2581' , ' ' ) if " {0}".format(_lowerCAmelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(' {0}'.format(_lowerCAmelCase ) , _lowerCAmelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(_lowerCAmelCase , _lowerCAmelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _UpperCamelCase : Tuple = CamembertTokenizer.from_pretrained("camembert-base") _UpperCamelCase : List[Any] = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() _UpperCamelCase : Tuple = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
645
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=3_2 , a=2 , a=3 , a=1_6 , a=[1, 2, 1] , a=[2, 2, 4] , a=2 , a=2.0 , a=True , a=0.0 , a=0.0 , a=0.1 , a="gelu" , a=False , a=True , a=0.02 , a=1e-5 , a=True , a=None , a=True , a=1_0 , a=8 , a=["stage1", "stage2", "stage3"] , a=[1, 2, 3] , ) -> int: lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : Dict = image_size lowercase__ : str = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : List[str] = embed_dim lowercase__ : Any = depths lowercase__ : Dict = num_heads lowercase__ : List[str] = window_size lowercase__ : int = mlp_ratio lowercase__ : Tuple = qkv_bias lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : Tuple = drop_path_rate lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = use_absolute_embeddings lowercase__ : Optional[Any] = patch_norm lowercase__ : Any = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : List[str] = is_training lowercase__ : int = scope lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = type_sequence_label_size lowercase__ : List[str] = encoder_stride lowercase__ : Optional[Any] = out_features lowercase__ : Dict = out_indices def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _UpperCAmelCase ( self , a , a , a ) -> Dict: lowercase__ : Tuple = MaskFormerSwinModel(config=a ) model.to(a ) model.eval() lowercase__ : str = model(a ) lowercase__ : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : List[Any] = MaskFormerSwinBackbone(config=a ) model.to(a ) model.eval() lowercase__ : int = model(a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(a ): lowercase__ : Dict = ['stem'] lowercase__ : List[str] = MaskFormerSwinBackbone(config=a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Tuple = config_and_inputs lowercase__ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase__ : List[str] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase__ : str = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = MaskFormerSwinModelTester(self ) lowercase__ : Tuple = ConfigTester(self , config_class=a , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def _UpperCAmelCase ( self ) -> Optional[int]: pass def _UpperCAmelCase ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ) -> str: return def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a ) @unittest.skip('Swin does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip('Swin does not support feedforward chunking' ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCAmelCase ( self ) -> str: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) lowercase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def _UpperCAmelCase ( self ) -> int: pass def _UpperCAmelCase ( self , a , a , a , a ) -> Tuple: lowercase__ : Dict = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(a , a ) ) lowercase__ : List[Any] = outputs.hidden_states lowercase__ : str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a ) , a ) # Swin has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = 3 lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : int = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Any: lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(a ): lowercase__ : Union[str, Any] = 0 return t def check_equivalence(a , a , a , a={} ): with torch.no_grad(): lowercase__ : Optional[Any] = model(**a , return_dict=a , **a ) lowercase__ : Optional[int] = model(**a , return_dict=a , **a ).to_tuple() def recursive_check(a , a ): if isinstance(a , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(a , a ): recursive_check(a , a ) elif isinstance(a , a ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(a , a ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(a ) , set_nan_tensor_to_zero(a ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}. Dict has""" f""" `nan`: {torch.isnan(a ).any()} and `inf`: {torch.isinf(a )}.""" ) , ) recursive_check(a , a ) for model_class in self.all_model_classes: lowercase__ : Any = model_class(a ) model.to(a ) model.eval() lowercase__ : Tuple = self._prepare_for_class(a , a ) lowercase__ : Optional[Any] = self._prepare_for_class(a , a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : List[Any] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a ) lowercase__ : Any = self._prepare_for_class(a , a ) lowercase__ : int = self._prepare_for_class(a , a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) lowercase__ : Dict = self._prepare_for_class(a , a , return_labels=a ) lowercase__ : Optional[int] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ ( unittest.TestCase , _a): lowerCamelCase__ : Dict = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase__ : Optional[int] = MaskFormerSwinConfig def _UpperCAmelCase ( self ) -> Dict: lowercase__ : Optional[int] = MaskFormerSwinModelTester(self ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : int = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: lowercase__ : Optional[Any] = backbone_class(a ) backbone.to(a ) backbone.eval() lowercase__ : Union[str, Any] = backbone(**a ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , a ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowercase__ : List[str] = backbone(**a , output_hidden_states=a ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase__ , lowercase__ , lowercase__ : int = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowercase__ : List[Any] = backbone(**a , output_attentions=a ) self.assertIsNotNone(outputs.attentions )
645
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor UpperCAmelCase : Any = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCamelCase ( _UpperCamelCase : str ) -> List[Any]: '''simple docstring''' if isinstance(_UpperCamelCase , torch.Tensor ): return image elif isinstance(_UpperCamelCase , PIL.Image.Image ): __UpperCAmelCase : List[Any] = [image] __UpperCAmelCase : Optional[int] = [trans(img.convert("""RGB""" ) ) for img in image] __UpperCAmelCase : List[Any] = torch.stack(_UpperCamelCase ) return image class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : Optional[Any] ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM __UpperCAmelCase : int = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase , scheduler=UpperCamelCase ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : Optional[int] ): '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : Dict ): '''simple docstring''' __UpperCAmelCase : Optional[int] = min(int(num_inference_steps * strength ) , UpperCamelCase ) __UpperCAmelCase : Dict = max(num_inference_steps - init_timestep , 0 ) __UpperCAmelCase : int = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : Optional[int]=None ): '''simple docstring''' if not isinstance(UpperCamelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCamelCase )}''' ) __UpperCAmelCase : Optional[Any] = image.to(device=UpperCamelCase , dtype=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(UpperCamelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __UpperCAmelCase : List[Any] = init_latents.shape __UpperCAmelCase : Optional[Any] = randn_tensor(UpperCamelCase , generator=UpperCamelCase , device=UpperCamelCase , dtype=UpperCamelCase ) # get latents print("""add noise to latents at timestep""" , UpperCamelCase ) __UpperCAmelCase : Any = self.scheduler.add_noise(UpperCamelCase , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = init_latents return latents @torch.no_grad() def __call__( self : Dict , UpperCamelCase : Union[torch.FloatTensor, PIL.Image.Image] = None , UpperCamelCase : float = 0.8 , UpperCamelCase : int = 1 , UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase : float = 0.0 , UpperCamelCase : int = 50 , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , ): '''simple docstring''' self.check_inputs(UpperCamelCase ) # 2. Preprocess image __UpperCAmelCase : int = preprocess(UpperCamelCase ) # 3. set timesteps self.scheduler.set_timesteps(UpperCamelCase , device=self.device ) __UpperCAmelCase ,__UpperCAmelCase : Dict = self.get_timesteps(UpperCamelCase , UpperCamelCase , self.device ) __UpperCAmelCase : int = timesteps[:1].repeat(UpperCamelCase ) # 4. Prepare latent variables __UpperCAmelCase : Optional[Any] = self.prepare_latents(UpperCamelCase , UpperCamelCase , UpperCamelCase , self.unet.dtype , self.device , UpperCamelCase ) __UpperCAmelCase : Optional[int] = latents # 5. Denoising loop for t in self.progress_bar(UpperCamelCase ): # 1. predict noise model_output __UpperCAmelCase : Optional[Any] = self.unet(UpperCamelCase , UpperCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __UpperCAmelCase : Optional[Any] = self.scheduler.step( UpperCamelCase , UpperCamelCase , UpperCamelCase , eta=UpperCamelCase , use_clipped_model_output=UpperCamelCase , generator=UpperCamelCase , ).prev_sample __UpperCAmelCase : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCAmelCase : Optional[Any] = self.numpy_to_pil(UpperCamelCase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=UpperCamelCase )
139
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = LEDTokenizer __a = LEDTokenizerFast __a = True def lowerCamelCase__ ( self : Dict ): '''simple docstring''' super().setUp() __UpperCAmelCase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __UpperCAmelCase : int = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) __UpperCAmelCase : Optional[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __UpperCAmelCase : Dict = {"""unk_token""": """<unk>"""} __UpperCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase ) ) def lowerCamelCase__ ( self : Dict , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : int , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : Any , UpperCamelCase : Tuple ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self : str ): '''simple docstring''' return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self : Any ): '''simple docstring''' return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : str = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __UpperCAmelCase : Any = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : int = tokenizer(UpperCamelCase , max_length=len(UpperCamelCase ) , padding=UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __UpperCAmelCase : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCamelCase , UpperCamelCase ) @require_torch def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : int = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Optional[Any] = tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors="""pt""" ) self.assertIn("""input_ids""" , UpperCamelCase ) self.assertIn("""attention_mask""" , UpperCamelCase ) self.assertNotIn("""labels""" , UpperCamelCase ) self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase ) @require_torch def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Dict = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : str = tokenizer(text_target=UpperCamelCase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Optional[Any] = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=UpperCamelCase , truncation=UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = ["""A long paragraph for summarization."""] __UpperCAmelCase : Optional[int] = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : List[Any] = tokenizer(UpperCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : str = tokenizer(text_target=UpperCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : str = inputs["""input_ids"""] __UpperCAmelCase : Any = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Any = ["""Summary of the text.""", """Another summary."""] __UpperCAmelCase : str = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __UpperCAmelCase : str = tokenizer(UpperCamelCase , padding=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = [[0] * len(UpperCamelCase ) for x in encoded_output["""input_ids"""]] __UpperCAmelCase : Any = tokenizer.pad(UpperCamelCase ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , UpperCamelCase ) def lowerCamelCase__ ( self : str ): '''simple docstring''' pass def lowerCamelCase__ ( self : Dict ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : int = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Dict = """A, <mask> AllenNLP sentence.""" __UpperCAmelCase : Union[str, Any] = tokenizer_r.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer_p.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __UpperCAmelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __UpperCAmelCase : int = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
139
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase__ = { 'configuration_gpt_neox_japanese': ['GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXJapaneseConfig'], 'tokenization_gpt_neox_japanese': ['GPTNeoXJapaneseTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXJapaneseForCausalLM', 'GPTNeoXJapaneseLayer', 'GPTNeoXJapaneseModel', 'GPTNeoXJapanesePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
40
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): # noqa: E741 _UpperCAmelCase : List[str] = len(__lowerCAmelCase ) _UpperCAmelCase : str = 0 _UpperCAmelCase : List[str] = [0] * n _UpperCAmelCase : int = [False] * n _UpperCAmelCase : Dict = [False] * n def dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if parent == root: out_edge_count += 1 _UpperCAmelCase : List[Any] = True _UpperCAmelCase : str = at for to in l[at]: if to == parent: pass elif not visited[to]: _UpperCAmelCase : List[str] = dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Tuple = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _UpperCAmelCase : Dict = True # AP found via cycle if at == low[to]: _UpperCAmelCase : Dict = True else: _UpperCAmelCase : Optional[int] = min(low[at] , __lowerCAmelCase ) return out_edge_count for i in range(__lowerCAmelCase ): if not visited[i]: _UpperCAmelCase : str = 0 _UpperCAmelCase : Tuple = dfs(__lowerCAmelCase , __lowerCAmelCase , -1 , __lowerCAmelCase ) _UpperCAmelCase : Optional[int] = out_edge_count > 1 for x in range(len(__lowerCAmelCase ) ): if is_art[x] is True: print(__lowerCAmelCase ) # Adjacency list of graph lowerCamelCase__ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
40
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __lowerCamelCase :List[str] = logging.get_logger(__name__) def snake_case ( UpperCamelCase__ : str ) -> List[List[ImageInput]]: if isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(UpperCamelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(UpperCamelCase__ ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class A__ ( __lowercase): """simple docstring""" snake_case__ : Union[str, Any] =['''pixel_values'''] def __init__( self: List[str] , __a: bool = True , __a: Dict[str, int] = None , __a: PILImageResampling = PILImageResampling.BILINEAR , __a: bool = True , __a: Dict[str, int] = None , __a: bool = True , __a: Union[int, float] = 1 / 255 , __a: bool = True , __a: bool = True , __a: Optional[Union[float, List[float]]] = None , __a: Optional[Union[float, List[float]]] = None , **__a: int , )-> None: super().__init__(**__a ) lowerCamelCase : int = size if size is not None else {"""shortest_edge""": 256} lowerCamelCase : Tuple = get_size_dict(__a , default_to_square=__a ) lowerCamelCase : Optional[int] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowerCamelCase : Tuple = get_size_dict(__a , param_name="""crop_size""" ) lowerCamelCase : str = do_resize lowerCamelCase : List[str] = size lowerCamelCase : Optional[Any] = do_center_crop lowerCamelCase : List[Any] = crop_size lowerCamelCase : Dict = resample lowerCamelCase : Tuple = do_rescale lowerCamelCase : List[str] = rescale_factor lowerCamelCase : str = offset lowerCamelCase : Union[str, Any] = do_normalize lowerCamelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__ ( self: List[str] , __a: np.ndarray , __a: Dict[str, int] , __a: PILImageResampling = PILImageResampling.BILINEAR , __a: Optional[Union[str, ChannelDimension]] = None , **__a: List[str] , )-> np.ndarray: lowerCamelCase : List[Any] = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" in size: lowerCamelCase : Union[str, Any] = get_resize_output_image_size(__a , size["""shortest_edge"""] , default_to_square=__a ) elif "height" in size and "width" in size: lowerCamelCase : Optional[int] = (size["""height"""], size["""width"""]) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def a__ ( self: Optional[int] , __a: np.ndarray , __a: Dict[str, int] , __a: Optional[Union[str, ChannelDimension]] = None , **__a: List[Any] , )-> np.ndarray: lowerCamelCase : Optional[Any] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def a__ ( self: Dict , __a: np.ndarray , __a: Union[int, float] , __a: bool = True , __a: Optional[Union[str, ChannelDimension]] = None , **__a: Optional[Any] , )-> Union[str, Any]: lowerCamelCase : Tuple = image.astype(np.floataa ) if offset: lowerCamelCase : str = image - (scale / 2) return rescale(__a , scale=__a , data_format=__a , **__a ) def a__ ( self: Any , __a: np.ndarray , __a: Union[float, List[float]] , __a: Union[float, List[float]] , __a: Optional[Union[str, ChannelDimension]] = None , **__a: List[str] , )-> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def a__ ( self: Union[str, Any] , __a: ImageInput , __a: bool = None , __a: Dict[str, int] = None , __a: PILImageResampling = None , __a: bool = None , __a: Dict[str, int] = None , __a: bool = None , __a: float = None , __a: bool = None , __a: bool = None , __a: Optional[Union[float, List[float]]] = None , __a: Optional[Union[float, List[float]]] = None , __a: Optional[ChannelDimension] = ChannelDimension.FIRST , )-> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. lowerCamelCase : int = to_numpy_array(__a ) if do_resize: lowerCamelCase : Union[str, Any] = self.resize(image=__a , size=__a , resample=__a ) if do_center_crop: lowerCamelCase : List[str] = self.center_crop(__a , size=__a ) if do_rescale: lowerCamelCase : int = self.rescale(image=__a , scale=__a , offset=__a ) if do_normalize: lowerCamelCase : List[Any] = self.normalize(image=__a , mean=__a , std=__a ) lowerCamelCase : Optional[int] = to_channel_dimension_format(__a , __a ) return image def a__ ( self: Optional[Any] , __a: ImageInput , __a: bool = None , __a: Dict[str, int] = None , __a: PILImageResampling = None , __a: bool = None , __a: Dict[str, int] = None , __a: bool = None , __a: float = None , __a: bool = None , __a: bool = None , __a: Optional[Union[float, List[float]]] = None , __a: Optional[Union[float, List[float]]] = None , __a: Optional[Union[str, TensorType]] = None , __a: ChannelDimension = ChannelDimension.FIRST , **__a: Dict , )-> PIL.Image.Image: lowerCamelCase : List[Any] = do_resize if do_resize is not None else self.do_resize lowerCamelCase : Optional[Any] = resample if resample is not None else self.resample lowerCamelCase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase : Any = offset if offset is not None else self.offset lowerCamelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean lowerCamelCase : Tuple = image_std if image_std is not None else self.image_std lowerCamelCase : Optional[int] = size if size is not None else self.size lowerCamelCase : List[str] = get_size_dict(__a , default_to_square=__a ) lowerCamelCase : Dict = crop_size if crop_size is not None else self.crop_size lowerCamelCase : int = get_size_dict(__a , param_name="""crop_size""" ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) lowerCamelCase : int = make_batched(__a ) lowerCamelCase : Union[str, Any] = [ [ self._preprocess_image( image=__a , do_resize=__a , size=__a , resample=__a , do_center_crop=__a , crop_size=__a , do_rescale=__a , rescale_factor=__a , offset=__a , do_normalize=__a , image_mean=__a , image_std=__a , data_format=__a , ) for img in video ] for video in videos ] lowerCamelCase : List[Any] = {"""pixel_values""": videos} return BatchFeature(data=__a , tensor_type=__a )
222
"""simple docstring""" import math def snake_case ( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(UpperCamelCase__ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
222
1
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __A =get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __A =5_0_0_0_3 __A =5_0_0_0_2 @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( __UpperCamelCase ,unittest.TestCase ): '''simple docstring''' UpperCamelCase = PLBartTokenizer UpperCamelCase = None UpperCamelCase = False def snake_case__ ( self : Any ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : Union[str, Any] = PLBartTokenizer(a_ , language_codes='''base''' , keep_accents=a_ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = PLBartTokenizer(a_ , language_codes='''base''' , keep_accents=a_ ) __UpperCAmelCase : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(a_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __UpperCAmelCase : List[str] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( a_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __UpperCAmelCase : Union[str, Any] = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual( a_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) __UpperCAmelCase : str = tokenizer.vocab_size __UpperCAmelCase : Optional[int] = [tokenizer.convert_ids_to_tokens(a_ ) for x in range(end - 4 , a_ )] self.assertListEqual(a_ , ['''__java__''', '''__python__''', '''__en_XX__''', '''<mask>'''] ) __UpperCAmelCase : Optional[int] = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' __UpperCAmelCase : Tuple = tokenizer(a_ ).input_ids self.assertEqual( tokenizer.decode(a_ , skip_special_tokens=a_ , clean_up_tokenization_spaces=a_ ) , a_ , ) def snake_case__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Any = PLBartTokenizer(a_ , language_codes='''multi''' , keep_accents=a_ ) __UpperCAmelCase : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(a_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __UpperCAmelCase : int = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( a_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __UpperCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual( a_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __UpperCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) __UpperCAmelCase : List[str] = tokenizer.vocab_size __UpperCAmelCase : List[str] = [tokenizer.convert_ids_to_tokens(a_ ) for x in range(end - 7 , a_ )] self.assertListEqual( a_ , ['''__java__''', '''__python__''', '''__en_XX__''', '''__javascript__''', '''__php__''', '''__ruby__''', '''__go__'''] ) __UpperCAmelCase : Any = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' __UpperCAmelCase : List[str] = tokenizer(a_ ).input_ids self.assertEqual( tokenizer.decode(a_ , skip_special_tokens=a_ , clean_up_tokenization_spaces=a_ ) , a_ , ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = """uclanlp/plbart-python-en_XX""" UpperCamelCase = [ """def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])""", """def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""", ] UpperCamelCase = [ """Returns the maximum value of a b c.""", """Sums the values of a b c.""", ] UpperCamelCase = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def snake_case__ ( cls : List[str] ): '''simple docstring''' __UpperCAmelCase : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='''base''' , src_lang='''python''' , tgt_lang='''en_XX''' ) __UpperCAmelCase : Optional[Any] = 1 return cls def snake_case__ ( self : str ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__java__'''] , 5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__python__'''] , 5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__en_XX__'''] , 5_00_03 ) def snake_case__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a_ ) def snake_case__ ( self : List[str] ): '''simple docstring''' self.assertIn(a_ , self.tokenizer.all_special_ids ) __UpperCAmelCase : Optional[int] = [EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] __UpperCAmelCase : Tuple = self.tokenizer.decode(a_ , skip_special_tokens=a_ ) __UpperCAmelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a_ ) self.assertEqual(a_ , a_ ) self.assertNotIn(self.tokenizer.eos_token , a_ ) def snake_case__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : str = ['''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''' * 20] self.assertIsInstance(src_text[0] , a_ ) __UpperCAmelCase : Dict = 10 __UpperCAmelCase : Any = self.tokenizer(a_ , max_length=a_ , truncation=a_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , a_ ) self.assertEqual(len(a_ ) , a_ ) def snake_case__ ( self : List[str] ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''__java__'''] ) , [5_00_04, 5_00_01] ) def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() __UpperCAmelCase : List[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a_ ) __UpperCAmelCase : Dict = PLBartTokenizer.from_pretrained(a_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a_ ) @require_torch def snake_case__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=a_ , return_tensors='''pt''' ) __UpperCAmelCase : Tuple = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , a_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Any = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=a_ , truncation=a_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __UpperCAmelCase : int = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(a_ , a_ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) __UpperCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , a_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def snake_case__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = self.tokenizer(self.src_text , padding=a_ , truncation=a_ , max_length=3 , return_tensors='''pt''' ) __UpperCAmelCase : Tuple = self.tokenizer( text_target=self.tgt_text , padding=a_ , truncation=a_ , max_length=10 , return_tensors='''pt''' ) __UpperCAmelCase : Tuple = targets['''input_ids'''] __UpperCAmelCase : List[str] = shift_tokens_right(a_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def snake_case__ ( self : str ): '''simple docstring''' __UpperCAmelCase : int = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''java''' ) self.assertEqual( nested_simplify(a_ ) , { # A, test, EOS, en_XX '''input_ids''': [[1_50, 2_42, 2, 5_00_03]], '''attention_mask''': [[1, 1, 1, 1]], # java '''forced_bos_token_id''': 5_00_01, } , )
241
def a ( _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 10_00 ): '''simple docstring''' __UpperCAmelCase : List[str] = 1 __UpperCAmelCase : Dict = 0 for divide_by_number in range(_UpperCAmelCase , digit + 1 ): __UpperCAmelCase : list[int] = [] __UpperCAmelCase : List[str] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_UpperCAmelCase ): __UpperCAmelCase : List[str] = len(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = divide_by_number else: has_been_divided.append(_UpperCAmelCase ) __UpperCAmelCase : Any = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
241
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : int = {'''vocab_file''': '''sentencepiece.bpe.model'''} A__ : int = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } A__ : List[str] = { '''camembert-base''': 5_1_2, } A__ : str = '''▁''' class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , __a : int , __a : str="<s>" , __a : Dict="</s>" , __a : Union[str, Any]="</s>" , __a : List[str]="<s>" , __a : Optional[int]="<unk>" , __a : Optional[Any]="<pad>" , __a : str="<mask>" , __a : Union[str, Any]=["<s>NOTUSED", "</s>NOTUSED"] , __a : Optional[Dict[str, Any]] = None , **__a : Any , ) -> None: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it __snake_case : Optional[int] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token __snake_case : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , additional_special_tokens=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__a ) ) __snake_case : str = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __snake_case : Any = {'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3} __snake_case : Optional[int] = len(self.fairseq_tokens_to_ids ) __snake_case : str = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __snake_case : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A_ ( self : List[str] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] __snake_case : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A_ ( self : Optional[Any] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) + [1] def A_ ( self : int , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __snake_case : Dict = [self.sep_token_id] __snake_case : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A_ ( self : Dict ) -> List[str]: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def A_ ( self : List[str] ) -> str: '''simple docstring''' __snake_case : Any = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A_ ( self : Dict , __a : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__a , out_type=__a ) def A_ ( self : Optional[Any] , __a : List[str] ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(__a ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(__a ) def A_ ( self : Optional[int] , __a : List[Any] ) -> Optional[Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A_ ( self : Dict , __a : Union[str, Any] ) -> Tuple: '''simple docstring''' __snake_case : Tuple = [] __snake_case : List[Any] = '' __snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__a ) + token __snake_case : Optional[int] = True __snake_case : Any = [] else: current_sub_tokens.append(__a ) __snake_case : Dict = False out_string += self.sp_model.decode(__a ) return out_string.strip() def __getstate__( self : str ) -> Optional[int]: '''simple docstring''' __snake_case : Dict = self.__dict__.copy() __snake_case : int = None return state def __setstate__( self : List[str] , __a : List[str] ) -> Dict: '''simple docstring''' __snake_case : List[str] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case : Dict = {} __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A_ ( self : Tuple , __a : str , __a : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case : Dict = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , 'wb' ) as fi: __snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,)
286
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Optional[Any] = logging.get_logger(__name__) A__ : List[str] = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = '''cvt''' def __init__( self : Optional[Any] , __a : Union[str, Any]=3 , __a : List[Any]=[7, 3, 3] , __a : Optional[int]=[4, 2, 2] , __a : Dict=[2, 1, 1] , __a : Union[str, Any]=[64, 192, 384] , __a : int=[1, 3, 6] , __a : List[str]=[1, 2, 10] , __a : Optional[Any]=[4.0, 4.0, 4.0] , __a : Any=[0.0, 0.0, 0.0] , __a : List[str]=[0.0, 0.0, 0.0] , __a : List[Any]=[0.0, 0.0, 0.1] , __a : List[str]=[True, True, True] , __a : int=[False, False, True] , __a : Dict=["dw_bn", "dw_bn", "dw_bn"] , __a : List[str]=[3, 3, 3] , __a : Union[str, Any]=[1, 1, 1] , __a : Optional[int]=[2, 2, 2] , __a : Optional[Any]=[1, 1, 1] , __a : List[str]=[1, 1, 1] , __a : List[str]=0.0_2 , __a : List[str]=1e-12 , **__a : List[str] , ) -> Dict: '''simple docstring''' super().__init__(**__a ) __snake_case : int = num_channels __snake_case : Union[str, Any] = patch_sizes __snake_case : Any = patch_stride __snake_case : List[str] = patch_padding __snake_case : Optional[Any] = embed_dim __snake_case : Union[str, Any] = num_heads __snake_case : Dict = depth __snake_case : Optional[Any] = mlp_ratio __snake_case : List[str] = attention_drop_rate __snake_case : Optional[int] = drop_rate __snake_case : Optional[int] = drop_path_rate __snake_case : Any = qkv_bias __snake_case : int = cls_token __snake_case : Optional[int] = qkv_projection_method __snake_case : List[Any] = kernel_qkv __snake_case : List[Any] = padding_kv __snake_case : int = stride_kv __snake_case : List[str] = padding_q __snake_case : Dict = stride_q __snake_case : Tuple = initializer_range __snake_case : List[Any] = layer_norm_eps
286
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = state_dict.pop(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = val def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: SCREAMING_SNAKE_CASE = key.replace('backbone.0.body', 'backbone.conv_encoder.model' ) SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = value return new_state_dict def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[:2_5_6, :] SCREAMING_SNAKE_CASE = in_proj_bias[:2_5_6] SCREAMING_SNAKE_CASE = in_proj_weight[2_5_6:5_1_2, :] SCREAMING_SNAKE_CASE = in_proj_bias[2_5_6:5_1_2] SCREAMING_SNAKE_CASE = in_proj_weight[-2_5_6:, :] SCREAMING_SNAKE_CASE = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[:2_5_6, :] SCREAMING_SNAKE_CASE = in_proj_bias[:2_5_6] SCREAMING_SNAKE_CASE = in_proj_weight[2_5_6:5_1_2, :] SCREAMING_SNAKE_CASE = in_proj_bias[2_5_6:5_1_2] SCREAMING_SNAKE_CASE = in_proj_weight[-2_5_6:, :] SCREAMING_SNAKE_CASE = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention SCREAMING_SNAKE_CASE = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict SCREAMING_SNAKE_CASE = in_proj_weight_cross_attn[:2_5_6, :] SCREAMING_SNAKE_CASE = in_proj_bias_cross_attn[:2_5_6] SCREAMING_SNAKE_CASE = in_proj_weight_cross_attn[2_5_6:5_1_2, :] SCREAMING_SNAKE_CASE = in_proj_bias_cross_attn[2_5_6:5_1_2] SCREAMING_SNAKE_CASE = in_proj_weight_cross_attn[-2_5_6:, :] SCREAMING_SNAKE_CASE = in_proj_bias_cross_attn[-2_5_6:] def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.size SCREAMING_SNAKE_CASE = max(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = 8_0_0 if 'detection' in checkpoint_url else 1_0_0_0 SCREAMING_SNAKE_CASE = target_max_size / current_max_size SCREAMING_SNAKE_CASE = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = F.to_tensor(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = F.normalize(SCREAMING_SNAKE_CASE_, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): logger.info('Converting model...' ) # load original state dict SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_, map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = rename_backbone_keys(SCREAMING_SNAKE_CASE_ ) # query, key and value matrices need special treatment read_in_q_k_v(SCREAMING_SNAKE_CASE_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): SCREAMING_SNAKE_CASE = state_dict.pop(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = val # create HuggingFace model and load state dict SCREAMING_SNAKE_CASE = TableTransformerConfig( backbone='resnet18', mask_loss_coefficient=1, dice_loss_coefficient=1, ce_loss_coefficient=1, bbox_loss_coefficient=5, giou_loss_coefficient=2, eos_coefficient=0.4, class_cost=1, bbox_cost=5, giou_cost=2, ) if "detection" in checkpoint_url: SCREAMING_SNAKE_CASE = 1_5 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = {0: 'table', 1: 'table rotated'} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} else: SCREAMING_SNAKE_CASE = 1_2_5 SCREAMING_SNAKE_CASE = 6 SCREAMING_SNAKE_CASE = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = DetrImageProcessor( format='coco_detection', max_size=8_0_0 if 'detection' in checkpoint_url else 1_0_0_0 ) SCREAMING_SNAKE_CASE = TableTransformerForObjectDetection(SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) model.eval() # verify our conversion SCREAMING_SNAKE_CASE = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' SCREAMING_SNAKE_CASE = hf_hub_download(repo_id='nielsr/example-pdf', repo_type='dataset', filename=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = Image.open(SCREAMING_SNAKE_CASE_ ).convert('RGB' ) SCREAMING_SNAKE_CASE = normalize(resize(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ).unsqueeze(0 ) SCREAMING_SNAKE_CASE = model(SCREAMING_SNAKE_CASE_ ) if "detection" in checkpoint_url: SCREAMING_SNAKE_CASE = (1, 1_5, 3) SCREAMING_SNAKE_CASE = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) SCREAMING_SNAKE_CASE = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: SCREAMING_SNAKE_CASE = (1, 1_2_5, 7) SCREAMING_SNAKE_CASE = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) SCREAMING_SNAKE_CASE = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3], SCREAMING_SNAKE_CASE_, atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3], SCREAMING_SNAKE_CASE_, atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) SCREAMING_SNAKE_CASE = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(SCREAMING_SNAKE_CASE_ ) image_processor.push_to_hub(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) snake_case = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
406
