source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(stream, filename, metadata, access_token, base_url=OH_BASE_URL, remote_file_info=None, project_member_id=None, max_bytes= MAX_FILE_DEFAULT, file_identifier=None): if not file_identifier: file_identifier = filename old_position = stream.tell() stream.seek(0, os.SEEK_END) filesize = stream.tell() stream.seek(old_position, os.SEEK_SET) if filesize == 0: raise Exception('The submitted file is empty.') if _exceeds_size(filesize, max_bytes, file_identifier): raise ValueError('Maximum file size exceeded') if remote_file_info: response = requests.get(remote_file_info['download_url'], stream=True) remote_size = int(response.headers['Content-Length']) if remote_size == filesize: info_msg = ('Skipping {}, remote exists with matching file size' .format(file_identifier)) logging.info(info_msg) return info_msg url = urlparse.urljoin(base_url, '/api/direct-sharing/project/files/upload/direct/?{}'.format( urlparse.urlencode({'access_token': access_token}))) if not project_member_id: response = exchange_oauth2_member(access_token, base_url=base_url) project_member_id = response['project_member_id'] data = {'project_member_id': project_member_id, 'metadata': json.dumps( metadata), 'filename': filename} r1 = requests.post(url, data=data) handle_error(r1, 201) r2 = requests.put(url=r1.json()['url'], data=stream) handle_error(r2, 200) done = urlparse.urljoin(base_url, '/api/direct-sharing/project/files/upload/complete/?{}'.format( urlparse.urlencode({'access_token': access_token}))) r3 = requests.post(done, data={'project_member_id': project_member_id, 'file_id': r1.json()['id']}) handle_error(r3, 200) logging.info('Upload complete: {}'.format(file_identifier)) return r3
upload_stream
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(stream, filename, metadata, access_token, base_url=OH_BASE_URL,\n remote_file_info=None, project_member_id=None, max_bytes=\n MAX_FILE_DEFAULT, file_identifier=None):\n if not file_identifier:\n file_identifier = filename\n old_position = stream.tell()\n stream.seek(0, os.SEEK_END)\n filesize = stream.tell()\n stream.seek(old_position, os.SEEK_SET)\n if filesize == 0:\n raise Exception('The submitted file is empty.')\n if _exceeds_size(filesize, max_bytes, file_identifier):\n raise ValueError('Maximum file size exceeded')\n if remote_file_info:\n response = requests.get(remote_file_info['download_url'], stream=True)\n remote_size = int(response.headers['Content-Length'])\n if remote_size == filesize:\n info_msg = ('Skipping {}, remote exists with matching file size'\n .format(file_identifier))\n logging.info(info_msg)\n return info_msg\n url = urlparse.urljoin(base_url,\n '/api/direct-sharing/project/files/upload/direct/?{}'.format(\n urlparse.urlencode({'access_token': access_token})))\n if not project_member_id:\n response = exchange_oauth2_member(access_token, base_url=base_url)\n project_member_id = response['project_member_id']\n data = {'project_member_id': project_member_id, 'metadata': json.dumps(\n metadata), 'filename': filename}\n r1 = requests.post(url, data=data)\n handle_error(r1, 201)\n r2 = requests.put(url=r1.json()['url'], data=stream)\n handle_error(r2, 200)\n done = urlparse.urljoin(base_url,\n '/api/direct-sharing/project/files/upload/complete/?{}'.format(\n urlparse.urlencode({'access_token': access_token})))\n r3 = requests.post(done, data={'project_member_id': project_member_id,\n 'file_id': r1.json()['id']})\n handle_error(r3, 200)\n logging.info('Upload complete: {}'.format(file_identifier))\n return r3\n", "role": "user" }, { "content": "upload_stream", "role": "assistant" } ]
def x(target_filepath, metadata, access_token, base_url=OH_BASE_URL, remote_file_info=None, project_member_id=None, max_bytes=MAX_FILE_DEFAULT): with open(target_filepath, 'rb') as stream: filename = os.path.basename(target_filepath) return upload_stream(stream, filename, metadata, access_token, base_url, remote_file_info, project_member_id, max_bytes, file_identifier=target_filepath)
upload_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(target_filepath, metadata, access_token, base_url=OH_BASE_URL,\n remote_file_info=None, project_member_id=None, max_bytes=MAX_FILE_DEFAULT):\n with open(target_filepath, 'rb') as stream:\n filename = os.path.basename(target_filepath)\n return upload_stream(stream, filename, metadata, access_token,\n base_url, remote_file_info, project_member_id, max_bytes,\n file_identifier=target_filepath)\n", "role": "user" }, { "content": "upload_file", "role": "assistant" } ]
def x(target_filepath, metadata, access_token, base_url=OH_BASE_URL, remote_file_info=None, project_member_id=None, max_bytes=MAX_FILE_DEFAULT): return upload_file(target_filepath, metadata, access_token, base_url, remote_file_info, project_member_id, max_bytes)
upload_aws
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(target_filepath, metadata, access_token, base_url=OH_BASE_URL,\n remote_file_info=None, project_member_id=None, max_bytes=MAX_FILE_DEFAULT):\n return upload_file(target_filepath, metadata, access_token, base_url,\n remote_file_info, project_member_id, max_bytes)\n", "role": "user" }, { "content": "upload_aws", "role": "assistant" } ]
def x(from_, pack_type): if len(from_) == 0: return bytes() if pack_type == 'c': if isinstance(from_, bytes): from_ = [six.int2byte(b) for b in six.iterbytes(from_)] elif isinstance(from_, six.string_types): from_ = [six.int2byte(b) for b in bytearray(from_, 'utf-8')] elif isinstance(from_[0], six.integer_types): def x(v): for _ in range(4): v, r = divmod(v, 256) yield r from_ = [six.int2byte(b) for i in from_ for b in to_bytes(i)] if isinstance(pack_type, six.string_types): return struct.pack('=' + pack_type * len(from_), *from_) else: buf = six.BytesIO() for item in from_: if isinstance(item, Protobj) and hasattr(item, 'pack'): buf.write(item.pack()) else: buf.write(item) return buf.getvalue()
