code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from __future__ import annotations def lowercase__( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): if len(__SCREAMING_SNAKE_CASE ) == 0: return False lowercase_ : Any = len(__SCREAMING_SNAKE_CASE ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __SCREAMING_SNAKE_CASE ) else: return binary_search(a_list[midpoint + 1 :] , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =input("Enter numbers separated by comma:\n").strip() __SCREAMING_SNAKE_CASE =[int(item.strip()) for item in user_input.split(",")] __SCREAMING_SNAKE_CASE =int(input("Enter the number to be found in the list:\n").strip()) __SCREAMING_SNAKE_CASE ="" if binary_search(sequence, target) else "not " print(F"{target} was {not_str}found in {sequence}")
425
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase ( lowercase_ ): def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,) -> int: '''simple docstring''' super().__init__() self.register_modules(transformer=__UpperCamelCase ,vae=__UpperCamelCase ,scheduler=__UpperCamelCase ) # create a imagenet -> id dictionary for easier use lowercase_ : Union[str, Any] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(',' ): lowercase_ : Dict = int(__UpperCamelCase ) lowercase_ : Dict = dict(sorted(self.labels.items() ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[int]: '''simple docstring''' if not isinstance(__UpperCamelCase ,__UpperCamelCase ): lowercase_ : Tuple = list(__UpperCamelCase ) for l in label: if l not in self.labels: raise ValueError( f'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self ,__UpperCamelCase ,__UpperCamelCase = 4.0 ,__UpperCamelCase = None ,__UpperCamelCase = 50 ,__UpperCamelCase = "pil" ,__UpperCamelCase = True ,) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' lowercase_ : Dict = len(__UpperCamelCase ) lowercase_ : List[Any] = self.transformer.config.sample_size lowercase_ : Optional[Any] = self.transformer.config.in_channels lowercase_ : List[str] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) ,generator=__UpperCamelCase ,device=self.device ,dtype=self.transformer.dtype ,) lowercase_ : Union[str, Any] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents lowercase_ : Union[str, Any] = torch.tensor(__UpperCamelCase ,device=self.device ).reshape(-1 ) lowercase_ : Dict = torch.tensor([1000] * batch_size ,device=self.device ) lowercase_ : Union[str, Any] = torch.cat([class_labels, class_null] ,0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: lowercase_ : Tuple = latent_model_input[: len(__UpperCamelCase ) // 2] lowercase_ : Union[str, Any] = torch.cat([half, half] ,dim=0 ) lowercase_ : Optional[int] = self.scheduler.scale_model_input(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[Any] = t if not torch.is_tensor(__UpperCamelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) lowercase_ : Optional[int] = latent_model_input.device.type == 'mps' if isinstance(__UpperCamelCase ,__UpperCamelCase ): lowercase_ : Optional[Any] = torch.floataa if is_mps else torch.floataa else: lowercase_ : Optional[int] = torch.intaa if is_mps else torch.intaa lowercase_ : Optional[int] = torch.tensor([timesteps] ,dtype=__UpperCamelCase ,device=latent_model_input.device ) elif len(timesteps.shape ) == 0: lowercase_ : str = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase_ : Dict = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output lowercase_ : Optional[Any] = self.transformer( __UpperCamelCase ,timestep=__UpperCamelCase ,class_labels=__UpperCamelCase ).sample # perform guidance if guidance_scale > 1: lowercase_ , lowercase_ : int = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] lowercase_ , lowercase_ : Optional[int] = torch.split(__UpperCamelCase ,len(__UpperCamelCase ) // 2 ,dim=0 ) lowercase_ : Any = uncond_eps + guidance_scale * (cond_eps - uncond_eps) lowercase_ : Any = torch.cat([half_eps, half_eps] ,dim=0 ) lowercase_ : int = torch.cat([eps, rest] ,dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: lowercase_ , lowercase_ : List[Any] = torch.split(__UpperCamelCase ,__UpperCamelCase ,dim=1 ) else: lowercase_ : Union[str, Any] = noise_pred # compute previous image: x_t -> x_t-1 lowercase_ : List[Any] = self.scheduler.step(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ).prev_sample if guidance_scale > 1: lowercase_ , lowercase_ : Union[str, Any] = latent_model_input.chunk(2 ,dim=0 ) else: lowercase_ : Optional[int] = latent_model_input lowercase_ : Union[str, Any] = 1 / self.vae.config.scaling_factor * latents lowercase_ : Optional[Any] = self.vae.decode(__UpperCamelCase ).sample lowercase_ : str = (samples / 2 + 0.5).clamp(0 ,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase_ : str = samples.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": lowercase_ : Tuple = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=__UpperCamelCase )
425
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : int = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class __snake_case( __A ): _A = '''deberta-v2''' def __init__( self , A_=128_100 , A_=1_536 , A_=24 , A_=24 , A_=6_144 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=0 , A_=0.02 , A_=1e-7 , A_=False , A_=-1 , A_=0 , A_=True , A_=None , A_=0 , A_="gelu" , **A_ , ): '''simple docstring''' super().__init__(**A_ ) _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = max_relative_positions _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = position_biased_input # Backwards compatibility if type(A_ ) == str: _SCREAMING_SNAKE_CASE = [x.strip() for x in pos_att_type.lower().split('''|''' )] _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = kwargs.get('''pooler_hidden_size''' , A_ ) _SCREAMING_SNAKE_CASE = pooler_dropout _SCREAMING_SNAKE_CASE = pooler_hidden_act class __snake_case( __A ): @property def A ( self ): '''simple docstring''' if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _SCREAMING_SNAKE_CASE = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def A ( self ): '''simple docstring''' return 12 def A ( self , A_ , A_ = -1 , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 3 , A_ = 40 , A_ = 40 , A_ = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = super().generate_dummy_inputs(preprocessor=A_ , framework=A_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
717
"""simple docstring""" def A__ ( UpperCamelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = int(UpperCamelCase__ ) if decimal in (0, 1): # Exit cases for the recursion return str(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = divmod(UpperCamelCase__ , 2 ) return binary_recursive(UpperCamelCase__ ) + str(UpperCamelCase__ ) def A__ ( UpperCamelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = str(UpperCamelCase__ ).strip() if not number: raise ValueError('''No input value was provided''' ) _SCREAMING_SNAKE_CASE = '''-''' if number.startswith('''-''' ) else '''''' _SCREAMING_SNAKE_CASE = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return F'''{negative}0b{binary_recursive(int(UpperCamelCase__ ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
168
0
'''simple docstring''' import unittest import numpy as np def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , ): '''simple docstring''' A : Tuple = np.shape(snake_case__ ) A : Union[str, Any] = np.shape(snake_case__ ) A : int = np.shape(snake_case__ ) if shape_a[0] != shape_b[0]: A : str = ( '''Expected the same number of rows for A and B. ''' F'Instead found A of size {shape_a} and B of size {shape_b}' ) raise ValueError(snake_case__ ) if shape_b[1] != shape_c[1]: A : Union[str, Any] = ( '''Expected the same number of columns for B and C. ''' F'Instead found B of size {shape_b} and C of size {shape_c}' ) raise ValueError(snake_case__ ) A : str = pseudo_inv if a_inv is None: try: A : Any = np.linalg.inv(snake_case__ ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> None: """simple docstring""" A : Union[str, Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A : Any = np.array([[0, 3], [3, 0], [2, 3]] ) A : Union[str, Any] = np.array([[2, 1], [6, 3]] ) A : List[str] = schur_complement(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : str = np.block([[a, b], [b.T, c]] ) A : Union[str, Any] = np.linalg.det(SCREAMING_SNAKE_CASE ) A : Optional[Any] = np.linalg.det(SCREAMING_SNAKE_CASE ) A : List[Any] = np.linalg.det(SCREAMING_SNAKE_CASE ) self.assertAlmostEqual(SCREAMING_SNAKE_CASE , det_a * det_s ) def __lowerCAmelCase ( self ) -> None: """simple docstring""" A : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A : Dict = np.array([[0, 3], [3, 0], [2, 3]] ) A : Any = np.array([[2, 1], [6, 3]] ) with self.assertRaises(SCREAMING_SNAKE_CASE ): schur_complement(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> None: """simple docstring""" A : List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A : Dict = np.array([[0, 3], [3, 0], [2, 3]] ) A : Any = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(SCREAMING_SNAKE_CASE ): schur_complement(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
634
'''simple docstring''' from random import randint, random def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False , snake_case__ = False , snake_case__ = 5 , ): '''simple docstring''' A : List[str] = [[-1] * number_of_cells] # Create a highway without any car A : Optional[Any] = 0 A : Tuple = max(snake_case__ , 0 ) while i < number_of_cells: A : Optional[int] = ( randint(0 , snake_case__ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Dict = 0 A : str = highway_now[car_index + 1 :] for cell in range(len(snake_case__ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(snake_case__ , -1 ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : int = len(snake_case__ ) # Beforce calculations, the highway is empty A : int = [-1] * number_of_cells for car_index in range(snake_case__ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed A : Optional[Any] = min(highway_now[car_index] + 1 , snake_case__ ) # Number of empty cell before the next car A : List[str] = get_distance(snake_case__ , snake_case__ ) - 1 # We can't have the car causing an accident A : Union[str, Any] = min(next_highway[car_index] , snake_case__ ) if random() < probability: # Randomly, a driver will slow down A : List[str] = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : Optional[Any] = len(highway[0] ) for i in range(snake_case__ ): A : int = update(highway[i] , snake_case__ , snake_case__ ) A : Any = [-1] * number_of_cells for car_index in range(snake_case__ ): A : Dict = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) A : Dict = (car_index + speed) % number_of_cells # Commit the change of position A : List[str] = speed highway.append(snake_case__ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
634
1
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __UpperCamelCase( _A : bytes , _A : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = F'''{sampling_rate}''' UpperCAmelCase__ : Union[str, Any] = '''1''' UpperCAmelCase__ : List[str] = '''f32le''' UpperCAmelCase__ : Any = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(_A , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: UpperCAmelCase__ : Union[str, Any] = ffmpeg_process.communicate(_A ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error UpperCAmelCase__ : int = output_stream[0] UpperCAmelCase__ : Optional[int] = np.frombuffer(_A , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def __UpperCamelCase( _A : int , _A : float , _A : str = "f32le" , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = F'''{sampling_rate}''' UpperCAmelCase__ : Optional[Any] = '''1''' if format_for_conversion == "s16le": UpperCAmelCase__ : Union[str, Any] = 2 elif format_for_conversion == "f32le": UpperCAmelCase__ : List[str] = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) UpperCAmelCase__ : Dict = platform.system() if system == "Linux": UpperCAmelCase__ : Optional[int] = '''alsa''' UpperCAmelCase__ : Optional[int] = '''default''' elif system == "Darwin": UpperCAmelCase__ : int = '''avfoundation''' UpperCAmelCase__ : Any = ''':0''' elif system == "Windows": UpperCAmelCase__ : List[Any] = '''dshow''' UpperCAmelCase__ : Dict = '''default''' UpperCAmelCase__ : Any = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] UpperCAmelCase__ : str = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample UpperCAmelCase__ : int = _ffmpeg_stream(_A , _A ) for item in iterator: yield item def __UpperCamelCase( _A : int , _A : float , _A : Optional[int] = None , _A : Optional[Union[Tuple[float, float], float]] = None , _A : str = "f32le" , ): '''simple docstring''' if stream_chunk_s is not None: UpperCAmelCase__ : int = stream_chunk_s else: UpperCAmelCase__ : List[Any] = chunk_length_s UpperCAmelCase__ : int = ffmpeg_microphone(_A , _A , format_for_conversion=_A ) if format_for_conversion == "s16le": UpperCAmelCase__ : int = np.intaa UpperCAmelCase__ : Optional[int] = 2 elif format_for_conversion == "f32le": UpperCAmelCase__ : List[str] = np.floataa UpperCAmelCase__ : List[Any] = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: UpperCAmelCase__ : List[Any] = chunk_length_s / 6 UpperCAmelCase__ : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(_A , (int, float) ): UpperCAmelCase__ : str = [stride_length_s, stride_length_s] UpperCAmelCase__ : int = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample UpperCAmelCase__ : str = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample UpperCAmelCase__ : Dict = datetime.datetime.now() UpperCAmelCase__ : List[str] = datetime.timedelta(seconds=_A ) for item in chunk_bytes_iter(_A , _A , stride=(stride_left, stride_right) , stream=_A ): # Put everything back in numpy scale UpperCAmelCase__ : Tuple = np.frombuffer(item['''raw'''] , dtype=_A ) UpperCAmelCase__ : List[Any] = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) UpperCAmelCase__ : Optional[int] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __UpperCamelCase( _A : Tuple , _A : int , _A : Tuple[int, int] , _A : bool = False ): '''simple docstring''' UpperCAmelCase__ : Tuple = B'''''' UpperCAmelCase__ : str = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) UpperCAmelCase__ : Dict = 0 for raw in iterator: acc += raw if stream and len(_A ) < chunk_len: UpperCAmelCase__ : List[str] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(_A ) >= chunk_len: # We are flushing the accumulator UpperCAmelCase__ : int = (_stride_left, stride_right) UpperCAmelCase__ : int = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: UpperCAmelCase__ : Optional[Any] = False yield item UpperCAmelCase__ : Tuple = stride_left UpperCAmelCase__ : Optional[int] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(_A ) > stride_left: UpperCAmelCase__ : List[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: UpperCAmelCase__ : List[str] = False yield item def __UpperCamelCase( _A : List[Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : str = 2**24 # 16Mo try: with subprocess.Popen(_A , stdout=subprocess.PIPE , bufsize=_A ) as ffmpeg_process: while True: UpperCAmelCase__ : Dict = ffmpeg_process.stdout.read(_A ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
718
'''simple docstring''' import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() UpperCamelCase__ : Optional[int] = { 'bart': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'bert': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-base-cased-finetuned-mrpc': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'dpr': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'gpt2': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlnet': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm-roberta': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'transfo-xl': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'openai-gpt': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'roberta': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'layoutlm': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'roberta-large-mnli': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'camembert': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'flaubert': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert-base-distilled-squad': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert-visual-feature-encoder': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'ctrl': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'albert': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 't5': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'electra': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'wav2vec2': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def __UpperCamelCase( _A : Dict , _A : List[Any] , _A : List[Any] , _A : Optional[int] , _A : Dict=False , _A : List[Any]=True ): '''simple docstring''' if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: UpperCAmelCase__ : str = cached_file(_A , _A , force_download=not use_cached_models ) UpperCAmelCase__ : Optional[Any] = config_class.from_json_file(_A ) UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ : List[str] = True print(F'''Building TensorFlow model from configuration: {config}''' ) UpperCAmelCase__ : Tuple = model_class(_A ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): UpperCAmelCase__ : Optional[int] = cached_file( _A , _A , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: UpperCAmelCase__ : int = load_pytorch_checkpoint_in_tfa_model(_A , _A ) if compare_with_pt_model: UpperCAmelCase__ : Optional[int] = tf_model(tf_model.dummy_inputs , training=_A ) # build the network UpperCAmelCase__ : Union[str, Any] = torch.load(_A , map_location='''cpu''' ) UpperCAmelCase__ : Union[str, Any] = pt_model_class.from_pretrained( pretrained_model_name_or_path=_A , config=_A , state_dict=_A ) with torch.no_grad(): UpperCAmelCase__ : int = pt_model(**pt_model.dummy_inputs ) UpperCAmelCase__ : List[str] = pto[0].numpy() UpperCAmelCase__ : Union[str, Any] = tfo[0].numpy() UpperCAmelCase__ : Optional[int] = np.amax(np.abs(np_pt - np_tf ) ) print(F'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2e-2, F'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(F'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(_A , save_format='''h5''' ) def __UpperCamelCase( _A : Any , _A : Union[str, Any] , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=False , _A : str=False , _A : Optional[Any]=False , _A : List[str]=False , ): '''simple docstring''' if args_model_type is None: UpperCAmelCase__ : Any = list(MODEL_CLASSES.keys() ) else: UpperCAmelCase__ : List[Any] = [args_model_type] for j, model_type in enumerate(_A , start=1 ): print('''=''' * 1_00 ) print(F''' Converting model type {j}/{len(_A )}: {model_type}''' ) print('''=''' * 1_00 ) if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: UpperCAmelCase__ : int = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: UpperCAmelCase__ : Tuple = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(_A , _A ) , start=1 ): print('''-''' * 1_00 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue UpperCAmelCase__ : Tuple = model_shortcut_name elif only_convert_finetuned_models: print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( F''' Converting checkpoint {i}/{len(_A )}: {model_shortcut_name} - model_type {model_type}''' ) print('''-''' * 1_00 ) if config_shortcut_name in aws_config_map: UpperCAmelCase__ : Optional[int] = cached_file(_A , _A , force_download=not use_cached_models ) else: UpperCAmelCase__ : Optional[Any] = config_shortcut_name if model_shortcut_name in aws_model_maps: UpperCAmelCase__ : Any = cached_file(_A , _A , force_download=not use_cached_models ) else: UpperCAmelCase__ : List[str] = model_shortcut_name if os.path.isfile(_A ): UpperCAmelCase__ : Optional[int] = '''converted_model''' convert_pt_checkpoint_to_tf( model_type=_A , pytorch_checkpoint_path=_A , config_file=_A , tf_dump_path=os.path.join(_A , model_shortcut_name + '''-tf_model.h5''' ) , compare_with_pt_model=_A , ) if remove_cached_files: os.remove(_A ) os.remove(_A ) if __name__ == "__main__": UpperCamelCase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.' ) parser.add_argument( '--model_type', default=None, type=str, help=( f"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ 'convert all the models from AWS.' ), ) parser.add_argument( '--pytorch_checkpoint_path', default=None, type=str, help=( 'Path to the PyTorch checkpoint path or shortcut name to download from AWS. ' 'If not given, will download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--config_file', default=None, type=str, help=( 'The config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture. If not given and ' '--pytorch_checkpoint_path is not given or is a shortcut name ' 'use the configuration associated to the shortcut name on the AWS' ), ) parser.add_argument( '--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.' ) parser.add_argument( '--use_cached_models', action='store_true', help='Use cached models if possible instead of updating to latest checkpoint versions.', ) parser.add_argument( '--remove_cached_files', action='store_true', help='Remove pytorch models after conversion (save memory when converting in batches).', ) parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.') UpperCamelCase__ : List[str] = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
496
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : List[str] = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _lowercase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
210
'''simple docstring''' from __future__ import annotations import math _lowercase : Dict = """2020.9.26""" _lowercase : Any = """xcodz-dot, cclaus, dhruvmanila""" def lowerCamelCase__ ( A : float , A : float , A : float , A : float , A : float ): '''simple docstring''' if not all(isinstance(A , (float, int) ) for val in locals().values() ): UpperCAmelCase = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(A ) UpperCAmelCase = ((x * distance) / (z + distance)) * scale UpperCAmelCase = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowerCamelCase__ ( A : float , A : float , A : float , A : str , A : float ): '''simple docstring''' if not isinstance(A , A ): raise TypeError('''Axis must be a str''' ) UpperCAmelCase = locals() del input_variables["axis"] if not all(isinstance(A , (float, int) ) for val in input_variables.values() ): UpperCAmelCase = ( '''Input values except axis must either be float or int: ''' f"""{list(input_variables.values() )}""" ) raise TypeError(A ) UpperCAmelCase = (angle % 3_60) / 4_50 * 1_80 / math.pi if axis == "z": UpperCAmelCase = x * math.cos(A ) - y * math.sin(A ) UpperCAmelCase = y * math.cos(A ) + x * math.sin(A ) UpperCAmelCase = z elif axis == "x": UpperCAmelCase = y * math.cos(A ) - z * math.sin(A ) UpperCAmelCase = z * math.cos(A ) + y * math.sin(A ) UpperCAmelCase = x elif axis == "y": UpperCAmelCase = x * math.cos(A ) - z * math.sin(A ) UpperCAmelCase = z * math.cos(A ) + x * math.sin(A ) UpperCAmelCase = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
210
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k", "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v", "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q", "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u", "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v", "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out", "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos", "self_attn.rotary_emb": "encoder.embed_positions", "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm", "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1", "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2", "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv", "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm", "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm", "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense", "ffn1.w_2": "encoder.layers.*.ffn1.output_dense", "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm", "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense", "ffn2.w_2": "encoder.layers.*.ffn2.output_dense", "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _lowerCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def UpperCamelCase ( a , a , a , a , a ) -> Dict: '''simple docstring''' for attribute in key.split('''.''' ): __magic_name__ = getattr(a , a ) if weight_type is not None: __magic_name__ = getattr(a , a ).shape else: __magic_name__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __magic_name__ = value elif weight_type == "weight_g": __magic_name__ = value elif weight_type == "weight_v": __magic_name__ = value elif weight_type == "bias": __magic_name__ = value elif weight_type == "running_mean": __magic_name__ = value elif weight_type == "running_var": __magic_name__ = value elif weight_type == "num_batches_tracked": __magic_name__ = value elif weight_type == "inv_freq": __magic_name__ = value else: __magic_name__ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCamelCase ( a , a , a ) -> Tuple: '''simple docstring''' __magic_name__ = [] __magic_name__ = fairseq_model.state_dict() __magic_name__ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __magic_name__ = False if "conv_layers" in name: load_conv_layer( a , a , a , a , hf_model.config.feat_extract_norm == '''group''' , ) __magic_name__ = True else: for key, mapped_key in MAPPING.items(): __magic_name__ = '''wav2vec2_conformer.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __magic_name__ = True if "*" in mapped_key: __magic_name__ = name.split(a )[0].split('''.''' )[-2] __magic_name__ = mapped_key.replace('''*''' , a ) if "pos_bias_u" in name: __magic_name__ = None elif "pos_bias_v" in name: __magic_name__ = None elif "weight_g" in name: __magic_name__ = '''weight_g''' elif "weight_v" in name: __magic_name__ = '''weight_v''' elif "bias" in name: __magic_name__ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __magic_name__ = '''weight''' elif "running_mean" in name: __magic_name__ = '''running_mean''' elif "inv_freq" in name: __magic_name__ = '''inv_freq''' elif "running_var" in name: __magic_name__ = '''running_var''' elif "num_batches_tracked" in name: __magic_name__ = '''num_batches_tracked''' else: __magic_name__ = None set_recursively(a , a , a , a , a ) continue if not is_used: unused_weights.append(a ) logger.warning(F'''Unused weights: {unused_weights}''' ) def UpperCamelCase ( a , a , a , a , a ) -> Any: '''simple docstring''' __magic_name__ = full_name.split('''conv_layers.''' )[-1] __magic_name__ = name.split('''.''' ) __magic_name__ = int(items[0] ) __magic_name__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __magic_name__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __magic_name__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __magic_name__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __magic_name__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(a ) @torch.no_grad() def UpperCamelCase ( a , a , a=None , a=None , a=True ) -> List[str]: '''simple docstring''' if config_path is not None: __magic_name__ = WavaVecaConformerConfig.from_pretrained(a , hidden_act='''swish''' ) else: __magic_name__ = WavaVecaConformerConfig() if "rope" in checkpoint_path: __magic_name__ = '''rotary''' if is_finetuned: if dict_path: __magic_name__ = Dictionary.load(a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __magic_name__ = target_dict.pad_index __magic_name__ = target_dict.bos_index __magic_name__ = target_dict.eos_index __magic_name__ = len(target_dict.symbols ) __magic_name__ = os.path.join(a , '''vocab.json''' ) if not os.path.isdir(a ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(a ) ) return os.makedirs(a , exist_ok=a ) __magic_name__ = target_dict.indices # fairseq has the <pad> and <s> switched __magic_name__ = 0 __magic_name__ = 1 with open(a , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(a , a ) __magic_name__ = WavaVecaCTCTokenizer( a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=a , ) __magic_name__ = True if config.feat_extract_norm == '''layer''' else False __magic_name__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=a , return_attention_mask=a , ) __magic_name__ = WavaVecaProcessor(feature_extractor=a , tokenizer=a ) processor.save_pretrained(a ) __magic_name__ = WavaVecaConformerForCTC(a ) else: __magic_name__ = WavaVecaConformerForPreTraining(a ) if is_finetuned: __magic_name__ , __magic_name__ , __magic_name__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __magic_name__ = argparse.Namespace(task='''audio_pretraining''' ) __magic_name__ = fairseq.tasks.setup_task(a ) __magic_name__ , __magic_name__ , __magic_name__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=a ) __magic_name__ = model[0].eval() recursively_load_weights(a , a , not is_finetuned ) hf_wavavec.save_pretrained(a ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _lowerCAmelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
245
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :Optional[Any] = TextToVideoSDPipeline __SCREAMING_SNAKE_CASE :str = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE :Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __SCREAMING_SNAKE_CASE :Union[str, Any] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def snake_case__ ( self : List[Any] ): torch.manual_seed(0 ) __magic_name__ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) __magic_name__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=a__ , set_alpha_to_one=a__ , ) torch.manual_seed(0 ) __magic_name__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __magic_name__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) __magic_name__ = CLIPTextModel(a__ ) __magic_name__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __magic_name__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def snake_case__ ( self : List[str] , a__ : List[str] , a__ : int=0 ): if str(a__ ).startswith('''mps''' ): __magic_name__ = torch.manual_seed(a__ ) else: __magic_name__ = torch.Generator(device=a__ ).manual_seed(a__ ) __magic_name__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def snake_case__ ( self : str ): __magic_name__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator __magic_name__ = self.get_dummy_components() __magic_name__ = TextToVideoSDPipeline(**a__ ) __magic_name__ = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) __magic_name__ = self.get_dummy_inputs(a__ ) __magic_name__ = '''np''' __magic_name__ = sd_pipe(**a__ ).frames __magic_name__ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __magic_name__ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case__ ( self : Tuple ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=a__ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def snake_case__ ( self : Dict ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=a__ , expected_max_diff=1E-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def snake_case__ ( self : Optional[Any] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def snake_case__ ( self : Optional[Any] ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def snake_case__ ( self : Tuple ): pass def snake_case__ ( self : Union[str, Any] ): return super().test_progress_bar() @slow @skip_mps class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def snake_case__ ( self : List[str] ): __magic_name__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __magic_name__ = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __magic_name__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __magic_name__ = pipe.to('''cuda''' ) __magic_name__ = '''Spiderman is surfing''' __magic_name__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) __magic_name__ = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type='''pt''' ).frames __magic_name__ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def snake_case__ ( self : Union[str, Any] ): __magic_name__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __magic_name__ = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __magic_name__ = pipe.to('''cuda''' ) __magic_name__ = '''Spiderman is surfing''' __magic_name__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) __magic_name__ = pipe(a__ , generator=a__ , num_inference_steps=2 , output_type='''pt''' ).frames __magic_name__ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
245
1
def _lowerCAmelCase ( UpperCamelCase__: int = 50 ) -> int: """simple docstring""" A = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
641
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase = (IPNDMScheduler,) lowerCAmelCase = (('num_inference_steps', 5_0),) def _UpperCAmelCase ( self , **a__ ) -> List[str]: A = {"""num_train_timesteps""": 1000} config.update(**a__ ) return config def _UpperCAmelCase ( self , a__=0 , **a__ ) -> Tuple: A = dict(self.forward_default_kwargs ) A = kwargs.pop("""num_inference_steps""" , a__ ) A = self.dummy_sample A = 0.1 * sample A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A = self.get_scheduler_config(**a__ ) A = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # copy over dummy past residuals A = dummy_past_residuals[:] if time_step is None: A = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a__ ) A = scheduler_class.from_pretrained(a__ ) new_scheduler.set_timesteps(a__ ) # copy over dummy past residuals A = dummy_past_residuals[:] A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample A = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample A = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self , a__=0 , **a__ ) -> int: A = dict(self.forward_default_kwargs ) A = kwargs.pop("""num_inference_steps""" , a__ ) A = self.dummy_sample A = 0.1 * sample A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A = self.get_scheduler_config() A = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # copy over dummy past residuals (must be after setting timesteps) A = dummy_past_residuals[:] if time_step is None: A = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a__ ) A = scheduler_class.from_pretrained(a__ ) # copy over dummy past residuals new_scheduler.set_timesteps(a__ ) # copy over dummy past residual (must be after setting timesteps) A = dummy_past_residuals[:] A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample A = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample A = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _UpperCAmelCase ( self , **a__ ) -> List[Any]: A = self.scheduler_classes[0] A = self.get_scheduler_config(**a__ ) A = scheduler_class(**a__ ) A = 10 A = self.dummy_model() A = self.dummy_sample_deter scheduler.set_timesteps(a__ ) for i, t in enumerate(scheduler.timesteps ): A = model(a__ , a__ ) A = scheduler.step(a__ , a__ , a__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A = model(a__ , a__ ) A = scheduler.step(a__ , a__ , a__ ).prev_sample return sample def _UpperCAmelCase ( self ) -> Any: A = dict(self.forward_default_kwargs ) A = kwargs.pop("""num_inference_steps""" , a__ ) for scheduler_class in self.scheduler_classes: A = self.get_scheduler_config() A = scheduler_class(**a__ ) A = self.dummy_sample A = 0.1 * sample if num_inference_steps is not None and hasattr(a__ , """set_timesteps""" ): scheduler.set_timesteps(a__ ) elif num_inference_steps is not None and not hasattr(a__ , """set_timesteps""" ): A = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A = dummy_past_residuals[:] A = scheduler.timesteps[5] A = scheduler.timesteps[6] A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample A = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _UpperCAmelCase ( self ) -> Tuple: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=a__ , time_step=a__ ) def _UpperCAmelCase ( self ) -> Any: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=a__ , time_step=a__ ) def _UpperCAmelCase ( self ) -> int: A = self.full_loop() A = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 254_0529 ) < 10
641
1
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __UpperCAmelCase: """simple docstring""" __magic_name__ = BlenderbotConfig __magic_name__ = {} __magic_name__ = "gelu" def __init__( self , __magic_name__ , __magic_name__=13 , __magic_name__=7 , __magic_name__=True , __magic_name__=False , __magic_name__=99 , __magic_name__=32 , __magic_name__=2 , __magic_name__=4 , __magic_name__=37 , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=20 , __magic_name__=2 , __magic_name__=1 , __magic_name__=0 , ): """simple docstring""" A_ : List[Any] = parent A_ : List[str] = batch_size A_ : Tuple = seq_length A_ : str = is_training A_ : List[str] = use_labels A_ : List[Any] = vocab_size A_ : Dict = hidden_size A_ : List[str] = num_hidden_layers A_ : Tuple = num_attention_heads A_ : Tuple = intermediate_size A_ : Tuple = hidden_dropout_prob A_ : Any = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : List[Any] = eos_token_id A_ : Union[str, Any] = pad_token_id A_ : Union[str, Any] = bos_token_id def UpperCAmelCase ( self ): """simple docstring""" A_ : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A_ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A_ : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) A_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A_ : Union[str, Any] = prepare_blenderbot_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def UpperCAmelCase ( self , __magic_name__ , __magic_name__ ): """simple docstring""" A_ : str = TFBlenderbotModel(config=UpperCamelCase_ ).get_decoder() A_ : Union[str, Any] = inputs_dict["input_ids"] A_ : Dict = input_ids[:1, :] A_ : int = inputs_dict["attention_mask"][:1, :] A_ : Union[str, Any] = inputs_dict["head_mask"] A_ : Union[str, Any] = 1 # first forward pass A_ : List[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ ) A_ : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A_ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A_ : int = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A_ : str = tf.concat([input_ids, next_tokens] , axis=-1 ) A_ : Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A_ : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )[0] A_ : Union[str, Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A_ : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A_ : Tuple = output_from_no_past[:, -3:, random_slice_idx] A_ : Dict = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase_ , UpperCamelCase_ , rtol=1e-3 ) def a__ ( a , a , a , a=None , a=None , a=None , a=None , a=None , ) -> Union[str, Any]: if attention_mask is None: A_ : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCamelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A_ : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A_ : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A_ : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A_ : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __UpperCAmelCase( A__ , A__ , unittest.TestCase ): """simple docstring""" __magic_name__ = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __magic_name__ = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __magic_name__ = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __magic_name__ = True __magic_name__ = False __magic_name__ = False def UpperCAmelCase ( self ): """simple docstring""" A_ : Optional[int] = TFBlenderbotModelTester(self ) A_ : str = ConfigTester(self , config_class=UpperCamelCase_ ) def UpperCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self ): """simple docstring""" A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase_ ) @require_tokenizers @require_tf class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" __magic_name__ = ["My friends are cool but they eat too many carbs."] __magic_name__ = "facebook/blenderbot-400M-distill" @cached_property def UpperCAmelCase ( self ): """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase ( self ): """simple docstring""" A_ : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase ( self ): """simple docstring""" A_ : List[str] = self.tokenizer(self.src_text , return_tensors='''tf''' ) A_ : List[str] = self.model.generate( model_inputs.input_ids , ) A_ : int = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCamelCase_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
710
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def a__ ( a , a , a ) -> Any: A_ : List[Any] = WavaVecaForSequenceClassification.from_pretrained(a , config=a ) A_ : str = downstream_dict['''projector.weight'''] A_ : Dict = downstream_dict['''projector.bias'''] A_ : str = downstream_dict['''model.post_net.linear.weight'''] A_ : Optional[Any] = downstream_dict['''model.post_net.linear.bias'''] return model def a__ ( a , a , a ) -> Optional[int]: A_ : List[str] = WavaVecaForAudioFrameClassification.from_pretrained(a , config=a ) A_ : Any = downstream_dict['''model.linear.weight'''] A_ : str = downstream_dict['''model.linear.bias'''] return model def a__ ( a , a , a ) -> Optional[int]: A_ : Union[str, Any] = WavaVecaForXVector.from_pretrained(a , config=a ) A_ : Any = downstream_dict['''connector.weight'''] A_ : Dict = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): A_ : Dict = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] A_ : List[str] = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] A_ : Optional[Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] A_ : str = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] A_ : Tuple = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] A_ : List[Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] A_ : Union[str, Any] = downstream_dict['''objective.W'''] return model @torch.no_grad() def a__ ( a , a , a , a ) -> str: A_ : List[Any] = torch.load(a , map_location='''cpu''' ) A_ : int = checkpoint['''Downstream'''] A_ : Union[str, Any] = WavaVecaConfig.from_pretrained(a ) A_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( a , return_attention_mask=a , do_normalize=a ) A_ : List[Any] = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): A_ : str = convert_classification(a , a , a ) elif arch.endswith('''ForAudioFrameClassification''' ): A_ : Tuple = convert_diarization(a , a , a ) elif arch.endswith('''ForXVector''' ): A_ : Dict = convert_xvector(a , a , a ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: A_ : List[Any] = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(a ) hf_model.save_pretrained(a ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') _lowerCAmelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
236
0
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
199
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["""DeiTFeatureExtractor"""] SCREAMING_SNAKE_CASE = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
199
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class _UpperCAmelCase ( _snake_case): __lowercase : torch.FloatTensor class _UpperCAmelCase ( _snake_case , _snake_case): @register_to_config def __init__( self , snake_case_ = 6_55_36 , snake_case_ = None , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 0 , snake_case_ = "fourier" , snake_case_ = True , snake_case_ = False , snake_case_ = 0.0 , snake_case_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , snake_case_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , snake_case_ = "UNetMidBlock1D" , snake_case_ = None , snake_case_ = (32, 32, 64) , snake_case_ = None , snake_case_ = 8 , snake_case_ = 1 , snake_case_ = False , ): super().__init__() _snake_case : Optional[Any] = sample_size # time if time_embedding_type == "fourier": _snake_case : List[Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=snake_case_ , log=snake_case_ , flip_sin_to_cos=snake_case_ ) _snake_case : int = 2 * block_out_channels[0] elif time_embedding_type == "positional": _snake_case : Optional[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=snake_case_ , downscale_freq_shift=snake_case_ ) _snake_case : List[Any] = block_out_channels[0] if use_timestep_embedding: _snake_case : Dict = block_out_channels[0] * 4 _snake_case : str = TimestepEmbedding( in_channels=snake_case_ , time_embed_dim=snake_case_ , act_fn=snake_case_ , out_dim=block_out_channels[0] , ) _snake_case : int = nn.ModuleList([] ) _snake_case : Any = None _snake_case : str = nn.ModuleList([] ) _snake_case : Tuple = None # down _snake_case : str = in_channels for i, down_block_type in enumerate(snake_case_ ): _snake_case : Optional[int] = output_channel _snake_case : List[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels _snake_case : Union[str, Any] = i == len(snake_case_ ) - 1 _snake_case : Optional[Any] = get_down_block( snake_case_ , num_layers=snake_case_ , in_channels=snake_case_ , out_channels=snake_case_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(snake_case_ ) # mid _snake_case : Any = get_mid_block( snake_case_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=snake_case_ , add_downsample=snake_case_ , ) # up _snake_case : int = list(reversed(snake_case_ ) ) _snake_case : List[Any] = reversed_block_out_channels[0] if out_block_type is None: _snake_case : Optional[Any] = out_channels else: _snake_case : List[str] = block_out_channels[0] for i, up_block_type in enumerate(snake_case_ ): _snake_case : Any = output_channel _snake_case : Tuple = ( reversed_block_out_channels[i + 1] if i < len(snake_case_ ) - 1 else final_upsample_channels ) _snake_case : str = i == len(snake_case_ ) - 1 _snake_case : Union[str, Any] = get_up_block( snake_case_ , num_layers=snake_case_ , in_channels=snake_case_ , out_channels=snake_case_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(snake_case_ ) _snake_case : Tuple = output_channel # out _snake_case : List[str] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _snake_case : Any = get_out_block( out_block_type=snake_case_ , num_groups_out=snake_case_ , embed_dim=block_out_channels[0] , out_channels=snake_case_ , act_fn=snake_case_ , fc_dim=block_out_channels[-1] // 4 , ) def lowerCamelCase__ ( self , snake_case_ , snake_case_ , snake_case_ = True , ): _snake_case : Optional[int] = timestep if not torch.is_tensor(snake_case_ ): _snake_case : List[Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(snake_case_ ) and len(timesteps.shape ) == 0: _snake_case : str = timesteps[None].to(sample.device ) _snake_case : Tuple = self.time_proj(snake_case_ ) if self.config.use_timestep_embedding: _snake_case : Any = self.time_mlp(snake_case_ ) else: _snake_case : Tuple = timestep_embed[..., None] _snake_case : Any = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _snake_case : int = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _snake_case : Optional[Any] = () for downsample_block in self.down_blocks: _snake_case , _snake_case : str = downsample_block(hidden_states=snake_case_ , temb=snake_case_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _snake_case : List[str] = self.mid_block(snake_case_ , snake_case_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _snake_case : Any = down_block_res_samples[-1:] _snake_case : Dict = down_block_res_samples[:-1] _snake_case : Dict = upsample_block(snake_case_ , res_hidden_states_tuple=snake_case_ , temb=snake_case_ ) # 5. post-process if self.out_block: _snake_case : List[Any] = self.out_block(snake_case_ , snake_case_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=snake_case_ )
87
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( _snake_case , unittest.TestCase): __lowercase : Any = TextToVideoSDPipeline __lowercase : str = TEXT_TO_IMAGE_PARAMS __lowercase : int = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __lowercase : Optional[int] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ]) def lowerCamelCase__ ( self ): torch.manual_seed(0 ) _snake_case : str = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) _snake_case : List[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) _snake_case : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) _snake_case : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) _snake_case : Tuple = CLIPTextModel(snake_case_ ) _snake_case : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _snake_case : Any = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def lowerCamelCase__ ( self , snake_case_ , snake_case_=0 ): if str(snake_case_ ).startswith("mps" ): _snake_case : str = torch.manual_seed(snake_case_ ) else: _snake_case : Union[str, Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _snake_case : str = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def lowerCamelCase__ ( self ): _snake_case : int = "cpu" # ensure determinism for the device-dependent torch.Generator _snake_case : Optional[Any] = self.get_dummy_components() _snake_case : Tuple = TextToVideoSDPipeline(**snake_case_ ) _snake_case : List[str] = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _snake_case : int = self.get_dummy_inputs(snake_case_ ) _snake_case : Union[str, Any] = "np" _snake_case : Dict = sd_pipe(**snake_case_ ).frames _snake_case : Any = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _snake_case : Dict = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCamelCase__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case_ , expected_max_diff=1E-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def lowerCamelCase__ ( self ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def lowerCamelCase__ ( self ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase): def lowerCamelCase__ ( self ): _snake_case : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) _snake_case : int = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) _snake_case : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _snake_case : Tuple = pipe.to("cuda" ) _snake_case : List[Any] = "Spiderman is surfing" _snake_case : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) _snake_case : int = pipe(snake_case_ , generator=snake_case_ , num_inference_steps=25 , output_type="pt" ).frames _snake_case : int = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def lowerCamelCase__ ( self ): _snake_case : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) _snake_case : str = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) _snake_case : int = pipe.to("cuda" ) _snake_case : Any = "Spiderman is surfing" _snake_case : str = torch.Generator(device="cpu" ).manual_seed(0 ) _snake_case : Any = pipe(snake_case_ , generator=snake_case_ , num_inference_steps=2 , output_type="pt" ).frames _snake_case : Optional[int] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
87
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class __UpperCamelCase : lowercase : Union[str, Any] = MBartConfig lowercase : List[str] = {} lowercase : List[Any] = 'gelu' def __init__( self :Tuple ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any]=1_3 ,_UpperCamelCase :Optional[int]=7 ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :Optional[Any]=False ,_UpperCamelCase :Union[str, Any]=9_9 ,_UpperCamelCase :List[str]=3_2 ,_UpperCamelCase :Tuple=2 ,_UpperCamelCase :Dict=4 ,_UpperCamelCase :List[str]=3_7 ,_UpperCamelCase :Any=0.1 ,_UpperCamelCase :List[str]=0.1 ,_UpperCamelCase :Dict=2_0 ,_UpperCamelCase :List[Any]=2 ,_UpperCamelCase :Dict=1 ,_UpperCamelCase :List[Any]=0 ,): snake_case_ : Any = parent snake_case_ : Tuple = batch_size snake_case_ : Any = seq_length snake_case_ : List[str] = is_training snake_case_ : Optional[Any] = use_labels snake_case_ : Union[str, Any] = vocab_size snake_case_ : int = hidden_size snake_case_ : Any = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : Optional[int] = intermediate_size snake_case_ : List[Any] = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : Dict = max_position_embeddings snake_case_ : Tuple = eos_token_id snake_case_ : Tuple = pad_token_id snake_case_ : Union[str, Any] = bos_token_id def a__ ( self :str ): snake_case_ : int = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) snake_case_ : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) snake_case_ : str = tf.concat([input_ids, eos_tensor] ,axis=1 ) snake_case_ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case_ : str = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) snake_case_ : Tuple = prepare_mbart_inputs_dict(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) return config, inputs_dict def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Union[str, Any] ): snake_case_ : Optional[Any] = TFMBartModel(config=_UpperCamelCase ).get_decoder() snake_case_ : int = inputs_dict["""input_ids"""] snake_case_ : List[Any] = input_ids[:1, :] snake_case_ : Optional[int] = inputs_dict["""attention_mask"""][:1, :] snake_case_ : Dict = inputs_dict["""head_mask"""] snake_case_ : Optional[Any] = 1 # first forward pass snake_case_ : str = model(_UpperCamelCase ,attention_mask=_UpperCamelCase ,head_mask=_UpperCamelCase ,use_cache=_UpperCamelCase ) snake_case_ , snake_case_ : Tuple = outputs.to_tuple() snake_case_ : Any = past_key_values[1] def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Dict , lowerCamelCase_ :Any=None , lowerCamelCase_ :Any=None , lowerCamelCase_ :str=None , lowerCamelCase_ :Any=None , lowerCamelCase_ :Any=None , ): '''simple docstring''' if attention_mask is None: snake_case_ : List[str] = tf.cast(tf.math.not_equal(lowerCamelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case_ : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case_ : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case_ : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __UpperCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): lowercase : Optional[Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase : str = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase : List[str] = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase : Dict = True lowercase : str = False lowercase : Dict = False def a__ ( self :Dict ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Dict ,_UpperCamelCase :Any ,_UpperCamelCase :int ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def a__ ( self :Dict ): snake_case_ : Optional[int] = TFMBartModelTester(self ) snake_case_ : Optional[Any] = ConfigTester(self ,config_class=_UpperCamelCase ) def a__ ( self :List[Any] ): self.config_tester.run_common_tests() def a__ ( self :List[str] ): snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class __UpperCamelCase ( unittest.TestCase ): lowercase : Optional[int] = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase : Optional[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase : List[Any] = 'facebook/mbart-large-en-ro' @cached_property def a__ ( self :List[Any] ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def a__ ( self :int ): snake_case_ : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def a__ ( self :Tuple ,**_UpperCamelCase :str ): snake_case_ : Tuple = self.translate_src_text(**_UpperCamelCase ) self.assertListEqual(self.expected_text ,_UpperCamelCase ) def a__ ( self :Tuple ,**_UpperCamelCase :Any ): snake_case_ : Optional[Any] = self.tokenizer(self.src_text ,**_UpperCamelCase ,return_tensors="""tf""" ) snake_case_ : Union[str, Any] = self.model.generate( model_inputs.input_ids ,attention_mask=model_inputs.attention_mask ,num_beams=2 ) snake_case_ : Any = self.tokenizer.batch_decode(_UpperCamelCase ,skip_special_tokens=_UpperCamelCase ) return generated_words @slow def a__ ( self :Dict ): self._assert_generated_batch_equal_expected()