"""simple docstring""" import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case = get_tests_dir('fixtures/test_sentencepiece.model') if is_sentencepiece_available(): import sentencepiece as sp snake_case = 5 snake_case = 1_0 @require_sentencepiece @require_tokenizers class UpperCamelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str = SpeechaTextTokenizer UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Optional[int] = True def A ( self ) -> List[str]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE = sp.SentencePieceProcessor() spm_model.Load(lowercase__ ) SCREAMING_SNAKE_CASE = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(lowercase__ ) )] SCREAMING_SNAKE_CASE = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) SCREAMING_SNAKE_CASE = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES['spm_file'] ) SCREAMING_SNAKE_CASE = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = '<pad>' SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def A ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(lowercase__ ) , 1001 ) def A ( self ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def A ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [289, 50, 14, 174, 386] , ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual(lowercase__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def A ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = {'input_ids': [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class UpperCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : List[Any] = "valhalla/s2t_mustc_multilinguial_medium" UpperCAmelCase_ : Optional[Any] = "C'est trop cool" UpperCAmelCase_ : List[str] = "Esto es genial" @classmethod def A ( cls ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def A ( self ) -> Tuple: """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 ) def A ( self ) -> Any: """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 10000 ) def A ( self ) -> Union[str, Any]: """simple docstring""" self.assertIn(lowercase__ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE = [ES_CODE, 4, 1601, 47, 7647, 2] SCREAMING_SNAKE_CASE = self.tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) SCREAMING_SNAKE_CASE = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) self.assertNotIn(self.tokenizer.eos_token , lowercase__ ) def A ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = 'fr' SCREAMING_SNAKE_CASE = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , lowercase__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def A ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) SCREAMING_SNAKE_CASE = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
406
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = ["""image_processor""", """tokenizer"""] _UpperCAmelCase = """ViTImageProcessor""" _UpperCAmelCase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __call__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ): """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if visual_prompt is not None: SCREAMING_SNAKE_CASE_ : int = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if images is not None: SCREAMING_SNAKE_CASE_ : Dict = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if visual_prompt is not None and images is not None: SCREAMING_SNAKE_CASE_ : List[str] = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: SCREAMING_SNAKE_CASE_ : Tuple = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase__ ) , tensor_type=lowerCAmelCase__ ) def UpperCamelCase__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def UpperCamelCase__ ( self ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCAmelCase__ , ) return self.image_processor_class @property def UpperCamelCase__ ( self ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowerCAmelCase__ , ) return self.image_processor
101
from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : Any = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE: int = 'openai-gpt' SCREAMING_SNAKE_CASE: List[str] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , lowerCamelCase__=40_478 , lowerCamelCase__=512 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=1E-5 , lowerCamelCase__=0.0_2 , lowerCamelCase__="cls_index" , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=0.1 , **lowerCamelCase__ , ): lowerCAmelCase_: Union[str, Any] = vocab_size lowerCAmelCase_: List[Any] = n_positions lowerCAmelCase_: Tuple = n_embd lowerCAmelCase_: Optional[int] = n_layer lowerCAmelCase_: Optional[int] = n_head lowerCAmelCase_: int = afn lowerCAmelCase_: str = resid_pdrop lowerCAmelCase_: Optional[int] = embd_pdrop lowerCAmelCase_: Optional[int] = attn_pdrop lowerCAmelCase_: Dict = layer_norm_epsilon lowerCAmelCase_: List[Any] = initializer_range lowerCAmelCase_: Union[str, Any] = summary_type lowerCAmelCase_: Any = summary_use_proj lowerCAmelCase_: Dict = summary_activation lowerCAmelCase_: Dict = summary_first_dropout lowerCAmelCase_: List[Any] = summary_proj_to_labels super().__init__(**lowerCamelCase__ )
613
0
'''simple docstring''' import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : Optional[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _a : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): __UpperCAmelCase : Any = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: __UpperCAmelCase : List[str] = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: __UpperCAmelCase : str = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __UpperCAmelCase : List[str] = value elif weight_type == "weight_g": __UpperCAmelCase : List[Any] = value elif weight_type == "weight_v": __UpperCAmelCase : Dict = value elif weight_type == "bias": __UpperCAmelCase : int = value else: __UpperCAmelCase : int = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Any: """simple docstring""" __UpperCAmelCase : str = [] __UpperCAmelCase : List[Any] = fairseq_model.state_dict() __UpperCAmelCase : Union[str, Any] = hf_model.feature_extractor __UpperCAmelCase : Dict = hf_model.adapter for name, value in fairseq_dict.items(): __UpperCAmelCase : str = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == "group" , ) __UpperCAmelCase : int = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: __UpperCAmelCase : Union[str, Any] = True if "*" in mapped_key: __UpperCAmelCase : int = name.split(lowerCamelCase__ )[0].split("." )[-2] __UpperCAmelCase : Any = mapped_key.replace("*" , lowerCamelCase__ ) if "weight_g" in name: __UpperCAmelCase : Dict = "weight_g" elif "weight_v" in name: __UpperCAmelCase : Optional[int] = "weight_v" elif "bias" in name: __UpperCAmelCase : Union[str, Any] = "bias" elif "weight" in name: __UpperCAmelCase : Optional[Any] = "weight" else: __UpperCAmelCase : Dict = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : List[Any] = full_name.split("conv_layers." )[-1] __UpperCAmelCase : Dict = name.split("." ) __UpperCAmelCase : List[Any] = int(items[0] ) __UpperCAmelCase : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __UpperCAmelCase : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __UpperCAmelCase : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __UpperCAmelCase : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __UpperCAmelCase : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Tuple = full_name.split("adaptor." )[-1] __UpperCAmelCase : Optional[int] = name.split("." ) if items[1].isdigit(): __UpperCAmelCase : Union[str, Any] = int(items[1] ) else: __UpperCAmelCase : Optional[int] = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" __UpperCAmelCase : Optional[Any] = value logger.info(f"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" __UpperCAmelCase : List[Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" __UpperCAmelCase : str = value logger.info(f"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" __UpperCAmelCase : List[str] = value logger.info(f"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" __UpperCAmelCase : List[Any] = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" __UpperCAmelCase : Dict = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ ) -> Optional[int]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = emb.weight.shape __UpperCAmelCase : str = nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ ) __UpperCAmelCase : Dict = emb.weight.data return lin_layer @torch.no_grad() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> Dict: """simple docstring""" __UpperCAmelCase : List[Any] = WavaVecaConfig.from_pretrained( lowerCamelCase__ , add_adapter=lowerCamelCase__ , adapter_stride=lowerCamelCase__ , adapter_kernel_size=lowerCamelCase__ , use_auth_token=lowerCamelCase__ , output_hidden_size=lowerCamelCase__ , ) __UpperCAmelCase : int = MBartConfig.from_pretrained(lowerCamelCase__ ) # load model __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, } , ) __UpperCAmelCase : int = model[0].eval() # load feature extractor __UpperCAmelCase : List[str] = WavaVecaFeatureExtractor.from_pretrained(lowerCamelCase__ , use_auth_token=lowerCamelCase__ ) # set weights for wav2vec2 encoder __UpperCAmelCase : Tuple = WavaVecaModel(lowerCamelCase__ ) recursively_load_weights_wavaveca(model.encoder , lowerCamelCase__ ) # load decoder weights __UpperCAmelCase : List[Any] = MBartForCausalLM(lowerCamelCase__ ) __UpperCAmelCase , __UpperCAmelCase : Dict = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowerCamelCase__ ) logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __UpperCAmelCase : int = SpeechEncoderDecoderModel(encoder=lowerCamelCase__ , decoder=lowerCamelCase__ ) __UpperCAmelCase : List[str] = False __UpperCAmelCase : Union[str, Any] = MBartaaTokenizer(lowerCamelCase__ ) tokenizer.save_pretrained(lowerCamelCase__ ) __UpperCAmelCase : Union[str, Any] = hf_wavavec.config.to_dict() __UpperCAmelCase : int = tokenizer.pad_token_id __UpperCAmelCase : Union[str, Any] = tokenizer.bos_token_id __UpperCAmelCase : Union[str, Any] = tokenizer.eos_token_id __UpperCAmelCase : Tuple = "mbart50" __UpperCAmelCase : Tuple = "wav2vec2" __UpperCAmelCase : int = tokenizer.eos_token_id __UpperCAmelCase : Any = 25_0004 __UpperCAmelCase : int = tokenizer.eos_token_id __UpperCAmelCase : Union[str, Any] = SpeechEncoderDecoderConfig.from_dict(lowerCamelCase__ ) hf_wavavec.save_pretrained(lowerCamelCase__ ) feature_extractor.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": _a : Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250004, type=int, help="`decoder_start_token_id` of model config") _a : str = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
10
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape __UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape if rowsa != colsa: __UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if colsa != 1: __UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if rowsa != rowsa: __UpperCAmelCase : Optional[int] = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(lowerCamelCase__ ) if len(lowerCamelCase__ ) != rowsa: __UpperCAmelCase : List[str] = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}""" ) raise ValueError(lowerCamelCase__ ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __UpperCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape strictly_diagonally_dominant(lowerCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(lowerCamelCase__ ): __UpperCAmelCase : int = [] for row in range(lowerCamelCase__ ): __UpperCAmelCase : List[str] = 0 for col in range(lowerCamelCase__ ): if col == row: __UpperCAmelCase : int = table[row][col] elif col == cols - 1: __UpperCAmelCase : Any = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCAmelCase : List[Any] = (temp + val) / denom new_val.append(lowerCamelCase__ ) __UpperCAmelCase : str = new_val return [float(lowerCamelCase__ ) for i in new_val] def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape __UpperCAmelCase : str = True for i in range(0 , lowerCamelCase__ ): __UpperCAmelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _lowercase = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_lowercase ): """simple docstring""" super().__init__(**_lowercase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , _lowercase , **_lowercase ): """simple docstring""" return super().__call__(_lowercase , **_lowercase ) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _lowercase ( self , _lowercase , _lowercase=None , _lowercase="This is a photo of {}." ): """simple docstring""" _lowerCAmelCase = load_image(_lowercase ) _lowerCAmelCase = self.image_processor(images=[image] , return_tensors=self.framework ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) _lowerCAmelCase = [text_inputs] return inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _lowercase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowercase , **_lowercase ) _lowerCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = model_outputs.pop("""candidate_labels""" ) _lowerCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=-1 ).squeeze(-1 ) _lowerCAmelCase = probs.tolist() if not isinstance(_lowercase , _lowercase ): _lowerCAmelCase = [scores] elif self.framework == "tf": _lowerCAmelCase = stable_softmax(_lowercase , axis=-1 ) _lowerCAmelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) _lowerCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
5
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_ : def __init__( self : Dict , __A : Optional[int] , __A : int=2 , __A : str=True , __A : List[Any]=False , __A : List[str]=10 , __A : Union[str, Any]=3 , __A : Dict=32 * 8 , __A : str=32 * 8 , __A : int=4 , __A : List[str]=64 , ) ->Tuple: """simple docstring""" a__ :Optional[Any] = parent a__ :Dict = batch_size a__ :str = is_training a__ :Optional[int] = use_auxiliary_loss a__ :str = num_queries a__ :int = num_channels a__ :Optional[int] = min_size a__ :Optional[Any] = max_size a__ :Dict = num_labels a__ :Union[str, Any] = hidden_dim a__ :Any = hidden_dim def _snake_case ( self : Tuple ) ->List[str]: """simple docstring""" a__ :Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __A ) a__ :Optional[int] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__A ) a__ :Optional[int] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__A ) > 0.5 ).float() a__ :List[str] = (torch.rand((self.batch_size, self.num_labels) , device=__A ) > 0.5).long() a__ :Tuple = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _snake_case ( self : Tuple ) ->Union[str, Any]: """simple docstring""" a__ :List[str] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) a__ :List[str] = self.num_queries a__ :Optional[int] = self.num_labels a__ :Tuple = [1, 1, 1, 1] a__ :Dict = self.num_channels a__ :Optional[Any] = 64 a__ :Union[str, Any] = 128 a__ :Optional[Any] = self.hidden_dim a__ :int = self.hidden_dim a__ :List[str] = self.hidden_dim return config def _snake_case ( self : Any ) ->Dict: """simple docstring""" a__ , a__ , a__ , a__ , a__ :int = self.prepare_config_and_inputs() a__ :Optional[int] = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def _snake_case ( self : int , __A : Union[str, Any] , __A : Tuple ) ->List[Any]: """simple docstring""" a__ :Tuple = output.encoder_hidden_states a__ :List[Any] = output.pixel_decoder_hidden_states a__ :Optional[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__A ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__A ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__A ) , config.decoder_layers ) def _snake_case ( self : Dict , __A : List[str] , __A : Tuple , __A : Union[str, Any] , __A : Dict=False ) ->Any: """simple docstring""" with torch.no_grad(): a__ :Dict = MaskaFormerModel(config=__A ) model.to(__A ) model.eval() a__ :Tuple = model(pixel_values=__A , pixel_mask=__A ) a__ :Dict = model(__A , output_hidden_states=__A ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__A , __A ) def _snake_case ( self : Optional[int] , __A : int , __A : str , __A : Tuple , __A : List[Any] , __A : List[str] ) ->Any: """simple docstring""" a__ :Dict = MaskaFormerForUniversalSegmentation(config=__A ) model.to(__A ) model.eval() def comm_check_on_output(__A : Tuple ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): a__ :Union[str, Any] = model(pixel_values=__A , pixel_mask=__A ) a__ :List[Any] = model(__A ) comm_check_on_output(__A ) a__ :str = model( pixel_values=__A , pixel_mask=__A , mask_labels=__A , class_labels=__A ) comm_check_on_output(__A ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase_ ( _a ,_a ,unittest.TestCase): lowerCamelCase_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowerCamelCase_ = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False def _snake_case ( self : Tuple ) ->Dict: """simple docstring""" a__ :List[str] = MaskaFormerModelTester(self ) a__ :List[str] = ConfigTester(self , config_class=__A , has_text_modality=__A ) def _snake_case ( self : Tuple ) ->str: """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self : str ) ->Tuple: """simple docstring""" a__ , a__ :str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__A , **__A , output_hidden_states=__A ) def _snake_case ( self : Union[str, Any] ) ->int: """simple docstring""" a__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__A ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def _snake_case ( self : List[str] ) ->Optional[Any]: """simple docstring""" pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def _snake_case ( self : int ) ->Dict: """simple docstring""" pass @unittest.skip(reason="Mask2Former is not a generative model" ) def _snake_case ( self : Any ) ->List[str]: """simple docstring""" pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _snake_case ( self : str ) ->str: """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : Optional[int] ) ->Any: """simple docstring""" pass def _snake_case ( self : Any ) ->Union[str, Any]: """simple docstring""" a__ , a__ :Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ :Any = model_class(__A ) a__ :Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ :Optional[Any] = [*signature.parameters.keys()] a__ :str = ["pixel_values"] self.assertListEqual(arg_names[:1] , __A ) @slow def _snake_case ( self : Dict ) ->str: """simple docstring""" for model_name in ["facebook/mask2former-swin-small-coco-instance"]: a__ :Any = MaskaFormerModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def _snake_case ( self : List[str] ) ->List[Any]: """simple docstring""" a__ :Tuple = (self.model_tester.min_size,) * 2 a__ :Optional[int] = { "pixel_values": torch.randn((2, 3, *size) , device=__A ), "mask_labels": torch.randn((2, 10, *size) , device=__A ), "class_labels": torch.zeros(2 , 10 , device=__A ).long(), } a__ :Dict = self.model_tester.get_config() a__ :str = MaskaFormerForUniversalSegmentation(__A ).to(__A ) a__ :int = model(**__A ) self.assertTrue(outputs.loss is not None ) def _snake_case ( self : List[str] ) ->Any: """simple docstring""" a__ , a__ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__A , **__A , output_hidden_states=__A ) def _snake_case ( self : Tuple ) ->Tuple: """simple docstring""" a__ , a__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ :Union[str, Any] = model_class(__A ).to(__A ) a__ :int = model(**__A , output_attentions=__A ) self.assertTrue(outputs.attentions is not None ) def _snake_case ( self : Any ) ->Any: """simple docstring""" if not self.model_tester.is_training: return a__ :str = self.all_model_classes[1] a__ , a__ , a__ , a__ , a__ :Any = self.model_tester.prepare_config_and_inputs() a__ :Optional[Any] = model_class(__A ) model.to(__A ) model.train() a__ :Any = model(__A , mask_labels=__A , class_labels=__A ).loss loss.backward() def _snake_case ( self : Tuple ) ->Optional[Any]: """simple docstring""" a__ :List[str] = self.all_model_classes[1] a__ , a__ , a__ , a__ , a__ :int = self.model_tester.prepare_config_and_inputs() a__ :Optional[Any] = True a__ :Optional[int] = True a__ :List[Any] = model_class(__A ).to(__A ) model.train() a__ :Optional[Any] = model(__A , mask_labels=__A , class_labels=__A ) a__ :int = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() a__ :List[str] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() a__ :List[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() a__ :Optional[int] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__A ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) snake_case__ = 1e-4 def lowerCamelCase__ ( ) -> Optional[int]: """simple docstring""" a__ :Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class lowerCAmelCase_ ( unittest.TestCase): @cached_property def _snake_case ( self : int ) ->Optional[int]: """simple docstring""" return "facebook/mask2former-swin-small-coco-instance" @cached_property def _snake_case ( self : int ) ->Dict: """simple docstring""" return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _snake_case ( self : str ) ->int: """simple docstring""" a__ :Tuple = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__A ) a__ :List[Any] = self.default_image_processor a__ :str = prepare_img() a__ :Union[str, Any] = image_processor(__A , return_tensors="pt" ).to(__A ) a__ :Union[str, Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__A , (1, 3, 384, 384) ) with torch.no_grad(): a__ :Optional[int] = model(**__A ) a__ :str = torch.tensor( [[-0.2_790, -1.0_717, -1.1_668], [-0.5_128, -0.3_128, -0.4_987], [-0.5_832, 0.1_971, -0.0_197]] ).to(__A ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __A , atol=__A ) ) a__ :Dict = torch.tensor( [[0.8_973, 1.1_847, 1.1_776], [1.1_934, 1.5_040, 1.5_128], [1.1_153, 1.4_486, 1.4_951]] ).to(__A ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __A , atol=__A ) ) a__ :Union[str, Any] = torch.tensor( [[2.1_152, 1.7_000, -0.8_603], [1.5_808, 1.8_004, -0.9_353], [1.6_043, 1.7_495, -0.5_999]] ).to(__A ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __A , atol=__A ) ) def _snake_case ( self : Any ) ->Dict: """simple docstring""" a__ :Dict = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__A ).eval() a__ :Tuple = self.default_image_processor a__ :Any = prepare_img() a__ :str = image_processor(__A , return_tensors="pt" ).to(__A ) a__ :Any = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__A , (1, 3, 384, 384) ) with torch.no_grad(): a__ :int = model(**__A ) # masks_queries_logits a__ :Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) a__ :Dict = [ [-8.7_839, -9.0_056, -8.8_121], [-7.4_104, -7.0_313, -6.5_401], [-6.6_105, -6.3_427, -6.4_675], ] a__ :Any = torch.tensor(__A ).to(__A ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __A , atol=__A ) ) # class_queries_logits a__ :Tuple = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) a__ :Optional[int] = torch.tensor( [ [1.8_324, -8.0_835, -4.1_922], [0.8_450, -9.0_050, -3.6_053], [0.3_045, -7.7_293, -3.0_275], ] ).to(__A ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __A , atol=__A ) ) def _snake_case ( self : List[str] ) ->List[Any]: """simple docstring""" a__ :List[str] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__A ).eval() a__ :Tuple = self.default_image_processor a__ :str = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) a__ :Tuple = inputs["pixel_values"].to(__A ) a__ :List[Any] = [el.to(__A ) for el in inputs["mask_labels"]] a__ :List[str] = [el.to(__A ) for el in inputs["class_labels"]] with torch.no_grad(): a__ :List[str] = model(**__A ) self.assertTrue(outputs.loss is not None )
395
0
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder UpperCamelCase = '''base_with_context''' def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) ,requires_grad=snake_case__ ) for lyr_num, lyr in enumerate(model.encoders ): _SCREAMING_SNAKE_CASE = weights[F'layers_{lyr_num}'] _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = ly_weight["""attention"""] _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) ,requires_grad=snake_case__ ) for lyr_num, lyr in enumerate(model.encoders ): _SCREAMING_SNAKE_CASE = weights[F'layers_{lyr_num}'] _SCREAMING_SNAKE_CASE = ly_weight["""attention"""] _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) ,requires_grad=snake_case__ ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _SCREAMING_SNAKE_CASE = weights[F'layers_{lyr_num}'] _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = ly_weight["""self_attention"""] _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = ly_weight["""MultiHeadDotProductAttention_0"""] _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _SCREAMING_SNAKE_CASE = jnp.tree_util.tree_map(onp.array ,snake_case__ ) _SCREAMING_SNAKE_CASE = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] _SCREAMING_SNAKE_CASE = os.path.join(args.checkpoint_path ,"""..""" ,"""config.gin""" ) _SCREAMING_SNAKE_CASE = inference.parse_training_gin_file(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = inference.InferenceModel(args.checkpoint_path ,snake_case__ ) _SCREAMING_SNAKE_CASE = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ,variance_type="""fixed_large""" ) _SCREAMING_SNAKE_CASE = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] ,vocab_size=synth_model.model.module.config.vocab_size ,d_model=synth_model.model.module.config.emb_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,num_layers=synth_model.model.module.config.num_encoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,feed_forward_proj="""gated-gelu""" ,) _SCREAMING_SNAKE_CASE = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims ,targets_context_length=synth_model.sequence_length["""targets_context"""] ,d_model=synth_model.model.module.config.emb_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,num_layers=synth_model.model.module.config.num_encoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,feed_forward_proj="""gated-gelu""" ,) _SCREAMING_SNAKE_CASE = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims ,targets_length=synth_model.sequence_length["""targets_context"""] ,max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time ,d_model=synth_model.model.module.config.emb_dim ,num_layers=synth_model.model.module.config.num_decoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,) _SCREAMING_SNAKE_CASE = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] ,snake_case__ ) _SCREAMING_SNAKE_CASE = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] ,snake_case__ ) _SCREAMING_SNAKE_CASE = load_decoder(ta_checkpoint["""target"""]["""decoder"""] ,snake_case__ ) _SCREAMING_SNAKE_CASE = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) _SCREAMING_SNAKE_CASE = SpectrogramDiffusionPipeline( notes_encoder=snake_case__ ,continuous_encoder=snake_case__ ,decoder=snake_case__ ,scheduler=snake_case__ ,melgan=snake_case__ ,) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=f"{MODEL}/checkpoint_500000", type=str, required=False, help='''Path to the original jax model checkpoint.''', ) UpperCamelCase = parser.parse_args() main(args)
569
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
569
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Dict = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys a : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
640
from __future__ import annotations def lowerCAmelCase_ (lowerCAmelCase__: int | str ): """simple docstring""" UpperCAmelCase_: Optional[int] = str(lowerCAmelCase__ ) return n == n[::-1] def lowerCAmelCase_ (lowerCAmelCase__: int = 1_0_0_0_0_0_0 ): """simple docstring""" UpperCAmelCase_: int = 0 for i in range(1 , lowerCAmelCase__ ): if is_palindrome(lowerCAmelCase__ ) and is_palindrome(bin(lowerCAmelCase__ ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
556
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
80
class lowerCamelCase__: # Public class to implement a graph def __init__( self: Dict , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: list[list[bool]] ): __lowerCamelCase = row __lowerCamelCase = col __lowerCamelCase = graph def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: list[list[bool]] ): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: list[list[bool]] ): # Checking all 8 elements surrounding nth element __lowerCamelCase = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __lowerCamelCase = [-1, 0, 1, -1, 1, -1, 0, 1] __lowerCamelCase = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): # And finally, count all islands. __lowerCamelCase = [[False for j in range(self.COL )] for i in range(self.ROW )] __lowerCamelCase = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) count += 1 return count
80
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
209
'''simple docstring''' import numpy as np import qiskit def lowerCamelCase ( UpperCAmelCase__ : int = 8 , UpperCAmelCase__ : int | None = None ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = np.random.default_rng(seed=UpperCAmelCase__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. SCREAMING_SNAKE_CASE__ :Optional[int] = 6 * key_len # Measurement basis for Alice's qubits. SCREAMING_SNAKE_CASE__ :Union[str, Any] = rng.integers(2 , size=UpperCAmelCase__ ) # The set of states Alice will prepare. SCREAMING_SNAKE_CASE__ :List[Any] = rng.integers(2 , size=UpperCAmelCase__ ) # Measurement basis for Bob's qubits. SCREAMING_SNAKE_CASE__ :str = rng.integers(2 , size=UpperCAmelCase__ ) # Quantum Circuit to simulate BB84 SCREAMING_SNAKE_CASE__ :int = qiskit.QuantumCircuit(UpperCAmelCase__ , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(UpperCAmelCase__ ): if alice_state[index] == 1: bbaa_circ.x(UpperCAmelCase__ ) if alice_basis[index] == 1: bbaa_circ.h(UpperCAmelCase__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(UpperCAmelCase__ ): if bob_basis[index] == 1: bbaa_circ.h(UpperCAmelCase__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. SCREAMING_SNAKE_CASE__ :str = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. SCREAMING_SNAKE_CASE__ :int = qiskit.execute(UpperCAmelCase__ , UpperCAmelCase__ , shots=1 , seed_simulator=UpperCAmelCase__ ) # Returns the result of measurement. SCREAMING_SNAKE_CASE__ :List[Any] = job.result().get_counts(UpperCAmelCase__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. SCREAMING_SNAKE_CASE__ :Any = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. SCREAMING_SNAKE_CASE__ :Optional[Any] = gen_key[:key_len] if len(UpperCAmelCase__ ) >= key_len else gen_key.ljust(UpperCAmelCase__ , '0' ) return key if __name__ == "__main__": print(f"The generated key is : {bbaa(8, seed=0)}") from doctest import testmod testmod()
209
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A( snake_case__ ): """simple docstring""" UpperCamelCase : int = ['''image_processor''', '''tokenizer'''] UpperCamelCase : Union[str, Any] = '''ChineseCLIPImageProcessor''' UpperCamelCase : List[Any] = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _A=None , _A=None , **_A ): __A : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _A , ) __A : Optional[Any] = kwargs.pop('feature_extractor' ) __A : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_A , _A ) __A : Dict = self.image_processor def __call__( self , _A=None , _A=None , _A=None , **_A ): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: __A : Dict = self.tokenizer(_A , return_tensors=_A , **_A ) if images is not None: __A : Optional[Any] = self.image_processor(_A , return_tensors=_A , **_A ) if text is not None and images is not None: __A : int = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_A ) , tensor_type=_A ) def UpperCAmelCase_ ( self , *_A , **_A ): return self.tokenizer.batch_decode(*_A , **_A ) def UpperCAmelCase_ ( self , *_A , **_A ): return self.tokenizer.decode(*_A , **_A ) @property def UpperCAmelCase_ ( self ): __A : Union[str, Any] = self.tokenizer.model_input_names __A : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase_ ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _A , ) return self.image_processor_class
77
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A: """simple docstring""" def __init__( self , _A , _A=13 , _A=7 , _A=True , _A=True , _A=False , _A=True , _A=99 , _A=32 , _A=5 , _A=4 , _A=37 , _A="gelu" , _A=0.1 , _A=0.1 , _A=512 , _A=16 , _A=2 , _A=0.0_2 , _A=3 , _A=4 , _A=None , ): __A : Union[str, Any] = parent __A : List[str] = batch_size __A : Optional[int] = seq_length __A : List[Any] = is_training __A : Optional[Any] = use_input_mask __A : List[Any] = use_token_type_ids __A : Optional[Any] = use_labels __A : List[str] = vocab_size __A : Optional[int] = hidden_size __A : List[Any] = num_hidden_layers __A : int = num_attention_heads __A : Dict = intermediate_size __A : Any = hidden_act __A : Union[str, Any] = hidden_dropout_prob __A : Union[str, Any] = attention_probs_dropout_prob __A : Optional[int] = max_position_embeddings __A : Dict = type_vocab_size __A : Any = type_sequence_label_size __A : Dict = initializer_range __A : str = num_labels __A : Union[str, Any] = num_choices __A : str = scope def UpperCAmelCase_ ( self ): __A : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : Optional[Any] = None if self.use_input_mask: __A : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __A : Dict = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __A : Dict = None __A : List[Any] = None __A : List[Any] = None if self.use_labels: __A : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __A : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A , _A ): __A : List[str] = LlamaModel(config=_A ) model.to(_A ) model.eval() __A : Any = model(_A , attention_mask=_A ) __A : Any = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): __A : Dict = True __A : int = LlamaModel(_A ) model.to(_A ) model.eval() __A : str = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , ) __A : int = model( _A , attention_mask=_A , encoder_hidden_states=_A , ) __A : List[Any] = model(_A , attention_mask=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): __A : Optional[Any] = LlamaForCausalLM(config=_A ) model.to(_A ) model.eval() __A : List[Any] = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): __A : int = True __A : List[Any] = True __A : List[Any] = LlamaForCausalLM(config=_A ) model.to(_A ) model.eval() # first forward pass __A : Optional[Any] = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , use_cache=_A , ) __A : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __A : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) __A : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __A : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) __A : str = torch.cat([input_mask, next_mask] , dim=-1 ) __A : Tuple = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , output_hidden_states=_A , )['hidden_states'][0] __A : Union[str, Any] = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , past_key_values=_A , output_hidden_states=_A , )['hidden_states'][0] # select random slice __A : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __A : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __A : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A , _A , atol=1e-3 ) ) def UpperCAmelCase_ ( self ): __A : Tuple = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) : Tuple = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _A( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Optional[Any] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () UpperCamelCase : Optional[Any] = (LlamaForCausalLM,) if is_torch_available() else () UpperCamelCase : Optional[Any] = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase : int = False UpperCamelCase : Dict = False def UpperCAmelCase_ ( self ): __A : List[Any] = LlamaModelTester(self ) __A : Optional[int] = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCAmelCase_ ( self ): self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ): __A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A : int = type self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self ): __A , __A : int = self.model_tester.prepare_config_and_inputs_for_common() __A : str = 3 __A : Optional[int] = input_dict['input_ids'] __A : int = input_ids.ne(1 ).to(_A ) __A : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __A : Optional[Any] = LlamaForSequenceClassification(_A ) model.to(_A ) model.eval() __A : List[Any] = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ ( self ): __A , __A : str = self.model_tester.prepare_config_and_inputs_for_common() __A : Union[str, Any] = 3 __A : Tuple = 'single_label_classification' __A : Union[str, Any] = input_dict['input_ids'] __A : List[str] = input_ids.ne(1 ).to(_A ) __A : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __A : Optional[int] = LlamaForSequenceClassification(_A ) model.to(_A ) model.eval() __A : Tuple = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ ( self ): __A , __A : str = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = 3 __A : int = 'multi_label_classification' __A : int = input_dict['input_ids'] __A : List[str] = input_ids.ne(1 ).to(_A ) __A : List[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __A : List[Any] = LlamaForSequenceClassification(_A ) model.to(_A ) model.eval() __A : Tuple = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def UpperCAmelCase_ ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCAmelCase_ ( self , _A ): __A , __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : Dict = ids_tensor([1, 10] , config.vocab_size ) __A : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __A : List[Any] = LlamaModel(_A ) original_model.to(_A ) original_model.eval() __A : Dict = original_model(_A ).last_hidden_state __A : int = original_model(_A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __A : int = {'type': scaling_type, 'factor': 1_0.0} __A : str = LlamaModel(_A ) scaled_model.to(_A ) scaled_model.eval() __A : Dict = scaled_model(_A ).last_hidden_state __A : str = scaled_model(_A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_A , _A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_A , _A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_A , _A , atol=1e-5 ) ) @require_torch class _A( unittest.TestCase ): """simple docstring""" @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def UpperCAmelCase_ ( self ): __A : Tuple = [1, 306, 4658, 278, 6593, 310, 2834, 338] __A : Tuple = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) __A : Union[str, Any] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __A : Optional[int] = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , _A , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __A : str = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _A , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def UpperCAmelCase_ ( self ): __A : int = [1, 306, 4658, 278, 6593, 310, 2834, 338] __A : List[str] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) __A : int = model(torch.tensor(_A ) ) # Expected mean on dim = -1 __A : List[str] = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , _A , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __A : List[str] = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _A , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def UpperCAmelCase_ ( self ): __A : str = [1, 306, 4658, 278, 6593, 310, 2834, 338] __A : Tuple = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) __A : Optional[int] = model(torch.tensor(_A ) ) # Expected mean on dim = -1 __A : List[str] = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , _A , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __A : Optional[Any] = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , _A , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def UpperCAmelCase_ ( self ): __A : str = [1, 306, 4658, 278, 6593, 310, 2834, 338] __A : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) __A : List[Any] = model(torch.tensor(_A ) ) __A : Tuple = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , _A , atol=1e-2 , rtol=1e-2 ) # fmt: off __A : Optional[int] = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _A , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def UpperCAmelCase_ ( self ): __A : Tuple = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' __A : List[str] = 'Simply put, the theory of relativity states that ' __A : Union[str, Any] = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) __A : List[str] = tokenizer.encode(_A , return_tensors='pt' ) __A : Tuple = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=_A ) # greedy generation outputs __A : Union[str, Any] = model.generate(_A , max_new_tokens=64 , top_p=_A , temperature=1 , do_sample=_A ) __A : List[str] = tokenizer.decode(generated_ids[0] , skip_special_tokens=_A ) self.assertEqual(_A , _A )