pack_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(from_, pack_type):\n if len(from_) == 0:\n return bytes()\n if pack_type == 'c':\n if isinstance(from_, bytes):\n from_ = [six.int2byte(b) for b in six.iterbytes(from_)]\n elif isinstance(from_, six.string_types):\n from_ = [six.int2byte(b) for b in bytearray(from_, 'utf-8')]\n elif isinstance(from_[0], six.integer_types):\n\n def x(v):\n for _ in range(4):\n v, r = divmod(v, 256)\n yield r\n from_ = [six.int2byte(b) for i in from_ for b in to_bytes(i)]\n if isinstance(pack_type, six.string_types):\n return struct.pack('=' + pack_type * len(from_), *from_)\n else:\n buf = six.BytesIO()\n for item in from_:\n if isinstance(item, Protobj) and hasattr(item, 'pack'):\n buf.write(item.pack())\n else:\n buf.write(item)\n return buf.getvalue()\n", "role": "user" }, { "content": "pack_list", "role": "assistant" } ]
def x(f): @functools.wraps(f) def x(*args): self = args[0] self.invalid() try: return f(*args) finally: self.invalid() return wrapper
ensure_connected
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f):\n\n @functools.wraps(f)\n def x(*args):\n self = args[0]\n self.invalid()\n try:\n return f(*args)\n finally:\n self.invalid()\n return wrapper\n", "role": "user" }, { "content": "ensure_connected", "role": "assistant" } ]
def x(self): root_iter = lib.xcb_setup_roots_iterator(self._setup) screens = [root_iter.data] for i in range(self._setup.roots_len - 1): lib.xcb_screen_next(ffi.addressof(root_iter)) screens.append(root_iter.data) return screens
get_screen_pointers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n root_iter = lib.xcb_setup_roots_iterator(self._setup)\n screens = [root_iter.data]\n for i in range(self._setup.roots_len - 1):\n lib.xcb_screen_next(ffi.addressof(root_iter))\n screens.append(root_iter.data)\n return screens\n", "role": "user" }, { "content": "get_screen_pointers", "role": "assistant" } ]
def x(self, e): if e.response_type == 0: return self._process_error(ffi.cast('xcb_generic_error_t *', e)) event = self._event_offsets[e.response_type & 127] buf = CffiUnpacker(e) return event(buf)
hoist_event
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, e):\n if e.response_type == 0:\n return self._process_error(ffi.cast('xcb_generic_error_t *', e))\n event = self._event_offsets[e.response_type & 127]\n buf = CffiUnpacker(e)\n return event(buf)\n", "role": "user" }, { "content": "hoist_event", "role": "assistant" } ]
def x(self, value, greedy=True): if greedy and not isinstance(value, Column): value = self.normalize(value) if isinstance(value, Column): return value.id else: return value
serialize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value, greedy=True):\n if greedy and not isinstance(value, Column):\n value = self.normalize(value)\n if isinstance(value, Column):\n return value.id\n else:\n return value\n", "role": "user" }, { "content": "serialize", "role": "assistant" } ]
def x(profile, description): api_type = description.pop('type', 'core') api = getattr(profile, api_type) return refine(api.query, description)
describe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(profile, description):\n api_type = description.pop('type', 'core')\n api = getattr(profile, api_type)\n return refine(api.query, description)\n", "role": "user" }, { "content": "describe", "role": "assistant" } ]
def x(query, description): for attribute, arguments in description.items(): if hasattr(query, attribute): attribute = getattr(query, attribute) else: raise ValueError('Unknown query method: ' + attribute) if utils.isempty(arguments): continue if callable(attribute): method = attribute if isinstance(arguments, dict): query = method(**arguments) elif isinstance(arguments, list): query = method(*arguments) else: query = method(arguments) else: setattr(attribute, arguments) return query
refine
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(query, description):\n for attribute, arguments in description.items():\n if hasattr(query, attribute):\n attribute = getattr(query, attribute)\n else:\n raise ValueError('Unknown query method: ' + attribute)\n if utils.isempty(arguments):\n continue\n if callable(attribute):\n method = attribute\n if isinstance(arguments, dict):\n query = method(**arguments)\n elif isinstance(arguments, list):\n query = method(*arguments)\n else:\n query = method(arguments)\n else:\n setattr(attribute, arguments)\n return query\n", "role": "user" }, { "content": "refine", "role": "assistant" } ]
def x(self, key=None, value=None, **kwargs): serialize = partial(self.api.columns.serialize, greedy=False) if key and value: self.raw[key] = serialize(value) elif key or kwargs: properties = key or kwargs for key, value in properties.items(): self.raw[key] = serialize(value) else: raise ValueError( 'Query#set requires a key and value, a properties dictionary or keyword arguments.' ) return self
set
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key=None, value=None, **kwargs):\n serialize = partial(self.api.columns.serialize, greedy=False)\n if key and value:\n self.raw[key] = serialize(value)\n elif key or kwargs:\n properties = key or kwargs\n for key, value in properties.items():\n self.raw[key] = serialize(value)\n else:\n raise ValueError(\n 'Query#set requires a key and value, a properties dictionary or keyword arguments.'\n )\n return self\n", "role": "user" }, { "content": "set", "role": "assistant" } ]
def x(self): if 'metrics' in self.raw: metrics = self.raw['metrics'] head = metrics[0:-1] or metrics[0:1] text = ', '.join(head) if len(metrics) > 1: tail = metrics[-1] text = text + ' and ' + tail else: text = 'n/a' return text