334
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __A : int = logging.get_logger(__name__) __A : List[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } __A : Union[str, Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :Any , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any ): '''simple docstring''' for attribute in key.split(""".""" ): snake_case_ : Union[str, Any] = getattr(lowerCamelCase_ , lowerCamelCase_ ) if weight_type is not None: snake_case_ : str = getattr(lowerCamelCase_ , lowerCamelCase_ ).shape else: snake_case_ : Tuple = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case_ : Optional[int] = value elif weight_type == "weight_g": snake_case_ : List[str] = value elif weight_type == "weight_v": snake_case_ : int = value elif weight_type == "bias": snake_case_ : List[str] = value else: snake_case_ : List[str] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[Any] ): '''simple docstring''' snake_case_ : str = [] snake_case_ : Any = fairseq_model.state_dict() snake_case_ : str = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case_ : Optional[int] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == """group""" , ) snake_case_ : str = True else: for key, mapped_key in MAPPING.items(): snake_case_ : List[str] = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue snake_case_ : Union[str, Any] = True if "*" in mapped_key: snake_case_ : Optional[Any] = name.split(lowerCamelCase_ )[0].split(""".""" )[-2] snake_case_ : List[str] = mapped_key.replace("""*""" , lowerCamelCase_ ) if "weight_g" in name: snake_case_ : Optional[int] = """weight_g""" elif "weight_v" in name: snake_case_ : Tuple = """weight_v""" elif "bias" in name: snake_case_ : List[Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case_ : Union[str, Any] = """weight""" else: snake_case_ : Union[str, Any] = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) continue if not is_used: unused_weights.append(lowerCamelCase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Dict ): '''simple docstring''' snake_case_ : Any = full_name.split("""conv_layers.""" )[-1] snake_case_ : Union[str, Any] = name.split(""".""" ) snake_case_ : Tuple = int(items[0] ) snake_case_ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case_ : Dict = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case_ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case_ : Optional[int] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case_ : Union[str, Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase_ ) @torch.no_grad() def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :Tuple , lowerCamelCase_ :Union[str, Any]=None , lowerCamelCase_ :int=None , lowerCamelCase_ :int=True ): '''simple docstring''' if config_path is not None: snake_case_ : Union[str, Any] = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) else: snake_case_ : List[str] = UniSpeechSatConfig() snake_case_ : List[str] = """""" if is_finetuned: snake_case_ : Any = UniSpeechSatForCTC(lowerCamelCase_ ) else: snake_case_ : List[str] = UniSpeechSatForPreTraining(lowerCamelCase_ ) snake_case_ , snake_case_ , snake_case_ : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) snake_case_ : List[Any] = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ ) hf_wavavec.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __A : Any = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
334
1
'''simple docstring''' import gc import threading import time import psutil import torch class snake_case__ : def __init__( self : Tuple ) -> Optional[Any]: '''simple docstring''' __snake_case : str = psutil.Process() __snake_case : Any = False def A_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' __snake_case : str = -1 while True: __snake_case : List[str] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def A_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' __snake_case : Dict = True __snake_case : Union[str, Any] = threading.Thread(target=self.peak_monitor ) __snake_case : Union[str, Any] = True self.thread.start() def A_ ( self : str ) -> Optional[Any]: '''simple docstring''' __snake_case : Union[str, Any] = False self.thread.join() return self.cpu_memory_peak A__ : List[Any] = PeakCPUMemory() def a_ ( ) -> List[str]: __snake_case : Optional[int] = {'''time''': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __snake_case : str = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __snake_case : Optional[int] = torch.cuda.memory_allocated(a_ ) torch.cuda.reset_peak_memory_stats() return measures def a_ ( _UpperCAmelCase : List[Any] ) -> Any: __snake_case : List[Any] = {'''time''': time.time() - start_measures['''time''']} gc.collect() torch.cuda.empty_cache() # CPU mem __snake_case : Optional[Any] = (psutil.Process().memory_info().rss - start_measures['''cpu''']) / 2**20 __snake_case : Any = (cpu_peak_tracker.stop() - start_measures['''cpu''']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): __snake_case : str = (torch.cuda.memory_allocated(a_ ) - start_measures[str(a_ )]) / 2**20 __snake_case : List[str] = (torch.cuda.max_memory_allocated(a_ ) - start_measures[str(a_ )]) / 2**20 return measures def a_ ( _UpperCAmelCase : str ,_UpperCAmelCase : int ) -> Optional[int]: print(f'''{description}:''' ) print(f'''- Time: {measures["time"]:.2f}s''' ) for i in range(torch.cuda.device_count() ): print(f'''- GPU {i} allocated: {measures[str(a_ )]:.2f}MiB''' ) __snake_case : Optional[int] = measures[f'''{i}-peak'''] print(f'''- GPU {i} peak: {peak:.2f}MiB''' ) print(f'''- CPU RAM allocated: {measures["cpu"]:.2f}MiB''' ) print(f'''- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB''' )
718
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' ,[ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] ,) def a_ ( _UpperCAmelCase : List[str] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Optional[Any] ,) -> List[str]: __snake_case : Optional[Any] = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } __snake_case , __snake_case : Union[str, Any] = input_paths_and_base_extractors[compression_format] if input_path is None: __snake_case : List[Any] = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_UpperCAmelCase ) assert base_extractor.is_extractable(_UpperCAmelCase ) __snake_case : List[Any] = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(_UpperCAmelCase ,_UpperCAmelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case : Any = file_path.read_text(encoding='utf-8' ) else: __snake_case : str = output_path.read_text(encoding='utf-8' ) __snake_case : Any = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' ,[ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] ,) def a_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Any ,_UpperCAmelCase : Any ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Dict ,) -> List[Any]: __snake_case : List[str] = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } __snake_case : List[Any] = input_paths[compression_format] if input_path is None: __snake_case : Tuple = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_UpperCAmelCase ) __snake_case : Optional[Any] = Extractor.infer_extractor_format(_UpperCAmelCase ) assert extractor_format is not None __snake_case : Union[str, Any] = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case : Optional[Any] = file_path.read_text(encoding='utf-8' ) else: __snake_case : List[Any] = output_path.read_text(encoding='utf-8' ) __snake_case : Dict = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def a_ ( _UpperCAmelCase : str ,_UpperCAmelCase : Any ) -> Dict: import tarfile __snake_case : List[str] = tmp_path / 'data_dot_dot' directory.mkdir() __snake_case : Optional[int] = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(_UpperCAmelCase ,'w' ) as f: f.add(_UpperCAmelCase ,arcname=os.path.join('..' ,text_file.name ) ) return path @pytest.fixture def a_ ( _UpperCAmelCase : int ) -> Dict: import tarfile __snake_case : Optional[int] = tmp_path / 'data_sym_link' directory.mkdir() __snake_case : Tuple = directory / 'tar_file_with_sym_link.tar' os.symlink('..' ,directory / 'subdir' ,target_is_directory=_UpperCAmelCase ) with tarfile.TarFile(_UpperCAmelCase ,'w' ) as f: f.add(str(directory / 'subdir' ) ,arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' ,[('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] ,) def a_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : str ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Any ) -> Union[str, Any]: __snake_case : Dict = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } __snake_case : int = insecure_tar_files[insecure_tar_file] __snake_case : Optional[Any] = tmp_path / 'extracted' TarExtractor.extract(_UpperCAmelCase ,_UpperCAmelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def a_ ( _UpperCAmelCase : Union[str, Any] ) -> Dict: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __snake_case : Dict = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 __snake_case : str = ( b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' b'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' b'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' b'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(_UpperCAmelCase ) assert zipfile.is_zipfile(str(_UpperCAmelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(_UpperCAmelCase ) # but we're right
124
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """microsoft/unispeech-sat-base-100h-libri-ft""": ( """https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json""" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCAmelCase__ ( _a ): """simple docstring""" lowerCAmelCase__ : Optional[int] = 'unispeech-sat' def __init__( self: Optional[int] , __lowerCAmelCase: Tuple=32 , __lowerCAmelCase: Optional[Any]=768 , __lowerCAmelCase: Optional[int]=12 , __lowerCAmelCase: List[Any]=12 , __lowerCAmelCase: Dict=3_072 , __lowerCAmelCase: Optional[int]="gelu" , __lowerCAmelCase: List[Any]=0.1 , __lowerCAmelCase: Tuple=0.1 , __lowerCAmelCase: str=0.1 , __lowerCAmelCase: Any=0.0 , __lowerCAmelCase: List[str]=0.0 , __lowerCAmelCase: Optional[Any]=0.1 , __lowerCAmelCase: Tuple=0.1 , __lowerCAmelCase: Tuple=0.02 , __lowerCAmelCase: Any=1E-5 , __lowerCAmelCase: Union[str, Any]="group" , __lowerCAmelCase: Any="gelu" , __lowerCAmelCase: Optional[int]=(512, 512, 512, 512, 512, 512, 512) , __lowerCAmelCase: Tuple=(5, 2, 2, 2, 2, 2, 2) , __lowerCAmelCase: Optional[int]=(10, 3, 3, 3, 3, 2, 2) , __lowerCAmelCase: List[str]=False , __lowerCAmelCase: str=128 , __lowerCAmelCase: Dict=16 , __lowerCAmelCase: Optional[int]=False , __lowerCAmelCase: Dict=True , __lowerCAmelCase: Union[str, Any]=0.05 , __lowerCAmelCase: Union[str, Any]=10 , __lowerCAmelCase: List[Any]=2 , __lowerCAmelCase: Dict=0.0 , __lowerCAmelCase: Any=10 , __lowerCAmelCase: Optional[int]=0 , __lowerCAmelCase: Any=320 , __lowerCAmelCase: Optional[int]=2 , __lowerCAmelCase: Dict=0.1 , __lowerCAmelCase: Any=100 , __lowerCAmelCase: Any=256 , __lowerCAmelCase: Union[str, Any]=256 , __lowerCAmelCase: Any=0.1 , __lowerCAmelCase: Union[str, Any]="mean" , __lowerCAmelCase: List[Any]=False , __lowerCAmelCase: Tuple=False , __lowerCAmelCase: Optional[Any]=256 , __lowerCAmelCase: Union[str, Any]=(512, 512, 512, 512, 1_500) , __lowerCAmelCase: List[str]=(5, 3, 3, 1, 1) , __lowerCAmelCase: int=(1, 2, 3, 1, 1) , __lowerCAmelCase: Optional[int]=512 , __lowerCAmelCase: List[Any]=0 , __lowerCAmelCase: List[Any]=1 , __lowerCAmelCase: Optional[Any]=2 , __lowerCAmelCase: Optional[int]=504 , **__lowerCAmelCase: Dict , ) -> List[str]: '''simple docstring''' super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) __UpperCAmelCase = hidden_size __UpperCAmelCase = feat_extract_norm __UpperCAmelCase = feat_extract_activation __UpperCAmelCase = list(__lowerCAmelCase ) __UpperCAmelCase = list(__lowerCAmelCase ) __UpperCAmelCase = list(__lowerCAmelCase ) __UpperCAmelCase = conv_bias __UpperCAmelCase = num_conv_pos_embeddings __UpperCAmelCase = num_conv_pos_embedding_groups __UpperCAmelCase = len(self.conv_dim ) __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = feat_proj_dropout __UpperCAmelCase = final_dropout __UpperCAmelCase = layerdrop __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = vocab_size __UpperCAmelCase = num_clusters __UpperCAmelCase = do_stable_layer_norm __UpperCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase = apply_spec_augment __UpperCAmelCase = mask_time_prob __UpperCAmelCase = mask_time_length __UpperCAmelCase = mask_time_min_masks __UpperCAmelCase = mask_feature_prob __UpperCAmelCase = mask_feature_length __UpperCAmelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __UpperCAmelCase = num_codevectors_per_group __UpperCAmelCase = num_codevector_groups __UpperCAmelCase = contrastive_logits_temperature __UpperCAmelCase = feat_quantizer_dropout __UpperCAmelCase = num_negatives __UpperCAmelCase = codevector_dim __UpperCAmelCase = proj_codevector_dim __UpperCAmelCase = diversity_loss_weight # ctc loss __UpperCAmelCase = ctc_loss_reduction __UpperCAmelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __UpperCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __UpperCAmelCase = list(__lowerCAmelCase ) __UpperCAmelCase = list(__lowerCAmelCase ) __UpperCAmelCase = list(__lowerCAmelCase ) __UpperCAmelCase = xvector_output_dim @property def _UpperCAmelCase ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
221
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowercase ( self : List[str] ): lowerCAmelCase = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe( image=lowerCAmelCase , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images lowerCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
169
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING A__ = logging.get_logger(__name__) A__ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class a ( __lowerCamelCase ): __lowerCAmelCase : Optional[int] = """blip_2_vision_model""" def __init__( self :Union[str, Any] ,__lowercase :str=1_4_0_8 ,__lowercase :Optional[Any]=6_1_4_4 ,__lowercase :Union[str, Any]=3_9 ,__lowercase :List[str]=1_6 ,__lowercase :List[str]=2_2_4 ,__lowercase :int=1_4 ,__lowercase :str="gelu" ,__lowercase :int=0.0_0001 ,__lowercase :int=0.0 ,__lowercase :Optional[Any]=1e-1_0 ,__lowercase :Tuple=True ,**__lowercase :List[Any] ,): super().__init__(**__lowercase ) snake_case__ : Dict = hidden_size snake_case__ : int = intermediate_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : List[str] = patch_size snake_case__ : List[Any] = image_size snake_case__ : Optional[Any] = initializer_range snake_case__ : Optional[Any] = attention_dropout snake_case__ : Any = layer_norm_eps snake_case__ : Optional[Any] = hidden_act snake_case__ : Any = qkv_bias @classmethod def __lowerCamelCase ( cls :Dict ,__lowercase :Union[str, os.PathLike] ,**__lowercase :Any ): cls._set_token_in_kwargs(__lowercase ) snake_case__ , snake_case__ : Optional[int] = cls.get_config_dict(__lowercase ,**__lowercase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": snake_case__ : int = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowercase ,**__lowercase ) class a ( __lowerCamelCase ): __lowerCAmelCase : Any = """blip_2_qformer""" def __init__( self :Optional[int] ,__lowercase :List[Any]=3_0_5_2_2 ,__lowercase :Tuple=7_6_8 ,__lowercase :Optional[int]=1_2 ,__lowercase :int=1_2 ,__lowercase :Union[str, Any]=3_0_7_2 ,__lowercase :List[Any]="gelu" ,__lowercase :Optional[int]=0.1 ,__lowercase :Tuple=0.1 ,__lowercase :Dict=5_1_2 ,__lowercase :Tuple=0.02 ,__lowercase :int=1e-1_2 ,__lowercase :Tuple=0 ,__lowercase :Any="absolute" ,__lowercase :Optional[int]=2 ,__lowercase :Dict=1_4_0_8 ,**__lowercase :List[str] ,): super().__init__(pad_token_id=__lowercase ,**__lowercase ) snake_case__ : int = vocab_size snake_case__ : List[Any] = hidden_size snake_case__ : str = num_hidden_layers snake_case__ : Tuple = num_attention_heads snake_case__ : str = hidden_act snake_case__ : Union[str, Any] = intermediate_size snake_case__ : int = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : Tuple = max_position_embeddings snake_case__ : Any = initializer_range snake_case__ : Optional[int] = layer_norm_eps snake_case__ : Any = position_embedding_type snake_case__ : Optional[Any] = cross_attention_frequency snake_case__ : Optional[Any] = encoder_hidden_size @classmethod def __lowerCamelCase ( cls :str ,__lowercase :Union[str, os.PathLike] ,**__lowercase :Optional[Any] ): cls._set_token_in_kwargs(__lowercase ) snake_case__ , snake_case__ : str = cls.get_config_dict(__lowercase ,**__lowercase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": snake_case__ : Optional[int] = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowercase ,**__lowercase ) class a ( __lowerCamelCase ): __lowerCAmelCase : List[str] = """blip-2""" __lowerCAmelCase : List[str] = True def __init__( self :Dict ,__lowercase :Any=None ,__lowercase :str=None ,__lowercase :List[Any]=None ,__lowercase :str=3_2 ,**__lowercase :Any ): super().__init__(**__lowercase ) if vision_config is None: snake_case__ : Optional[int] = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: snake_case__ : int = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: snake_case__ : Dict = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) snake_case__ : Any = BlipaVisionConfig(**__lowercase ) snake_case__ : int = BlipaQFormerConfig(**__lowercase ) snake_case__ : List[str] = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' snake_case__ : Any = CONFIG_MAPPING[text_model_type](**__lowercase ) snake_case__ : Tuple = self.text_config.tie_word_embeddings snake_case__ : Dict = self.text_config.is_encoder_decoder snake_case__ : int = num_query_tokens snake_case__ : str = self.vision_config.hidden_size snake_case__ : Tuple = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case__ : Dict = 1.0 snake_case__ : str = 0.02 @classmethod def __lowerCamelCase ( cls :Dict ,__lowercase :BlipaVisionConfig ,__lowercase :BlipaQFormerConfig ,__lowercase :PretrainedConfig ,**__lowercase :int ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**__lowercase ,) def __lowerCamelCase ( self :Dict ): snake_case__ : Union[str, Any] = copy.deepcopy(self.__dict__ ) snake_case__ : str = self.vision_config.to_dict() snake_case__ : Tuple = self.qformer_config.to_dict() snake_case__ : str = self.text_config.to_dict() snake_case__ : Union[str, Any] = self.__class__.model_type return output
219
import unittest from transformers import DonutProcessor A__ = '''naver-clova-ix/donut-base''' class a ( unittest.TestCase ): def __lowerCamelCase ( self :Optional[int] ): snake_case__ : str = DonutProcessor.from_pretrained(__lowercase ) def __lowerCamelCase ( self :int ): snake_case__ : List[Any] = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } snake_case__ : List[Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) snake_case__ : Any = self.processor.tokenajson(__lowercase ) self.assertDictEqual(__lowercase ,__lowercase )
219
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = ["""image_processor""", """tokenizer"""] _UpperCAmelCase = """ViTImageProcessor""" _UpperCAmelCase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __call__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ): """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if visual_prompt is not None: SCREAMING_SNAKE_CASE_ : int = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if images is not None: SCREAMING_SNAKE_CASE_ : Dict = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if visual_prompt is not None and images is not None: SCREAMING_SNAKE_CASE_ : List[str] = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: SCREAMING_SNAKE_CASE_ : Tuple = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase__ ) , tensor_type=lowerCAmelCase__ ) def UpperCamelCase__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def UpperCamelCase__ ( self ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCAmelCase__ , ) return self.image_processor_class @property def UpperCamelCase__ ( self ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowerCAmelCase__ , ) return self.image_processor
101
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase=0.9_9_9 , _UpperCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) lowerCamelCase_: Union[str, Any] = [] for i in range(_UpperCAmelCase ): lowerCamelCase_: Tuple = i / num_diffusion_timesteps lowerCamelCase_: Optional[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_UpperCAmelCase ) / alpha_bar_fn(_UpperCAmelCase ) , _UpperCAmelCase ) ) return torch.tensor(_UpperCAmelCase , dtype=torch.floataa ) class a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _A = [e.name for e in KarrasDiffusionSchedulers] _A = 2 @register_to_config def __init__( self : int , A_ : int = 10_00 , A_ : float = 0.00085 , A_ : float = 0.012 , A_ : str = "linear" , A_ : Optional[Union[np.ndarray, List[float]]] = None , A_ : str = "epsilon" , A_ : str = "linspace" , A_ : int = 0 , ) -> Any: """simple docstring""" if trained_betas is not None: lowerCamelCase_: Dict = torch.tensor(A_ , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCamelCase_: Tuple = torch.linspace(A_ , A_ , A_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCamelCase_: List[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , A_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCamelCase_: Tuple = betas_for_alpha_bar(A_ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) lowerCamelCase_: str = 1.0 - self.betas lowerCamelCase_: Any = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(A_ , A_ , A_ ) def lowerCAmelCase ( self : List[Any] , A_ : str , A_ : Union[str, Any]=None ) -> int: """simple docstring""" if schedule_timesteps is None: lowerCamelCase_: Union[str, Any] = self.timesteps lowerCamelCase_: Tuple = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCamelCase_: List[str] = 1 if len(A_ ) > 1 else 0 else: lowerCamelCase_: int = timestep.cpu().item() if torch.is_tensor(A_ ) else timestep lowerCamelCase_: List[Any] = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase ( self : int , A_ : torch.FloatTensor , A_ : Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: """simple docstring""" lowerCamelCase_: List[Any] = self.index_for_timestep(A_ ) if self.state_in_first_order: lowerCamelCase_: List[Any] = self.sigmas[step_index] else: lowerCamelCase_: Optional[Any] = self.sigmas_interpol[step_index] lowerCamelCase_: Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase ( self : Any , A_ : int , A_ : Union[str, torch.device] = None , A_ : Optional[int] = None , ) -> List[Any]: """simple docstring""" lowerCamelCase_: List[str] = num_inference_steps lowerCamelCase_: int = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCamelCase_: int = np.linspace(0 , num_train_timesteps - 1 , A_ , dtype=A_ )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCamelCase_: Dict = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCamelCase_: List[Any] = (np.arange(0 , A_ ) * step_ratio).round()[::-1].copy().astype(A_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCamelCase_: Optional[int] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCamelCase_: Any = (np.arange(A_ , 0 , -step_ratio )).round().copy().astype(A_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) lowerCamelCase_: Dict = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCamelCase_: Any = torch.from_numpy(np.log(A_ ) ).to(A_ ) lowerCamelCase_: Union[str, Any] = np.interp(A_ , np.arange(0 , len(A_ ) ) , A_ ) lowerCamelCase_: List[str] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCamelCase_: Tuple = torch.from_numpy(A_ ).to(device=A_ ) # interpolate sigmas lowerCamelCase_: List[Any] = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() lowerCamelCase_: List[Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) lowerCamelCase_: int = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(A_ ).startswith("""mps""" ): # mps does not support float64 lowerCamelCase_: List[Any] = torch.from_numpy(A_ ).to(A_ , dtype=torch.floataa ) else: lowerCamelCase_: Union[str, Any] = torch.from_numpy(A_ ).to(A_ ) # interpolate timesteps lowerCamelCase_: Optional[int] = self.sigma_to_t(A_ ).to(A_ , dtype=timesteps.dtype ) lowerCamelCase_: Optional[int] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() lowerCamelCase_: str = torch.cat([timesteps[:1], interleaved_timesteps] ) lowerCamelCase_: Tuple = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCamelCase_: List[str] = defaultdict(A_ ) def lowerCAmelCase ( self : Tuple , A_ : List[Any] ) -> Optional[Any]: """simple docstring""" # get log sigma lowerCamelCase_: List[Any] = sigma.log() # get distribution lowerCamelCase_: Union[str, Any] = log_sigma - self.log_sigmas[:, None] # get sigmas range lowerCamelCase_: Any = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) lowerCamelCase_: int = low_idx + 1 lowerCamelCase_: Optional[Any] = self.log_sigmas[low_idx] lowerCamelCase_: Dict = self.log_sigmas[high_idx] # interpolate sigmas lowerCamelCase_: int = (low - log_sigma) / (low - high) lowerCamelCase_: Optional[int] = w.clamp(0 , 1 ) # transform interpolation to time range lowerCamelCase_: Any = (1 - w) * low_idx + w * high_idx lowerCamelCase_: Dict = t.view(sigma.shape ) return t @property def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.sample is None def lowerCAmelCase ( self : List[Any] , A_ : Union[torch.FloatTensor, np.ndarray] , A_ : Union[float, torch.FloatTensor] , A_ : Union[torch.FloatTensor, np.ndarray] , A_ : bool = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" lowerCamelCase_: int = self.index_for_timestep(A_ ) # advance index counter by 1 lowerCamelCase_: List[str] = timestep.cpu().item() if torch.is_tensor(A_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCamelCase_: List[str] = self.sigmas[step_index] lowerCamelCase_: int = self.sigmas_interpol[step_index + 1] lowerCamelCase_: int = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method lowerCamelCase_: Union[str, Any] = self.sigmas[step_index - 1] lowerCamelCase_: List[Any] = self.sigmas_interpol[step_index] lowerCamelCase_: str = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCamelCase_: List[str] = 0 lowerCamelCase_: int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCamelCase_: str = sigma_hat if self.state_in_first_order else sigma_interpol lowerCamelCase_: int = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCamelCase_: Tuple = sigma_hat if self.state_in_first_order else sigma_interpol lowerCamelCase_: Union[str, Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCamelCase_: Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCamelCase_: Any = sigma_interpol - sigma_hat # store for 2nd order step lowerCamelCase_: str = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order lowerCamelCase_: Dict = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep lowerCamelCase_: List[Any] = sigma_next - sigma_hat lowerCamelCase_: str = self.sample lowerCamelCase_: Tuple = None lowerCamelCase_: str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A_ ) def lowerCAmelCase ( self : Tuple , A_ : torch.FloatTensor , A_ : torch.FloatTensor , A_ : torch.FloatTensor , ) -> torch.FloatTensor: """simple docstring""" # Make sure sigmas and timesteps have the same device and dtype as original_samples lowerCamelCase_: List[str] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(A_ ): # mps does not support float64 lowerCamelCase_: int = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowerCamelCase_: Dict = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowerCamelCase_: int = self.timesteps.to(original_samples.device ) lowerCamelCase_: Dict = timesteps.to(original_samples.device ) lowerCamelCase_: Optional[Any] = [self.index_for_timestep(A_ , A_ ) for t in timesteps] lowerCamelCase_: Tuple = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCamelCase_: List[Any] = sigma.unsqueeze(-1 ) lowerCamelCase_: List[Any] = original_samples + noise * sigma return noisy_samples def __len__( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self.config.num_train_timesteps
423
0
from math import sqrt def A ( _UpperCAmelCase : Optional[int] ) -> bool: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' must been an int and positive" _UpperCAmelCase = True # 0 and 1 are none primes. if number <= 1: _UpperCAmelCase = False for divisor in range(2 , int(round(sqrt(__snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: _UpperCAmelCase = False break # precondition assert isinstance(__snake_case , __snake_case ), "'status' must been from type bool" return status def A ( _UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N _UpperCAmelCase = list(range(2 , n + 1 ) ) _UpperCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(__snake_case ) ): for j in range(i + 1 , len(__snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): _UpperCAmelCase = 0 # filters actual prime numbers. _UpperCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def A ( _UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and (n > 2), "'N' must been an int and > 2" _UpperCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(__snake_case ): ans.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def A ( _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and number >= 0, "'number' must been an int and >= 0" _UpperCAmelCase = [] # this list will be returns of the function. # potential prime number factors. _UpperCAmelCase = 2 _UpperCAmelCase = number if number == 0 or number == 1: ans.append(__snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__snake_case ): while quotient != 1: if is_prime(__snake_case ) and (quotient % factor == 0): ans.append(__snake_case ) quotient /= factor else: factor += 1 else: ans.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def A ( _UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" _UpperCAmelCase = 0 # prime factorization of 'number' _UpperCAmelCase = prime_factorization(__snake_case ) _UpperCAmelCase = max(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type int" return ans def A ( _UpperCAmelCase : str ) -> int: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" _UpperCAmelCase = 0 # prime factorization of 'number' _UpperCAmelCase = prime_factorization(__snake_case ) _UpperCAmelCase = min(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type int" return ans def A ( _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , __snake_case ), "compare bust been from type bool" return number % 2 == 0 def A ( _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , __snake_case ), "compare bust been from type bool" return number % 2 != 0 def A ( _UpperCAmelCase : int ) -> str: '''simple docstring''' assert ( isinstance(__snake_case , __snake_case ) and (number > 2) and is_even(__snake_case ) ), "'number' must been an int, even and > 2" _UpperCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' _UpperCAmelCase = get_prime_numbers(__snake_case ) _UpperCAmelCase = len(__snake_case ) # run variable for while-loops. _UpperCAmelCase = 0 _UpperCAmelCase = None # exit variable. for break up the loops _UpperCAmelCase = True while i < len_pn and loop: _UpperCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: _UpperCAmelCase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__snake_case , __snake_case ) and (len(__snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def A ( _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> str: '''simple docstring''' assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." _UpperCAmelCase = 0 while numbera != 0: _UpperCAmelCase = numbera % numbera _UpperCAmelCase = numbera _UpperCAmelCase = rest # precondition assert isinstance(__snake_case , __snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." _UpperCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' _UpperCAmelCase = prime_factorization(__snake_case ) _UpperCAmelCase = prime_factorization(__snake_case ) elif numbera == 1 or numbera == 1: _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = max(__snake_case , __snake_case ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: _UpperCAmelCase = prime_fac_a.count(__snake_case ) _UpperCAmelCase = prime_fac_a.count(__snake_case ) for _ in range(max(__snake_case , __snake_case ) ): ans *= n else: _UpperCAmelCase = prime_fac_a.count(__snake_case ) for _ in range(__snake_case ): ans *= n done.append(__snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: _UpperCAmelCase = prime_fac_a.count(__snake_case ) for _ in range(__snake_case ): ans *= n done.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def A ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'number' must been a positive int" _UpperCAmelCase = 0 _UpperCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__snake_case ): ans += 1 # precondition assert isinstance(__snake_case , __snake_case ) and is_prime( __snake_case ), "'ans' must been a prime number and from type int" return ans def A ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' assert ( is_prime(__snake_case ) and is_prime(__snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" _UpperCAmelCase = p_number_a + 1 # jump to the next number _UpperCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__snake_case ): number += 1 while number < p_number_a: ans.append(__snake_case ) number += 1 # fetch the next prime number. while not is_prime(__snake_case ): number += 1 # precondition assert ( isinstance(__snake_case , __snake_case ) and ans[0] != p_number_a and ans[len(__snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def A ( _UpperCAmelCase : int ) -> List[Any]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and (n >= 1), "'n' must been int and >= 1" _UpperCAmelCase = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(__snake_case ) # precondition assert ans[0] == 1 and ans[len(__snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def A ( _UpperCAmelCase : Any ) -> str: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" _UpperCAmelCase = get_divisors(__snake_case ) # precondition assert ( isinstance(__snake_case , __snake_case ) and (divisors[0] == 1) and (divisors[len(__snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. _UpperCAmelCase = gcd(abs(__snake_case ) , abs(__snake_case ) ) # precondition assert ( isinstance(__snake_case , __snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def A ( _UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'n' must been a int and >= 0" _UpperCAmelCase = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def A ( _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'n' must been an int and >= 0" _UpperCAmelCase = 0 _UpperCAmelCase = 1 _UpperCAmelCase = 1 # this will be return for _ in range(n - 1 ): _UpperCAmelCase = ans ans += fiba _UpperCAmelCase = tmp return ans
712
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
0
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A_ = logging.get_logger(__name__) class _snake_case ( _snake_case ): _A : List[str] = ['input_features', 'is_longer'] def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=64 ,SCREAMING_SNAKE_CASE__ : Any=48_000 ,SCREAMING_SNAKE_CASE__ : int=480 ,SCREAMING_SNAKE_CASE__ : Any=10 ,SCREAMING_SNAKE_CASE__ : Dict=1_024 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0 ,SCREAMING_SNAKE_CASE__ : int=False ,SCREAMING_SNAKE_CASE__ : float = 0 ,SCREAMING_SNAKE_CASE__ : float = 14_000 ,SCREAMING_SNAKE_CASE__ : int = None ,SCREAMING_SNAKE_CASE__ : str = "fusion" ,SCREAMING_SNAKE_CASE__ : str = "repeatpad" ,**SCREAMING_SNAKE_CASE__ : Dict ,): super().__init__( feature_size=SCREAMING_SNAKE_CASE__ ,sampling_rate=SCREAMING_SNAKE_CASE__ ,padding_value=SCREAMING_SNAKE_CASE__ ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) SCREAMING_SNAKE_CASE:Tuple = top_db SCREAMING_SNAKE_CASE:Dict = truncation SCREAMING_SNAKE_CASE:Union[str, Any] = padding SCREAMING_SNAKE_CASE:str = fft_window_size SCREAMING_SNAKE_CASE:str = (fft_window_size >> 1) + 1 SCREAMING_SNAKE_CASE:Tuple = hop_length SCREAMING_SNAKE_CASE:Any = max_length_s SCREAMING_SNAKE_CASE:Optional[Any] = max_length_s * sampling_rate SCREAMING_SNAKE_CASE:Any = sampling_rate SCREAMING_SNAKE_CASE:Optional[int] = frequency_min SCREAMING_SNAKE_CASE:Union[str, Any] = frequency_max SCREAMING_SNAKE_CASE:Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=SCREAMING_SNAKE_CASE__ ,min_frequency=SCREAMING_SNAKE_CASE__ ,max_frequency=SCREAMING_SNAKE_CASE__ ,sampling_rate=SCREAMING_SNAKE_CASE__ ,norm=SCREAMING_SNAKE_CASE__ ,mel_scale="htk" ,) SCREAMING_SNAKE_CASE:int = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=SCREAMING_SNAKE_CASE__ ,min_frequency=SCREAMING_SNAKE_CASE__ ,max_frequency=SCREAMING_SNAKE_CASE__ ,sampling_rate=SCREAMING_SNAKE_CASE__ ,norm="slaney" ,mel_scale="slaney" ,) def __UpperCamelCase ( self : int ): SCREAMING_SNAKE_CASE:Optional[Any] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE:int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : np.array ,SCREAMING_SNAKE_CASE__ : Optional[np.array] = None ): SCREAMING_SNAKE_CASE:Optional[int] = spectrogram( SCREAMING_SNAKE_CASE__ ,window_function(self.fft_window_size ,"hann" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=SCREAMING_SNAKE_CASE__ ,log_mel="dB" ,) return log_mel_spectrogram.T def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int ): SCREAMING_SNAKE_CASE:Optional[int] = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE:Dict = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE:List[str] = [0] # randomly choose index for each part SCREAMING_SNAKE_CASE:Optional[Any] = np.random.choice(ranges[0] ) SCREAMING_SNAKE_CASE:List[Any] = np.random.choice(ranges[1] ) SCREAMING_SNAKE_CASE:Dict = np.random.choice(ranges[2] ) SCREAMING_SNAKE_CASE:List[str] = mel[idx_front : idx_front + chunk_frames, :] SCREAMING_SNAKE_CASE:List[Any] = mel[idx_middle : idx_middle + chunk_frames, :] SCREAMING_SNAKE_CASE:Any = mel[idx_back : idx_back + chunk_frames, :] SCREAMING_SNAKE_CASE:int = torch.tensor(mel[None, None, :] ) SCREAMING_SNAKE_CASE:List[str] = torch.nn.functional.interpolate( SCREAMING_SNAKE_CASE__ ,size=[chunk_frames, 64] ,mode="bilinear" ,align_corners=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = mel_shrink[0][0].numpy() SCREAMING_SNAKE_CASE:Union[str, Any] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def __UpperCamelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : np.array ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[Any] ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": SCREAMING_SNAKE_CASE:List[str] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad SCREAMING_SNAKE_CASE:List[Any] = len(SCREAMING_SNAKE_CASE__ ) - max_length SCREAMING_SNAKE_CASE:Tuple = np.random.randint(0 ,overflow + 1 ) SCREAMING_SNAKE_CASE:Any = waveform[idx : idx + max_length] SCREAMING_SNAKE_CASE:str = self._np_extract_fbank_features(SCREAMING_SNAKE_CASE__ ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": SCREAMING_SNAKE_CASE:Any = self._np_extract_fbank_features(SCREAMING_SNAKE_CASE__ ,self.mel_filters ) SCREAMING_SNAKE_CASE:Tuple = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed SCREAMING_SNAKE_CASE:Dict = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. SCREAMING_SNAKE_CASE:Tuple = np.stack([mel, mel, mel, mel] ,axis=0 ) SCREAMING_SNAKE_CASE:Union[str, Any] = False else: SCREAMING_SNAKE_CASE:Optional[int] = self._random_mel_fusion(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: SCREAMING_SNAKE_CASE:List[str] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": SCREAMING_SNAKE_CASE:Dict = int(max_length / len(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE:Any = np.stack(np.tile(SCREAMING_SNAKE_CASE__ ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": SCREAMING_SNAKE_CASE:Optional[Any] = int(max_length / len(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE:Optional[Any] = np.stack(np.tile(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE:Optional[Any] = np.pad(SCREAMING_SNAKE_CASE__ ,(0, max_length - waveform.shape[0]) ,mode="constant" ,constant_values=0 ) if truncation == "fusion": SCREAMING_SNAKE_CASE:Optional[Any] = self._np_extract_fbank_features(SCREAMING_SNAKE_CASE__ ,self.mel_filters ) SCREAMING_SNAKE_CASE:List[Any] = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: SCREAMING_SNAKE_CASE:Tuple = self._np_extract_fbank_features(SCREAMING_SNAKE_CASE__ ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,SCREAMING_SNAKE_CASE__ : str = None ,SCREAMING_SNAKE_CASE__ : Optional[str] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None ,**SCREAMING_SNAKE_CASE__ : str ,): SCREAMING_SNAKE_CASE:Tuple = truncation if truncation is not None else self.truncation SCREAMING_SNAKE_CASE:int = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) SCREAMING_SNAKE_CASE:Tuple = isinstance(SCREAMING_SNAKE_CASE__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE:Dict = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE:List[Any] = [np.asarray(SCREAMING_SNAKE_CASE__ ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE__ ,np.ndarray ): SCREAMING_SNAKE_CASE:Optional[Any] = np.asarray(SCREAMING_SNAKE_CASE__ ,dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE:Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE:Union[str, Any] = [np.asarray(SCREAMING_SNAKE_CASE__ )] # convert to mel spectrogram, truncate and pad if needed. SCREAMING_SNAKE_CASE:List[Any] = [ self._get_input_mel(SCREAMING_SNAKE_CASE__ ,max_length if max_length else self.nb_max_samples ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for waveform in raw_speech ] SCREAMING_SNAKE_CASE:Tuple = [] SCREAMING_SNAKE_CASE:Optional[Any] = [] for mel, longer in padded_inputs: input_mel.append(SCREAMING_SNAKE_CASE__ ) is_longer.append(SCREAMING_SNAKE_CASE__ ) if truncation == "fusion" and sum(SCREAMING_SNAKE_CASE__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer SCREAMING_SNAKE_CASE:int = np.random.randint(0 ,len(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE:Union[str, Any] = True if isinstance(input_mel[0] ,SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE:Dict = [np.asarray(SCREAMING_SNAKE_CASE__ ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool SCREAMING_SNAKE_CASE:List[Any] = [[longer] for longer in is_longer] SCREAMING_SNAKE_CASE:str = {"input_features": input_mel, "is_longer": is_longer} SCREAMING_SNAKE_CASE:Optional[Any] = BatchFeature(SCREAMING_SNAKE_CASE__ ) if return_tensors is not None: SCREAMING_SNAKE_CASE:str = input_features.convert_to_tensors(SCREAMING_SNAKE_CASE__ ) return input_features
143
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = (boundary[1] - boundary[0]) / steps __SCREAMING_SNAKE_CASE = boundary[0] __SCREAMING_SNAKE_CASE = boundary[1] __SCREAMING_SNAKE_CASE = make_points(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = 0.0 y += (h / 2.0) * f(__UpperCAmelCase ) for i in x_i: # print(i) y += h * f(__UpperCAmelCase ) y += (h / 2.0) * f(__UpperCAmelCase ) return y def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = a + h while x < (b - h): yield x __SCREAMING_SNAKE_CASE = x + h def __magic_name__ ( __UpperCAmelCase ) -> int: # enter your function here '''simple docstring''' __SCREAMING_SNAKE_CASE = (x - 0) * (x - 0) return y def __magic_name__ ( ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = 0.0 # Lower bound of integration __SCREAMING_SNAKE_CASE = 1.0 # Upper bound of integration __SCREAMING_SNAKE_CASE = 1_0.0 # define number of steps or resolution __SCREAMING_SNAKE_CASE = [a, b] # define boundary of integration __SCREAMING_SNAKE_CASE = method_a(__UpperCAmelCase , __UpperCAmelCase ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
109
0
import operator def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = None ): lowercase__ : Optional[int] = operator.lt if reverse else operator.gt lowercase__ : Optional[int] = solution or [] if not arr: return solution lowercase__ : str = [arr.pop(0 )] for i, item in enumerate(UpperCAmelCase ): if _operator(UpperCAmelCase , sublist[-1] ): sublist.append(UpperCAmelCase ) arr.pop(UpperCAmelCase ) # merging sublist into solution list if not solution: solution.extend(UpperCAmelCase ) else: while sublist: lowercase__ : Tuple = sublist.pop(0 ) for i, xx in enumerate(UpperCAmelCase ): if not _operator(UpperCAmelCase , UpperCAmelCase ): solution.insert(UpperCAmelCase , UpperCAmelCase ) break else: solution.append(UpperCAmelCase ) strand_sort(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
716
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __a: List[Any] = logging.getLogger(__name__) class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "sequence-classification" def __init__( self , __lowerCAmelCase ) -> Optional[Any]: if type(__lowerCAmelCase ) == dict: lowercase__ : str = Namespace(**__lowerCAmelCase ) lowercase__ : str = glue_output_modes[hparams.task] lowercase__ : Dict = glue_tasks_num_labels[hparams.task] super().__init__(__lowerCAmelCase , __lowerCAmelCase , self.mode ) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> List[str]: return self.model(**__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> int: lowercase__ : Any = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase__ : str = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None lowercase__ : int = self(**__lowerCAmelCase ) lowercase__ : Optional[Any] = outputs[0] lowercase__ : List[str] = self.trainer.lr_schedulers[0]['''scheduler'''] lowercase__ : str = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : int = self.hparams lowercase__ : Tuple = processors[args.task]() lowercase__ : List[str] = processor.get_labels() for mode in ["train", "dev"]: lowercase__ : Union[str, Any] = self._feature_file(__lowerCAmelCase ) if os.path.exists(__lowerCAmelCase ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __lowerCAmelCase ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) lowercase__ : Union[str, Any] = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) lowercase__ : List[Any] = convert_examples_to_features( __lowerCAmelCase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , __lowerCAmelCase ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> DataLoader: lowercase__ : Dict = '''dev''' if mode == '''test''' else mode lowercase__ : List[str] = self._feature_file(__lowerCAmelCase ) logger.info('''Loading features from cached file %s''' , __lowerCAmelCase ) lowercase__ : Dict = torch.load(__lowerCAmelCase ) lowercase__ : List[Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ : List[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": lowercase__ : str = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": lowercase__ : Tuple = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , batch_size=__lowerCAmelCase , shuffle=__lowerCAmelCase , ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> Any: lowercase__ : Union[str, Any] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase__ : Union[str, Any] = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None lowercase__ : List[Any] = self(**__lowerCAmelCase ) lowercase__ , lowercase__ : int = outputs[:2] lowercase__ : List[str] = logits.detach().cpu().numpy() lowercase__ : Any = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCAmelCase( self , __lowerCAmelCase ) -> tuple: lowercase__ : List[Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() lowercase__ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": lowercase__ : Any = np.argmax(__lowerCAmelCase , axis=1 ) elif self.hparams.glue_output_mode == "regression": lowercase__ : Optional[Any] = np.squeeze(__lowerCAmelCase ) lowercase__ : Optional[Any] = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) lowercase__ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : int = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : List[Any] = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , __lowerCAmelCase , __lowerCAmelCase )} lowercase__ : int = dict(results.items() ) lowercase__ : Optional[int] = results return ret, preds_list, out_label_list def _lowerCAmelCase( self , __lowerCAmelCase ) -> dict: lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(__lowerCAmelCase ) lowercase__ : List[Any] = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCAmelCase( self , __lowerCAmelCase ) -> dict: lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = self._eval_end(__lowerCAmelCase ) lowercase__ : Union[str, Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCAmelCase( __lowerCAmelCase , __lowerCAmelCase ) -> str: BaseTransformer.add_model_specific_args(__lowerCAmelCase , __lowerCAmelCase ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__lowerCAmelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__lowerCAmelCase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def __UpperCamelCase ( ): lowercase__ : int = argparse.ArgumentParser() add_generic_args(UpperCAmelCase , os.getcwd() ) lowercase__ : List[Any] = GLUETransformer.add_model_specific_args(UpperCAmelCase , os.getcwd() ) lowercase__ : Tuple = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowercase__ : List[Any] = os.path.join( '''./results''' , F"""{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}""" , ) os.makedirs(args.output_dir ) lowercase__ : Optional[int] = GLUETransformer(UpperCAmelCase ) lowercase__ : Any = generic_train(UpperCAmelCase , UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowercase__ : List[str] = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=UpperCAmelCase ) ) lowercase__ : Tuple = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(UpperCAmelCase ) if __name__ == "__main__": main()
428
0
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _SCREAMING_SNAKE_CASE = "\\n\n" _SCREAMING_SNAKE_CASE = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" _SCREAMING_SNAKE_CASE = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self :Any): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'input_texts': datasets.Value('string'), }), reference_urls=['https://huggingface.co/docs/transformers/perplexity'], ) def UpperCamelCase__ ( self :Any, snake_case :int, snake_case :Any, snake_case :int = 16, snake_case :bool = True, snake_case :List[Any]=None): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _lowercase ='cuda' else: _lowercase ='cuda' if torch.cuda.is_available() else 'cpu' _lowercase =AutoModelForCausalLM.from_pretrained(snake_case) _lowercase =model.to(snake_case) _lowercase =AutoTokenizer.from_pretrained(snake_case) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _lowercase =list(tokenizer.special_tokens_map_extended.values()) # check that the model already has at least one special token defined assert ( len(snake_case) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]}) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _lowercase =model.config.max_length - 1 else: _lowercase =model.config.max_length _lowercase =tokenizer( snake_case, add_special_tokens=snake_case, padding=snake_case, truncation=snake_case, max_length=snake_case, return_tensors='pt', return_attention_mask=snake_case, ).to(snake_case) _lowercase =encodings['input_ids'] _lowercase =encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1), 1)), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1), 2)), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _lowercase =[] _lowercase =CrossEntropyLoss(reduction='none') for start_index in logging.tqdm(range(0, len(snake_case), snake_case)): _lowercase =min(start_index + batch_size, len(snake_case)) _lowercase =encoded_texts[start_index:end_index] _lowercase =attn_masks[start_index:end_index] if add_start_token: _lowercase =torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0)).to(snake_case) _lowercase =torch.cat([bos_tokens_tensor, encoded_batch], dim=1) _lowercase =torch.cat( [torch.ones(bos_tokens_tensor.size(), dtype=torch.intaa).to(snake_case), attn_mask], dim=1) _lowercase =encoded_batch with torch.no_grad(): _lowercase =model(snake_case, attention_mask=snake_case).logits _lowercase =out_logits[..., :-1, :].contiguous() _lowercase =labels[..., 1:].contiguous() _lowercase =attn_mask[..., 1:].contiguous() _lowercase =torch.expa( (loss_fct(shift_logits.transpose(1, 2), snake_case) * shift_attention_mask_batch).sum(1) / shift_attention_mask_batch.sum(1)) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(snake_case)}
181
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : List[str] ='''mvp''' __lowerCAmelCase : List[Any] =['''past_key_values'''] __lowerCAmelCase : Optional[Any] ={'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self :Any, snake_case :Any=5_0267, snake_case :List[str]=1024, snake_case :List[str]=12, snake_case :List[Any]=4096, snake_case :List[Any]=16, snake_case :Optional[int]=12, snake_case :Optional[int]=4096, snake_case :List[str]=16, snake_case :Optional[Any]=0.0, snake_case :Tuple=0.0, snake_case :str="gelu", snake_case :int=1024, snake_case :Any=0.1, snake_case :Dict=0.0, snake_case :Optional[Any]=0.0, snake_case :int=0.0_2, snake_case :Union[str, Any]=0.0, snake_case :Tuple=False, snake_case :Optional[int]=True, snake_case :Any=1, snake_case :Union[str, Any]=0, snake_case :Optional[Any]=2, snake_case :Union[str, Any]=True, snake_case :Tuple=2, snake_case :Any=2, snake_case :List[Any]=False, snake_case :Optional[int]=100, snake_case :Union[str, Any]=800, **snake_case :Tuple, ): """simple docstring""" _lowercase =vocab_size _lowercase =max_position_embeddings _lowercase =d_model _lowercase =encoder_ffn_dim _lowercase =encoder_layers _lowercase =encoder_attention_heads _lowercase =decoder_ffn_dim _lowercase =decoder_layers _lowercase =decoder_attention_heads _lowercase =dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =activation_function _lowercase =init_std _lowercase =encoder_layerdrop _lowercase =decoder_layerdrop _lowercase =classifier_dropout _lowercase =use_cache _lowercase =encoder_layers _lowercase =scale_embedding # scale factor will be sqrt(d_model) if True _lowercase =use_prompt _lowercase =prompt_length _lowercase =prompt_mid_dim super().__init__( pad_token_id=snake_case, bos_token_id=snake_case, eos_token_id=snake_case, is_encoder_decoder=snake_case, decoder_start_token_id=snake_case, forced_eos_token_id=snake_case, **snake_case, ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated', snake_case): _lowercase =self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' 'The config can simply be saved and uploaded again to be fixed.')