77
1
from __future__ import annotations from collections.abc import Sequence from typing import Literal def a ( snake_case__: str , snake_case__: str ): '''simple docstring''' lowercase_ = list(snake_case__ ) lowercase_ = list(snake_case__ ) lowercase_ = 0 for i in range(len(snake_case__ ) ): if lista[i] != lista[i]: count += 1 lowercase_ = '''_''' if count > 1: return False else: return "".join(snake_case__ ) def a ( snake_case__: list[str] ): '''simple docstring''' lowercase_ = [] while True: lowercase_ = ['''$'''] * len(snake_case__ ) lowercase_ = [] for i in range(len(snake_case__ ) ): for j in range(i + 1 , len(snake_case__ ) ): lowercase_ = compare_string(binary[i] , binary[j] ) if k is False: lowercase_ = '''*''' lowercase_ = '''*''' temp.append('''X''' ) for i in range(len(snake_case__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case__ ) == 0: return pi lowercase_ = list(set(snake_case__ ) ) def a ( snake_case__: int , snake_case__: Sequence[float] ): '''simple docstring''' lowercase_ = [] for minterm in minterms: lowercase_ = '''''' for _ in range(snake_case__ ): lowercase_ = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case__ ) return temp def a ( snake_case__: str , snake_case__: str , snake_case__: int ): '''simple docstring''' lowercase_ = list(snake_case__ ) lowercase_ = list(snake_case__ ) lowercase_ = 0 for i in range(len(snake_case__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def a ( snake_case__: list[list[int]] , snake_case__: list[str] ): '''simple docstring''' lowercase_ = [] lowercase_ = [0] * len(snake_case__ ) for i in range(len(chart[0] ) ): lowercase_ = 0 lowercase_ = -1 for j in range(len(snake_case__ ) ): if chart[j][i] == 1: count += 1 lowercase_ = j if count == 1: lowercase_ = 1 for i in range(len(snake_case__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case__ ) ): lowercase_ = 0 temp.append(prime_implicants[i] ) while True: lowercase_ = 0 lowercase_ = -1 lowercase_ = 0 for i in range(len(snake_case__ ) ): lowercase_ = chart[i].count(1 ) if count_n > max_n: lowercase_ = count_n lowercase_ = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case__ ) ): lowercase_ = 0 def a ( snake_case__: list[str] , snake_case__: list[str] ): '''simple docstring''' lowercase_ = [[0 for x in range(len(snake_case__ ) )] for x in range(len(snake_case__ ) )] for i in range(len(snake_case__ ) ): lowercase_ = prime_implicants[i].count('''_''' ) for j in range(len(snake_case__ ) ): if is_for_table(prime_implicants[i] , binary[j] , snake_case__ ): lowercase_ = 1 return chart def a ( ): '''simple docstring''' lowercase_ = int(input('''Enter the no. of variables\n''' ) ) lowercase_ = [ float(snake_case__ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] lowercase_ = decimal_to_binary(snake_case__ , snake_case__ ) lowercase_ = check(snake_case__ ) print('''Prime Implicants are:''' ) print(snake_case__ ) lowercase_ = prime_implicant_chart(snake_case__ , snake_case__ ) lowercase_ = selection(snake_case__ , snake_case__ ) print('''Essential Prime Implicants are:''' ) print(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
97
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ : List[str] = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Tuple = [ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys UpperCamelCase_ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
115
0
'''simple docstring''' from math import factorial __snake_case :List[Any] = {str(d): factorial(d) for d in range(10)} def __snake_case ( _UpperCAmelCase ): return sum(DIGIT_FACTORIAL[d] for d in str(_UpperCAmelCase ) ) def __snake_case ( ): __a = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , _UpperCAmelCase ) if sum_of_digit_factorial(_UpperCAmelCase ) == i ) if __name__ == "__main__": print(f'{solution() = }')
715
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path __snake_case :Union[str, Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) __snake_case :str = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} __snake_case :List[Any] = '''zero2''' __snake_case :Optional[Any] = '''zero3''' __snake_case :str = [ZEROa, ZEROa] def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __a = parameterized.to_safe_name('''_'''.join(str(_UpperCAmelCase ) for x in param.args ) ) return f'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test __snake_case :List[Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class _A ( __UpperCAmelCase ): @parameterized.expand(__SCREAMING_SNAKE_CASE , name_func=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' self.run_and_check( stage=__SCREAMING_SNAKE_CASE , model=__SCREAMING_SNAKE_CASE , distributed=__SCREAMING_SNAKE_CASE , fpaa=__SCREAMING_SNAKE_CASE , ) @require_torch_multi_gpu @parameterized.expand(__SCREAMING_SNAKE_CASE , name_func=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' self.run_and_check( stage=__SCREAMING_SNAKE_CASE , model=__SCREAMING_SNAKE_CASE , distributed=__SCREAMING_SNAKE_CASE , fpaa=__SCREAMING_SNAKE_CASE , ) @parameterized.expand(__SCREAMING_SNAKE_CASE , name_func=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' self.run_and_check( stage=__SCREAMING_SNAKE_CASE , model=__SCREAMING_SNAKE_CASE , distributed=__SCREAMING_SNAKE_CASE , fpaa=__SCREAMING_SNAKE_CASE , ) @require_torch_multi_gpu @parameterized.expand(__SCREAMING_SNAKE_CASE , name_func=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' self.run_and_check( stage=__SCREAMING_SNAKE_CASE , model=__SCREAMING_SNAKE_CASE , distributed=__SCREAMING_SNAKE_CASE , fpaa=__SCREAMING_SNAKE_CASE , ) def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' pass def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int = 10 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : bool = True , ): '''simple docstring''' __a = models[model] __a = self.run_trainer( stage=__SCREAMING_SNAKE_CASE , model_name=__SCREAMING_SNAKE_CASE , eval_steps=__SCREAMING_SNAKE_CASE , num_train_epochs=1 , distributed=__SCREAMING_SNAKE_CASE , fpaa=__SCREAMING_SNAKE_CASE , ) self.do_checks(__SCREAMING_SNAKE_CASE) return output_dir def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int = 10 , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : bool = True , ): '''simple docstring''' __a = self.get_auto_remove_tmp_dir('''./xxx''' , after=__SCREAMING_SNAKE_CASE) __a = F'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(__SCREAMING_SNAKE_CASE)}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(['''--fp16''']) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __a = F'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() __a = [F'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] __a = self.get_launcher(__SCREAMING_SNAKE_CASE) __a = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__SCREAMING_SNAKE_CASE , env=self.get_env()) return output_dir def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[Any]=False): '''simple docstring''' __a = min(2 , get_gpu_count()) if distributed else 1 return F'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
60
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__ (metaclass=a ): '''simple docstring''' _UpperCamelCase = ['torch', 'transformers', 'onnx'] def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(self ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) class UpperCamelCase__ (metaclass=a ): '''simple docstring''' _UpperCamelCase = ['torch', 'transformers', 'onnx'] def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(self ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) class UpperCamelCase__ (metaclass=a ): '''simple docstring''' _UpperCamelCase = ['torch', 'transformers', 'onnx'] def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(self ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) class UpperCamelCase__ (metaclass=a ): '''simple docstring''' _UpperCamelCase = ['torch', 'transformers', 'onnx'] def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(self ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) class UpperCamelCase__ (metaclass=a ): '''simple docstring''' _UpperCamelCase = ['torch', 'transformers', 'onnx'] def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(self ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) class UpperCamelCase__ (metaclass=a ): '''simple docstring''' _UpperCamelCase = ['torch', 'transformers', 'onnx'] def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(self ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] ) @classmethod def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ): requires_backends(cls ,["""torch""", """transformers""", """onnx"""] )
50
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _lowercase ( __snake_case ) -> Dict: __lowerCAmelCase : Optional[int] = torch.exp(__snake_case ) __lowerCAmelCase : int = torch.sum(__snake_case ,dim=1 ) # sum of exp(x_i) __lowerCAmelCase : Optional[Any] = torch.sum(x * exp_x ,dim=1 ) # sum of x_i * exp(x_i) return torch.log(__snake_case ) - B / A class A__ ( nn.Module ): '''simple docstring''' def __init__( self: Any , _SCREAMING_SNAKE_CASE: List[Any]) -> List[str]: """simple docstring""" super().__init__() __lowerCAmelCase : Any = config.output_attentions __lowerCAmelCase : Optional[Any] = config.output_hidden_states __lowerCAmelCase : Tuple = nn.ModuleList([BertLayer(_SCREAMING_SNAKE_CASE) for _ in range(config.num_hidden_layers)]) __lowerCAmelCase : int = nn.ModuleList([BertHighway(_SCREAMING_SNAKE_CASE) for _ in range(config.num_hidden_layers)]) __lowerCAmelCase : List[str] = [-1 for _ in range(config.num_hidden_layers)] def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: List[str]) -> Optional[int]: """simple docstring""" if (type(_SCREAMING_SNAKE_CASE) is float) or (type(_SCREAMING_SNAKE_CASE) is int): for i in range(len(self.early_exit_entropy)): __lowerCAmelCase : List[Any] = x else: __lowerCAmelCase : str = x def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Tuple) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name]) def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Tuple=None , _SCREAMING_SNAKE_CASE: List[str]=None , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: Tuple=None , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Tuple = () __lowerCAmelCase : Tuple = () __lowerCAmelCase : Optional[Any] = () for i, layer_module in enumerate(self.layer): if self.output_hidden_states: __lowerCAmelCase : Tuple = all_hidden_states + (hidden_states,) __lowerCAmelCase : Any = layer_module( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , head_mask[i] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = layer_outputs[0] if self.output_attentions: __lowerCAmelCase : List[Any] = all_attentions + (layer_outputs[1],) __lowerCAmelCase : Optional[int] = (hidden_states,) if self.output_hidden_states: __lowerCAmelCase : Tuple = current_outputs + (all_hidden_states,) if self.output_attentions: __lowerCAmelCase : List[str] = current_outputs + (all_attentions,) __lowerCAmelCase : List[str] = self.highway[i](_SCREAMING_SNAKE_CASE) # logits, pooled_output if not self.training: __lowerCAmelCase : Union[str, Any] = highway_exit[0] __lowerCAmelCase : Dict = entropy(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __lowerCAmelCase : Dict = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __lowerCAmelCase : Any = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(_SCREAMING_SNAKE_CASE , i + 1) else: __lowerCAmelCase : Optional[Any] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __lowerCAmelCase : Union[str, Any] = all_hidden_states + (hidden_states,) __lowerCAmelCase : str = (hidden_states,) if self.output_hidden_states: __lowerCAmelCase : Union[str, Any] = outputs + (all_hidden_states,) if self.output_attentions: __lowerCAmelCase : Optional[int] = outputs + (all_attentions,) __lowerCAmelCase : List[str] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( 'The Bert Model transformer with early exiting (DeeBERT). ' , __SCREAMING_SNAKE_CASE , ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Dict , _SCREAMING_SNAKE_CASE: Tuple) -> Union[str, Any]: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = config __lowerCAmelCase : str = BertEmbeddings(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = DeeBertEncoder(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = BertPooler(_SCREAMING_SNAKE_CASE) self.init_weights() def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Any: """simple docstring""" self.encoder.init_highway_pooler(self.pooler) def _SCREAMING_SNAKE_CASE ( self: str) -> str: """simple docstring""" return self.embeddings.word_embeddings def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]) -> List[str]: """simple docstring""" __lowerCAmelCase : Dict = value def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Tuple) -> Optional[int]: """simple docstring""" for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(_SCREAMING_SNAKE_CASE) @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: Any=None , _SCREAMING_SNAKE_CASE: int=None , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: List[Any]=None , ) -> Dict: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: __lowerCAmelCase : Tuple = input_ids.size() elif inputs_embeds is not None: __lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") __lowerCAmelCase : Any = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __lowerCAmelCase : Union[str, Any] = torch.ones(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE) if encoder_attention_mask is None: __lowerCAmelCase : Tuple = torch.ones(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE) if token_type_ids is None: __lowerCAmelCase : Union[str, Any] = torch.zeros(_SCREAMING_SNAKE_CASE , dtype=torch.long , device=_SCREAMING_SNAKE_CASE) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __lowerCAmelCase : Union[str, Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __lowerCAmelCase : Optional[Any] = encoder_attention_mask[:, None, None, :] __lowerCAmelCase : List[str] = encoder_extended_attention_mask.to( dtype=next(self.parameters()).dtype) # fp16 compatibility __lowerCAmelCase : Union[str, Any] = (1.0 - encoder_extended_attention_mask) * -1_0000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __lowerCAmelCase : Union[str, Any] = self.get_head_mask(_SCREAMING_SNAKE_CASE , self.config.num_hidden_layers) __lowerCAmelCase : Union[str, Any] = self.embeddings( input_ids=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , inputs_embeds=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = self.encoder( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[str] = encoder_outputs[0] __lowerCAmelCase : Union[str, Any] = self.pooler(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Dict) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = message __lowerCAmelCase : Union[str, Any] = exit_layer # start from 1! class A__ ( nn.Module ): '''simple docstring''' def __init__( self: Dict , _SCREAMING_SNAKE_CASE: Dict) -> str: """simple docstring""" super().__init__() __lowerCAmelCase : Optional[int] = BertPooler(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = nn.Dropout(config.hidden_dropout_prob) __lowerCAmelCase : Optional[Any] = nn.Linear(config.hidden_size , config.num_labels) def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: str) -> List[str]: """simple docstring""" __lowerCAmelCase : Dict = encoder_outputs[0] __lowerCAmelCase : Union[str, Any] = self.pooler(_SCREAMING_SNAKE_CASE) # "return" pooler_output # BertModel __lowerCAmelCase : str = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __lowerCAmelCase : Tuple = bmodel_output[1] __lowerCAmelCase : int = self.dropout(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = self.classifier(_SCREAMING_SNAKE_CASE) return logits, pooled_output @add_start_docstrings( 'Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. ' , __SCREAMING_SNAKE_CASE , ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> Dict: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = config.num_labels __lowerCAmelCase : Tuple = config.num_hidden_layers __lowerCAmelCase : Optional[Any] = DeeBertModel(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = nn.Dropout(config.hidden_dropout_prob) __lowerCAmelCase : Dict = nn.Linear(config.hidden_size , self.config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: List[str]=None , _SCREAMING_SNAKE_CASE: Any=None , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: Optional[Any]=-1 , _SCREAMING_SNAKE_CASE: str=False , ) -> List[Any]: """simple docstring""" __lowerCAmelCase : str = self.num_layers try: __lowerCAmelCase : Optional[int] = self.bert( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , inputs_embeds=_SCREAMING_SNAKE_CASE , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __lowerCAmelCase : Tuple = outputs[1] __lowerCAmelCase : Union[str, Any] = self.dropout(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = self.classifier(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __lowerCAmelCase : str = e.message __lowerCAmelCase : Optional[Any] = e.exit_layer __lowerCAmelCase : Optional[Any] = outputs[0] if not self.training: __lowerCAmelCase : int = entropy(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = [] __lowerCAmelCase : Union[str, Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression __lowerCAmelCase : Optional[int] = MSELoss() __lowerCAmelCase : List[Any] = loss_fct(logits.view(-1) , labels.view(-1)) else: __lowerCAmelCase : Optional[int] = CrossEntropyLoss() __lowerCAmelCase : Tuple = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) # work with highway exits __lowerCAmelCase : List[str] = [] for highway_exit in outputs[-1]: __lowerCAmelCase : List[Any] = highway_exit[0] if not self.training: highway_logits_all.append(_SCREAMING_SNAKE_CASE) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression __lowerCAmelCase : Optional[int] = MSELoss() __lowerCAmelCase : str = loss_fct(highway_logits.view(-1) , labels.view(-1)) else: __lowerCAmelCase : int = CrossEntropyLoss() __lowerCAmelCase : Optional[Any] = loss_fct(highway_logits.view(-1 , self.num_labels) , labels.view(-1)) highway_losses.append(_SCREAMING_SNAKE_CASE) if train_highway: __lowerCAmelCase : List[Any] = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: __lowerCAmelCase : int = (loss,) + outputs if not self.training: __lowerCAmelCase : Any = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __lowerCAmelCase : Any = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
293
0
from math import log from scipy.constants import Boltzmann, physical_constants __lowerCamelCase : int = 300 # TEMPERATURE (unit = K) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
379
import os __lowerCamelCase : Union[str, Any] = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 while index < len(__UpperCamelCase ) - 1: SCREAMING_SNAKE_CASE__ = SYMBOLS[numerals[index]] SCREAMING_SNAKE_CASE__ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = """""" SCREAMING_SNAKE_CASE__ = num // 10_00 numerals += m_count * "M" num %= 10_00 SCREAMING_SNAKE_CASE__ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 SCREAMING_SNAKE_CASE__ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "/p089_roman.txt" ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = 0 with open(os.path.dirname(__UpperCamelCase ) + roman_numerals_filename ) as filea: SCREAMING_SNAKE_CASE__ = filea.readlines() for line in lines: SCREAMING_SNAKE_CASE__ = line.strip() SCREAMING_SNAKE_CASE__ = parse_roman_numerals(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = generate_roman_numerals(__UpperCamelCase ) savings += len(__UpperCamelCase ) - len(__UpperCamelCase ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
379
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ : str = logging.get_logger(__name__) __magic_name__ : Union[str, Any] = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase : Any = """rwkv""" __lowerCAmelCase : List[str] = {"""max_position_embeddings""": """context_length"""} def __init__( self , _A=5_0_2_7_7 , _A=1_0_2_4 , _A=4_0_9_6 , _A=3_2 , _A=None , _A=None , _A=1e-5 , _A=0 , _A=0 , _A=6 , _A=False , _A=True , **_A , ): '''simple docstring''' UpperCamelCase : Any = vocab_size UpperCamelCase : Optional[Any] = context_length UpperCamelCase : str = hidden_size UpperCamelCase : int = num_hidden_layers UpperCamelCase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCamelCase : Any = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCamelCase : Any = layer_norm_epsilon UpperCamelCase : Optional[int] = rescale_every UpperCamelCase : Optional[int] = use_cache UpperCamelCase : Union[str, Any] = bos_token_id UpperCamelCase : Any = eos_token_id super().__init__( tie_word_embeddings=_A , bos_token_id=_A , eos_token_id=_A , **_A )
102
def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
25
0
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def lowercase_ ( _lowercase , _lowercase ) -> tuple: '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
715
'''simple docstring''' import os from math import logaa def lowercase_ ( _lowercase = "base_exp.txt" ) -> int: '''simple docstring''' lowerCamelCase_ : float = 0 lowerCamelCase_ : Dict = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_lowercase ) , _lowercase ) ) ): lowerCamelCase_, lowerCamelCase_ : Dict = list(map(_lowercase , line.split(''',''' ) ) ) if x * logaa(_lowercase ) > largest: lowerCamelCase_ : List[str] = x * logaa(_lowercase ) lowerCamelCase_ : Union[str, Any] = i + 1 return result if __name__ == "__main__": print(solution())
357
0
"""simple docstring""" from math import factorial def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k" ) return factorial(_lowercase ) // (factorial(_lowercase ) * factorial(n - k )) if __name__ == "__main__": print( """The number of five-card hands possible from a standard""", F"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( """If a class of 40 students must be arranged into groups of""", F"""4 for group projects, there are {combinations(40, 4)} ways""", """to arrange them.\n""", ) print( """If 10 teams are competing in a Formula One race, there""", F"""are {combinations(10, 3)} ways that first, second and""", """third place can be awarded.""", )
163
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class a ( __lowerCAmelCase ): """simple docstring""" __lowerCAmelCase = """umt5""" __lowerCAmelCase = ["""past_key_values"""] def __init__( self , snake_case_=25_0112 , snake_case_=512 , snake_case_=64 , snake_case_=1024 , snake_case_=8 , snake_case_=None , snake_case_=6 , snake_case_=32 , snake_case_=128 , snake_case_=0.1 , snake_case_=1e-6 , snake_case_=1.0 , snake_case_="gated-gelu" , snake_case_=True , snake_case_=True , snake_case_="T5Tokenizer" , snake_case_=True , snake_case_=0 , snake_case_=1 , snake_case_=0 , **snake_case_ , ): '''simple docstring''' super().__init__( is_encoder_decoder=snake_case_ , tokenizer_class=snake_case_ , tie_word_embeddings=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , **snake_case_ , ) __UpperCAmelCase: Dict = vocab_size __UpperCAmelCase: Tuple = d_model __UpperCAmelCase: Any = d_kv __UpperCAmelCase: Any = d_ff __UpperCAmelCase: Any = num_layers __UpperCAmelCase: int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __UpperCAmelCase: List[str] = num_heads __UpperCAmelCase: Tuple = relative_attention_num_buckets __UpperCAmelCase: Union[str, Any] = relative_attention_max_distance __UpperCAmelCase: Union[str, Any] = dropout_rate __UpperCAmelCase: Tuple = layer_norm_epsilon __UpperCAmelCase: Union[str, Any] = initializer_factor __UpperCAmelCase: List[str] = feed_forward_proj __UpperCAmelCase: List[str] = use_cache __UpperCAmelCase: Optional[Any] = self.feed_forward_proj.split("""-""" ) __UpperCAmelCase: Optional[Any] = act_info[-1] __UpperCAmelCase: List[Any] = act_info[0] == """gated""" if len(snake_case_ ) > 1 and act_info[0] != "gated" or len(snake_case_ ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": __UpperCAmelCase: str = """gelu_new""" @property def lowercase_ ( self ): '''simple docstring''' return self.d_model @property def lowercase_ ( self ): '''simple docstring''' return self.num_heads @property def lowercase_ ( self ): '''simple docstring''' return self.num_layers class a ( __lowerCAmelCase ): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: __UpperCAmelCase: str = """past_encoder_sequence + sequence""" __UpperCAmelCase: Dict = {0: """batch"""} __UpperCAmelCase: int = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __UpperCAmelCase: List[str] = {0: """batch""", 1: """decoder_sequence"""} __UpperCAmelCase: Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(snake_case_ , direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def lowercase_ ( self ): '''simple docstring''' return 13 @property def lowercase_ ( self ): '''simple docstring''' return 5e-4
523
0
def UpperCAmelCase__( __UpperCAmelCase : int ): if n == 1 or not isinstance(__UpperCAmelCase , __UpperCAmelCase ): return 0 elif n == 2: return 1 else: __snake_case : List[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCAmelCase__( __UpperCAmelCase : int ): __snake_case : List[Any] = 0 __snake_case : Any = 2 while digits < n: index += 1 __snake_case : Optional[Any] = len(str(fibonacci(__UpperCAmelCase ) ) ) return index def UpperCAmelCase__( __UpperCAmelCase : int = 10_00 ): return fibonacci_digits_index(__UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
701
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): __snake_case : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_attention_heads' ) ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=640 , _UpperCAmelCase=4 , _UpperCAmelCase="silu" , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=None , ): __snake_case : List[str] = parent __snake_case : Tuple = batch_size __snake_case : str = image_size __snake_case : Union[str, Any] = patch_size __snake_case : Optional[int] = num_channels __snake_case : List[str] = last_hidden_size __snake_case : Optional[Any] = num_attention_heads __snake_case : Dict = hidden_act __snake_case : List[Any] = conv_kernel_size __snake_case : int = output_stride __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Any = classifier_dropout_prob __snake_case : str = use_labels __snake_case : Optional[Any] = is_training __snake_case : Dict = num_labels __snake_case : str = initializer_range __snake_case : Union[str, Any] = scope def lowercase_ ( self ): __snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None __snake_case : Dict = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = MobileViTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = self.num_labels __snake_case : Tuple = MobileViTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = self.num_labels __snake_case : int = MobileViTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self ): __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Any = config_and_inputs __snake_case : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Dict = MobileViTModelTester(self ) __snake_case : str = MobileViTConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not output attentions' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Tuple = model_class(_UpperCAmelCase ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[str] = [*signature.parameters.keys()] __snake_case : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __snake_case : Optional[Any] = outputs.hidden_states __snake_case : str = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case : Optional[Any] = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase_ ( self ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = MobileViTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def lowercase_ ( self ): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def lowercase_ ( self ): __snake_case : Tuple = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : str = prepare_img() __snake_case : Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Tuple = model(**_UpperCAmelCase ) # verify the logits __snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __snake_case : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : int = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Optional[int] = prepare_img() __snake_case : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**_UpperCAmelCase ) __snake_case : int = outputs.logits # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : str = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : Dict = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Any = prepare_img() __snake_case : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Optional[Any] = model(**_UpperCAmelCase ) __snake_case : str = outputs.logits.detach().cpu() __snake_case : Dict = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) __snake_case : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) __snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) __snake_case : List[str] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
679
0
"""simple docstring""" from __future__ import annotations __A : Optional[int] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class __lowerCAmelCase : '''simple docstring''' def __init__( self : str , UpperCamelCase__ : dict[str, list[str]] , UpperCamelCase__ : str ): A__ : int =graph # mapping node to its parent in resulting breadth first tree A__ : dict[str, str | None] ={} A__ : Tuple =source_vertex def _UpperCAmelCase ( self : int ): A__ : Optional[Any] ={self.source_vertex} A__ : Any =None A__ : Any =[self.source_vertex] # first in first out queue while queue: A__ : Tuple =queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCamelCase__ ) A__ : Optional[int] =vertex queue.append(UpperCamelCase__ ) def _UpperCAmelCase ( self : int , UpperCamelCase__ : str ): if target_vertex == self.source_vertex: return self.source_vertex A__ : List[str] =self.parent.get(UpperCamelCase__ ) if target_vertex_parent is None: A__ : Optional[Any] =( F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(UpperCamelCase__ ) return self.shortest_path(UpperCamelCase__ ) + F'''->{target_vertex}''' if __name__ == "__main__": __A : int = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
656
"""simple docstring""" def lowercase ( UpperCamelCase : int ): """simple docstring""" if num <= 0: raise ValueError("Input must be a positive integer" ) A__ : Union[str, Any] =[True] * (num + 1) A__ : Union[str, Any] =2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , UpperCamelCase ): A__ : str =False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __A : Optional[int] = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
656
1
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __lowerCAmelCase = { """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def UpperCAmelCase_ (__a : Optional[int] ): """simple docstring""" _a : int = {} state_dict.pop('pixel_mean' , __a ) state_dict.pop('pixel_std' , __a ) _a : List[str] = R'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _a : int = key.replace(__a , __a ) if re.match(__a , __a ): _a : List[str] = int(re.match(__a , __a ).group(2 ) ) if layer_nb == 0: _a : List[Any] = key.replace('layers.0' , 'proj_in' ) elif layer_nb == 1: _a : List[str] = key.replace('layers.1' , 'layers.0' ) elif layer_nb == 2: _a : Tuple = key.replace('layers.2' , 'proj_out' ) _a : List[str] = value _a : List[str] = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def UpperCAmelCase_ (__a : Union[str, Any] , __a : List[str] , __a : Optional[Any] , __a : Union[str, Any]="ybelkada/segment-anything" ): """simple docstring""" _a : int = hf_hub_download(__a , f"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: _a : Any = SamConfig() elif "sam_vit_l" in model_name: _a : Optional[int] = SamVisionConfig( hidden_size=1_0_2_4 , num_hidden_layers=2_4 , num_attention_heads=1_6 , global_attn_indexes=[5, 1_1, 1_7, 2_3] , ) _a : Optional[int] = SamConfig( vision_config=__a , ) elif "sam_vit_h" in model_name: _a : Optional[Any] = SamVisionConfig( hidden_size=1_2_8_0 , num_hidden_layers=3_2 , num_attention_heads=1_6 , global_attn_indexes=[7, 1_5, 2_3, 3_1] , ) _a : List[str] = SamConfig( vision_config=__a , ) _a : Optional[Any] = torch.load(__a , map_location='cpu' ) _a : Union[str, Any] = replace_keys(__a ) _a : int = SamImageProcessor() _a : Any = SamProcessor(image_processor=__a ) _a : Union[str, Any] = SamModel(__a ) hf_model.load_state_dict(__a ) _a : Optional[Any] = hf_model.to('cuda' ) _a : Any = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' _a : Dict = Image.open(requests.get(__a , stream=__a ).raw ).convert('RGB' ) _a : List[str] = [[[4_0_0, 6_5_0]]] _a : Optional[int] = [[1]] _a : Union[str, Any] = processor(images=np.array(__a ) , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _a : Any = hf_model(**__a ) _a : Union[str, Any] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579890251159668 _a : List[str] = processor( images=np.array(__a ) , input_points=__a , input_labels=__a , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _a : Tuple = hf_model(**__a ) _a : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712603092193604 _a : Any = ((7_5, 2_7_5, 1_7_2_5, 8_5_0),) _a : str = processor(images=np.array(__a ) , input_boxes=__a , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _a : str = hf_model(**__a ) _a : Union[str, Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686015605926514 # Test with 2 points and 1 image. _a : List[Any] = [[[4_0_0, 6_5_0], [8_0_0, 6_5_0]]] _a : str = [[1, 1]] _a : List[Any] = processor( images=np.array(__a ) , input_points=__a , input_labels=__a , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _a : List[Any] = hf_model(**__a ) _a : Tuple = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936047792434692 if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() __lowerCAmelCase = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) __lowerCAmelCase = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
319
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
1