description
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if 'metrics' in self.raw:\n metrics = self.raw['metrics']\n head = metrics[0:-1] or metrics[0:1]\n text = ', '.join(head)\n if len(metrics) > 1:\n tail = metrics[-1]\n text = text + ' and ' + tail\n else:\n text = 'n/a'\n return text\n", "role": "user" }, { "content": "description", "role": "assistant" } ]
def x(self, *columns, **options): sorts = self.meta.setdefault('sort', []) for column in columns: if isinstance(column, Column): identifier = column.id elif isinstance(column, utils.basestring): descending = column.startswith('-') or options.get('descending', False) identifier = self.api.columns[column.lstrip('-')].id else: raise ValueError( 'Can only sort on columns or column strings. Received: {}'. format(column)) if descending: sign = '-' else: sign = '' sorts.append(sign + identifier) self.raw['sort'] = ','.join(sorts) return self
sort
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *columns, **options):\n sorts = self.meta.setdefault('sort', [])\n for column in columns:\n if isinstance(column, Column):\n identifier = column.id\n elif isinstance(column, utils.basestring):\n descending = column.startswith('-') or options.get('descending',\n False)\n identifier = self.api.columns[column.lstrip('-')].id\n else:\n raise ValueError(\n 'Can only sort on columns or column strings. Received: {}'.\n format(column))\n if descending:\n sign = '-'\n else:\n sign = ''\n sorts.append(sign + identifier)\n self.raw['sort'] = ','.join(sorts)\n return self\n", "role": "user" }, { "content": "sort", "role": "assistant" } ]
def x(self, value=None, exclude=False, **selection): filters = self.meta.setdefault('filters', []) if value and len(selection): raise ValueError( 'Cannot specify a filter string and a filter keyword selection at the same time.' ) elif value: value = [value] elif len(selection): value = select(self.api.columns, selection, invert=exclude) filters.append(value) self.raw['filters'] = utils.paste(filters, ',', ';') return self
filter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value=None, exclude=False, **selection):\n filters = self.meta.setdefault('filters', [])\n if value and len(selection):\n raise ValueError(\n 'Cannot specify a filter string and a filter keyword selection at the same time.'\n )\n elif value:\n value = [value]\n elif len(selection):\n value = select(self.api.columns, selection, invert=exclude)\n filters.append(value)\n self.raw['filters'] = utils.paste(filters, ',', ';')\n return self\n", "role": "user" }, { "content": "filter", "role": "assistant" } ]
def x(self, precision): if isinstance(precision, int): precision = self.PRECISION_LEVELS[precision] if precision not in self.PRECISION_LEVELS: levels = ', '.join(self.PRECISION_LEVELS) raise ValueError('Precision should be one of: ' + levels) if precision != 'DEFAULT': self.raw.update({'samplingLevel': precision}) return self
precision
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, precision):\n if isinstance(precision, int):\n precision = self.PRECISION_LEVELS[precision]\n if precision not in self.PRECISION_LEVELS:\n levels = ', '.join(self.PRECISION_LEVELS)\n raise ValueError('Precision should be one of: ' + levels)\n if precision != 'DEFAULT':\n self.raw.update({'samplingLevel': precision})\n return self\n", "role": "user" }, { "content": "precision", "role": "assistant" } ]
def x(self, granularity): if granularity == 'total': return self if not isinstance(granularity, int): if granularity in self.GRANULARITY_LEVELS: granularity = self.GRANULARITY_LEVELS.index(granularity) else: levels = ', '.join(self.GRANULARITY_LEVELS) raise ValueError('Granularity should be one of: lifetime, ' + levels) dimension = self.GRANULARITY_DIMENSIONS[granularity] self.raw['dimensions'].insert(0, dimension) return self
interval
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, granularity):\n if granularity == 'total':\n return self\n if not isinstance(granularity, int):\n if granularity in self.GRANULARITY_LEVELS:\n granularity = self.GRANULARITY_LEVELS.index(granularity)\n else:\n levels = ', '.join(self.GRANULARITY_LEVELS)\n raise ValueError('Granularity should be one of: lifetime, ' +\n levels)\n dimension = self.GRANULARITY_DIMENSIONS[granularity]\n self.raw['dimensions'].insert(0, dimension)\n return self\n", "role": "user" }, { "content": "interval", "role": "assistant" } ]
def x(self, start=None, stop=None, months=0, days=0): start, stop = utils.date.range(start, stop, months, days) self.raw.update({'start_date': start, 'end_date': stop}) return self
range
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start=None, stop=None, months=0, days=0):\n start, stop = utils.date.range(start, stop, months, days)\n self.raw.update({'start_date': start, 'end_date': stop})\n return self\n", "role": "user" }, { "content": "range", "role": "assistant" } ]
def x(self, *_range): if len(_range) == 2: start, maximum = _range else: start = 1 maximum = _range[0] self.meta['limit'] = maximum self.raw.update({'start_index': start, 'max_results': maximum}) return self
limit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *_range):\n if len(_range) == 2:\n start, maximum = _range\n else:\n start = 1\n maximum = _range[0]\n self.meta['limit'] = maximum\n self.raw.update({'start_index': start, 'max_results': maximum})\n return self\n", "role": "user" }, { "content": "limit", "role": "assistant" } ]