181
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase = logging.getLogger(__name__) def UpperCAmelCase_ ( lowercase__ , lowercase__ ): '''simple docstring''' return (preds == labels).mean() @dataclass class UpperCAmelCase : '''simple docstring''' __magic_name__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __magic_name__ : Optional[str] = field( default=__a , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __magic_name__ : Optional[str] = field( default=__a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __magic_name__ : Optional[str] = field( default=__a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCAmelCase : '''simple docstring''' __magic_name__ : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys())}) __magic_name__ : str = field(metadata={"help": "Should contain the data files for the task."}) __magic_name__ : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__ : bool = field( default=__a , metadata={"help": "Overwrite the cached training and evaluation sets"}) def UpperCAmelCase_ ( ): '''simple docstring''' a_ =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) a_ , a_ , a_ =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , lowercase__ ) # Set seed set_seed(training_args.seed ) try: a_ =processors[data_args.task_name]() a_ =processor.get_labels() a_ =len(lowercase__ ) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a_ =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) a_ =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a_ =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , ) # Get datasets a_ =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowercase__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) a_ =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowercase__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowercase__ ) -> Dict: a_ =np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowercase__ , p.label_ids )} # Data collator a_ =DataCollatorWithPadding(lowercase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer a_ =Trainer( model=lowercase__ , args=lowercase__ , train_dataset=lowercase__ , eval_dataset=lowercase__ , compute_metrics=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a_ ={} if training_args.do_eval: logger.info("*** Evaluate ***" ) a_ =trainer.evaluate() a_ =os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_master(): with open(lowercase__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , lowercase__ , lowercase__ ) writer.write("%s = %s\n" % (key, value) ) results.update(lowercase__ ) return results def UpperCAmelCase_ ( lowercase__ ): '''simple docstring''' main() if __name__ == "__main__": main()
41
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline lowercase = '''path-to-your-trained-model''' lowercase = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') lowercase = '''A photo of sks dog in a bucket''' lowercase = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
41
1
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__ ) -> int: __UpperCAmelCase , __UpperCAmelCase : Dict = len(snake_case__ ), len(grid[0] ) if ( min(snake_case__, snake_case__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __UpperCAmelCase : List[Any] = 0 count += depth_first_search(snake_case__, row + 1, snake_case__, snake_case__ ) count += depth_first_search(snake_case__, row - 1, snake_case__, snake_case__ ) count += depth_first_search(snake_case__, snake_case__, col + 1, snake_case__ ) count += depth_first_search(snake_case__, snake_case__, col - 1, snake_case__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
382
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _snake_case = '''src/transformers''' _snake_case = '''docs/source/en''' _snake_case = '''.''' def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> List[str]: with open(snake_case__, "r", encoding="utf-8", newline="\n" ) as f: __UpperCAmelCase : str = f.readlines() # Find the start prompt. __UpperCAmelCase : Union[str, Any] = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 __UpperCAmelCase : Optional[int] = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _snake_case = '''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. _snake_case = re.compile(r'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') _snake_case = re.compile(r'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _snake_case = re.compile(r'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # This is to make sure the transformers module imported is the one in the repo. _snake_case = direct_transformers_import(TRANSFORMERS_PATH) def _UpperCamelCase ( snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : int = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", snake_case__ ) return [m.group(0 ) for m in matches] def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[str]: __UpperCAmelCase : Any = 2 if text == "✅" or text == "❌" else len(snake_case__ ) __UpperCAmelCase : Optional[Any] = (width - text_length) // 2 __UpperCAmelCase : Any = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def _UpperCamelCase ( ) -> Union[str, Any]: __UpperCAmelCase : Dict = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase : Dict = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __UpperCAmelCase : Tuple = {name: config.replace("Config", "" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __UpperCAmelCase : int = collections.defaultdict(snake_case__ ) __UpperCAmelCase : str = collections.defaultdict(snake_case__ ) __UpperCAmelCase : str = collections.defaultdict(snake_case__ ) __UpperCAmelCase : Optional[int] = collections.defaultdict(snake_case__ ) __UpperCAmelCase : Optional[int] = collections.defaultdict(snake_case__ ) # Let's lookup through all transformers object (once). for attr_name in dir(snake_case__ ): __UpperCAmelCase : Dict = None if attr_name.endswith("Tokenizer" ): __UpperCAmelCase : Tuple = slow_tokenizers __UpperCAmelCase : Tuple = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): __UpperCAmelCase : Dict = fast_tokenizers __UpperCAmelCase : int = attr_name[:-13] elif _re_tf_models.match(snake_case__ ) is not None: __UpperCAmelCase : Tuple = tf_models __UpperCAmelCase : Optional[Any] = _re_tf_models.match(snake_case__ ).groups()[0] elif _re_flax_models.match(snake_case__ ) is not None: __UpperCAmelCase : List[Any] = flax_models __UpperCAmelCase : Optional[int] = _re_flax_models.match(snake_case__ ).groups()[0] elif _re_pt_models.match(snake_case__ ) is not None: __UpperCAmelCase : Any = pt_models __UpperCAmelCase : Dict = _re_pt_models.match(snake_case__ ).groups()[0] if lookup_dict is not None: while len(snake_case__ ) > 0: if attr_name in model_name_to_prefix.values(): __UpperCAmelCase : int = True break # Try again after removing the last word in the name __UpperCAmelCase : Dict = "".join(camel_case_split(snake_case__ )[:-1] ) # Let's build that table! __UpperCAmelCase : Optional[Any] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __UpperCAmelCase : int = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __UpperCAmelCase : Dict = [len(snake_case__ ) + 2 for c in columns] __UpperCAmelCase : Dict = max([len(snake_case__ ) for name in model_names] ) + 2 # Build the table per se __UpperCAmelCase : List[str] = "|" + "|".join([_center_text(snake_case__, snake_case__ ) for c, w in zip(snake_case__, snake_case__ )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" __UpperCAmelCase : Any = {True: "✅", False: "❌"} for name in model_names: __UpperCAmelCase : str = model_name_to_prefix[name] __UpperCAmelCase : List[Any] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(snake_case__, snake_case__ ) for l, w in zip(snake_case__, snake_case__ )] ) + "|\n" return table def _UpperCamelCase ( snake_case__=False ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = _find_text_in_file( filename=os.path.join(snake_case__, "index.md" ), start_prompt="<!--This table is updated automatically from the auto modules", end_prompt="<!-- End table-->", ) __UpperCAmelCase : List[Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(snake_case__, "index.md" ), "w", encoding="utf-8", newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _snake_case = parser.parse_args() check_model_table(args.fix_and_overwrite)
382
1
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def UpperCAmelCase ( lowercase , lowercase , lowercase = "x" , lowercase = 10**-10 , lowercase = 1 , ): """simple docstring""" __lowercase = symbols(lowercase ) __lowercase = lambdify(lowercase , lowercase ) __lowercase = lambdify(lowercase , diff(lowercase , lowercase ) ) __lowercase = starting_point while True: if diff_function(lowercase ) != 0: __lowercase = prev_guess - multiplicity * func(lowercase ) / diff_function( lowercase ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __lowercase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial # Find fourth Root of 5 print(F'''The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}''') # Find value of e print( """The root of log(y) - 1 = 0 is """, F'''{newton_raphson("log(y) - 1", 2, variable="y")}''', ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F'''{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}''', ) # Find root of cos(x) print(F'''The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}''')
717
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = tempfile.mkdtemp() __lowercase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __lowercase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } __lowercase = os.path.join(self.tmpdirname , lowerCAmelCase__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , **lowerCAmelCase__ ) -> int: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = self.get_image_processor() __lowercase = AlignProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) __lowercase = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase__ ) __lowercase = AlignProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) __lowercase = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowercase = self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0 ) __lowercase = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowerCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = AlignProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(lowerCAmelCase__ , return_tensors='''np''' ) __lowercase = processor(images=lowerCAmelCase__ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = AlignProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __lowercase = '''lower newer''' __lowercase = processor(text=lowerCAmelCase__ ) __lowercase = tokenizer(lowerCAmelCase__ , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = AlignProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __lowercase = '''lower newer''' __lowercase = self.prepare_image_inputs() __lowercase = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = AlignProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase = processor.batch_decode(lowerCAmelCase__ ) __lowercase = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = AlignProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __lowercase = '''lower newer''' __lowercase = self.prepare_image_inputs() __lowercase = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
522
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable UpperCAmelCase__ = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
186
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class a__ : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : str , ) -> Optional[int]: __A= parent __A= 13 __A= 7 __A= True __A= True __A= False __A= True __A= 99 __A= 32 __A= 2 __A= 4 __A= 37 __A= 'gelu' __A= 0.1 __A= 0.1 __A= 512 __A= 16 __A= 2 __A= 0.02 __A= 3 __A= 4 __A= None def lowerCAmelCase ( self : Optional[Any] ) -> str: __A= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A= None if self.use_input_mask: __A= random_attention_mask([self.batch_size, self.seq_length] ) __A= None __A= None __A= None if self.use_labels: __A= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A= ids_tensor([self.batch_size] , self.num_choices ) __A= DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] ) -> Any: __A= TFDistilBertModel(config=lowerCAmelCase_ ) __A= {'input_ids': input_ids, 'attention_mask': input_mask} __A= model(lowerCAmelCase_ ) __A= [input_ids, input_mask] __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ) -> Optional[int]: __A= TFDistilBertForMaskedLM(config=lowerCAmelCase_ ) __A= {'input_ids': input_ids, 'attention_mask': input_mask} __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] ) -> int: __A= TFDistilBertForQuestionAnswering(config=lowerCAmelCase_ ) __A= { 'input_ids': input_ids, 'attention_mask': input_mask, } __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] ) -> Union[str, Any]: __A= self.num_labels __A= TFDistilBertForSequenceClassification(lowerCAmelCase_ ) __A= {'input_ids': input_ids, 'attention_mask': input_mask} __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ) -> Optional[Any]: __A= self.num_choices __A= TFDistilBertForMultipleChoice(lowerCAmelCase_ ) __A= tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) __A= tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) __A= { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] ) -> Dict: __A= self.num_labels __A= TFDistilBertForTokenClassification(lowerCAmelCase_ ) __A= {'input_ids': input_ids, 'attention_mask': input_mask} __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: __A= self.prepare_config_and_inputs() ((__A), (__A), (__A), (__A), (__A), (__A))= config_and_inputs __A= {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a__ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' A : Optional[Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) A : Optional[int] = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) A : str = False A : List[Any] = False def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __A= TFDistilBertModelTester(self ) __A= ConfigTester(self , config_class=lowerCAmelCase_ , dim=37 ) def lowerCAmelCase ( self : Dict ) -> Tuple: self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase_ ) def lowerCAmelCase ( self : str ) -> Any: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase_ ) def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase_ ) def lowerCAmelCase ( self : Any ) -> Optional[int]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : int ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __A= TFDistilBertModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_tf class a__ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> List[Any]: __A= TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) __A= tf.constant([[0, 1, 2, 3, 4, 5]] ) __A= model(lowerCAmelCase_ )[0] __A= [1, 6, 768] self.assertEqual(output.shape , lowerCAmelCase_ ) __A= tf.constant( [ [ [0.19_26_18_85, -0.13_73_29_55, 0.4_11_97_99], [0.22_15_01_56, -0.07_42_26_61, 0.39_03_72_04], [0.22_75_60_18, -0.0_89_64_14, 0.3_70_14_67], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase_ , atol=1E-4 )
186
1
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class A_: """simple docstring""" def __init__( self , A ): _lowerCamelCase : Optional[int] = str(id_ ) _lowerCamelCase : Tuple = None _lowerCamelCase : int = None _lowerCamelCase : List[str] = [] _lowerCamelCase : Optional[Any] = {} # {vertex:distance} def __lt__( self , A ): return self.key < other.key def __repr__( self ): return self.id def _lowerCAmelCase ( self , A ): self.neighbors.append(lowercase__ ) def _lowerCAmelCase ( self , A , A ): _lowerCamelCase : List[str] = weight def UpperCAmelCase_ ( __a : Any , __a : Dict , __a : Tuple , __a : Union[str, Any] ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowerCAmelCase_ ) graph[b - 1].add_edge(graph[a - 1] , lowerCAmelCase_ ) def UpperCAmelCase_ ( __a : List[Any] , __a : Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [] for u in graph: _lowerCamelCase : str = math.inf _lowerCamelCase : Dict = None _lowerCamelCase : Dict = 0 _lowerCamelCase : List[str] = graph[:] while q: _lowerCamelCase : Tuple = min(lowerCAmelCase_ ) q.remove(lowerCAmelCase_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowerCamelCase : int = u _lowerCamelCase : str = u.edges[v.id] for i in range(1 , len(lowerCAmelCase_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase_ ( __a : Tuple , __a : List[str] ): '''simple docstring''' for u in graph: _lowerCamelCase : Optional[Any] = math.inf _lowerCamelCase : List[str] = None _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Any = list(lowerCAmelCase_ ) hq.heapify(lowerCAmelCase_ ) while h: _lowerCamelCase : str = hq.heappop(lowerCAmelCase_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowerCamelCase : Tuple = u _lowerCamelCase : List[Any] = u.edges[v.id] hq.heapify(lowerCAmelCase_ ) for i in range(1 , len(lowerCAmelCase_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase_ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
703
"""simple docstring""" import numpy as np def UpperCAmelCase_ ( __a : np.array ): '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
349
0
def a_ ( lowerCAmelCase_ : str ): return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = credit_card_number __lowerCAmelCase = 0 __lowerCAmelCase = len(lowerCAmelCase_ ) - 2 for i in range(lowerCAmelCase_, -1, -2 ): # double the value of every second digit __lowerCAmelCase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 __lowerCAmelCase = cc_number[:i] + str(lowerCAmelCase_ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowerCAmelCase_ ) - 1, -1, -2 ): total += int(cc_number[i] ) return total % 10 == 0 def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = F"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(F"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(lowerCAmelCase_ ) <= 16: print(F"""{error_message} of its length.""" ) return False if not validate_initial_digits(lowerCAmelCase_ ): print(F"""{error_message} of its first two digits.""" ) return False if not luhn_validation(lowerCAmelCase_ ): print(F"""{error_message} it fails the Luhn check.""" ) return False print(F"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
53
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 __snake_case = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.26.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('>=', '0.0.12') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 __snake_case = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
215
0
from __future__ import annotations class A_ : def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ): __a = order # a_{0} ... a_{k} __a = [1.0] + [0.0] * order # b_{0} ... b_{k} __a = [1.0] + [0.0] * order # x[n-1] ... x[n-k] __a = [0.0] * self.order # y[n-1] ... y[n-k] __a = [0.0] * self.order def _UpperCAmelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : list[float] , __SCREAMING_SNAKE_CASE : list[float] ): if len(__SCREAMING_SNAKE_CASE ) < self.order: __a = [1.0, *a_coeffs] if len(__SCREAMING_SNAKE_CASE ) != self.order + 1: __a = ( f"""Expected a_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(__SCREAMING_SNAKE_CASE )}""" ) raise ValueError(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) != self.order + 1: __a = ( f"""Expected b_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(__SCREAMING_SNAKE_CASE )}""" ) raise ValueError(__SCREAMING_SNAKE_CASE ) __a = a_coeffs __a = b_coeffs def _UpperCAmelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : float ): __a = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) __a = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] __a = self.input_history[:-1] __a = self.output_history[:-1] __a = sample __a = result return result
525
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class A_ ( a_ , a_ , a_ ): @register_to_config def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : bool = False , ): super().__init__() __a = nn.Embedding(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = nn.Embedding(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = False __a = nn.Dropout(p=__SCREAMING_SNAKE_CASE ) __a = TaConfig( vocab_size=__SCREAMING_SNAKE_CASE , d_model=__SCREAMING_SNAKE_CASE , num_heads=__SCREAMING_SNAKE_CASE , d_kv=__SCREAMING_SNAKE_CASE , d_ff=__SCREAMING_SNAKE_CASE , dropout_rate=__SCREAMING_SNAKE_CASE , feed_forward_proj=__SCREAMING_SNAKE_CASE , is_decoder=__SCREAMING_SNAKE_CASE , is_encoder_decoder=__SCREAMING_SNAKE_CASE , ) __a = nn.ModuleList() for lyr_num in range(__SCREAMING_SNAKE_CASE ): __a = TaBlock(__SCREAMING_SNAKE_CASE ) self.encoders.append(__SCREAMING_SNAKE_CASE ) __a = TaLayerNorm(__SCREAMING_SNAKE_CASE ) __a = nn.Dropout(p=__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any ): __a = self.token_embedder(__SCREAMING_SNAKE_CASE ) __a = encoder_input_tokens.shape[1] __a = torch.arange(__SCREAMING_SNAKE_CASE , device=encoder_input_tokens.device ) x += self.position_encoding(__SCREAMING_SNAKE_CASE ) __a = self.dropout_pre(__SCREAMING_SNAKE_CASE ) # inverted the attention mask __a = encoder_input_tokens.size() __a = self.get_extended_attention_mask(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for lyr in self.encoders: __a = lyr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )[0] __a = self.layer_norm(__SCREAMING_SNAKE_CASE ) return self.dropout_post(__SCREAMING_SNAKE_CASE ), encoder_inputs_mask
525
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''longformer''' def __init__( self : str , _UpperCAmelCase : Union[List[int], int] = 512 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 30522 , _UpperCAmelCase : int = 768 , _UpperCAmelCase : int = 12 , _UpperCAmelCase : int = 12 , _UpperCAmelCase : int = 3072 , _UpperCAmelCase : str = "gelu" , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1e-12 , _UpperCAmelCase : bool = False , **_UpperCAmelCase : List[str] , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = attention_window UpperCAmelCase_ = sep_token_id UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = onnx_export class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : "PretrainedConfig" , _UpperCAmelCase : str = "default" , _UpperCAmelCase : "List[PatchingSpec]" = None ) -> Any: '''simple docstring''' super().__init__(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = True @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' UpperCAmelCase_ = super().outputs if self.task == "default": UpperCAmelCase_ = {0: "batch"} return outputs @property def lowercase__ ( self : List[str] ) -> float: '''simple docstring''' return 1e-4 @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return max(super().default_onnx_opset , 14 ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : "PreTrainedTokenizerBase" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase_ = super().generate_dummy_inputs( preprocessor=_UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly UpperCAmelCase_ = torch.zeros_like(inputs["input_ids"] ) # make every second token global UpperCAmelCase_ = 1 return inputs
82
def _A ( __snake_case :int = 400_0000 ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__snake_case ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = b, a + b return sum(__snake_case ) if __name__ == "__main__": print(F"""{solution() = }""")
693
0
'''simple docstring''' import sys import turtle def _lowerCAmelCase ( __snake_case : tuple[float, float] , __snake_case : tuple[float, float] ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def _lowerCAmelCase ( __snake_case : tuple[float, float] , __snake_case : tuple[float, float] , __snake_case : tuple[float, float] , __snake_case : int , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(__snake_case , get_mid(__snake_case , __snake_case ) , get_mid(__snake_case , __snake_case ) , depth - 1 ) triangle(__snake_case , get_mid(__snake_case , __snake_case ) , get_mid(__snake_case , __snake_case ) , depth - 1 ) triangle(__snake_case , get_mid(__snake_case , __snake_case ) , get_mid(__snake_case , __snake_case ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) lowercase__ : Any = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') lowercase__ : Optional[Any] = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
338
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=30 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Optional[Any] = batch_size __A : Union[str, Any] = image_size __A : Optional[int] = patch_size __A : int = num_channels __A : int = is_training __A : List[Any] = use_labels __A : Optional[int] = hidden_size __A : Union[str, Any] = num_hidden_layers __A : Optional[Any] = num_attention_heads __A : List[str] = intermediate_size __A : Any = hidden_act __A : Optional[Any] = hidden_dropout_prob __A : List[str] = attention_probs_dropout_prob __A : Union[str, Any] = type_sequence_label_size __A : Optional[int] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __A : Optional[int] = (image_size // patch_size) ** 2 __A : Dict = num_patches + 1 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __A : str = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, pixel_values def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = FlaxViTModel(config=_UpperCAmelCase) __A : Any = model(_UpperCAmelCase) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __A : int = (self.image_size, self.image_size) __A : Any = (self.patch_size, self.patch_size) __A : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = self.type_sequence_label_size __A : List[Any] = FlaxViTForImageClassification(config=_UpperCAmelCase) __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images __A : List[str] = 1 __A : Optional[int] = FlaxViTForImageClassification(_UpperCAmelCase) __A : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __A : Optional[int] = model(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) , ) : Union[str, Any] = config_and_inputs __A : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = FlaxViTModelTester(self) __A : Union[str, Any] = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : int = model_class(_UpperCAmelCase) __A : Optional[int] = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : Dict = [*signature.parameters.keys()] __A : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): __A : str = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[Any] = model_class(_UpperCAmelCase) @jax.jit def model_jitted(_UpperCAmelCase , **_UpperCAmelCase): return model(pixel_values=_UpperCAmelCase , **_UpperCAmelCase) with self.subTest('JIT Enabled'): __A : Optional[Any] = model_jitted(**_UpperCAmelCase).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): __A : Optional[Any] = model_jitted(**_UpperCAmelCase).to_tuple() self.assertEqual(len(_UpperCAmelCase) , len(_UpperCAmelCase)) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_class_name in self.all_model_classes: __A : Optional[Any] = model_class_name.from_pretrained('google/vit-base-patch16-224') __A : Dict = model(np.ones((1, 3, 224, 224))) self.assertIsNotNone(_UpperCAmelCase)
338
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCAmelCase_ : Optional[int] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: a_ : str = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) a_ : Dict = torch.manual_seed(0 ) a_ : Any = pipe.dual_guided( prompt='first prompt' , image=SCREAMING_SNAKE_CASE__ , text_to_image_strength=0.75 , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : List[str] = generator.manual_seed(0 ) a_ : Any = pipe.dual_guided( prompt='first prompt' , image=SCREAMING_SNAKE_CASE__ , text_to_image_strength=0.75 , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: a_ : Tuple = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Dict = 'cyberpunk 2077' a_ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) a_ : Dict = torch.manual_seed(0 ) a_ : List[Any] = pipe.dual_guided( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , text_to_image_strength=0.75 , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' , ).images a_ : Optional[int] = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : int = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 a_ : Optional[Any] = 'A painting of a squirrel eating a burger ' a_ : List[str] = torch.manual_seed(0 ) a_ : Dict = pipe.text_to_image( prompt=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' ).images a_ : str = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : List[Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 a_ : Dict = pipe.image_variation(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , output_type='numpy' ).images a_ : Tuple = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : Tuple = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
570
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def SCREAMING_SNAKE_CASE_ ( __A : str , __A : str , __A : str , __A : PreTrainedTokenizer , __A : int , __A : Optional[int] = None , ) -> int: """simple docstring""" a_ : List[str] = {} if train_file is not None: a_ : Dict = [train_file] if eval_file is not None: a_ : str = [eval_file] if test_file is not None: a_ : Any = [test_file] a_ : Any = datasets.load_dataset('csv' , data_files=__A ) a_ : Optional[int] = list(ds[list(files.keys() )[0]].features.keys() ) a_ : Any = features_name.pop(__A ) a_ : Optional[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) a_ : str = {label: i for i, label in enumerate(__A )} a_ : Optional[Any] = tokenizer.model_input_names a_ : Union[str, Any] = {} if len(__A ) == 1: for k in files.keys(): a_ : Union[str, Any] = ds[k].map( lambda __A : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__A , max_length=__A , padding='max_length' ) , batched=__A , ) elif len(__A ) == 2: for k in files.keys(): a_ : Optional[Any] = ds[k].map( lambda __A : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__A , max_length=__A , padding='max_length' , ) , batched=__A , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: a_ : List[Any] = {k: v for k, v in ex.items() if k in input_names} a_ : Any = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: a_ : List[Any] = {k: v for k, v in ex.items() if k in input_names} a_ : Union[str, Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: a_ : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} a_ : Union[str, Any] = labelaid[ex[label_name]] yield (d, label) a_ : List[str] = ( tf.data.Dataset.from_generator( __A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: a_ : List[str] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) a_ : Optional[int] = ( tf.data.Dataset.from_generator( __A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: a_ : Optional[int] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) a_ : Union[str, Any] = ( tf.data.Dataset.from_generator( __A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: a_ : str = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCAmelCase_ : List[Any] = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : snake_case__ : int = field(metadata={'''help''': '''Which column contains the label'''} ) snake_case__ : str = field(default=lowercase__ , metadata={'''help''': '''The path of the training file'''} ) snake_case__ : Optional[str] = field(default=lowercase__ , metadata={'''help''': '''The path of the development file'''} ) snake_case__ : Optional[str] = field(default=lowercase__ , metadata={'''help''': '''The path of the test file'''} ) snake_case__ : int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case__ : bool = field( default=lowercase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class SCREAMING_SNAKE_CASE__ : snake_case__ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) snake_case__ : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) snake_case__ : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) snake_case__ : bool = field(default=lowercase__ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. snake_case__ : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: """simple docstring""" a_ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) a_ , a_ , a_ : Dict = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a_ : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a_ , a_ , a_ , a_ : Any = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__A , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) a_ : Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__A ) , labelaid=__A , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): a_ : Any = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , ) def compute_metrics(__A : EvalPrediction ) -> Dict: a_ : Union[str, Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer a_ : str = TFTrainer( model=__A , args=__A , train_dataset=__A , eval_dataset=__A , compute_metrics=__A , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a_ : int = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) a_ : Optional[int] = trainer.evaluate() a_ : int = os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(__A , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(__A ) return results if __name__ == "__main__": main()
570
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase__ : str = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class _a (a__): """simple docstring""" SCREAMING_SNAKE_CASE = 'mctct' def __init__( self , A__=80_65 , A__=15_36 , A__=36 , A__=61_44 , A__=4 , A__=3_84 , A__=9_20 , A__=1E-5 , A__=0.3 , A__="relu" , A__=0.02 , A__=0.3 , A__=0.3 , A__=1 , A__=0 , A__=2 , A__=1 , A__=0.3 , A__=1 , A__=(7,) , A__=(3,) , A__=80 , A__=1 , A__=None , A__="sum" , A__=False , **A__ , ) -> str: super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = attention_head_dim _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = layerdrop _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = bos_token_id _SCREAMING_SNAKE_CASE = eos_token_id _SCREAMING_SNAKE_CASE = conv_glu_dim _SCREAMING_SNAKE_CASE = conv_dropout _SCREAMING_SNAKE_CASE = num_conv_layers _SCREAMING_SNAKE_CASE = input_feat_per_channel _SCREAMING_SNAKE_CASE = input_channels _SCREAMING_SNAKE_CASE = conv_channels _SCREAMING_SNAKE_CASE = ctc_loss_reduction _SCREAMING_SNAKE_CASE = ctc_zero_infinity # prevents config testing fail with exporting to json _SCREAMING_SNAKE_CASE = list(_A ) _SCREAMING_SNAKE_CASE = list(_A ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ F"but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, " F"`config.num_conv_layers = {self.num_conv_layers}`." )
715
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def lowerCAmelCase_ ( ) -> int: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head("""https://huggingface.co""" )
0
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Dict = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ : Union[str, Any] = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } lowerCamelCase__ : Tuple = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } lowerCamelCase__ : Optional[Any] = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } lowerCamelCase__ : Tuple = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } lowerCamelCase__ : Optional[Any] = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } lowerCamelCase__ : Dict = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } lowerCamelCase__ : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } lowerCamelCase__ : Any = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } lowerCamelCase__ : List[str] = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Optional[int] = VOCAB_FILES_NAMES __lowerCAmelCase : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : List[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : Any = DPRContextEncoderTokenizer class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : List[str] = DPRQuestionEncoderTokenizer lowerCamelCase__ : Any = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) lowerCamelCase__ : int = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) lowerCamelCase__ : Optional[int] = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(UpperCAmelCase_ ) class _snake_case : def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' if titles is None and texts is None: return super().__call__( SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) elif titles is None or texts is None: lowercase__ : Union[str, Any] = titles if texts is None else texts return super().__call__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase__ : Optional[int] = titles if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else [titles] lowercase__ : List[Any] = texts if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else [texts] lowercase__ : int = len(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = questions if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else [questions] * n_passages assert len(SCREAMING_SNAKE_CASE_) == len( SCREAMING_SNAKE_CASE_), f'There should be as many titles than texts but got {len(SCREAMING_SNAKE_CASE_)} titles and {len(SCREAMING_SNAKE_CASE_)} texts.' lowercase__ : Dict = super().__call__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_)["""input_ids"""] lowercase__ : Union[str, Any] = super().__call__(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_)["""input_ids"""] lowercase__ : Union[str, Any] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) ] } if return_attention_mask is not False: lowercase__ : Optional[int] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) lowercase__ : List[str] = attention_mask return self.pad(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 64 , SCREAMING_SNAKE_CASE_ = 4 , ): '''simple docstring''' lowercase__ : Dict = reader_input["""input_ids"""] lowercase__ , lowercase__ , lowercase__ : str = reader_output[:3] lowercase__ : List[Any] = len(SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = sorted(range(SCREAMING_SNAKE_CASE_) , reverse=SCREAMING_SNAKE_CASE_ , key=relevance_logits.__getitem__) lowercase__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: lowercase__ : Dict = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence lowercase__ : Optional[Any] = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase__ : int = sequence_ids.index(self.pad_token_id) else: lowercase__ : Optional[int] = len(SCREAMING_SNAKE_CASE_) lowercase__ : int = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=SCREAMING_SNAKE_CASE_ , top_spans=SCREAMING_SNAKE_CASE_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=SCREAMING_SNAKE_CASE_ , start_index=SCREAMING_SNAKE_CASE_ , end_index=SCREAMING_SNAKE_CASE_ , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(SCREAMING_SNAKE_CASE_) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Tuple = [] for start_index, start_score in enumerate(SCREAMING_SNAKE_CASE_): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) lowercase__ : Optional[Any] = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x[1] , reverse=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'Wrong span indices: [{start_index}:{end_index}]' lowercase__ : Dict = end_index - start_index + 1 assert length <= max_answer_length, f'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(SCREAMING_SNAKE_CASE_) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase_ ) class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ ): __lowerCAmelCase : int = VOCAB_FILES_NAMES __lowerCAmelCase : Optional[Any] = READER_PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Any = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Any = READER_PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : Optional[Any] = ['input_ids', 'attention_mask'] __lowerCAmelCase : int = DPRReaderTokenizer
12
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def A__ ( ): SCREAMING_SNAKE_CASE__: Union[str, Any]= argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=snake_case_ , default=snake_case_ , required=snake_case_ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=snake_case_ , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=snake_case_ , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=snake_case_ , default=42 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=snake_case_ , default=0 , help='''cuda_id.''' , ) SCREAMING_SNAKE_CASE__: Any= parser.parse_args() return args def A__ ( snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : List[str] ): if not len(snake_case_ ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: str= imgs[0].size SCREAMING_SNAKE_CASE__: Optional[Any]= Image.new('''RGB''' , size=(cols * w, rows * h) ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Union[str, Any]= grid.size for i, img in enumerate(snake_case_ ): grid.paste(snake_case_ , box=(i % cols * w, i // cols * h) ) return grid def A__ ( snake_case_ : Tuple , snake_case_ : str="robotic cat with wings" , snake_case_ : Optional[Any]=7.5 , snake_case_ : Dict=50 , snake_case_ : Union[str, Any]=1 , snake_case_ : Tuple=42 , ): SCREAMING_SNAKE_CASE__: List[Any]= torch.Generator(pipeline.device ).manual_seed(snake_case_ ) SCREAMING_SNAKE_CASE__: Optional[int]= pipeline( snake_case_ , guidance_scale=snake_case_ , num_inference_steps=snake_case_ , generator=snake_case_ , num_images_per_prompt=snake_case_ , ).images SCREAMING_SNAKE_CASE__: str= int(math.sqrt(snake_case_ ) ) SCREAMING_SNAKE_CASE__: Optional[Any]= image_grid(snake_case_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images lowercase_ : List[str] = parse_args() # Load models and create wrapper for stable diffusion lowercase_ : List[str] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') lowercase_ : List[Any] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') lowercase_ : Tuple = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') lowercase_ : List[Any] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') lowercase_ : Dict = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowercase_ : str = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): lowercase_ : Union[str, Any] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: lowercase_ : Any = unet.to(torch.device('cuda', args.cuda_id)) lowercase_ : str = pipeline.to(unet.device) lowercase_ , lowercase_ : Dict = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) lowercase_ : List[Any] = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
64
0
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml __a: Any = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Optional[Any]: def run_func(__snake_case ): @wraps(__UpperCamelCase ) def run_in_eager_mode(*__snake_case , **__snake_case ): return func(*__UpperCamelCase , **__UpperCamelCase ) @wraps(__UpperCamelCase ) @tf.function(experimental_compile=__UpperCamelCase ) def run_in_graph_mode(*__snake_case , **__snake_case ): return func(*__UpperCamelCase , **__UpperCamelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> ["tf.Tensor"]: _UpperCAmelCase = random.Random() _UpperCAmelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__UpperCamelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = '''TensorFlow''' @property def lowerCamelCase ( self : List[Any] ) -> Any: """simple docstring""" return tf.__version__ def lowerCamelCase ( self : str , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] ) -> Any: """simple docstring""" # initialize GPU on separate process _UpperCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _UpperCAmelCase = self._prepare_inference_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_speed(_inference ) def lowerCamelCase ( self : str , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _UpperCAmelCase = self._prepare_train_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_speed(_train ) def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Any , lowerCamelCase : List[Any] ) -> Tuple: """simple docstring""" # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , UpperCamelCase__ ) _UpperCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _UpperCAmelCase = self._prepare_inference_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_memory(_inference ) def lowerCamelCase ( self : int , lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , UpperCamelCase__ ) _UpperCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _UpperCAmelCase = self._prepare_train_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_memory(_train ) def lowerCamelCase ( self : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : Any , lowerCamelCase : List[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _UpperCAmelCase = ( hasattr(UpperCamelCase__ , """architectures""" ) and isinstance(config.architectures , UpperCamelCase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _UpperCAmelCase = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model _UpperCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _UpperCAmelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = model_cls(UpperCamelCase__ ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _UpperCAmelCase = TF_MODEL_MAPPING[config.__class__](UpperCamelCase__ ) # encoder-decoder has vocab size saved differently _UpperCAmelCase = config.vocab_size if hasattr(UpperCamelCase__ , """vocab_size""" ) else config.encoder.vocab_size _UpperCAmelCase = random_input_ids(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ , training=UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(UpperCamelCase__ , training=UpperCamelCase__ ) _UpperCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCamelCase ( self : str , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _UpperCAmelCase = ( hasattr(UpperCamelCase__ , """architectures""" ) and isinstance(config.architectures , UpperCamelCase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _UpperCAmelCase = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model _UpperCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _UpperCAmelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = model_cls(UpperCamelCase__ ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _UpperCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](UpperCamelCase__ ) # encoder-decoder has vocab size saved differently _UpperCAmelCase = config.vocab_size if hasattr(UpperCamelCase__ , """vocab_size""" ) else config.encoder.vocab_size _UpperCAmelCase = random_input_ids(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _UpperCAmelCase = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ )[0] _UpperCAmelCase = tf.gradients(UpperCamelCase__ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _UpperCAmelCase = model(UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ )[0] _UpperCAmelCase = tf.gradients(UpperCamelCase__ , model.trainable_variables ) return gradients _UpperCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCamelCase ( self : Dict , lowerCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(UpperCamelCase__ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _UpperCAmelCase = timeit.repeat( UpperCamelCase__ , repeat=self.args.repeat , number=10 , ) return min(UpperCamelCase__ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def lowerCamelCase ( self : Dict , lowerCamelCase : Optional[Any] ) -> int: """simple docstring""" logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _UpperCAmelCase = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won\'t log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _UpperCAmelCase = '''N/A''' else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _UpperCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _UpperCAmelCase = nvml.nvmlDeviceGetMemoryInfo(UpperCamelCase__ ) _UpperCAmelCase = meminfo.used _UpperCAmelCase = Memory(UpperCamelCase__ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _UpperCAmelCase = None else: _UpperCAmelCase = measure_peak_memory_cpu(UpperCamelCase__ ) _UpperCAmelCase = Memory(UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else memory_bytes if self.args.trace_memory_line_by_line: _UpperCAmelCase = stop_memory_tracing(UpperCamelCase__ ) if memory is None: _UpperCAmelCase = summary.total else: _UpperCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
711
def _SCREAMING_SNAKE_CASE ( __snake_case ) -> list[int]: _UpperCAmelCase = [0 for i in range(len(__snake_case ) )] # initialize interval's left pointer and right pointer _UpperCAmelCase , _UpperCAmelCase = 0, 0 for i in range(1 , len(__snake_case ) ): # case when current index is inside the interval if i <= right_pointer: _UpperCAmelCase = min(right_pointer - i + 1 , z_result[i - left_pointer] ) _UpperCAmelCase = min_edge while go_next(__snake_case , __snake_case , __snake_case ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: _UpperCAmelCase , _UpperCAmelCase = i, i + z_result[i] - 1 return z_result def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> bool: return i + z_result[i] < len(__snake_case ) and s[z_result[i]] == s[i + z_result[i]] def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> int: _UpperCAmelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string _UpperCAmelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(__snake_case ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
402
0
"""simple docstring""" import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase =logging.getLogger() def __a ( ) -> int: '''simple docstring''' A__ = argparse.ArgumentParser() parser.add_argument("-f" ) A__ = parser.parse_args() return args.f def __a ( A ) -> List[Any]: '''simple docstring''' A__ = {} A__ = os.path.join(_snake_case , "all_results.json" ) if os.path.exists(_snake_case ): with open(_snake_case , "r" ) as f: A__ = json.load(_snake_case ) else: raise ValueError(f"""can\'t find {path}""" ) return results def __a ( ) -> int: '''simple docstring''' A__ = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() __UpperCAmelCase =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase__ ( lowerCAmelCase_ ): @classmethod def lowercase_ ( cls ): '''simple docstring''' A__ = tempfile.mkdtemp() A__ = os.path.join(cls.tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) A__ = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def lowercase_ ( cls ): '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase_ ( self ): '''simple docstring''' A__ = self.get_auto_remove_tmp_dir() A__ = f"""\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n """.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) A__ = get_results(__snake_case ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(__snake_case , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case , "glue_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase_ ( self ): '''simple docstring''' A__ = self.get_auto_remove_tmp_dir() A__ = f"""\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) A__ = get_results(__snake_case ) self.assertLess(result["perplexity"] , 1_00 ) self.assertTrue(os.path.exists(os.path.join(__snake_case , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case , "clm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase_ ( self ): '''simple docstring''' A__ = self.get_auto_remove_tmp_dir() A__ = f"""\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n """.split() run_command(self._launch_args + testargs ) A__ = get_results(__snake_case ) self.assertLess(result["perplexity"] , 42 ) self.assertTrue(os.path.exists(os.path.join(__snake_case , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case , "mlm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase_ ( self ): '''simple docstring''' A__ = 7 if get_gpu_count() > 1 else 2 A__ = self.get_auto_remove_tmp_dir() A__ = f"""\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n """.split() run_command(self._launch_args + testargs ) A__ = get_results(__snake_case ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertLess(result["train_loss"] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(__snake_case , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case , "ner_no_trainer" ) ) ) @unittest.skip(reason="Fix me @muellerzr" ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase_ ( self ): '''simple docstring''' A__ = self.get_auto_remove_tmp_dir() A__ = f"""\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n """.split() run_command(self._launch_args + testargs ) A__ = get_results(__snake_case ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"] , 28 ) self.assertGreaterEqual(result["eval_exact"] , 28 ) self.assertTrue(os.path.exists(os.path.join(__snake_case , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case , "qa_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase_ ( self ): '''simple docstring''' A__ = self.get_auto_remove_tmp_dir() A__ = f"""\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n """.split() run_command(self._launch_args + testargs ) A__ = get_results(__snake_case ) self.assertGreaterEqual(result["eval_accuracy"] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(__snake_case , "swag_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase_ ( self ): '''simple docstring''' A__ = self.get_auto_remove_tmp_dir() A__ = f"""\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n """.split() run_command(self._launch_args + testargs ) A__ = get_results(__snake_case ) self.assertGreaterEqual(result["eval_rouge1"] , 10 ) self.assertGreaterEqual(result["eval_rouge2"] , 2 ) self.assertGreaterEqual(result["eval_rougeL"] , 7 ) self.assertGreaterEqual(result["eval_rougeLsum"] , 7 ) self.assertTrue(os.path.exists(os.path.join(__snake_case , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case , "summarization_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase_ ( self ): '''simple docstring''' A__ = self.get_auto_remove_tmp_dir() A__ = f"""\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n """.split() run_command(self._launch_args + testargs ) A__ = get_results(__snake_case ) self.assertGreaterEqual(result["eval_bleu"] , 30 ) self.assertTrue(os.path.exists(os.path.join(__snake_case , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case , "translation_no_trainer" ) ) ) @slow def lowercase_ ( self ): '''simple docstring''' A__ = logging.StreamHandler(sys.stdout ) logger.addHandler(__snake_case ) A__ = self.get_auto_remove_tmp_dir() A__ = f"""\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n """.split() run_command(self._launch_args + testargs ) A__ = get_results(__snake_case ) self.assertGreaterEqual(result["eval_overall_accuracy"] , 0.10 ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase_ ( self ): '''simple docstring''' A__ = self.get_auto_remove_tmp_dir() A__ = f"""\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n """.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) A__ = get_results(__snake_case ) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(__snake_case , "step_1" ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case , "image_classification_no_trainer" ) ) )
337
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'encoder-decoder' SCREAMING_SNAKE_CASE = True def __init__( self , **__snake_case ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" __a =kwargs.pop('encoder' ) __a =encoder_config.pop('model_type' ) __a =kwargs.pop('decoder' ) __a =decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig __a =AutoConfig.for_model(__snake_case , **__snake_case ) __a =AutoConfig.for_model(__snake_case , **__snake_case ) __a =True @classmethod def __magic_name__ ( cls , __snake_case , __snake_case , **__snake_case ) -> PretrainedConfig: '''simple docstring''' logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) __a =True __a =True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =copy.deepcopy(self.__dict__ ) __a =self.encoder.to_dict() __a =self.decoder.to_dict() __a =self.__class__.model_type return output
242
0
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class UpperCAmelCase__ ( datasets.BeamBasedBuilder ): """simple docstring""" def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) ,supervised_keys=_SCREAMING_SNAKE_CASE ,) def __lowercase ( self : List[Any] ,_a : Union[str, Any] ,_a : List[Any] ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={'examples': get_test_dummy_examples()} )] def __lowercase ( self : str ,_a : List[Any] ,_a : Union[str, Any] ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_SCREAMING_SNAKE_CASE ) class UpperCAmelCase__ ( datasets.BeamBasedBuilder ): """simple docstring""" def __lowercase ( self : List[Any] ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ,supervised_keys=_SCREAMING_SNAKE_CASE ,) def __lowercase ( self : Tuple ,_a : List[str] ,_a : Dict ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={'examples': get_test_nested_examples()} ) ] def __lowercase ( self : str ,_a : str ,_a : int ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ (): """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] def UpperCAmelCase_ (): """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] class UpperCAmelCase__ ( lowerCAmelCase__ ): """simple docstring""" @require_beam def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : List[Any] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _a : int = DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE ,beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_SCREAMING_SNAKE_CASE ,builder.name ,'default' ,'0.0.0' ,F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features ,datasets.Features({'content': datasets.Value('string' )} ) ) _a : List[str] = builder.as_dataset() self.assertEqual(dset['train'].num_rows ,_SCREAMING_SNAKE_CASE ) self.assertEqual(dset['train'].info.splits['train'].num_examples ,_SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset['train'][0] ,get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] ,get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE ,builder.name ,'default' ,'0.0.0' ,'dataset_info.json' ) ) ) del dset @require_beam def __lowercase ( self : Optional[int] ): '''simple docstring''' import apache_beam as beam _a : int = beam.io.parquetio.WriteToParquet _a : List[str] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _a : Optional[Any] = DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE ,beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: _a : Optional[Any] = partial(_SCREAMING_SNAKE_CASE ,num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _SCREAMING_SNAKE_CASE ,builder.name ,'default' ,'0.0.0' ,F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( _SCREAMING_SNAKE_CASE ,builder.name ,'default' ,'0.0.0' ,F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features ,datasets.Features({'content': datasets.Value('string' )} ) ) _a : int = builder.as_dataset() self.assertEqual(dset['train'].num_rows ,_SCREAMING_SNAKE_CASE ) self.assertEqual(dset['train'].info.splits['train'].num_examples ,_SCREAMING_SNAKE_CASE ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) ,sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE ,builder.name ,'default' ,'0.0.0' ,'dataset_info.json' ) ) ) del dset @require_beam def __lowercase ( self : Dict ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: _a : List[Any] = DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE ) self.assertRaises(datasets.builder.MissingBeamOptions ,builder.download_and_prepare ) @require_beam def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Tuple = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _a : int = NestedBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE ,beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_SCREAMING_SNAKE_CASE ,builder.name ,'default' ,'0.0.0' ,F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features ,datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) _a : str = builder.as_dataset() self.assertEqual(dset['train'].num_rows ,_SCREAMING_SNAKE_CASE ) self.assertEqual(dset['train'].info.splits['train'].num_examples ,_SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset['train'][0] ,get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] ,get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE ,builder.name ,'default' ,'0.0.0' ,'dataset_info.json' ) ) ) del dset
709
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase_ (__a : str = "isbn/0140328726" ): """simple docstring""" _a : Dict = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: _a : int = f"""{olid} is not a valid Open Library olid""" raise ValueError(__a ) return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json() def UpperCAmelCase_ (__a : dict ): """simple docstring""" _a : List[str] = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } _a : Union[str, Any] = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} _a : Union[str, Any] = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] _a : Dict = data['First sentence']['value'] for key, value in data.items(): if isinstance(__a , __a ): _a : str = ', '.join(__a ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __lowerCAmelCase = input("""\nEnter the ISBN code to search (or 'quit' to stop): """).strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (1_0, 1_3) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: __lowerCAmelCase = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print("""\n""".join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
319
0
"""simple docstring""" import cmath import math def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> complex: UpperCAmelCase__ : str = math.radians(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = math.radians(lowerCAmelCase ) # Convert voltage and current to rectangular form UpperCAmelCase__ : Union[str, Any] = cmath.rect(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : List[str] = cmath.rect(lowerCAmelCase , lowerCAmelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
182
"""simple docstring""" import requests def a__ ( lowerCAmelCase , lowerCAmelCase ) -> None: UpperCAmelCase__ : List[str] = {"""Content-Type""": """application/json"""} UpperCAmelCase__ : List[str] = requests.post(lowerCAmelCase , json={"""text""": message_body} , headers=lowerCAmelCase ) if response.status_code != 2_00: UpperCAmelCase__ : str = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowerCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
182
1
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCAmelCase_ = abspath(join(dirname(__file__), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> Tuple: config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> Dict: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowerCamelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: Tuple ) -> Any: from transformers.testing_utils import pytest_terminal_summary_main UpperCamelCase__ : List[str] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] , __UpperCAmelCase: Dict ) -> Optional[int]: if exitstatus == 5: UpperCamelCase__ : List[str] = 0 # Doctest custom flag to ignore output. UpperCAmelCase_ = doctest.register_optionflag('IGNORE_RESULT') UpperCAmelCase_ = doctest.OutputChecker class lowercase__ ( lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Optional[Any]: """simple docstring""" if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self, __magic_name__, __magic_name__, __magic_name__ ) UpperCAmelCase_ = CustomOutputChecker UpperCAmelCase_ = HfDoctestModule UpperCAmelCase_ = HfDocTestParser
704