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __lowerCamelCase = { 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def a ( __UpperCAmelCase : Union[str, Any] ) -> List[str]: __magic_name__: List[str] = {} state_dict.pop("""pixel_mean""" , __UpperCAmelCase ) state_dict.pop("""pixel_std""" , __UpperCAmelCase ) __magic_name__: List[Any] = R""".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*""" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __magic_name__: List[Any] = key.replace(__UpperCAmelCase , __UpperCAmelCase ) if re.match(__UpperCAmelCase , __UpperCAmelCase ): __magic_name__: str = int(re.match(__UpperCAmelCase , __UpperCAmelCase ).group(2 ) ) if layer_nb == 0: __magic_name__: Dict = key.replace("""layers.0""" , """proj_in""" ) elif layer_nb == 1: __magic_name__: List[str] = key.replace("""layers.1""" , """layers.0""" ) elif layer_nb == 2: __magic_name__: Dict = key.replace("""layers.2""" , """proj_out""" ) __magic_name__: Dict = value __magic_name__: Optional[Any] = model_state_dict[ """prompt_encoder.shared_embedding.positional_embedding""" ] return model_state_dict def a ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int="ybelkada/segment-anything" ) -> Dict: __magic_name__: List[Any] = hf_hub_download(__UpperCAmelCase , f'checkpoints/{model_name}.pth' ) if "sam_vit_b" in model_name: __magic_name__: Tuple = SamConfig() elif "sam_vit_l" in model_name: __magic_name__: str = SamVisionConfig( hidden_size=1_0_2_4 , num_hidden_layers=2_4 , num_attention_heads=1_6 , global_attn_indexes=[5, 1_1, 1_7, 2_3] , ) __magic_name__: Union[str, Any] = SamConfig( vision_config=__UpperCAmelCase , ) elif "sam_vit_h" in model_name: __magic_name__: int = SamVisionConfig( hidden_size=1_2_8_0 , num_hidden_layers=3_2 , num_attention_heads=1_6 , global_attn_indexes=[7, 1_5, 2_3, 3_1] , ) __magic_name__: int = SamConfig( vision_config=__UpperCAmelCase , ) __magic_name__: List[str] = torch.load(__UpperCAmelCase , map_location="""cpu""" ) __magic_name__: Dict = replace_keys(__UpperCAmelCase ) __magic_name__: Optional[Any] = SamImageProcessor() __magic_name__: Any = SamProcessor(image_processor=__UpperCAmelCase ) __magic_name__: str = SamModel(__UpperCAmelCase ) hf_model.load_state_dict(__UpperCAmelCase ) __magic_name__: Optional[int] = hf_model.to("""cuda""" ) __magic_name__: int = """https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png""" __magic_name__: int = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ).convert("""RGB""" ) __magic_name__: int = [[[4_0_0, 6_5_0]]] __magic_name__: Optional[Any] = [[1]] __magic_name__: Optional[int] = processor(images=np.array(__UpperCAmelCase ) , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): __magic_name__: str = hf_model(**__UpperCAmelCase ) __magic_name__: Any = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 __magic_name__: List[Any] = processor( images=np.array(__UpperCAmelCase ) , input_points=__UpperCAmelCase , input_labels=__UpperCAmelCase , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): __magic_name__: Tuple = hf_model(**__UpperCAmelCase ) __magic_name__: str = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 __magic_name__: Any = ((7_5, 2_7_5, 1_7_2_5, 8_5_0),) __magic_name__: List[str] = processor(images=np.array(__UpperCAmelCase ) , input_boxes=__UpperCAmelCase , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): __magic_name__: Optional[int] = hf_model(**__UpperCAmelCase ) __magic_name__: Dict = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. __magic_name__: Optional[Any] = [[[4_0_0, 6_5_0], [8_0_0, 6_5_0]]] __magic_name__: List[str] = [[1, 1]] __magic_name__: Optional[Any] = processor( images=np.array(__UpperCAmelCase ) , input_points=__UpperCAmelCase , input_labels=__UpperCAmelCase , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): __magic_name__: int = hf_model(**__UpperCAmelCase ) __magic_name__: List[str] = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() __lowerCamelCase = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) __lowerCamelCase = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
96
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): UpperCAmelCase__ = StableDiffusionInstructPixaPixPipeline UpperCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} UpperCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase__ ( self : str ) -> Optional[int]: torch.manual_seed(0 ) __magic_name__: str = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) __magic_name__: Union[str, Any] = PNDMScheduler(skip_prk_steps=__snake_case ) torch.manual_seed(0 ) __magic_name__: Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __magic_name__: int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __magic_name__: Optional[int] = CLIPTextModel(__snake_case ) __magic_name__: Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __magic_name__: Tuple = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ ( self : Optional[Any] , __snake_case : int , __snake_case : List[Any]=0 ) -> Optional[Any]: __magic_name__: Optional[int] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__: str = image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__: Any = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ) if str(__snake_case ).startswith("""mps""" ): __magic_name__: Optional[Any] = torch.manual_seed(__snake_case ) else: __magic_name__: str = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__: Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowerCamelCase__ ( self : Any ) -> Tuple: __magic_name__: int = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__: List[Any] = self.get_dummy_components() __magic_name__: int = StableDiffusionInstructPixaPixPipeline(**__snake_case ) __magic_name__: Union[str, Any] = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__: List[Any] = self.get_dummy_inputs(__snake_case ) __magic_name__: Tuple = sd_pipe(**__snake_case ).images __magic_name__: Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __magic_name__: List[Any] = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase__ ( self : Optional[int] ) -> List[str]: __magic_name__: Any = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__: str = self.get_dummy_components() __magic_name__: Dict = StableDiffusionInstructPixaPixPipeline(**__snake_case ) __magic_name__: str = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__: Optional[Any] = self.get_dummy_inputs(__snake_case ) __magic_name__: List[Any] = """french fries""" __magic_name__: int = sd_pipe(**__snake_case , negative_prompt=__snake_case ) __magic_name__: Dict = output.images __magic_name__: Any = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __magic_name__: str = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase__ ( self : Optional[int] ) -> Tuple: __magic_name__: Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__: int = self.get_dummy_components() __magic_name__: Dict = StableDiffusionInstructPixaPixPipeline(**__snake_case ) __magic_name__: Dict = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__: str = self.get_dummy_inputs(__snake_case ) __magic_name__: List[str] = [inputs["""prompt"""]] * 2 __magic_name__: List[str] = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 __magic_name__: Optional[int] = torch.from_numpy(__snake_case ).unsqueeze(0 ).to(__snake_case ) __magic_name__: Tuple = image / 2 + 0.5 __magic_name__: Dict = image.permute(0 , 3 , 1 , 2 ) __magic_name__: List[str] = image.repeat(2 , 1 , 1 , 1 ) __magic_name__: str = sd_pipe(**__snake_case ).images __magic_name__: List[str] = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) __magic_name__: Optional[int] = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase__ ( self : Tuple ) -> Optional[int]: __magic_name__: Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__: Union[str, Any] = self.get_dummy_components() __magic_name__: Union[str, Any] = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) __magic_name__: Union[str, Any] = StableDiffusionInstructPixaPixPipeline(**__snake_case ) __magic_name__: Optional[int] = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__: List[str] = self.get_dummy_inputs(__snake_case ) __magic_name__: Tuple = sd_pipe(**__snake_case ).images __magic_name__: Any = image[0, -3:, -3:, -1] __magic_name__: str = [round(__snake_case , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(__snake_case ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) __magic_name__: Optional[Any] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase__ ( self : Dict ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCamelCase__ ( self : Optional[Any] ) -> List[str]: __magic_name__: Tuple = self.get_dummy_components() __magic_name__: Tuple = StableDiffusionInstructPixaPixPipeline(**__snake_case ) __magic_name__: str = VaeImageProcessor(do_resize=__snake_case , do_normalize=__snake_case ) __magic_name__: Union[str, Any] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__: Union[str, Any] = pipe(**self.get_dummy_inputs_by_type(__snake_case , input_image_type="""pt""" ) )[0] __magic_name__: Union[str, Any] = components["""vae"""] __magic_name__: str = self.get_dummy_inputs_by_type(__snake_case , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __magic_name__: int = vae.encode(inputs[image_param] ).latent_dist.mode() __magic_name__: Dict = pipe(**__snake_case )[0] __magic_name__: Optional[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(__snake_case , 1E-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[Any] ) -> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : str , __snake_case : List[str]=0 ) -> Dict: __magic_name__: Union[str, Any] = torch.manual_seed(__snake_case ) __magic_name__: Optional[int] = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) __magic_name__: Optional[Any] = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ ( self : Any ) -> Any: __magic_name__: str = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() __magic_name__: Optional[Any] = self.get_inputs() __magic_name__: str = pipe(**__snake_case ).images __magic_name__: Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __magic_name__: Any = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCamelCase__ ( self : Optional[Any] ) -> int: __magic_name__: Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__snake_case ) __magic_name__: List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() __magic_name__: List[str] = self.get_inputs() __magic_name__: Dict = pipe(**__snake_case ).images __magic_name__: str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __magic_name__: Optional[Any] = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCamelCase__ ( self : Any ) -> List[str]: __magic_name__: str = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__snake_case ) __magic_name__: int = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() __magic_name__: Union[str, Any] = self.get_inputs() __magic_name__: Any = pipe(**__snake_case ).images __magic_name__: int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __magic_name__: Optional[Any] = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCamelCase__ ( self : int ) -> Dict: __magic_name__: Tuple = 0 def callback_fn(__snake_case : int , __snake_case : int , __snake_case : torch.FloatTensor ) -> None: __magic_name__: Union[str, Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __magic_name__: List[str] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) __magic_name__: int = latents[0, -3:, -3:, -1] __magic_name__: Union[str, Any] = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: __magic_name__: Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) __magic_name__: str = latents[0, -3:, -3:, -1] __magic_name__: Optional[Any] = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 __magic_name__: Tuple = False __magic_name__: List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__snake_case , torch_dtype=torch.floataa ) __magic_name__: Union[str, Any] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() __magic_name__: Dict = self.get_inputs() pipe(**__snake_case , callback=__snake_case , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowerCamelCase__ ( self : Tuple ) -> int: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __magic_name__: List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__snake_case , torch_dtype=torch.floataa ) __magic_name__: int = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __magic_name__: Optional[int] = self.get_inputs() __magic_name__: Any = pipe(**__snake_case ) __magic_name__: List[str] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def lowerCamelCase__ ( self : str ) -> Optional[int]: __magic_name__: Optional[int] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __magic_name__: Any = inputs["""image"""].resize((5_0_4, 5_0_4) ) __magic_name__: List[str] = """timbrooks/instruct-pix2pix""" __magic_name__: Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( __snake_case , safety_checker=__snake_case , ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() __magic_name__: str = pipe(**__snake_case ) __magic_name__: Optional[int] = output.images[0] __magic_name__: Union[str, Any] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) __magic_name__: Optional[Any] = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
96
1
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Tuple = BertJapaneseTokenizer UpperCamelCase_ : str = False UpperCamelCase_ : Tuple = True def A_ ( self ) -> Dict: '''simple docstring''' super().setUp() _UpperCamelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def A_ ( self , a ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = """こんにちは、世界。 \nこんばんは、世界。""" _UpperCamelCase = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def A_ ( self , a ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.get_input_output_texts(a ) _UpperCamelCase = tokenizer.encode(a , add_special_tokens=a ) _UpperCamelCase = tokenizer.decode(a , clean_up_tokenization_spaces=a ) return text, ids def A_ ( self ) -> List[str]: '''simple docstring''' pass # TODO add if relevant def A_ ( self ) -> Union[str, Any]: '''simple docstring''' pass # TODO add if relevant def A_ ( self ) -> Optional[Any]: '''simple docstring''' pass # TODO add if relevant def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer_class(self.vocab_file ) _UpperCamelCase = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" ) self.assertListEqual(a , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" ) self.assertIsNotNone(a ) _UpperCamelCase = """こんにちは、世界。\nこんばんは、世界。""" _UpperCamelCase = tokenizer.tokenize(a ) self.assertListEqual(a , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _UpperCamelCase = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(a , """wb""" ) as handle: pickle.dump(a , a ) with open(a , """rb""" ) as handle: _UpperCamelCase = pickle.load(a ) _UpperCamelCase = tokenizer_new.tokenize(a ) self.assertListEqual(a , a ) def A_ ( self ) -> Any: '''simple docstring''' _UpperCamelCase = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def A_ ( self ) -> Any: '''simple docstring''' try: _UpperCamelCase = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def A_ ( self ) -> int: '''simple docstring''' try: _UpperCamelCase = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def A_ ( self ) -> int: '''simple docstring''' _UpperCamelCase = MecabTokenizer(do_lower_case=a , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def A_ ( self ) -> Any: '''simple docstring''' try: _UpperCamelCase = MecabTokenizer( do_lower_case=a , normalize_text=a , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def A_ ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = MecabTokenizer(normalize_text=a , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(a ) _UpperCamelCase = """こんにちは、世界。\nこんばんは、世界。""" _UpperCamelCase = tokenizer.tokenize(a ) self.assertListEqual(a , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _UpperCamelCase = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(a , """wb""" ) as handle: pickle.dump(a , a ) with open(a , """rb""" ) as handle: _UpperCamelCase = pickle.load(a ) _UpperCamelCase = tokenizer_new.tokenize(a ) self.assertListEqual(a , a ) @require_sudachi def A_ ( self ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def A_ ( self ) -> List[Any]: '''simple docstring''' _UpperCamelCase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] ) @require_sudachi def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] ) @require_sudachi def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] ) @require_sudachi def A_ ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = SudachiTokenizer(do_lower_case=a , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = SudachiTokenizer(normalize_text=a , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def A_ ( self ) -> Any: '''simple docstring''' _UpperCamelCase = SudachiTokenizer(trim_whitespace=a , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(a ) _UpperCamelCase = """こんにちは、世界。\nこんばんは、世界。""" _UpperCamelCase = tokenizer.tokenize(a ) self.assertListEqual(a , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _UpperCamelCase = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(a , """wb""" ) as handle: pickle.dump(a , a ) with open(a , """rb""" ) as handle: _UpperCamelCase = pickle.load(a ) _UpperCamelCase = tokenizer_new.tokenize(a ) self.assertListEqual(a , a ) @require_jumanpp def A_ ( self ) -> int: '''simple docstring''' _UpperCamelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = JumanppTokenizer(do_lower_case=a ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def A_ ( self ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = JumanppTokenizer(normalize_text=a ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def A_ ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = JumanppTokenizer(trim_whitespace=a ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def A_ ( self ) -> List[Any]: '''simple docstring''' _UpperCamelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def A_ ( self ) -> int: '''simple docstring''' _UpperCamelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] _UpperCamelCase = {} for i, token in enumerate(a ): _UpperCamelCase = i _UpperCamelCase = WordpieceTokenizer(vocab=a , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] ) def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) _UpperCamelCase = tokenizer.subword_tokenizer _UpperCamelCase = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" ) self.assertListEqual(a , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] ) _UpperCamelCase = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" ) self.assertListEqual(a , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] ) def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) _UpperCamelCase = tokenizer.encode("""ありがとう。""" , add_special_tokens=a ) _UpperCamelCase = tokenizer.encode("""どういたしまして。""" , add_special_tokens=a ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(a ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(a , a ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Dict = BertJapaneseTokenizer UpperCamelCase_ : Optional[int] = False def A_ ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() _UpperCamelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def A_ ( self , **a ) -> Optional[int]: '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **a ) def A_ ( self , a ) -> List[str]: '''simple docstring''' _UpperCamelCase = """こんにちは、世界。 \nこんばんは、世界。""" _UpperCamelCase = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def A_ ( self ) -> List[Any]: '''simple docstring''' pass # TODO add if relevant def A_ ( self ) -> Optional[Any]: '''simple docstring''' pass # TODO add if relevant def A_ ( self ) -> List[Any]: '''simple docstring''' pass # TODO add if relevant def A_ ( self ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" ) _UpperCamelCase = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" ) self.assertListEqual( a , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] _UpperCamelCase = {} for i, token in enumerate(a ): _UpperCamelCase = i _UpperCamelCase = CharacterTokenizer(vocab=a , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] ) self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] ) def A_ ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) _UpperCamelCase = tokenizer.encode("""ありがとう。""" , add_special_tokens=a ) _UpperCamelCase = tokenizer.encode("""どういたしまして。""" , add_special_tokens=a ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(a ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(a , a ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = """cl-tohoku/bert-base-japanese""" _UpperCamelCase = AutoTokenizer.from_pretrained(a ) self.assertIsInstance(a , a ) class lowerCAmelCase__ ( unittest.TestCase ): def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(a ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) _UpperCamelCase = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(a ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
715
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Any: """simple docstring""" _UpperCamelCase = os.path.abspath(lowerCAmelCase ) logger.info(F'Converting TensorFlow checkpoint from {tf_path}' ) # Load weights from TF model _UpperCamelCase = tf.train.list_variables(lowerCAmelCase ) _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") _UpperCamelCase = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F'Skipping non-model layer {full_name}' ) continue if "optimizer" in full_name: logger.info(F'Skipping optimization layer {full_name}' ) continue if name[0] == "model": # ignore initial 'model' _UpperCamelCase = name[1:] # figure out how many levels deep the name is _UpperCamelCase = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(lowerCAmelCase ) # read data _UpperCamelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) names.append("""/""".join(lowerCAmelCase ) ) arrays.append(lowerCAmelCase ) logger.info(F'Read a total of {len(lowerCAmelCase ):,} layers' ) # Sanity check if len(set(lowerCAmelCase ) ) != 1: raise ValueError(F'Found layer names with different depths (layer depth {list(set(lowerCAmelCase ) )})' ) _UpperCamelCase = list(set(lowerCAmelCase ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(lowerCAmelCase , lowerCAmelCase ): _UpperCamelCase = full_name.split("""/""" ) _UpperCamelCase = model _UpperCamelCase = [] for i, m_name in enumerate(lowerCAmelCase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): _UpperCamelCase = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) _UpperCamelCase = getattr(lowerCAmelCase , """embeddings""" ) _UpperCamelCase = getattr(lowerCAmelCase , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) _UpperCamelCase = getattr(lowerCAmelCase , """encoder""" ) _UpperCamelCase = getattr(lowerCAmelCase , """layer""" ) _UpperCamelCase = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) _UpperCamelCase = getattr(lowerCAmelCase , """pooler""" ) _UpperCamelCase = getattr(lowerCAmelCase , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) _UpperCamelCase = getattr(lowerCAmelCase , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) _UpperCamelCase = getattr(lowerCAmelCase , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) _UpperCamelCase = getattr(lowerCAmelCase , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) _UpperCamelCase = getattr(lowerCAmelCase , """token_type_embeddings""" ) else: raise ValueError(F'Unknown embedding layer with name {full_name}' ) trace.append("""weight""" ) _UpperCamelCase = getattr(lowerCAmelCase , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) _UpperCamelCase = getattr(lowerCAmelCase , """attention""" ) _UpperCamelCase = getattr(lowerCAmelCase , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) _UpperCamelCase = getattr(lowerCAmelCase , """attention""" ) _UpperCamelCase = getattr(lowerCAmelCase , """output""" ) _UpperCamelCase = getattr(lowerCAmelCase , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) _UpperCamelCase = getattr(lowerCAmelCase , """attention""" ) _UpperCamelCase = getattr(lowerCAmelCase , """output""" ) _UpperCamelCase = getattr(lowerCAmelCase , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) _UpperCamelCase = getattr(lowerCAmelCase , """output""" ) _UpperCamelCase = getattr(lowerCAmelCase , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) _UpperCamelCase = getattr(lowerCAmelCase , """output""" ) _UpperCamelCase = getattr(lowerCAmelCase , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) _UpperCamelCase = getattr(lowerCAmelCase , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) _UpperCamelCase = getattr(lowerCAmelCase , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) _UpperCamelCase = getattr(lowerCAmelCase , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) _UpperCamelCase = getattr(lowerCAmelCase , """intermediate""" ) _UpperCamelCase = getattr(lowerCAmelCase , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) _UpperCamelCase = getattr(lowerCAmelCase , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) _UpperCamelCase = getattr(lowerCAmelCase , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) _UpperCamelCase = getattr(lowerCAmelCase , """weight""" ) else: logger.warning(F'Ignored {m_name}' ) # for certain layers reshape is necessary _UpperCamelCase = """.""".join(lowerCAmelCase ) if re.match(R"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , lowerCAmelCase ) or re.match( R"""(\S+)\.attention\.output\.dense\.weight""" , lowerCAmelCase ): _UpperCamelCase = array.reshape(pointer.data.shape ) if "kernel" in full_name: _UpperCamelCase = array.transpose() if pointer.shape == array.shape: _UpperCamelCase = torch.from_numpy(lowerCAmelCase ) else: raise ValueError( F'Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:' F' {array.shape}' ) logger.info(F'Successfully set variable {full_name} to PyTorch layer {trace}' ) return model def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Tuple: """simple docstring""" logger.info(F'Loading model based on config from {config_path}...' ) _UpperCamelCase = BertConfig.from_json_file(lowerCAmelCase ) _UpperCamelCase = BertModel(lowerCAmelCase ) # Load weights from checkpoint logger.info(F'Loading weights from checkpoint {tf_checkpoint_path}...' ) load_tfa_weights_in_bert(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model logger.info(F'Saving PyTorch model to {pytorch_dump_path}...' ) torch.save(model.state_dict() , lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) lowerCamelCase__ = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
202
0
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase : str = logging.getLogger() def _A ( snake_case__ : Path , snake_case__ : list ): snake_case__ : Tuple = '''\n'''.join(snake_case__ ) Path(snake_case__ ).open('''w''' ).writelines(snake_case__ ) _lowerCAmelCase : Union[str, Any] = "patrickvonplaten/t5-tiny-random" _lowerCAmelCase : Any = "sshleifer/bart-tiny-random" _lowerCAmelCase : Union[str, Any] = "sshleifer/tiny-mbart" _lowerCAmelCase : Dict = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class snake_case ( __lowerCamelCase ): """simple docstring""" def lowercase__ ( self , lowerCamelCase ) -> Dict: """simple docstring""" snake_case__ : Dict = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' snake_case__ : Dict = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() snake_case__ : Tuple = [''' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'''] _dump_articles(lowerCamelCase , lowerCamelCase ) snake_case__ : int = str(Path(self.get_auto_remove_tmp_dir() ) / '''scores.json''' ) snake_case__ : Dict = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' snake_case__ : str = f''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(lowerCamelCase , '''argv''' , lowerCamelCase ): run_generate() assert Path(lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def lowercase__ ( self ) -> Any: """simple docstring""" self.run_eval_tester(lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowercase__ ( self , lowerCamelCase ) -> int: """simple docstring""" self.run_eval_tester(lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowercase__ ( self , lowerCamelCase ) -> str: """simple docstring""" snake_case__ : Optional[Any] = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' snake_case__ : Any = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() snake_case__ : List[Any] = { '''en''': ['''Machine learning is great, isn\'t it?''', '''I like to eat bananas''', '''Tomorrow is another great day!'''], '''de''': [ '''Maschinelles Lernen ist großartig, oder?''', '''Ich esse gerne Bananen''', '''Morgen ist wieder ein toller Tag!''', ], } snake_case__ : Tuple = Path(self.get_auto_remove_tmp_dir() ) snake_case__ : Any = str(tmp_dir / '''scores.json''' ) snake_case__ : Any = str(tmp_dir / '''val.target''' ) _dump_articles(lowerCamelCase , text['''en'''] ) _dump_articles(lowerCamelCase , text['''de'''] ) snake_case__ : List[Any] = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' snake_case__ : List[Any] = f''' run_eval_search.py {model} {str(lowerCamelCase )} {str(lowerCamelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(['''--search''', '''num_beams=1:2 length_penalty=0.9:1.0'''] ) with patch.object(lowerCamelCase , '''argv''' , lowerCamelCase ): with CaptureStdout() as cs: run_search() snake_case__ : Tuple = [''' num_beams | length_penalty''', model, '''Best score args'''] snake_case__ : Union[str, Any] = ['''Info'''] if "translation" in task: expected_strings.append('''bleu''' ) else: expected_strings.extend(lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase ).exists() os.remove(Path(lowerCamelCase ) )
261
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCAmelCase : Any = 1_6 _lowerCAmelCase : Optional[int] = 3_2 def _A ( snake_case__ : Accelerator , snake_case__ : int = 16 ): snake_case__ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case__ : str = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case__ : List[Any] ): # max_length=None => use the model max length (it's actually the default) snake_case__ : List[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case__ : Tuple = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : Optional[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case__ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case__ : Tuple = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case__ : Tuple = 16 elif accelerator.mixed_precision != "no": snake_case__ : int = 8 else: snake_case__ : List[Any] = None return tokenizer.pad( snake_case__ , padding='''longest''' , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors='''pt''' , ) # Instantiate dataloaders. snake_case__ : int = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) snake_case__ : Optional[int] = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCAmelCase : Tuple = mocked_dataloaders # noqa: F811 def _A ( snake_case__ : Optional[Any] , snake_case__ : int ): # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case__ ) == "1": snake_case__ : Any = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: snake_case__ : List[str] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: snake_case__ : List[str] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : List[str] = config['''lr'''] snake_case__ : List[Any] = int(config['''num_epochs'''] ) snake_case__ : List[Any] = int(config['''seed'''] ) snake_case__ : Union[str, Any] = int(config['''batch_size'''] ) set_seed(snake_case__ ) snake_case__ ,snake_case__ : Tuple = get_dataloaders(snake_case__ , snake_case__ ) snake_case__ : Union[str, Any] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation snake_case__ : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case__ : Dict = batch_size // MAX_GPU_BATCH_SIZE snake_case__ : int = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : Tuple = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case__ : Dict = model.to(accelerator.device ) # Instantiate optimizer snake_case__ : List[Any] = AdamW(params=model.parameters() , lr=snake_case__ ) # Instantiate scheduler snake_case__ : Dict = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=1_00 , num_training_steps=(len(snake_case__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ : List[str] = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: snake_case__ : Union[str, Any] = os.path.split(snake_case__ )[-1].split('''.''' )[0] accelerator.init_trackers(snake_case__ , snake_case__ ) # Now we train the model for epoch in range(snake_case__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: snake_case__ : Tuple = 0 for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case__ : Optional[Any] = model(**snake_case__ ) snake_case__ : List[str] = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() snake_case__ : str = loss / gradient_accumulation_steps accelerator.backward(snake_case__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : int = model(**snake_case__ ) snake_case__ : str = outputs.logits.argmax(dim=-1 ) snake_case__ ,snake_case__ : Optional[Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) snake_case__ : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , snake_case__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(snake_case__ ), '''epoch''': epoch, } , step=snake_case__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def _A ( ): snake_case__ : Optional[Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case__ , default=snake_case__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=snake_case__ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) snake_case__ : List[Any] = parser.parse_args() snake_case__ : Any = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
261
1
from __future__ import annotations import math def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = u for i in range(1 , UpperCamelCase__ ): snake_case_ = temp * (u - i) return temp def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = int(input('enter the numbers of values: ' ) ) snake_case_ = [] for _ in range(UpperCamelCase__ ): y.append([] ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): y[i].append(UpperCamelCase__ ) snake_case_ = 0 print('enter the values of parameters in a list: ' ) snake_case_ = list(map(UpperCamelCase__ , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(UpperCamelCase__ ): snake_case_ = float(input() ) snake_case_ = int(input('enter the value to interpolate: ' ) ) snake_case_ = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCamelCase__ ): for j in range(n - i ): snake_case_ = y[j + 1][i - 1] - y[j][i - 1] snake_case_ = y[0][0] for i in range(1 , UpperCamelCase__ ): summ += (ucal(UpperCamelCase__ , UpperCamelCase__ ) * y[0][i]) / math.factorial(UpperCamelCase__ ) print(F'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
708
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
108
0
def _A ( __snake_case :int = 400_0000 ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_lowercase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = b, a + b return sum(_lowercase ) if __name__ == "__main__": print(F"""{solution() = }""")
693
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 16 lowercase_ = 32 def UpperCAmelCase ( _lowercase : Accelerator , _lowercase : int = 1_6 , _lowercase : str = "bert-base-cased" ) -> Dict: """simple docstring""" lowerCAmelCase_ = AutoTokenizer.from_pretrained(_lowercase ) lowerCAmelCase_ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_lowercase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_lowercase , max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase_ = datasets.map( _lowercase , batched=_lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=_lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_lowercase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return tokenizer.pad(_lowercase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. lowerCAmelCase_ = DataLoader( tokenized_datasets['''train'''] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) lowerCAmelCase_ = DataLoader( tokenized_datasets['''validation'''] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) return train_dataloader, eval_dataloader def UpperCAmelCase ( _lowercase : int , _lowercase : Any , _lowercase : Any , _lowercase : str ) -> List[Any]: """simple docstring""" model.eval() lowerCAmelCase_ = 0 for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ = model(**_lowercase ) lowerCAmelCase_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCAmelCase_ , lowerCAmelCase_ = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_lowercase ) - 1: lowerCAmelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_lowercase , references=_lowercase , ) lowerCAmelCase_ = metric.compute() return eval_metric["accuracy"] def UpperCAmelCase ( _lowercase : Dict , _lowercase : Optional[Any] ) -> Dict: """simple docstring""" lowerCAmelCase_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ = config['''lr'''] lowerCAmelCase_ = int(config['''num_epochs'''] ) lowerCAmelCase_ = int(config['''seed'''] ) lowerCAmelCase_ = int(config['''batch_size'''] ) lowerCAmelCase_ = args.model_name_or_path set_seed(_lowercase ) lowerCAmelCase_ , lowerCAmelCase_ = get_dataloaders(_lowercase , _lowercase , _lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase ) # Instantiate optimizer lowerCAmelCase_ = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCAmelCase_ = optimizer_cls(params=model.parameters() , lr=_lowercase ) if accelerator.state.deepspeed_plugin is not None: lowerCAmelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: lowerCAmelCase_ = 1 lowerCAmelCase_ = (len(_lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCAmelCase_ = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , ) else: lowerCAmelCase_ = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase_ = 0 # We also need to keep track of the stating epoch so files are named properly lowerCAmelCase_ = 0 lowerCAmelCase_ = evaluate.load('''glue''' , '''mrpc''' ) lowerCAmelCase_ = num_epochs if args.partial_train_epoch is not None: lowerCAmelCase_ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowerCAmelCase_ = args.resume_from_checkpoint.split('''epoch_''' )[1] lowerCAmelCase_ = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowerCAmelCase_ = int(_lowercase ) + 1 lowerCAmelCase_ = evaluation_loop(_lowercase , _lowercase , _lowercase , _lowercase ) accelerator.print('''resumed checkpoint performance:''' , _lowercase ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , F"""state_{starting_epoch-1}.json""" ) , '''r''' ) as f: lowerCAmelCase_ = json.load(_lowercase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowerCAmelCase_ = {} for epoch in range(_lowercase , _lowercase ): model.train() for step, batch in enumerate(_lowercase ): lowerCAmelCase_ = model(**_lowercase ) lowerCAmelCase_ = outputs.loss lowerCAmelCase_ = loss / gradient_accumulation_steps accelerator.backward(_lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowerCAmelCase_ = F"""epoch_{epoch}""" lowerCAmelCase_ = os.path.join(args.output_dir , _lowercase ) accelerator.save_state(_lowercase ) lowerCAmelCase_ = evaluation_loop(_lowercase , _lowercase , _lowercase , _lowercase ) lowerCAmelCase_ = accuracy lowerCAmelCase_ = lr_scheduler.get_lr()[0] lowerCAmelCase_ = optimizer.param_groups[0]['''lr'''] lowerCAmelCase_ = epoch lowerCAmelCase_ = overall_step accelerator.print(F"""epoch {epoch}:""" , _lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F"""state_{epoch}.json""" ) , '''w''' ) as f: json.dump(_lowercase , _lowercase ) def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=_lowercase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=_lowercase , ) parser.add_argument( '''--output_dir''' , type=_lowercase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=_lowercase , default=_lowercase , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=_lowercase , default=_lowercase , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=_lowercase , default=2 , help='''Number of train epochs.''' , ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 4_2, '''batch_size''': 1_6} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