def x(self, value=None, scope=None, metric_scope=None, **selection): """ Technical note to self about segments: * users or sessions * sequence or condition * scope (perHit, perSession, perUser -- gte primary scope) Multiple conditions can be ANDed or ORed together; these two are equivalent users::condition::ga:revenue>10;ga:sessionDuration>60 users::condition::ga:revenue>10;users::condition::ga:sessionDuration>60 For sequences, prepending ^ means the first part of the sequence has to match the first session/hit/... * users and sessions conditions can be combined (but only with AND) * sequences and conditions can also be combined (but only with AND) sessions::sequence::ga:browser==Chrome; condition::perHit::ga:timeOnPage>5 ->> ga:deviceCategory==mobile;ga:revenue>10; users::sequence::ga:deviceCategory==desktop ->> ga:deviceCategory=mobile; ga:revenue>100; condition::ga:browser==Chrome Problem: keyword arguments are passed as a dictionary, not an ordered dictionary! So e.g. this is risky query.sessions(time_on_page__gt=5, device_category='mobile', followed_by=True) """ SCOPES = {'hits': 'perHit', 'sessions': 'perSession', 'users': 'perUser'} segments = self.meta.setdefault('segments', []) if value and len(selection): raise ValueError( 'Cannot specify a filter string and a filter keyword selection at the same time.' ) elif value: value = [self.api.segments.serialize(value)] elif len(selection): if not scope: raise ValueError('Scope is required. Choose from: users, sessions.' ) if metric_scope: metric_scope = SCOPES[metric_scope] value = select(self.api.columns, selection) value = [[scope, 'condition', metric_scope, condition] for condition in value] value = ['::'.join(filter(None, condition)) for condition in value] segments.append(value) self.raw['segment'] = utils.paste(segments, ',', ';') return self
segment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value=None, scope=None, metric_scope=None, **selection):\n \"\"\"\n Technical note to self about segments:\n\n * users or sessions\n * sequence or condition\n * scope (perHit, perSession, perUser -- gte primary scope)\n\n Multiple conditions can be ANDed or ORed together; these two are equivalent\n\n users::condition::ga:revenue>10;ga:sessionDuration>60\n users::condition::ga:revenue>10;users::condition::ga:sessionDuration>60\n\n For sequences, prepending ^ means the first part of the sequence has to match\n the first session/hit/...\n\n * users and sessions conditions can be combined (but only with AND)\n * sequences and conditions can also be combined (but only with AND)\n\n sessions::sequence::ga:browser==Chrome;\n condition::perHit::ga:timeOnPage>5\n ->>\n ga:deviceCategory==mobile;ga:revenue>10;\n\n users::sequence::ga:deviceCategory==desktop\n ->>\n ga:deviceCategory=mobile;\n ga:revenue>100;\n condition::ga:browser==Chrome\n\n Problem: keyword arguments are passed as a dictionary, not an ordered dictionary!\n So e.g. this is risky\n\n query.sessions(time_on_page__gt=5, device_category='mobile', followed_by=True)\n \"\"\"\n SCOPES = {'hits': 'perHit', 'sessions': 'perSession', 'users': 'perUser'}\n segments = self.meta.setdefault('segments', [])\n if value and len(selection):\n raise ValueError(\n 'Cannot specify a filter string and a filter keyword selection at the same time.'\n )\n elif value:\n value = [self.api.segments.serialize(value)]\n elif len(selection):\n if not scope:\n raise ValueError('Scope is required. Choose from: users, sessions.'\n )\n if metric_scope:\n metric_scope = SCOPES[metric_scope]\n value = select(self.api.columns, selection)\n value = [[scope, 'condition', metric_scope, condition] for\n condition in value]\n value = ['::'.join(filter(None, condition)) for condition in value]\n segments.append(value)\n self.raw['segment'] = utils.paste(segments, ',', ';')\n return self\n", "role": "user" }, { "content": "segment", "role": "assistant" } ]
def x(self): step = self.raw.get('max_results', 1000) start = self.raw.get('start_index', 1) + step self.raw['start_index'] = start return self
next
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n step = self.raw.get('max_results', 1000)\n start = self.raw.get('start_index', 1) + step\n self.raw['start_index'] = start\n return self\n", "role": "user" }, { "content": "next", "role": "assistant" } ]
def x(self): cursor = self report = None is_complete = False is_enough = False while not (is_enough or is_complete): chunk = cursor.execute() if report: report.append(chunk.raw[0], cursor) else: report = chunk is_enough = len(report.rows) >= self.meta.get('limit', float('inf')) is_complete = chunk.is_complete cursor = cursor.next() return report
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n cursor = self\n report = None\n is_complete = False\n is_enough = False\n while not (is_enough or is_complete):\n chunk = cursor.execute()\n if report:\n report.append(chunk.raw[0], cursor)\n else:\n report = chunk\n is_enough = len(report.rows) >= self.meta.get('limit', float('inf'))\n is_complete = chunk.is_complete\n cursor = cursor.next()\n return report\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self, maximum): self.meta['limit'] = maximum self.raw.update({'max_results': maximum}) return self
limit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, maximum):\n self.meta['limit'] = maximum\n self.raw.update({'max_results': maximum})\n return self\n", "role": "user" }, { "content": "limit", "role": "assistant" } ]
def x(self): two_legged = self.client_email and self.private_key three_legged = self.client_id and self.client_secret return two_legged or three_legged or False
valid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n two_legged = self.client_email and self.private_key\n three_legged = self.client_id and self.client_secret\n return two_legged or three_legged or False\n", "role": "user" }, { "content": "valid", "role": "assistant" } ]
def x(self): return self.valid and (self.access_token or self.refresh_token or self. type == 2)