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowerCAmelCase_ ( __UpperCAmelCase: Union[str, Any] ) -> Union[str, Any]: UpperCamelCase__ : List[str] = model.config UpperCamelCase__ : Optional[Any] = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) UpperCamelCase__ : Union[str, Any] = MBartConfig( is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCAmelCase , add_final_layer_norm=__UpperCAmelCase , ) return encoder_config, decoder_config def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> Tuple: if "encoder.model" in name: UpperCamelCase__ : str = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: UpperCamelCase__ : Optional[int] = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: UpperCamelCase__ : Dict = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase__ : Optional[int] = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: UpperCamelCase__ : Optional[Any] = '''encoder.''' + name if "attn.proj" in name: UpperCamelCase__ : Optional[int] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: UpperCamelCase__ : str = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCamelCase__ : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCamelCase__ : Union[str, Any] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase__ : Any = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase__ : List[str] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": UpperCamelCase__ : Optional[Any] = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": UpperCamelCase__ : Any = '''encoder.layernorm.bias''' return name def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: str ) -> Dict: for key in orig_state_dict.copy().keys(): UpperCamelCase__ : Dict = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: UpperCamelCase__ : Tuple = key.split('''.''' ) UpperCamelCase__ : str = int(key_split[3] ) UpperCamelCase__ : List[Any] = int(key_split[5] ) UpperCamelCase__ : Optional[Any] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase__ : Tuple = val[:dim, :] UpperCamelCase__ : Dict = val[dim : dim * 2, :] UpperCamelCase__ : Dict = val[-dim:, :] else: UpperCamelCase__ : Optional[int] = val[:dim] UpperCamelCase__ : str = val[dim : dim * 2] UpperCamelCase__ : int = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: UpperCamelCase__ : Any = val return orig_state_dict def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] , __UpperCAmelCase: List[Any]=None , __UpperCAmelCase: Tuple=False ) -> Optional[int]: # load original model UpperCamelCase__ : List[Any] = DonutModel.from_pretrained(__UpperCAmelCase ).eval() # load HuggingFace model UpperCamelCase__ ,UpperCamelCase__ : List[str] = get_configs(__UpperCAmelCase ) UpperCamelCase__ : int = DonutSwinModel(__UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = MBartForCausalLM(__UpperCAmelCase ) UpperCamelCase__ : Optional[int] = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() UpperCamelCase__ : List[Any] = original_model.state_dict() UpperCamelCase__ : List[Any] = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify results on scanned document UpperCamelCase__ : Optional[int] = load_dataset('''hf-internal-testing/example-documents''' ) UpperCamelCase__ : Any = dataset['''test'''][0]['''image'''].convert('''RGB''' ) UpperCamelCase__ : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained(__UpperCAmelCase , from_slow=__UpperCAmelCase ) UpperCamelCase__ : Dict = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) UpperCamelCase__ : Any = DonutProcessor(__UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : str = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": UpperCamelCase__ : Optional[int] = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' UpperCamelCase__ : int = '''When is the coffee break?''' UpperCamelCase__ : List[str] = task_prompt.replace('''{user_input}''' , __UpperCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": UpperCamelCase__ : int = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: UpperCamelCase__ : Optional[int] = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": UpperCamelCase__ : Any = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": UpperCamelCase__ : List[Any] = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt UpperCamelCase__ : Dict = '''hello world''' else: raise ValueError('''Model name not supported''' ) UpperCamelCase__ : Tuple = original_model.decoder.tokenizer(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] UpperCamelCase__ : List[str] = original_model.encoder.model.patch_embed(__UpperCAmelCase ) UpperCamelCase__ ,UpperCamelCase__ : List[str] = model.encoder.embeddings(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) # verify encoder hidden states UpperCamelCase__ : Dict = original_model.encoder(__UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = model.encoder(__UpperCAmelCase ).last_hidden_state assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-2 ) # verify decoder hidden states UpperCamelCase__ : Optional[Any] = original_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).logits UpperCamelCase__ : str = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) UpperCAmelCase_ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
369
0
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase: List[Any] = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =SpeechTaTokenizer snake_case =False snake_case =True def __UpperCamelCase ( self) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing a__ =SpeechTaTokenizer(lowercase_) a__ =AddedToken('<mask>' , lstrip=lowercase_ , rstrip=lowercase_) a__ =mask_token tokenizer.add_special_tokens({'mask_token': mask_token}) tokenizer.add_tokens(['<ctc_blank>']) tokenizer.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self , lowercase_) -> str: a__ ='this is a test' a__ ='this is a test' return input_text, output_text def __UpperCamelCase ( self , lowercase_ , lowercase_=False , lowercase_=20 , lowercase_=5) -> str: a__ , a__ =self.get_input_output_texts(lowercase_) a__ =tokenizer.encode(lowercase_ , add_special_tokens=lowercase_) a__ =tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_) return text, ids def __UpperCamelCase ( self) -> str: a__ ='<pad>' a__ =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_) , lowercase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_) , lowercase_) def __UpperCamelCase ( self) -> str: a__ =list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-4] , 'œ') self.assertEqual(vocab_keys[-2] , '<mask>') self.assertEqual(vocab_keys[-1] , '<ctc_blank>') self.assertEqual(len(lowercase_) , 81) def __UpperCamelCase ( self) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 79) def __UpperCamelCase ( self) -> str: a__ =self.get_tokenizers(do_lower_case=lowercase_) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): a__ =tokenizer.vocab_size a__ =len(lowercase_) self.assertNotEqual(lowercase_ , 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) a__ =['aaaaa bbbbbb', 'cccccccccdddddddd'] a__ =tokenizer.add_tokens(lowercase_) a__ =tokenizer.vocab_size a__ =len(lowercase_) self.assertNotEqual(lowercase_ , 0) self.assertEqual(lowercase_ , lowercase_) self.assertEqual(lowercase_ , len(lowercase_)) self.assertEqual(lowercase_ , all_size + len(lowercase_)) a__ =tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=lowercase_) self.assertGreaterEqual(len(lowercase_) , 4) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) a__ ={'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} a__ =tokenizer.add_special_tokens(lowercase_) a__ =tokenizer.vocab_size a__ =len(lowercase_) self.assertNotEqual(lowercase_ , 0) self.assertEqual(lowercase_ , lowercase_) self.assertEqual(lowercase_ , len(lowercase_)) self.assertEqual(lowercase_ , all_size_a + len(lowercase_)) a__ =tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=lowercase_) self.assertGreaterEqual(len(lowercase_) , 6) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[0] , tokens[1]) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokens[-4]) self.assertEqual(tokens[0] , tokenizer.eos_token_id) self.assertEqual(tokens[-3] , tokenizer.pad_token_id) def __UpperCamelCase ( self) -> Union[str, Any]: pass def __UpperCamelCase ( self) -> Optional[Any]: pass def __UpperCamelCase ( self) -> Union[str, Any]: a__ =self.get_tokenizer() a__ =tokenizer.tokenize('This is a test') # fmt: off self.assertListEqual(lowercase_ , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't']) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) a__ =tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowercase_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.']) a__ =tokenizer.convert_tokens_to_ids(lowercase_) # fmt: off self.assertListEqual(lowercase_ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26]) # fmt: on a__ =tokenizer.convert_ids_to_tokens(lowercase_) self.assertListEqual( lowercase_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.']) @slow def __UpperCamelCase ( self) -> Optional[int]: # Use custom sequence because this tokenizer does not handle numbers. a__ =[ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off a__ ={ 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=lowercase_ , )
20
"""simple docstring""" import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) set_seed(7_70) _lowerCAmelCase = { 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } _lowerCAmelCase = { 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } _lowerCAmelCase = os.path.dirname(os.path.abspath(__file__)) _lowerCAmelCase = os.path.join(os.path.expanduser('~'), '.cache') _lowerCAmelCase = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def UpperCamelCase ( _A , _A=False ) -> Dict: lowercase : Union[str, Any] = model_type if use_small: key += "_small" return os.path.join(_A , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def UpperCamelCase ( _A , _A ) -> List[Any]: os.makedirs(_A , exist_ok=_A ) hf_hub_download(repo_id=_A , filename=_A , local_dir=_A ) def UpperCamelCase ( _A , _A , _A=False , _A="text" ) -> List[Any]: if model_type == "text": lowercase : Any = BarkSemanticModel lowercase : List[Any] = BarkSemanticConfig lowercase : List[Any] = BarkSemanticGenerationConfig elif model_type == "coarse": lowercase : Tuple = BarkCoarseModel lowercase : str = BarkCoarseConfig lowercase : Optional[int] = BarkCoarseGenerationConfig elif model_type == "fine": lowercase : str = BarkFineModel lowercase : Optional[Any] = BarkFineConfig lowercase : Optional[int] = BarkFineGenerationConfig else: raise NotImplementedError() lowercase : Optional[int] = F"""{model_type}_small""" if use_small else model_type lowercase : str = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(_A ): logger.info(F"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) lowercase : Dict = torch.load(_A , map_location=_A ) # this is a hack lowercase : int = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: lowercase : str = model_args["""vocab_size"""] lowercase : Optional[Any] = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowercase : Optional[int] = model_args.pop("""n_head""" ) lowercase : Union[str, Any] = model_args.pop("""n_embd""" ) lowercase : Dict = model_args.pop("""n_layer""" ) lowercase : List[str] = ConfigClass(**checkpoint["""model_args"""] ) lowercase : Dict = ModelClass(config=_A ) lowercase : List[str] = GenerationConfigClass() lowercase : int = model_generation_config lowercase : List[Any] = checkpoint["""model"""] # fixup checkpoint lowercase : Union[str, Any] = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(_A ): # replace part of the key with corresponding layer name in HF implementation lowercase : List[str] = k[len(_A ) :] for old_layer_name in new_layer_name_dict: lowercase : int = new_k.replace(_A , new_layer_name_dict[old_layer_name] ) lowercase : List[Any] = state_dict.pop(_A ) lowercase : Dict = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowercase : Dict = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} lowercase : Optional[int] = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowercase : Dict = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(_A ) != 0: raise ValueError(F"""extra keys found: {extra_keys}""" ) if len(_A ) != 0: raise ValueError(F"""missing keys: {missing_keys}""" ) model.load_state_dict(_A , strict=_A ) lowercase : Union[str, Any] = model.num_parameters(exclude_embeddings=_A ) lowercase : Union[str, Any] = checkpoint["""best_val_loss"""].item() logger.info(F"""model loaded: {round(n_params/1e6 , 1 )}M params, {round(_A , 3 )} loss""" ) model.eval() model.to(_A ) del checkpoint, state_dict return model def UpperCamelCase ( _A , _A=False , _A="text" ) -> Dict: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowercase : Optional[Any] = """cpu""" # do conversion on cpu lowercase : Dict = _get_ckpt_path(_A , use_small=_A ) lowercase : Any = _load_model(_A , _A , model_type=_A , use_small=_A ) # load bark initial model lowercase : Tuple = _bark_load_model(_A , """cpu""" , model_type=_A , use_small=_A ) if model_type == "text": lowercase : str = bark_model["""model"""] if model.num_parameters(exclude_embeddings=_A ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model lowercase : Union[str, Any] = 5 lowercase : Tuple = 10 if model_type in ["text", "coarse"]: lowercase : Any = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) lowercase : Optional[Any] = bark_model(_A )[0] lowercase : Tuple = model(_A ) # take last logits lowercase : int = output_new_model_total.logits[:, [-1], :] else: lowercase : Dict = 3 lowercase : Any = 8 lowercase : str = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowercase : str = model(_A , _A ) lowercase : List[Any] = bark_model(_A , _A ) lowercase : Any = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("""initial and new outputs are not equal""" ) Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) def UpperCamelCase ( _A , _A , _A , _A , _A , _A , ) -> Optional[int]: lowercase : str = os.path.join(_A , _A ) lowercase : Dict = BarkSemanticConfig.from_pretrained(os.path.join(_A , """config.json""" ) ) lowercase : List[Any] = BarkCoarseConfig.from_pretrained(os.path.join(_A , """config.json""" ) ) lowercase : List[Any] = BarkFineConfig.from_pretrained(os.path.join(_A , """config.json""" ) ) lowercase : List[Any] = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) lowercase : Any = BarkSemanticModel.from_pretrained(_A ) lowercase : str = BarkCoarseModel.from_pretrained(_A ) lowercase : int = BarkFineModel.from_pretrained(_A ) lowercase : Optional[Any] = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) lowercase : int = BarkConfig.from_sub_model_configs( _A , _A , _A , _A ) lowercase : Dict = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowercase : str = BarkModel(_A ) lowercase : int = semantic lowercase : List[Any] = coarseAcoustic lowercase : Union[str, Any] = fineAcoustic lowercase : Any = codec lowercase : int = bark_generation_config Path(_A ).mkdir(exist_ok=_A ) bark.save_pretrained(_A , repo_id=_A , push_to_hub=_A ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') _lowerCAmelCase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
264
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } UpperCamelCase = { '''google/rembert''': 2_5_6, } UpperCamelCase = '''▁''' class lowerCamelCase__ ( UpperCAmelCase ): lowerCamelCase_ : Any = VOCAB_FILES_NAMES lowerCamelCase_ : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : Optional[int] = RemBertTokenizer def __init__(self : Optional[Any] , _snake_case : Optional[int]=None , _snake_case : int=None , _snake_case : Optional[Any]=True , _snake_case : str=True , _snake_case : List[Any]=False , _snake_case : Union[str, Any]="[CLS]" , _snake_case : List[str]="[SEP]" , _snake_case : List[Any]="<unk>" , _snake_case : Union[str, Any]="[SEP]" , _snake_case : Optional[int]="<pad>" , _snake_case : Tuple="[CLS]" , _snake_case : Union[str, Any]="[MASK]" , **_snake_case : Any , ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : List[str] = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , remove_space=_snake_case , keep_accents=_snake_case , bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , **_snake_case , ) lowerCamelCase_ : List[Any] = do_lower_case lowerCamelCase_ : Any = remove_space lowerCamelCase_ : Optional[Any] = keep_accents lowerCamelCase_ : List[Any] = vocab_file lowerCamelCase_ : Optional[int] = False if not self.vocab_file else True def UpperCAmelCase_ (self : str , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ : Dict = [self.sep_token_id] lowerCamelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase_ (self : List[Any] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_snake_case )) + [1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1] def UpperCAmelCase_ (self : List[str] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ : Union[str, Any] = [self.sep_token_id] lowerCamelCase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ (self : int , _snake_case : str , _snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error('Vocabulary path ({}) should be a directory'.format(_snake_case ) ) return lowerCamelCase_ : Tuple = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ): copyfile(self.vocab_file , _snake_case ) return (out_vocab_file,)
701
from PIL import Image def _a ( lowerCamelCase__ , lowerCamelCase__ ) -> Image: def brightness(lowerCamelCase__ ) -> float: return 1_28 + level + (c - 1_28) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(lowerCamelCase__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 UpperCamelCase = change_brightness(img, 1_0_0) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
144
0
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0 , UpperCamelCase__ = 0 ) -> int: '''simple docstring''' UpperCAmelCase = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
130
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def __a ( lowerCAmelCase_ : Namespace ) -> Optional[int]: '''simple docstring''' return ConvertCommand( args.model_type ,args.tf_checkpoint ,args.pytorch_dump_output ,args.config ,args.finetuning_task_name ) __A = ''' transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. ''' class lowercase ( snake_case__): """simple docstring""" @staticmethod def _SCREAMING_SNAKE_CASE ( __UpperCAmelCase : ArgumentParser ) -> Union[str, Any]: UpperCAmelCase_= parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=__UpperCAmelCase , required=__UpperCAmelCase , help="""Model's type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=__UpperCAmelCase , required=__UpperCAmelCase , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=__UpperCAmelCase , required=__UpperCAmelCase , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=__UpperCAmelCase , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=__UpperCAmelCase , default=__UpperCAmelCase , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=__UpperCAmelCase ) def __init__( self : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : str , *__UpperCAmelCase : Any , ) -> Optional[Any]: UpperCAmelCase_= logging.get_logger("""transformers-cli/converting""" ) self._logger.info(F"""Loading model {model_type}""" ) UpperCAmelCase_= model_type UpperCAmelCase_= tf_checkpoint UpperCAmelCase_= pytorch_dump_output UpperCAmelCase_= config UpperCAmelCase_= finetuning_task_name def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(__UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase_= self._tf_checkpoint UpperCAmelCase_= """""" else: UpperCAmelCase_= self._tf_checkpoint UpperCAmelCase_= """""" convert_transfo_xl_checkpoint_to_pytorch( __UpperCAmelCase , self._config , self._pytorch_dump_output , __UpperCAmelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
593
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase: int =logging.get_logger(__name__) _UpperCamelCase: str ={'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class __lowercase( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ = '''openai-gpt''' UpperCamelCase_ = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : List[Any] , _lowerCAmelCase : Tuple=4_0478 , _lowerCAmelCase : Dict=512 , _lowerCAmelCase : List[Any]=768 , _lowerCAmelCase : List[str]=12 , _lowerCAmelCase : List[str]=12 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : List[Any]=1e-5 , _lowerCAmelCase : Optional[Any]=0.02 , _lowerCAmelCase : List[Any]="cls_index" , _lowerCAmelCase : str=True , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Tuple=0.1 , **_lowerCAmelCase : List[Any] , ) -> List[str]: _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_embd _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = afn _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = summary_type _lowerCAmelCase = summary_use_proj _lowerCAmelCase = summary_activation _lowerCAmelCase = summary_first_dropout _lowerCAmelCase = summary_proj_to_labels super().__init__(**_lowerCAmelCase )
585
from __future__ import annotations import math class __lowercase: """simple docstring""" def __init__( self : str , _lowerCAmelCase : int ) -> None: _lowerCAmelCase = size # approximate the overall size of segment tree with given value _lowerCAmelCase = [0 for i in range(0 , 4 * size )] # create array to store lazy update _lowerCAmelCase = [0 for i in range(0 , 4 * size )] _lowerCAmelCase = [0 for i in range(0 , 4 * size )] # flag for lazy update def SCREAMING_SNAKE_CASE_ ( self : Tuple , _lowerCAmelCase : int ) -> int: return idx * 2 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , _lowerCAmelCase : int ) -> int: return idx * 2 + 1 def SCREAMING_SNAKE_CASE_ ( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : list[int] ) -> None: if left_element == right_element: _lowerCAmelCase = a[left_element - 1] else: _lowerCAmelCase = (left_element + right_element) // 2 self.build(self.left(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.build(self.right(_lowerCAmelCase ) , mid + 1 , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = max( self.segment_tree[self.left(_lowerCAmelCase )] , self.segment_tree[self.right(_lowerCAmelCase )] ) def SCREAMING_SNAKE_CASE_ ( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> bool: if self.flag[idx] is True: _lowerCAmelCase = self.lazy[idx] _lowerCAmelCase = False if left_element != right_element: _lowerCAmelCase = self.lazy[idx] _lowerCAmelCase = self.lazy[idx] _lowerCAmelCase = True _lowerCAmelCase = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: _lowerCAmelCase = val if left_element != right_element: _lowerCAmelCase = val _lowerCAmelCase = val _lowerCAmelCase = True _lowerCAmelCase = True return True _lowerCAmelCase = (left_element + right_element) // 2 self.update(self.left(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.update(self.right(_lowerCAmelCase ) , mid + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = max( self.segment_tree[self.left(_lowerCAmelCase )] , self.segment_tree[self.right(_lowerCAmelCase )] ) return True def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float: if self.flag[idx] is True: _lowerCAmelCase = self.lazy[idx] _lowerCAmelCase = False if left_element != right_element: _lowerCAmelCase = self.lazy[idx] _lowerCAmelCase = self.lazy[idx] _lowerCAmelCase = True _lowerCAmelCase = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] _lowerCAmelCase = (left_element + right_element) // 2 _lowerCAmelCase = self.query(self.left(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = self.query(self.right(_lowerCAmelCase ) , mid + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return max(_lowerCAmelCase , _lowerCAmelCase ) def __str__( self : Optional[Any] ) -> str: return str([self.query(1 , 1 , self.size , _lowerCAmelCase , _lowerCAmelCase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _UpperCamelCase: Optional[Any] =[1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] _UpperCamelCase: Optional[Any] =15 _UpperCamelCase: Union[str, Any] =SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
585
1
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : """simple docstring""" def __init__( self , snake_case_ , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.0_2 , snake_case_=3 , snake_case_=0.6 , snake_case_=None , ): '''simple docstring''' __UpperCAmelCase: List[Any] = parent __UpperCAmelCase: str = batch_size __UpperCAmelCase: Optional[int] = image_size __UpperCAmelCase: str = patch_size __UpperCAmelCase: Dict = num_channels __UpperCAmelCase: Optional[int] = is_training __UpperCAmelCase: List[Any] = use_labels __UpperCAmelCase: Optional[Any] = hidden_size __UpperCAmelCase: Union[str, Any] = num_hidden_layers __UpperCAmelCase: List[Any] = num_attention_heads __UpperCAmelCase: List[str] = intermediate_size __UpperCAmelCase: Optional[Any] = hidden_act __UpperCAmelCase: Any = hidden_dropout_prob __UpperCAmelCase: str = attention_probs_dropout_prob __UpperCAmelCase: Dict = type_sequence_label_size __UpperCAmelCase: List[str] = initializer_range __UpperCAmelCase: List[str] = mask_ratio __UpperCAmelCase: Tuple = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __UpperCAmelCase: Dict = (image_size // patch_size) ** 2 __UpperCAmelCase: Union[str, Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase: int = None if self.use_labels: __UpperCAmelCase: List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase: List[Any] = self.get_config() return config, pixel_values, labels def lowercase_ ( self ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: str = TFViTMAEModel(config=snake_case_ ) __UpperCAmelCase: Tuple = model(snake_case_ , training=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Any = TFViTMAEForPreTraining(snake_case_ ) __UpperCAmelCase: List[Any] = model(snake_case_ , training=snake_case_ ) # expected sequence length = num_patches __UpperCAmelCase: List[str] = (self.image_size // self.patch_size) ** 2 __UpperCAmelCase: int = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __UpperCAmelCase: Optional[Any] = 1 __UpperCAmelCase: Tuple = TFViTMAEForPreTraining(snake_case_ ) __UpperCAmelCase: Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase: Optional[int] = model(snake_case_ , training=snake_case_ ) __UpperCAmelCase: Union[str, Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = self.prepare_config_and_inputs() ((__UpperCAmelCase), (__UpperCAmelCase), (__UpperCAmelCase)): int = config_and_inputs __UpperCAmelCase: List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class a ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __lowerCAmelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = TFViTMAEModelTester(self ) __UpperCAmelCase: int = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def lowercase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def lowercase_ ( self ): '''simple docstring''' pass def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase, __UpperCAmelCase: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase: Optional[Any] = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __UpperCAmelCase: Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , tf.keras.layers.Layer ) ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase, __UpperCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase: Tuple = model_class(snake_case_ ) __UpperCAmelCase: Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase: Optional[Any] = [*signature.parameters.keys()] __UpperCAmelCase: Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case_ ) def lowercase_ ( self ): '''simple docstring''' np.random.seed(2 ) __UpperCAmelCase, __UpperCAmelCase: str = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase: Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) __UpperCAmelCase: Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __UpperCAmelCase: Optional[int] = model_class(snake_case_ ) __UpperCAmelCase: Union[str, Any] = self._prepare_for_class(snake_case_ , snake_case_ ) __UpperCAmelCase: List[str] = model(snake_case_ , noise=snake_case_ ) __UpperCAmelCase: List[str] = copy.deepcopy(self._prepare_for_class(snake_case_ , snake_case_ ) ) __UpperCAmelCase: Tuple = model(**snake_case_ , noise=snake_case_ ) __UpperCAmelCase: Dict = outputs_dict[0].numpy() __UpperCAmelCase: int = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 ) def lowercase_ ( self ): '''simple docstring''' np.random.seed(2 ) __UpperCAmelCase, __UpperCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase: Dict = int((config.image_size // config.patch_size) ** 2 ) __UpperCAmelCase: Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(snake_case_ ): __UpperCAmelCase: str = {} for k, v in inputs_dict.items(): if tf.is_tensor(snake_case_ ): __UpperCAmelCase: str = v.numpy() else: __UpperCAmelCase: Optional[Any] = np.array(snake_case_ ) return inputs_np_dict for model_class in self.all_model_classes: __UpperCAmelCase: List[str] = model_class(snake_case_ ) __UpperCAmelCase: Tuple = self._prepare_for_class(snake_case_ , snake_case_ ) __UpperCAmelCase: int = prepare_numpy_arrays(snake_case_ ) __UpperCAmelCase: int = model(snake_case_ , noise=snake_case_ ) __UpperCAmelCase: Union[str, Any] = model(**snake_case_ , noise=snake_case_ ) self.assert_outputs_same(snake_case_ , snake_case_ ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' np.random.seed(2 ) __UpperCAmelCase: Tuple = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) __UpperCAmelCase: Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __UpperCAmelCase: Optional[Any] = tf.constant(snake_case_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __UpperCAmelCase: Union[str, Any] = tf_noise super().check_pt_tf_models(snake_case_ , snake_case_ , snake_case_ ) def lowercase_ ( self ): '''simple docstring''' np.random.seed(2 ) __UpperCAmelCase, __UpperCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase: Tuple = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(snake_case_ ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(snake_case_ , snake_case_ ),) if isinstance(snake_case_ , snake_case_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(snake_case_ , """_keras_serializable""" , snake_case_ ) } __UpperCAmelCase: int = int((config.image_size // config.patch_size) ** 2 ) __UpperCAmelCase: Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __UpperCAmelCase: Union[str, Any] = tf.convert_to_tensor(snake_case_ ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: __UpperCAmelCase: Union[str, Any] = main_layer_class(snake_case_ ) __UpperCAmelCase: Any = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } __UpperCAmelCase: Optional[Any] = tf.keras.Model(snake_case_ , outputs=main_layer(snake_case_ ) ) __UpperCAmelCase: List[str] = model(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase: Any = os.path.join(snake_case_ , """keras_model.h5""" ) model.save(snake_case_ ) __UpperCAmelCase: Optional[Any] = tf.keras.models.load_model( snake_case_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(snake_case_ , tf.keras.Model ) __UpperCAmelCase: int = model(snake_case_ ) self.assert_outputs_same(snake_case_ , snake_case_ ) @slow def lowercase_ ( self ): '''simple docstring''' np.random.seed(2 ) __UpperCAmelCase, __UpperCAmelCase: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase: List[Any] = int((config.image_size // config.patch_size) ** 2 ) __UpperCAmelCase: Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __UpperCAmelCase: Optional[Any] = model_class(snake_case_ ) __UpperCAmelCase: Any = self._prepare_for_class(snake_case_ , snake_case_ ) __UpperCAmelCase: Any = model(snake_case_ , noise=snake_case_ ) if model_class.__name__ == "TFViTMAEModel": __UpperCAmelCase: Optional[Any] = outputs.last_hidden_state.numpy() __UpperCAmelCase: Any = 0 else: __UpperCAmelCase: str = outputs.logits.numpy() __UpperCAmelCase: str = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) __UpperCAmelCase: int = model_class.from_pretrained(snake_case_ ) __UpperCAmelCase: str = model(snake_case_ , noise=snake_case_ ) if model_class.__name__ == "TFViTMAEModel": __UpperCAmelCase: int = after_outputs["""last_hidden_state"""].numpy() __UpperCAmelCase: List[str] = 0 else: __UpperCAmelCase: Dict = after_outputs["""logits"""].numpy() __UpperCAmelCase: List[str] = 0 __UpperCAmelCase: Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1e-5 ) def lowercase_ ( self ): '''simple docstring''' np.random.seed(2 ) __UpperCAmelCase, __UpperCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase: Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) __UpperCAmelCase: str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __UpperCAmelCase: Optional[int] = model_class(snake_case_ ) __UpperCAmelCase: List[Any] = self._prepare_for_class(snake_case_ , snake_case_ ) __UpperCAmelCase: Dict = model(snake_case_ , noise=snake_case_ ) __UpperCAmelCase: int = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(snake_case_ ) __UpperCAmelCase: List[Any] = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config __UpperCAmelCase: List[str] = model_class.from_config(model.config ) __UpperCAmelCase: Tuple = new_model(snake_case_ ) # Build model new_model.set_weights(model.get_weights() ) __UpperCAmelCase: Tuple = new_model(snake_case_ , noise=snake_case_ ) self.assert_outputs_same(snake_case_ , snake_case_ ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def lowercase_ ( self ): '''simple docstring''' pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def lowercase_ ( self ): '''simple docstring''' pass @slow def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[Any] = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(snake_case_ ) def UpperCamelCase__ ( ) -> Dict: __UpperCAmelCase: List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ): '''simple docstring''' return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def lowercase_ ( self ): '''simple docstring''' np.random.seed(2 ) __UpperCAmelCase: List[Any] = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) __UpperCAmelCase: Optional[Any] = self.default_image_processor __UpperCAmelCase: List[str] = prepare_img() __UpperCAmelCase: Tuple = image_processor(images=snake_case_ , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __UpperCAmelCase: Union[str, Any] = ViTMAEConfig() __UpperCAmelCase: List[str] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __UpperCAmelCase: List[str] = np.random.uniform(size=(1, num_patches) ) # forward pass __UpperCAmelCase: str = model(**snake_case_ , noise=snake_case_ ) # verify the logits __UpperCAmelCase: int = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , snake_case_ ) __UpperCAmelCase: str = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , snake_case_ , atol=1e-4 )
523
'''simple docstring''' import numpy as np def UpperCamelCase__ ( _lowercase : np.array ) -> np.array: return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
523
1
import torch def _lowerCAmelCase ( ): if torch.cuda.is_available(): lowercase__ = torch.cuda.device_count() else: lowercase__ = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
700
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
0
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _A : Tuple = (DDPMScheduler,) def lowerCamelCase(self , **lowerCAmelCase_ ): A_ : str = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**lowerCAmelCase_ ) return config def lowerCamelCase(self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def lowerCamelCase(self ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def lowerCamelCase(self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def lowerCamelCase(self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def lowerCamelCase(self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def lowerCamelCase(self ): self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def lowerCamelCase(self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def lowerCamelCase(self ): for t in [0, 500, 999]: self.check_over_forward(time_step=lowerCAmelCase_ ) def lowerCamelCase(self ): A_ : Optional[int] = self.scheduler_classes[0] A_ : List[Any] = self.get_scheduler_config() A_ : Dict = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def lowerCamelCase(self ): A_ : Any = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : List[str] = scheduler_class(**lowerCAmelCase_ ) A_ : Optional[int] = len(lowerCAmelCase_ ) A_ : List[str] = self.dummy_model() A_ : Optional[int] = self.dummy_sample_deter A_ : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual A_ : Union[str, Any] = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 A_ : Optional[Any] = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : Union[str, Any] = pred_prev_sample A_ : str = torch.sum(torch.abs(lowerCAmelCase_ ) ) A_ : Tuple = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def lowerCamelCase(self ): A_ : int = self.scheduler_classes[0] A_ : int = self.get_scheduler_config(prediction_type="""v_prediction""" ) A_ : Any = scheduler_class(**lowerCAmelCase_ ) A_ : List[str] = len(lowerCAmelCase_ ) A_ : Dict = self.dummy_model() A_ : Any = self.dummy_sample_deter A_ : Tuple = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual A_ : Dict = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 A_ : str = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : int = pred_prev_sample A_ : List[Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) A_ : Dict = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def lowerCamelCase(self ): A_ : Optional[int] = self.scheduler_classes[0] A_ : Any = self.get_scheduler_config() A_ : Any = scheduler_class(**lowerCAmelCase_ ) A_ : str = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) A_ : List[str] = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: A_ : Dict = -1 else: A_ : Optional[int] = timesteps[i + 1] A_ : Optional[Any] = scheduler.previous_timestep(lowerCAmelCase_ ) A_ : List[Any] = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase(self ): A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Optional[int] = self.get_scheduler_config() A_ : Any = scheduler_class(**lowerCAmelCase_ ) A_ : Tuple = [100, 87, 50, 51, 0] with self.assertRaises(lowerCAmelCase_ , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def lowerCamelCase(self ): A_ : List[str] = self.scheduler_classes[0] A_ : List[Any] = self.get_scheduler_config() A_ : Tuple = scheduler_class(**lowerCAmelCase_ ) A_ : List[Any] = [100, 87, 50, 1, 0] A_ : str = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def lowerCamelCase(self ): A_ : str = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : str = scheduler_class(**lowerCAmelCase_ ) A_ : Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
180
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _A : str = LEDTokenizer _A : List[Any] = LEDTokenizerFast _A : Dict = True def lowerCamelCase(self ): super().setUp() A_ : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] A_ : Any = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A_ : List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] A_ : List[str] = {"""unk_token""": """<unk>"""} A_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase_ ) ) def lowerCamelCase(self , **lowerCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCamelCase(self , **lowerCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCamelCase(self , lowerCAmelCase_ ): return "lower newer", "lower newer" @cached_property def lowerCamelCase(self ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase(self ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase(self ): A_ : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] A_ : Any = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : Optional[int] = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors="""pt""" ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) A_ : int = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def lowerCamelCase(self ): A_ : Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : Tuple = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors="""pt""" ) self.assertIn("""input_ids""" , lowerCAmelCase_ ) self.assertIn("""attention_mask""" , lowerCAmelCase_ ) self.assertNotIn("""labels""" , lowerCAmelCase_ ) self.assertNotIn("""decoder_attention_mask""" , lowerCAmelCase_ ) @require_torch def lowerCamelCase(self ): A_ : Tuple = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : Optional[int] = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase(self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : Optional[Any] = tokenizer( ["""I am a small frog""" * 1024, """I am a small frog"""] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""" ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowerCamelCase(self ): A_ : Dict = ["""A long paragraph for summarization."""] A_ : Any = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : int = tokenizer(lowerCAmelCase_ , return_tensors="""pt""" ) A_ : Optional[int] = tokenizer(text_target=lowerCAmelCase_ , return_tensors="""pt""" ) A_ : str = inputs["""input_ids"""] A_ : Tuple = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase(self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : str = ["""Summary of the text.""", """Another summary."""] A_ : Dict = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] A_ : Optional[Any] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) A_ : Any = [[0] * len(lowerCAmelCase_ ) for x in encoded_output["""input_ids"""]] A_ : Tuple = tokenizer.pad(lowerCAmelCase_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , lowerCAmelCase_ ) def lowerCamelCase(self ): pass def lowerCamelCase(self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): A_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) A_ : Optional[Any] = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) A_ : Optional[Any] = """A, <mask> AllenNLP sentence.""" A_ : List[Any] = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) A_ : Any = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) A_ : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) A_ : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( lowerCAmelCase_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
180
1
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a_ : def __init__( self : int , a_ : Any , a_ : Union[str, Any]=1_3 , a_ : Dict=7 , a_ : Tuple=True , a_ : Tuple=True , a_ : List[Any]=True , a_ : str=True , a_ : Any=9_9 , a_ : Union[str, Any]=1_6 , a_ : int=3_6 , a_ : List[Any]=6 , a_ : Union[str, Any]=6 , a_ : Any=6 , a_ : int=3_7 , a_ : List[str]="gelu" , a_ : Optional[int]=0.1 , a_ : List[Any]=0.1 , a_ : int=5_1_2 , a_ : str=1_6 , a_ : List[str]=2 , a_ : int=0.0_2 , a_ : List[str]=3 , a_ : List[str]=4 , a_ : Tuple=None , ) -> Union[str, Any]: snake_case: Optional[int] =parent snake_case: List[Any] =batch_size snake_case: List[Any] =seq_length snake_case: str =is_training snake_case: Optional[int] =use_input_mask snake_case: Tuple =use_token_type_ids snake_case: Dict =use_labels snake_case: Any =vocab_size snake_case: List[Any] =embedding_size snake_case: Optional[int] =hidden_size snake_case: List[Any] =num_hidden_layers snake_case: Any =num_hidden_groups snake_case: List[Any] =num_attention_heads snake_case: Any =intermediate_size snake_case: List[str] =hidden_act snake_case: Tuple =hidden_dropout_prob snake_case: int =attention_probs_dropout_prob snake_case: Any =max_position_embeddings snake_case: Optional[int] =type_vocab_size snake_case: int =type_sequence_label_size snake_case: Dict =initializer_range snake_case: Any =num_labels snake_case: Optional[Any] =num_choices snake_case: Tuple =scope def UpperCamelCase ( self : str ) -> int: snake_case: Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case: Any =None if self.use_input_mask: snake_case: Tuple =random_attention_mask([self.batch_size, self.seq_length] ) snake_case: Union[str, Any] =None if self.use_token_type_ids: snake_case: Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case: List[Any] =None snake_case: Dict =None snake_case: Union[str, Any] =None if self.use_labels: snake_case: str =ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case: List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case: Dict =ids_tensor([self.batch_size] , self.num_choices ) snake_case: Tuple =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def UpperCamelCase ( self : List[Any] , a_ : Dict , a_ : Dict , a_ : List[str] , a_ : Optional[Any] , a_ : Union[str, Any] , a_ : List[Any] , a_ : int ) -> Tuple: snake_case: List[Any] =AlbertModel(config=a_ ) model.to(a_ ) model.eval() snake_case: int =model(a_ , attention_mask=a_ , token_type_ids=a_ ) snake_case: Union[str, Any] =model(a_ , token_type_ids=a_ ) snake_case: List[Any] =model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self : int , a_ : Any , a_ : List[Any] , a_ : str , a_ : int , a_ : Dict , a_ : str , a_ : Optional[Any] ) -> Union[str, Any]: snake_case: Tuple =AlbertForPreTraining(config=a_ ) model.to(a_ ) model.eval() snake_case: Any =model( a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , sentence_order_label=a_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def UpperCamelCase ( self : Optional[Any] , a_ : Optional[int] , a_ : Tuple , a_ : Union[str, Any] , a_ : List[Any] , a_ : Any , a_ : Optional[Any] , a_ : Tuple ) -> List[Any]: snake_case: Union[str, Any] =AlbertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() snake_case: Optional[Any] =model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : Tuple , a_ : Any , a_ : Optional[Any] , a_ : Optional[int] , a_ : List[Any] , a_ : str , a_ : Tuple , a_ : Tuple ) -> List[Any]: snake_case: Optional[int] =AlbertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() snake_case: List[str] =model( a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : Union[str, Any] , a_ : int , a_ : Tuple , a_ : Any , a_ : Optional[Any] , a_ : Any , a_ : List[str] , a_ : Optional[int] ) -> int: snake_case: Dict =self.num_labels snake_case: List[Any] =AlbertForSequenceClassification(a_ ) model.to(a_ ) model.eval() snake_case: str =model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : int , a_ : Union[str, Any] , a_ : Any , a_ : Any , a_ : Union[str, Any] , a_ : Optional[Any] , a_ : Optional[Any] , a_ : int ) -> List[Any]: snake_case: List[Any] =self.num_labels snake_case: Optional[Any] =AlbertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() snake_case: int =model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : str , a_ : Optional[int] , a_ : Optional[Any] , a_ : str , a_ : str , a_ : int , a_ : Tuple , a_ : Union[str, Any] ) -> Optional[int]: snake_case: Any =self.num_choices snake_case: Tuple =AlbertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() snake_case: str =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case: Optional[int] =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case: List[Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case: str =model( a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : List[Any] ) -> Optional[int]: snake_case: int =self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ): Optional[int] =config_and_inputs snake_case: Optional[Any] ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case , snake_case , unittest.TestCase ): UpperCAmelCase : Optional[Any] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase : Tuple = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase : List[str] = True def UpperCamelCase ( self : str , a_ : Optional[int] , a_ : Union[str, Any] , a_ : str=False ) -> Dict: snake_case: List[Any] =super()._prepare_for_class(a_ , a_ , return_labels=a_ ) if return_labels: if model_class in get_values(a_ ): snake_case: str =torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a_ ) snake_case: Dict =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) return inputs_dict def UpperCamelCase ( self : List[str] ) -> Union[str, Any]: snake_case: int =AlbertModelTester(self ) snake_case: Optional[int] =ConfigTester(self , config_class=a_ , hidden_size=3_7 ) def UpperCamelCase ( self : Dict ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCamelCase ( self : Dict ) -> Optional[int]: snake_case: List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase ( self : Tuple ) -> int: snake_case: List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a_ ) def UpperCamelCase ( self : Union[str, Any] ) -> List[str]: snake_case: List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def UpperCamelCase ( self : int ) -> List[str]: snake_case: str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a_ ) def UpperCamelCase ( self : Dict ) -> int: snake_case: List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) def UpperCamelCase ( self : List[Any] ) -> int: snake_case: Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a_ ) def UpperCamelCase ( self : Tuple ) -> List[str]: snake_case: List[Any] =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case: Optional[Any] =type self.model_tester.create_and_check_model(*a_ ) @slow def UpperCamelCase ( self : Any ) -> Optional[Any]: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case: List[str] =AlbertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch class a_ ( unittest.TestCase ): @slow def UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: snake_case: int =AlbertModel.from_pretrained('albert-base-v2' ) snake_case: str =torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) snake_case: Optional[int] =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): snake_case: str =model(a_ , attention_mask=a_ )[0] snake_case: List[str] =torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a_ ) snake_case: str =torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
347
'''simple docstring''' import sys from collections import defaultdict class a_ : def __init__( self : Union[str, Any] ) -> Optional[int]: snake_case: Any =[] def UpperCamelCase ( self : List[str] , a_ : Optional[int] ) -> str: return self.node_position[vertex] def UpperCamelCase ( self : Union[str, Any] , a_ : List[str] , a_ : List[Any] ) -> Tuple: snake_case: Optional[Any] =pos def UpperCamelCase ( self : Any , a_ : Any , a_ : Tuple , a_ : Optional[Any] , a_ : Optional[Any] ) -> Optional[int]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: snake_case: int =2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: snake_case: int =2 * start + 1 else: snake_case: Any =2 * start + 2 if heap[smallest_child] < heap[start]: snake_case , snake_case: Any =heap[smallest_child], positions[smallest_child] snake_case , snake_case: int =( heap[start], positions[start], ) snake_case , snake_case: Any =temp, tempa snake_case: List[Any] =self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , a_ ) self.top_to_bottom(a_ , a_ , a_ , a_ ) def UpperCamelCase ( self : Union[str, Any] , a_ : Tuple , a_ : List[str] , a_ : int , a_ : str ) -> List[str]: snake_case: Tuple =position[index] while index != 0: snake_case: List[Any] =int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: snake_case: Tuple =heap[parent] snake_case: Dict =position[parent] self.set_position(position[parent] , a_ ) else: snake_case: Dict =val snake_case: List[str] =temp self.set_position(a_ , a_ ) break snake_case: List[str] =parent else: snake_case: List[str] =val snake_case: int =temp self.set_position(a_ , 0 ) def UpperCamelCase ( self : Optional[Any] , a_ : Tuple , a_ : Optional[int] ) -> List[str]: snake_case: Optional[int] =len(a_ ) // 2 - 1 for i in range(a_ , -1 , -1 ): self.top_to_bottom(a_ , a_ , len(a_ ) , a_ ) def UpperCamelCase ( self : Optional[Any] , a_ : Union[str, Any] , a_ : Optional[int] ) -> List[Any]: snake_case: Dict =positions[0] snake_case: List[Any] =sys.maxsize self.top_to_bottom(a_ , 0 , len(a_ ) , a_ ) return temp def a_ ( __UpperCAmelCase ) -> Tuple: """simple docstring""" snake_case: Union[str, Any] =Heap() snake_case: Optional[int] =[0] * len(__UpperCAmelCase ) snake_case: Optional[Any] =[-1] * len(__UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph snake_case: List[str] =[] # Heap of Distance of vertices from their neighboring vertex snake_case: Tuple =[] for vertex in range(len(__UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(__UpperCAmelCase ) heap.node_position.append(__UpperCAmelCase ) snake_case: int =[] snake_case: Union[str, Any] =1 snake_case: Union[str, Any] =sys.maxsize for neighbor, distance in adjacency_list[0]: snake_case: List[Any] =0 snake_case: Union[str, Any] =distance heap.heapify(__UpperCAmelCase , __UpperCAmelCase ) for _ in range(1 , len(__UpperCAmelCase ) ): snake_case: Optional[int] =heap.delete_minimum(__UpperCAmelCase , __UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) snake_case: Union[str, Any] =1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__UpperCAmelCase )] ): snake_case: List[Any] =distance heap.bottom_to_top( __UpperCAmelCase , heap.get_position(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase ) snake_case: str =vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > a = int(input('Enter number of edges: ').strip()) a = defaultdict(list) for _ in range(edges_number): a = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
347
1
"""simple docstring""" import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = 'Hello, World!' lowercase_ = 'en_XX' def UpperCAmelCase ( _lowercase : str , _lowercase : str , _lowercase : bool ) -> Optional[int]: """simple docstring""" lowerCAmelCase_ = Path('''data_bin''' ) lowerCAmelCase_ = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_lowercase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_lowercase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(_lowercase ) lowerCAmelCase_ = xmod.model.encoder.sentence_encoder lowerCAmelCase_ = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCAmelCase_ = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , _lowercase ) lowerCAmelCase_ = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCAmelCase_ = xmod_sent_encoder.embed_tokens.weight lowerCAmelCase_ = xmod_sent_encoder.embed_positions.weight lowerCAmelCase_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCAmelCase_ = xmod_sent_encoder.layernorm_embedding.weight lowerCAmelCase_ = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCAmelCase_ = model.roberta.encoder.layer[i] lowerCAmelCase_ = xmod_sent_encoder.layers[i] # self attention lowerCAmelCase_ = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) lowerCAmelCase_ = xmod_layer.self_attn.q_proj.weight lowerCAmelCase_ = xmod_layer.self_attn.q_proj.bias lowerCAmelCase_ = xmod_layer.self_attn.k_proj.weight lowerCAmelCase_ = xmod_layer.self_attn.k_proj.bias lowerCAmelCase_ = xmod_layer.self_attn.v_proj.weight lowerCAmelCase_ = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCAmelCase_ = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) lowerCAmelCase_ = xmod_layer.self_attn.out_proj.weight lowerCAmelCase_ = xmod_layer.self_attn.out_proj.bias lowerCAmelCase_ = xmod_layer.self_attn_layer_norm.weight lowerCAmelCase_ = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCAmelCase_ = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) lowerCAmelCase_ = xmod_layer.fca.weight lowerCAmelCase_ = xmod_layer.fca.bias # output lowerCAmelCase_ = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) lowerCAmelCase_ = xmod_layer.fca.weight lowerCAmelCase_ = xmod_layer.fca.bias lowerCAmelCase_ = xmod_layer.final_layer_norm.weight lowerCAmelCase_ = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCAmelCase_ = xmod_layer.adapter_layer_norm.weight lowerCAmelCase_ = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCAmelCase_ = bert_output.adapter_modules[lang_code] lowerCAmelCase_ = xmod_layer.adapter_modules[lang_code] lowerCAmelCase_ = from_adapter.fca.weight lowerCAmelCase_ = from_adapter.fca.bias lowerCAmelCase_ = from_adapter.fca.weight lowerCAmelCase_ = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCAmelCase_ = xmod_sent_encoder.layer_norm.weight lowerCAmelCase_ = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCAmelCase_ = xmod.model.classification_heads['''mnli'''].dense.weight lowerCAmelCase_ = xmod.model.classification_heads['''mnli'''].dense.bias lowerCAmelCase_ = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCAmelCase_ = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCAmelCase_ = xmod.model.encoder.lm_head.dense.weight lowerCAmelCase_ = xmod.model.encoder.lm_head.dense.bias lowerCAmelCase_ = xmod.model.encoder.lm_head.layer_norm.weight lowerCAmelCase_ = xmod.model.encoder.lm_head.layer_norm.bias lowerCAmelCase_ = xmod.model.encoder.lm_head.weight lowerCAmelCase_ = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCAmelCase_ = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) lowerCAmelCase_ = model(_lowercase )[0] if classification_head: lowerCAmelCase_ = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_lowercase ) ) else: lowerCAmelCase_ = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowerCAmelCase_ = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCAmelCase_ = torch.allclose(_lowercase , _lowercase , atol=1E-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) lowercase_ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
552
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'vocab_file': 'vocab.txt'} lowercase_ = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } lowercase_ = { 'YituTech/conv-bert-base': 5_12, 'YituTech/conv-bert-medium-small': 5_12, 'YituTech/conv-bert-small': 5_12, } lowercase_ = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class __a ( __snake_case ): lowerCamelCase : Optional[int] =VOCAB_FILES_NAMES lowerCamelCase : List[str] =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str =PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[str] =ConvBertTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase="[UNK]" , UpperCAmelCase="[SEP]" , UpperCAmelCase="[PAD]" , UpperCAmelCase="[CLS]" , UpperCAmelCase="[MASK]" , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ): '''simple docstring''' super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ = getattr(UpperCAmelCase , normalizer_state.pop('''type''' ) ) lowerCAmelCase_ = do_lower_case lowerCAmelCase_ = strip_accents lowerCAmelCase_ = tokenize_chinese_chars lowerCAmelCase_ = normalizer_class(**UpperCAmelCase ) lowerCAmelCase_ = do_lower_case def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase=None ): '''simple docstring''' lowerCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
552
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase_ = random.Random() def lowerCAmelCase (__A , __A=1.0 , __A=None , __A=None): """simple docstring""" if rng is None: _a = global_rng _a = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=7 , A=400 , A=2_000 , A=1 , A=0.0 , A=16_000 , A=True , A=True , ) -> Optional[Any]: """simple docstring""" _a = parent _a = batch_size _a = min_seq_length _a = max_seq_length _a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _a = feature_size _a = padding_value _a = sampling_rate _a = return_attention_mask _a = do_normalize def a__ (self ) -> Dict: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ (self , A=False , A=False ) -> int: """simple docstring""" def _flatten(A ): return list(itertools.chain(*A ) ) if equal_length: _a = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _a = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _a = [np.asarray(A ) for x in speech_inputs] return speech_inputs class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = WavaVecaFeatureExtractor def a__ (self ) -> List[Any]: """simple docstring""" _a = WavaVecaFeatureExtractionTester(self ) def a__ (self , A ) -> Union[str, Any]: """simple docstring""" self.assertTrue(np.all(np.mean(A , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(A , axis=0 ) - 1 ) < 1E-3 ) ) def a__ (self ) -> str: """simple docstring""" _a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _a = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _a = [np.asarray(A ) for speech_input in speech_inputs] # Test not batched input _a = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values _a = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(A , A , atol=1E-3 ) ) # Test batched _a = feat_extract(A , return_tensors='''np''' ).input_values _a = feat_extract(A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _a = [floats_list((1, x) )[0] for x in (800, 800, 800)] _a = np.asarray(A ) _a = feat_extract(A , return_tensors='''np''' ).input_values _a = feat_extract(A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1E-3 ) ) def a__ (self ) -> Dict: """simple docstring""" _a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _a = ['''longest''', '''max_length''', '''do_not_pad'''] _a = [None, 1_600, None] for max_length, padding in zip(A , A ): _a = feat_extract(A , padding=A , max_length=A , return_tensors='''np''' ) _a = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def a__ (self ) -> List[Any]: """simple docstring""" _a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a = range(800 , 1_400 , 200 ) _a = [floats_list((1, x) )[0] for x in lengths] _a = ['''longest''', '''max_length''', '''do_not_pad'''] _a = [None, 1_600, None] for max_length, padding in zip(A , A ): _a = feat_extract(A , max_length=A , padding=A ) _a = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def a__ (self ) -> Any: """simple docstring""" _a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _a = feat_extract( A , truncation=A , max_length=1_000 , padding='''max_length''' , return_tensors='''np''' ) _a = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def a__ (self ) -> List[Any]: """simple docstring""" _a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _a = feat_extract( A , truncation=A , max_length=1_000 , padding='''longest''' , return_tensors='''np''' ) _a = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) _a = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _a = feat_extract( A , truncation=A , max_length=2_000 , padding='''longest''' , return_tensors='''np''' ) _a = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) @require_torch def a__ (self ) -> Tuple: """simple docstring""" import torch _a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a = np.random.rand(100 ).astype(np.floataa ) _a = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _a = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _a = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def a__ (self ) -> Tuple: """simple docstring""" for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: _a = WavaVecaConfig.from_pretrained(A ) _a = WavaVecaFeatureExtractor.from_pretrained(A ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == '''layer''' )
352
'''simple docstring''' import numpy as np import qiskit def lowerCAmelCase (__A = 8 , __A = None): """simple docstring""" _a = np.random.default_rng(seed=__A) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. _a = 6 * key_len # Measurement basis for Alice's qubits. _a = rng.integers(2 , size=__A) # The set of states Alice will prepare. _a = rng.integers(2 , size=__A) # Measurement basis for Bob's qubits. _a = rng.integers(2 , size=__A) # Quantum Circuit to simulate BB84 _a = qiskit.QuantumCircuit(__A , name='''BB84''') # Alice prepares her qubits according to rules above. for index, _ in enumerate(__A): if alice_state[index] == 1: bbaa_circ.x(__A) if alice_basis[index] == 1: bbaa_circ.h(__A) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(__A): if bob_basis[index] == 1: bbaa_circ.h(__A) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. _a = qiskit.Aer.get_backend('''aer_simulator''') # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. _a = qiskit.execute(__A , __A , shots=1 , seed_simulator=__A) # Returns the result of measurement. _a = job.result().get_counts(__A).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. _a = ''''''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( __A , __A , __A) if alice_basis_bit == bob_basis_bit ]) # Get final key. Pad with 0 if too short, otherwise truncate. _a = gen_key[:key_len] if len(__A) >= key_len else gen_key.ljust(__A , '''0''') return key if __name__ == "__main__": print(F"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
352
1
import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __magic_name__ ( lowercase_ ): UpperCamelCase_ :int = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) UpperCamelCase_ :List[Any] = """CIDAS/clipseg-rd64-refined""" UpperCamelCase_ :List[str] = """image_segmenter""" UpperCamelCase_ :List[str] = CLIPSegForImageSegmentation UpperCamelCase_ :Optional[int] = ["""image""", """text"""] UpperCamelCase_ :int = ["""image"""] def __init__( self , *_lowercase , **_lowercase )-> Dict: requires_backends(self , ["vision"] ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> Union[str, Any]: return self.pre_processor(text=[label] , images=[image] , padding=lowerCamelCase_ , return_tensors="pt" ) def UpperCAmelCase_ ( self , _lowercase )-> List[Any]: with torch.no_grad(): UpperCamelCase_ = self.model(**lowerCamelCase_ ).logits return logits def UpperCAmelCase_ ( self , _lowercase )-> str: UpperCamelCase_ = outputs.cpu().detach().numpy() UpperCamelCase_ = 0 UpperCamelCase_ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
628
'''simple docstring''' import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : str , lowerCamelCase_ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = parent def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return {} def __A ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = """<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR=\"FFFFFF\"> <HR> <a href=\"http://google.com\">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style=\"color:#0000FF\"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>""" SCREAMING_SNAKE_CASE : int = """ <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> """ return [html_string_a, html_string_a] @require_bsa class UpperCamelCase__ ( lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = MarkupLMFeatureExtractor if is_bsa_available() else None def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = MarkupLMFeatureExtractionTester(self ) @property def lowerCamelCase_ ( self : int ): '''simple docstring''' return self.feature_extract_tester.prepare_feat_extract_dict() def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extraction_class() # Test not batched input SCREAMING_SNAKE_CASE : Optional[int] = get_html_strings()[0] SCREAMING_SNAKE_CASE : List[Any] = feature_extractor(lowerCamelCase_ ) # fmt: off SCREAMING_SNAKE_CASE : Optional[int] = [["""sample document""", """Goog""", """This is one header""", """This is a another Header""", """Travel from""", """SFO to JFK""", """on May 2, 2015 at 2:00 pm. For details go to confirm.com""", """Traveler""", """name""", """is""", """John Doe"""]] SCREAMING_SNAKE_CASE : List[str] = [["""/html/head/title""", """/html/body/a""", """/html/body/h1""", """/html/body/h2""", """/html/body/p""", """/html/body/p/p/b[1]""", """/html/body/p/p/b[2]/i""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/b""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/p"""]] # fmt: on self.assertEqual(encoding.nodes , lowerCamelCase_ ) self.assertEqual(encoding.xpaths , lowerCamelCase_ ) # Test batched SCREAMING_SNAKE_CASE : str = get_html_strings() SCREAMING_SNAKE_CASE : str = feature_extractor(lowerCamelCase_ ) # fmt: off SCREAMING_SNAKE_CASE : int = expected_nodes + [["""My First Heading""", """My first paragraph."""]] SCREAMING_SNAKE_CASE : List[Any] = expected_xpaths + [["""/html/body/h1""", """/html/body/p"""]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowerCamelCase_ ) self.assertEqual(encoding.xpaths , lowerCamelCase_ )