552
0
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def snake_case ( snake_case : SplitDict ) -> List[str]: """simple docstring""" lowerCAmelCase = split_dict._to_yaml_list() assert len(snake_case ) == len(snake_case ) lowerCAmelCase = SplitDict._from_yaml_list(snake_case ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCAmelCase = None # the split name of split_dict takes over the name of the split info object lowerCAmelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=snake_case ), SplitInfo(dataset_name='my_dataset' )] ) def snake_case ( snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
514
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) class _snake_case : def __init__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if not conversation_id: lowerCAmelCase = uuid.uuida() if past_user_inputs is None: lowerCAmelCase = [] if generated_responses is None: lowerCAmelCase = [] lowerCAmelCase = conversation_id lowerCAmelCase = past_user_inputs lowerCAmelCase = generated_responses lowerCAmelCase = text def __eq__( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' F'with: "{text}".' ) lowerCAmelCase = text else: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: lowerCAmelCase = text def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowerCAmelCase = None def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' self.generated_responses.append(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): '''simple docstring''' lowerCAmelCase = F'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): lowerCAmelCase = 'user' if is_user else 'bot' output += F'{name} >> {text} \n' return output @add_end_docstrings( a_ , R''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class _snake_case ( a_ ): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.tokenizer.pad_token_id is None: lowerCAmelCase = self.tokenizer.eos_token def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = {} lowerCAmelCase = {} lowerCAmelCase = {} if min_length_for_response is not None: lowerCAmelCase = min_length_for_response if minimum_tokens is not None: lowerCAmelCase = minimum_tokens if "max_length" in generate_kwargs: lowerCAmelCase = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowerCAmelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_SCREAMING_SNAKE_CASE ) return preprocess_params, forward_params, postprocess_params def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = super().__call__(_SCREAMING_SNAKE_CASE , num_workers=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) == 1: return outputs[0] return outputs def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=32 ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): lowerCAmelCase = self.tokenizer._build_conversation_input_ids(_SCREAMING_SNAKE_CASE ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowerCAmelCase = self._legacy_parse_and_tokenize(_SCREAMING_SNAKE_CASE ) if self.framework == "pt": lowerCAmelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowerCAmelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=10 , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) lowerCAmelCase = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) lowerCAmelCase = max_length - minimum_tokens lowerCAmelCase = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: lowerCAmelCase = model_inputs['attention_mask'][:, -trim:] lowerCAmelCase = model_inputs.pop('conversation' ) lowerCAmelCase = max_length lowerCAmelCase = self.model.generate(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.model.config.is_encoder_decoder: lowerCAmelCase = 1 else: lowerCAmelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): '''simple docstring''' lowerCAmelCase = model_outputs['output_ids'] lowerCAmelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(_SCREAMING_SNAKE_CASE ) return conversation def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = self.tokenizer.eos_token_id lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > self.tokenizer.model_max_length: lowerCAmelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
514
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { '''configuration_mgp_str''': ['''MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MgpstrConfig'''], '''processing_mgp_str''': ['''MgpstrProcessor'''], '''tokenization_mgp_str''': ['''MgpstrTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MgpstrModel''', '''MgpstrPreTrainedModel''', '''MgpstrForSceneTextRecognition''', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
47
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" __magic_name__ : str = 0 # if input_string is "aba" than new_input_string become "a|b|a" __magic_name__ : Optional[Any] = '' __magic_name__ : Optional[int] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(lowerCAmelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring __magic_name__ , __magic_name__ : str = 0, 0 # length[i] shows the length of palindromic substring with center i __magic_name__ : Dict = [1 for i in range(len(lowerCAmelCase ) )] # for each character in new_string find corresponding palindromic string __magic_name__ : Tuple = 0 for j in range(len(lowerCAmelCase ) ): __magic_name__ : Dict = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(lowerCAmelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 __magic_name__ : Union[str, Any] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: __magic_name__ : Union[str, Any] = j - k + 1 # noqa: E741 __magic_name__ : Any = j + k - 1 # update max_length and start position if max_length < length[j]: __magic_name__ : Tuple = length[j] __magic_name__ : Tuple = j # create that string __magic_name__ : Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
561
0
'''simple docstring''' import sys import turtle def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(lowerCamelCase_ , get_mid(lowerCamelCase_ , lowerCamelCase_ ) , get_mid(lowerCamelCase_ , lowerCamelCase_ ) , depth - 1 ) triangle(lowerCamelCase_ , get_mid(lowerCamelCase_ , lowerCamelCase_ ) , get_mid(lowerCamelCase_ , lowerCamelCase_ ) , depth - 1 ) triangle(lowerCamelCase_ , get_mid(lowerCamelCase_ , lowerCamelCase_ ) , get_mid(lowerCamelCase_ , lowerCamelCase_ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) lowercase : Any = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") lowercase : Union[str, Any] = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
701
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex lowercase : Dict = logging.getLogger(__name__) class __lowercase : """simple docstring""" def __init__( self ) -> Optional[int]: A : int = False def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: if not self.initialized: A : str = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=__UpperCAmelCase , generator_tokenizer=__UpperCAmelCase , index=__UpperCAmelCase , init_retrieval=__UpperCAmelCase , ) A : Tuple = True def snake_case ( self ) -> int: self.retriever.index.init_index() def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ) -> str: A , A : str = self.retriever._main_retrieve(__UpperCAmelCase , __UpperCAmelCase ) return doc_ids, retrieved_doc_embeds class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]: if index is not None and index.is_initialized() and len(__UpperCAmelCase ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( __UpperCAmelCase , question_encoder_tokenizer=__UpperCAmelCase , generator_tokenizer=__UpperCAmelCase , index=__UpperCAmelCase , init_retrieval=__UpperCAmelCase , ) A : Optional[int] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for worker in self.retrieval_workers ] ) def snake_case ( self ) -> Union[str, Any]: logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. A : List[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] A , A : Union[str, Any] = ray.get(random_worker.retrieve.remote(__UpperCAmelCase , __UpperCAmelCase ) ) else: A , A : Any = self._main_retrieve(__UpperCAmelCase , __UpperCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__UpperCAmelCase ) @classmethod def snake_case ( cls , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Any: return super(__UpperCAmelCase , cls ).get_tokenizers(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) @classmethod def snake_case ( cls , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Dict: A : int = kwargs.pop('''config''' , __UpperCAmelCase ) or RagConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) A : Tuple = RagTokenizer.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase ) A : Any = rag_tokenizer.question_encoder A : int = rag_tokenizer.generator if indexed_dataset is not None: A : Optional[int] = '''custom''' A : Tuple = CustomHFIndex(config.retrieval_vector_size , __UpperCAmelCase ) else: A : Union[str, Any] = cls._build_index(__UpperCAmelCase ) return cls( __UpperCAmelCase , question_encoder_tokenizer=__UpperCAmelCase , generator_tokenizer=__UpperCAmelCase , retrieval_workers=__UpperCAmelCase , index=__UpperCAmelCase , )
423
0
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Union[str, Any] = logging.get_logger(__name__) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]: _UpperCAmelCase =[] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"encoder.deit.blocks.{i}.norm1.weight", F"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.norm1.bias", F"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.weight", F"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.bias", F"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.norm2.weight", F"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.norm2.bias", F"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.weight", F"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.bias", F"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc2.weight", F"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.mlp.fc2.bias", F"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->int: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _UpperCAmelCase =state_dict.pop(F"encoder.deit.blocks.{i}.attn.qkv.weight" ) _UpperCAmelCase =in_proj_weight[ : encoder_config.hidden_size, : ] _UpperCAmelCase =in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _UpperCAmelCase =in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: _UpperCAmelCase =dct.pop(_lowerCamelCase ) _UpperCAmelCase =val def lowerCamelCase__ ( _lowerCamelCase ) ->str: if "handwritten" in checkpoint_url: _UpperCAmelCase ="https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _UpperCAmelCase ="https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" _UpperCAmelCase =Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("RGB" ) return im @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->List[Any]: _UpperCAmelCase =ViTConfig(image_size=384 , qkv_bias=_lowerCamelCase ) _UpperCAmelCase =TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _UpperCAmelCase =768 elif "large" in checkpoint_url: # use ViT-large encoder _UpperCAmelCase =1024 _UpperCAmelCase =4096 _UpperCAmelCase =24 _UpperCAmelCase =16 _UpperCAmelCase =1024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _UpperCAmelCase =False _UpperCAmelCase ="relu" _UpperCAmelCase =1024 _UpperCAmelCase =True _UpperCAmelCase =False _UpperCAmelCase =False # load HuggingFace model _UpperCAmelCase =ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ) _UpperCAmelCase =TrOCRForCausalLM(_lowerCamelCase ) _UpperCAmelCase =VisionEncoderDecoderModel(encoder=_lowerCamelCase , decoder=_lowerCamelCase ) model.eval() # load state_dict of original model, rename some keys _UpperCAmelCase =torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" , check_hash=_lowerCamelCase )["model"] _UpperCAmelCase =create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _UpperCAmelCase =state_dict.pop(_lowerCamelCase ) if key.startswith("decoder" ) and "output_projection" not in key: _UpperCAmelCase =val else: _UpperCAmelCase =val # load state dict model.load_state_dict(_lowerCamelCase ) # Check outputs on an image _UpperCAmelCase =ViTImageProcessor(size=encoder_config.image_size ) _UpperCAmelCase =RobertaTokenizer.from_pretrained("roberta-large" ) _UpperCAmelCase =TrOCRProcessor(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase =processor(images=prepare_img(_lowerCamelCase ) , return_tensors="pt" ).pixel_values # verify logits _UpperCAmelCase =torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _UpperCAmelCase =model(pixel_values=_lowerCamelCase , decoder_input_ids=_lowerCamelCase ) _UpperCAmelCase =outputs.logits _UpperCAmelCase =torch.Size([1, 1, 5_0265] ) if "trocr-base-handwritten" in checkpoint_url: _UpperCAmelCase =torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: _UpperCAmelCase =torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: _UpperCAmelCase =torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: _UpperCAmelCase =torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , _lowerCamelCase , atol=1e-3 ), "First elements of logits not as expected" Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": snake_case__ : Any = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) snake_case__ : Any = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
408
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A = logging.get_logger(__name__) A = {"""vocab_file""": """spiece.model"""} A = { """vocab_file""": { """bert_for_seq_generation""": ( """https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model""" ), } } A = {"""bert_for_seq_generation""": 512} class a__ ( __magic_name__ ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = [] lowercase_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str]="<s>" , UpperCamelCase_ : Optional[Any]="</s>" , UpperCamelCase_ : Optional[int]="<unk>" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : List[Any]="<::::>" , UpperCamelCase_ : Optional[Dict[str, Any]] = None , **UpperCamelCase_ : List[Any] , ): """simple docstring""" __UpperCAmelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Dict = vocab_file __UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCamelCase_) @property def a_ ( self : List[str]): """simple docstring""" return self.sp_model.get_piece_size() def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : int = {self.convert_ids_to_tokens(UpperCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : int): """simple docstring""" __UpperCAmelCase : Optional[int] = self.__dict__.copy() __UpperCAmelCase : List[Any] = None return state def __setstate__( self : Optional[Any] , UpperCamelCase_ : Optional[int]): """simple docstring""" __UpperCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def a_ ( self : Any , UpperCamelCase_ : str): """simple docstring""" return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_) def a_ ( self : Optional[Any] , UpperCamelCase_ : Optional[int]): """simple docstring""" return self.sp_model.piece_to_id(UpperCamelCase_) def a_ ( self : Tuple , UpperCamelCase_ : int): """simple docstring""" __UpperCAmelCase : int = self.sp_model.IdToPiece(UpperCamelCase_) return token def a_ ( self : Dict , UpperCamelCase_ : Optional[Any]): """simple docstring""" __UpperCAmelCase : int = [] __UpperCAmelCase : Tuple = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase_) + token __UpperCAmelCase : List[Any] = [] else: current_sub_tokens.append(UpperCamelCase_) out_string += self.sp_model.decode(UpperCamelCase_) return out_string.strip() def a_ ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None): """simple docstring""" if not os.path.isdir(UpperCamelCase_): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __UpperCAmelCase : Tuple = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCamelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCamelCase_ , "wb") as fi: __UpperCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_) return (out_vocab_file,)
77
0
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( 'kwargs, expected' , [ ({'num_shards': 0, 'max_num_jobs': 1}, []), ({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]), ({'num_shards': 10, 'max_num_jobs': 10}, [range(A__ , i + 1 ) for i in range(10 )]), ({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]), ({'num_shards': 10, 'max_num_jobs': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'num_shards': 3, 'max_num_jobs': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _lowerCAmelCase ( A__ , A__ ): lowercase__ = _distribute_shards(**A__ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, max_num_jobs, expected' , [ ({'foo': 0}, 10, [{'foo': 0}]), ({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]), ({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]), ({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]), ({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]), ] , ) def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = _split_gen_kwargs(A__ , A__ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, expected' , [ ({'foo': 0}, 1), ({'shards': [0]}, 1), ({'shards': [0, 1, 2, 3]}, 4), ({'shards': [0, 1, 2, 3], 'foo': 0}, 4), ({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4), ({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError), ] , ) def _lowerCAmelCase ( A__ , A__ ): if expected is RuntimeError: with pytest.raises(A__ ): _number_of_shards_in_gen_kwargs(A__ ) else: lowercase__ = _number_of_shards_in_gen_kwargs(A__ ) assert out == expected
709
import math import sys def _lowerCAmelCase ( A__ ): lowercase__ = '' try: with open(A__ , 'rb' ) as binary_file: lowercase__ = binary_file.read() for dat in data: lowercase__ = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = {'0': '0', '1': '1'} lowercase__, lowercase__ = '', '' lowercase__ = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ = lexicon[curr_string] result += last_match_id lowercase__ = last_match_id + '0' if math.loga(A__ ).is_integer(): lowercase__ = {} for curr_key in list(A__ ): lowercase__ = lexicon.pop(A__ ) lowercase__ = new_lex lowercase__ = last_match_id + '1' index += 1 lowercase__ = '' return result def _lowerCAmelCase ( A__ , A__ ): lowercase__ = 8 try: with open(A__ , 'wb' ) as opened_file: lowercase__ = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase__ = data_bits[counter:] lowercase__ = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( A__ , A__ ): lowercase__ = read_file_binary(A__ ) lowercase__ = remove_prefix(A__ ) lowercase__ = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
642
0
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) def _snake_case ( __snake_case , __snake_case ): return (preds == labels).mean() @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase = processors[data_args.task_name]() _UpperCamelCase = processor.get_labels() _UpperCamelCase = len(__snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__snake_case ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__snake_case , p.label_ids )} # Data collator _UpperCamelCase = DataCollatorWithPadding(__snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase = Trainer( model=__snake_case , args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , compute_metrics=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(__snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __snake_case , __snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__snake_case ) return results def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
10
1
"""simple docstring""" from timeit import timeit a : str = { '''MALAYALAM''': True, '''String''': False, '''rotor''': True, '''level''': True, '''A''': True, '''BB''': True, '''ABC''': False, '''amanaplanacanalpanama''': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->bool: UpperCAmelCase__ = 0 UpperCAmelCase__ = len(_SCREAMING_SNAKE_CASE ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->bool: UpperCAmelCase__ = len(_SCREAMING_SNAKE_CASE ) // 2 UpperCAmelCase__ = len(_SCREAMING_SNAKE_CASE ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(_SCREAMING_SNAKE_CASE ) ) def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->bool: if len(_SCREAMING_SNAKE_CASE ) <= 2: return True if s[0] == s[len(_SCREAMING_SNAKE_CASE ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->bool: return s == s[::-1] def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->None: UpperCAmelCase__ = F'''all({name}(key) is value for key, value in test_data.items())''' UpperCAmelCase__ = F'''from __main__ import test_data, {name}''' UpperCAmelCase__ = 5_0_0_0_0_0 UpperCAmelCase__ = timeit(stmt=_SCREAMING_SNAKE_CASE , setup=_SCREAMING_SNAKE_CASE , number=_SCREAMING_SNAKE_CASE ) print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F'''{key:21} {value}''') print('''a man a plan a canal panama''') # finished 500,000 runs in 0.46793 seconds benchmark_function('''is_palindrome_slice''') # finished 500,000 runs in 0.85234 seconds benchmark_function('''is_palindrome''') # finished 500,000 runs in 1.32028 seconds benchmark_function('''is_palindrome_recursive''') # finished 500,000 runs in 2.08679 seconds benchmark_function('''is_palindrome_traversal''')
422
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class _UpperCamelCase ( __UpperCamelCase ): '''simple docstring''' __lowercase : torch.FloatTensor class _UpperCamelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' @register_to_config def __init__( self , __lowercase = 3 , __lowercase = 3 , __lowercase = ("DownEncoderBlock2D",) , __lowercase = ("UpDecoderBlock2D",) , __lowercase = (64,) , __lowercase = 1 , __lowercase = "silu" , __lowercase = 3 , __lowercase = 32 , __lowercase = 256 , __lowercase = 32 , __lowercase = None , __lowercase = 0.18_215 , __lowercase = "group" , ): super().__init__() # pass init params to Encoder UpperCAmelCase__ = Encoder( in_channels=__lowercase , out_channels=__lowercase , down_block_types=__lowercase , block_out_channels=__lowercase , layers_per_block=__lowercase , act_fn=__lowercase , norm_num_groups=__lowercase , double_z=__lowercase , ) UpperCAmelCase__ = vq_embed_dim if vq_embed_dim is not None else latent_channels UpperCAmelCase__ = nn.Convad(__lowercase , __lowercase , 1 ) UpperCAmelCase__ = VectorQuantizer(__lowercase , __lowercase , beta=0.25 , remap=__lowercase , sane_index_shape=__lowercase ) UpperCAmelCase__ = nn.Convad(__lowercase , __lowercase , 1 ) # pass init params to Decoder UpperCAmelCase__ = Decoder( in_channels=__lowercase , out_channels=__lowercase , up_block_types=__lowercase , block_out_channels=__lowercase , layers_per_block=__lowercase , act_fn=__lowercase , norm_num_groups=__lowercase , norm_type=__lowercase , ) @apply_forward_hook def A__ ( self , __lowercase , __lowercase = True ): UpperCAmelCase__ = self.encoder(__lowercase ) UpperCAmelCase__ = self.quant_conv(__lowercase ) if not return_dict: return (h,) return VQEncoderOutput(latents=__lowercase ) @apply_forward_hook def A__ ( self , __lowercase , __lowercase = False , __lowercase = True ): # also go through quantization layer if not force_not_quantize: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.quantize(__lowercase ) else: UpperCAmelCase__ = h UpperCAmelCase__ = self.post_quant_conv(__lowercase ) UpperCAmelCase__ = self.decoder(__lowercase , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowercase ) def A__ ( self , __lowercase , __lowercase = True ): UpperCAmelCase__ = sample UpperCAmelCase__ = self.encode(__lowercase ).latents UpperCAmelCase__ = self.decode(__lowercase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__lowercase )
422
1
'''simple docstring''' from math import factorial class __A : '''simple docstring''' def __init__(self , A , A ) -> str: """simple docstring""" _a = real if isinstance(A , A ): _a = [1] * rank else: _a = rank def __repr__(self ) -> List[Any]: """simple docstring""" return ( f'''{self.real}+''' f'''{'+'.join(str(A )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def a__ (self ) -> List[Any]: """simple docstring""" _a = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , A ) def __add__(self , A ) -> int: """simple docstring""" if not isinstance(A , A ): return Dual(self.real + other , self.duals ) _a = self.duals.copy() _a = other.duals.copy() if len(A ) > len(A ): o_dual.extend([1] * (len(A ) - len(A )) ) elif len(A ) < len(A ): s_dual.extend([1] * (len(A ) - len(A )) ) _a = [] for i in range(len(A ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , A ) __lowerCamelCase : Optional[Any] = __add__ def __sub__(self , A ) -> Optional[Any]: """simple docstring""" return self + other * -1 def __mul__(self , A ) -> Union[str, Any]: """simple docstring""" if not isinstance(A , A ): _a = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , A ) _a = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , A ) __lowerCamelCase : Optional[Any] = __mul__ def __truediv__(self , A ) -> Optional[Any]: """simple docstring""" if not isinstance(A , A ): _a = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , A ) raise ValueError def __floordiv__(self , A ) -> str: """simple docstring""" if not isinstance(A , A ): _a = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , A ) raise ValueError def __pow__(self , A ) -> Optional[Any]: """simple docstring""" if n < 0 or isinstance(A , A ): raise ValueError('''power must be a positive integer''' ) if n == 0: return 1 if n == 1: return self _a = self for _ in range(n - 1 ): x *= self return x def lowerCAmelCase (__A , __A , __A): """simple docstring""" if not callable(__A): raise ValueError('''differentiate() requires a function as input for func''') if not isinstance(__A , (float, int)): raise ValueError('''differentiate() requires a float as input for position''') if not isinstance(__A , __A): raise ValueError('''differentiate() requires an int as input for order''') _a = Dual(__A , 1) _a = func(__A) if order == 0: return result.real return result.duals[order - 1] * factorial(__A) if __name__ == "__main__": import doctest doctest.testmod() def lowerCAmelCase (__A): """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
11
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a : Tuple = """platform""" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def snake_case__ ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=None , ): if attention_mask is None: lowerCAmelCase_: Optional[int] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCAmelCase_: Union[str, Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCAmelCase_: Optional[int] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase_: str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase_: Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowercase : '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=99 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=0.0_2 , ): lowerCAmelCase_: Union[str, Any] = parent lowerCAmelCase_: Tuple = batch_size lowerCAmelCase_: Any = seq_length lowerCAmelCase_: Tuple = is_training lowerCAmelCase_: Optional[int] = use_labels lowerCAmelCase_: List[Any] = vocab_size lowerCAmelCase_: str = hidden_size lowerCAmelCase_: Union[str, Any] = num_hidden_layers lowerCAmelCase_: List[str] = num_attention_heads lowerCAmelCase_: Dict = intermediate_size lowerCAmelCase_: int = hidden_act lowerCAmelCase_: Any = hidden_dropout_prob lowerCAmelCase_: str = attention_probs_dropout_prob lowerCAmelCase_: Union[str, Any] = max_position_embeddings lowerCAmelCase_: Any = eos_token_id lowerCAmelCase_: Union[str, Any] = pad_token_id lowerCAmelCase_: Union[str, Any] = bos_token_id lowerCAmelCase_: Optional[int] = initializer_range def _a ( self ): lowerCAmelCase_: List[str] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCAmelCase_: int = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCAmelCase_: Optional[Any] = shift_tokens_right(lowerCamelCase__ , 1 , 2 ) lowerCAmelCase_: Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCamelCase__ , ) lowerCAmelCase_: Optional[Any] = prepare_blenderbot_inputs_dict(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return config, inputs_dict def _a ( self ): lowerCAmelCase_ , lowerCAmelCase_: Dict = self.prepare_config_and_inputs() return config, inputs_dict def _a ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase_: Optional[Any] = 20 lowerCAmelCase_: int = model_class_name(lowerCamelCase__ ) lowerCAmelCase_: Any = model.encode(inputs_dict["input_ids"] ) lowerCAmelCase_ , lowerCAmelCase_: Optional[int] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCAmelCase_: List[str] = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase_: Any = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) lowerCAmelCase_: Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase_: Optional[Any] = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , ) lowerCAmelCase_: Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCAmelCase_: Optional[int] = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCamelCase__ , ) lowerCAmelCase_: Any = model.decode(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase_: str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def _a ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase_: str = 20 lowerCAmelCase_: Union[str, Any] = model_class_name(lowerCamelCase__ ) lowerCAmelCase_: Tuple = model.encode(inputs_dict["input_ids"] ) lowerCAmelCase_ , lowerCAmelCase_: List[str] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCAmelCase_: int = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase_: Any = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase_: List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase_: Tuple = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , ) lowerCAmelCase_: str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCAmelCase_: Tuple = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , ) lowerCAmelCase_: Union[str, Any] = model.decode(lowerCamelCase__ , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ ) lowerCAmelCase_: Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class _lowercase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE: Optional[Any] = 99 def _a ( self ): lowerCAmelCase_: Optional[int] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCAmelCase_: Optional[int] = input_ids.shape[0] lowerCAmelCase_: str = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _a ( self ): lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_: List[Any] = self._get_config_and_data() lowerCAmelCase_: Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(lowerCamelCase__ ) lowerCAmelCase_: Any = lm_model(input_ids=lowerCamelCase__ ) lowerCAmelCase_: List[str] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , lowerCamelCase__ ) def _a ( self ): lowerCAmelCase_: Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCAmelCase_: Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(lowerCamelCase__ ) lowerCAmelCase_: str = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowerCAmelCase_: str = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowerCAmelCase_: Any = lm_model(input_ids=lowerCamelCase__ , decoder_input_ids=lowerCamelCase__ ) lowerCAmelCase_: List[str] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , lowerCamelCase__ ) def _a ( self ): lowerCAmelCase_: Tuple = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowerCAmelCase_: Optional[Any] = shift_tokens_right(lowerCamelCase__ , 1 , 2 ) lowerCAmelCase_: List[Any] = np.equal(lowerCamelCase__ , 1 ).astype(np.floataa ).sum() lowerCAmelCase_: Any = np.equal(lowerCamelCase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowerCamelCase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _lowercase ( UpperCAmelCase__ , unittest.TestCase , UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE: List[Any] = True SCREAMING_SNAKE_CASE: Optional[Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE: Optional[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def _a ( self ): lowerCAmelCase_: Optional[int] = FlaxBlenderbotSmallModelTester(self ) def _a ( self ): lowerCAmelCase_ , lowerCAmelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def _a ( self ): lowerCAmelCase_ , lowerCAmelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def _a ( self ): lowerCAmelCase_ , lowerCAmelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase_: Dict = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase_: Union[str, Any] = model_class(lowerCamelCase__ ) @jax.jit def encode_jitted(lowerCamelCase__ , lowerCamelCase__=None , **lowerCamelCase__ ): return model.encode(input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) with self.subTest("JIT Enabled" ): lowerCAmelCase_: Optional[int] = encode_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCAmelCase_: int = encode_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def _a ( self ): lowerCAmelCase_ , lowerCAmelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase_: Dict = model_class(lowerCamelCase__ ) lowerCAmelCase_: Optional[int] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) lowerCAmelCase_: Any = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): return model.decode( decoder_input_ids=lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , encoder_outputs=lowerCamelCase__ , ) with self.subTest("JIT Enabled" ): lowerCAmelCase_: Dict = decode_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCAmelCase_: Union[str, Any] = decode_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _a ( self ): for model_class_name in self.all_model_classes: lowerCAmelCase_: Any = model_class_name.from_pretrained("facebook/blenderbot_small-90M" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCAmelCase_: str = np.ones((1, 1) ) * model.config.eos_token_id lowerCAmelCase_: Optional[Any] = model(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ )
613
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A : Tuple = logging.get_logger(__name__) A : Any = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class lowerCamelCase ( __UpperCAmelCase ): _SCREAMING_SNAKE_CASE = "biogpt" def __init__( self : Union[str, Any] , __snake_case : Tuple=4_23_84 , __snake_case : Any=10_24 , __snake_case : Optional[int]=24 , __snake_case : int=16 , __snake_case : str=40_96 , __snake_case : Dict="gelu" , __snake_case : List[str]=0.1 , __snake_case : List[Any]=0.1 , __snake_case : List[Any]=10_24 , __snake_case : Optional[int]=0.02 , __snake_case : Union[str, Any]=1e-12 , __snake_case : List[Any]=True , __snake_case : Union[str, Any]=True , __snake_case : Any=0.0 , __snake_case : int=0.0 , __snake_case : Dict=1 , __snake_case : str=0 , __snake_case : List[str]=2 , **__snake_case : Optional[int] , ): '''simple docstring''' _snake_case: List[str] = vocab_size _snake_case: Optional[int] = max_position_embeddings _snake_case: Dict = hidden_size _snake_case: Union[str, Any] = num_hidden_layers _snake_case: str = num_attention_heads _snake_case: Any = intermediate_size _snake_case: List[Any] = hidden_act _snake_case: int = hidden_dropout_prob _snake_case: List[str] = attention_probs_dropout_prob _snake_case: Optional[Any] = initializer_range _snake_case: Union[str, Any] = layer_norm_eps _snake_case: Dict = scale_embedding _snake_case: Dict = use_cache _snake_case: List[Any] = layerdrop _snake_case: int = activation_dropout super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
273