complete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return self.valid and (self.access_token or self.refresh_token or self.\n type == 2)\n", "role": "user" }, { "content": "complete", "role": "assistant" } ]
def x(client_id=None, client_secret=None, client_email=None, private_key= None, access_token=None, refresh_token=None, account=None, webproperty= None, profile=None, identity=None, prefix=None, suffix=None, interactive=False, save=False): credentials = oauth.Credentials.find(valid=True, interactive= interactive, prefix=prefix, suffix=suffix, client_id=client_id, client_secret=client_secret, client_email=client_email, private_key =private_key, access_token=access_token, refresh_token= refresh_token, identity=identity) if credentials.incomplete: if interactive: credentials = authorize(client_id=credentials.client_id, client_secret=credentials.client_secret, save=save, identity=credentials.identity, prefix=prefix, suffix=suffix) elif credentials.type == 2: credentials = authorize(client_email=credentials.client_email, private_key=credentials.private_key, identity=credentials. identity, save=save) else: raise KeyError( 'Cannot authenticate: enable interactive authorization, pass a token or use a service account.' ) accounts = oauth.authenticate(credentials) scope = navigate(accounts, account=account, webproperty=webproperty, profile=profile) return scope
authenticate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(client_id=None, client_secret=None, client_email=None, private_key=\n None, access_token=None, refresh_token=None, account=None, webproperty=\n None, profile=None, identity=None, prefix=None, suffix=None,\n interactive=False, save=False):\n credentials = oauth.Credentials.find(valid=True, interactive=\n interactive, prefix=prefix, suffix=suffix, client_id=client_id,\n client_secret=client_secret, client_email=client_email, private_key\n =private_key, access_token=access_token, refresh_token=\n refresh_token, identity=identity)\n if credentials.incomplete:\n if interactive:\n credentials = authorize(client_id=credentials.client_id,\n client_secret=credentials.client_secret, save=save,\n identity=credentials.identity, prefix=prefix, suffix=suffix)\n elif credentials.type == 2:\n credentials = authorize(client_email=credentials.client_email,\n private_key=credentials.private_key, identity=credentials.\n identity, save=save)\n else:\n raise KeyError(\n 'Cannot authenticate: enable interactive authorization, pass a token or use a service account.'\n )\n accounts = oauth.authenticate(credentials)\n scope = navigate(accounts, account=account, webproperty=webproperty,\n profile=profile)\n return scope\n", "role": "user" }, { "content": "authenticate", "role": "assistant" } ]
def x(client_id, client_secret, client_email=None, private_key=None, access_token=None, refresh_token=None, identity=None, prefix=None, suffix=None): if client_email and private_key: raise ValueError('Two-legged OAuth does not use revokable tokens.') credentials = oauth.Credentials.find(complete=True, interactive=False, identity=identity, client_id=client_id, client_secret=client_secret, access_token=access_token, refresh_token=refresh_token, prefix= prefix, suffix=suffix) retval = credentials.revoke() keyring.delete(credentials.identity) return retval
revoke
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(client_id, client_secret, client_email=None, private_key=None,\n access_token=None, refresh_token=None, identity=None, prefix=None,\n suffix=None):\n if client_email and private_key:\n raise ValueError('Two-legged OAuth does not use revokable tokens.')\n credentials = oauth.Credentials.find(complete=True, interactive=False,\n identity=identity, client_id=client_id, client_secret=client_secret,\n access_token=access_token, refresh_token=refresh_token, prefix=\n prefix, suffix=suffix)\n retval = credentials.revoke()\n keyring.delete(credentials.identity)\n return retval\n", "role": "user" }, { "content": "revoke", "role": "assistant" } ]
def x(scope, blueprint, debug, output, with_metadata, realtime, **description): if realtime: description['type'] = 'realtime' if blueprint: queries = from_blueprint(scope, blueprint) else: if not isinstance(scope, ga.account.Profile): raise ValueError('Account and webproperty needed for query.') queries = from_args(scope, **description) for query in queries: if debug: click.echo(query.build()) report = query.serialize(format=output, with_metadata=with_metadata) click.echo(report)
query
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(scope, blueprint, debug, output, with_metadata, realtime, **description):\n if realtime:\n description['type'] = 'realtime'\n if blueprint:\n queries = from_blueprint(scope, blueprint)\n else:\n if not isinstance(scope, ga.account.Profile):\n raise ValueError('Account and webproperty needed for query.')\n queries = from_args(scope, **description)\n for query in queries:\n if debug:\n click.echo(query.build())\n report = query.serialize(format=output, with_metadata=with_metadata)\n click.echo(report)\n", "role": "user" }, { "content": "query", "role": "assistant" } ]
def x(fn): @functools.wraps(fn) def x(self, values, *vargs, **kwargs): wrap = not isinstance(values, (list, tuple)) should_unwrap = not kwargs.setdefault('wrap', False) unwrap = wrap and should_unwrap del kwargs['wrap'] if wrap: values = [values] results = [fn(self, value, *vargs, **kwargs) for value in values] if unwrap: results = results[0] return results return vectorized_method
vectorize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fn):\n\n @functools.wraps(fn)\n def x(self, values, *vargs, **kwargs):\n wrap = not isinstance(values, (list, tuple))\n should_unwrap = not kwargs.setdefault('wrap', False)\n unwrap = wrap and should_unwrap\n del kwargs['wrap']\n if wrap:\n values = [values]\n results = [fn(self, value, *vargs, **kwargs) for value in values]\n if unwrap:\n results = results[0]\n return results\n return vectorized_method\n", "role": "user" }, { "content": "vectorize", "role": "assistant" } ]