379
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer a_ : List[str] = logging.get_logger(__name__) a_ : Union[str, Any] = {'vocab_file': 'vocab.txt'} a_ : str = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } a_ : List[str] = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } a_ : Tuple = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class SCREAMING_SNAKE_CASE_ ( _A ): """simple docstring""" _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_INIT_CONFIGURATION _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ConvBertTokenizer def __init__( self , A=None , A=None , A=True , A="[UNK]" , A="[SEP]" , A="[PAD]" , A="[CLS]" , A="[MASK]" , A=True , A=None , **A , ) -> List[Any]: '''simple docstring''' super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , tokenize_chinese_chars=UpperCamelCase__ , strip_accents=UpperCamelCase__ , **UpperCamelCase__ , ) __magic_name__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase__ ) != tokenize_chinese_chars ): __magic_name__ = getattr(UpperCamelCase__ , normalizer_state.pop('''type''' ) ) __magic_name__ = do_lower_case __magic_name__ = strip_accents __magic_name__ = tokenize_chinese_chars __magic_name__ = normalizer_class(**UpperCamelCase__ ) __magic_name__ = do_lower_case def __A ( self , A , A=None ) -> Optional[int]: '''simple docstring''' __magic_name__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , A , A = None ) -> List[int]: '''simple docstring''' __magic_name__ = [self.sep_token_id] __magic_name__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , A , A = None ) -> Tuple[str]: '''simple docstring''' __magic_name__ = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ )
710
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_labels __magic_name__ = num_choices __magic_name__ = scope __magic_name__ = self.vocab_size - 1 def __A ( self ) -> str: '''simple docstring''' __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ = None __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __magic_name__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __A ( self , A , A , A , A , *A ) -> Tuple: '''simple docstring''' __magic_name__ = OpenAIGPTModel(config=A ) model.to(A ) model.eval() __magic_name__ = model(A , token_type_ids=A , head_mask=A ) __magic_name__ = model(A , token_type_ids=A ) __magic_name__ = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A , A , A , A , *A ) -> Dict: '''simple docstring''' __magic_name__ = OpenAIGPTLMHeadModel(A ) model.to(A ) model.eval() __magic_name__ = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , *A ) -> List[Any]: '''simple docstring''' __magic_name__ = OpenAIGPTDoubleHeadsModel(A ) model.to(A ) model.eval() __magic_name__ = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , *A ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.num_labels __magic_name__ = OpenAIGPTForSequenceClassification(A ) model.to(A ) model.eval() __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _a = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _a = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __A ( self , A , A , A , A , A ) -> List[str]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __A ( self , A , A , A=False ) -> List[str]: '''simple docstring''' __magic_name__ = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=A , ) __magic_name__ = inputs_dict['''labels'''] __magic_name__ = inputs_dict['''labels'''] __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=A , ) __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def __A ( self ) -> str: '''simple docstring''' __magic_name__ = OpenAIGPTModelTester(self ) __magic_name__ = ConfigTester(self , config_class=A , n_embd=37 ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*A ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*A ) def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*A ) def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*A ) @slow def __A ( self ) -> List[str]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = OpenAIGPTModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(A ) __magic_name__ = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=A ) # the president is __magic_name__ = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the __magic_name__ = model.generate(A , do_sample=A ) self.assertListEqual(output_ids[0].tolist() , A )
678
0
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder SCREAMING_SNAKE_CASE_ = datasets.utils.logging.get_logger(__name__) class lowerCAmelCase ( folder_based_builder.FolderBasedBuilderConfig ): """simple docstring""" _A = None _A = None class lowerCAmelCase ( folder_based_builder.FolderBasedBuilder ): """simple docstring""" _A = datasets.Audio() _A = 'audio' _A = AudioFolderConfig _A = 42 # definition at the bottom of the script _A = AudioClassification(audio_column='audio' , label_column='label' ) SCREAMING_SNAKE_CASE_ = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] SCREAMING_SNAKE_CASE_ = AUDIO_EXTENSIONS
597
'''simple docstring''' def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a , SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): while y: # --> when y=0 then loop will terminate and return x as final GCD. __a , __a : int = y, x % y return abs(SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase__ ( ): try: __a : Optional[Any] = input('Enter two integers separated by comma (,): ' ).split(',' ) __a : Any = int(nums[0] ) __a : Tuple = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}''' ) except (IndexError, UnboundLocalError, ValueError): print('Wrong input' ) if __name__ == "__main__": main()
597
1
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowercase ( ): import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowercase_ : Union[str, Any] = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , __snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowercase ( ): assert _test_patching.open is open lowercase_ : List[Any] = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , __snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowercase ( ): # pandas.read_csv is not present in _test_patching lowercase_ : Union[str, Any] = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , __snake_case ): pass def lowercase ( ): # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point lowercase_ : Optional[int] = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , __snake_case ) is None with patch_submodule(_test_patching , '''len''' , __snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def lowercase ( ): lowercase_ : List[Any] = '''__test_patch_submodule_start_and_stop_mock__''' lowercase_ : Optional[Any] = patch_submodule(_test_patching , '''open''' , __snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowercase ( ): from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowercase_ : List[Any] = '''__test_patch_submodule_successive_join__''' lowercase_ : Optional[int] = '''__test_patch_submodule_successive_dirname__''' lowercase_ : int = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , __snake_case ): with patch_submodule(_test_patching , '''os.rename''' , __snake_case ): with patch_submodule(_test_patching , '''os.path.dirname''' , __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , __snake_case ): with patch_submodule(_test_patching , '''os.path.join''' , __snake_case ): with patch_submodule(_test_patching , '''os.path.dirname''' , __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowercase ( ): lowercase_ : Tuple = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , __snake_case ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , __snake_case ): pass
704
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _UpperCAmelCase : def __init__( self : Tuple , A : Union[str, Any] , A : Optional[int]=13 , A : Dict=30 , A : List[Any]=2 , A : List[Any]=3 , A : Tuple=True , A : Dict=True , A : Union[str, Any]=32 , A : Optional[int]=5 , A : Tuple=4 , A : Any=37 , A : Dict="gelu" , A : Optional[Any]=0.1 , A : Union[str, Any]=0.1 , A : Any=10 , A : Dict=0.02 , A : Any=3 , A : str=None , A : Dict=2 , ) -> Optional[int]: lowercase_ : str = parent lowercase_ : Optional[int] = batch_size lowercase_ : int = image_size lowercase_ : str = patch_size lowercase_ : Dict = num_channels lowercase_ : Optional[Any] = is_training lowercase_ : str = use_labels lowercase_ : Tuple = hidden_size lowercase_ : int = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : Dict = intermediate_size lowercase_ : Dict = hidden_act lowercase_ : Union[str, Any] = hidden_dropout_prob lowercase_ : Tuple = attention_probs_dropout_prob lowercase_ : List[str] = type_sequence_label_size lowercase_ : Any = initializer_range lowercase_ : Optional[int] = scope lowercase_ : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ : Optional[Any] = (image_size // patch_size) ** 2 lowercase_ : List[Any] = num_patches + 2 def A ( self : Dict ) -> str: lowercase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : Tuple = None if self.use_labels: lowercase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : int = self.get_config() return config, pixel_values, labels def A ( self : Tuple ) -> str: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A ( self : Optional[Any] , A : Optional[int] , A : Any , A : Any ) -> int: lowercase_ : Any = DeiTModel(config=A ) model.to(A ) model.eval() lowercase_ : List[str] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , A : int , A : Optional[int] , A : Optional[Any] ) -> str: lowercase_ : int = DeiTForMaskedImageModeling(config=A ) model.to(A ) model.eval() lowercase_ : int = model(A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ : int = 1 lowercase_ : Any = DeiTForMaskedImageModeling(A ) model.to(A ) model.eval() lowercase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : Dict = model(A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A ( self : int , A : str , A : Optional[int] , A : List[str] ) -> List[Any]: lowercase_ : str = self.type_sequence_label_size lowercase_ : Tuple = DeiTForImageClassification(A ) model.to(A ) model.eval() lowercase_ : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ : Dict = 1 lowercase_ : Optional[Any] = DeiTForImageClassification(A ) model.to(A ) model.eval() lowercase_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : Dict = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : Dict ) -> Optional[Any]: lowercase_ : List[str] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Union[str, Any] = config_and_inputs lowercase_ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Dict = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : List[str] = False def A ( self : Optional[Any] ) -> Dict: lowercase_ : List[Any] = DeiTModelTester(self ) lowercase_ : int = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def A ( self : Optional[int] ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def A ( self : int ) -> List[Any]: pass def A ( self : Any ) -> Tuple: lowercase_ , lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : str = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def A ( self : Tuple ) -> Optional[int]: lowercase_ , lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[Any] = model_class(A ) lowercase_ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Any = [*signature.parameters.keys()] lowercase_ : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def A ( self : Tuple ) -> Optional[int]: lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def A ( self : Dict ) -> List[str]: lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def A ( self : int ) -> Union[str, Any]: lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def A ( self : Tuple , A : Optional[int] , A : int , A : Optional[Any]=False ) -> int: lowercase_ : Dict = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def A ( self : int ) -> str: if not self.model_tester.is_training: return lowercase_ , lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : str = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(A ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowercase_ : Any = model_class(A ) model.to(A ) model.train() lowercase_ : Any = self._prepare_for_class(A , A , return_labels=A ) lowercase_ : Optional[Any] = model(**A ).loss loss.backward() def A ( self : Dict ) -> Union[str, Any]: lowercase_ , lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ : Union[str, Any] = False lowercase_ : List[str] = True for model_class in self.all_model_classes: if model_class in get_values(A ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowercase_ : Optional[Any] = model_class(A ) model.gradient_checkpointing_enable() model.to(A ) model.train() lowercase_ : str = self._prepare_for_class(A , A , return_labels=A ) lowercase_ : Optional[Any] = model(**A ).loss loss.backward() def A ( self : Tuple ) -> Any: lowercase_ , lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : List[Any] = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(A ), *get_values(A ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type['title']}''' ): lowercase_ : int = problem_type['''title'''] lowercase_ : int = problem_type['''num_labels'''] lowercase_ : Dict = model_class(A ) model.to(A ) model.train() lowercase_ : Tuple = self._prepare_for_class(A , A , return_labels=A ) if problem_type["num_labels"] > 1: lowercase_ : Any = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) lowercase_ : Dict = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=A ) as warning_list: lowercase_ : str = model(**A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def A ( self : Union[str, Any] ) -> Union[str, Any]: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[str] = DeiTModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase ( ): lowercase_ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def A ( self : Optional[Any] ) -> Dict: return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def A ( self : Optional[Any] ) -> Dict: lowercase_ : Dict = DeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ).to( A ) lowercase_ : Optional[Any] = self.default_image_processor lowercase_ : Tuple = prepare_img() lowercase_ : Dict = image_processor(images=A , return_tensors='''pt''' ).to(A ) # forward pass with torch.no_grad(): lowercase_ : Any = model(**A ) # verify the logits lowercase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , A ) lowercase_ : Optional[Any] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def A ( self : Union[str, Any] ) -> Tuple: lowercase_ : int = DeiTModel.from_pretrained( '''facebook/deit-base-distilled-patch16-224''' , torch_dtype=torch.floataa , device_map='''auto''' ) lowercase_ : Any = self.default_image_processor lowercase_ : Union[str, Any] = prepare_img() lowercase_ : List[Any] = image_processor(images=A , return_tensors='''pt''' ) lowercase_ : Any = inputs.pixel_values.to(A ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase_ : List[Any] = model(A )
141
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A ( __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer A__ = flax_key_tuple[:-1] + ('weight',) A__ = torch.permute(__UpperCamelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__UpperCamelCase ): # linear layer A__ = flax_key_tuple[:-1] + ('weight',) A__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: A__ = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: if "metadata" in layer: A__ = layer.split('metadata' ) A__ = ''.join(split_layer[0] )[:-1] A__ = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: A__ = layer.split('kvstore' ) A__ = ''.join(split_layer[0] )[:-1] A__ = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: A__ = layer.split('/' ) A__ = '/'.join(split_layer[:-1] ) A__ = (split_layer[-1],) if "kvstore/path" in layer: A__ = f'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: A__ = 'file' else: A__ = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A ( __UpperCamelCase , __UpperCamelCase ) -> Dict: A__ = rename_keys(__UpperCamelCase ) A__ = {} for k, v in current_block.items(): A__ = v A__ = new_current_block torch.save(__UpperCamelCase , __UpperCamelCase ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = WEIGHTS_NAME ) -> List[str]: A__ = convert_file_size_to_int(__UpperCamelCase ) A__ = [] A__ = {} A__ = 0 A__ = 0 os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: A__ = serialization.msgpack_restore(fp.read() )['optimizer']['target'] A__ = flatten_dict(__UpperCamelCase , sep='/' ) A__ = {} for layer in checkpoint_info.keys(): A__ , A__ , A__ = get_key_and_tensorstore_dict( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if curr_real_layer_name in all_layers: A__ = content else: A__ = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file A__ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() A__ = torch.tensor(__UpperCamelCase ) A__ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts A__ , A__ = rename_base_flax_keys(tuple(key.split('/' ) ) , __UpperCamelCase ) A__ = '/'.join(__UpperCamelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: A__ = os.path.join( __UpperCamelCase , weights_name.replace('.bin' , f'''-{len(__UpperCamelCase )+1:05d}-of-???.bin''' ) ) rename_and_save_block(__UpperCamelCase , __UpperCamelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block A__ = {} A__ = 0 A__ = raw_weights.to(getattr(__UpperCamelCase , __UpperCamelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block A__ = os.path.join(__UpperCamelCase , weights_name.replace('.bin' , f'''-{len(__UpperCamelCase )+1:05d}-of-???.bin''' ) ) rename_and_save_block(__UpperCamelCase , __UpperCamelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__UpperCamelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index A__ = {} A__ = {} for idx, shard in enumerate(__UpperCamelCase ): A__ = weights_name.replace( '.bin' , f'''-{idx+1:05d}-of-{len(__UpperCamelCase ):05d}.bin''' ) # len(sharded_state_dicts):05d} A__ = os.path.join(__UpperCamelCase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__UpperCamelCase , os.path.join(__UpperCamelCase , __UpperCamelCase ) ) A__ = shard for key in shard: A__ = shard_file # Add the metadata A__ = {'total_size': total_size} A__ = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__UpperCamelCase , __UpperCamelCase ) , 'w' , encoding='utf-8' ) as f: A__ = json.dumps(__UpperCamelCase , indent=2 , sort_keys=__UpperCamelCase ) + '\n' f.write(__UpperCamelCase ) return metadata, index if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A ( ) -> Optional[Any]: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer A__ = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) A__ = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) A__ = TaTokenizer.from_pretrained('t5-small' ) A__ = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' A__ = tokenizer(__UpperCamelCase , return_tensors='pt' ).input_ids A__ = model.generate(__UpperCamelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
9
from __future__ import annotations from fractions import Fraction def A ( __UpperCamelCase , __UpperCamelCase ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def A ( __UpperCamelCase ) -> list[str]: A__ = [] A__ = 11 A__ = int('1' + '0' * digit_len ) for num in range(__UpperCamelCase , __UpperCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__UpperCamelCase , __UpperCamelCase ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 A__ = 10 return solutions def A ( __UpperCamelCase = 2 ) -> int: A__ = 1.0 for fraction in fraction_list(__UpperCamelCase ): A__ = Fraction(__UpperCamelCase ) result *= frac.denominator / frac.numerator return int(__UpperCamelCase ) if __name__ == "__main__": print(solution())
9
1
'''simple docstring''' def __snake_case (__UpperCAmelCase ): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase_ : List[Any] = grid[0] for row_n in range(1 , len(__UpperCAmelCase ) ): lowerCamelCase_ : Dict = grid[row_n] lowerCamelCase_ : Optional[int] = fill_row(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Dict = grid[row_n] return grid[-1][-1] def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): current_row[0] += row_above[0] for cell_n in range(1 , len(__UpperCAmelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' def __snake_case (__UpperCAmelCase ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
418
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int ) -> int: '''simple docstring''' UpperCAmelCase_ = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def lowerCAmelCase_ ( snake_case_ : int = 1_00 ) -> int: '''simple docstring''' UpperCAmelCase_ = 1 UpperCAmelCase_ = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase_ = pre_numerator UpperCAmelCase_ = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase_ = cur_numerator UpperCAmelCase_ = e_cont * pre_numerator + temp return sum_digits(snake_case_ ) if __name__ == "__main__": print(f"{solution() = }")
78
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_: Tuple =False, False, False @dataclass class __A : a__ : Optional[int] = None a__ : bool = True a__ : bool = True a__ : Optional[str] = None # Automatically constructed a__ : ClassVar[str] = "dict" a__ : ClassVar[Any] = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) a__ : str = field(default="""Audio""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__(self : Optional[Any] ): return self.pa_type def _lowercase (self : str , __a : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__a , __a ): return {"bytes": None, "path": value} elif isinstance(__a , __a ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase_ = BytesIO() sf.write(__a , value["array"] , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase_ = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 32767 else: UpperCAmelCase_ = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 32767 UpperCAmelCase_ = BytesIO(bytes() ) sf.write(__a , __a , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def _lowercase (self : Dict , __a : dict , __a : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) UpperCAmelCase_ , UpperCAmelCase_ = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err UpperCAmelCase_ = xsplitext(__a )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: UpperCAmelCase_ = token_per_repo_id or {} UpperCAmelCase_ = path.split("::" )[-1] try: UpperCAmelCase_ = string_to_dict(__a , config.HUB_DATASETS_URL )["repo_id"] UpperCAmelCase_ = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase_ = None with xopen(__a , "rb" , use_auth_token=__a ) as f: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(__a ) else: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(__a ) UpperCAmelCase_ = array.T if self.mono: UpperCAmelCase_ = librosa.to_mono(__a ) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase_ = librosa.resample(__a , orig_sr=__a , target_sr=self.sampling_rate ) UpperCAmelCase_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _lowercase (self : Dict ): from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def _lowercase (self : Optional[Any] , __a : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): UpperCAmelCase_ = pa.array([None] * len(__a ) , type=pa.binary() ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase_ = pa.array([None] * len(__a ) , type=pa.string() ) UpperCAmelCase_ = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): UpperCAmelCase_ = pa.array([Audio().encode_example(__a ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCAmelCase_ = storage.field("bytes" ) else: UpperCAmelCase_ = pa.array([None] * len(__a ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCAmelCase_ = storage.field("path" ) else: UpperCAmelCase_ = pa.array([None] * len(__a ) , type=pa.string() ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) return array_cast(__a , self.pa_type ) def _lowercase (self : Dict , __a : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__a : Tuple ): with xopen(__a , "rb" ) as f: UpperCAmelCase_ = f.read() return bytes_ UpperCAmelCase_ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ = pa.array( [os.path.basename(__a ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(__a , self.pa_type )
78
1
import numpy as np from PIL import Image def A_ ( lowercase_ , lowercase_ , lowercase_ ) ->np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE = np.array(lowercase_ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape SCREAMING_SNAKE_CASE = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix SCREAMING_SNAKE_CASE = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 return updated_arr def A_ ( lowercase_ , lowercase_ , lowercase_ ) ->np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE = np.array(lowercase_ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape SCREAMING_SNAKE_CASE = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix SCREAMING_SNAKE_CASE = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image __UpperCAmelCase = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
259
import argparse from collections import defaultdict import yaml __UpperCAmelCase = "docs/source/en/_toctree.yml" def A_ ( lowercase_ ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = defaultdict(lowercase_ ) for doc in model_doc: counts[doc["local"]] += 1 SCREAMING_SNAKE_CASE = [key for key, value in counts.items() if value > 1] SCREAMING_SNAKE_CASE = [] for duplicate_key in duplicates: SCREAMING_SNAKE_CASE = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(lowercase_ ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(lowercase_ , key=lambda lowercase_ : s["title"].lower() ) def A_ ( lowercase_=False ) ->List[Any]: """simple docstring""" with open(lowercase_ , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE = yaml.safe_load(f.read() ) # Get to the API doc SCREAMING_SNAKE_CASE = 0 while content[api_idx]["title"] != "API": api_idx += 1 SCREAMING_SNAKE_CASE = content[api_idx]['sections'] # Then to the model doc SCREAMING_SNAKE_CASE = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 SCREAMING_SNAKE_CASE = api_doc[model_idx]['sections'] SCREAMING_SNAKE_CASE = [(idx, section) for idx, section in enumerate(lowercase_ ) if 'sections' in section] SCREAMING_SNAKE_CASE = False for idx, modality_doc in modalities_docs: SCREAMING_SNAKE_CASE = modality_doc['sections'] SCREAMING_SNAKE_CASE = clean_model_doc_toc(lowercase_ ) if old_modality_doc != new_modality_doc: SCREAMING_SNAKE_CASE = True if overwrite: SCREAMING_SNAKE_CASE = new_modality_doc if diff: if overwrite: SCREAMING_SNAKE_CASE = model_doc SCREAMING_SNAKE_CASE = api_doc with open(lowercase_ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowercase_ , allow_unicode=lowercase_ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __UpperCAmelCase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
259
1
from bisect import bisect from itertools import accumulate def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = sorted(zip(__lowerCAmelCase , __lowerCAmelCase ) , key=lambda __lowerCAmelCase : x[0] / x[1] , reverse=__lowerCAmelCase ) _snake_case , _snake_case : Optional[Any] = [i[0] for i in r], [i[1] for i in r] _snake_case : Optional[Any] = list(accumulate(__lowerCAmelCase ) ) _snake_case : List[Any] = bisect(__lowerCAmelCase , __lowerCAmelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
304
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Optional[Any] = (DEISMultistepScheduler,) _UpperCamelCase : Union[str, Any] = (("num_inference_steps", 25),) def __UpperCAmelCase ( self : Dict , **lowerCamelCase_ : List[str] ): '''simple docstring''' _snake_case : Any = { 'num_train_timesteps': 10_00, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, } config.update(**lowerCamelCase_ ) return config def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : Optional[Any]=0 , **lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Dict = dict(self.forward_default_kwargs ) _snake_case : Tuple = kwargs.pop('num_inference_steps' , lowerCamelCase_ ) _snake_case : List[Any] = self.dummy_sample _snake_case : Optional[int] = 0.1 * sample _snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _snake_case : Optional[Any] = self.get_scheduler_config(**lowerCamelCase_ ) _snake_case : Tuple = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals _snake_case : int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) _snake_case : Optional[Any] = scheduler_class.from_pretrained(lowerCamelCase_ ) new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals _snake_case : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] _snake_case , _snake_case : Optional[Any] = sample, sample for t in range(lowerCamelCase_ , time_step + scheduler.config.solver_order + 1 ): _snake_case : Optional[int] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample _snake_case : Any = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' pass def __UpperCAmelCase ( self : int , lowerCamelCase_ : int=0 , **lowerCamelCase_ : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = dict(self.forward_default_kwargs ) _snake_case : Optional[int] = kwargs.pop('num_inference_steps' , lowerCamelCase_ ) _snake_case : Any = self.dummy_sample _snake_case : Union[str, Any] = 0.1 * sample _snake_case : int = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _snake_case : Any = self.get_scheduler_config() _snake_case : Union[str, Any] = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) _snake_case : int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) _snake_case : List[Any] = scheduler_class.from_pretrained(lowerCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) _snake_case : Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _snake_case : Tuple = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample _snake_case : Tuple = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : List[Any]=None , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' if scheduler is None: _snake_case : Dict = self.scheduler_classes[0] _snake_case : int = self.get_scheduler_config(**lowerCamelCase_ ) _snake_case : Dict = scheduler_class(**lowerCamelCase_ ) _snake_case : Tuple = self.scheduler_classes[0] _snake_case : Any = self.get_scheduler_config(**lowerCamelCase_ ) _snake_case : Tuple = scheduler_class(**lowerCamelCase_ ) _snake_case : str = 10 _snake_case : Union[str, Any] = self.dummy_model() _snake_case : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Dict = model(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : str = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample return sample def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Dict = dict(self.forward_default_kwargs ) _snake_case : Any = kwargs.pop('num_inference_steps' , lowerCamelCase_ ) for scheduler_class in self.scheduler_classes: _snake_case : List[str] = self.get_scheduler_config() _snake_case : int = scheduler_class(**lowerCamelCase_ ) _snake_case : Union[str, Any] = self.dummy_sample _snake_case : Union[str, Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase_ , 'set_timesteps' ): scheduler.set_timesteps(lowerCamelCase_ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase_ , 'set_timesteps' ): _snake_case : Optional[int] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _snake_case : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] _snake_case : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] _snake_case : Any = scheduler.timesteps[5] _snake_case : List[str] = scheduler.timesteps[6] _snake_case : List[str] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample _snake_case : Tuple = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = DEISMultistepScheduler(**self.get_scheduler_config() ) _snake_case : List[str] = self.full_loop(scheduler=lowerCamelCase_ ) _snake_case : int = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 _snake_case : List[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _snake_case : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _snake_case : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) _snake_case : Optional[Any] = DEISMultistepScheduler.from_config(scheduler.config ) _snake_case : Dict = self.full_loop(scheduler=lowerCamelCase_ ) _snake_case : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' self.check_over_configs(thresholding=lowerCamelCase_ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase_ , prediction_type=lowerCamelCase_ , sample_max_value=lowerCamelCase_ , algorithm_type='deis' , solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , ) def __UpperCAmelCase ( self : int ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , algorithm_type=lowerCamelCase_ , ) _snake_case : str = self.full_loop( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , algorithm_type=lowerCamelCase_ , ) assert not torch.isnan(lowerCamelCase_ ).any(), "Samples have nan numbers" def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' self.check_over_configs(lower_order_final=lowerCamelCase_ ) self.check_over_configs(lower_order_final=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowerCamelCase_ , time_step=0 ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : str = self.full_loop() _snake_case : List[Any] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Optional[Any] = self.full_loop(prediction_type='v_prediction' ) _snake_case : List[str] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : str = self.scheduler_classes[0] _snake_case : Dict = self.get_scheduler_config(thresholding=lowerCamelCase_ , dynamic_thresholding_ratio=0 ) _snake_case : Optional[int] = scheduler_class(**lowerCamelCase_ ) _snake_case : str = 10 _snake_case : Tuple = self.dummy_model() _snake_case : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Any = model(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[int] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample assert sample.dtype == torch.floataa
304
1
def A_( A , A ): _validate_point(A ) _validate_point(A ) if len(A ) != len(A ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(A , A ) ) ) def A_( A ): if point: if isinstance(A , A ): for item in point: if not isinstance(A , (int, float) ): UpperCAmelCase_ = ( """Expected a list of numbers as input, found """ f"""{type(A ).__name__}""" ) raise TypeError(A ) else: UpperCAmelCase_ = f"""Expected a list of numbers as input, found {type(A ).__name__}""" raise TypeError(A ) else: raise ValueError("""Missing an input""" ) def A_( A , A ): _validate_point(A ) _validate_point(A ) if len(A ) != len(A ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(A , A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
486
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def A_( ): UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=A , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=A , default=5 ) parser.add_argument("""--batch_size""" , type=A , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=A , default=1 ) parser.add_argument("""--freeze""" , type=A , default=A ) parser.add_argument("""--learning_rate""" , type=A , default=5E-4 ) parser.add_argument("""--seed""" , type=A , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=A , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=A , default=10 ) parser.add_argument("""--weight_decay""" , type=A , default=0.01 ) parser.add_argument("""--output_dir""" , type=A , default="""./results""" ) return parser.parse_args() UpperCamelCase__ : Any = load("""accuracy""") def A_( A ): UpperCAmelCase_ , UpperCAmelCase_ = eval_pred UpperCAmelCase_ = np.argmax(A , axis=1 ) return metric.compute(predictions=A , references=A ) class _UpperCamelCase ( A_ ): '''simple docstring''' def __init__( self : str , __lowercase : Any ): '''simple docstring''' super().__init__() UpperCAmelCase_ = trainer def SCREAMING_SNAKE_CASE ( self : Tuple , __lowercase : int , __lowercase : Tuple , __lowercase : Dict , **__lowercase : Dict ): '''simple docstring''' if control.should_evaluate: UpperCAmelCase_ = deepcopy(__lowercase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def A_( ): UpperCAmelCase_ = get_args() set_seed(args.seed ) UpperCAmelCase_ = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) UpperCAmelCase_ = dataset.train_test_split(test_size=0.2 ) UpperCAmelCase_ = train_test["""test"""].train_test_split(test_size=0.5 ) UpperCAmelCase_ = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) UpperCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCAmelCase_ = tokenizer.eos_token UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) UpperCAmelCase_ = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): UpperCAmelCase_ = False UpperCAmelCase_ = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(A ): UpperCAmelCase_ = tokenizer(example["""src"""] , truncation=A , max_length=1024 ) UpperCAmelCase_ = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } UpperCAmelCase_ = train_test_validation.map( A , batched=A , remove_columns=train_test_validation["""train"""].column_names , ) UpperCAmelCase_ = DataCollatorWithPadding(tokenizer=A ) UpperCAmelCase_ = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) UpperCAmelCase_ = Trainer( model=A , args=A , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=A , data_collator=A , compute_metrics=A , ) print("""Training...""" ) trainer.add_callback(CustomCallback(A ) ) trainer.train() if __name__ == "__main__": main()
486
1
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class a__ : def __init__( self , _a , _a=sys.maxsize ): lowercase : Optional[int] = "bilinear" lowercase : Optional[int] = max_size lowercase : List[str] = short_edge_length def __call__( self , _a ): lowercase : Union[str, Any] = [] for img in imgs: lowercase , lowercase : Tuple = img.shape[:2] # later: provide list and randomly choose index for resize lowercase : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowercase : List[Any] = size * 1.0 / min(UpperCamelCase__ , UpperCamelCase__ ) if h < w: lowercase , lowercase : Union[str, Any] = size, scale * w else: lowercase , lowercase : str = scale * h, size if max(UpperCamelCase__ , UpperCamelCase__ ) > self.max_size: lowercase : Dict = self.max_size * 1.0 / max(UpperCamelCase__ , UpperCamelCase__ ) lowercase : Dict = newh * scale lowercase : Any = neww * scale lowercase : List[str] = int(neww + 0.5 ) lowercase : Tuple = int(newh + 0.5 ) if img.dtype == np.uinta: lowercase : Any = Image.fromarray(UpperCamelCase__ ) lowercase : str = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowercase : Optional[int] = np.asarray(UpperCamelCase__ ) else: lowercase : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowercase : int = nn.functional.interpolate( UpperCamelCase__ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase__ ).squeeze(0 ) img_augs.append(UpperCamelCase__ ) return img_augs class a__ : def __init__( self , _a ): lowercase : int = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowercase : Optional[int] = cfg.INPUT.FORMAT lowercase : Union[str, Any] = cfg.SIZE_DIVISIBILITY lowercase : str = cfg.PAD_VALUE lowercase : str = cfg.INPUT.MAX_SIZE_TEST lowercase : str = cfg.MODEL.DEVICE lowercase : Any = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase : int = lambda _a : (x - self.pixel_mean) / self.pixel_std def __magic_name__ ( self , _a ): lowercase : str = tuple(max(UpperCamelCase__ ) for s in zip(*[img.shape for img in images] ) ) lowercase : Any = [im.shape[-2:] for im in images] lowercase : Tuple = [ nn.functional.pad( UpperCamelCase__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCamelCase__ , UpperCamelCase__ ) ] return torch.stack(UpperCamelCase__ ), torch.tensor(UpperCamelCase__ ) def __call__( self , _a , _a=False ): with torch.no_grad(): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase : List[Any] = [images] if single_image: assert len(UpperCamelCase__ ) == 1 for i in range(len(UpperCamelCase__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCamelCase__ , images.pop(UpperCamelCase__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCamelCase__ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowercase : List[str] = torch.tensor([im.shape[:2] for im in images] ) lowercase : List[str] = self.aug(UpperCamelCase__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowercase : Union[str, Any] = [self.normalizer(UpperCamelCase__ ) for x in images] # now pad them to do the following operations lowercase , lowercase : int = self.pad(UpperCamelCase__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowercase : Tuple = torch.true_divide(UpperCamelCase__ , UpperCamelCase__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def __magic_name__ ( __snake_case : Optional[Any] , __snake_case : Any ) -> Optional[Any]: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def __magic_name__ ( __snake_case : Any , __snake_case : Tuple[int, int] ) -> List[Any]: assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" lowercase , lowercase : Tuple = box_size tensor[:, 0].clamp_(min=0 , max=__snake_case ) tensor[:, 1].clamp_(min=0 , max=__snake_case ) tensor[:, 2].clamp_(min=0 , max=__snake_case ) tensor[:, 3].clamp_(min=0 , max=__snake_case )
361
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Dict = '''wavlm''' def __init__( self : Tuple , UpperCamelCase__ : str=3_2 , UpperCamelCase__ : Any=7_6_8 , UpperCamelCase__ : Any=1_2 , UpperCamelCase__ : Tuple=1_2 , UpperCamelCase__ : str=3_0_7_2 , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : Optional[int]=1E-5 , UpperCamelCase__ : Any="group" , UpperCamelCase__ : List[str]="gelu" , UpperCamelCase__ : Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCamelCase__ : List[str]=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase__ : Dict=(1_0, 3, 3, 3, 3, 2, 2) , UpperCamelCase__ : int=False , UpperCamelCase__ : Optional[Any]=1_2_8 , UpperCamelCase__ : Optional[int]=1_6 , UpperCamelCase__ : Optional[Any]=3_2_0 , UpperCamelCase__ : Any=8_0_0 , UpperCamelCase__ : Any=False , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Optional[Any]=0.05 , UpperCamelCase__ : Optional[Any]=1_0 , UpperCamelCase__ : Union[str, Any]=2 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Tuple=1_0 , UpperCamelCase__ : Optional[int]=3_2_0 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Tuple=1_0_0 , UpperCamelCase__ : Dict=2_5_6 , UpperCamelCase__ : Optional[int]=2_5_6 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Tuple="mean" , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : Union[str, Any]=2_5_6 , UpperCamelCase__ : int=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCamelCase__ : Optional[Any]=(5, 3, 3, 1, 1) , UpperCamelCase__ : Any=(1, 2, 3, 1, 1) , UpperCamelCase__ : Dict=5_1_2 , UpperCamelCase__ : str=8_0 , UpperCamelCase__ : Optional[int]=0 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : str=False , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : Optional[int]=None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ , pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__) snake_case__ = hidden_size snake_case__ = feat_extract_norm snake_case__ = feat_extract_activation snake_case__ = list(UpperCamelCase__) snake_case__ = list(UpperCamelCase__) snake_case__ = list(UpperCamelCase__) snake_case__ = conv_bias snake_case__ = num_buckets snake_case__ = max_bucket_distance snake_case__ = num_conv_pos_embeddings snake_case__ = num_conv_pos_embedding_groups snake_case__ = len(self.conv_dim) snake_case__ = num_hidden_layers snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = num_attention_heads snake_case__ = hidden_dropout snake_case__ = attention_dropout snake_case__ = activation_dropout snake_case__ = feat_proj_dropout snake_case__ = final_dropout snake_case__ = layerdrop snake_case__ = layer_norm_eps snake_case__ = initializer_range snake_case__ = num_ctc_classes snake_case__ = vocab_size snake_case__ = do_stable_layer_norm snake_case__ = use_weighted_layer_sum snake_case__ = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case__ = apply_spec_augment snake_case__ = mask_time_prob snake_case__ = mask_time_length snake_case__ = mask_time_min_masks snake_case__ = mask_feature_prob snake_case__ = mask_feature_length # parameters for pretraining with codevector quantized representations snake_case__ = num_codevectors_per_group snake_case__ = num_codevector_groups snake_case__ = contrastive_logits_temperature snake_case__ = num_negatives snake_case__ = codevector_dim snake_case__ = proj_codevector_dim snake_case__ = diversity_loss_weight # ctc loss snake_case__ = ctc_loss_reduction snake_case__ = ctc_zero_infinity # adapter snake_case__ = add_adapter snake_case__ = adapter_kernel_size snake_case__ = adapter_stride snake_case__ = num_adapter_layers snake_case__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case__ = list(UpperCamelCase__) snake_case__ = list(UpperCamelCase__) snake_case__ = list(UpperCamelCase__) snake_case__ = xvector_output_dim @property def __magic_name__ ( self : Optional[int]): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
654
0
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') lowerCamelCase = {'target_lang': 'fi', 'source_lang': 'en'} lowerCamelCase = '>>zh<<' lowerCamelCase = 'Helsinki-NLP/' if is_torch_available(): lowerCamelCase = 'pt' elif is_tf_available(): lowerCamelCase = 'tf' else: lowerCamelCase = 'jax' @require_sentencepiece class snake_case_ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase =MarianTokenizer __UpperCAmelCase =False __UpperCAmelCase =True def A__ ( self ): super().setUp() __lowerCAmelCase = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] __lowerCAmelCase = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __lowerCAmelCase = Path(self.tmpdirname ) save_json(__lowerCamelCase , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(__lowerCamelCase , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(__lowerCamelCase , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(__lowerCamelCase , save_dir / VOCAB_FILES_NAMES['target_spm'] ) __lowerCAmelCase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , **_A ): return MarianTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def A__ ( self , _A ): return ( "This is a test", "This is a test", ) def A__ ( self ): __lowerCAmelCase = '''</s>''' __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def A__ ( self ): __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(__lowerCamelCase ) , 9 ) def A__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def A__ ( self ): __lowerCAmelCase = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""" ) __lowerCAmelCase = en_de_tokenizer(['I am a small frog'] , return_tensors=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __lowerCAmelCase = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0] self.assertListEqual(__lowerCamelCase , batch.input_ids[0] ) __lowerCAmelCase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(__lowerCamelCase ) __lowerCAmelCase = [x.name for x in Path(__lowerCamelCase ).glob('*' )] self.assertIn('source.spm' , __lowerCamelCase ) MarianTokenizer.from_pretrained(__lowerCamelCase ) def A__ ( self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tok( ['I am a small frog' * 1_0_0_0, 'I am a small frog'] , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2) ) def A__ ( self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tok(['I am a tiny frog', 'I am a small frog'] , padding=__lowerCamelCase , return_tensors=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) ) @slow def A__ ( self ): __lowerCAmelCase = {'''input_ids''': [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def A__ ( self ): __lowerCAmelCase = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) __lowerCAmelCase = '''Tämä on testi''' __lowerCAmelCase = '''This is a test''' __lowerCAmelCase = [7_6, 7, 2_0_4_7, 2] __lowerCAmelCase = [6_9, 1_2, 1_1, 9_4_0, 2] __lowerCAmelCase = tokenizer(__lowerCamelCase ).input_ids self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __lowerCAmelCase = tokenizer(text_target=__lowerCamelCase ).input_ids self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __lowerCAmelCase = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase )
702
def __lowercase ( UpperCAmelCase__ = 10 , UpperCAmelCase__ = 1_000 , UpperCAmelCase__ = True ): """simple docstring""" assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' ) return min_val if option else max_val def __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" return int((number_a + number_a) / 2 ) def __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)' ) if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value' ) def answer(UpperCAmelCase__ ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...' ) __lowerCAmelCase = lower __lowerCAmelCase = higher __lowerCAmelCase = [] while True: __lowerCAmelCase = get_avg(UpperCAmelCase__ , UpperCAmelCase__ ) last_numbers.append(UpperCAmelCase__ ) if answer(UpperCAmelCase__ ) == "low": __lowerCAmelCase = number elif answer(UpperCAmelCase__ ) == "high": __lowerCAmelCase = number else: break print(F"""guess the number : {last_numbers[-1]}""" ) print(F"""details : {last_numbers!s}""" ) def __lowercase ( ): """simple docstring""" __lowerCAmelCase = int(input('Enter lower value : ' ).strip() ) __lowerCAmelCase = int(input('Enter high value : ' ).strip() ) __lowerCAmelCase = int(input('Enter value to guess : ' ).strip() ) guess_the_number(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": main()
102
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __lowerCamelCase : '''simple docstring''' def __init__( self : Dict , a_ : List[str] , a_ : Optional[int]=13 , a_ : Optional[int]=7 , a_ : int=True , a_ : Optional[Any]=True , a_ : str=True , a_ : Optional[Any]=99 , a_ : List[Any]=32 , a_ : List[str]=5 , a_ : Any=4 , a_ : Union[str, Any]=37 , a_ : Optional[Any]="gelu" , a_ : int=0.1 , a_ : str=0.1 , a_ : Tuple=5_12 , a_ : List[Any]=16 , a_ : Union[str, Any]=2 , a_ : Optional[Any]=0.02 , a_ : Optional[Any]=3 , a_ : Union[str, Any]=4 , a_ : Optional[int]=None , ): lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : Any = batch_size lowerCAmelCase_ : List[Any] = seq_length lowerCAmelCase_ : Optional[int] = is_training lowerCAmelCase_ : List[str] = use_token_type_ids lowerCAmelCase_ : Any = use_labels lowerCAmelCase_ : int = vocab_size lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : Dict = num_hidden_layers lowerCAmelCase_ : str = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Tuple = hidden_act lowerCAmelCase_ : int = hidden_dropout_prob lowerCAmelCase_ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : Dict = type_vocab_size lowerCAmelCase_ : Any = type_sequence_label_size lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : Union[str, Any] = num_labels lowerCAmelCase_ : List[str] = num_choices lowerCAmelCase_ : Union[str, Any] = scope lowerCAmelCase_ : Optional[int] = self.vocab_size - 1 def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Dict = None if self.use_token_type_ids: lowerCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Optional[Any] = None if self.use_labels: lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ : str = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ : Dict = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCAmelCase_ : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase ( self : List[Any] , a_ : int , a_ : Optional[Any] , a_ : Optional[Any] , a_ : List[Any] , *a_ : Tuple ): lowerCAmelCase_ : Dict = OpenAIGPTModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() lowerCAmelCase_ : Union[str, Any] = model(snake_case_ , token_type_ids=snake_case_ , head_mask=snake_case_ ) lowerCAmelCase_ : List[Any] = model(snake_case_ , token_type_ids=snake_case_ ) lowerCAmelCase_ : Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self : Optional[int] , a_ : Dict , a_ : List[Any] , a_ : Union[str, Any] , a_ : Tuple , *a_ : Tuple ): lowerCAmelCase_ : Tuple = OpenAIGPTLMHeadModel(snake_case_ ) model.to(snake_case_ ) model.eval() lowerCAmelCase_ : Any = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self : Optional[Any] , a_ : Union[str, Any] , a_ : int , a_ : Union[str, Any] , a_ : Optional[Any] , *a_ : Optional[Any] ): lowerCAmelCase_ : int = OpenAIGPTDoubleHeadsModel(snake_case_ ) model.to(snake_case_ ) model.eval() lowerCAmelCase_ : Any = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self : List[str] , a_ : int , a_ : Any , a_ : List[str] , a_ : Any , *a_ : List[Any] ): lowerCAmelCase_ : Dict = self.num_labels lowerCAmelCase_ : List[str] = OpenAIGPTForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Optional[Any] = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self : str ): lowerCAmelCase_ : int = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) : Optional[int] = config_and_inputs lowerCAmelCase_ : Dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ : Optional[Any] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) a_ : Dict = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly a_ : int = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase ( self : Tuple , a_ : List[str] , a_ : Union[str, Any] , a_ : Union[str, Any] , a_ : List[str] , a_ : str ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCamelCase ( self : Optional[int] , a_ : Tuple , a_ : str , a_ : Optional[int]=False ): lowerCAmelCase_ : Union[str, Any] = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCAmelCase_ : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=snake_case_ , ) lowerCAmelCase_ : Any = inputs_dict["labels"] lowerCAmelCase_ : List[str] = inputs_dict["labels"] lowerCAmelCase_ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=snake_case_ , ) lowerCAmelCase_ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : int = OpenAIGPTModelTester(self ) lowerCAmelCase_ : int = ConfigTester(self , config_class=snake_case_ , n_embd=37 ) def lowerCamelCase ( self : str ): self.config_tester.run_common_tests() def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*snake_case_ ) def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*snake_case_ ) def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*snake_case_ ) def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*snake_case_ ) @slow def lowerCamelCase ( self : Optional[int] ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Optional[Any] = OpenAIGPTModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(snake_case_ ) lowerCAmelCase_ : Tuple = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=snake_case_ ) # the president is lowerCAmelCase_ : Optional[Any] = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCAmelCase_ : List[str] = model.generate(snake_case_ , do_sample=snake_case_ ) self.assertListEqual(output_ids[0].tolist() , snake_case_ )
610
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def A__ ( A__ ) -> List[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = image.size _UpperCAmelCase , _UpperCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _UpperCAmelCase = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) _UpperCAmelCase = np.array(A__ ).astype(np.floataa ) / 255.0 _UpperCAmelCase = image[None].transpose(0 , 3 , 1 , 2 ) _UpperCAmelCase = torch.from_numpy(A__ ) return 2.0 * image - 1.0 class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ , ) -> int: super().__init__() self.register_modules(vqvae=snake_case_ , unet=snake_case_ , scheduler=snake_case_ ) @torch.no_grad() def __call__( self , snake_case_ = None , snake_case_ = 1 , snake_case_ = 100 , snake_case_ = 0.0 , snake_case_ = None , snake_case_ = "pil" , snake_case_ = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(snake_case_ , PIL.Image.Image ): _UpperCAmelCase = 1 elif isinstance(snake_case_ , torch.Tensor ): _UpperCAmelCase = image.shape[0] else: raise ValueError(F"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(snake_case_ )}""" ) if isinstance(snake_case_ , PIL.Image.Image ): _UpperCAmelCase = preprocess(snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _UpperCAmelCase = (batch_size, self.unet.config.in_channels // 2, height, width) _UpperCAmelCase = next(self.unet.parameters() ).dtype _UpperCAmelCase = randn_tensor(snake_case_ , generator=snake_case_ , device=self.device , dtype=snake_case_ ) _UpperCAmelCase = image.to(device=self.device , dtype=snake_case_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(snake_case_ , device=self.device ) _UpperCAmelCase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCAmelCase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCAmelCase = {} if accepts_eta: _UpperCAmelCase = eta for t in self.progress_bar(snake_case_ ): # concat latents and low resolution image in the channel dimension. _UpperCAmelCase = torch.cat([latents, image] , dim=1 ) _UpperCAmelCase = self.scheduler.scale_model_input(snake_case_ , snake_case_ ) # predict the noise residual _UpperCAmelCase = self.unet(snake_case_ , snake_case_ ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample # decode the image latents with the VQVAE _UpperCAmelCase = self.vqvae.decode(snake_case_ ).sample _UpperCAmelCase = torch.clamp(snake_case_ , -1.0 , 1.0 ) _UpperCAmelCase = image / 2 + 0.5 _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case_ )
426
0
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() snake_case_ = logging.get_logger(__name__) snake_case_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } snake_case_ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _lowerCamelCase( UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any ) -> Tuple: for attribute in key.split('''.''' ): A : str = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: A : int = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: A : str = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": A : Optional[Any] = value elif weight_type == "weight_g": A : Union[str, Any] = value elif weight_type == "weight_v": A : Dict = value elif weight_type == "bias": A : Union[str, Any] = value else: A : Dict = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _lowerCamelCase( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ) -> Optional[Any]: A : str = [] A : str = fairseq_model.state_dict() A : int = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight A : List[Any] = None for name, value in fairseq_dict.items(): A : Optional[int] = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) A : List[str] = True elif name.split('''.''' )[0] == "proj": A : Optional[int] = fairseq_model.proj A : Any = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: A : List[Any] = True if "*" in mapped_key: A : Optional[Any] = name.split(UpperCamelCase__ )[0].split('''.''' )[-2] A : Optional[Any] = mapped_key.replace('''*''' , UpperCamelCase__ ) if "weight_g" in name: A : Dict = '''weight_g''' elif "weight_v" in name: A : str = '''weight_v''' elif "bias" in name: A : Dict = '''bias''' elif "weight" in name: A : Dict = '''weight''' else: A : str = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def _lowerCamelCase( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ) -> List[str]: A : Optional[Any] = full_name.split('''conv_layers.''' )[-1] A : Optional[Any] = name.split('''.''' ) A : List[str] = int(items[0] ) A : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) A : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A : List[str] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCamelCase__ ) def _lowerCamelCase( UpperCamelCase__ : Any ) -> Dict: A, A : Tuple = emb.weight.shape A : List[Any] = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A : int = emb.weight.data return lin_layer def _lowerCamelCase( UpperCamelCase__ : Dict ) -> Tuple: with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' ) as f: A : List[Any] = f.readlines() A : Any = [line.split(''' ''' )[0] for line in lines] A : int = len(UpperCamelCase__ ) A : Optional[int] = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(UpperCamelCase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def _lowerCamelCase( UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , ) -> Union[str, Any]: A : Tuple = WavaVecaConfig.from_pretrained(UpperCamelCase__ ) A : Any = SpeechaTextaConfig.from_pretrained( UpperCamelCase__ , vocab_size=UpperCamelCase__ , decoder_layers=UpperCamelCase__ , do_stable_layer_norm=UpperCamelCase__ ) A : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) A, A, A : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) A : Union[str, Any] = model[0].eval() # set weights for wav2vec2 encoder A : Dict = WavaVecaModel(UpperCamelCase__ ) A : Optional[Any] = recursively_load_weights_wavaveca(model.encoder , UpperCamelCase__ ) A : str = SpeechaTextaForCausalLM(UpperCamelCase__ ) A, A : Any = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCamelCase__ ) # set output linear layer unexpected_keys.remove('''embed_out''' ) A : Optional[int] = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) A : List[str] = SpeechEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) A : Optional[int] = False # add projection layer A : List[Any] = nn.Parameter(projection_layer.weight ) A : Tuple = nn.Parameter(projection_layer.bias ) A : Dict = create_vocab_dict(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , '''vocab.json''' ) , '''w''' ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) A : Any = SpeechaTextaTokenizer(os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) tokenizer.save_pretrained(UpperCamelCase__ ) A : Dict = hf_wavavec.config.to_dict() A : Optional[Any] = tokenizer.pad_token_id A : int = tokenizer.bos_token_id A : Union[str, Any] = tokenizer.eos_token_id A : Dict = '''speech_to_text_2''' A : Tuple = '''wav2vec2''' A : Optional[Any] = SpeechEncoderDecoderConfig.from_dict(UpperCamelCase__ ) hf_wavavec.save_pretrained(UpperCamelCase__ ) feature_extractor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=1_02_24, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") snake_case_ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
537
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _lowerCamelCase( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ) -> List[Any]: A : Any = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] A : List[Any] = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } A : List[Any] = F'''{src_lang}-{tgt_lang}''' A : Any = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) A : Optional[int] = os.path.join(UpperCamelCase__ , '''README.md''' ) print(F'''Generating {path}''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(UpperCamelCase__ ) # make sure we are under the root of the project snake_case_ = Path(__file__).resolve().parent.parent.parent snake_case_ = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: snake_case_ , snake_case_ , snake_case_ = model_name.split("""-""") snake_case_ = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
537
1