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCamelCase : def __init__( self : Optional[int] , __snake_case : int , __snake_case : Tuple=13 , __snake_case : Any=7 , __snake_case : Union[str, Any]=True , __snake_case : List[str]=True , __snake_case : Optional[int]=False , __snake_case : List[Any]=True , __snake_case : str=99 , __snake_case : Optional[int]=32 , __snake_case : Any=5 , __snake_case : Tuple=4 , __snake_case : List[Any]=37 , __snake_case : Union[str, Any]="gelu" , __snake_case : List[str]=0.1 , __snake_case : int=0.1 , __snake_case : Any=5_12 , __snake_case : Dict=16 , __snake_case : int=2 , __snake_case : Any=0.02 , __snake_case : Any=3 , __snake_case : str=4 , __snake_case : int=None , ): '''simple docstring''' _snake_case: Dict = parent _snake_case: Optional[int] = batch_size _snake_case: List[Any] = seq_length _snake_case: Union[str, Any] = is_training _snake_case: Optional[Any] = use_input_mask _snake_case: Dict = use_token_type_ids _snake_case: Any = use_labels _snake_case: Optional[Any] = vocab_size _snake_case: List[Any] = hidden_size _snake_case: int = num_hidden_layers _snake_case: List[str] = num_attention_heads _snake_case: List[Any] = intermediate_size _snake_case: Optional[Any] = hidden_act _snake_case: str = hidden_dropout_prob _snake_case: List[str] = attention_probs_dropout_prob _snake_case: Dict = max_position_embeddings _snake_case: Optional[Any] = type_vocab_size _snake_case: List[Any] = type_sequence_label_size _snake_case: List[str] = initializer_range _snake_case: List[str] = num_labels _snake_case: Tuple = num_choices _snake_case: Dict = scope def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case: int = None if self.use_input_mask: _snake_case: List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case: List[Any] = None if self.use_token_type_ids: _snake_case: str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case: Optional[int] = None _snake_case: Tuple = None _snake_case: Union[str, Any] = None if self.use_labels: _snake_case: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case: Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _snake_case: Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , __snake_case : List[Any] , __snake_case : Any , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : int ): '''simple docstring''' _snake_case: Optional[Any] = LlamaModel(config=__snake_case ) model.to(__snake_case ) model.eval() _snake_case: Optional[Any] = model(__snake_case , attention_mask=__snake_case ) _snake_case: Tuple = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , __snake_case : Any , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Dict , __snake_case : str , __snake_case : int , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : Any , ): '''simple docstring''' _snake_case: str = True _snake_case: int = LlamaModel(__snake_case ) model.to(__snake_case ) model.eval() _snake_case: int = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) _snake_case: Optional[int] = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , ) _snake_case: List[str] = model(__snake_case , attention_mask=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : int , __snake_case : List[str] , __snake_case : Dict , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : Union[str, Any] , ): '''simple docstring''' _snake_case: Union[str, Any] = LlamaForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() _snake_case: str = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : int , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Any , ): '''simple docstring''' _snake_case: Any = True _snake_case: Optional[int] = True _snake_case: List[str] = LlamaForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() # first forward pass _snake_case: Dict = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , use_cache=__snake_case , ) _snake_case: Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _snake_case: Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case: str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _snake_case: Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) _snake_case: Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) _snake_case: Tuple = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , output_hidden_states=__snake_case , )['hidden_states'][0] _snake_case: Dict = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , past_key_values=__snake_case , output_hidden_states=__snake_case , )['hidden_states'][0] # select random slice _snake_case: List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _snake_case: str = output_from_no_past[:, -3:, random_slice_idx].detach() _snake_case: Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: List[str] = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ): Dict = config_and_inputs _snake_case: Any = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE = (LlamaForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case: Optional[int] = LlamaModelTester(self ) _snake_case: Dict = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' _snake_case: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _snake_case: Union[str, Any] = type self.model_tester.create_and_check_model(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' _snake_case , _snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case: int = 3 _snake_case: Optional[Any] = input_dict['input_ids'] _snake_case: Tuple = input_ids.ne(1 ).to(__snake_case ) _snake_case: Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _snake_case: Union[str, Any] = LlamaForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() _snake_case: str = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' _snake_case , _snake_case: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case: Dict = 3 _snake_case: str = 'single_label_classification' _snake_case: List[str] = input_dict['input_ids'] _snake_case: Optional[int] = input_ids.ne(1 ).to(__snake_case ) _snake_case: List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _snake_case: Optional[Any] = LlamaForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() _snake_case: Optional[Any] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case: int = self.model_tester.prepare_config_and_inputs_for_common() _snake_case: Any = 3 _snake_case: Optional[int] = 'multi_label_classification' _snake_case: Tuple = input_dict['input_ids'] _snake_case: Optional[Any] = input_ids.ne(1 ).to(__snake_case ) _snake_case: List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _snake_case: Union[str, Any] = LlamaForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() _snake_case: Optional[int] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , __snake_case : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case: int = self.model_tester.prepare_config_and_inputs_for_common() _snake_case: Optional[int] = ids_tensor([1, 10] , config.vocab_size ) _snake_case: Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _snake_case: Tuple = LlamaModel(__snake_case ) original_model.to(__snake_case ) original_model.eval() _snake_case: List[Any] = original_model(__snake_case ).last_hidden_state _snake_case: List[str] = original_model(__snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _snake_case: Tuple = {'type': scaling_type, 'factor': 10.0} _snake_case: List[Any] = LlamaModel(__snake_case ) scaled_model.to(__snake_case ) scaled_model.eval() _snake_case: Dict = scaled_model(__snake_case ).last_hidden_state _snake_case: str = scaled_model(__snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__snake_case , __snake_case , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__snake_case , __snake_case , atol=1e-5 ) ) @require_torch class lowerCamelCase ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case: List[str] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _snake_case: Optional[int] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) _snake_case: Optional[int] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _snake_case: List[Any] = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , __snake_case , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _snake_case: Tuple = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __snake_case , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: Union[str, Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _snake_case: Any = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) _snake_case: int = model(torch.tensor(__snake_case ) ) # Expected mean on dim = -1 _snake_case: List[Any] = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , __snake_case , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _snake_case: Optional[Any] = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __snake_case , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' _snake_case: List[Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _snake_case: Any = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) _snake_case: List[str] = model(torch.tensor(__snake_case ) ) # Expected mean on dim = -1 _snake_case: List[Any] = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , __snake_case , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _snake_case: Optional[int] = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __snake_case , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case: int = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _snake_case: Any = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) _snake_case: Dict = model(torch.tensor(__snake_case ) ) _snake_case: Optional[Any] = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __snake_case , atol=1e-2 , rtol=1e-2 ) # fmt: off _snake_case: str = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __snake_case , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' _snake_case: Dict = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' _snake_case: Dict = 'Simply put, the theory of relativity states that ' _snake_case: List[str] = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) _snake_case: Optional[Any] = tokenizer.encode(__snake_case , return_tensors='pt' ) _snake_case: Optional[int] = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=__snake_case ) # greedy generation outputs _snake_case: List[Any] = model.generate(__snake_case , max_new_tokens=64 , top_p=__snake_case , temperature=1 , do_sample=__snake_case ) _snake_case: Dict = tokenizer.decode(generated_ids[0] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case )
273
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def a ( self : Any ): """simple docstring""" _lowerCAmelCase = TFXLMRobertaModel.from_pretrained('jplu/tf-xlm-roberta-base' ) _lowerCAmelCase = { 'input_ids': tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] , dtype=tf.intaa ), # "My dog is cute" 'attention_mask': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } _lowerCAmelCase = model(__lowerCAmelCase )['last_hidden_state'] _lowerCAmelCase = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , __lowerCAmelCase ) # compare the actual values for a slice. _lowerCAmelCase = tf.convert_to_tensor( [ [ [0.0_6_8_1_7_6_2, 0.1_0_8_9_4_4_5_1, 0.0_6_7_7_2_5_0_4], [-0.0_6_4_2_3_6_6_8, 0.0_2_3_6_6_6_1_5, 0.0_4_3_2_9_3_4_4], [-0.0_6_0_5_7_2_9_5, 0.0_9_9_7_4_1_3_5, -0.0_0_0_7_0_5_8_4], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
309
'''simple docstring''' import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger snake_case = get_logger(__name__) snake_case = R''' Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. ''' class SCREAMING_SNAKE_CASE : """simple docstring""" @add_start_docstrings(__lowerCAmelCase ) def __call__( self : List[Any] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray ): """simple docstring""" raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class SCREAMING_SNAKE_CASE : """simple docstring""" @add_start_docstrings(__lowerCAmelCase ) def __call__( self : Any , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray ): """simple docstring""" raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" @add_start_docstrings(__lowerCAmelCase ) def __call__( self : Optional[Any] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int , **__lowerCAmelCase : Tuple ): """simple docstring""" for processor in self: _lowerCAmelCase = inspect.signature(processor.__call__ ).parameters if len(__lowerCAmelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F"Make sure that all the required parameters: {list(function_args.keys() )} for " F"{processor.__class__} are passed to the logits processor." ) _lowerCAmelCase = processor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) else: _lowerCAmelCase = processor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return scores class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" def __init__( self : Any , __lowerCAmelCase : float ): """simple docstring""" if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not (temperature > 0): raise ValueError(F"`temperature` has to be a strictly positive float, but is {temperature}" ) _lowerCAmelCase = temperature def __call__( self : Optional[Any] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ): """simple docstring""" _lowerCAmelCase = scores / self.temperature return scores class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" def __init__( self : Union[str, Any] , __lowerCAmelCase : float , __lowerCAmelCase : float = -float('Inf' ) , __lowerCAmelCase : int = 1 ): """simple docstring""" if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(F"`top_p` has to be a float > 0 and < 1, but is {top_p}" ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or (min_tokens_to_keep < 1): raise ValueError(F"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}" ) _lowerCAmelCase = top_p _lowerCAmelCase = filter_value _lowerCAmelCase = min_tokens_to_keep def __call__( self : int , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = lax.top_k(__lowerCAmelCase , scores.shape[-1] ) _lowerCAmelCase = jnp.full_like(__lowerCAmelCase , self.filter_value ) _lowerCAmelCase = jax.nn.softmax(__lowerCAmelCase , axis=-1 ).cumsum(axis=-1 ) _lowerCAmelCase = cumulative_probs < self.top_p # include the token that is higher than top_p as well _lowerCAmelCase = jnp.roll(__lowerCAmelCase , 1 ) score_mask |= score_mask.at[:, 0].set(__lowerCAmelCase ) # min tokens to keep _lowerCAmelCase = score_mask.at[:, : self.min_tokens_to_keep].set(__lowerCAmelCase ) _lowerCAmelCase = jnp.where(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = jax.lax.sort_key_val(__lowerCAmelCase , __lowerCAmelCase )[-1] return next_scores class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" def __init__( self : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : float = -float('Inf' ) , __lowerCAmelCase : int = 1 ): """simple docstring""" if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or top_k <= 0: raise ValueError(F"`top_k` has to be a strictly positive integer, but is {top_k}" ) _lowerCAmelCase = max(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = filter_value def __call__( self : Tuple , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = scores.shape _lowerCAmelCase = jnp.full(batch_size * vocab_size , self.filter_value ) _lowerCAmelCase = min(self.top_k , scores.shape[-1] ) # Safety check _lowerCAmelCase , _lowerCAmelCase = lax.top_k(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = jnp.broadcast_to((jnp.arange(__lowerCAmelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() _lowerCAmelCase = topk_scores.flatten() _lowerCAmelCase = topk_indices.flatten() + shift _lowerCAmelCase = next_scores_flat.at[topk_indices_flat].set(__lowerCAmelCase ) _lowerCAmelCase = next_scores_flat.reshape(__lowerCAmelCase , __lowerCAmelCase ) return next_scores class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" def __init__( self : List[Any] , __lowerCAmelCase : int ): """simple docstring""" _lowerCAmelCase = bos_token_id def __call__( self : List[str] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ): """simple docstring""" _lowerCAmelCase = jnp.full(scores.shape , -float('inf' ) ) _lowerCAmelCase = 1 - jnp.bool_(cur_len - 1 ) _lowerCAmelCase = jnp.where(__lowerCAmelCase , new_scores.at[:, self.bos_token_id].set(0 ) , __lowerCAmelCase ) return scores class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" def __init__( self : int , __lowerCAmelCase : int , __lowerCAmelCase : int ): """simple docstring""" _lowerCAmelCase = max_length _lowerCAmelCase = eos_token_id def __call__( self : Optional[int] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ): """simple docstring""" _lowerCAmelCase = jnp.full(scores.shape , -float('inf' ) ) _lowerCAmelCase = 1 - jnp.bool_(cur_len - self.max_length + 1 ) _lowerCAmelCase = jnp.where(__lowerCAmelCase , new_scores.at[:, self.eos_token_id].set(0 ) , __lowerCAmelCase ) return scores class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" def __init__( self : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int ): """simple docstring""" if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or min_length < 0: raise ValueError(F"`min_length` has to be a positive integer, but is {min_length}" ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or eos_token_id < 0: raise ValueError(F"`eos_token_id` has to be a positive integer, but is {eos_token_id}" ) _lowerCAmelCase = min_length _lowerCAmelCase = eos_token_id def __call__( self : str , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ): """simple docstring""" _lowerCAmelCase = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) _lowerCAmelCase = jnp.where(__lowerCAmelCase , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , __lowerCAmelCase ) return scores class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" def __init__( self : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCAmelCase = list(__lowerCAmelCase ) _lowerCAmelCase = begin_index def __call__( self : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : int ): """simple docstring""" _lowerCAmelCase = 1 - jnp.bool_(cur_len - self.begin_index ) _lowerCAmelCase = jnp.where(__lowerCAmelCase , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , __lowerCAmelCase ) return scores class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCAmelCase : list ): """simple docstring""" _lowerCAmelCase = list(__lowerCAmelCase ) def __call__( self : List[Any] , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ): """simple docstring""" _lowerCAmelCase = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" def __init__( self : Tuple , __lowerCAmelCase : str ): """simple docstring""" _lowerCAmelCase = dict(__lowerCAmelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. _lowerCAmelCase = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: _lowerCAmelCase = force_token_array.at[index].set(__lowerCAmelCase ) _lowerCAmelCase = jnp.intaa(__lowerCAmelCase ) def __call__( self : str , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : jnp.ndarray , __lowerCAmelCase : int ): """simple docstring""" def _force_token(__lowerCAmelCase : int ): _lowerCAmelCase = scores.shape[0] _lowerCAmelCase = self.force_token_array[generation_idx] _lowerCAmelCase = jnp.ones_like(__lowerCAmelCase , dtype=scores.dtype ) * -float('inf' ) _lowerCAmelCase = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) _lowerCAmelCase = lax.dynamic_update_slice(__lowerCAmelCase , __lowerCAmelCase , (0, current_token) ) return new_scores _lowerCAmelCase = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(__lowerCAmelCase ) , lambda: scores , ) , ) return scores class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" def __init__( self : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ): """simple docstring""" _lowerCAmelCase = generate_config.eos_token_id _lowerCAmelCase = generate_config.no_timestamps_token_id _lowerCAmelCase = generate_config.no_timestamps_token_id + 1 _lowerCAmelCase = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(__lowerCAmelCase , 'max_initial_timestamp_index' ): _lowerCAmelCase = generate_config.max_initial_timestamp_index else: _lowerCAmelCase = model_config.vocab_size if self.max_initial_timestamp_index is None: _lowerCAmelCase = model_config.vocab_size def __call__( self : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCAmelCase = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(__lowerCAmelCase : Dict , __lowerCAmelCase : Dict ): _lowerCAmelCase = jnp.where((cur_len - self.begin_index) >= 1 , __lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , __lowerCAmelCase , ) _lowerCAmelCase = jnp.where((cur_len - self.begin_index) < 2 , __lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , __lowerCAmelCase , __lowerCAmelCase , ) return jnp.where( __lowerCAmelCase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , __lowerCAmelCase , ) _lowerCAmelCase = jax.vmap(__lowerCAmelCase )(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = jnp.where(cur_len == self.begin_index , __lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , __lowerCAmelCase , ) _lowerCAmelCase = self.timestamp_begin + self.max_initial_timestamp_index _lowerCAmelCase = jnp.where( __lowerCAmelCase , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , __lowerCAmelCase , ) # if sum of probability over timestamps is above any other token, sample timestamp _lowerCAmelCase = jax.nn.log_softmax(__lowerCAmelCase , axis=-1 ) def handle_cumulative_probs(__lowerCAmelCase : Any , __lowerCAmelCase : str ): _lowerCAmelCase = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) _lowerCAmelCase = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , __lowerCAmelCase , ) _lowerCAmelCase = jax.vmap(__lowerCAmelCase )(__lowerCAmelCase , __lowerCAmelCase ) return scores
309
1
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): UpperCamelCase_ = LEDTokenizer UpperCamelCase_ = LEDTokenizerFast UpperCamelCase_ = True def lowercase_ ( self ) -> int: """simple docstring""" super().setUp() _lowercase: Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _lowercase: int = dict(zip(A_ , range(len(A_ ) ) ) ) _lowercase: List[Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _lowercase: Union[str, Any] = {'''unk_token''': '''<unk>'''} _lowercase: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowercase: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A_ ) ) def lowercase_ ( self , **A_ ) -> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A_ ) def lowercase_ ( self , **A_ ) -> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **A_ ) def lowercase_ ( self , A_ ) -> List[str]: """simple docstring""" return "lower newer", "lower newer" @cached_property def lowercase_ ( self ) -> List[Any]: """simple docstring""" return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def lowercase_ ( self ) -> int: """simple docstring""" return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def lowercase_ ( self ) -> List[Any]: """simple docstring""" _lowercase: Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] _lowercase: Optional[Any] = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase: List[str] = tokenizer(A_ , max_length=len(A_ ) , padding=A_ , return_tensors='''pt''' ) self.assertIsInstance(A_ , A_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _lowercase: Tuple = batch.input_ids.tolist()[0] self.assertListEqual(A_ , A_ ) @require_torch def lowercase_ ( self ) -> str: """simple docstring""" _lowercase: Optional[int] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase: Optional[int] = tokenizer(A_ , padding=A_ , return_tensors='''pt''' ) self.assertIn('''input_ids''' , A_ ) self.assertIn('''attention_mask''' , A_ ) self.assertNotIn('''labels''' , A_ ) self.assertNotIn('''decoder_attention_mask''' , A_ ) @require_torch def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" _lowercase: Optional[int] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase: Optional[int] = tokenizer(text_target=A_ , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def lowercase_ ( self ) -> List[str]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase: int = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=A_ , truncation=A_ , return_tensors='''pt''' ) self.assertIsInstance(A_ , A_ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowercase_ ( self ) -> Tuple: """simple docstring""" _lowercase: Any = ['''A long paragraph for summarization.'''] _lowercase: Optional[Any] = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase: Any = tokenizer(A_ , return_tensors='''pt''' ) _lowercase: List[Any] = tokenizer(text_target=A_ , return_tensors='''pt''' ) _lowercase: Any = inputs['''input_ids'''] _lowercase: Dict = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowercase_ ( self ) -> List[str]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase: Dict = ['''Summary of the text.''', '''Another summary.'''] _lowercase: Union[str, Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowercase: int = tokenizer(A_ , padding=A_ ) _lowercase: Optional[int] = [[0] * len(A_ ) for x in encoded_output['''input_ids''']] _lowercase: Any = tokenizer.pad(A_ ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , A_ ) def lowercase_ ( self ) -> Tuple: """simple docstring""" pass def lowercase_ ( self ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowercase: str = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) _lowercase: Any = self.tokenizer_class.from_pretrained(A_ , **A_ ) _lowercase: Optional[int] = '''A, <mask> AllenNLP sentence.''' _lowercase: Tuple = tokenizer_r.encode_plus(A_ , add_special_tokens=A_ , return_token_type_ids=A_ ) _lowercase: Tuple = tokenizer_p.encode_plus(A_ , add_special_tokens=A_ , return_token_type_ids=A_ ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _lowercase: Any = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _lowercase: str = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( A_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( A_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
272
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline A__ : List[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class __magic_name__ ( datasets.BuilderConfig ): UpperCamelCase_ = None UpperCamelCase_ = "utf-8" UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = True # deprecated UpperCamelCase_ = None # deprecated UpperCamelCase_ = 10 << 20 # 10MB UpperCamelCase_ = None class __magic_name__ ( datasets.ArrowBasedBuilder ): UpperCamelCase_ = JsonConfig def lowercase_ ( self ) -> str: """simple docstring""" if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) _lowercase: List[str] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def lowercase_ ( self , A_ ) -> Any: """simple docstring""" if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _lowercase: int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A_ , (str, list, tuple) ): _lowercase: Tuple = data_files if isinstance(A_ , A_ ): _lowercase: Optional[Any] = [files] _lowercase: Dict = [dl_manager.iter_files(A_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _lowercase: str = [] for split_name, files in data_files.items(): if isinstance(A_ , A_ ): _lowercase: Optional[Any] = [files] _lowercase: str = [dl_manager.iter_files(A_ ) for file in files] splits.append(datasets.SplitGenerator(name=A_ , gen_kwargs={'''files''': files} ) ) return splits def lowercase_ ( self , A_ ) -> pa.Table: """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): _lowercase: Any = self.config.features.arrow_schema.field(A_ ).type _lowercase: Optional[Any] = pa_table.append_column(A_ , pa.array([None] * len(A_ ) , type=A_ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _lowercase: Optional[int] = table_cast(A_ , self.config.features.arrow_schema ) return pa_table def lowercase_ ( self , A_ ) -> str: """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(A_ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(A_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _lowercase: Optional[int] = json.load(A_ ) # We keep only the field we are interested in _lowercase: str = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(A_ , (list, tuple) ): _lowercase: Dict = set().union(*[row.keys() for row in dataset] ) _lowercase: List[str] = {col: [row.get(A_ ) for row in dataset] for col in keys} else: _lowercase: Dict = dataset _lowercase: Union[str, Any] = pa.Table.from_pydict(A_ ) yield file_idx, self._cast_table(A_ ) # If the file has one json object per line else: with open(A_ , '''rb''' ) as f: _lowercase: int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _lowercase: Optional[int] = max(self.config.chunksize // 32 , 16 << 10 ) _lowercase: List[Any] = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: _lowercase: Union[str, Any] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(A_ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _lowercase: Any = batch.decode(self.config.encoding , errors=A_ ).encode('''utf-8''' ) try: while True: try: _lowercase: Optional[int] = paj.read_json( io.BytesIO(A_ ) , read_options=paj.ReadOptions(block_size=A_ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(A_ , pa.ArrowInvalid ) and "straddling" not in str(A_ ) or block_size > len(A_ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'''Batch of {len(A_ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( A_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _lowercase: Optional[Any] = json.load(A_ ) except json.JSONDecodeError: logger.error(f'''Failed to read file \'{file}\' with error {type(A_ )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(A_ , A_ ): # list is the only sequence type supported in JSON try: _lowercase: Optional[int] = set().union(*[row.keys() for row in dataset] ) _lowercase: Tuple = {col: [row.get(A_ ) for row in dataset] for col in keys} _lowercase: str = pa.Table.from_pydict(A_ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'''Failed to read file \'{file}\' with error {type(A_ )}: {e}''' ) raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(A_ ) break else: logger.error(f'''Failed to read file \'{file}\' with error {type(A_ )}: {e}''' ) raise ValueError( f'''Not able to read records in the JSON file at {file}. ''' f'''You should probably indicate the field of the JSON file containing your records. ''' f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(A_ ) batch_idx += 1
272
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() A = logging.get_logger(__name__) A = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } A = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: """simple docstring""" for attribute in key.split("." ): __UpperCAmelCase : List[str] = getattr(UpperCamelCase , UpperCamelCase ) if weight_type is not None: __UpperCAmelCase : List[str] = getattr(UpperCamelCase , UpperCamelCase ).shape else: __UpperCAmelCase : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __UpperCAmelCase : Union[str, Any] = value elif weight_type == "weight_g": __UpperCAmelCase : List[Any] = value elif weight_type == "weight_v": __UpperCAmelCase : Optional[int] = value elif weight_type == "bias": __UpperCAmelCase : int = value elif weight_type == "running_mean": __UpperCAmelCase : int = value elif weight_type == "running_var": __UpperCAmelCase : Optional[int] = value elif weight_type == "num_batches_tracked": __UpperCAmelCase : Any = value elif weight_type == "inv_freq": __UpperCAmelCase : List[str] = value else: __UpperCAmelCase : Union[str, Any] = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Optional[int] = fairseq_model.state_dict() __UpperCAmelCase : str = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __UpperCAmelCase : Dict = False if "conv_layers" in name: load_conv_layer( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , hf_model.config.feat_extract_norm == "group" , ) __UpperCAmelCase : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): __UpperCAmelCase : List[Any] = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: __UpperCAmelCase : str = True if "*" in mapped_key: __UpperCAmelCase : Tuple = name.split(UpperCamelCase )[0].split("." )[-2] __UpperCAmelCase : Any = mapped_key.replace("*" , UpperCamelCase ) if "pos_bias_u" in name: __UpperCAmelCase : Dict = None elif "pos_bias_v" in name: __UpperCAmelCase : Optional[Any] = None elif "weight_g" in name: __UpperCAmelCase : Union[str, Any] = "weight_g" elif "weight_v" in name: __UpperCAmelCase : Dict = "weight_v" elif "bias" in name: __UpperCAmelCase : Tuple = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCAmelCase : Tuple = "weight" elif "running_mean" in name: __UpperCAmelCase : int = "running_mean" elif "inv_freq" in name: __UpperCAmelCase : Tuple = "inv_freq" elif "running_var" in name: __UpperCAmelCase : Union[str, Any] = "running_var" elif "num_batches_tracked" in name: __UpperCAmelCase : Optional[int] = "num_batches_tracked" else: __UpperCAmelCase : List[str] = None set_recursively(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) continue if not is_used: unused_weights.append(UpperCamelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> str: """simple docstring""" __UpperCAmelCase : Optional[Any] = full_name.split("conv_layers." )[-1] __UpperCAmelCase : List[Any] = name.split("." ) __UpperCAmelCase : List[Any] = int(items[0] ) __UpperCAmelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __UpperCAmelCase : Union[str, Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __UpperCAmelCase : Dict = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __UpperCAmelCase : int = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __UpperCAmelCase : Any = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(UpperCamelCase ) @torch.no_grad() def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=True ) -> Optional[int]: """simple docstring""" if config_path is not None: __UpperCAmelCase : int = WavaVecaConformerConfig.from_pretrained(UpperCamelCase , hidden_act="swish" ) else: __UpperCAmelCase : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __UpperCAmelCase : str = "rotary" if is_finetuned: if dict_path: __UpperCAmelCase : int = Dictionary.load(UpperCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCAmelCase : Optional[Any] = target_dict.pad_index __UpperCAmelCase : Dict = target_dict.bos_index __UpperCAmelCase : Dict = target_dict.eos_index __UpperCAmelCase : List[Any] = len(target_dict.symbols ) __UpperCAmelCase : Union[str, Any] = os.path.join(UpperCamelCase , "vocab.json" ) if not os.path.isdir(UpperCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(UpperCamelCase ) ) return os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) __UpperCAmelCase : Dict = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCAmelCase : Any = 0 __UpperCAmelCase : Tuple = 1 with open(UpperCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Any = WavaVecaCTCTokenizer( UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=UpperCamelCase , ) __UpperCAmelCase : List[str] = True if config.feat_extract_norm == "layer" else False __UpperCAmelCase : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=UpperCamelCase , return_attention_mask=UpperCamelCase , ) __UpperCAmelCase : List[Any] = WavaVecaProcessor(feature_extractor=UpperCamelCase , tokenizer=UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) __UpperCAmelCase : Any = WavaVecaConformerForCTC(UpperCamelCase ) else: __UpperCAmelCase : int = WavaVecaConformerForPreTraining(UpperCamelCase ) if is_finetuned: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: __UpperCAmelCase : int = argparse.Namespace(task="audio_pretraining" ) __UpperCAmelCase : List[str] = fairseq.tasks.setup_task(UpperCamelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCamelCase ) __UpperCAmelCase : List[str] = model[0].eval() recursively_load_weights(UpperCamelCase , UpperCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) A = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
77
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class a__ ( __magic_name__ , unittest.TestCase ): lowercase_ = ShapEPipeline lowercase_ = ["prompt"] lowercase_ = ["prompt"] lowercase_ = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] lowercase_ = False @property def a_ ( self : Optional[int]): """simple docstring""" return 32 @property def a_ ( self : Any): """simple docstring""" return 32 @property def a_ ( self : int): """simple docstring""" return self.time_input_dim * 4 @property def a_ ( self : List[Any]): """simple docstring""" return 8 @property def a_ ( self : List[Any]): """simple docstring""" __UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def a_ ( self : List[str]): """simple docstring""" torch.manual_seed(0) __UpperCAmelCase : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase_) @property def a_ ( self : Any): """simple docstring""" torch.manual_seed(0) __UpperCAmelCase : Union[str, Any] = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } __UpperCAmelCase : Dict = PriorTransformer(**UpperCamelCase_) return model @property def a_ ( self : Union[str, Any]): """simple docstring""" torch.manual_seed(0) __UpperCAmelCase : Tuple = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } __UpperCAmelCase : List[Any] = ShapERenderer(**UpperCamelCase_) return model def a_ ( self : List[str]): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.dummy_prior __UpperCAmelCase : str = self.dummy_text_encoder __UpperCAmelCase : int = self.dummy_tokenizer __UpperCAmelCase : int = self.dummy_renderer __UpperCAmelCase : Tuple = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) __UpperCAmelCase : str = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def a_ ( self : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Any=0): """simple docstring""" if str(UpperCamelCase_).startswith("mps"): __UpperCAmelCase : List[Any] = torch.manual_seed(UpperCamelCase_) else: __UpperCAmelCase : str = torch.Generator(device=UpperCamelCase_).manual_seed(UpperCamelCase_) __UpperCAmelCase : List[Any] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : str = "cpu" __UpperCAmelCase : Union[str, Any] = self.get_dummy_components() __UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_) __UpperCAmelCase : Any = pipe.to(UpperCamelCase_) pipe.set_progress_bar_config(disable=UpperCamelCase_) __UpperCAmelCase : Optional[Any] = pipe(**self.get_dummy_inputs(UpperCamelCase_)) __UpperCAmelCase : Union[str, Any] = output.images[0] __UpperCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __UpperCAmelCase : Union[str, Any] = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def a_ ( self : Tuple): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2]) def a_ ( self : Dict): """simple docstring""" __UpperCAmelCase : Union[str, Any] = torch_device == "cpu" __UpperCAmelCase : Optional[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.get_dummy_components() __UpperCAmelCase : List[str] = self.pipeline_class(**UpperCamelCase_) __UpperCAmelCase : int = pipe.to(UpperCamelCase_) pipe.set_progress_bar_config(disable=UpperCamelCase_) __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Any = 2 __UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(UpperCamelCase_) for key in inputs.keys(): if key in self.batch_params: __UpperCAmelCase : List[Any] = batch_size * [inputs[key]] __UpperCAmelCase : List[Any] = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class a__ ( unittest.TestCase ): def a_ ( self : List[str]): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self : List[str]): """simple docstring""" __UpperCAmelCase : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy") __UpperCAmelCase : Optional[Any] = ShapEPipeline.from_pretrained("openai/shap-e") __UpperCAmelCase : Any = pipe.to(UpperCamelCase_) pipe.set_progress_bar_config(disable=UpperCamelCase_) __UpperCAmelCase : Dict = torch.Generator(device=UpperCamelCase_).manual_seed(0) __UpperCAmelCase : int = pipe( "a shark" , generator=UpperCamelCase_ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_)