def x(self): raw_properties = self.service.management().webproperties().list(accountId =self.id).execute()['items'] _webproperties = [WebProperty(raw, self) for raw in raw_properties] return addressable.List(_webproperties, indices=['id', 'name'], insensitive=True)
webproperties
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n raw_properties = self.service.management().webproperties().list(accountId\n =self.id).execute()['items']\n _webproperties = [WebProperty(raw, self) for raw in raw_properties]\n return addressable.List(_webproperties, indices=['id', 'name'],\n insensitive=True)\n", "role": "user" }, { "content": "webproperties", "role": "assistant" } ]
def x(self): raw_profiles = self.account.service.management().profiles().list(accountId =self.account.id, webPropertyId=self.id).execute()['items'] profiles = [Profile(raw, self) for raw in raw_profiles] return addressable.List(profiles, indices=['id', 'name'], insensitive=True)
profiles
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n raw_profiles = self.account.service.management().profiles().list(accountId\n =self.account.id, webPropertyId=self.id).execute()['items']\n profiles = [Profile(raw, self) for raw in raw_profiles]\n return addressable.List(profiles, indices=['id', 'name'], insensitive=True)\n", "role": "user" }, { "content": "profiles", "role": "assistant" } ]
def x(*popenargs, **kwargs): if 'stdout' in kwargs: raise ValueError('stdout argument not allowed, it will be overridden.') if 'input' in kwargs: if 'stdin' in kwargs: raise ValueError('stdin and input arguments may not both be used.') inputdata = kwargs['input'] del kwargs['input'] kwargs['stdin'] = PIPE else: inputdata = None process = Popen(*popenargs, stdout=PIPE, **kwargs) try: output, unused_err = process.communicate(inputdata) except: process.kill() process.wait() raise retcode = process.poll() if retcode: cmd = kwargs.get('args') if cmd is None: cmd = popenargs[0] raise CalledProcessError(retcode, cmd, output=output) return output
check_output_input
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(*popenargs, **kwargs):\n if 'stdout' in kwargs:\n raise ValueError('stdout argument not allowed, it will be overridden.')\n if 'input' in kwargs:\n if 'stdin' in kwargs:\n raise ValueError('stdin and input arguments may not both be used.')\n inputdata = kwargs['input']\n del kwargs['input']\n kwargs['stdin'] = PIPE\n else:\n inputdata = None\n process = Popen(*popenargs, stdout=PIPE, **kwargs)\n try:\n output, unused_err = process.communicate(inputdata)\n except:\n process.kill()\n process.wait()\n raise\n retcode = process.poll()\n if retcode:\n cmd = kwargs.get('args')\n if cmd is None:\n cmd = popenargs[0]\n raise CalledProcessError(retcode, cmd, output=output)\n return output\n", "role": "user" }, { "content": "check_output_input", "role": "assistant" } ]
def x(self, tokens): start_index = len(self.special_token) indices = list(range(len(tokens) + start_index)) tokens_with_special = self.special_token + list(tokens) self._token2idx = dict(list(zip(tokens_with_special, indices))) self._idx2token = dict(list(zip(indices, tokens_with_special)))
create_token_indices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tokens):\n start_index = len(self.special_token)\n indices = list(range(len(tokens) + start_index))\n tokens_with_special = self.special_token + list(tokens)\n self._token2idx = dict(list(zip(tokens_with_special, indices)))\n self._idx2token = dict(list(zip(indices, tokens_with_special)))\n", "role": "user" }, { "content": "create_token_indices", "role": "assistant" } ]
def x(self, min_token_count=1, limit_top_tokens=None): if not self.has_vocab: raise ValueError( 'You need to build the vocabulary using `build_vocab` before using `apply_encoding_options`' ) if min_token_count < 1: raise ValueError('`min_token_count` should atleast be 1') token_counts = list(self._token_counts.items()) token_counts = [x for x in token_counts if x[1] >= min_token_count] if limit_top_tokens is not None: token_counts.sort(key=lambda x: x[1], reverse=True) filtered_tokens = list(zip(*token_counts))[0] filtered_tokens = filtered_tokens[:limit_top_tokens] else: filtered_tokens = zip(*token_counts)[0] self.create_token_indices(filtered_tokens)
apply_encoding_options
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, min_token_count=1, limit_top_tokens=None):\n if not self.has_vocab:\n raise ValueError(\n 'You need to build the vocabulary using `build_vocab` before using `apply_encoding_options`'\n )\n if min_token_count < 1:\n raise ValueError('`min_token_count` should atleast be 1')\n token_counts = list(self._token_counts.items())\n token_counts = [x for x in token_counts if x[1] >= min_token_count]\n if limit_top_tokens is not None:\n token_counts.sort(key=lambda x: x[1], reverse=True)\n filtered_tokens = list(zip(*token_counts))[0]\n filtered_tokens = filtered_tokens[:limit_top_tokens]\n else:\n filtered_tokens = zip(*token_counts)[0]\n self.create_token_indices(filtered_tokens)\n", "role": "user" }, { "content": "apply_encoding_options", "role": "assistant" } ]