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase_ = LongformerTokenizer lowerCamelCase_ = True lowerCamelCase_ = LongformerTokenizerFast lowerCamelCase_ = True def _snake_case ( self :int ) -> Tuple: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] SCREAMING_SNAKE_CASE__ = dict(zip(__A , range(len(__A ) ) ) ) SCREAMING_SNAKE_CASE__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] SCREAMING_SNAKE_CASE__ = {"""unk_token""": """<unk>"""} SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__A ) ) def _snake_case ( self :str , **__A :Tuple ) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__A ) def _snake_case ( self :Union[str, Any] , **__A :str ) -> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__A ) def _snake_case ( self :List[Any] , __A :Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = """lower newer""" SCREAMING_SNAKE_CASE__ = """lower newer""" return input_text, output_text def _snake_case ( self :str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE__ = """lower newer""" SCREAMING_SNAKE_CASE__ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__A ) # , add_prefix_space=True) self.assertListEqual(__A , __A ) SCREAMING_SNAKE_CASE__ = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) def _snake_case ( self :int ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__A ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__A ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def _snake_case ( self :Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("""sequence builders""" , add_special_tokens=__A ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__A ) SCREAMING_SNAKE_CASE__ = tokenizer.encode( """sequence builders""" , add_special_tokens=__A , add_prefix_space=__A ) SCREAMING_SNAKE_CASE__ = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__A , add_prefix_space=__A ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(__A ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(__A , __A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _snake_case ( self :List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = """Encode this sequence.""" SCREAMING_SNAKE_CASE__ = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE__ = tokenizer.encode(__A , add_special_tokens=__A , add_prefix_space=__A ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__A , __A ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(__A , add_special_tokens=__A , add_prefix_space=__A ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__A , __A ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(__A , add_special_tokens=__A ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__A , __A ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE__ = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__A , lstrip=__A , rstrip=__A )} ) # mask token has a left space SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(__A ) SCREAMING_SNAKE_CASE__ = """Encode <mask> sequence""" SCREAMING_SNAKE_CASE__ = """Encode <mask>sequence""" SCREAMING_SNAKE_CASE__ = tokenizer.encode(__A ) SCREAMING_SNAKE_CASE__ = encoded.index(__A ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__A , __A ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(__A ) SCREAMING_SNAKE_CASE__ = encoded.index(__A ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__A , __A ) def _snake_case ( self :Tuple ) -> Union[str, Any]: """simple docstring""" pass def _snake_case ( self :List[str] ) -> Optional[int]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained(__A , **__A ) SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained(__A , **__A ) SCREAMING_SNAKE_CASE__ = """A, <mask> AllenNLP sentence.""" SCREAMING_SNAKE_CASE__ = tokenizer_r.encode_plus(__A , add_special_tokens=__A , return_token_type_ids=__A ) SCREAMING_SNAKE_CASE__ = tokenizer_p.encode_plus(__A , add_special_tokens=__A , return_token_type_ids=__A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) SCREAMING_SNAKE_CASE__ = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) SCREAMING_SNAKE_CASE__ = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def _snake_case ( self :Optional[int] ) -> List[str]: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) SCREAMING_SNAKE_CASE__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __A ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __A ) self.assertEqual(post_processor_state["""trim_offsets"""] , __A ) def _snake_case ( self :Optional[int] ) -> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE__ = f'''{text_of_1_token} {text_of_1_token}''' SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) SCREAMING_SNAKE_CASE__ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__A ) + 1, len(__A ) + 1 + len(__A )) , ) SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) SCREAMING_SNAKE_CASE__ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__A ) + 1, len(__A ) + 1 + len(__A )) , ) SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) SCREAMING_SNAKE_CASE__ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__A ), len(__A ) + 1 + len(__A )) , ) SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) SCREAMING_SNAKE_CASE__ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__A ), len(__A ) + 1 + len(__A )) , ) SCREAMING_SNAKE_CASE__ = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) SCREAMING_SNAKE_CASE__ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__A ) + 1, 1 + len(__A ) + 1 + len(__A )) , ) SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) SCREAMING_SNAKE_CASE__ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__A ), 1 + len(__A ) + 1 + len(__A )) , ) SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) SCREAMING_SNAKE_CASE__ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__A ), 1 + len(__A ) + 1 + len(__A )) , )
6
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' lowerCAmelCase__ : Dict = (PNDMScheduler,) lowerCAmelCase__ : Tuple = (("num_inference_steps", 50),) def _lowerCamelCase ( self : Tuple ,**UpperCamelCase : Any ) -> Dict: _lowercase : Tuple = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', } config.update(**UpperCamelCase ) return config def _lowerCamelCase ( self : Optional[int] ,UpperCamelCase : Dict=0 ,**UpperCamelCase : List[str] ) -> Any: _lowercase : Optional[Any] = dict(self.forward_default_kwargs ) _lowercase : Tuple = kwargs.pop('num_inference_steps' ,UpperCamelCase ) _lowercase : Tuple = self.dummy_sample _lowercase : Optional[int] = 0.1 * sample _lowercase : Dict = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: _lowercase : str = self.get_scheduler_config(**UpperCamelCase ) _lowercase : List[Any] = scheduler_class(**UpperCamelCase ) scheduler.set_timesteps(UpperCamelCase ) # copy over dummy past residuals _lowercase : str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase ) _lowercase : List[str] = scheduler_class.from_pretrained(UpperCamelCase ) new_scheduler.set_timesteps(UpperCamelCase ) # copy over dummy past residuals _lowercase : Any = dummy_past_residuals[:] _lowercase : Dict = scheduler.step_prk(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ).prev_sample _lowercase : Optional[Any] = new_scheduler.step_prk(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _lowercase : Union[str, Any] = scheduler.step_plms(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ).prev_sample _lowercase : Optional[Any] = new_scheduler.step_plms(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowerCamelCase ( self : str ) -> List[Any]: pass def _lowerCamelCase ( self : Dict ,UpperCamelCase : List[Any]=0 ,**UpperCamelCase : List[Any] ) -> List[Any]: _lowercase : int = dict(self.forward_default_kwargs ) _lowercase : Any = kwargs.pop('num_inference_steps' ,UpperCamelCase ) _lowercase : List[str] = self.dummy_sample _lowercase : Dict = 0.1 * sample _lowercase : Any = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: _lowercase : int = self.get_scheduler_config() _lowercase : Union[str, Any] = scheduler_class(**UpperCamelCase ) scheduler.set_timesteps(UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowercase : int = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase ) _lowercase : Union[str, Any] = scheduler_class.from_pretrained(UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) _lowercase : Any = dummy_past_residuals[:] _lowercase : Dict = scheduler.step_prk(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ).prev_sample _lowercase : List[Any] = new_scheduler.step_prk(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _lowercase : int = scheduler.step_plms(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ).prev_sample _lowercase : Tuple = new_scheduler.step_plms(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowerCamelCase ( self : Optional[int] ,**UpperCamelCase : Any ) -> List[Any]: _lowercase : Dict = self.scheduler_classes[0] _lowercase : Union[str, Any] = self.get_scheduler_config(**UpperCamelCase ) _lowercase : Optional[int] = scheduler_class(**UpperCamelCase ) _lowercase : Dict = 10 _lowercase : str = self.dummy_model() _lowercase : Tuple = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase ) for i, t in enumerate(scheduler.prk_timesteps ): _lowercase : Any = model(UpperCamelCase ,UpperCamelCase ) _lowercase : Union[str, Any] = scheduler.step_prk(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _lowercase : Optional[Any] = model(UpperCamelCase ,UpperCamelCase ) _lowercase : Tuple = scheduler.step_plms(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ).prev_sample return sample def _lowerCamelCase ( self : Optional[Any] ) -> List[str]: _lowercase : Union[str, Any] = dict(self.forward_default_kwargs ) _lowercase : List[str] = kwargs.pop('num_inference_steps' ,UpperCamelCase ) for scheduler_class in self.scheduler_classes: _lowercase : str = self.get_scheduler_config() _lowercase : Dict = scheduler_class(**UpperCamelCase ) _lowercase : int = self.dummy_sample _lowercase : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase ,'set_timesteps' ): scheduler.set_timesteps(UpperCamelCase ) elif num_inference_steps is not None and not hasattr(UpperCamelCase ,'set_timesteps' ): _lowercase : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowercase : List[str] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] _lowercase : List[Any] = dummy_past_residuals[:] _lowercase : List[str] = scheduler.step_prk(UpperCamelCase ,0 ,UpperCamelCase ,**UpperCamelCase ).prev_sample _lowercase : List[str] = scheduler.step_prk(UpperCamelCase ,1 ,UpperCamelCase ,**UpperCamelCase ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) _lowercase : str = scheduler.step_plms(UpperCamelCase ,0 ,UpperCamelCase ,**UpperCamelCase ).prev_sample _lowercase : Any = scheduler.step_plms(UpperCamelCase ,1 ,UpperCamelCase ,**UpperCamelCase ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def _lowerCamelCase ( self : Optional[int] ) -> List[str]: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase ) def _lowerCamelCase ( self : Union[str, Any] ) -> int: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCamelCase ) _lowercase : Tuple = self.scheduler_classes[0] _lowercase : List[str] = self.get_scheduler_config(steps_offset=1 ) _lowercase : Any = scheduler_class(**UpperCamelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps ,torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) ,) def _lowerCamelCase ( self : Any ) -> Optional[int]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] ,[0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=UpperCamelCase ,beta_end=UpperCamelCase ) def _lowerCamelCase ( self : Any ) -> Union[str, Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase ) def _lowerCamelCase ( self : List[Any] ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase ) def _lowerCamelCase ( self : Optional[Any] ) -> Any: for t in [1, 5, 10]: self.check_over_forward(time_step=UpperCamelCase ) def _lowerCamelCase ( self : Dict ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] ,[10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase ) def _lowerCamelCase ( self : Union[str, Any] ) -> Optional[int]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 _lowercase : Dict = 27 for scheduler_class in self.scheduler_classes: _lowercase : List[Any] = self.dummy_sample _lowercase : List[str] = 0.1 * sample _lowercase : Union[str, Any] = self.get_scheduler_config() _lowercase : Any = scheduler_class(**UpperCamelCase ) scheduler.set_timesteps(UpperCamelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _lowercase : Optional[int] = scheduler.step_prk(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ).prev_sample def _lowerCamelCase ( self : Dict ) -> Dict: with self.assertRaises(UpperCamelCase ): _lowercase : Optional[int] = self.scheduler_classes[0] _lowercase : str = self.get_scheduler_config() _lowercase : Tuple = scheduler_class(**UpperCamelCase ) scheduler.step_plms(self.dummy_sample ,1 ,self.dummy_sample ).prev_sample def _lowerCamelCase ( self : Optional[int] ) -> int: _lowercase : Any = self.full_loop() _lowercase : Optional[Any] = torch.sum(torch.abs(UpperCamelCase ) ) _lowercase : Any = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3 def _lowerCamelCase ( self : Any ) -> Union[str, Any]: _lowercase : Tuple = self.full_loop(prediction_type='v_prediction' ) _lowercase : Optional[Any] = torch.sum(torch.abs(UpperCamelCase ) ) _lowercase : int = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3 def _lowerCamelCase ( self : List[Any] ) -> str: # We specify different beta, so that the first alpha is 0.99 _lowercase : List[Any] = self.full_loop(set_alpha_to_one=UpperCamelCase ,beta_start=0.0_1 ) _lowercase : List[Any] = torch.sum(torch.abs(UpperCamelCase ) ) _lowercase : Any = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1e-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3 def _lowerCamelCase ( self : Any ) -> Optional[int]: # We specify different beta, so that the first alpha is 0.99 _lowercase : Union[str, Any] = self.full_loop(set_alpha_to_one=UpperCamelCase ,beta_start=0.0_1 ) _lowercase : List[Any] = torch.sum(torch.abs(UpperCamelCase ) ) _lowercase : List[Any] = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3
125
0
lowerCAmelCase__ = 8.31_44_62 # Unit - J mol-1 K-1 def lowerCamelCase_ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCamelCase_ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
702
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase__ = False class lowercase ( unittest.TestCase ): """simple docstring""" def A__ ( self , __snake_case=32): set_seed(0) _UpperCamelCase : int = UNetaDModel(sample_size=__snake_case , in_channels=3 , out_channels=3) _UpperCamelCase : str = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1) return model, optimizer @slow def A__ ( self): _UpperCamelCase : Tuple = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _UpperCamelCase : List[Any] = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) _UpperCamelCase : List[Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule='linear' , clip_sample=__snake_case , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) _UpperCamelCase : Optional[Any] = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(__snake_case) for _ in range(4)] _UpperCamelCase : str = [torch.randn((4, 3, 32, 32)).to(__snake_case) for _ in range(4)] _UpperCamelCase : int = [torch.randint(0 , 10_00 , (4,)).long().to(__snake_case) for _ in range(4)] # train with a DDPM scheduler _UpperCamelCase , _UpperCamelCase : List[Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : int = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Any = model(__snake_case , timesteps[i]).sample _UpperCamelCase : str = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _UpperCamelCase , _UpperCamelCase : Union[str, Any] = self.get_model_optimizer(resolution=32) model.train().to(__snake_case) for i in range(4): optimizer.zero_grad() _UpperCamelCase : Dict = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) _UpperCamelCase : Dict = model(__snake_case , timesteps[i]).sample _UpperCamelCase : Tuple = torch.nn.functional.mse_loss(__snake_case , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5)) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5))
648
0
"""simple docstring""" import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class lowercase__( unittest.TestCase ): '''simple docstring''' def __init__( self :Dict , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[Any]=7 , lowerCamelCase_ :str=3 , lowerCamelCase_ :Dict=18 , lowerCamelCase_ :str=30 , lowerCamelCase_ :int=4_00 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Any=None , lowerCamelCase_ :Optional[int]=True , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :Optional[int]=True , lowerCamelCase_ :List[str]=[0.5, 0.5, 0.5] , lowerCamelCase_ :Any=[0.5, 0.5, 0.5] , lowerCamelCase_ :List[Any]=False , ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'''height''': 20, '''width''': 20} SCREAMING_SNAKE_CASE : Optional[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : Optional[int] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : Any = image_size SCREAMING_SNAKE_CASE : Any = min_resolution SCREAMING_SNAKE_CASE : List[str] = max_resolution SCREAMING_SNAKE_CASE : int = do_resize SCREAMING_SNAKE_CASE : Dict = size SCREAMING_SNAKE_CASE : Tuple = do_center_crop SCREAMING_SNAKE_CASE : List[Any] = crop_size SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize SCREAMING_SNAKE_CASE : Any = image_mean SCREAMING_SNAKE_CASE : Union[str, Any] = image_std SCREAMING_SNAKE_CASE : Tuple = do_reduce_labels def __lowerCAmelCase ( self :List[str] ) -> Optional[int]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __A ( )-> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) SCREAMING_SNAKE_CASE : int = Image.open(dataset[0]['''file'''] ) SCREAMING_SNAKE_CASE : Optional[int] = Image.open(dataset[1]['''file'''] ) return image, map def __A ( )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) SCREAMING_SNAKE_CASE : Tuple = Image.open(ds[0]['''file'''] ) SCREAMING_SNAKE_CASE : str = Image.open(ds[1]['''file'''] ) SCREAMING_SNAKE_CASE : int = Image.open(ds[2]['''file'''] ) SCREAMING_SNAKE_CASE : str = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class lowercase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = BeitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = BeitImageProcessingTester(self ) @property def __lowerCAmelCase ( self :int ) -> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self :Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''image_std''' ) ) def __lowerCAmelCase ( self :Optional[int] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowerCamelCase_ ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' pass def __lowerCAmelCase ( self :Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE : Any = image_processing(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self :Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE : Dict = image_processing(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self :str ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE : Tuple = image_processing(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = [] for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input SCREAMING_SNAKE_CASE : List[Any] = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched SCREAMING_SNAKE_CASE : List[str] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = prepare_semantic_single_inputs() SCREAMING_SNAKE_CASE : List[str] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = prepare_semantic_batch_inputs() SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def __lowerCAmelCase ( self :int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = prepare_semantic_single_inputs() SCREAMING_SNAKE_CASE : Any = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
698
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowerCamelCase__ : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __A ( a_ : Optional[int] , a_ : str , a_ : str , a_ : str , a_ : List[str] )-> Tuple: '''simple docstring''' for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE : Any = getattr(a_ , a_ ) if weight_type is not None: SCREAMING_SNAKE_CASE : Optional[int] = getattr(a_ , a_ ).shape else: SCREAMING_SNAKE_CASE : Any = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": SCREAMING_SNAKE_CASE : List[Any] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Any = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : List[Any] = value else: SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __A ( a_ : Optional[Any] , a_ : Dict )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Optional[Any] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : Tuple = hf_model.feature_extractor SCREAMING_SNAKE_CASE : Tuple = hf_model.adapter for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : int = False if "conv_layers" in name: load_conv_layer( a_ , a_ , a_ , a_ , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE : List[str] = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(a_ , a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE : Union[str, Any] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Dict = name.split(a_ )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE : Optional[int] = mapped_key.replace('''*''' , a_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE : List[str] = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = '''weight_v''' elif "bias" in name: SCREAMING_SNAKE_CASE : str = '''bias''' elif "weight" in name: SCREAMING_SNAKE_CASE : Tuple = '''weight''' else: SCREAMING_SNAKE_CASE : str = None set_recursively(a_ , a_ , a_ , a_ , a_ ) continue if not is_used: unused_weights.append(a_ ) logger.warning(F"Unused weights: {unused_weights}" ) def __A ( a_ : Dict , a_ : int , a_ : Optional[int] , a_ : Optional[int] , a_ : Dict )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE : List[str] = name.split('''.''' ) SCREAMING_SNAKE_CASE : Dict = int(items[0] ) SCREAMING_SNAKE_CASE : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[int] , a_ : Optional[int] , a_ : Any , a_ : Any )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = full_name.split('''adaptor.''' )[-1] SCREAMING_SNAKE_CASE : List[Any] = name.split('''.''' ) if items[1].isdigit(): SCREAMING_SNAKE_CASE : List[Any] = int(items[1] ) else: SCREAMING_SNAKE_CASE : str = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter proj layer norm bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found." SCREAMING_SNAKE_CASE : Optional[Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found." SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Adapter proj layer bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found." SCREAMING_SNAKE_CASE : int = value logger.info(F"Adapter proj layer weight was initialized from {full_name}." ) elif isinstance(a_ , a_ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found." SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = emb.weight.shape SCREAMING_SNAKE_CASE : Any = nn.Linear(a_ , a_ , bias=a_ ) SCREAMING_SNAKE_CASE : Optional[int] = emb.weight.data return lin_layer @torch.no_grad() def __A ( a_ : Tuple , a_ : Optional[int] , a_ : List[Any] , a_ : Any , a_ : Tuple , a_ : int , a_ : Any , a_ : str , a_ : Tuple , a_ : Union[str, Any] , a_ : Union[str, Any] , )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = WavaVecaConfig.from_pretrained( a_ , add_adapter=a_ , adapter_stride=a_ , adapter_kernel_size=a_ , use_auth_token=a_ , output_hidden_size=a_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = MBartConfig.from_pretrained(a_ ) # load model SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) SCREAMING_SNAKE_CASE : int = model[0].eval() # load feature extractor SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(a_ , use_auth_token=a_ ) # set weights for wav2vec2 encoder SCREAMING_SNAKE_CASE : str = WavaVecaModel(a_ ) recursively_load_weights_wavaveca(model.encoder , a_ ) # load decoder weights SCREAMING_SNAKE_CASE : Dict = MBartForCausalLM(a_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=a_ ) logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechEncoderDecoderModel(encoder=a_ , decoder=a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer(a_ ) tokenizer.save_pretrained(a_ ) SCREAMING_SNAKE_CASE : Tuple = hf_wavavec.config.to_dict() SCREAMING_SNAKE_CASE : Any = tokenizer.pad_token_id SCREAMING_SNAKE_CASE : List[str] = tokenizer.bos_token_id SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Optional[Any] = '''mbart50''' SCREAMING_SNAKE_CASE : Optional[int] = '''wav2vec2''' SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : List[str] = 25_00_04 SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Any = SpeechEncoderDecoderConfig.from_dict(a_ ) hf_wavavec.save_pretrained(a_ ) feature_extractor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase__ : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250004, type=int, help="`decoder_start_token_id` of model config") lowerCamelCase__ : Dict = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
698
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
98
'''simple docstring''' def _snake_case ( A ) -> int: return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def _snake_case ( A ) -> bool: lowerCAmelCase__ = 0 lowerCAmelCase__ = number while duplicate > 0: lowerCAmelCase__ , lowerCAmelCase__ = divmod(A , 10 ) fact_sum += factorial(A ) return fact_sum == number if __name__ == "__main__": print('''Program to check whether a number is a Krisnamurthy Number or not.''') __UpperCAmelCase = int(input('''Enter number: ''').strip()) print( f"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.""" )
98
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : List[Any] = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class _lowercase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE: Optional[int] = 'ibert' def __init__( self , lowerCamelCase__=30_522 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=2 , lowerCamelCase__=0.0_2 , lowerCamelCase__=1E-12 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , lowerCamelCase__="absolute" , lowerCamelCase__=False , lowerCamelCase__="none" , **lowerCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowerCAmelCase_: Tuple = vocab_size lowerCAmelCase_: Optional[int] = hidden_size lowerCAmelCase_: Dict = num_hidden_layers lowerCAmelCase_: str = num_attention_heads lowerCAmelCase_: str = hidden_act lowerCAmelCase_: List[str] = intermediate_size lowerCAmelCase_: int = hidden_dropout_prob lowerCAmelCase_: List[str] = attention_probs_dropout_prob lowerCAmelCase_: Dict = max_position_embeddings lowerCAmelCase_: List[str] = type_vocab_size lowerCAmelCase_: Any = initializer_range lowerCAmelCase_: List[str] = layer_norm_eps lowerCAmelCase_: Tuple = position_embedding_type lowerCAmelCase_: List[Any] = quant_mode lowerCAmelCase_: str = force_dequant class _lowercase ( _A ): '''simple docstring''' @property def _a ( self ): if self.task == "multiple-choice": lowerCAmelCase_: Dict = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCAmelCase_: Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
613
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __snake_case : int = logging.get_logger(__name__) class lowercase_ ( _A ): def __init__( self , **UpperCamelCase__ ) -> Tuple: """simple docstring""" requires_backends(self , ["bs4"] ) super().__init__(**UpperCamelCase__ ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag UpperCAmelCase_ = parent.find_all(child.name , recursive=UpperCamelCase__ ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(UpperCamelCase__ ) else next(i for i, s in enumerate(UpperCamelCase__ , 1 ) if s is child ) ) UpperCAmelCase_ = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def lowerCamelCase_ ( self , UpperCamelCase__ ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = BeautifulSoup(UpperCamelCase__ , "html.parser" ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for element in html_code.descendants: if type(UpperCamelCase__ ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue UpperCAmelCase_ = html.unescape(UpperCamelCase__ ).strip() if not text_in_this_tag: continue all_doc_strings.append(UpperCamelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = self.xpath_soup(UpperCamelCase__ ) stringaxtag_seq.append(UpperCamelCase__ ) stringaxsubs_seq.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError("Number of doc strings and xtags does not correspond" ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError("Number of doc strings and xsubs does not correspond" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Any: """simple docstring""" UpperCAmelCase_ = "" for tagname, subs in zip(UpperCamelCase__ , UpperCamelCase__ ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self , UpperCamelCase__ ) -> BatchFeature: """simple docstring""" UpperCAmelCase_ = False # Check that strings has a valid type if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase_ = True elif isinstance(UpperCamelCase__ , (list, tuple) ): if len(UpperCamelCase__ ) == 0 or isinstance(html_strings[0] , UpperCamelCase__ ): UpperCAmelCase_ = True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " F"""but is of type {type(UpperCamelCase__ )}.""" ) UpperCAmelCase_ = bool(isinstance(UpperCamelCase__ , (list, tuple) ) and (isinstance(html_strings[0] , UpperCamelCase__ )) ) if not is_batched: UpperCAmelCase_ = [html_strings] # Get nodes + xpaths UpperCAmelCase_ = [] UpperCAmelCase_ = [] for html_string in html_strings: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.get_three_from_single(UpperCamelCase__ ) nodes.append(UpperCamelCase__ ) UpperCAmelCase_ = [] for node, tag_list, sub_list in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase_ = self.construct_xpath(UpperCamelCase__ , UpperCamelCase__ ) xpath_strings.append(UpperCamelCase__ ) xpaths.append(UpperCamelCase__ ) # return as Dict UpperCAmelCase_ = {"nodes": nodes, "xpaths": xpaths} UpperCAmelCase_ = BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ ) return encoded_inputs
660
0
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run __lowercase = True except (ImportError, AttributeError): __lowercase = object def lowerCAmelCase (*__UpperCamelCase : List[str] , **__UpperCamelCase : Optional[int] ): """simple docstring""" pass __lowercase = False __lowercase = logging.get_logger('''transformers-cli/serving''') def lowerCAmelCase (__UpperCamelCase : Namespace ): """simple docstring""" __UpperCamelCase =pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(_lowerCAmelCase , args.host , args.port , args.workers ) class _lowercase ( __a ): """simple docstring""" lowercase__ = 42 class _lowercase ( __a ): """simple docstring""" lowercase__ = 42 lowercase__ = 42 class _lowercase ( __a ): """simple docstring""" lowercase__ = 42 class _lowercase ( __a ): """simple docstring""" lowercase__ = 42 class _lowercase ( __a ): """simple docstring""" @staticmethod def UpperCAmelCase_ ( UpperCamelCase__ : ArgumentParser ) -> Any: '''simple docstring''' __UpperCamelCase =parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=__A , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=__A , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=__A , default=8888 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=__A , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=__A , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=__A , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=__A , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=__A , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=__A ) def __init__( self : List[Any] , UpperCamelCase__ : Pipeline , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> Dict: '''simple docstring''' __UpperCamelCase =pipeline __UpperCamelCase =host __UpperCamelCase =port __UpperCamelCase =workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install \"transformers[serving]\".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(f"""Serving model over {host}:{port}""" ) __UpperCamelCase =FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=__A , response_class=__A , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=__A , response_class=__A , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=__A , response_class=__A , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=__A , response_class=__A , methods=['''POST'''] , ), ] , timeout=600 , ) def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' run(self._app , host=self.host , port=self.port , workers=self.workers ) def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def UpperCAmelCase_ ( self : Tuple , UpperCamelCase__ : str = Body(__A , embed=__A ) , UpperCamelCase__ : bool = Body(__A , embed=__A ) ) -> Optional[int]: '''simple docstring''' try: __UpperCamelCase =self._pipeline.tokenizer.tokenize(__A ) if return_ids: __UpperCamelCase =self._pipeline.tokenizer.convert_tokens_to_ids(__A ) return ServeTokenizeResult(tokens=__A , tokens_ids=__A ) else: return ServeTokenizeResult(tokens=__A ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(__A )} ) def UpperCAmelCase_ ( self : List[Any] , UpperCamelCase__ : List[int] = Body(__A , embed=__A ) , UpperCamelCase__ : bool = Body(__A , embed=__A ) , UpperCamelCase__ : bool = Body(__A , embed=__A ) , ) -> Any: '''simple docstring''' try: __UpperCamelCase =self._pipeline.tokenizer.decode(__A , __A , __A ) return ServeDeTokenizeResult(model='''''' , text=__A ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(__A )} ) async def UpperCAmelCase_ ( self : Tuple , UpperCamelCase__ : Dict=Body(__A , embed=__A ) ) -> Optional[int]: '''simple docstring''' if len(__A ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __UpperCamelCase =self._pipeline(__A ) return ServeForwardResult(output=__A ) except Exception as e: raise HTTPException(500 , {'''error''': str(__A )} )
711
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) __lowercase = logging.getLogger() def lowerCAmelCase (__UpperCamelCase : Path , __UpperCamelCase : list ): """simple docstring""" __UpperCamelCase ='''\n'''.join(__UpperCamelCase ) Path(__UpperCamelCase ).open('''w''' ).writelines(__UpperCamelCase ) __lowercase = '''patrickvonplaten/t5-tiny-random''' __lowercase = '''sshleifer/bart-tiny-random''' __lowercase = '''sshleifer/tiny-mbart''' __lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _lowercase ( __a ): """simple docstring""" def UpperCAmelCase_ ( self : Dict , UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' __UpperCamelCase =Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' __UpperCamelCase =input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() __UpperCamelCase =[''' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'''] _dump_articles(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =str(Path(self.get_auto_remove_tmp_dir() ) / '''scores.json''' ) __UpperCamelCase ='''translation_en_to_de''' if model == T5_TINY else '''summarization''' __UpperCamelCase =f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(UpperCamelCase__ , '''argv''' , UpperCamelCase__ ): run_generate() assert Path(UpperCamelCase__ ).exists() # os.remove(Path(output_file_name)) def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' self.run_eval_tester(UpperCamelCase__ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def UpperCAmelCase_ ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] ) -> int: '''simple docstring''' self.run_eval_tester(UpperCamelCase__ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : Any ) -> Any: '''simple docstring''' __UpperCamelCase =Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' __UpperCamelCase =input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() __UpperCamelCase ={ '''en''': ['''Machine learning is great, isn\'t it?''', '''I like to eat bananas''', '''Tomorrow is another great day!'''], '''de''': [ '''Maschinelles Lernen ist großartig, oder?''', '''Ich esse gerne Bananen''', '''Morgen ist wieder ein toller Tag!''', ], } __UpperCamelCase =Path(self.get_auto_remove_tmp_dir() ) __UpperCamelCase =str(tmp_dir / '''scores.json''' ) __UpperCamelCase =str(tmp_dir / '''val.target''' ) _dump_articles(UpperCamelCase__ , text['''en'''] ) _dump_articles(UpperCamelCase__ , text['''de'''] ) __UpperCamelCase ='''translation_en_to_de''' if model == T5_TINY else '''summarization''' __UpperCamelCase =f""" run_eval_search.py {model} {str(UpperCamelCase__ )} {str(UpperCamelCase__ )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(['''--search''', '''num_beams=1:2 length_penalty=0.9:1.0'''] ) with patch.object(UpperCamelCase__ , '''argv''' , UpperCamelCase__ ): with CaptureStdout() as cs: run_search() __UpperCamelCase =[''' num_beams | length_penalty''', model, '''Best score args'''] __UpperCamelCase =['''Info'''] if "translation" in task: expected_strings.append('''bleu''' ) else: expected_strings.extend(UpperCamelCase__ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(UpperCamelCase__ ).exists() os.remove(Path(UpperCamelCase__ ) )
296
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : List[Any] = logging.get_logger(__name__) lowerCAmelCase_ : Optional[int] = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class lowerCamelCase_ ( snake_case_ ): _lowerCAmelCase : Dict = 'pix2struct_text_model' _lowerCAmelCase : List[str] = ['past_key_values'] _lowerCAmelCase : str = { 'hidden_size': 'hidden_size', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[Any] , lowerCAmelCase__ : int=5_02_44 , lowerCAmelCase__ : Dict=7_68 , lowerCAmelCase__ : Dict=64 , lowerCAmelCase__ : int=20_48 , lowerCAmelCase__ : Optional[Any]=12 , lowerCAmelCase__ : Tuple=12 , lowerCAmelCase__ : Union[str, Any]=32 , lowerCAmelCase__ : List[Any]=1_28 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : Optional[Any]=1e-6 , lowerCAmelCase__ : Optional[int]=1.0 , lowerCAmelCase__ : Dict="gelu_new" , lowerCAmelCase__ : str=0 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : str=False , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : List[Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : int = d_kv SCREAMING_SNAKE_CASE : Optional[Any] = d_ff SCREAMING_SNAKE_CASE : Optional[int] = num_layers SCREAMING_SNAKE_CASE : int = num_heads SCREAMING_SNAKE_CASE : List[str] = relative_attention_num_buckets SCREAMING_SNAKE_CASE : Dict = relative_attention_max_distance SCREAMING_SNAKE_CASE : List[Any] = dropout_rate SCREAMING_SNAKE_CASE : List[str] = layer_norm_epsilon SCREAMING_SNAKE_CASE : str = initializer_factor SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : List[Any] = eos_token_id SCREAMING_SNAKE_CASE : List[str] = decoder_start_token_id # for backwards compatibility SCREAMING_SNAKE_CASE : List[str] = dense_act_fn super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , tie_word_embeddings=lowerCAmelCase__ , is_decoder=lowerCAmelCase__ , **lowerCAmelCase__ , ) @classmethod def __lowercase ( cls : int , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : int ): """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": SCREAMING_SNAKE_CASE : Dict = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class lowerCamelCase_ ( snake_case_ ): _lowerCAmelCase : Dict = 'pix2struct_vision_model' def __init__( self : List[Any] , lowerCAmelCase__ : Union[str, Any]=7_68 , lowerCAmelCase__ : List[Any]=7_68 , lowerCAmelCase__ : List[Any]=20_48 , lowerCAmelCase__ : str=64 , lowerCAmelCase__ : str=12 , lowerCAmelCase__ : List[Any]=12 , lowerCAmelCase__ : List[Any]="gelu_new" , lowerCAmelCase__ : Union[str, Any]=1e-6 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : int=1e-10 , lowerCAmelCase__ : Union[str, Any]=1.0 , lowerCAmelCase__ : str=40_96 , lowerCAmelCase__ : Union[str, Any]=32 , lowerCAmelCase__ : Optional[Any]=1_28 , **lowerCAmelCase__ : List[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = patch_embed_hidden_size SCREAMING_SNAKE_CASE : Optional[int] = d_ff SCREAMING_SNAKE_CASE : Optional[Any] = dropout_rate SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = initializer_factor SCREAMING_SNAKE_CASE : str = attention_dropout SCREAMING_SNAKE_CASE : int = layer_norm_eps SCREAMING_SNAKE_CASE : Dict = dense_act_fn SCREAMING_SNAKE_CASE : List[str] = seq_len SCREAMING_SNAKE_CASE : Optional[int] = relative_attention_num_buckets SCREAMING_SNAKE_CASE : List[Any] = relative_attention_max_distance SCREAMING_SNAKE_CASE : List[str] = d_kv @classmethod def __lowercase ( cls : Any , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : Optional[Any] ): """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": SCREAMING_SNAKE_CASE : Any = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class lowerCamelCase_ ( snake_case_ ): _lowerCAmelCase : List[Any] = 'pix2struct' _lowerCAmelCase : int = True def __init__( self : Dict , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=True , **lowerCAmelCase__ : List[Any] , ): """simple docstring""" super().__init__(tie_word_embeddings=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) if text_config is None: SCREAMING_SNAKE_CASE : Tuple = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: SCREAMING_SNAKE_CASE : int = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) SCREAMING_SNAKE_CASE : str = PixaStructTextConfig(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = PixaStructVisionConfig(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = self.text_config.decoder_start_token_id SCREAMING_SNAKE_CASE : int = self.text_config.pad_token_id SCREAMING_SNAKE_CASE : Optional[Any] = self.text_config.eos_token_id SCREAMING_SNAKE_CASE : str = initializer_factor SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Dict = self.initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = self.initializer_range SCREAMING_SNAKE_CASE : List[str] = is_vqa @classmethod def __lowercase ( cls : Union[str, Any] , lowerCAmelCase__ : PixaStructTextConfig , lowerCAmelCase__ : PixaStructVisionConfig , **lowerCAmelCase__ : Optional[Any] ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase__ ) def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Tuple = self.text_config.to_dict() SCREAMING_SNAKE_CASE : List[Any] = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : Optional[Any] = self.__class__.model_type return output
527
'''simple docstring''' from __future__ import annotations def UpperCAmelCase ( A : list[int] , A : int ): if len(A ) < k or k < 0: raise ValueError('''Invalid Input''' ) SCREAMING_SNAKE_CASE : Dict = sum(array[:k] ) for i in range(len(A ) - k ): SCREAMING_SNAKE_CASE : Optional[Any] = current_sum - array[i] + array[i + k] SCREAMING_SNAKE_CASE : Union[str, Any] = max(A , A ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowerCAmelCase_ : Optional[int] = [randint(-1000, 1000) for i in range(100)] lowerCAmelCase_ : Optional[int] = randint(0, 110) print(f'The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}')
527
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE = { """configuration_roc_bert""": ["""ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoCBertConfig"""], """tokenization_roc_bert""": ["""RoCBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ """ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoCBertForCausalLM""", """RoCBertForMaskedLM""", """RoCBertForMultipleChoice""", """RoCBertForPreTraining""", """RoCBertForQuestionAnswering""", """RoCBertForSequenceClassification""", """RoCBertForTokenClassification""", """RoCBertLayer""", """RoCBertModel""", """RoCBertPreTrainedModel""", """load_tf_weights_in_roc_bert""", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
700
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
17
0
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowercase__( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=1_3 , SCREAMING_SNAKE_CASE_ : Tuple=7 , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=9_9 , SCREAMING_SNAKE_CASE_ : int=3_2 , SCREAMING_SNAKE_CASE_ : List[Any]=5 , SCREAMING_SNAKE_CASE_ : List[str]=4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_7 , SCREAMING_SNAKE_CASE_ : List[Any]="gelu" , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : Dict=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=5_1_2 , SCREAMING_SNAKE_CASE_ : Dict=1_6 , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : str=0.02 , SCREAMING_SNAKE_CASE_ : List[Any]=4 , ) -> List[Any]: lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_attention_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_choices def _lowercase ( self : Optional[int] ) -> Dict: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_attention_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase ( self : Optional[Any] ) -> Dict: lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _lowercase ( self : List[Any] ) -> Tuple: lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = True lowercase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Union[str, Any] = True a :Any = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase ( self : List[str] ) -> Optional[int]: lowercase_ = FlaxBertModelTester(self ) @slow def _lowercase ( self : Tuple ) -> Dict: # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. lowercase_ = FlaxBertModel.from_pretrained('''bert-base-cased''' ) lowercase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
97
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } UpperCAmelCase = { """gpt-neox-20b""": 2_048, } class UpperCAmelCase_ ( _lowercase): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Dict , __UpperCamelCase : int=None , __UpperCamelCase : Any=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Tuple="<|endoftext|>" , __UpperCamelCase : int="<|endoftext|>" , __UpperCamelCase : Dict="<|endoftext|>" , __UpperCamelCase : Union[str, Any]=False , **__UpperCamelCase : Union[str, Any] , ) -> Any: super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , unk_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , **__UpperCamelCase , ) _UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __UpperCamelCase ) != add_prefix_space: _UpperCamelCase = getattr(__UpperCamelCase , pre_tok_state.pop('''type''' ) ) _UpperCamelCase = add_prefix_space _UpperCamelCase = pre_tok_class(**__UpperCamelCase ) _UpperCamelCase = add_prefix_space def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) -> Tuple[str]: _UpperCamelCase = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def _UpperCamelCase ( self : List[str] , __UpperCamelCase : "Conversation" ) -> List[int]: _UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) + [self.eos_token_id] ) if len(__UpperCamelCase ) > self.model_max_length: _UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
420
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { "configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"], "tokenization_perceiver": ["PerceiverTokenizer"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["PerceiverFeatureExtractor"] __UpperCAmelCase = ["PerceiverImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST", "PerceiverForImageClassificationConvProcessing", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationLearned", "PerceiverForMaskedLM", "PerceiverForMultimodalAutoencoding", "PerceiverForOpticalFlow", "PerceiverForSequenceClassification", "PerceiverLayer", "PerceiverModel", "PerceiverPreTrainedModel", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
709
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __UpperCAmelCase = logging.get_logger(__name__) # General docstring __UpperCAmelCase = "PoolFormerConfig" # Base docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = [1, 512, 7, 7] # Image classification docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = "tabby, tabby cat" __UpperCAmelCase = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowerCAmelCase_ ( __A : Tuple , __A : float = 0.0 , __A : bool = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input snake_case: Union[str, Any] = 1 - drop_prob snake_case: List[Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets snake_case: List[Any] = keep_prob + torch.rand(__A , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize snake_case: Any = input.div(__A ) * random_tensor return output class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' super().__init__() snake_case: List[str] = drop_prob def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return drop_path(SCREAMING_SNAKE_CASE__ , self.drop_prob , self.training ) def _UpperCamelCase ( self ): '''simple docstring''' return "p={}".format(self.drop_prob ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' super().__init__() snake_case: List[str] = patch_size if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (patch_size, patch_size) snake_case: List[str] = stride if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (stride, stride) snake_case: Union[str, Any] = padding if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (padding, padding) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = norm_layer(SCREAMING_SNAKE_CASE__ ) if norm_layer else nn.Identity() def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.projection(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.norm(SCREAMING_SNAKE_CASE__ ) return embeddings class SCREAMING_SNAKE_CASE ( nn.GroupNorm ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.AvgPoolad(SCREAMING_SNAKE_CASE__ , stride=1 , padding=pool_size // 2 , count_include_pad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.pool(SCREAMING_SNAKE_CASE__ ) - hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: str = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if isinstance(config.hidden_act , SCREAMING_SNAKE_CASE__ ): snake_case: Tuple = ACTaFN[config.hidden_act] else: snake_case: int = config.hidden_act def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.act_fn(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.drop(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: str = self.drop(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = PoolFormerPooling(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerOutput(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) # Useful for training neural nets snake_case: Union[str, Any] = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if drop_path > 0.0 else nn.Identity() snake_case: Optional[Any] = config.use_layer_scale if config.use_layer_scale: snake_case: Any = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.use_layer_scale: snake_case: str = self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Dict = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection snake_case: str = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = () snake_case: Dict = self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Union[str, Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection snake_case: Any = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = (output,) + outputs return outputs else: snake_case: Optional[Any] = self.drop_path(self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) ) # First residual connection snake_case: Union[str, Any] = pooling_output + hidden_states snake_case: List[Any] = () # Second residual connection inside the PoolFormerOutput block snake_case: List[str] = self.drop_path(self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: Dict = hidden_states + layer_output snake_case: Optional[Any] = (output,) + outputs return outputs class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = config # stochastic depth decay rule snake_case: List[Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings snake_case: Union[str, Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) snake_case: List[Any] = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) # Transformer blocks snake_case: str = [] snake_case: int = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers snake_case: List[str] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( SCREAMING_SNAKE_CASE__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(SCREAMING_SNAKE_CASE__ ) ) snake_case: Tuple = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True ): '''simple docstring''' snake_case: str = () if output_hidden_states else None snake_case: Dict = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): snake_case , snake_case: Dict = layers # Get patch embeddings from hidden_states snake_case: int = embedding_layer(SCREAMING_SNAKE_CASE__ ) # Send the embeddings through the blocks for _, blk in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = blk(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = layer_outputs[0] if output_hidden_states: snake_case: List[str] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = PoolFormerConfig __UpperCamelCase = "poolformer" __UpperCamelCase = "pixel_values" __UpperCamelCase = True def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = value __UpperCAmelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = config snake_case: Tuple = PoolFormerEncoder(SCREAMING_SNAKE_CASE__ ) # Initialize weights and apply final processing self.post_init() def _UpperCamelCase ( self ): '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case: List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) snake_case: Optional[Any] = self.encoder( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: List[Any] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Any = nn.Linear(config.hidden_size , config.hidden_size ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.dense(SCREAMING_SNAKE_CASE__ ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = config.num_labels snake_case: str = PoolFormerModel(SCREAMING_SNAKE_CASE__ ) # Final norm snake_case: int = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head snake_case: Dict = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case: Optional[Any] = self.poolformer( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: Any = outputs[0] snake_case: str = self.classifier(self.norm(SCREAMING_SNAKE_CASE__ ).mean([-2, -1] ) ) snake_case: Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case: Tuple = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case: Dict = 'single_label_classification' else: snake_case: List[str] = 'multi_label_classification' if self.config.problem_type == "regression": snake_case: Union[str, Any] = MSELoss() if self.num_labels == 1: snake_case: List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case: int = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config.problem_type == "single_label_classification": snake_case: Union[str, Any] = CrossEntropyLoss() snake_case: Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case: int = BCEWithLogitsLoss() snake_case: Optional[int] = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not return_dict: snake_case: str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states )
692
0
from math import ceil, sqrt def lowerCamelCase__ ( _a = 1000000): SCREAMING_SNAKE_CASE : List[Any] = 0 for outer_width in range(3 , (limit // 4) + 2): if outer_width**2 > limit: SCREAMING_SNAKE_CASE : str = max(ceil(sqrt(outer_width**2 - limit)) , 1) else: SCREAMING_SNAKE_CASE : str = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'''{solution() = }''')
25
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') lowerCAmelCase_ : Optional[int] = logging.getLogger(__name__) @dataclass class lowerCamelCase_ : _lowerCAmelCase : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _lowerCAmelCase : Optional[str] = field( default=snake_case_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _lowerCAmelCase : Optional[str] = field( default=snake_case_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _lowerCAmelCase : Optional[str] = field( default=snake_case_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) _lowerCAmelCase : bool = field( default=snake_case_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) _lowerCAmelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _lowerCAmelCase : bool = field( default=snake_case_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) @dataclass class lowerCamelCase_ : _lowerCAmelCase : Optional[str] = field(default=snake_case_ , metadata={'help': 'The input training data file (a text file).'} ) _lowerCAmelCase : Optional[str] = field( default=snake_case_ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) _lowerCAmelCase : bool = field( default=snake_case_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) _lowerCAmelCase : Optional[int] = field( default=snake_case_ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) _lowerCAmelCase : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. If passed, sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _lowerCAmelCase : bool = field( default=snake_case_ , metadata={ 'help': ( 'Whether to pad all samples to the maximum sentence length. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' 'efficient on GPU but very bad for TPU.' ) } , ) _lowerCAmelCase : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _lowerCAmelCase : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __lowercase ( self : Tuple ): """simple docstring""" if self.train_file is not None: SCREAMING_SNAKE_CASE : List[str] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: SCREAMING_SNAKE_CASE : List[Any] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowerCamelCase_ : _lowerCAmelCase : PreTrainedTokenizerBase _lowerCAmelCase : Union[bool, str, PaddingStrategy] = True _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Optional[int] = None def __call__( self : List[Any] , lowerCAmelCase__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = '''label''' if '''label''' in features[0].keys() else '''labels''' SCREAMING_SNAKE_CASE : Union[str, Any] = [feature.pop(lowerCAmelCase__ ) for feature in features] SCREAMING_SNAKE_CASE : List[Any] = len(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = len(features[0]['''input_ids'''] ) SCREAMING_SNAKE_CASE : str = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features ] SCREAMING_SNAKE_CASE : Optional[int] = list(chain(*lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE : Dict = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten SCREAMING_SNAKE_CASE : int = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels SCREAMING_SNAKE_CASE : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) return batch def UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , A , A ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Tuple = training_args.get_process_log_level() logger.setLevel(A ) datasets.utils.logging.set_verbosity(A ) transformers.utils.logging.set_verbosity(A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = {} if data_args.train_file is not None: SCREAMING_SNAKE_CASE : Dict = data_args.train_file if data_args.validation_file is not None: SCREAMING_SNAKE_CASE : Dict = data_args.validation_file SCREAMING_SNAKE_CASE : List[str] = data_args.train_file.split('''.''' )[-1] SCREAMING_SNAKE_CASE : Optional[int] = load_dataset( A , data_files=A , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE : int = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. SCREAMING_SNAKE_CASE : Optional[Any] = [F"""ending{i}""" for i in range(4 )] SCREAMING_SNAKE_CASE : Any = '''sent1''' SCREAMING_SNAKE_CASE : Tuple = '''sent2''' if data_args.max_seq_length is None: SCREAMING_SNAKE_CASE : List[str] = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) SCREAMING_SNAKE_CASE : List[str] = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) SCREAMING_SNAKE_CASE : Tuple = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(A : Any ): SCREAMING_SNAKE_CASE : int = [[context] * 4 for context in examples[context_name]] SCREAMING_SNAKE_CASE : str = examples[question_header_name] SCREAMING_SNAKE_CASE : List[Any] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(A ) ] # Flatten out SCREAMING_SNAKE_CASE : List[str] = list(chain(*A ) ) SCREAMING_SNAKE_CASE : int = list(chain(*A ) ) # Tokenize SCREAMING_SNAKE_CASE : Optional[int] = tokenizer( A , A , truncation=A , max_length=A , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(A ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) SCREAMING_SNAKE_CASE : str = raw_datasets['''train'''] if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = min(len(A ) , data_args.max_train_samples ) SCREAMING_SNAKE_CASE : Optional[Any] = train_dataset.select(range(A ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): SCREAMING_SNAKE_CASE : str = train_dataset.map( A , batched=A , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) SCREAMING_SNAKE_CASE : str = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE : List[Any] = min(len(A ) , data_args.max_eval_samples ) SCREAMING_SNAKE_CASE : int = eval_dataset.select(range(A ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): SCREAMING_SNAKE_CASE : Tuple = eval_dataset.map( A , batched=A , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator SCREAMING_SNAKE_CASE : Optional[int] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=A , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(A : str ): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = eval_predictions SCREAMING_SNAKE_CASE : Any = np.argmax(A , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer SCREAMING_SNAKE_CASE : Union[str, Any] = Trainer( model=A , args=A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=A , data_collator=A , compute_metrics=A , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE : Optional[Any] = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE : List[Any] = last_checkpoint SCREAMING_SNAKE_CASE : List[Any] = trainer.train(resume_from_checkpoint=A ) trainer.save_model() # Saves the tokenizer too for easy upload SCREAMING_SNAKE_CASE : List[str] = train_result.metrics SCREAMING_SNAKE_CASE : str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(A ) ) SCREAMING_SNAKE_CASE : Dict = min(A , len(A ) ) trainer.log_metrics('''train''' , A ) trainer.save_metrics('''train''' , A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) SCREAMING_SNAKE_CASE : Optional[int] = trainer.evaluate() SCREAMING_SNAKE_CASE : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(A ) SCREAMING_SNAKE_CASE : List[str] = min(A , len(A ) ) trainer.log_metrics('''eval''' , A ) trainer.save_metrics('''eval''' , A ) SCREAMING_SNAKE_CASE : Dict = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**A ) else: trainer.create_model_card(**A ) def UpperCAmelCase ( A : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
527
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case__ (_UpperCamelCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ) -> int: a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCamelCase , "tf_padding" ) ) self.parent.assertTrue(hasattr(__lowerCamelCase , "depth_multiplier" ) ) class snake_case__ : """simple docstring""" def __init__( self : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any=13 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Optional[int]=32 , __lowerCamelCase : Dict=0.25 , __lowerCamelCase : List[str]=8 , __lowerCamelCase : Any=True , __lowerCamelCase : int=10_24 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : Optional[Any]="relu6" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Union[str, Any]=0.02 , __lowerCamelCase : int=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str=10 , __lowerCamelCase : Any=None , ) -> Tuple: a = parent a = batch_size a = num_channels a = image_size a = depth_multiplier a = min_depth a = tf_padding a = int(last_hidden_size * depth_multiplier ) a = output_stride a = hidden_act a = classifier_dropout_prob a = use_labels a = is_training a = num_labels a = initializer_range a = scope def __UpperCAmelCase ( self : str ) -> Optional[Any]: a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.num_labels ) a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCAmelCase ( self : Optional[int] ) -> List[Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] ) -> List[str]: a = MobileNetVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : str ) -> Union[str, Any]: a = self.num_labels a = MobileNetVaForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : str ) -> Any: a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case__ (_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Any = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : Optional[int] = False def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: a = MobileNetVaModelTester(self ) a = MobileNetVaConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def __UpperCAmelCase ( self : int ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def __UpperCAmelCase ( self : Any ) -> List[str]: pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def __UpperCAmelCase ( self : List[Any] ) -> int: pass def __UpperCAmelCase ( self : Tuple ) -> List[str]: a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCamelCase ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def __UpperCAmelCase ( self : str ) -> int: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ): a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) a = outputs.hidden_states a = 26 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def __UpperCAmelCase ( self : Tuple ) -> Optional[int]: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = MobileNetVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __magic_name__ ( ): '''simple docstring''' a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case__ (unittest.TestCase ): """simple docstring""" @cached_property def __UpperCAmelCase ( self : List[str] ) -> Any: return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self : str ) -> Dict: a = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(__lowerCamelCase ) a = self.default_image_processor a = prepare_img() a = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): a = model(**__lowerCamelCase ) # verify the logits a = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) a = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
662