77
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '▁' __UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __UpperCAmelCase = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } __UpperCAmelCase = { 'facebook/xglm-564M': 2048, } class _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['input_ids', 'attention_mask'] def __init__( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE="<s>" ,__SCREAMING_SNAKE_CASE="</s>" ,__SCREAMING_SNAKE_CASE="</s>" ,__SCREAMING_SNAKE_CASE="<s>" ,__SCREAMING_SNAKE_CASE="<unk>" ,__SCREAMING_SNAKE_CASE="<pad>" ,__SCREAMING_SNAKE_CASE = None ,**__SCREAMING_SNAKE_CASE ,): SCREAMING_SNAKE_CASE : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer SCREAMING_SNAKE_CASE : str = 7 SCREAMING_SNAKE_CASE : Union[str, Any] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] SCREAMING_SNAKE_CASE : Tuple = kwargs.get('additional_special_tokens' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__SCREAMING_SNAKE_CASE ,eos_token=__SCREAMING_SNAKE_CASE ,unk_token=__SCREAMING_SNAKE_CASE ,sep_token=__SCREAMING_SNAKE_CASE ,cls_token=__SCREAMING_SNAKE_CASE ,pad_token=__SCREAMING_SNAKE_CASE ,sp_model_kwargs=self.sp_model_kwargs ,**__SCREAMING_SNAKE_CASE ,) SCREAMING_SNAKE_CASE : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE : Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE : List[Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} SCREAMING_SNAKE_CASE : Tuple = len(self.sp_model ) SCREAMING_SNAKE_CASE : int = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): SCREAMING_SNAKE_CASE : Dict = self.__dict__.copy() SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self ,__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Tuple = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): SCREAMING_SNAKE_CASE : Union[str, Any] = {} SCREAMING_SNAKE_CASE : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ,__SCREAMING_SNAKE_CASE = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE ,token_ids_a=__SCREAMING_SNAKE_CASE ,already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ): SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __a ( self ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __a ( self ): SCREAMING_SNAKE_CASE : Tuple = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self ,__SCREAMING_SNAKE_CASE ): return self.sp_model.encode(__SCREAMING_SNAKE_CASE ,out_type=__SCREAMING_SNAKE_CASE ) def __a ( self ,__SCREAMING_SNAKE_CASE ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE : Union[str, Any] = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __a ( self ,__SCREAMING_SNAKE_CASE ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __a ( self ,__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : List[Any] = ''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE ,' ' ).strip() return out_string def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ): if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join( __SCREAMING_SNAKE_CASE ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE ,'wb' ) as fi: SCREAMING_SNAKE_CASE : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
220
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __UpperCAmelCase = '\\n\n' __UpperCAmelCase = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' __UpperCAmelCase = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def __a ( self ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) ,reference_urls=['https://huggingface.co/docs/transformers/perplexity'] ,) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = 16 ,__SCREAMING_SNAKE_CASE = True ,__SCREAMING_SNAKE_CASE=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": SCREAMING_SNAKE_CASE : Tuple = 'cuda' else: SCREAMING_SNAKE_CASE : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' SCREAMING_SNAKE_CASE : List[str] = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.to(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: SCREAMING_SNAKE_CASE : Optional[int] = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" SCREAMING_SNAKE_CASE : int = model.config.max_length - 1 else: SCREAMING_SNAKE_CASE : Union[str, Any] = model.config.max_length SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer( __SCREAMING_SNAKE_CASE ,add_special_tokens=__SCREAMING_SNAKE_CASE ,padding=__SCREAMING_SNAKE_CASE ,truncation=__SCREAMING_SNAKE_CASE ,max_length=__SCREAMING_SNAKE_CASE ,return_tensors='pt' ,return_attention_mask=__SCREAMING_SNAKE_CASE ,).to(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = encodings['input_ids'] SCREAMING_SNAKE_CASE : Dict = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) ,1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) ,2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : List[str] = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 ,len(__SCREAMING_SNAKE_CASE ) ,__SCREAMING_SNAKE_CASE ) ): SCREAMING_SNAKE_CASE : List[str] = min(start_index + batch_size ,len(__SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE : List[str] = encoded_texts[start_index:end_index] SCREAMING_SNAKE_CASE : Any = attn_masks[start_index:end_index] if add_start_token: SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = torch.cat([bos_tokens_tensor, encoded_batch] ,dim=1 ) SCREAMING_SNAKE_CASE : int = torch.cat( [torch.ones(bos_tokens_tensor.size() ,dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask] ,dim=1 ) SCREAMING_SNAKE_CASE : str = encoded_batch with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ).logits SCREAMING_SNAKE_CASE : int = out_logits[..., :-1, :].contiguous() SCREAMING_SNAKE_CASE : List[Any] = labels[..., 1:].contiguous() SCREAMING_SNAKE_CASE : Any = attn_mask[..., 1:].contiguous() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.expa( (loss_fct(shift_logits.transpose(1 ,2 ) ,__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
220
1
"""simple docstring""" import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( _lowerCAmelCase , unittest.TestCase ): """simple docstring""" A__ : Tuple = AlbertTokenizer A__ : Any = AlbertTokenizerFast A__ : List[str] = True A__ : Optional[Any] = True A__ : Tuple = True def snake_case__ ( self ) -> Any: super().setUp() # We have a SentencePiece fixture for testing A__ = AlbertTokenizer(SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Dict: A__ = "this is a test" A__ = "this is a test" return input_text, output_text def snake_case__ ( self ) -> List[str]: A__ = "<pad>" A__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Tuple: A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 30000 ) def snake_case__ ( self ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def snake_case__ ( self ) -> Optional[Any]: if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = "I was born in 92000, and this is falsé." A__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) A__ = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) A__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(SCREAMING_SNAKE_CASE__ ) A__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> str: A__ = AlbertTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) A__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [48, 25, 21, 1289] ) A__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) A__ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) A__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def snake_case__ ( self ) -> Union[str, Any]: A__ = AlbertTokenizer(SCREAMING_SNAKE_CASE__ ) A__ = tokenizer.encode("sequence builders" ) A__ = tokenizer.encode("multi-sequence build" ) A__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) A__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def snake_case__ ( self ) -> str: # fmt: off A__ = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
104
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : List[str] = "data2vec-audio" def __init__( self , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0_2 , SCREAMING_SNAKE_CASE__=1e-5 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=(512, 512, 512, 512, 512, 512, 512) , SCREAMING_SNAKE_CASE__=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE__=(10, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=19 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=0.0_5 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__="sum" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=(512, 512, 512, 512, 1500) , SCREAMING_SNAKE_CASE__=(5, 3, 3, 1, 1) , SCREAMING_SNAKE_CASE__=(1, 2, 3, 1, 1) , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ) -> Dict: super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) A__ = hidden_size A__ = feat_extract_activation A__ = list(SCREAMING_SNAKE_CASE__ ) A__ = list(SCREAMING_SNAKE_CASE__ ) A__ = list(SCREAMING_SNAKE_CASE__ ) A__ = conv_bias A__ = num_conv_pos_embeddings A__ = num_conv_pos_embedding_groups A__ = conv_pos_kernel_size A__ = len(self.conv_dim ) A__ = num_hidden_layers A__ = intermediate_size A__ = hidden_act A__ = num_attention_heads A__ = hidden_dropout A__ = attention_dropout A__ = activation_dropout A__ = feat_proj_dropout A__ = final_dropout A__ = layerdrop A__ = layer_norm_eps A__ = initializer_range A__ = vocab_size A__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A__ = mask_time_prob A__ = mask_time_length A__ = mask_time_min_masks A__ = mask_feature_prob A__ = mask_feature_length A__ = mask_feature_min_masks # ctc loss A__ = ctc_loss_reduction A__ = ctc_zero_infinity # adapter A__ = add_adapter A__ = adapter_kernel_size A__ = adapter_stride A__ = num_adapter_layers A__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. A__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. A__ = list(SCREAMING_SNAKE_CASE__ ) A__ = list(SCREAMING_SNAKE_CASE__ ) A__ = list(SCREAMING_SNAKE_CASE__ ) A__ = xvector_output_dim @property def snake_case__ ( self ) -> List[str]: return math.prod(self.conv_stride )
104
1
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ = None , snake_case_ = None ): """simple docstring""" super().__init__() A_ : List[str] = pad_token_id A_ : List[str] = max_length A_ : int = vocab A_ : List[Any] = merges A_ : Optional[int] = BytePairTokenizer(snake_case_ , snake_case_ , sequence_length=snake_case_ ) @classmethod def lowerCamelCase_ ( cls , snake_case_ , *snake_case_ , **snake_case_ ): """simple docstring""" A_ : Optional[int] = [' '.join(snake_case_ ) for m in tokenizer.bpe_ranks.keys()] A_ : Union[str, Any] = tokenizer.get_vocab() return cls(snake_case_ , snake_case_ , *snake_case_ , **snake_case_ ) @classmethod def lowerCamelCase_ ( cls , snake_case_ , *snake_case_ , **snake_case_ ): """simple docstring""" A_ : List[str] = GPTaTokenizer.from_pretrained(snake_case_ , *snake_case_ , **snake_case_ ) return cls.from_tokenizer(snake_case_ , *snake_case_ , **snake_case_ ) @classmethod def lowerCamelCase_ ( cls , snake_case_ ): """simple docstring""" return cls(**snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase_ ( self , snake_case_ , snake_case_ = None ): """simple docstring""" A_ : Dict = self.tf_tokenizer(snake_case_ ) A_ : Union[str, Any] = tf.ones_like(snake_case_ ) if self.pad_token_id is not None: # pad the tokens up to max length A_ : Any = max_length if max_length is not None else self.max_length if max_length is not None: A_ , A_ : List[str] = pad_model_inputs( snake_case_ , max_seq_length=snake_case_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
302
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : Tuple = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : Union[str, Any] = """informer""" lowercase_ : str = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , snake_case_ = None , snake_case_ = None , snake_case_ = "student_t" , snake_case_ = "nll" , snake_case_ = 1 , snake_case_ = None , snake_case_ = "mean" , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = 6_4 , snake_case_ = 3_2 , snake_case_ = 3_2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = True , snake_case_ = "gelu" , snake_case_ = 0.05 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 1_0_0 , snake_case_ = 0.02 , snake_case_=True , snake_case_ = "prob" , snake_case_ = 5 , snake_case_ = True , **snake_case_ , ): """simple docstring""" A_ : Tuple = prediction_length A_ : Any = context_length or prediction_length A_ : Tuple = distribution_output A_ : Union[str, Any] = loss A_ : Any = input_size A_ : Dict = num_time_features A_ : int = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] A_ : Optional[Any] = scaling A_ : Optional[Any] = num_dynamic_real_features A_ : Union[str, Any] = num_static_real_features A_ : Optional[int] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) A_ : Dict = cardinality else: A_ : Tuple = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) A_ : Dict = embedding_dimension else: A_ : List[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] A_ : Optional[Any] = num_parallel_samples # Transformer architecture configuration A_ : Any = input_size * len(self.lags_sequence ) + self._number_of_features A_ : List[Any] = d_model A_ : Tuple = encoder_attention_heads A_ : int = decoder_attention_heads A_ : Any = encoder_ffn_dim A_ : Optional[Any] = decoder_ffn_dim A_ : List[str] = encoder_layers A_ : str = decoder_layers A_ : Any = dropout A_ : Optional[Any] = attention_dropout A_ : Optional[int] = activation_dropout A_ : Union[str, Any] = encoder_layerdrop A_ : Optional[int] = decoder_layerdrop A_ : Optional[Any] = activation_function A_ : Any = init_std A_ : str = use_cache # Informer A_ : List[str] = attention_type A_ : Optional[int] = sampling_factor A_ : Any = distil super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ ) @property def lowerCamelCase_ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
302
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __snake_case ( unittest.TestCase): _lowerCAmelCase = StableDiffusionLDMaDPipeline _lowerCAmelCase = TEXT_TO_IMAGE_PARAMS _lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, ) lowerCamelCase : Optional[Any] = DDIMScheduler( beta_start=0.0_0085, beta_end=0.012, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, ) torch.manual_seed(0 ) lowerCamelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64], in_channels=6, out_channels=6, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) torch.manual_seed(0 ) lowerCamelCase : Union[str, Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) lowerCamelCase : List[Any] = CLIPTextModel(A ) lowerCamelCase : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase : Dict = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase_ ( self, A, A=0 ): """simple docstring""" if str(A ).startswith('mps' ): lowerCamelCase : Optional[int] = torch.manual_seed(A ) else: lowerCamelCase : Optional[int] = torch.Generator(device=A ).manual_seed(A ) lowerCamelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase : Any = self.get_dummy_components() lowerCamelCase : str = StableDiffusionLDMaDPipeline(**A ) lowerCamelCase : List[str] = ldmad_pipe.to(A ) ldmad_pipe.set_progress_bar_config(disable=A ) lowerCamelCase : int = self.get_dummy_inputs(A ) lowerCamelCase : Dict = ldmad_pipe(**A ) lowerCamelCase , lowerCamelCase : List[str] = output.rgb, output.depth lowerCamelCase : List[str] = rgb[0, -3:, -3:, -1] lowerCamelCase : str = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCamelCase : List[Any] = np.array( [0.3733_8176, 0.7_0247, 0.7420_3193, 0.5164_3604, 0.5825_6793, 0.6093_2136, 0.418_1095, 0.4835_5877, 0.4653_5262] ) lowerCamelCase : List[Any] = np.array([103.4_6727, 85.81_2004, 87.84_9236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : int = self.get_dummy_components() lowerCamelCase : Union[str, Any] = StableDiffusionLDMaDPipeline(**A ) lowerCamelCase : List[str] = ldmad_pipe.to(A ) ldmad_pipe.set_progress_bar_config(disable=A ) lowerCamelCase : List[str] = self.get_dummy_inputs(A ) lowerCamelCase : Dict = 3 * [inputs['prompt']] # forward lowerCamelCase : str = ldmad_pipe(**A ) lowerCamelCase , lowerCamelCase : Any = output.rgb, output.depth lowerCamelCase : int = rgb_slice_a[0, -3:, -3:, -1] lowerCamelCase : int = depth_slice_a[0, -3:, -1] lowerCamelCase : List[Any] = self.get_dummy_inputs(A ) lowerCamelCase : Union[str, Any] = 3 * [inputs.pop('prompt' )] lowerCamelCase : Union[str, Any] = ldmad_pipe.tokenizer( A, padding='max_length', max_length=ldmad_pipe.tokenizer.model_max_length, truncation=A, return_tensors='pt', ) lowerCamelCase : Union[str, Any] = text_inputs['input_ids'].to(A ) lowerCamelCase : str = ldmad_pipe.text_encoder(A )[0] lowerCamelCase : Tuple = prompt_embeds # forward lowerCamelCase : Union[str, Any] = ldmad_pipe(**A ) lowerCamelCase , lowerCamelCase : Any = output.rgb, output.depth lowerCamelCase : List[Any] = rgb_slice_a[0, -3:, -3:, -1] lowerCamelCase : str = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase : Union[str, Any] = self.get_dummy_components() lowerCamelCase : Optional[Any] = PNDMScheduler(skip_prk_steps=A ) lowerCamelCase : str = StableDiffusionLDMaDPipeline(**A ) lowerCamelCase : Any = ldmad_pipe.to(A ) ldmad_pipe.set_progress_bar_config(disable=A ) lowerCamelCase : Any = self.get_dummy_inputs(A ) lowerCamelCase : Optional[Any] = 'french fries' lowerCamelCase : List[str] = ldmad_pipe(**A, negative_prompt=A ) lowerCamelCase , lowerCamelCase : Union[str, Any] = output.rgb, output.depth lowerCamelCase : List[Any] = rgb[0, -3:, -3:, -1] lowerCamelCase : List[Any] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCamelCase : Optional[int] = np.array( [0.3_7044, 0.7181_1503, 0.722_3251, 0.4860_3675, 0.563_8391, 0.636_4948, 0.4283_3704, 0.490_1315, 0.4792_6217] ) lowerCamelCase : Optional[Any] = np.array([107.8_4738, 84.6_2802, 89.96_2135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class __snake_case ( unittest.TestCase): def UpperCAmelCase_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ): """simple docstring""" lowerCamelCase : Tuple = torch.Generator(device=A ).manual_seed(A ) lowerCamelCase : int = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) ) lowerCamelCase : List[str] = torch.from_numpy(A ).to(device=A, dtype=A ) lowerCamelCase : Any = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ) lowerCamelCase : Union[str, Any] = ldmad_pipe.to(A ) ldmad_pipe.set_progress_bar_config(disable=A ) lowerCamelCase : Any = self.get_inputs(A ) lowerCamelCase : Tuple = ldmad_pipe(**A ) lowerCamelCase , lowerCamelCase : Optional[Any] = output.rgb, output.depth lowerCamelCase : List[Any] = rgb[0, -3:, -3:, -1].flatten() lowerCamelCase : Optional[Any] = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) lowerCamelCase : str = np.array( [0.5380_5465, 0.5670_7305, 0.548_6515, 0.5701_2236, 0.581_4511, 0.5625_3487, 0.5484_3014, 0.5509_2263, 0.645_9706] ) lowerCamelCase : List[Any] = np.array( [0.926_3781, 0.667_8672, 0.548_6515, 0.9220_2145, 0.6783_1135, 0.5625_3487, 0.924_1694, 0.755_1478, 0.645_9706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class __snake_case ( unittest.TestCase): def UpperCAmelCase_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ): """simple docstring""" lowerCamelCase : List[str] = torch.Generator(device=A ).manual_seed(A ) lowerCamelCase : Union[str, Any] = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) ) lowerCamelCase : int = torch.from_numpy(A ).to(device=A, dtype=A ) lowerCamelCase : str = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Tuple = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ).to(A ) ldmad_pipe.set_progress_bar_config(disable=A ) lowerCamelCase : Any = self.get_inputs(A ) lowerCamelCase : List[Any] = ldmad_pipe(**A ) lowerCamelCase , lowerCamelCase : str = output.rgb, output.depth lowerCamelCase : Optional[Any] = 0.49_5586 lowerCamelCase : Union[str, Any] = 0.3379_5515 lowerCamelCase : Any = 112.4_8518 lowerCamelCase : Union[str, Any] = 98.48_9746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Any = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c' ).to(A ) ldmad_pipe.set_progress_bar_config(disable=A ) lowerCamelCase : int = self.get_inputs(A ) lowerCamelCase : Tuple = ldmad_pipe(**A ) lowerCamelCase , lowerCamelCase : List[Any] = output.rgb, output.depth lowerCamelCase : int = 0.419_4127 lowerCamelCase : str = 0.3537_5586 lowerCamelCase : Optional[Any] = 0.563_8502 lowerCamelCase : Optional[Any] = 0.3468_6103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
320
'''simple docstring''' import argparse from collections import defaultdict def UpperCAmelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict): lowerCamelCase : Optional[int] = F'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(UpperCAmelCase__ , 'r') as f: lowerCamelCase : Any = f.readlines() lowerCamelCase : List[Any] = F'''class {class_name}(''' lowerCamelCase : Optional[Any] = F'''{4 * ' '}def {test_name}(''' lowerCamelCase : Tuple = F'''{8 * ' '}{correct_line.split()[0]}''' lowerCamelCase : List[Any] = F'''{16 * ' '}{correct_line.split()[0]}''' lowerCamelCase : Any = False lowerCamelCase : Optional[Any] = False lowerCamelCase : List[Any] = False lowerCamelCase : Optional[int] = False lowerCamelCase : str = 0 lowerCamelCase : int = 0 lowerCamelCase : int = [] for line in lines: if line.startswith(UpperCAmelCase__): lowerCamelCase : List[str] = True elif in_class and line.startswith(UpperCAmelCase__): lowerCamelCase : str = True elif in_class and in_func and (line.startswith(UpperCAmelCase__) or line.startswith(UpperCAmelCase__)): lowerCamelCase : Optional[int] = len(line.split(correct_line.split()[0])[0]) count += 1 if count == done_test[_id]: lowerCamelCase : Dict = True if in_class and in_func and in_line: if ")" not in line: continue else: lowerCamelCase : List[str] = True if in_class and in_func and in_line and insert_line: new_lines.append(F'''{spaces * ' '}{correct_line}''') lowerCamelCase : Union[str, Any] = False else: new_lines.append(UpperCAmelCase__) with open(UpperCAmelCase__ , 'w') as f: for line in new_lines: f.write(UpperCAmelCase__) def UpperCAmelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any]=None): if fail is not None: with open(UpperCAmelCase__ , 'r') as f: lowerCamelCase : Any = {l.strip() for l in f.readlines()} else: lowerCamelCase : Dict = None with open(UpperCAmelCase__ , 'r') as f: lowerCamelCase : Optional[int] = f.readlines() lowerCamelCase : str = defaultdict(UpperCAmelCase__) for line in correct_lines: lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : List[Any] = line.split(';') if test_failures is None or "::".join([file, class_name, test_name]) in test_failures: overwrite_file(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) A = parser.parse_args() main(args.correct_filename, args.fail_filename)
320
1
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _lowerCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _lowerCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _lowerCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head("""https://huggingface.co""" )
702
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=3 , a__=30 , a__=400 , a__=True , a__=None , a__=True , a__=[0.5, 0.5, 0.5] , a__=[0.5, 0.5, 0.5] , a__=True , a__=1 / 255 , a__=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p A_ : Optional[int] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} A_ : str = parent A_ : Dict = batch_size A_ : str = num_channels A_ : List[str] = min_resolution A_ : List[Any] = max_resolution A_ : Optional[Any] = do_resize A_ : int = size A_ : List[Any] = do_normalize A_ : List[Any] = image_mean A_ : Dict = image_std A_ : Tuple = do_rescale A_ : List[Any] = rescale_factor A_ : Tuple = do_pad def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowerCamelCase ( self , a__ , a__=False ): if not batched: A_ : List[str] = image_inputs[0] if isinstance(a__ , Image.Image ): A_ , A_ : Tuple = image.size else: A_ , A_ : List[Any] = image.shape[1], image.shape[2] if w < h: A_ : List[str] = int(self.size["""shortest_edge"""] * h / w ) A_ : Tuple = self.size["""shortest_edge"""] elif w > h: A_ : Tuple = self.size["""shortest_edge"""] A_ : Union[str, Any] = int(self.size["""shortest_edge"""] * w / h ) else: A_ : Optional[Any] = self.size["""shortest_edge"""] A_ : int = self.size["""shortest_edge"""] else: A_ : List[Any] = [] for image in image_inputs: A_ , A_ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : List[Any] = max(a__ , key=lambda a__ : item[0] )[0] A_ : Tuple = max(a__ , key=lambda a__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): a = DetaImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): A_ : str = DetaImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): A_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , """image_mean""" ) ) self.assertTrue(hasattr(a__ , """image_std""" ) ) self.assertTrue(hasattr(a__ , """do_normalize""" ) ) self.assertTrue(hasattr(a__ , """do_resize""" ) ) self.assertTrue(hasattr(a__ , """do_rescale""" ) ) self.assertTrue(hasattr(a__ , """do_pad""" ) ) self.assertTrue(hasattr(a__ , """size""" ) ) def _lowerCamelCase ( self ): A_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , a__ ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input A_ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Optional[int] = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Optional[Any] = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) A_ : Optional[int] = image_processing(a__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self ): # Initialize image_processing A_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : Tuple = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : Optional[int] = image_processing(a__ , return_tensors="""pt""" ).pixel_values A_ , A_ : Union[str, Any] = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self ): # Initialize image_processing A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input A_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_ , A_ : str = self.image_processor_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : str = image_processing(a__ , return_tensors="""pt""" ).pixel_values A_ , A_ : List[Any] = self.image_processor_tester.get_expected_values(a__ , batched=a__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowerCamelCase ( self ): # prepare image and target A_ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: A_ : int = json.loads(f.read() ) A_ : Union[str, Any] = {"""image_id""": 39769, """annotations""": target} # encode them A_ : str = DetaImageProcessor() A_ : int = image_processing(images=a__ , annotations=a__ , return_tensors="""pt""" ) # verify pixel values A_ : List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , a__ ) A_ : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , a__ , atol=1E-4 ) ) # verify area A_ : int = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , a__ ) ) # verify boxes A_ : str = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , a__ ) A_ : List[Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , a__ , atol=1E-3 ) ) # verify image_id A_ : Optional[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , a__ ) ) # verify is_crowd A_ : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , a__ ) ) # verify class_labels A_ : Optional[int] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , a__ ) ) # verify orig_size A_ : Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , a__ ) ) # verify size A_ : Tuple = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , a__ ) ) @slow def _lowerCamelCase ( self ): # prepare image, target and masks_path A_ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: A_ : Any = json.loads(f.read() ) A_ : Any = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} A_ : Tuple = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them A_ : str = DetaImageProcessor(format="""coco_panoptic""" ) A_ : Tuple = image_processing(images=a__ , annotations=a__ , masks_path=a__ , return_tensors="""pt""" ) # verify pixel values A_ : str = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , a__ ) A_ : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , a__ , atol=1E-4 ) ) # verify area A_ : Dict = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , a__ ) ) # verify boxes A_ : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , a__ ) A_ : List[str] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , a__ , atol=1E-3 ) ) # verify image_id A_ : int = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , a__ ) ) # verify is_crowd A_ : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , a__ ) ) # verify class_labels A_ : Union[str, Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , a__ ) ) # verify masks A_ : Tuple = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , a__ ) # verify orig_size A_ : Union[str, Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , a__ ) ) # verify size A_ : Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , a__ ) )
481
0
def SCREAMING_SNAKE_CASE__ ( _lowercase : Dict ) -> str: '''simple docstring''' lowercase__ : Optional[Any] = int(__UpperCamelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(__UpperCamelCase ) lowercase__ : int = divmod(__UpperCamelCase , 2 ) return binary_recursive(__UpperCamelCase ) + str(__UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( _lowercase : Union[str, Any] ) -> str: '''simple docstring''' lowercase__ : List[Any] = str(__UpperCamelCase ).strip() if not number: raise ValueError('No input value was provided' ) lowercase__ : int = "-" if number.startswith('-' ) else "" lowercase__ : Optional[int] = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return f"""{negative}0b{binary_recursive(int(__UpperCamelCase ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
266
import operator as op lowerCamelCase = """scaler.pt""" lowerCamelCase = """pytorch_model""" lowerCamelCase = """random_states""" lowerCamelCase = """optimizer""" lowerCamelCase = """scheduler""" lowerCamelCase = """pytorch_model.bin""" lowerCamelCase = """pytorch_model.bin.index.json""" lowerCamelCase = """model.safetensors""" lowerCamelCase = """model.safetensors.index.json""" lowerCamelCase = """1.10.2""" lowerCamelCase = """py38""" lowerCamelCase = """4.17.0""" lowerCamelCase = ["""ml.p3.16xlarge""", """ml.p3dn.24xlarge""", """ml.p4dn.24xlarge"""] lowerCamelCase = ["""FULL_SHARD""", """SHARD_GRAD_OP""", """NO_SHARD""", """HYBRID_SHARD""", """HYBRID_SHARD_ZERO2"""] lowerCamelCase = ["""TRANSFORMER_BASED_WRAP""", """SIZE_BASED_WRAP""", """NO_WRAP"""] lowerCamelCase = ["""BACKWARD_PRE""", """BACKWARD_POST""", """NO_PREFETCH"""] lowerCamelCase = ["""FULL_STATE_DICT""", """LOCAL_STATE_DICT""", """SHARDED_STATE_DICT"""] lowerCamelCase = """2.0.1""" lowerCamelCase = ["""pdsh""", """standard""", """openmpi""", """mvapich"""] lowerCamelCase = ["""default""", """reduce-overhead""", """max-autotune"""] lowerCamelCase = {""">""": op.gt, """>=""": op.ge, """==""": op.eq, """!=""": op.ne, """<=""": op.le, """<""": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 lowerCamelCase = [ """nnodes""", """nproc_per_node""", """rdzv_backend""", """rdzv_endpoint""", """rdzv_id""", """rdzv_conf""", """standalone""", """max_restarts""", """monitor_interval""", """start_method""", """role""", """module""", """m""", """no_python""", """run_path""", """log_dir""", """r""", """redirects""", """t""", """tee""", """node_rank""", """master_addr""", """master_port""", ] lowerCamelCase = ["""DEEPSPEED""", """MULTI_GPU""", """FSDP""", """MEGATRON_LM"""] lowerCamelCase = ["""DEEPSPEED""", """MULTI_XPU""", """FSDP"""]
191
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowercase :Union[str, Any] = logging.get_logger(__name__) __lowercase :Any = {'vocab_file': 'vocab.txt'} __lowercase :str = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } __lowercase :Optional[int] = { 'openbmb/cpm-ant-10b': 1_024, } def UpperCAmelCase ( _lowerCamelCase : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = collections.OrderedDict() with open(_lowercase , "r" , encoding="utf-8" ) as reader: SCREAMING_SNAKE_CASE__ : List[str] = reader.readlines() for index, token in enumerate(_lowercase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = token.rstrip("\n" ) SCREAMING_SNAKE_CASE__ : Optional[int] = index return vocab class _a ( UpperCamelCase_ ): """simple docstring""" def __init__( self : Tuple , a : Optional[Any] , a : Union[str, Any]="<unk>" , a : List[Any]=2_00 ) ->str: SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab SCREAMING_SNAKE_CASE__ : str = unk_token SCREAMING_SNAKE_CASE__ : Any = max_input_chars_per_word def A_ ( self : Any , a : Dict ) ->Tuple: SCREAMING_SNAKE_CASE__ : List[Any] = list(UpperCamelCase__ ) if len(UpperCamelCase__ ) > self.max_input_chars_per_word: return [self.unk_token] SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = [] while start < len(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] = len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any = None while start < end: SCREAMING_SNAKE_CASE__ : int = ''''''.join(chars[start:end] ) if substr in self.vocab: SCREAMING_SNAKE_CASE__ : List[Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[str] = end return sub_tokens class _a ( UpperCamelCase_ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = False def __init__( self : List[Any] , a : Optional[int] , a : Union[str, Any]="<d>" , a : Union[str, Any]="</d>" , a : Dict="<s>" , a : int="</s>" , a : Optional[Any]="<pad>" , a : Union[str, Any]="<unk>" , a : int="</n>" , a : List[str]="</_>" , a : Tuple="left" , **a : List[str] , ) ->int: requires_backends(self , ["jieba"] ) super().__init__( bod_token=UpperCamelCase__ , eod_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , line_token=UpperCamelCase__ , space_token=UpperCamelCase__ , padding_side=UpperCamelCase__ , **UpperCamelCase__ , ) SCREAMING_SNAKE_CASE__ : List[str] = bod_token SCREAMING_SNAKE_CASE__ : Optional[int] = eod_token SCREAMING_SNAKE_CASE__ : Dict = load_vocab(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any = self.encoder[space_token] SCREAMING_SNAKE_CASE__ : Any = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] SCREAMING_SNAKE_CASE__ : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a : x[1] ) ) SCREAMING_SNAKE_CASE__ : str = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE__ : Optional[int] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def A_ ( self : Union[str, Any] ) ->Dict: return self.encoder[self.bod_token] @property def A_ ( self : Tuple ) ->Optional[Any]: return self.encoder[self.eod_token] @property def A_ ( self : Optional[int] ) ->List[Any]: return self.encoder["\n"] @property def A_ ( self : Optional[Any] ) ->int: return len(self.encoder ) def A_ ( self : int ) ->int: return dict(self.encoder , **self.added_tokens_encoder ) def A_ ( self : Optional[int] , a : List[str] ) ->List[str]: SCREAMING_SNAKE_CASE__ : str = [] for x in jieba.cut(UpperCamelCase__ , cut_all=UpperCamelCase__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(UpperCamelCase__ ) ) return output_tokens def A_ ( self : List[Any] , a : Union[str, Any] , **a : Dict ) ->List[str]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [i for i in token_ids if i >= 0] SCREAMING_SNAKE_CASE__ : int = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(UpperCamelCase__ , **UpperCamelCase__ ) def A_ ( self : Dict , a : Any ) ->List[Any]: return token in self.encoder def A_ ( self : int , a : List[str] ) ->Tuple: return "".join(UpperCamelCase__ ) def A_ ( self : Any , a : Optional[Any] ) ->Any: return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def A_ ( self : str , a : str ) ->List[Any]: return self.decoder.get(UpperCamelCase__ , self.unk_token ) def A_ ( self : int , a : str , a : Optional[str] = None ) ->Optional[Any]: if os.path.isdir(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : List[str] = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: SCREAMING_SNAKE_CASE__ : int = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory SCREAMING_SNAKE_CASE__ : List[Any] = 0 if " " in self.encoder: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: SCREAMING_SNAKE_CASE__ : str = self.encoder['''\n'''] del self.encoder["\n"] SCREAMING_SNAKE_CASE__ : str = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a : x[1] ) ) with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def A_ ( self : Union[str, Any] , a : List[int] , a : List[int] = None ) ->str: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def A_ ( self : Optional[Any] , a : List[int] , a : Optional[List[int]] = None , a : bool = False ) ->Union[str, Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) return [1] + ([0] * len(UpperCamelCase__ ))
711