def x(self, texts, unknown_token='<UNK>', verbose=1, **kwargs): if not self.has_vocab: raise ValueError( 'You need to build the vocabulary using `build_vocab` before using `encode_texts`' ) if unknown_token and unknown_token not in self.special_token: raise ValueError('Your special token (' + unknown_token + ') to replace unknown words is not in the list of special token: ' + self.special_token) progbar = Progbar(len(texts), verbose=verbose, interval=0.25) encoded_texts = [] for token_data in self.token_generator(texts, **kwargs): indices, token = token_data[:-1], token_data[-1] token_idx = self._token2idx.get(token) if token_idx is None and unknown_token: token_idx = self.special_token.index(unknown_token) if token_idx is not None: utils._append(encoded_texts, indices, token_idx) progbar.update(indices[0]) progbar.update(len(texts)) return encoded_texts
encode_texts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, texts, unknown_token='<UNK>', verbose=1, **kwargs):\n if not self.has_vocab:\n raise ValueError(\n 'You need to build the vocabulary using `build_vocab` before using `encode_texts`'\n )\n if unknown_token and unknown_token not in self.special_token:\n raise ValueError('Your special token (' + unknown_token +\n ') to replace unknown words is not in the list of special token: '\n + self.special_token)\n progbar = Progbar(len(texts), verbose=verbose, interval=0.25)\n encoded_texts = []\n for token_data in self.token_generator(texts, **kwargs):\n indices, token = token_data[:-1], token_data[-1]\n token_idx = self._token2idx.get(token)\n if token_idx is None and unknown_token:\n token_idx = self.special_token.index(unknown_token)\n if token_idx is not None:\n utils._append(encoded_texts, indices, token_idx)\n progbar.update(indices[0])\n progbar.update(len(texts))\n return encoded_texts\n", "role": "user" }, { "content": "encode_texts", "role": "assistant" } ]
def x(self, encoded_texts, unknown_token='<UNK>', inplace=True): if len(self._token2idx) == 0: raise ValueError( 'You need to build vocabulary using `build_vocab` before using `decode_texts`' ) if not isinstance(encoded_texts, list): encoded_texts = encoded_texts.tolist() if not inplace: encoded_texts = deepcopy(encoded_texts) utils._recursive_apply(encoded_texts, lambda token_id: self._idx2token. get(token_id) or unknown_token) return encoded_texts
decode_texts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, encoded_texts, unknown_token='<UNK>', inplace=True):\n if len(self._token2idx) == 0:\n raise ValueError(\n 'You need to build vocabulary using `build_vocab` before using `decode_texts`'\n )\n if not isinstance(encoded_texts, list):\n encoded_texts = encoded_texts.tolist()\n if not inplace:\n encoded_texts = deepcopy(encoded_texts)\n utils._recursive_apply(encoded_texts, lambda token_id: self._idx2token.\n get(token_id) or unknown_token)\n return encoded_texts\n", "role": "user" }, { "content": "decode_texts", "role": "assistant" } ]
def x(self, texts, verbose=1, **kwargs): if self.has_vocab: logger.warn( 'Tokenizer already has existing vocabulary. Overriding and building new vocabulary.' ) progbar = Progbar(len(texts), verbose=verbose, interval=0.25) count_tracker = utils._CountTracker() self._token_counts.clear() self._num_texts = len(texts) for token_data in self.token_generator(texts, **kwargs): indices, token = token_data[:-1], token_data[-1] count_tracker.update(indices) self._token_counts[token] += 1 progbar.update(indices[0]) self.create_token_indices(self._token_counts.keys()) count_tracker.finalize() self._counts = count_tracker.counts progbar.update(len(texts))
build_vocab
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, texts, verbose=1, **kwargs):\n if self.has_vocab:\n logger.warn(\n 'Tokenizer already has existing vocabulary. Overriding and building new vocabulary.'\n )\n progbar = Progbar(len(texts), verbose=verbose, interval=0.25)\n count_tracker = utils._CountTracker()\n self._token_counts.clear()\n self._num_texts = len(texts)\n for token_data in self.token_generator(texts, **kwargs):\n indices, token = token_data[:-1], token_data[-1]\n count_tracker.update(indices)\n self._token_counts[token] += 1\n progbar.update(indices[0])\n self.create_token_indices(self._token_counts.keys())\n count_tracker.finalize()\n self._counts = count_tracker.counts\n progbar.update(len(texts))\n", "role": "user" }, { "content": "build_vocab", "role": "assistant" } ]
def x(self, sequences, fixed_sentences_seq_length=None, fixed_token_seq_length=None, padding='pre', truncating='post', padding_token='<PAD>'): value = self.special_token.index(padding_token) if value < 0: raise ValueError('The padding token "' + padding_token + ' is not in the special tokens of the tokenizer.') if isinstance(sequences[0][0], list): x = utils._pad_sent_sequences(sequences, fixed_sentences_seq_length, fixed_token_seq_length, padding, truncating, value) else: x = utils._pad_token_sequences(sequences, fixed_token_seq_length, padding, truncating, value) return np.array(x, dtype='int32')
pad_sequences
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sequences, fixed_sentences_seq_length=None,\n fixed_token_seq_length=None, padding='pre', truncating='post',\n padding_token='<PAD>'):\n value = self.special_token.index(padding_token)\n if value < 0:\n raise ValueError('The padding token \"' + padding_token +\n ' is not in the special tokens of the tokenizer.')\n if isinstance(sequences[0][0], list):\n x = utils._pad_sent_sequences(sequences, fixed_sentences_seq_length,\n fixed_token_seq_length, padding, truncating, value)\n else:\n x = utils._pad_token_sequences(sequences, fixed_token_seq_length,\n padding, truncating, value)\n return np.array(x, dtype='int32')\n", "role": "user" }, { "content": "pad_sequences", "role": "assistant" } ]
def x(self, i): result = OrderedDict() result['min'] = np.min(self._counts[i]) result['max'] = np.max(self._counts[i]) result['std'] = np.std(self._counts[i]) result['mean'] = np.mean(self._counts[i]) return result