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __lowerCAmelCase : Union[str, Any] = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class snake_case__ (_UpperCamelCase ): """simple docstring""" def __init__( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Any=1 ) -> Union[str, Any]: a = tokenizer a = dataset a = len(__lowerCamelCase ) if n_tasks is None else n_tasks a = n_copies def __iter__( self : Tuple ) -> str: a = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) a = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class snake_case__ (_UpperCamelCase ): """simple docstring""" def __init__( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ) -> Optional[Any]: a = start_length a = eof_strings a = tokenizer def __call__( self : int , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , **__lowerCamelCase : Optional[int] ) -> Optional[Any]: a = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) a = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__lowerCamelCase ) def __magic_name__ ( A : List[Any] ): '''simple docstring''' a = re.split("(%s)" % "|".join(A ), A ) # last string should be "" return "".join(string_list[:-2] ) def __magic_name__ ( A : Union[str, Any], A : Optional[Any], A : List[Any], A : Optional[Any], A : List[str], A : List[Any]=20, **A : Union[str, Any] ): '''simple docstring''' a = defaultdict(A ) # dict of list of generated tokens for step, batch in tqdm(enumerate(A ) ): with torch.no_grad(): a = batch["ids"].shape[-1] a = accelerator.unwrap_model(A ).generate( input_ids=batch["ids"][:, : batch["input_len"]], num_return_sequences=A, **A ) # each task is generated batch_size times a = batch["task_id"].repeat(A ) a = accelerator.pad_across_processes( A, dim=1, pad_index=tokenizer.pad_token_id ) a , a = accelerator.gather((generated_tokens, generated_tasks) ) a = generated_tokens.cpu().numpy() a = generated_tasks.cpu().numpy() for task, generated_tokens in zip(A, A ): gen_token_dict[task].append(A ) a = [[] for _ in range(A )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: a = tokenizer.decode(A, skip_special_tokens=A, clean_up_tokenization_spaces=A ) code_gens[task].append(remove_last_block(A ) ) return code_gens def __magic_name__ ( ): '''simple docstring''' a = HfArgumentParser(A ) a = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric a = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing a = "false" if args.num_workers is None: a = multiprocessing.cpu_count() # Use dataset load to feed to accelerate a = Accelerator() set_seed(args.seed, device_specific=A ) # Load model and tokenizer a = AutoTokenizer.from_pretrained(args.model_ckpt ) a = tokenizer.eos_token a = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings a = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0, A, A )] ), } # Load evaluation dataset and metric a = load_dataset("openai_humaneval" ) a = load_metric("code_eval" ) a = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) a = args.n_samples // args.batch_size a = TokenizedDataset(A, human_eval["test"], n_copies=A, n_tasks=A ) # do not confuse args.batch_size, which is actually the num_return_sequences a = DataLoader(A, batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: a = code_eval_metric.compute(references=[""], predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception a , a = accelerator.prepare(A, A ) a = complete_code( A, A, A, A, n_tasks=A, batch_size=args.batch_size, **A, ) if accelerator.is_main_process: a = [] for task in tqdm(range(A ) ): a = human_eval["test"][task]["test"] a = F"""check({human_eval["test"][task]["entry_point"]})""" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric a , a = code_eval_metric.compute( references=A, predictions=A, num_workers=args.num_workers ) print(F"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file, "w" ) as fp: json.dump(A, A ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
662
1
from __future__ import annotations from collections.abc import Iterator class _a : def __init__( self: Union[str, Any] , UpperCamelCase_: int ) -> None: """simple docstring""" lowercase__ = value lowercase__ = None lowercase__ = None class _a : def __init__( self: Any , UpperCamelCase_: Node ) -> None: """simple docstring""" lowercase__ = tree def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self: Any ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
43
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _A ( _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : int = RoFormerTokenizer _snake_case : Optional[Any] = RoFormerTokenizerFast _snake_case : int = True _snake_case : Tuple = True def _snake_case ( self : Union[str, Any] ): '''simple docstring''' super().setUp() def _snake_case ( self : Optional[int] , **lowerCamelCase : int ): '''simple docstring''' return self.tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **lowerCamelCase ) def _snake_case ( self : List[Any] , **lowerCamelCase : List[str] ): '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **lowerCamelCase ) def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = "永和服装饰品有限公司,今天天气非常好" __lowercase = "永和 服装 饰品 有限公司 , 今 天 天 气 非常 好" return input_text, output_text def _snake_case ( self : int ): '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase , __lowercase = self.get_chinese_input_output_texts() __lowercase = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , output_text.split() ) __lowercase = tokens + [tokenizer.unk_token] __lowercase = [22_943, 21_332, 34_431, 45_904, 117, 306, 1_231, 1_231, 2_653, 33_994, 1_266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_rust_tokenizer() __lowercase , __lowercase = self.get_chinese_input_output_texts() __lowercase = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , output_text.split() ) __lowercase = tokens + [tokenizer.unk_token] __lowercase = [22_943, 21_332, 34_431, 45_904, 117, 306, 1_231, 1_231, 2_653, 33_994, 1_266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' pass def _snake_case ( self : Union[str, Any] ): '''simple docstring''' pass def _snake_case ( self : str ): '''simple docstring''' pass
402
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __snake_case ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ = ['image_processor'] SCREAMING_SNAKE_CASE__ = 'SamImageProcessor' def __init__( self ,a_ ): """simple docstring""" super().__init__(a_ ) lowerCAmelCase__ = self.image_processor lowerCAmelCase__ = -10 lowerCAmelCase__ = self.image_processor.size['longest_edge'] def __call__( self ,a_=None ,a_=None ,a_=None ,a_=None ,a_ = None ,**a_ ,): """simple docstring""" lowerCAmelCase__ = self.image_processor( a_ ,return_tensors=a_ ,**a_ ,) # pop arguments that are not used in the foward but used nevertheless lowerCAmelCase__ = encoding_image_processor['original_sizes'] if hasattr(a_ ,'numpy' ): # Checks if Torch or TF tensor lowerCAmelCase__ = original_sizes.numpy() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._check_and_preprocess_points( input_points=a_ ,input_labels=a_ ,input_boxes=a_ ,) lowerCAmelCase__ = self._normalize_and_convert( a_ ,a_ ,input_points=a_ ,input_labels=a_ ,input_boxes=a_ ,return_tensors=a_ ,) return encoding_image_processor def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_=None ,a_=None ,a_=None ,a_="pt" ,): """simple docstring""" if input_points is not None: if len(a_ ) != len(a_ ): lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size ,a_ ,original_sizes[0] ) for point in input_points ] else: lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size ,a_ ,a_ ) for point, original_size in zip(a_ ,a_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: lowerCAmelCase__ , lowerCAmelCase__ = self._pad_points_and_labels(a_ ,a_ ) lowerCAmelCase__ = np.array(a_ ) if input_labels is not None: lowerCAmelCase__ = np.array(a_ ) if input_boxes is not None: if len(a_ ) != len(a_ ): lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size ,a_ ,original_sizes[0] ,is_bounding_box=a_ ) for box in input_boxes ] else: lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size ,a_ ,a_ ,is_bounding_box=a_ ) for box, original_size in zip(a_ ,a_ ) ] lowerCAmelCase__ = np.array(a_ ) if input_boxes is not None: if return_tensors == "pt": lowerCAmelCase__ = torch.from_numpy(a_ ) # boxes batch size of 1 by default lowerCAmelCase__ = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": lowerCAmelCase__ = tf.convert_to_tensor(a_ ) # boxes batch size of 1 by default lowerCAmelCase__ = tf.expand_dims(a_ ,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes} ) if input_points is not None: if return_tensors == "pt": lowerCAmelCase__ = torch.from_numpy(a_ ) # point batch size of 1 by default lowerCAmelCase__ = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": lowerCAmelCase__ = tf.convert_to_tensor(a_ ) # point batch size of 1 by default lowerCAmelCase__ = tf.expand_dims(a_ ,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'input_points': input_points} ) if input_labels is not None: if return_tensors == "pt": lowerCAmelCase__ = torch.from_numpy(a_ ) # point batch size of 1 by default lowerCAmelCase__ = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": lowerCAmelCase__ = tf.convert_to_tensor(a_ ) # point batch size of 1 by default lowerCAmelCase__ = tf.expand_dims(a_ ,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels} ) return encoding_image_processor def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = max([point.shape[0] for point in input_points] ) lowerCAmelCase__ = [] for i, point in enumerate(a_ ): if point.shape[0] != expected_nb_points: lowerCAmelCase__ = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] ,axis=0 ) lowerCAmelCase__ = np.append(input_labels[i] ,[self.point_pad_value] ) processed_input_points.append(a_ ) lowerCAmelCase__ = processed_input_points return input_points, input_labels def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ,a_=False ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = original_size lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor._get_preprocess_shape(a_ ,longest_edge=a_ ) lowerCAmelCase__ = deepcopy(a_ ).astype(a_ ) if is_bounding_box: lowerCAmelCase__ = coords.reshape(-1 ,2 ,2 ) lowerCAmelCase__ = coords[..., 0] * (new_w / old_w) lowerCAmelCase__ = coords[..., 1] * (new_h / old_h) if is_bounding_box: lowerCAmelCase__ = coords.reshape(-1 ,4 ) return coords def SCREAMING_SNAKE_CASE_ ( self ,a_=None ,a_=None ,a_=None ,): """simple docstring""" if input_points is not None: if hasattr(a_ ,'numpy' ): # Checks for TF or Torch tensor lowerCAmelCase__ = input_points.numpy().tolist() if not isinstance(a_ ,a_ ) or not isinstance(input_points[0] ,a_ ): raise ValueError('Input points must be a list of list of floating points.' ) lowerCAmelCase__ = [np.array(a_ ) for input_point in input_points] else: lowerCAmelCase__ = None if input_labels is not None: if hasattr(a_ ,'numpy' ): lowerCAmelCase__ = input_labels.numpy().tolist() if not isinstance(a_ ,a_ ) or not isinstance(input_labels[0] ,a_ ): raise ValueError('Input labels must be a list of list integers.' ) lowerCAmelCase__ = [np.array(a_ ) for label in input_labels] else: lowerCAmelCase__ = None if input_boxes is not None: if hasattr(a_ ,'numpy' ): lowerCAmelCase__ = input_boxes.numpy().tolist() if ( not isinstance(a_ ,a_ ) or not isinstance(input_boxes[0] ,a_ ) or not isinstance(input_boxes[0][0] ,a_ ) ): raise ValueError('Input boxes must be a list of list of list of floating points.' ) lowerCAmelCase__ = [np.array(a_ ).astype(np.floataa ) for box in input_boxes] else: lowerCAmelCase__ = None return input_points, input_labels, input_boxes @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(a_ ) ) def SCREAMING_SNAKE_CASE_ ( self ,*a_ ,**a_ ): """simple docstring""" return self.image_processor.post_process_masks(*a_ ,**a_ )
604
import heapq import sys import numpy as np _lowerCAmelCase : str = tuple[int, int] class __snake_case : def __init__( self ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = set() def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf' ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return len(self.elements ) == 0 def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements ,(priority, item) ) self.set.add(a_ ) else: # update # print("update", item) lowerCAmelCase__ = [] ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements ,(pro, xxx) ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" if item in self.set: self.set.remove(a_ ) lowerCAmelCase__ = [] ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements ,(prito, yyy) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.elements[0][1] def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) self.set.remove(a_ ) return (priority, item) def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = np.array(snake_case__ ) lowerCAmelCase__ = np.array(snake_case__ ) return np.linalg.norm(a - b ) def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> Any: """simple docstring""" return consistent_heuristic(snake_case__ , snake_case__ ) // t def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> str: """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Tuple: """simple docstring""" lowerCAmelCase__ = g_function[start] + Wa * heuristics[i](snake_case__ , snake_case__ ) return ans def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ) -> Any: """simple docstring""" lowerCAmelCase__ = np.chararray((n, n) ) for i in range(snake_case__ ): for j in range(snake_case__ ): lowerCAmelCase__ = '*' for i in range(snake_case__ ): for j in range(snake_case__ ): if (j, (n - 1) - i) in blocks: lowerCAmelCase__ = '#' lowerCAmelCase__ = '-' lowerCAmelCase__ = back_pointer[goal] while x != start: ((lowerCAmelCase__) , (lowerCAmelCase__)) = x # print(x) lowerCAmelCase__ = '-' lowerCAmelCase__ = back_pointer[x] lowerCAmelCase__ = '-' for i in range(snake_case__ ): for j in range(snake_case__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowerCAmelCase__ = back_pointer[goal] while x != start: print(snake_case__ , end=' ' ) lowerCAmelCase__ = back_pointer[x] print(snake_case__ ) sys.exit() def UpperCAmelCase_ ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> Union[str, Any]: """simple docstring""" for itera in range(snake_case__ ): open_list[itera].remove_element(snake_case__ ) # print("s", s) # print("j", j) ((lowerCAmelCase__) , (lowerCAmelCase__)) = s lowerCAmelCase__ = (x - 1, y) lowerCAmelCase__ = (x + 1, y) lowerCAmelCase__ = (x, y + 1) lowerCAmelCase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(snake_case__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(snake_case__ ) lowerCAmelCase__ = -1 lowerCAmelCase__ = float('inf' ) if valid(snake_case__ ) and g_function[neighbours] > g_function[s] + 1: lowerCAmelCase__ = g_function[s] + 1 lowerCAmelCase__ = s if neighbours not in close_list_anchor: open_list[0].put(snake_case__ , key(snake_case__ , 0 , snake_case__ , snake_case__ ) ) if neighbours not in close_list_inad: for var in range(1 , snake_case__ ): if key(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) <= Wa * key( snake_case__ , 0 , snake_case__ , snake_case__ ): open_list[j].put( snake_case__ , key(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ) def UpperCAmelCase_ ( ) -> List[str]: """simple docstring""" lowerCAmelCase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list _lowerCAmelCase : Tuple = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} _lowerCAmelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (1_0, 1), (1_1, 1), (1_2, 1), (1_3, 1), (1_4, 1), (1_5, 1), (1_6, 1), (1_7, 1), (1_8, 1), (1_9, 1), ] _lowerCAmelCase : Any = make_common_ground() _lowerCAmelCase : List[str] = blocks_blk # hyper parameters _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : int = 2_0 _lowerCAmelCase : str = 3 # one consistent and two other inconsistent # start and end destination _lowerCAmelCase : Tuple = (0, 0) _lowerCAmelCase : List[str] = (n - 1, n - 1) _lowerCAmelCase : str = 1 def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ) -> str: """simple docstring""" lowerCAmelCase__ = {start: 0, goal: float('inf' )} lowerCAmelCase__ = {start: -1, goal: -1} lowerCAmelCase__ = [] lowerCAmelCase__ = set() for i in range(snake_case__ ): open_list.append(PriorityQueue() ) open_list[i].put(snake_case__ , key(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , snake_case__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(snake_case__ , snake_case__ , snake_case__ ) else: lowerCAmelCase__ , lowerCAmelCase__ = open_list[i].top_show() visited.add(snake_case__ ) expand_state( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) close_list_inad.append(snake_case__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(snake_case__ , snake_case__ , snake_case__ ) else: lowerCAmelCase__ = open_list[0].top_show() visited.add(snake_case__ ) expand_state( snake_case__ , 0 , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) close_list_anchor.append(snake_case__ ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(snake_case__ ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
604
1
UpperCamelCase__ : Optional[Any] = 0 # The first color of the flag. UpperCamelCase__ : Dict = 1 # The second color of the flag. UpperCamelCase__ : int = 2 # The third color of the flag. UpperCamelCase__ : Tuple = (red, white, blue) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: """simple docstring""" if not sequence: return [] if len(_A ) == 1: return list(_A ) a = 0 a = len(_A ) - 1 a = 0 while mid <= high: if sequence[mid] == colors[0]: a , a = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: a , a = sequence[high], sequence[mid] high -= 1 else: a = f"""The elements inside the sequence must contains only {colors} values""" raise ValueError(_A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : str = input("""Enter numbers separated by commas:\n""").strip() UpperCamelCase__ : Any = [int(item.strip()) for item in user_input.split(""",""")] print(F"{dutch_national_flag_sort(unsorted)}")
387
import os import pytest from attr import dataclass _a : int = 'us-east-1' # defaults region @dataclass class UpperCamelCase_ : """simple docstring""" A = 42 A = '''arn:aws:iam::558105141721:role/sagemaker_execution_role''' A = { '''task_name''': '''mnli''', '''per_device_train_batch_size''': 16, '''per_device_eval_batch_size''': 16, '''do_train''': True, '''do_eval''': True, '''do_predict''': True, '''output_dir''': '''/opt/ml/model''', '''overwrite_output_dir''': True, '''max_steps''': 500, '''save_steps''': 5500, } A = {**hyperparameters, '''max_steps''': 1000} @property def lowerCamelCase_ ( self ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCamelCase_ ( self ): return f'''{self.framework}-transfromers-test''' @property def lowerCamelCase_ ( self ): return f'''./tests/sagemaker/scripts/{self.framework}''' @property def lowerCamelCase_ ( self ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def UpperCamelCase__ ( _A: Union[str, Any] ): '''simple docstring''' __lowerCamelCase = SageMakerTestEnvironment(framework=request.cls.framework )
479
0
'''simple docstring''' from __future__ import annotations def A__ ( A : str , A : str): '''simple docstring''' UpperCamelCase : List[Any] = get_failure_array(A) # 2) Step through text searching for pattern UpperCamelCase : Any = 0, 0 # index into text, pattern while i < len(A): if pattern[j] == text[i]: if j == (len(A) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCamelCase : List[Any] = failure[j - 1] continue i += 1 return False def A__ ( A : str): '''simple docstring''' UpperCamelCase : Union[str, Any] = [0] UpperCamelCase : List[str] = 0 UpperCamelCase : List[Any] = 1 while j < len(A): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCamelCase : int = failure[i - 1] continue j += 1 failure.append(A) return failure if __name__ == "__main__": # Test 1) lowerCAmelCase_ = 'abc1abc12' lowerCAmelCase_ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' lowerCAmelCase_ = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCAmelCase_ = 'ABABX' lowerCAmelCase_ = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) lowerCAmelCase_ = 'AAAB' lowerCAmelCase_ = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) lowerCAmelCase_ = 'abcdabcy' lowerCAmelCase_ = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) lowerCAmelCase_ = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
720
'''simple docstring''' import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def A__ ( ): '''simple docstring''' UpperCamelCase : Tuple = torch.nn.Linear(2 , 4) UpperCamelCase : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0) UpperCamelCase : List[Any] = torch.optim.lr_scheduler.OneCycleLR(A , max_lr=0.01 , steps_per_epoch=2 , epochs=1) UpperCamelCase : List[Any] = DataLoader(TensorDataset(torch.tensor([1, 2, 3]))) UpperCamelCase : List[str] = DataLoader(TensorDataset(torch.tensor([4, 5, 6]))) return model, optimizer, scheduler, train_dl, valid_dl def A__ ( A : int): '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def A__ ( A : int): '''simple docstring''' UpperCamelCase : Optional[int] = torch.nn.Linear(*tuple(model.weight.T.shape)).state_dict() model.load_state_dict(A) class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" @require_cuda def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' UpperCamelCase : Tuple = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(lowerCamelCase ): UpperCamelCase : int = Accelerator(cpu=lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' UpperCamelCase : Dict = Accelerator() UpperCamelCase : Any = GradientState() assert state.num_steps == 1 UpperCamelCase : List[Any] = 4 assert state.num_steps == 4 assert state.sync_gradients is True UpperCamelCase : Optional[int] = False assert state.sync_gradients is False GradientState._reset_state() def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : Optional[int] = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = create_components() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Any = accelerator.prepare(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' UpperCamelCase : Tuple = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = create_components() accelerator.prepare(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*lowerCamelCase , **lowerCamelCase ): pass with patch("torch.cuda.set_device" , lowerCamelCase ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): UpperCamelCase : Union[str, Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , "cuda:64" ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : int = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[int] = create_components() accelerator.prepare(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCamelCase : str = get_signature(lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCamelCase ) # make sure random weights don't match load_random_weights(lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase ) ) < 1e-3 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' UpperCamelCase : Optional[int] = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : int = create_components() accelerator.prepare(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCamelCase : List[Any] = get_signature(lowerCamelCase ) # saving hook def save_config(lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCamelCase : str = {"class_name": models[0].__class__.__name__} with open(os.path.join(lowerCamelCase , "data.json" ) , "w" ) as f: json.dump(lowerCamelCase , lowerCamelCase ) # loading hook def load_config(lowerCamelCase , lowerCamelCase ): with open(os.path.join(lowerCamelCase , "data.json" ) , "r" ) as f: UpperCamelCase : Optional[int] = json.load(lowerCamelCase ) UpperCamelCase : int = config["class_name"] UpperCamelCase : Dict = accelerator.register_save_state_pre_hook(lowerCamelCase ) UpperCamelCase : Union[str, Any] = accelerator.register_load_state_pre_hook(lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCamelCase ) # make sure random weights don't match with hooks load_random_weights(lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase ) ) > 1e-3 ) # random class name to verify correct one is loaded UpperCamelCase : Union[str, Any] = "random" # make sure loaded weights match with hooks accelerator.load_state(lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCamelCase ) # make sure random weights don't match with hooks removed load_random_weights(lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase ) ) > 1e-3 ) # random class name to verify correct one is loaded UpperCamelCase : Any = "random" # make sure loaded weights match with hooks removed accelerator.load_state(lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(lowerCamelCase ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' UpperCamelCase : Optional[int] = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[str] = create_components() UpperCamelCase : int = None # This should work UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[str] = accelerator.prepare( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.assertTrue(dummy_obj is None ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase : List[str] = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = create_components() UpperCamelCase : Union[str, Any] = [1, 2, 3] # This should work UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = accelerator.prepare( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.assertEqual( getattr(lowerCamelCase , "_is_accelerate_prepared" , lowerCamelCase ) , lowerCamelCase , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(lowerCamelCase , "_is_accelerate_prepared" , lowerCamelCase ) , lowerCamelCase , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowerCamelCase , "_is_accelerate_prepared" , lowerCamelCase ) , lowerCamelCase , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowerCamelCase , "_is_accelerate_prepared" , lowerCamelCase ) , lowerCamelCase , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowerCamelCase , "_is_accelerate_prepared" , lowerCamelCase ) , lowerCamelCase , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowerCamelCase , "_is_accelerate_prepared" , lowerCamelCase ) , lowerCamelCase , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' from transformers import AutoModelForCausalLM UpperCamelCase : Dict = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowerCamelCase , device_map={"": 0} , ) UpperCamelCase : str = Accelerator() # This should work UpperCamelCase : Any = accelerator.prepare(lowerCamelCase ) @slow @require_bnb def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' from transformers import AutoModelForCausalLM UpperCamelCase : Optional[Any] = Accelerator() with init_empty_weights(): UpperCamelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() UpperCamelCase : Optional[int] = infer_auto_device_map(lowerCamelCase ) UpperCamelCase : Dict = "cpu" UpperCamelCase : int = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=lowerCamelCase , load_in_abit=lowerCamelCase , llm_inta_enable_fpaa_cpu_offload=lowerCamelCase ) # This should not work and get value error with self.assertRaises(lowerCamelCase ): UpperCamelCase : Dict = accelerator.prepare(lowerCamelCase ) @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' from transformers import AutoModelForCausalLM UpperCamelCase : Dict = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): UpperCamelCase : Dict = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() UpperCamelCase : List[Any] = infer_auto_device_map(lowerCamelCase ) UpperCamelCase : Any = 1 UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowerCamelCase , device_map=lowerCamelCase , ) UpperCamelCase : Optional[int] = Accelerator() # This should not work and get value error with self.assertRaises(lowerCamelCase ): UpperCamelCase : Dict = accelerator.prepare(lowerCamelCase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): UpperCamelCase : str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) UpperCamelCase : Union[str, Any] = infer_auto_device_map(lowerCamelCase ) UpperCamelCase : Tuple = 1 UpperCamelCase : List[str] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowerCamelCase , device_map=lowerCamelCase , ) UpperCamelCase : Tuple = Accelerator() # This should work UpperCamelCase : Optional[Any] = accelerator.prepare(lowerCamelCase ) @require_cuda def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' UpperCamelCase : int = torch.nn.Linear(10 , 10 ) UpperCamelCase : Dict = torch.optim.SGD(model.parameters() , lr=0.01 ) UpperCamelCase : Optional[Any] = Accelerator(cpu=lowerCamelCase ) UpperCamelCase : Any = accelerator.prepare(lowerCamelCase )
435
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _UpperCAmelCase = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] _UpperCAmelCase = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] _UpperCAmelCase = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) _UpperCAmelCase = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) _UpperCAmelCase = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : Tuple ): '''simple docstring''' for tf_name, hf_name in patterns: A_ : int = k.replace(lowerCAmelCase_ ,lowerCAmelCase_ ) return k def UpperCamelCase ( __lowercase : dict ,__lowercase : dict ): '''simple docstring''' A_ : int = BigBirdPegasusConfig(**lowerCAmelCase_ ) A_ : List[Any] = BigBirdPegasusForConditionalGeneration(lowerCAmelCase_ ) A_ : Dict = torch_model.state_dict() A_ : Optional[Any] = {} # separating decoder weights A_ : Optional[int] = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} A_ : int = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() ,'tf -> hf conversion' ): A_ : Tuple = [k.endswith(lowerCAmelCase_ ) for ending in KEYS_TO_IGNORE] if any(lowerCAmelCase_ ): continue A_ : int = DECODER_PATTERNS A_ : List[Any] = rename_state_dict_key(lowerCAmelCase_ ,lowerCAmelCase_ ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): A_ : Tuple = v.T A_ : int = torch.from_numpy(lowerCAmelCase_ ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() ,'tf -> hf conversion' ): A_ : Optional[int] = [k.endswith(lowerCAmelCase_ ) for ending in KEYS_TO_IGNORE] if any(lowerCAmelCase_ ): continue A_ : str = REMAINING_PATTERNS A_ : Dict = rename_state_dict_key(lowerCAmelCase_ ,lowerCAmelCase_ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): A_ : List[Any] = v.T A_ : int = torch.from_numpy(lowerCAmelCase_ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' A_ : List[str] = mapping['model.embed_positions.weight'] A_ : Any = mapping.pop('model.embed_positions.weight' ) A_ , A_ : Any = torch_model.load_state_dict(lowerCAmelCase_ ,strict=lowerCAmelCase_ ) A_ : int = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def UpperCamelCase ( __lowercase : Any ): '''simple docstring''' A_ : Union[str, Any] = tf.train.list_variables(lowerCAmelCase_ ) A_ : int = {} A_ : Tuple = ['global_step'] for name, shape in tqdm(lowerCAmelCase_ ,desc='converting tf checkpoint to dict' ): A_ : List[str] = any(pat in name for pat in ignore_name ) if skip_key: continue A_ : List[str] = tf.train.load_variable(lowerCAmelCase_ ,lowerCAmelCase_ ) A_ : int = array return tf_weights def UpperCamelCase ( __lowercase : str ,__lowercase : str ,__lowercase : dict ): '''simple docstring''' A_ : Optional[Any] = get_tf_weights_as_numpy(lowerCAmelCase_ ) A_ : str = convert_bigbird_pegasus(lowerCAmelCase_ ,lowerCAmelCase_ ) torch_model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
558
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : Any ) -> int: lowerCAmelCase__ = "ZinengTang/tvlt-base" lowerCAmelCase__ = tempfile.mkdtemp() def a ( self : List[Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: return TvltImageProcessor.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE__ ) def a ( self : int , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> str: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] ) -> Any: shutil.rmtree(self.tmpdirname ) def a ( self : Any ) -> Union[str, Any]: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_feature_extractor() lowerCAmelCase__ = TvltProcessor(image_processor=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def a ( self : Tuple ) -> List[Any]: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_feature_extractor() lowerCAmelCase__ = TvltProcessor(image_processor=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = np.ones([12_000] ) lowerCAmelCase__ = feature_extractor(SCREAMING_SNAKE_CASE__ , return_tensors="np" ) lowerCAmelCase__ = processor(audio=SCREAMING_SNAKE_CASE__ , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : Dict ) -> str: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_feature_extractor() lowerCAmelCase__ = TvltProcessor(image_processor=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = np.ones([3, 224, 224] ) lowerCAmelCase__ = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors="np" ) lowerCAmelCase__ = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : int ) -> Any: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_feature_extractor() lowerCAmelCase__ = TvltProcessor(image_processor=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = np.ones([12_000] ) lowerCAmelCase__ = np.ones([3, 224, 224] ) lowerCAmelCase__ = processor(audio=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def a ( self : Tuple ) -> Optional[Any]: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_feature_extractor() lowerCAmelCase__ = TvltProcessor(image_processor=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
61
0
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] ) -> List[str]: __snake_case = FileLock(str(tmpdir / "foo.lock" ) ) __snake_case = FileLock(str(tmpdir / "foo.lock" ) ) __snake_case = 0.01 with locka.acquire(): with pytest.raises(_UpperCAmelCase ): __snake_case = time.time() locka.acquire(_UpperCAmelCase ) assert time.time() - _start > timeout def __UpperCAmelCase ( _UpperCAmelCase : Any ) -> List[str]: __snake_case = "a" * 10_00 + ".lock" __snake_case = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(_UpperCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 __snake_case = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_UpperCAmelCase ): locka.acquire(0 )
680
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : List[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """data2vec-text""" def __init__( self : List[str] , a_ : str=30_522 , a_ : Optional[int]=768 , a_ : Dict=12 , a_ : int=12 , a_ : Dict=3_072 , a_ : Dict="gelu" , a_ : Optional[Any]=0.1 , a_ : List[str]=0.1 , a_ : int=512 , a_ : Any=2 , a_ : int=0.02 , a_ : Dict=1e-12 , a_ : Dict=1 , a_ : Any=0 , a_ : Dict=2 , a_ : Optional[int]="absolute" , a_ : List[Any]=True , a_ : Dict=None , **a_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @property def A ( self : Any ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
680
1
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class _UpperCamelCase ( A ): '''simple docstring''' def _snake_case ( self : Dict ): '''simple docstring''' __lowerCamelCase : List[Any] = tempfile.mkdtemp() __lowerCamelCase : List[str] = 5 # Realm tok __lowerCamelCase : int = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """test""", """question""", """this""", """is""", """the""", """first""", """second""", """third""", """fourth""", """fifth""", """record""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , """realm_tokenizer""" ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) __lowerCamelCase : Any = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __lowerCamelCase : List[str] = os.path.join(self.tmpdirname , """realm_block_records""" ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) def _snake_case ( self : Dict ): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , """realm_tokenizer""" ) ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = RealmConfig(num_block_records=self.num_block_records ) return config def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : Optional[int] = Dataset.from_dict( { """id""": ["""0""", """1"""], """question""": ["""foo""", """bar"""], """answers""": [["""Foo""", """Bar"""], ["""Bar"""]], } ) return dataset def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : Optional[int] = np.array( [ B"""This is the first record""", B"""This is the second record""", B"""This is the third record""", B"""This is the fourth record""", B"""This is the fifth record""", B"""This is a longer longer longer record""", ] , dtype=_lowerCamelCase , ) return block_records def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase : List[Any] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def _snake_case ( self : int ): '''simple docstring''' __lowerCamelCase : List[Any] = self.get_config() __lowerCamelCase : List[str] = self.get_dummy_retriever() __lowerCamelCase : List[Any] = retriever.tokenizer __lowerCamelCase : Tuple = np.array([0, 3] , dtype="""long""" ) __lowerCamelCase : Any = tokenizer(["""Test question"""] ).input_ids __lowerCamelCase : Any = tokenizer( ["""the fourth"""] , add_special_tokens=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ).input_ids __lowerCamelCase : Tuple = config.reader_seq_len __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = retriever( _lowerCamelCase , _lowerCamelCase , answer_ids=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors="""np""" ) self.assertEqual(len(_lowerCamelCase ) , 2 ) self.assertEqual(len(_lowerCamelCase ) , 2 ) self.assertEqual(len(_lowerCamelCase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] , ) def _snake_case ( self : Dict ): '''simple docstring''' __lowerCamelCase : Optional[Any] = self.get_config() __lowerCamelCase : Optional[int] = self.get_dummy_retriever() __lowerCamelCase : Union[str, Any] = retriever.tokenizer __lowerCamelCase : Any = np.array([0, 3, 5] , dtype="""long""" ) __lowerCamelCase : List[str] = tokenizer(["""Test question"""] ).input_ids __lowerCamelCase : Optional[Any] = tokenizer( ["""the fourth""", """longer longer"""] , add_special_tokens=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ).input_ids __lowerCamelCase : Any = config.reader_seq_len __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[str] = retriever( _lowerCamelCase , _lowerCamelCase , answer_ids=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors="""np""" ) self.assertEqual([False, True, True] , _lowerCamelCase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _lowerCamelCase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowerCamelCase : int = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) # Test local path __lowerCamelCase : int = retriever.from_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) self.assertEqual(retriever.block_records[0] , B"""This is the first record""" ) # Test mocked remote path with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download: __lowerCamelCase : Any = os.path.join( os.path.join(self.tmpdirname , """realm_block_records""" ) , _REALM_BLOCK_RECORDS_FILENAME ) __lowerCamelCase : Dict = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" ) self.assertEqual(retriever.block_records[0] , B"""This is the first record""" )
519
def _UpperCAmelCase ( UpperCAmelCase : int = 600_851_475_143 ): """simple docstring""" try: __lowerCamelCase : Any = int(UpperCAmelCase ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) __lowerCamelCase : int = 1 __lowerCamelCase : str = 2 while i * i <= n: while n % i == 0: __lowerCamelCase : Union[str, Any] = i n //= i i += 1 if n > 1: __lowerCamelCase : Dict = n return int(UpperCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
519
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False ): '''simple docstring''' lowerCamelCase : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""transformer.blocks.{i}.norm1.weight""", f"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm1.bias""", f"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.weight""", f"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.bias""", f"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.weight""", f"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.bias""", f"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.mlp.fc1.weight""", f"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc1.bias""", f"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.weight""", f"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.bias""", f"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' for i in range(config.num_hidden_layers ): lowerCamelCase : List[str] = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase : Optional[int] = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.weight""" ) lowerCamelCase : int = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase : List[Any] = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase : List[Any] = in_proj_bias[: config.hidden_size] lowerCamelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase : Optional[int] = in_proj_bias[-config.hidden_size :] def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[Any] = dct.pop(__SCREAMING_SNAKE_CASE ) lowerCamelCase : Optional[int] = val @torch.no_grad() def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : List[str] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=__SCREAMING_SNAKE_CASE ) lowerCamelCase : Union[str, Any] = False lowerCamelCase : Dict = False lowerCamelCase : Optional[int] = False lowerCamelCase : Union[str, Any] = False if "vqa" in checkpoint_url: lowerCamelCase : List[Any] = True lowerCamelCase : Any = 3129 lowerCamelCase : List[str] = "huggingface/label-files" lowerCamelCase : Optional[Any] = "vqa2-id2label.json" lowerCamelCase : Tuple = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) lowerCamelCase : str = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCamelCase : Any = idalabel lowerCamelCase : List[Any] = {v: k for k, v in idalabel.items()} lowerCamelCase : List[str] = ViltForQuestionAnswering(__SCREAMING_SNAKE_CASE ) elif "nlvr" in checkpoint_url: lowerCamelCase : List[Any] = True lowerCamelCase : List[str] = 2 lowerCamelCase : Optional[Any] = {0: "False", 1: "True"} lowerCamelCase : str = {v: k for k, v in config.idalabel.items()} lowerCamelCase : List[Any] = 3 lowerCamelCase : Tuple = ViltForImagesAndTextClassification(__SCREAMING_SNAKE_CASE ) elif "irtr" in checkpoint_url: lowerCamelCase : Optional[Any] = True lowerCamelCase : Dict = ViltForImageAndTextRetrieval(__SCREAMING_SNAKE_CASE ) elif "mlm_itm" in checkpoint_url: lowerCamelCase : List[Any] = True lowerCamelCase : Optional[int] = ViltForMaskedLM(__SCREAMING_SNAKE_CASE ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys lowerCamelCase : List[str] = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location="cpu" )["state_dict"] lowerCamelCase : Optional[int] = create_rename_keys(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if mlm_model or irtr_model: lowerCamelCase : Optional[Any] = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # load state dict into HuggingFace model model.eval() if mlm_model: lowerCamelCase : Optional[int] = model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__SCREAMING_SNAKE_CASE ) # Define processor lowerCamelCase : Tuple = ViltImageProcessor(size=384 ) lowerCamelCase : Tuple = BertTokenizer.from_pretrained("bert-base-uncased" ) lowerCamelCase : List[Any] = ViltProcessor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Forward pass on example inputs (image + text) if nlvr_model: lowerCamelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=__SCREAMING_SNAKE_CASE ).raw ) lowerCamelCase : Dict = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=__SCREAMING_SNAKE_CASE ).raw ) lowerCamelCase : int = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) lowerCamelCase : List[str] = processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors="pt" ) lowerCamelCase : Any = processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors="pt" ) lowerCamelCase : Optional[int] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowerCamelCase : Any = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=__SCREAMING_SNAKE_CASE ).raw ) if mlm_model: lowerCamelCase : List[str] = "a bunch of [MASK] laying on a [MASK]." else: lowerCamelCase : List[Any] = "How many cats are there?" lowerCamelCase : Dict = processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors="pt" ) lowerCamelCase : str = model(**__SCREAMING_SNAKE_CASE ) # Verify outputs if mlm_model: lowerCamelCase : str = torch.Size([1, 11, 30522] ) lowerCamelCase : List[str] = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) # verify masked token prediction equals "cats" lowerCamelCase : Dict = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowerCamelCase : Any = torch.Size([1, 3129] ) lowerCamelCase : Optional[int] = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) # verify vqa prediction equals "2" lowerCamelCase : Tuple = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowerCamelCase : Any = torch.Size([1, 2] ) lowerCamelCase : Optional[Any] = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _snake_case = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
704
from __future__ import annotations import numpy as np def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase , lowerCamelCase : Dict = np.shape(SCREAMING_SNAKE_CASE_ ) if rows != columns: lowerCamelCase : int = ( "'table' has to be of square shaped array but got a " f"""{rows}x{columns} array:\n{table}""" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict = np.zeros((rows, columns) ) lowerCamelCase : List[str] = np.zeros((rows, columns) ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Dict = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE_ ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) lowerCamelCase : Dict = (table[i][j] - total) / upper[j][j] lowerCamelCase : Dict = 1 for j in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase : int = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase : Any = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
231
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer a_ :Tuple = logging.get_logger(__name__) a_ :int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ :Optional[Any] = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } a_ :Union[str, Any] = { 'distilbert-base-uncased': 5_12, 'distilbert-base-uncased-distilled-squad': 5_12, 'distilbert-base-cased': 5_12, 'distilbert-base-cased-distilled-squad': 5_12, 'distilbert-base-german-cased': 5_12, 'distilbert-base-multilingual-cased': 5_12, } a_ :Any = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Dict = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : int = ['''input_ids''', '''attention_mask'''] lowerCamelCase : Optional[int] = DistilBertTokenizer def __init__( self : Union[str, Any] , _lowercase : List[Any]=None , _lowercase : int=None , _lowercase : Optional[int]=True , _lowercase : Optional[int]="[UNK]" , _lowercase : Dict="[SEP]" , _lowercase : Optional[int]="[PAD]" , _lowercase : List[Any]="[CLS]" , _lowercase : Union[str, Any]="[MASK]" , _lowercase : List[Any]=True , _lowercase : int=None , **_lowercase : List[Any] , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowercase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE__ : Optional[Any] = getattr(_lowercase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ : Tuple = do_lower_case SCREAMING_SNAKE_CASE__ : Union[str, Any] = strip_accents SCREAMING_SNAKE_CASE__ : Dict = tokenize_chinese_chars SCREAMING_SNAKE_CASE__ : List[Any] = normalizer_class(**_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = do_lower_case def lowercase__ ( self : List[str] , _lowercase : List[str] , _lowercase : Union[str, Any]=None ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : Union[str, Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[str] = None ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
35
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class A : def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): return None class A : def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): return None class A ( unittest.TestCase ): UpperCamelCase_ : Union[str, Any] =[ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _A (self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCAmelCase , 'tf' , 1_2 , **lowerCAmelCase ) @require_torch @slow def _A (self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCAmelCase , 'pt' , 1_2 , **lowerCAmelCase ) @require_torch @slow def _A (self ): from transformers import BertModel __lowercase= ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(lowerCAmelCase ) ) vocab_file.flush() __lowercase= BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: __lowercase= BertModel(BertConfig(vocab_size=len(lowerCAmelCase ) ) ) model.save_pretrained(lowerCAmelCase ) self._test_export(lowerCAmelCase , 'pt' , 1_2 , lowerCAmelCase ) @require_tf @slow def _A (self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __lowercase= self._test_export(lowerCAmelCase , 'tf' , 1_2 , **lowerCAmelCase ) __lowercase= quantize(Path(lowerCAmelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCAmelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def _A (self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __lowercase= self._test_export(lowerCAmelCase , 'pt' , 1_2 , **lowerCAmelCase ) __lowercase= quantize(lowerCAmelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCAmelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , **lowerCAmelCase ): try: # Compute path with TemporaryDirectory() as tempdir: __lowercase= Path(lowerCAmelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) return path except Exception as e: self.fail(lowerCAmelCase ) @require_torch @require_tokenizers @slow def _A (self ): from transformers import BertModel __lowercase= BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) __lowercase= BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCAmelCase , lowerCAmelCase , 'pt' ) @require_tf @require_tokenizers @slow def _A (self ): from transformers import TFBertModel __lowercase= TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) __lowercase= BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(lowerCAmelCase , lowerCAmelCase , 'tf' ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= FeatureExtractionPipeline(lowerCAmelCase , lowerCAmelCase ) __lowercase= ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] __lowercase, __lowercase, __lowercase, __lowercase= infer_shapes(lowerCAmelCase , lowerCAmelCase ) # Assert all variables are present self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , lowerCAmelCase ) self.assertSequenceEqual(variable_names[3:] , lowerCAmelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def _A (self ): __lowercase= ['input_ids', 'attention_mask', 'token_type_ids'] __lowercase= {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} __lowercase, __lowercase= ensure_valid_input(FuncContiguousArgs() , lowerCAmelCase , lowerCAmelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCAmelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCAmelCase ) , set(lowerCAmelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCAmelCase , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) __lowercase, __lowercase= ensure_valid_input(FuncNonContiguousArgs() , lowerCAmelCase , lowerCAmelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCAmelCase ) , 1 ) self.assertEqual(len(lowerCAmelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def _A (self ): __lowercase= generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
230
0
from __future__ import annotations def __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ ): if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , ): if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , ): if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( __magic_name__ , nominal_annual_percentage_rate / 3_6_5 , number_of_years * 3_6_5 ) if __name__ == "__main__": import doctest doctest.testmod()
703
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : str = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class A ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase : Dict = """canine""" def __init__( self : int , _UpperCamelCase : Tuple=768 , _UpperCamelCase : List[str]=12 , _UpperCamelCase : Any=12 , _UpperCamelCase : Union[str, Any]=3_072 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : str=0.1 , _UpperCamelCase : Any=0.1 , _UpperCamelCase : Tuple=16_384 , _UpperCamelCase : Tuple=16 , _UpperCamelCase : List[str]=0.0_2 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : Optional[Any]=0XE000 , _UpperCamelCase : Union[str, Any]=0XE001 , _UpperCamelCase : Optional[Any]=4 , _UpperCamelCase : Union[str, Any]=4 , _UpperCamelCase : List[Any]=8 , _UpperCamelCase : Union[str, Any]=16_384 , _UpperCamelCase : List[Any]=128 , **_UpperCamelCase : Optional[int] , ): super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase) _lowercase: Optional[int] = max_position_embeddings _lowercase: Union[str, Any] = hidden_size _lowercase: Tuple = num_hidden_layers _lowercase: str = num_attention_heads _lowercase: Any = intermediate_size _lowercase: Dict = hidden_act _lowercase: str = hidden_dropout_prob _lowercase: List[Any] = attention_probs_dropout_prob _lowercase: Union[str, Any] = initializer_range _lowercase: str = type_vocab_size _lowercase: Any = layer_norm_eps # Character config: _lowercase: Optional[int] = downsampling_rate _lowercase: int = upsampling_kernel_size _lowercase: Optional[int] = num_hash_functions _lowercase: str = num_hash_buckets _lowercase: List[str] = local_transformer_stride
206
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) def lowercase_ ( _UpperCamelCase , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=False ): '''simple docstring''' __lowercase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'transformer.blocks.{i}.norm1.weight', F'vilt.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'transformer.blocks.{i}.norm1.bias', F'vilt.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'transformer.blocks.{i}.attn.proj.weight', F'vilt.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'transformer.blocks.{i}.attn.proj.bias', F'vilt.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'transformer.blocks.{i}.norm2.weight', F'vilt.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'transformer.blocks.{i}.norm2.bias', F'vilt.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (F'transformer.blocks.{i}.mlp.fc1.weight', F'vilt.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'transformer.blocks.{i}.mlp.fc1.bias', F'vilt.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'transformer.blocks.{i}.mlp.fc2.weight', F'vilt.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'transformer.blocks.{i}.mlp.fc2.bias', F'vilt.encoder.layer.{i}.output.dense.bias') ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' for i in range(config.num_hidden_layers ): __lowercase = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase = state_dict.pop(F'transformer.blocks.{i}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'transformer.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[ : config.hidden_size, : ] __lowercase = in_proj_bias[: config.hidden_size] __lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase = in_proj_weight[ -config.hidden_size :, : ] __lowercase = in_proj_bias[-config.hidden_size :] def lowercase_ ( _UpperCamelCase ): '''simple docstring''' __lowercase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def lowercase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowercase = dct.pop(_UpperCamelCase ) __lowercase = val @torch.no_grad() def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowercase = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=_UpperCamelCase ) __lowercase = False __lowercase = False __lowercase = False __lowercase = False if "vqa" in checkpoint_url: __lowercase = True __lowercase = 31_29 __lowercase = '''huggingface/label-files''' __lowercase = '''vqa2-id2label.json''' __lowercase = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __lowercase = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = ViltForQuestionAnswering(_UpperCamelCase ) elif "nlvr" in checkpoint_url: __lowercase = True __lowercase = 2 __lowercase = {0: '''False''', 1: '''True'''} __lowercase = {v: k for k, v in config.idalabel.items()} __lowercase = 3 __lowercase = ViltForImagesAndTextClassification(_UpperCamelCase ) elif "irtr" in checkpoint_url: __lowercase = True __lowercase = ViltForImageAndTextRetrieval(_UpperCamelCase ) elif "mlm_itm" in checkpoint_url: __lowercase = True __lowercase = ViltForMaskedLM(_UpperCamelCase ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys __lowercase = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location='''cpu''' )['''state_dict'''] __lowercase = create_rename_keys(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) read_in_q_k_v(_UpperCamelCase , _UpperCamelCase ) if mlm_model or irtr_model: __lowercase = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: __lowercase = model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_UpperCamelCase ) # Define processor __lowercase = ViltImageProcessor(size=3_84 ) __lowercase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __lowercase = ViltProcessor(_UpperCamelCase , _UpperCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: __lowercase = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=_UpperCamelCase ).raw ) __lowercase = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=_UpperCamelCase ).raw ) __lowercase = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) __lowercase = processor(_UpperCamelCase , _UpperCamelCase , return_tensors='''pt''' ) __lowercase = processor(_UpperCamelCase , _UpperCamelCase , return_tensors='''pt''' ) __lowercase = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: __lowercase = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=_UpperCamelCase ).raw ) if mlm_model: __lowercase = '''a bunch of [MASK] laying on a [MASK].''' else: __lowercase = '''How many cats are there?''' __lowercase = processor(_UpperCamelCase , _UpperCamelCase , return_tensors='''pt''' ) __lowercase = model(**_UpperCamelCase ) # Verify outputs if mlm_model: __lowercase = torch.Size([1, 11, 3_05_22] ) __lowercase = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _UpperCamelCase , atol=1E-4 ) # verify masked token prediction equals "cats" __lowercase = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: __lowercase = torch.Size([1, 31_29] ) __lowercase = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _UpperCamelCase , atol=1E-4 ) # verify vqa prediction equals "2" __lowercase = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: __lowercase = torch.Size([1, 2] ) __lowercase = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a : Any = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
639
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase_ = logging.get_logger(__name__) def _lowerCAmelCase ( __magic_name__ : List[str] ) -> Dict: lowercase : List[str] =R'''\w+[.]\d+''' lowercase : List[str] =re.findall(__magic_name__ , __magic_name__ ) for pat in pats: lowercase : Optional[int] =key.replace(__magic_name__ , '''_'''.join(pat.split('''.''' ) ) ) return key def _lowerCAmelCase ( __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Dict ) -> str: lowercase : Dict =pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowercase : str =pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowercase : str =pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowercase : Dict =pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer lowercase : Tuple =pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowercase : Tuple =pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase : str =pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": lowercase : Optional[Any] =pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase : Dict =pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase : Union[str, Any] =pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _lowerCAmelCase ( __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any]=42 ) -> List[str]: # Step 1: Convert pytorch tensor to numpy lowercase : Optional[Any] ={k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowercase : str =flax_model.init_weights(PRNGKey(__magic_name__ ) ) lowercase : Dict =flatten_dict(__magic_name__ ) lowercase : Dict ={} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase : Dict =rename_key(__magic_name__ ) lowercase : Optional[int] =tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters lowercase , lowercase : Any =rename_key_and_reshape_tensor(__magic_name__ , __magic_name__ , __magic_name__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown lowercase : Tuple =jnp.asarray(__magic_name__ ) return unflatten_dict(__magic_name__ )
92
0
from collections.abc import Sequence def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(UpperCamelCase__ ) ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = 0.0 for coeff in reversed(UpperCamelCase__ ): snake_case_ = result * x + coeff return result if __name__ == "__main__": _UpperCAmelCase : Union[str, Any] = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCAmelCase : List[str] = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
108
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _UpperCAmelCase : Dict = logging.get_logger(__name__) class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Any = '''upernet''' def __init__( self , snake_case=None , snake_case=512 , snake_case=0.02 , snake_case=[1, 2, 3, 6] , snake_case=True , snake_case=0.4 , snake_case=384 , snake_case=256 , snake_case=1 , snake_case=False , snake_case=255 , **snake_case , ): super().__init__(**snake_case ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) snake_case_ = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(snake_case , snake_case ): snake_case_ = backbone_config.get('model_type' ) snake_case_ = CONFIG_MAPPING[backbone_model_type] snake_case_ = config_class.from_dict(snake_case ) snake_case_ = backbone_config snake_case_ = hidden_size snake_case_ = initializer_range snake_case_ = pool_scales snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = auxiliary_in_channels snake_case_ = auxiliary_channels snake_case_ = auxiliary_num_convs snake_case_ = auxiliary_concat_input snake_case_ = loss_ignore_index def a ( self ): snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
108
1
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowercase_ : Union[str, Any] = logging.getLogger(__name__) class _lowerCamelCase ( UpperCamelCase_ ): def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ) -> List[Any]: super().__init__( lowerCAmelCase , question_encoder_tokenizer=lowerCAmelCase , generator_tokenizer=lowerCAmelCase , index=lowerCAmelCase , init_retrieval=lowerCAmelCase , ) SCREAMING_SNAKE_CASE__: str= None def UpperCamelCase_ ( self , lowerCAmelCase ) -> Union[str, Any]: logger.info('''initializing retrieval''' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('''dist initialized''' ) # needs to be set manually SCREAMING_SNAKE_CASE__: Any= self._infer_socket_ifname() # avoid clash with the NCCL port SCREAMING_SNAKE_CASE__: Any= str(distributed_port + 1 ) SCREAMING_SNAKE_CASE__: int= dist.new_group(ranks=lowerCAmelCase , backend='''gloo''' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('''dist not initialized / main''' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def UpperCamelCase_ ( self ) -> List[str]: return dist.get_rank(group=self.process_group ) == 0 def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=torch.floataa ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: str= torch.empty(lowerCAmelCase , dtype=lowerCAmelCase ) dist.scatter(lowerCAmelCase , src=0 , scatter_list=lowerCAmelCase , group=self.process_group ) return target_tensor def UpperCamelCase_ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: List[Any]= psutil.net_if_addrs() # a hacky way to deal with varying network interface names SCREAMING_SNAKE_CASE__: int= next((addr for addr in addrs if addr.startswith('''e''' )) , lowerCAmelCase ) return ifname def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: List[str]= self._main_retrieve(lowerCAmelCase , lowerCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCAmelCase ) # distributed training SCREAMING_SNAKE_CASE__: List[str]= dist.get_world_size(group=self.process_group ) # gather logic SCREAMING_SNAKE_CASE__: Union[str, Any]= None if self._is_main(): SCREAMING_SNAKE_CASE__: List[Any]= [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(lowerCAmelCase )] dist.gather(torch.tensor(lowerCAmelCase ) , dst=0 , gather_list=lowerCAmelCase , group=self.process_group ) # scatter logic SCREAMING_SNAKE_CASE__: Any= question_hidden_states.shape[0] SCREAMING_SNAKE_CASE__: Optional[Any]= [] SCREAMING_SNAKE_CASE__: str= [] if self._is_main(): assert len(lowerCAmelCase ) == world_size SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Tuple= self._main_retrieve(torch.cat(lowerCAmelCase ).numpy() , lowerCAmelCase ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: List[Any]= torch.tensor(lowerCAmelCase ), torch.tensor(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[Any]= self._chunk_tensor(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[Any]= self._chunk_tensor(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= self._scattered(lowerCAmelCase , [n_queries, n_docs] , target_type=torch.intaa ) SCREAMING_SNAKE_CASE__: Union[str, Any]= self._scattered(lowerCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCAmelCase )
64