from __future__ import annotations def UpperCAmelCase ( _lowerCamelCase : list[int | float] , _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' if len(_lowerCamelCase ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(_lowerCamelCase ) or left < -len(_lowerCamelCase ) or right >= len(_lowerCamelCase ) or right < -len(_lowerCamelCase ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] SCREAMING_SNAKE_CASE__ : Optional[int] = (left + right) >> 1 # the middle SCREAMING_SNAKE_CASE__ : List[Any] = find_max(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # find max in range[left, mid] SCREAMING_SNAKE_CASE__ : Optional[int] = find_max(_lowerCamelCase , mid + 1 , _lowerCamelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
26
0
import math def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> str: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE( __UpperCamelCase = 0.1 ) -> Any: a__ : Union[str, Any] = 3 a__ : Optional[int] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_A ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
191
'''simple docstring''' import baseaa def __UpperCamelCase( _A : str ): '''simple docstring''' return baseaa.baaencode(string.encode('''utf-8''' ) ) def __UpperCamelCase( _A : bytes ): '''simple docstring''' return baseaa.baadecode(_A ).decode('''utf-8''' ) if __name__ == "__main__": UpperCamelCase__ : List[str] = 'Hello World!' UpperCamelCase__ : str = baseaa_encode(test) print(encoded) UpperCamelCase__ : int = baseaa_decode(encoded) print(decoded)
614
0
from __future__ import annotations import math def UpperCAmelCase__ ( _A , _A ): """simple docstring""" a_ = u for i in range(1 , _A ): a_ = temp * (u - i) return temp def UpperCAmelCase__ ( ): """simple docstring""" a_ = int(input('''enter the numbers of values: ''' ) ) a_ = [] for _ in range(_A ): y.append([] ) for i in range(_A ): for j in range(_A ): y[i].append(_A ) a_ = 0 print('''enter the values of parameters in a list: ''' ) a_ = list(map(_A , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(_A ): a_ = float(input() ) a_ = int(input('''enter the value to interpolate: ''' ) ) a_ = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , _A ): for j in range(n - i ): a_ = y[j + 1][i - 1] - y[j][i - 1] a_ = y[0][0] for i in range(1 , _A ): summ += (ucal(_A , _A ) * y[0][i]) / math.factorial(_A ) print(f"the value at {value} is {summ}" ) if __name__ == "__main__": main()
143
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowercase ( a__ ): def __magic_name__ ( self : List[str] ): a_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase__ , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowercase__ , '''neck_hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowercase__ , '''num_attention_heads''' ) ) class __lowercase : def __init__( self : Dict , lowercase__ : Optional[Any] , lowercase__ : Optional[Any]=1_3 , lowercase__ : List[Any]=3_2 , lowercase__ : List[str]=2 , lowercase__ : int=3 , lowercase__ : Optional[int]=6_4_0 , lowercase__ : Dict=4 , lowercase__ : Optional[int]="silu" , lowercase__ : Any=3 , lowercase__ : Optional[Any]=3_2 , lowercase__ : Optional[Any]=0.1 , lowercase__ : Tuple=0.1 , lowercase__ : Optional[Any]=0.1 , lowercase__ : Dict=0.02 , lowercase__ : Dict=True , lowercase__ : str=True , lowercase__ : Any=1_0 , lowercase__ : Union[str, Any]=None , ): a_ = parent a_ = batch_size a_ = image_size a_ = patch_size a_ = num_channels a_ = last_hidden_size a_ = num_attention_heads a_ = hidden_act a_ = conv_kernel_size a_ = output_stride a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = classifier_dropout_prob a_ = use_labels a_ = is_training a_ = num_labels a_ = initializer_range a_ = scope def __magic_name__ ( self : str ): a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.num_labels ) a_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a_ = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__ ( self : int ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __magic_name__ ( self : Dict , lowercase__ : int , lowercase__ : Optional[int] , lowercase__ : Any , lowercase__ : str ): a_ = MobileViTModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model(lowercase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__ ( self : Optional[Any] , lowercase__ : List[Any] , lowercase__ : int , lowercase__ : Union[str, Any] , lowercase__ : Dict ): a_ = self.num_labels a_ = MobileViTForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : Dict , lowercase__ : Any , lowercase__ : Optional[int] , lowercase__ : List[str] , lowercase__ : List[str] ): a_ = self.num_labels a_ = MobileViTForSemanticSegmentation(lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model(lowercase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) a_ = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__ ( self : int ): a_ = self.prepare_config_and_inputs() a_ , a_ , a_ , a_ = config_and_inputs a_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowercase ( a__ , a__ , unittest.TestCase ): _lowerCAmelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) _lowerCAmelCase = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __magic_name__ ( self : str ): a_ = MobileViTModelTester(self ) a_ = MobileViTConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ ) def __magic_name__ ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViT does not use inputs_embeds''' ) def __magic_name__ ( self : Dict ): pass @unittest.skip(reason='''MobileViT does not support input and output embeddings''' ) def __magic_name__ ( self : Optional[Any] ): pass @unittest.skip(reason='''MobileViT does not output attentions''' ) def __magic_name__ ( self : Any ): pass def __magic_name__ ( self : Tuple ): a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(lowercase__ ) a_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __magic_name__ ( self : Optional[Any] ): pass def __magic_name__ ( self : List[Any] ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def __magic_name__ ( self : Union[str, Any] ): def check_hidden_states_output(lowercase__ : List[str] , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] ): a_ = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): a_ = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) a_ = outputs.hidden_states a_ = 5 self.assertEqual(len(lowercase__ ) , lowercase__ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. a_ = 2 for i in range(len(lowercase__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def __magic_name__ ( self : Any ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) def __magic_name__ ( self : Optional[int] ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase__ ) @slow def __magic_name__ ( self : Union[str, Any] ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = MobileViTModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def UpperCAmelCase__ ( ): """simple docstring""" a_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : Optional[Any] ): return MobileViTImageProcessor.from_pretrained('''apple/mobilevit-xx-small''' ) if is_vision_available() else None @slow def __magic_name__ ( self : str ): a_ = MobileViTForImageClassification.from_pretrained('''apple/mobilevit-xx-small''' ).to(lowercase__ ) a_ = self.default_image_processor a_ = prepare_img() a_ = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): a_ = model(**lowercase__ ) # verify the logits a_ = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowercase__ ) a_ = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4 ) ) @slow def __magic_name__ ( self : Any ): a_ = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) a_ = model.to(lowercase__ ) a_ = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) a_ = prepare_img() a_ = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): a_ = model(**lowercase__ ) a_ = outputs.logits # verify the logits a_ = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , lowercase__ ) a_ = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=lowercase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowercase__ , atol=1e-4 ) ) @slow def __magic_name__ ( self : List[str] ): a_ = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) a_ = model.to(lowercase__ ) a_ = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) a_ = prepare_img() a_ = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): a_ = model(**lowercase__ ) a_ = outputs.logits.detach().cpu() a_ = image_processor.post_process_semantic_segmentation(outputs=lowercase__ , target_sizes=[(5_0, 6_0)] ) a_ = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , lowercase__ ) a_ = image_processor.post_process_semantic_segmentation(outputs=lowercase__ ) a_ = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , lowercase__ )
143
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _A : Optional[int] = logging.get_logger(__name__) class a__ ( a_ ): def __init__( self , *_a , **_a ): warnings.warn( "The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use OwlViTImageProcessor instead." , _a , ) super().__init__(*_a , **_a )
361
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): @slow def __magic_name__ ( self ): lowercase : Tuple = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=_a ).to(_a ) lowercase : Union[str, Any] = AutoTokenizer.from_pretrained("google/mt5-small" ) lowercase : Optional[Any] = tokenizer("Hello there" , return_tensors="pt" ).input_ids lowercase : Union[str, Any] = tokenizer("Hi I am" , return_tensors="pt" ).input_ids lowercase : int = model(input_ids.to(_a ) , labels=labels.to(_a ) ).loss lowercase : str = -(labels.shape[-1] * loss.item()) lowercase : List[str] = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
361
1
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = SamImageProcessor() __lowerCAmelCase = SamProcessor(_A ) processor.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE( self , **_A ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_A ).image_processor def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_image_processor(do_normalize=_A , padding_value=1.0 ) __lowerCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = SamProcessor(image_processor=_A ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(_A , return_tensors="np" ) __lowerCAmelCase = processor(images=_A , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = SamProcessor(image_processor=_A ) __lowerCAmelCase = [torch.ones((1, 3, 5, 5) )] __lowerCAmelCase = [[1_7_6_4, 2_6_4_6]] __lowerCAmelCase = [[6_8_3, 1_0_2_4]] __lowerCAmelCase = processor.post_process_masks(_A , _A , _A ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) __lowerCAmelCase = processor.post_process_masks( _A , torch.tensor(_A ) , torch.tensor(_A ) ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) # should also work with np __lowerCAmelCase = [np.ones((1, 3, 5, 5) )] __lowerCAmelCase = processor.post_process_masks(_A , np.array(_A ) , np.array(_A ) ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) __lowerCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(_A ): __lowerCAmelCase = processor.post_process_masks(_A , np.array(_A ) , np.array(_A ) ) @require_vision @require_tf class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = SamImageProcessor() __lowerCAmelCase = SamProcessor(_A ) processor.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE( self , **_A ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_A ).image_processor def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_image_processor(do_normalize=_A , padding_value=1.0 ) __lowerCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = SamProcessor(image_processor=_A ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(_A , return_tensors="np" ) __lowerCAmelCase = processor(images=_A , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = SamProcessor(image_processor=_A ) __lowerCAmelCase = [tf.ones((1, 3, 5, 5) )] __lowerCAmelCase = [[1_7_6_4, 2_6_4_6]] __lowerCAmelCase = [[6_8_3, 1_0_2_4]] __lowerCAmelCase = processor.post_process_masks(_A , _A , _A , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) __lowerCAmelCase = processor.post_process_masks( _A , tf.convert_to_tensor(_A ) , tf.convert_to_tensor(_A ) , return_tensors="tf" , ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) # should also work with np __lowerCAmelCase = [np.ones((1, 3, 5, 5) )] __lowerCAmelCase = processor.post_process_masks( _A , np.array(_A ) , np.array(_A ) , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) __lowerCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __lowerCAmelCase = processor.post_process_masks( _A , np.array(_A ) , np.array(_A ) , return_tensors="tf" ) @require_vision @require_torchvision class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = SamImageProcessor() __lowerCAmelCase = SamProcessor(_A ) processor.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE( self , **_A ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_A ).image_processor def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = SamProcessor(image_processor=_A ) __lowerCAmelCase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __lowerCAmelCase = [tf.convert_to_tensor(_A )] __lowerCAmelCase = [torch.tensor(_A )] __lowerCAmelCase = [[1_7_6_4, 2_6_4_6]] __lowerCAmelCase = [[6_8_3, 1_0_2_4]] __lowerCAmelCase = processor.post_process_masks( _A , _A , _A , return_tensors="tf" ) __lowerCAmelCase = processor.post_process_masks( _A , _A , _A , return_tensors="pt" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = SamProcessor(image_processor=_A ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(_A , return_tensors="pt" )["pixel_values"].numpy() __lowerCAmelCase = processor(images=_A , return_tensors="pt" )["pixel_values"].numpy() __lowerCAmelCase = image_processor(_A , return_tensors="tf" )["pixel_values"].numpy() __lowerCAmelCase = processor(images=_A , return_tensors="tf" )["pixel_values"].numpy() self.assertTrue(np.allclose(_A , _A ) ) self.assertTrue(np.allclose(_A , _A ) ) self.assertTrue(np.allclose(_A , _A ) )
705
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a__ ( unittest.TestCase ): def __init__( self , _A , _A=7 , _A=3 , _A=1_8 , _A=3_0 , _A=4_0_0 , _A=True , _A=None , _A=True , ): """simple docstring""" __lowerCAmelCase = size if size is not None else {"height": 1_8, "width": 1_8} __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = image_size __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = apply_ocr def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class a__ ( snake_case__ , unittest.TestCase ): _a : Tuple = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = LayoutLMvaImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , "do_resize" ) ) self.assertTrue(hasattr(_A , "size" ) ) self.assertTrue(hasattr(_A , "apply_ocr" ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 1_8, "width": 1_8} ) __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"height": 4_2, "width": 4_2} ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , _A ) self.assertIsInstance(encoding.boxes , _A ) # Test batched __lowerCAmelCase = image_processing(_A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __lowerCAmelCase = image_processing(_A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __lowerCAmelCase = image_processing(_A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = LayoutLMvaImageProcessor() from datasets import load_dataset __lowerCAmelCase = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) __lowerCAmelCase = Image.open(ds[0]["file"] ).convert("RGB" ) __lowerCAmelCase = image_processing(_A , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __lowerCAmelCase = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 __lowerCAmelCase = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _A ) self.assertListEqual(encoding.boxes , _A ) # with apply_OCR = False __lowerCAmelCase = LayoutLMvaImageProcessor(apply_ocr=_A ) __lowerCAmelCase = image_processing(_A , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
552
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class snake_case__ ( unittest.TestCase ): def A_ ( self : Dict ) -> int: '''simple docstring''' __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : Union[str, Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] __snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) __snake_case : Any = { '''do_resize''': True, '''size''': {'''height''': 224, '''width''': 224}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], '''do_convert_rgb''': True, } __snake_case : Tuple = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( self : List[str] , **__a : Optional[int] ) -> Any: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def A_ ( self : Union[str, Any] , **__a : str ) -> List[str]: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def A_ ( self : int , **__a : Dict ) -> str: '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def A_ ( self : str ) -> List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' __snake_case : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case : str = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A_ ( self : Any ) -> Any: '''simple docstring''' __snake_case : List[str] = self.get_tokenizer() __snake_case : Optional[Any] = self.get_rust_tokenizer() __snake_case : Optional[int] = self.get_image_processor() __snake_case : Any = ChineseCLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) __snake_case : Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCAmelCase ) __snake_case : str = ChineseCLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) __snake_case : List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCAmelCase ) def A_ ( self : Any ) -> Optional[Any]: '''simple docstring''' __snake_case : Dict = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case : int = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) __snake_case : Optional[int] = self.get_image_processor(do_normalize=_lowerCAmelCase ) __snake_case : Optional[Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=_lowerCAmelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) def A_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' __snake_case : Union[str, Any] = self.get_image_processor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : Union[str, Any] = ChineseCLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __snake_case : Optional[Any] = self.prepare_image_inputs() __snake_case : Union[str, Any] = image_processor(_lowerCAmelCase , return_tensors='np' ) __snake_case : Dict = processor(images=_lowerCAmelCase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A_ ( self : Any ) -> str: '''simple docstring''' __snake_case : Any = self.get_image_processor() __snake_case : str = self.get_tokenizer() __snake_case : List[Any] = ChineseCLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __snake_case : Any = '''Alexandra,T-shirt的价格是15便士。''' __snake_case : List[Any] = processor(text=_lowerCAmelCase ) __snake_case : Union[str, Any] = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' __snake_case : Any = self.get_image_processor() __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : int = ChineseCLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __snake_case : List[Any] = '''Alexandra,T-shirt的价格是15便士。''' __snake_case : Tuple = self.prepare_image_inputs() __snake_case : List[str] = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def A_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' __snake_case : Optional[Any] = self.get_image_processor() __snake_case : Any = self.get_tokenizer() __snake_case : Optional[int] = ChineseCLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __snake_case : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case : Any = processor.batch_decode(_lowerCAmelCase ) __snake_case : List[str] = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( self : str ) -> List[str]: '''simple docstring''' __snake_case : Dict = self.get_image_processor() __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : List[Any] = ChineseCLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __snake_case : Tuple = '''Alexandra,T-shirt的价格是15便士。''' __snake_case : Dict = self.prepare_image_inputs() __snake_case : Any = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
286
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowerCAmelCase : Tuple = logging.get_logger(__name__) lowerCAmelCase : List[Any] = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : str = '''deberta-v2''' def __init__( self , _lowerCAmelCase=128100 , _lowerCAmelCase=1536 , _lowerCAmelCase=24 , _lowerCAmelCase=24 , _lowerCAmelCase=6144 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1e-7 , _lowerCAmelCase=False , _lowerCAmelCase=-1 , _lowerCAmelCase=0 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=0 , _lowerCAmelCase="gelu" , **_lowerCAmelCase , ): """simple docstring""" super().__init__(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = hidden_size __SCREAMING_SNAKE_CASE: Tuple = num_hidden_layers __SCREAMING_SNAKE_CASE: str = num_attention_heads __SCREAMING_SNAKE_CASE: List[Any] = intermediate_size __SCREAMING_SNAKE_CASE: str = hidden_act __SCREAMING_SNAKE_CASE: Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE: Optional[int] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE: Dict = max_position_embeddings __SCREAMING_SNAKE_CASE: Optional[int] = type_vocab_size __SCREAMING_SNAKE_CASE: str = initializer_range __SCREAMING_SNAKE_CASE: Any = relative_attention __SCREAMING_SNAKE_CASE: Tuple = max_relative_positions __SCREAMING_SNAKE_CASE: List[str] = pad_token_id __SCREAMING_SNAKE_CASE: List[str] = position_biased_input # Backwards compatibility if type(_lowerCAmelCase ) == str: __SCREAMING_SNAKE_CASE: str = [x.strip() for x in pos_att_type.lower().split('''|''' )] __SCREAMING_SNAKE_CASE: int = pos_att_type __SCREAMING_SNAKE_CASE: List[Any] = vocab_size __SCREAMING_SNAKE_CASE: List[str] = layer_norm_eps __SCREAMING_SNAKE_CASE: Optional[int] = kwargs.get('''pooler_hidden_size''' , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Dict = pooler_dropout __SCREAMING_SNAKE_CASE: int = pooler_hidden_act class a ( __lowercase ): @property def snake_case_ ( self ): """simple docstring""" if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE: Any = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE: Any = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def snake_case_ ( self ): """simple docstring""" return 12 def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = 3 , _lowerCAmelCase = 40 , _lowerCAmelCase = 40 , _lowerCAmelCase = None , ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = super().generate_dummy_inputs(preprocessor=_lowerCAmelCase , framework=_lowerCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
202
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging a : Dict = logging.get_logger(__name__) a : str = '''▁''' a : Dict = {'''vocab_file''': '''sentencepiece.bpe.model'''} a : Optional[Any] = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } a : List[str] = { '''facebook/mbart-large-50-one-to-many-mmt''': 1_024, } # fmt: off a : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self : Optional[int] , a_ : Any , a_ : int=None , a_ : List[str]=None , a_ : str="</s>" , a_ : Dict="</s>" , a_ : Optional[Any]="<s>" , a_ : Union[str, Any]="<unk>" , a_ : Tuple="<pad>" , a_ : str="<mask>" , a_ : Optional[Dict[str, Any]] = None , **a_ : Optional[int] , ): """simple docstring""" __snake_case = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token __snake_case = {} if sp_model_kwargs is None else sp_model_kwargs __snake_case = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=a_ , tgt_lang=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , cls_token=a_ , pad_token=a_ , mask_token=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a_ ) ) __snake_case = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __snake_case = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __snake_case = 1 __snake_case = len(self.sp_model ) __snake_case = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(a_ ) } __snake_case = {v: k for k, v in self.lang_code_to_id.items()} __snake_case = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __snake_case = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __snake_case = src_lang if src_lang is not None else "en_XX" __snake_case = self.lang_code_to_id[self._src_lang] __snake_case = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A ( self : Dict ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def A ( self : Dict ): """simple docstring""" return self._src_lang @src_lang.setter def A ( self : List[Any] , a_ : str ): """simple docstring""" __snake_case = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Union[str, Any] ): """simple docstring""" __snake_case = self.__dict__.copy() __snake_case = None return state def __setstate__( self : Optional[int] , a_ : Dict ): """simple docstring""" __snake_case = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case = {} __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : Any ): """simple docstring""" __snake_case = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : int , a_ : str ): """simple docstring""" return self.sp_model.encode(a_ , out_type=a_ ) def A ( self : List[str] , a_ : str ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __snake_case = self.sp_model.PieceToId(a_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A ( self : Dict , a_ : int ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A ( self : str , a_ : Any ): """simple docstring""" __snake_case = [] __snake_case = "" __snake_case = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a_ ) + token __snake_case = True __snake_case = [] else: current_sub_tokens.append(a_ ) __snake_case = False out_string += self.sp_model.decode(a_ ) return out_string.strip() def A ( self : Dict , a_ : str , a_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , "wb" ) as fi: __snake_case = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,) def A ( self : Dict , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) __snake_case = [1] * len(self.prefix_tokens ) __snake_case = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(a_ )) + suffix_ones return prefix_ones + ([0] * len(a_ )) + ([0] * len(a_ )) + suffix_ones def A ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A ( self : Union[str, Any] , a_ : Tuple , a_ : str , a_ : Optional[str] , a_ : Optional[str] , **a_ : str ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) __snake_case = src_lang __snake_case = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ ) __snake_case = self.convert_tokens_to_ids(a_ ) __snake_case = tgt_lang_id return inputs def A ( self : Optional[Any] , a_ : List[str] , a_ : str = "en_XX" , a_ : Optional[List[str]] = None , a_ : str = "ro_RO" , **a_ : List[Any] , ): """simple docstring""" __snake_case = src_lang __snake_case = tgt_lang return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def A ( self : Optional[Any] ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def A ( self : List[Any] ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A ( self : Optional[Any] , a_ : str ): """simple docstring""" __snake_case = self.lang_code_to_id[src_lang] __snake_case = [self.cur_lang_code_id] __snake_case = [self.eos_token_id] def A ( self : int , a_ : str ): """simple docstring""" __snake_case = self.lang_code_to_id[tgt_lang] __snake_case = [self.cur_lang_code_id] __snake_case = [self.eos_token_id]
709
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
680
0
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = [0] * len(__SCREAMING_SNAKE_CASE ) lowercase = [] lowercase = [] lowercase = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__SCREAMING_SNAKE_CASE ) ): if indegree[i] == 0: queue.append(__SCREAMING_SNAKE_CASE ) while queue: lowercase = queue.pop(0 ) cnt += 1 topo.append(__SCREAMING_SNAKE_CASE ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__SCREAMING_SNAKE_CASE ) if cnt != len(__SCREAMING_SNAKE_CASE ): print('Cycle exists' ) else: print(__SCREAMING_SNAKE_CASE ) # Adjacency List of Graph UpperCAmelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
84
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __a ( lowerCAmelCase__ : Dict ): a__ , a__ : int = image.size a__ , a__ : List[str] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 a__ : Tuple = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) a__ : List[Any] = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0 a__ : Any = image[None].transpose(0 , 3 , 1 , 2 ) a__ : Dict = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , A__ : VQModel , A__ : UNetaDModel , A__ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> str: '''simple docstring''' super().__init__() self.register_modules(vqvae=A__ , unet=A__ , scheduler=A__ ) @torch.no_grad() def __call__( self : List[str] , A__ : Union[torch.Tensor, PIL.Image.Image] = None , A__ : Optional[int] = 1 , A__ : Optional[int] = 1_0_0 , A__ : Optional[float] = 0.0 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' if isinstance(A__ , PIL.Image.Image ): a__ : List[Any] = 1 elif isinstance(A__ , torch.Tensor ): a__ : List[str] = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(A__ )}' ) if isinstance(A__ , PIL.Image.Image ): a__ : Union[str, Any] = preprocess(A__ ) a__ , a__ : Dict = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image a__ : Optional[int] = (batch_size, self.unet.config.in_channels // 2, height, width) a__ : Optional[int] = next(self.unet.parameters() ).dtype a__ : List[str] = randn_tensor(A__ , generator=A__ , device=self.device , dtype=A__ ) a__ : Any = image.to(device=self.device , dtype=A__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(A__ , device=self.device ) a__ : int = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler a__ : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a__ : Union[str, Any] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a__ : str = {} if accepts_eta: a__ : Dict = eta for t in self.progress_bar(A__ ): # concat latents and low resolution image in the channel dimension. a__ : str = torch.cat([latents, image] , dim=1 ) a__ : Optional[Any] = self.scheduler.scale_model_input(A__ , A__ ) # predict the noise residual a__ : Union[str, Any] = self.unet(A__ , A__ ).sample # compute the previous noisy sample x_t -> x_t-1 a__ : Union[str, Any] = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample # decode the image latents with the VQVAE a__ : List[Any] = self.vqvae.decode(A__ ).sample a__ : List[Any] = torch.clamp(A__ , -1.0 , 1.0 ) a__ : Optional[Any] = image / 2 + 0.5 a__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a__ : Union[str, Any] = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
688
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Dict = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __UpperCamelCase : Optional[Any] = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } __UpperCamelCase : Tuple = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } __UpperCamelCase : Dict = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } __UpperCamelCase : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } __UpperCamelCase : Union[str, Any] = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } __UpperCamelCase : List[Any] = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } __UpperCamelCase : List[str] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } __UpperCamelCase : Tuple = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } __UpperCamelCase : Tuple = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Optional[Any] = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) __UpperCamelCase : Tuple = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) __UpperCamelCase : List[str] = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a_ ) class __SCREAMING_SNAKE_CASE: def __call__( self: Optional[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Optional[str] = None , UpperCamelCase: Optional[str] = None , UpperCamelCase: Union[bool, str] = False , UpperCamelCase: Union[bool, str] = False , UpperCamelCase: Optional[int] = None , UpperCamelCase: Optional[Union[str, TensorType]] = None , UpperCamelCase: Optional[bool] = None , **UpperCamelCase: Any , ) -> Dict: if titles is None and texts is None: return super().__call__( __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) elif titles is None or texts is None: snake_case__ = titles if texts is None else texts return super().__call__( __UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) snake_case__ = titles if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [titles] snake_case__ = texts if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [texts] snake_case__ = len(__UpperCamelCase ) snake_case__ = questions if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [questions] * n_passages if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError( F'''There should be as many titles than texts but got {len(__UpperCamelCase )} titles and {len(__UpperCamelCase )} texts.''' ) snake_case__ = super().__call__(__UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )['input_ids'] snake_case__ = super().__call__(__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )['input_ids'] snake_case__ = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCamelCase , __UpperCamelCase ) ] } if return_attention_mask is not False: snake_case__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) snake_case__ = attention_mask return self.pad(__UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: BatchEncoding , UpperCamelCase: DPRReaderOutput , UpperCamelCase: int = 16 , UpperCamelCase: int = 64 , UpperCamelCase: int = 4 , ) -> str: snake_case__ = reader_input['input_ids'] snake_case__ , snake_case__ , snake_case__ = reader_output[:3] snake_case__ = len(__UpperCamelCase ) snake_case__ = sorted(range(__UpperCamelCase ) , reverse=__UpperCamelCase , key=relevance_logits.__getitem__ ) snake_case__ = [] for doc_id in sorted_docs: snake_case__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence snake_case__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: snake_case__ = sequence_ids.index(self.pad_token_id ) else: snake_case__ = len(__UpperCamelCase ) snake_case__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCamelCase , top_spans=__UpperCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCamelCase , start_index=__UpperCamelCase , end_index=__UpperCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: List[int] , UpperCamelCase: List[int] , UpperCamelCase: int , UpperCamelCase: int , ) -> List[Any]: snake_case__ = [] for start_index, start_score in enumerate(__UpperCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) snake_case__ = sorted(__UpperCamelCase , key=lambda UpperCamelCase : x[1] , reverse=__UpperCamelCase ) snake_case__ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' ) snake_case__ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a_ ) class __SCREAMING_SNAKE_CASE( a_ , a_ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"]
715
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE( a_ , a_ , unittest.TestCase ): _UpperCAmelCase = StableDiffusionSAGPipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase = False def lowerCAmelCase_ ( self: int ) -> Any: torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) snake_case__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase , set_alpha_to_one=UpperCamelCase , ) torch.manual_seed(0 ) snake_case__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) snake_case__ = CLIPTextModel(UpperCamelCase ) snake_case__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: Dict , UpperCamelCase: Optional[int]=0 ) -> Union[str, Any]: if str(UpperCamelCase ).startswith('mps' ): snake_case__ = torch.manual_seed(UpperCamelCase ) else: snake_case__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) snake_case__ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def lowerCAmelCase_ ( self: Union[str, Any] ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self: Dict ) -> Tuple: snake_case__ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) snake_case__ = sag_pipe.to(UpperCamelCase ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ = '.' snake_case__ = torch.manual_seed(0 ) snake_case__ = sag_pipe( [prompt] , generator=UpperCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) snake_case__ = output.images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case__ = np.array([0.1_568, 0.1_738, 0.1_695, 0.1_693, 0.1_507, 0.1_705, 0.1_547, 0.1_751, 0.1_949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def lowerCAmelCase_ ( self: Union[str, Any] ) -> List[Any]: snake_case__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) snake_case__ = sag_pipe.to(UpperCamelCase ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ = '.' snake_case__ = torch.manual_seed(0 ) snake_case__ = sag_pipe( [prompt] , generator=UpperCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) snake_case__ = output.images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case__ = np.array([0.3_459, 0.2_876, 0.2_537, 0.3_002, 0.2_671, 0.2_160, 0.3_026, 0.2_262, 0.2_371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[Any]: snake_case__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) snake_case__ = sag_pipe.to(UpperCamelCase ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ = '.' snake_case__ = torch.manual_seed(0 ) snake_case__ = sag_pipe( [prompt] , width=7_68 , height=5_12 , generator=UpperCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) snake_case__ = output.images assert image.shape == (1, 5_12, 7_68, 3)
372
0