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __lowercase ( __snake_case ): _A = (DEISMultistepScheduler,) _A = (("num_inference_steps", 25),) def _a(self : Optional[int] , **snake_case : str ) -> Optional[Any]: _lowercase : str = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, } config.update(**snake_case ) return config def _a(self : Optional[int] , snake_case : Optional[int]=0 , **snake_case : List[Any] ) -> Dict: _lowercase : Dict = dict(self.forward_default_kwargs ) _lowercase : Optional[Any] = kwargs.pop("num_inference_steps" , snake_case ) _lowercase : Optional[int] = self.dummy_sample _lowercase : Tuple = 0.1 * sample _lowercase : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowercase : Dict = self.get_scheduler_config(**snake_case ) _lowercase : int = scheduler_class(**snake_case ) scheduler.set_timesteps(snake_case ) # copy over dummy past residuals _lowercase : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case ) _lowercase : Any = scheduler_class.from_pretrained(snake_case ) new_scheduler.set_timesteps(snake_case ) # copy over dummy past residuals _lowercase : int = dummy_past_residuals[: new_scheduler.config.solver_order] _lowercase , _lowercase : Optional[Any] = sample, sample for t in range(snake_case , time_step + scheduler.config.solver_order + 1 ): _lowercase : List[Any] = scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample _lowercase : Union[str, Any] = new_scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _a(self : str ) -> List[str]: pass def _a(self : Optional[Any] , snake_case : List[Any]=0 , **snake_case : str ) -> Union[str, Any]: _lowercase : List[str] = dict(self.forward_default_kwargs ) _lowercase : Optional[int] = kwargs.pop("num_inference_steps" , snake_case ) _lowercase : Dict = self.dummy_sample _lowercase : Union[str, Any] = 0.1 * sample _lowercase : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowercase : List[Any] = self.get_scheduler_config() _lowercase : int = scheduler_class(**snake_case ) scheduler.set_timesteps(snake_case ) # copy over dummy past residuals (must be after setting timesteps) _lowercase : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case ) _lowercase : str = scheduler_class.from_pretrained(snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case ) # copy over dummy past residual (must be after setting timesteps) _lowercase : int = dummy_past_residuals[: new_scheduler.config.solver_order] _lowercase : Any = scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample _lowercase : Dict = new_scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _a(self : Dict , snake_case : str=None , **snake_case : Dict ) -> Optional[Any]: if scheduler is None: _lowercase : Optional[Any] = self.scheduler_classes[0] _lowercase : Dict = self.get_scheduler_config(**snake_case ) _lowercase : Optional[int] = scheduler_class(**snake_case ) _lowercase : Tuple = self.scheduler_classes[0] _lowercase : str = self.get_scheduler_config(**snake_case ) _lowercase : Tuple = scheduler_class(**snake_case ) _lowercase : Optional[int] = 10 _lowercase : List[str] = self.dummy_model() _lowercase : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(snake_case ) for i, t in enumerate(scheduler.timesteps ): _lowercase : str = model(snake_case , snake_case ) _lowercase : int = scheduler.step(snake_case , snake_case , snake_case ).prev_sample return sample def _a(self : Any ) -> Tuple: _lowercase : Union[str, Any] = dict(self.forward_default_kwargs ) _lowercase : Optional[int] = kwargs.pop("num_inference_steps" , snake_case ) for scheduler_class in self.scheduler_classes: _lowercase : List[Any] = self.get_scheduler_config() _lowercase : Optional[Any] = scheduler_class(**snake_case ) _lowercase : Tuple = self.dummy_sample _lowercase : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case , "set_timesteps" ): scheduler.set_timesteps(snake_case ) elif num_inference_steps is not None and not hasattr(snake_case , "set_timesteps" ): _lowercase : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowercase : int = [residual + 0.2, residual + 0.15, residual + 0.10] _lowercase : Dict = dummy_past_residuals[: scheduler.config.solver_order] _lowercase : Tuple = scheduler.timesteps[5] _lowercase : Dict = scheduler.timesteps[6] _lowercase : Tuple = scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample _lowercase : Union[str, Any] = scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _a(self : Optional[int] ) -> List[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults _lowercase : Any = DEISMultistepScheduler(**self.get_scheduler_config() ) _lowercase : List[Any] = self.full_loop(scheduler=snake_case ) _lowercase : Tuple = torch.mean(torch.abs(snake_case ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1e-3 _lowercase : str = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowercase : Optional[int] = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowercase : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) _lowercase : int = DEISMultistepScheduler.from_config(scheduler.config ) _lowercase : Union[str, Any] = self.full_loop(scheduler=snake_case ) _lowercase : Dict = torch.mean(torch.abs(snake_case ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1e-3 def _a(self : Union[str, Any] ) -> Optional[int]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=snake_case ) def _a(self : Optional[Any] ) -> List[str]: self.check_over_configs(thresholding=snake_case ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=snake_case , prediction_type=snake_case , sample_max_value=snake_case , algorithm_type="deis" , solver_order=snake_case , solver_type=snake_case , ) def _a(self : int ) -> Tuple: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case ) def _a(self : Tuple ) -> List[Any]: for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=snake_case , solver_type=snake_case , prediction_type=snake_case , algorithm_type=snake_case , ) _lowercase : Any = self.full_loop( solver_order=snake_case , solver_type=snake_case , prediction_type=snake_case , algorithm_type=snake_case , ) assert not torch.isnan(snake_case ).any(), "Samples have nan numbers" def _a(self : int ) -> List[str]: self.check_over_configs(lower_order_final=snake_case ) self.check_over_configs(lower_order_final=snake_case ) def _a(self : Any ) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=snake_case , time_step=0 ) def _a(self : Tuple ) -> Optional[Any]: _lowercase : Optional[Any] = self.full_loop() _lowercase : Tuple = torch.mean(torch.abs(snake_case ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1e-3 def _a(self : Optional[int] ) -> Dict: _lowercase : int = self.full_loop(prediction_type="v_prediction" ) _lowercase : str = torch.mean(torch.abs(snake_case ) ) assert abs(result_mean.item() - 0.0_91 ) < 1e-3 def _a(self : int ) -> Optional[int]: _lowercase : int = self.scheduler_classes[0] _lowercase : Tuple = self.get_scheduler_config(thresholding=snake_case , dynamic_thresholding_ratio=0 ) _lowercase : int = scheduler_class(**snake_case ) _lowercase : Optional[int] = 10 _lowercase : Union[str, Any] = self.dummy_model() _lowercase : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(snake_case ) for i, t in enumerate(scheduler.timesteps ): _lowercase : Tuple = model(snake_case , snake_case ) _lowercase : List[str] = scheduler.step(snake_case , snake_case , snake_case ).prev_sample assert sample.dtype == torch.floataa
461
0
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class lowerCamelCase_ ( unittest.TestCase ): def __magic_name__ ( self ): a_ = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) a_ = Vector() def __magic_name__ ( self ): a_ = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(lowercase__ ) , """(0,0,0,0,0,1)""" ) def __magic_name__ ( self ): a_ = Vector([1, 2, 3, 4] ) self.assertEqual(len(lowercase__ ) , 4 ) def __magic_name__ ( self ): a_ = Vector([1, 2] ) a_ = Vector([1, 2, 3, 4, 5] ) a_ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) a_ = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def __magic_name__ ( self ): a_ = Vector([1, 2, 3] ) a_ = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __magic_name__ ( self ): a_ = Vector([1, 2, 3] ) a_ = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __magic_name__ ( self ): a_ = Vector([1, 2, 3] ) a_ = Vector([2, -1, 4] ) # for test of dot product a_ = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def __magic_name__ ( self ): self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def __magic_name__ ( self ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def __magic_name__ ( self ): a_ = Vector([1, 2, 3] ) a_ = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , lowercase__ , lowercase__ ) ) , """(3,4,7)""" ) def __magic_name__ ( self ): a_ = Vector([1, 0, 0, 0, 0, 0] ) a_ = x.copy() self.assertEqual(str(lowercase__ ) , str(lowercase__ ) ) def __magic_name__ ( self ): a_ = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(lowercase__ ) , """(0,1,0)""" ) def __magic_name__ ( self ): a_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(lowercase__ ) ) def __magic_name__ ( self ): a_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a_ = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(lowercase__ , lowercase__ ) ) def __magic_name__ ( self ): a_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a_ = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(lowercase__ , lowercase__ ) ) def __magic_name__ ( self ): a_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __magic_name__ ( self ): a_ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) a_ = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def __magic_name__ ( self ): a_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(lowercase__ ) ) def __magic_name__ ( self ): a_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def __magic_name__ ( self ): a_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def __magic_name__ ( self ): a_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def __magic_name__ ( self ): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
703
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase_ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=1000 , _SCREAMING_SNAKE_CASE=[3, 3, 6, 4] , _SCREAMING_SNAKE_CASE=[48, 56, 112, 220] , ): a_ = parent a_ = batch_size a_ = num_channels a_ = is_training a_ = use_labels a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = num_labels a_ = image_size a_ = layer_depths a_ = embed_dims def __magic_name__ ( self ): a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.num_labels ) a_ = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_SCREAMING_SNAKE_CASE , layer_scale_init_value=1E-5 , ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a_ = SwiftFormerModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a_ = self.num_labels a_ = SwiftFormerForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) a_ = SwiftFormerForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self ): ((a_) , (a_) , (a_)) = self.prepare_config_and_inputs() a_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowerCamelCase : List[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () _lowerCamelCase : Optional[Any] = ( {"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification} if is_torch_available() else {} ) _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Dict = False _lowerCamelCase : Any = False _lowerCamelCase : Tuple = False _lowerCamelCase : List[Any] = False def __magic_name__ ( self ): a_ = SwiftFormerModelTester(self ) a_ = ConfigTester( self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def __magic_name__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def __magic_name__ ( self ): pass def __magic_name__ ( self ): a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(_SCREAMING_SNAKE_CASE ) a_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __magic_name__ ( self ): a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(_SCREAMING_SNAKE_CASE ) a_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def __magic_name__ ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = SwiftFormerModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def __magic_name__ ( self ): pass def __magic_name__ ( self ): def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): a_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) a_ = outputs.hidden_states a_ = 8 self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_SCREAMING_SNAKE_CASE ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): def _config_zero_init(_SCREAMING_SNAKE_CASE ): a_ = copy.deepcopy(_SCREAMING_SNAKE_CASE ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1E-10 ) if isinstance(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ): a_ = _config_zero_init(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return configs_no_init a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: a_ = model_class(config=_SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __magic_name__ ( self ): pass def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: """simple docstring""" a_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ): return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def __magic_name__ ( self ): a_ = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_SCREAMING_SNAKE_CASE ) a_ = self.default_image_processor a_ = prepare_img() a_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): a_ = model(**_SCREAMING_SNAKE_CASE ) # verify the logits a_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) a_ = torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
403
0
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase__ ( snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE = BioGptTokenizer SCREAMING_SNAKE_CASE = False def _UpperCamelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] UpperCAmelCase = dict(zip(A ,range(len(A ) ) ) ) UpperCAmelCase = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] UpperCAmelCase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ) as fp: fp.write(json.dumps(A ) ) with open(self.merges_file ,"""w""" ) as fp: fp.write("""\n""".join(A ) ) def _UpperCamelCase ( self ,A ): UpperCAmelCase = """lower newer""" UpperCAmelCase = """lower newer""" return input_text, output_text def _UpperCamelCase ( self ): UpperCAmelCase = BioGptTokenizer(self.vocab_file ,self.merges_file ) UpperCAmelCase = """lower""" UpperCAmelCase = ["""low""", """er</w>"""] UpperCAmelCase = tokenizer.tokenize(A ) self.assertListEqual(A ,A ) UpperCAmelCase = tokens + ["""<unk>"""] UpperCAmelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,A ) @slow def _UpperCamelCase ( self ): UpperCAmelCase = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) UpperCAmelCase = tokenizer.encode("""sequence builders""" ,add_special_tokens=A ) UpperCAmelCase = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=A ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(A ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(A ,A ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
341
"""simple docstring""" def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = len(_snake_case ) for i in range(_snake_case ): for j in range(i + 1 , _snake_case ): if numbers[j] < numbers[i]: UpperCAmelCase , UpperCAmelCase = numbers[j], numbers[i] return numbers if __name__ == "__main__": _UpperCamelCase = input("""Enter numbers separated by a comma:\n""").strip() _UpperCamelCase = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
341
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''philschmid/bart-large-cnn-samsum''' UpperCamelCase__ = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) UpperCamelCase__ = '''summarizer''' UpperCamelCase__ = AutoTokenizer UpperCamelCase__ = AutoModelForSeqaSeqLM UpperCamelCase__ = ['''text'''] UpperCamelCase__ = ['''text'''] def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Any ): return self.pre_processor(lowercase_ , return_tensors="""pt""" , truncation=lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Tuple ): return self.model.generate(**lowercase_ )[0] def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : str ): return self.pre_processor.decode(lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ )
30
'''simple docstring''' _lowercase : int = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def lowerCamelCase ( ) -> None: lowercase_ : List[Any] = input("""Enter message: """ ) lowercase_ : str = input("""Enter key [alphanumeric]: """ ) lowercase_ : List[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): lowercase_ : List[str] = """encrypt""" lowercase_ : Optional[int] = encrypt_message(UpperCAmelCase__ , UpperCAmelCase__ ) elif mode.lower().startswith("""d""" ): lowercase_ : Any = """decrypt""" lowercase_ : Optional[Any] = decrypt_message(UpperCAmelCase__ , UpperCAmelCase__ ) print(F'''\n{mode.title()}ed message:''' ) print(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str ) -> str: return translate_message(UpperCAmelCase__ , UpperCAmelCase__ , """encrypt""" ) def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str ) -> str: return translate_message(UpperCAmelCase__ , UpperCAmelCase__ , """decrypt""" ) def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : str ) -> str: lowercase_ : Union[str, Any] = [] lowercase_ : List[Any] = 0 lowercase_ : str = key.upper() for symbol in message: lowercase_ : Tuple = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(UpperCAmelCase__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(UpperCAmelCase__ ): lowercase_ : Any = 0 else: translated.append(UpperCAmelCase__ ) return "".join(UpperCAmelCase__ ) if __name__ == "__main__": main()
30
1
"""simple docstring""" class lowercase__ : '''simple docstring''' def __init__( self , snake_case = "" , snake_case = False ) -> None: # Mapping from the first character of the prefix of the node _UpperCAmelCase = {} # A node will be a leaf if the tree contains its word _UpperCAmelCase = is_leaf _UpperCAmelCase = prefix def lowerCamelCase_ ( self , snake_case ) -> tuple[str, str, str]: _UpperCAmelCase = 0 for q, w in zip(self.prefix , snake_case ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowerCamelCase_ ( self , snake_case ) -> None: for word in words: self.insert(snake_case ) def lowerCamelCase_ ( self , snake_case ) -> None: # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: _UpperCAmelCase = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _UpperCAmelCase = RadixNode(prefix=snake_case , is_leaf=snake_case ) else: _UpperCAmelCase = self.nodes[word[0]] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( snake_case ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(snake_case ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _UpperCAmelCase = remaining_prefix _UpperCAmelCase = self.nodes[matching_string[0]] _UpperCAmelCase = RadixNode(snake_case , snake_case ) _UpperCAmelCase = aux_node if remaining_word == "": _UpperCAmelCase = True else: self.nodes[matching_string[0]].insert(snake_case ) def lowerCamelCase_ ( self , snake_case ) -> bool: _UpperCAmelCase = self.nodes.get(word[0] , snake_case ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( snake_case ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(snake_case ) def lowerCamelCase_ ( self , snake_case ) -> bool: _UpperCAmelCase = self.nodes.get(word[0] , snake_case ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( snake_case ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(snake_case ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: _UpperCAmelCase = list(self.nodes.values() )[0] _UpperCAmelCase = merging_node.is_leaf self.prefix += merging_node.prefix _UpperCAmelCase = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: _UpperCAmelCase = False # If there is 1 edge, we merge it with its child else: _UpperCAmelCase = list(incoming_node.nodes.values() )[0] _UpperCAmelCase = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _UpperCAmelCase = merging_node.nodes return True def lowerCamelCase_ ( self , snake_case = 0 ) -> None: if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = 'banana bananas bandana band apple all beast'.split() _UpperCAmelCase = RadixNode() root.insert_many(A ) assert all(root.find(A ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def UpperCAmelCase ( ): '''simple docstring''' assert test_trie() def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = RadixNode() _UpperCAmelCase = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(A ) print('Words:' , A ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
573
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''lxmert''' _UpperCAmelCase = {} def __init__( self , snake_case=30522 , snake_case=768 , snake_case=12 , snake_case=9500 , snake_case=1600 , snake_case=400 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=2 , snake_case=0.02 , snake_case=1E-12 , snake_case=9 , snake_case=5 , snake_case=5 , snake_case=2048 , snake_case=4 , snake_case=6.67 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=True , **snake_case , ) -> Optional[int]: _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = num_qa_labels _UpperCAmelCase = num_object_labels _UpperCAmelCase = num_attr_labels _UpperCAmelCase = l_layers _UpperCAmelCase = x_layers _UpperCAmelCase = r_layers _UpperCAmelCase = visual_feat_dim _UpperCAmelCase = visual_pos_dim _UpperCAmelCase = visual_loss_normalizer _UpperCAmelCase = task_matched _UpperCAmelCase = task_mask_lm _UpperCAmelCase = task_obj_predict _UpperCAmelCase = task_qa _UpperCAmelCase = visual_obj_loss _UpperCAmelCase = visual_attr_loss _UpperCAmelCase = visual_feat_loss _UpperCAmelCase = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**snake_case )
573
1
'''simple docstring''' import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": __snake_case: Any = argparse.ArgumentParser( description=( "Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="roberta", choices=["roberta", "gpt2"]) parser.add_argument("--model_name", default="roberta-large", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_roberta_048131723.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") __snake_case: Union[str, Any] = parser.parse_args() if args.model_type == "roberta": __snake_case: Optional[int] = RobertaForMaskedLM.from_pretrained(args.model_name) __snake_case: str = "roberta" elif args.model_type == "gpt2": __snake_case: str = GPTaLMHeadModel.from_pretrained(args.model_name) __snake_case: List[str] = "transformer" __snake_case: Tuple = model.state_dict() __snake_case: Optional[Any] = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: __snake_case: Union[str, Any] = state_dict[F"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: __snake_case: Dict = F"""{prefix}.embeddings.{w}.weight""" __snake_case: Tuple = state_dict[param_name] for w in ["weight", "bias"]: __snake_case: Optional[int] = F"""{prefix}.embeddings.LayerNorm.{w}""" __snake_case: int = state_dict[param_name] # Transformer Blocks # __snake_case: Tuple = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: __snake_case: List[Any] = state_dict[ F"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] __snake_case: Any = state_dict[F"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: __snake_case: Optional[int] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: __snake_case: List[str] = state_dict[F"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: __snake_case: Any = state_dict[F"""lm_head.dense.{w}"""] __snake_case: str = state_dict[F"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: __snake_case: Optional[int] = state_dict[F"""{prefix}.ln_f.{w}"""] __snake_case: Optional[int] = state_dict["lm_head.weight"] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
460
'''simple docstring''' from __future__ import annotations def _snake_case ( A_ : int ): """simple docstring""" a_ : Optional[Any] = 2 a_ : int = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(A_ ) if n > 1: factors.append(A_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
460
1
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = StableUnCLIPPipeline _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _SCREAMING_SNAKE_CASE = False def _snake_case ( self ) -> Tuple: lowerCAmelCase = 32 lowerCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=lowercase__ , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) lowerCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase__ , num_layers=1 , ) torch.manual_seed(0 ) lowerCAmelCase = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1_000 , clip_sample=lowercase__ , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) lowerCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowercase__ ) lowerCAmelCase = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , ) torch.manual_seed(0 ) lowerCAmelCase = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=lowercase__ , steps_offset=1 , ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL() lowerCAmelCase = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def _snake_case ( self , lowercase , lowercase=0 ) -> Optional[int]: if str(lowercase__ ).startswith("""mps""" ): lowerCAmelCase = torch.manual_seed(lowercase__ ) else: lowerCAmelCase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) lowerCAmelCase = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowercase__ ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowercase__ ) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> int: lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) lowerCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase = pipe("""anime turle""" , generator=lowercase__ , output_type="""np""" ) lowerCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def _snake_case ( self ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
532
'''simple docstring''' from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
435
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter __SCREAMING_SNAKE_CASE ="""Create a default config file for Accelerate with only a few flags set.""" def a (_lowerCAmelCase="no" , _lowerCAmelCase = default_json_config_file , _lowerCAmelCase = False ): SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) path.parent.mkdir(parents=_lowerCAmelCase , exist_ok=_lowerCAmelCase ) if path.exists(): print( F"Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`." ) return False SCREAMING_SNAKE_CASE_ = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}" ) SCREAMING_SNAKE_CASE_ = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): SCREAMING_SNAKE_CASE_ = torch.cuda.device_count() SCREAMING_SNAKE_CASE_ = num_gpus SCREAMING_SNAKE_CASE_ = False if num_gpus > 1: SCREAMING_SNAKE_CASE_ = '''MULTI_GPU''' else: SCREAMING_SNAKE_CASE_ = '''NO''' elif is_xpu_available() and use_xpu: SCREAMING_SNAKE_CASE_ = torch.xpu.device_count() SCREAMING_SNAKE_CASE_ = num_xpus SCREAMING_SNAKE_CASE_ = False if num_xpus > 1: SCREAMING_SNAKE_CASE_ = '''MULTI_XPU''' else: SCREAMING_SNAKE_CASE_ = '''NO''' elif is_npu_available(): SCREAMING_SNAKE_CASE_ = torch.npu.device_count() SCREAMING_SNAKE_CASE_ = num_npus SCREAMING_SNAKE_CASE_ = False if num_npus > 1: SCREAMING_SNAKE_CASE_ = '''MULTI_NPU''' else: SCREAMING_SNAKE_CASE_ = '''NO''' else: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = '''NO''' SCREAMING_SNAKE_CASE_ = ClusterConfig(**_lowerCAmelCase ) config.to_json_file(_lowerCAmelCase ) return path def a (_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = parser.add_parser('''default''' , parents=_lowerCAmelCase , help=_lowerCAmelCase , formatter_class=_lowerCAmelCase ) parser.add_argument( '''--config_file''' , default=_lowerCAmelCase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=_lowerCAmelCase , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=_lowerCAmelCase ) return parser def a (_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"accelerate configuration saved at {config_file}" )
711
from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = "realm" def __init__( self: Tuple , _lowerCamelCase: Union[str, Any]=3_05_22 , _lowerCamelCase: Tuple=7_68 , _lowerCamelCase: str=1_28 , _lowerCamelCase: str=12 , _lowerCamelCase: int=12 , _lowerCamelCase: Union[str, Any]=8 , _lowerCamelCase: Optional[Any]=30_72 , _lowerCamelCase: str="gelu_new" , _lowerCamelCase: str=0.1 , _lowerCamelCase: Union[str, Any]=0.1 , _lowerCamelCase: Optional[int]=5_12 , _lowerCamelCase: Union[str, Any]=2 , _lowerCamelCase: int=0.02 , _lowerCamelCase: Tuple=1E-12 , _lowerCamelCase: List[Any]=2_56 , _lowerCamelCase: Any=10 , _lowerCamelCase: Optional[Any]=1E-3 , _lowerCamelCase: Any=5 , _lowerCamelCase: List[str]=3_20 , _lowerCamelCase: List[str]=13_35_37_18 , _lowerCamelCase: str=50_00 , _lowerCamelCase: str=1 , _lowerCamelCase: str=0 , _lowerCamelCase: Dict=2 , **_lowerCamelCase: Tuple , ): super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) # Common config SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = retriever_proj_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = num_candidates SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = layer_norm_eps # Reader config SCREAMING_SNAKE_CASE_ = span_hidden_size SCREAMING_SNAKE_CASE_ = max_span_width SCREAMING_SNAKE_CASE_ = reader_layer_norm_eps SCREAMING_SNAKE_CASE_ = reader_beam_size SCREAMING_SNAKE_CASE_ = reader_seq_len # Retrieval config SCREAMING_SNAKE_CASE_ = num_block_records SCREAMING_SNAKE_CASE_ = searcher_beam_size
89
0
"""simple docstring""" from string import ascii_uppercase UpperCAmelCase : Optional[Any] = {str(ord(c) - 55): c for c in ascii_uppercase} def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' if isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""int() can't convert non-string with explicit base""" ) if num < 0: raise ValueError("""parameter must be positive int""" ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if base in (0, 1): raise ValueError("""base must be >= 2""" ) if base > 36: raise ValueError("""base must be <= 36""" ) lowercase_ = """""" lowercase_ = 0 lowercase_ = 0 while div != 1: lowercase_ , lowercase_ = divmod(__lowerCAmelCase , __lowerCAmelCase ) if base >= 11 and 9 < mod < 36: lowercase_ = ALPHABET_VALUES[str(__lowerCAmelCase )] else: lowercase_ = str(__lowerCAmelCase ) new_value += actual_value lowercase_ = num // base lowercase_ = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(__lowerCAmelCase ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
567
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _SCREAMING_SNAKE_CASE () -> Generator[int, None, None]: '''simple docstring''' lowercase_ = {} lowercase_ = 2 while True: lowercase_ = factor_map.pop(__lowerCAmelCase , __lowerCAmelCase ) if factor: lowercase_ = factor + prime while x in factor_map: x += factor lowercase_ = factor else: lowercase_ = prime yield prime prime += 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1E10 ) -> int: '''simple docstring''' lowercase_ = sieve() lowercase_ = 1 while True: lowercase_ = next(__lowerCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__lowerCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
567
1
"""simple docstring""" import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase__ = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def _lowerCamelCase ( ): SCREAMING_SNAKE_CASE_ = _ask_options( '''In which compute environment are you running?''', ['''This machine''', '''AWS (Amazon SageMaker)'''], _convert_compute_environment, ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: SCREAMING_SNAKE_CASE_ = get_sagemaker_input() else: SCREAMING_SNAKE_CASE_ = get_cluster_input() return config def _lowerCamelCase ( __a=None ): if subparsers is not None: SCREAMING_SNAKE_CASE_ = subparsers.add_parser('''config''', description=UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser('''Accelerate config command''', description=UpperCamelCase__ ) parser.add_argument( '''--config_file''', default=UpperCamelCase__, help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ), ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase__ ) return parser def _lowerCamelCase ( __a ): SCREAMING_SNAKE_CASE_ = get_user_input() if args.config_file is not None: SCREAMING_SNAKE_CASE_ = args.config_file else: if not os.path.isdir(UpperCamelCase__ ): os.makedirs(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(UpperCamelCase__ ) else: config.to_yaml_file(UpperCamelCase__ ) print(F'accelerate configuration saved at {config_file}' ) def _lowerCamelCase ( ): SCREAMING_SNAKE_CASE_ = config_command_parser() SCREAMING_SNAKE_CASE_ = parser.parse_args() config_command(UpperCamelCase__ ) if __name__ == "__main__": main()
720
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowerCamelCase ( __a ): warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''', __a, ) if isinstance(__a, torch.Tensor ): return image elif isinstance(__a, PIL.Image.Image ): SCREAMING_SNAKE_CASE_ = [image] if isinstance(image[0], PIL.Image.Image ): SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = image[0].size SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 SCREAMING_SNAKE_CASE_ = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] SCREAMING_SNAKE_CASE_ = np.concatenate(__a, axis=0 ) SCREAMING_SNAKE_CASE_ = np.array(__a ).astype(np.floataa ) / 2_5_5.0 SCREAMING_SNAKE_CASE_ = image.transpose(0, 3, 1, 2 ) SCREAMING_SNAKE_CASE_ = 2.0 * image - 1.0 SCREAMING_SNAKE_CASE_ = torch.from_numpy(__a ) elif isinstance(image[0], torch.Tensor ): SCREAMING_SNAKE_CASE_ = torch.cat(__a, dim=0 ) return image def _lowerCamelCase ( __a ): if isinstance(__a, torch.Tensor ): return mask elif isinstance(__a, PIL.Image.Image ): SCREAMING_SNAKE_CASE_ = [mask] if isinstance(mask[0], PIL.Image.Image ): SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = mask[0].size SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 SCREAMING_SNAKE_CASE_ = [np.array(m.convert('''L''' ).resize((w, h), resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] SCREAMING_SNAKE_CASE_ = np.concatenate(__a, axis=0 ) SCREAMING_SNAKE_CASE_ = mask.astype(np.floataa ) / 2_5_5.0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = torch.from_numpy(__a ) elif isinstance(mask[0], torch.Tensor ): SCREAMING_SNAKE_CASE_ = torch.cat(__a, dim=0 ) return mask class snake_case ( __lowercase ): UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 2_50 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 10 , SCREAMING_SNAKE_CASE_ = 10 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = image SCREAMING_SNAKE_CASE_ = _preprocess_image(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = original_image.to(device=self.device , dtype=self.unet.dtype ) SCREAMING_SNAKE_CASE_ = _preprocess_mask(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = mask_image.to(device=self.device , dtype=self.unet.dtype ) SCREAMING_SNAKE_CASE_ = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE_ )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) SCREAMING_SNAKE_CASE_ = original_image.shape SCREAMING_SNAKE_CASE_ = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.device ) SCREAMING_SNAKE_CASE_ = eta SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps[0] + 1 SCREAMING_SNAKE_CASE_ = generator[0] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual SCREAMING_SNAKE_CASE_ = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample # compute previous image: x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t SCREAMING_SNAKE_CASE_ = self.scheduler.undo_step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = t SCREAMING_SNAKE_CASE_ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
628
0
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class A ( unittest.TestCase ): def lowercase_ (self : Optional[int] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase__ = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=_A , cache_dir=_A ) UpperCAmelCase__ = [t[-1] for t in os.walk(os.path.join(_A , os.listdir(_A )[0] , "snapshots" ) )] UpperCAmelCase__ = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class A ( unittest.TestCase ): def lowercase_ (self : Any ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=_A ) UpperCAmelCase__ = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) UpperCAmelCase__ = jax.random.PRNGKey(0 ) UpperCAmelCase__ = 4 UpperCAmelCase__ = jax.device_count() UpperCAmelCase__ = num_samples * [prompt] UpperCAmelCase__ = pipeline.prepare_inputs(_A ) # shard inputs and rng UpperCAmelCase__ = replicate(_A ) UpperCAmelCase__ = jax.random.split(_A , _A ) UpperCAmelCase__ = shard(_A ) UpperCAmelCase__ = pipeline(_A , _A , _A , _A , jit=_A ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1E-3 assert np.abs(np.abs(_A , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5E-1 UpperCAmelCase__ = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_A ) == num_samples def lowercase_ (self : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=_A ) UpperCAmelCase__ = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) UpperCAmelCase__ = jax.random.PRNGKey(0 ) UpperCAmelCase__ = 5_0 UpperCAmelCase__ = jax.device_count() UpperCAmelCase__ = num_samples * [prompt] UpperCAmelCase__ = pipeline.prepare_inputs(_A ) # shard inputs and rng UpperCAmelCase__ = replicate(_A ) UpperCAmelCase__ = jax.random.split(_A , _A ) UpperCAmelCase__ = shard(_A ) UpperCAmelCase__ = pipeline(_A , _A , _A , _A , jit=_A ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1E-3 assert np.abs((np.abs(_A , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5E-1 def lowercase_ (self : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=_A ) UpperCAmelCase__ = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) UpperCAmelCase__ = jax.random.PRNGKey(0 ) UpperCAmelCase__ = 5_0 UpperCAmelCase__ = jax.device_count() UpperCAmelCase__ = num_samples * [prompt] UpperCAmelCase__ = pipeline.prepare_inputs(_A ) # shard inputs and rng UpperCAmelCase__ = replicate(_A ) UpperCAmelCase__ = jax.random.split(_A , _A ) UpperCAmelCase__ = shard(_A ) UpperCAmelCase__ = pipeline(_A , _A , _A , _A , jit=_A ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(_A , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5E-1 def lowercase_ (self : Tuple ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) UpperCAmelCase__ = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) UpperCAmelCase__ = jax.random.PRNGKey(0 ) UpperCAmelCase__ = 5_0 UpperCAmelCase__ = jax.device_count() UpperCAmelCase__ = num_samples * [prompt] UpperCAmelCase__ = pipeline.prepare_inputs(_A ) # shard inputs and rng UpperCAmelCase__ = replicate(_A ) UpperCAmelCase__ = jax.random.split(_A , _A ) UpperCAmelCase__ = shard(_A ) UpperCAmelCase__ = pipeline(_A , _A , _A , _A , jit=_A ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(_A , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5E-1 def lowercase_ (self : str ) -> Tuple: """simple docstring""" UpperCAmelCase__ = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , set_alpha_to_one=_A , steps_offset=1 , ) UpperCAmelCase__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=_A , safety_checker=_A , ) UpperCAmelCase__ = scheduler.create_state() UpperCAmelCase__ = scheduler_state UpperCAmelCase__ = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) UpperCAmelCase__ = jax.random.PRNGKey(0 ) UpperCAmelCase__ = 5_0 UpperCAmelCase__ = jax.device_count() UpperCAmelCase__ = num_samples * [prompt] UpperCAmelCase__ = pipeline.prepare_inputs(_A ) # shard inputs and rng UpperCAmelCase__ = replicate(_A ) UpperCAmelCase__ = jax.random.split(_A , _A ) UpperCAmelCase__ = shard(_A ) UpperCAmelCase__ = pipeline(_A , _A , _A , _A , jit=_A ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1E-3 assert np.abs((np.abs(_A , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5E-1 def lowercase_ (self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) UpperCAmelCase__ = jax.device_count() UpperCAmelCase__ = num_samples * [prompt] UpperCAmelCase__ = jax.random.split(jax.random.PRNGKey(0 ) , _A ) UpperCAmelCase__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=_A , ) UpperCAmelCase__ = replicate(_A ) UpperCAmelCase__ = pipeline.prepare_inputs(_A ) UpperCAmelCase__ = shard(_A ) UpperCAmelCase__ = pipeline(_A , _A , _A , jit=_A ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) UpperCAmelCase__ = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention UpperCAmelCase__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=_A , use_memory_efficient_attention=_A , ) UpperCAmelCase__ = replicate(_A ) UpperCAmelCase__ = pipeline.prepare_inputs(_A ) UpperCAmelCase__ = shard(_A ) UpperCAmelCase__ = pipeline(_A , _A , _A , jit=_A ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) UpperCAmelCase__ = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
486
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCAmelCase :Dict = datasets.utils.logging.get_logger(__name__) class _lowerCamelCase ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' A_ : bool = None A_ : bool = None class _lowerCamelCase ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' A_ : Union[str, Any] = datasets.Audio() A_ : Tuple = """audio""" A_ : Optional[Any] = AudioFolderConfig A_ : List[str] # definition at the bottom of the script A_ : Any = AudioClassification(audio_column="""audio""" , label_column="""label""" ) lowerCAmelCase :List[str] = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] lowerCAmelCase :str = AUDIO_EXTENSIONS
561
0
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __lowerCAmelCase ( enum.Enum ): snake_case : Tuple = 0 snake_case : Dict = 1 snake_case : Tuple = 2 @add_end_docstrings(__a ) class __lowerCAmelCase ( __a ): snake_case : Optional[int] = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ): super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _UpperCAmelCase : int = None if self.model.config.prefix is not None: _UpperCAmelCase : Any = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _UpperCAmelCase : Union[str, Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _UpperCAmelCase : Union[str, Any] = self._sanitize_parameters(prefix=lowerCAmelCase__ , **self._forward_params ) _UpperCAmelCase : Any = {**self._preprocess_params, **preprocess_params} _UpperCAmelCase : int = {**self._forward_params, **forward_params} def snake_case_ (self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ , ): _UpperCAmelCase : Optional[int] = {} if prefix is not None: _UpperCAmelCase : Any = prefix if prefix: _UpperCAmelCase : str = self.tokenizer( lowerCAmelCase__ , padding=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=self.framework ) _UpperCAmelCase : Optional[int] = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" """ [None, 'hole']""" ) _UpperCAmelCase : Optional[Any] = handle_long_generation preprocess_params.update(lowerCAmelCase__ ) _UpperCAmelCase : Dict = generate_kwargs _UpperCAmelCase : Optional[Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""" ) if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""" ) _UpperCAmelCase : Any = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""" ) _UpperCAmelCase : Union[str, Any] = ReturnType.TENSORS if return_type is not None: _UpperCAmelCase : Tuple = return_type if clean_up_tokenization_spaces is not None: _UpperCAmelCase : Union[str, Any] = clean_up_tokenization_spaces if stop_sequence is not None: _UpperCAmelCase : Optional[Any] = self.tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) _UpperCAmelCase : Union[str, Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def snake_case_ (self , *lowerCAmelCase__ , **lowerCAmelCase__ ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True} ) return super()._parse_and_tokenize(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __call__(self , lowerCAmelCase__ , **lowerCAmelCase__ ): return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__="" , lowerCAmelCase__=None , **lowerCAmelCase__ ): _UpperCAmelCase : List[str] = self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=self.framework ) _UpperCAmelCase : Dict = prompt_text if handle_long_generation == "hole": _UpperCAmelCase : List[Any] = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: _UpperCAmelCase : List[Any] = generate_kwargs["""max_new_tokens"""] else: _UpperCAmelCase : Optional[Any] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""" ) if cur_len + new_tokens > self.tokenizer.model_max_length: _UpperCAmelCase : List[Any] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""" ) _UpperCAmelCase : List[str] = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: _UpperCAmelCase : int = inputs["""attention_mask"""][:, -keep_length:] return inputs def snake_case_ (self , lowerCAmelCase__ , **lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = model_inputs["""input_ids"""] _UpperCAmelCase : List[str] = model_inputs.get("""attention_mask""" , lowerCAmelCase__ ) # Allow empty prompts if input_ids.shape[1] == 0: _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : List[Any] = None _UpperCAmelCase : List[Any] = 1 else: _UpperCAmelCase : str = input_ids.shape[0] _UpperCAmelCase : int = model_inputs.pop("""prompt_text""" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _UpperCAmelCase : Any = generate_kwargs.pop("""prefix_length""" , 0 ) if prefix_length > 0: _UpperCAmelCase : int = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: _UpperCAmelCase : Optional[Any] = generate_kwargs.get("""max_length""" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _UpperCAmelCase : Dict = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _UpperCAmelCase : int = self.model.generate(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = generated_sequence.shape[0] if self.framework == "pt": _UpperCAmelCase : Dict = generated_sequence.reshape(lowerCAmelCase__ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _UpperCAmelCase : Any = tf.reshape(lowerCAmelCase__ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__=ReturnType.FULL_TEXT , lowerCAmelCase__=True ): _UpperCAmelCase : Union[str, Any] = model_outputs["""generated_sequence"""][0] _UpperCAmelCase : int = model_outputs["""input_ids"""] _UpperCAmelCase : Tuple = model_outputs["""prompt_text"""] _UpperCAmelCase : str = generated_sequence.numpy().tolist() _UpperCAmelCase : Any = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _UpperCAmelCase : str = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _UpperCAmelCase : Tuple = self.tokenizer.decode( lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _UpperCAmelCase : Optional[Any] = 0 else: _UpperCAmelCase : Optional[Any] = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ , ) ) if return_type == ReturnType.FULL_TEXT: _UpperCAmelCase : Optional[int] = prompt_text + text[prompt_length:] else: _UpperCAmelCase : Optional[Any] = text[prompt_length:] _UpperCAmelCase : int = {"""generated_text""": all_text} records.append(lowerCAmelCase__ ) return records
716
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ : List[str] = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[Any] = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Dict = ['''LayoutLMv2FeatureExtractor'''] lowerCAmelCase_ : str = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Any = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys lowerCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
156
0
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness a = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' a = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' a = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' a = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' a = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[Any] ): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , ) def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str]=[1, 10, 100] , _UpperCAmelCase : str=4 , _UpperCAmelCase : Union[str, Any]=3.0 ): if os.getenv('HF_ALLOW_CODE_EVAL' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=_UpperCAmelCase ) as executor: _A = [] _A = Counter() _A = 0 _A = defaultdict(_UpperCAmelCase ) for task_id, (candidates, test_case) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase ) ): for candidate in candidates: _A = candidate + '\n' + test_case _A = (test_program, timeout, task_id, completion_id[task_id]) _A = executor.submit(_UpperCAmelCase , *_UpperCAmelCase ) futures.append(_UpperCAmelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(_UpperCAmelCase ): _A = future.result() results[result["task_id"]].append((result['completion_id'], result) ) _A , _A = [], [] for result in results.values(): result.sort() _A = [r[1]['passed'] for r in result] total.append(len(_UpperCAmelCase ) ) correct.append(sum(_UpperCAmelCase ) ) _A = np.array(_UpperCAmelCase ) _A = np.array(_UpperCAmelCase ) _A = k _A = {F'''pass@{k}''': estimate_pass_at_k(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _snake_case ( _snake_case : Tuple , _snake_case : int , _snake_case : int ) -> int: '''simple docstring''' def estimator(_snake_case : int , _snake_case : int , _snake_case : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(_snake_case , _snake_case ): _A = itertools.repeat(_snake_case , len(_snake_case ) ) else: assert len(_snake_case ) == len(_snake_case ) _A = iter(_snake_case ) return np.array([estimator(int(_snake_case ) , int(_snake_case ) , _snake_case ) for n, c in zip(_snake_case , _snake_case )] )
7
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class lowerCamelCase : """simple docstring""" def __init__( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str]=14 , __magic_name__ : Dict=7 , __magic_name__ : Optional[Any]=True , __magic_name__ : List[str]=True , __magic_name__ : List[Any]=False , __magic_name__ : Union[str, Any]=True , __magic_name__ : List[str]=99 , __magic_name__ : Any=32 , __magic_name__ : Optional[Any]=4 , __magic_name__ : str=4 , __magic_name__ : Optional[int]=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Optional[int]=512 , __magic_name__ : int=0.02 , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_input_mask SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = rotary_dim SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = vocab_size - 1 SCREAMING_SNAKE_CASE_ = vocab_size - 1 SCREAMING_SNAKE_CASE_ = vocab_size - 1 def __A ( self : Dict ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__magic_name__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def __A ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def __A ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Any ) -> int: SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = model_class_name(__magic_name__ ) SCREAMING_SNAKE_CASE_ = model.init_cache(input_ids.shape[0] , __magic_name__ ) SCREAMING_SNAKE_CASE_ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4" ) SCREAMING_SNAKE_CASE_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE_ = model( input_ids[:, :-1] , attention_mask=__magic_name__ , past_key_values=__magic_name__ , position_ids=__magic_name__ , ) SCREAMING_SNAKE_CASE_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) SCREAMING_SNAKE_CASE_ = model( input_ids[:, -1:] , attention_mask=__magic_name__ , past_key_values=outputs_cache.past_key_values , position_ids=__magic_name__ , ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) SCREAMING_SNAKE_CASE_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''' ) def __A ( self : Optional[int] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = model_class_name(__magic_name__ ) SCREAMING_SNAKE_CASE_ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) SCREAMING_SNAKE_CASE_ = model.init_cache(input_ids.shape[0] , __magic_name__ ) SCREAMING_SNAKE_CASE_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE_ = model( input_ids[:, :-1] , attention_mask=__magic_name__ , past_key_values=__magic_name__ , position_ids=__magic_name__ , ) SCREAMING_SNAKE_CASE_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) SCREAMING_SNAKE_CASE_ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__magic_name__ , position_ids=__magic_name__ , ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , attention_mask=__magic_name__ ) SCREAMING_SNAKE_CASE_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''' ) @require_flax class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowerCamelCase__ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __A ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = FlaxGPTJModelTester(self ) def __A ( self : Tuple ) -> List[str]: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def __A ( self : List[str] ) -> Union[str, Any]: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @tooslow def __A ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left" ) SCREAMING_SNAKE_CASE_ = tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=__magic_name__ , truncation=__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = model.config.eos_token_id SCREAMING_SNAKE_CASE_ = jax.jit(model.generate ) SCREAMING_SNAKE_CASE_ = jit_generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id ).sequences SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [ "Hello this is a long string of text.\n\nI'm trying to get the text of the", "Hey, I'm a little late to the party. I'm going to", ] self.assertListEqual(__magic_name__ , __magic_name__ ) @is_pt_flax_cross_test def __A ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE_ = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_ = getattr(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = pt_inputs["input_ids"].shape SCREAMING_SNAKE_CASE_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__magic_name__ ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = pt_model_class(__magic_name__ ).eval() SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __magic_name__ ) SCREAMING_SNAKE_CASE_ = fx_state with torch.no_grad(): SCREAMING_SNAKE_CASE_ = pt_model(**__magic_name__ ).to_tuple() SCREAMING_SNAKE_CASE_ = fx_model(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(__magic_name__ , __magic_name__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = model_class.from_pretrained(__magic_name__ , from_pt=__magic_name__ ) SCREAMING_SNAKE_CASE_ = fx_model_loaded(**__magic_name__ ).to_tuple() self.assertEqual( len(__magic_name__ ) , len(__magic_name__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(__magic_name__ , __magic_name__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def __A ( self : str ) -> str: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE_ = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_ = getattr(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = pt_model_class(__magic_name__ ).eval() SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ = load_flax_weights_in_pytorch_model(__magic_name__ , fx_model.params ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = pt_inputs["input_ids"].shape SCREAMING_SNAKE_CASE_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__magic_name__ ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = pt_model(**__magic_name__ ).to_tuple() SCREAMING_SNAKE_CASE_ = fx_model(**__magic_name__ ).to_tuple() self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(__magic_name__ , __magic_name__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = pt_model_class.from_pretrained(__magic_name__ , from_flax=__magic_name__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = pt_model_loaded(**__magic_name__ ).to_tuple() self.assertEqual( len(__magic_name__ ) , len(__magic_name__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(__magic_name__ , __magic_name__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def __A ( self : Optional[int] ) -> str: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" ) SCREAMING_SNAKE_CASE_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ )
140
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers _A = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def lowercase_ ( ) -> List[Any]: lowerCAmelCase__ : int = os.path.dirname(os.path.realpath(__UpperCAmelCase ) ) lowerCAmelCase__ : Union[str, Any] = os.path.join(__UpperCAmelCase , """words.txt""" ) lowerCAmelCase__ : Tuple = """""" with open(__UpperCAmelCase ) as f: lowerCAmelCase__ : Tuple = f.readline() lowerCAmelCase__ : int = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] lowerCAmelCase__ : Dict = [ word for word in [sum(ord(__UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__UpperCAmelCase ) if __name__ == "__main__": print(solution())
507
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar _A = TypeVar("""_T""") class _lowerCamelCase ( Generic[_T] ): def __init__( self : Optional[Any] , UpperCamelCase : Iterable[_T] | None = None ) -> None: """simple docstring""" lowerCAmelCase__ : list[_T] = list(iterable or [] ) lowerCAmelCase__ : list[_T] = [] def __len__( self : str ) -> int: """simple docstring""" return len(self._stacka ) + len(self._stacka ) def __repr__( self : Tuple ) -> str: """simple docstring""" return f"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def _lowerCAmelCase ( self : Tuple , UpperCamelCase : _T ) -> None: """simple docstring""" self._stacka.append(UpperCamelCase ) def _lowerCAmelCase ( self : Union[str, Any] ) -> _T: """simple docstring""" lowerCAmelCase__ : Dict = self._stacka.pop lowerCAmelCase__ : int = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("""Queue is empty""" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
507
1
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : Optional[int] = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } a__ : List[Any] = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } a__ : Any = '''</w>''' a__ : List[str] = '''@@ ''' def __lowerCamelCase ( UpperCAmelCase_ ) ->List[Any]: snake_case__ = set() snake_case__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ = char return pairs # Speech2Text2 has no max input length a__ : Tuple = {'''facebook/s2t-wav2vec2-large-en-de''': 1024} class __snake_case ( __magic_name__ ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="<pad>" , UpperCamelCase_="</s>" , UpperCamelCase_="<unk>" , UpperCamelCase_=False , UpperCamelCase_=None , **UpperCamelCase_ , ) -> Optional[int]: super().__init__( unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , **UpperCamelCase_ , ) snake_case__ = do_lower_case with open(UpperCamelCase_ , encoding='utf-8' ) as vocab_handle: snake_case__ = json.load(UpperCamelCase_ ) snake_case__ = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) snake_case__ = None snake_case__ = None else: with open(UpperCamelCase_ , encoding='utf-8' ) as merges_handle: snake_case__ = merges_handle.read().split('\n' )[:-1] snake_case__ = [tuple(merge.split()[:2] ) for merge in merges] snake_case__ = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) snake_case__ = {} @property def _snake_case ( self ) -> int: return len(self.decoder ) def _snake_case ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ) -> Union[str, Any]: snake_case__ = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] snake_case__ = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: snake_case__ = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break snake_case__ , snake_case__ = bigram snake_case__ = [] snake_case__ = 0 while i < len(UpperCamelCase_ ): try: snake_case__ = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ = tuple(UpperCamelCase_ ) snake_case__ = new_word if len(UpperCamelCase_ ) == 1: break else: snake_case__ = get_pairs(UpperCamelCase_ ) snake_case__ = ' '.join(UpperCamelCase_ ) if word == "\n " + BPE_TOKEN_MERGES: snake_case__ = '\n' + BPE_TOKEN_MERGES if word.endswith(UpperCamelCase_ ): snake_case__ = word.replace(UpperCamelCase_ , '' ) snake_case__ = word.replace(' ' , UpperCamelCase_ ) snake_case__ = word return word def _snake_case ( self , UpperCamelCase_ ) -> int: if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: snake_case__ = text.lower() snake_case__ = text.split() snake_case__ = [] for token in text: if token: split_tokens.extend(list(self.bpe(UpperCamelCase_ ).split(' ' ) ) ) return split_tokens def _snake_case ( self , UpperCamelCase_ ) -> int: return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ) -> str: snake_case__ = self.decoder.get(UpperCamelCase_ , self.unk_token ) return result def _snake_case ( self , UpperCamelCase_ ) -> str: snake_case__ = ' '.join(UpperCamelCase_ ) # make sure @@ tokens are concatenated snake_case__ = ''.join(string.split(UpperCamelCase_ ) ) return string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ = os.path.join( UpperCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) snake_case__ = os.path.join( UpperCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + '\n' ) snake_case__ = 0 if self.bpe_ranks is None: return (vocab_file,) with open(UpperCamelCase_ , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) snake_case__ = token_index writer.write(' '.join(UpperCamelCase_ ) + '\n' ) index += 1 return (vocab_file, merges_file)
368
'''simple docstring''' from math import loga def __lowerCamelCase ( UpperCAmelCase_ ) ->int: if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError('Input value must be a \'int\' type' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
368
1
def _A( UpperCamelCase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' stooge(UpperCamelCase__ , 0 , len(UpperCamelCase__ ) - 1 ) return arr def _A( UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Any ) -> Union[str, Any]: '''simple docstring''' if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: __lowercase , __lowercase = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: __lowercase = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(UpperCamelCase__ , UpperCamelCase__ , (h - t) ) # Recursively sort last 2/3 elements stooge(UpperCamelCase__ , i + t , (UpperCamelCase__) ) # Recursively sort first 2/3 elements stooge(UpperCamelCase__ , UpperCamelCase__ , (h - t) ) if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
362
import argparse import copy def _A( UpperCamelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' __lowercase = {} with open(UpperCamelCase__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __lowercase = [] _list.append([line.split()[1], line.split()[2]] ) __lowercase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __lowercase = [] _list.append([line.split()[0], line.split()[2]] ) __lowercase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def _A( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ) -> Dict: '''simple docstring''' with open(UpperCamelCase__ ) as f: __lowercase = f.read(1 ) __lowercase = start_node __lowercase = [] __lowercase = start_node __lowercase = 0 while visiting not in first_solution: __lowercase = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(UpperCamelCase__ ) and k[0] not in first_solution: __lowercase = k[1] __lowercase = k[0] first_solution.append(UpperCamelCase__ ) __lowercase = distance_of_first_solution + int(UpperCamelCase__ ) __lowercase = best_node first_solution.append(UpperCamelCase__ ) __lowercase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __lowercase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def _A( UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' __lowercase = [] for n in solution[1:-1]: __lowercase = solution.index(UpperCamelCase__ ) for kn in solution[1:-1]: __lowercase = solution.index(UpperCamelCase__ ) if n == kn: continue __lowercase = copy.deepcopy(UpperCamelCase__ ) __lowercase = kn __lowercase = n __lowercase = 0 for k in _tmp[:-1]: __lowercase = _tmp[_tmp.index(UpperCamelCase__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __lowercase = distance + int(i[1] ) _tmp.append(UpperCamelCase__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __lowercase = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda UpperCamelCase__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def _A( UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ) -> List[str]: '''simple docstring''' __lowercase = 1 __lowercase = first_solution __lowercase = [] __lowercase = distance_of_first_solution __lowercase = solution while count <= iters: __lowercase = find_neighborhood(UpperCamelCase__ , UpperCamelCase__ ) __lowercase = 0 __lowercase = neighborhood[index_of_best_solution] __lowercase = len(UpperCamelCase__ ) - 1 __lowercase = False while not found: __lowercase = 0 while i < len(UpperCamelCase__ ): if best_solution[i] != solution[i]: __lowercase = best_solution[i] __lowercase = solution[i] break __lowercase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __lowercase = True __lowercase = best_solution[:-1] __lowercase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __lowercase = cost __lowercase = solution else: __lowercase = index_of_best_solution + 1 __lowercase = neighborhood[index_of_best_solution] if len(UpperCamelCase__ ) >= size: tabu_list.pop(0 ) __lowercase = count + 1 return best_solution_ever, best_cost def _A( UpperCamelCase__ : List[Any]=None ) -> int: '''simple docstring''' __lowercase = generate_neighbours(args.File ) __lowercase , __lowercase = generate_first_solution( args.File , UpperCamelCase__ ) __lowercase , __lowercase = tabu_search( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , args.Iterations , args.Size , ) print(F'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
362
1