get_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, i):\n result = OrderedDict()\n result['min'] = np.min(self._counts[i])\n result['max'] = np.max(self._counts[i])\n result['std'] = np.std(self._counts[i])\n result['mean'] = np.mean(self._counts[i])\n return result\n", "role": "user" }, { "content": "get_stats", "role": "assistant" } ]
def x(word_index, embeddings_index): logger.info('Loading embeddings for all words in the corpus') embedding_dim = list(embeddings_index.values())[0].shape[-1] embedding_weights = np.zeros((len(word_index), embedding_dim)) for word, i in word_index.items(): word_vector = embeddings_index.get(word) if word_vector is not None: embedding_weights[i] = word_vector return embedding_weights
build_embedding_weights
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(word_index, embeddings_index):\n logger.info('Loading embeddings for all words in the corpus')\n embedding_dim = list(embeddings_index.values())[0].shape[-1]\n embedding_weights = np.zeros((len(word_index), embedding_dim))\n for word, i in word_index.items():\n word_vector = embeddings_index.get(word)\n if word_vector is not None:\n embedding_weights[i] = word_vector\n return embedding_weights\n", "role": "user" }, { "content": "build_embedding_weights", "role": "assistant" } ]
def x(embedding_type): lang = embedding_type.split('.')[2] return {'file': 'wiki.{}.vec'.format(lang), 'url': 'https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.{}.vec'. format(lang), 'extract': False}
build_fasttext_wiki_embedding_obj
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(embedding_type):\n lang = embedding_type.split('.')[2]\n return {'file': 'wiki.{}.vec'.format(lang), 'url':\n 'https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.{}.vec'.\n format(lang), 'extract': False}\n", "role": "user" }, { "content": "build_fasttext_wiki_embedding_obj", "role": "assistant" } ]
def x(embedding_type): lang = embedding_type.split('.')[2] return {'file': 'cc.{}.300.vec.gz'.format(lang), 'url': 'https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.{}.300.vec.gz' .format(lang), 'extract': False}
build_fasttext_cc_embedding_obj
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(embedding_type):\n lang = embedding_type.split('.')[2]\n return {'file': 'cc.{}.300.vec.gz'.format(lang), 'url':\n 'https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.{}.300.vec.gz'\n .format(lang), 'extract': False}\n", "role": "user" }, { "content": "build_fasttext_cc_embedding_obj", "role": "assistant" } ]
def x(embedding_type='glove.42B.300d', embedding_dims=None, embedding_path= None, cache=True): if embedding_path is not None: embedding_type = embedding_path embeddings_index = _EMBEDDINGS_CACHE.get(embedding_type) if embeddings_index is not None: return embeddings_index if embedding_path is None: embedding_type_obj = get_embedding_type(embedding_type) extract = embedding_type_obj.get('extract', True) file_path = get_file(embedding_type_obj['file'], origin= embedding_type_obj['url'], extract=extract, cache_subdir= 'embeddings', file_hash=embedding_type_obj.get('file_hash')) if 'file_in_zip' in embedding_type_obj: zip_folder = file_path.split('.zip')[0] with ZipFile(file_path, 'r') as zf: zf.extractall(zip_folder) file_path = os.path.join(zip_folder, embedding_type_obj[ 'file_in_zip']) elif extract: if file_path.endswith('.zip'): file_path = file_path.split('.zip')[0] else: file_path = embedding_path embeddings_index = _build_embeddings_index(file_path, embedding_dims) if cache: _EMBEDDINGS_CACHE[embedding_type] = embeddings_index return embeddings_index
get_embeddings_index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(embedding_type='glove.42B.300d', embedding_dims=None, embedding_path=\n None, cache=True):\n if embedding_path is not None:\n embedding_type = embedding_path\n embeddings_index = _EMBEDDINGS_CACHE.get(embedding_type)\n if embeddings_index is not None:\n return embeddings_index\n if embedding_path is None:\n embedding_type_obj = get_embedding_type(embedding_type)\n extract = embedding_type_obj.get('extract', True)\n file_path = get_file(embedding_type_obj['file'], origin=\n embedding_type_obj['url'], extract=extract, cache_subdir=\n 'embeddings', file_hash=embedding_type_obj.get('file_hash'))\n if 'file_in_zip' in embedding_type_obj:\n zip_folder = file_path.split('.zip')[0]\n with ZipFile(file_path, 'r') as zf:\n zf.extractall(zip_folder)\n file_path = os.path.join(zip_folder, embedding_type_obj[\n 'file_in_zip'])\n elif extract:\n if file_path.endswith('.zip'):\n file_path = file_path.split('.zip')[0]\n else:\n file_path = embedding_path\n embeddings_index = _build_embeddings_index(file_path, embedding_dims)\n if cache:\n _EMBEDDINGS_CACHE[embedding_type] = embeddings_index\n return embeddings_index\n", "role": "user" }, { "content": "get_embeddings_index", "role": "assistant" } ]
def x(self, texts, **kwargs): for text_idx, text in enumerate(texts): if self.lower: text = text.lower() for char in text: yield text_idx, char
token_generator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, texts, **kwargs):\n for text_idx, text in enumerate(texts):\n if self.lower:\n text = text.lower()\n for char in text:\n yield text_idx, char\n", "role": "user" }, { "content": "token_generator", "role": "assistant" } ]
def x(self, texts, **kwargs): n_threads, batch_size = utils._parse_spacy_kwargs(**kwargs) nlp = spacy.load(self.lang) kwargs = {'batch_size': batch_size, 'n_threads': n_threads, 'disable': ['ner']} texts_gen = utils._apply_generator(texts, lambda x: x.lower() ) if self.lower else texts for text_idx, doc in enumerate(nlp.pipe(texts_gen, **kwargs)): for sent_idx, sent in enumerate(doc.sents): for word in sent: for char in word: yield text_idx, sent_idx, char
token_generator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, texts, **kwargs):\n n_threads, batch_size = utils._parse_spacy_kwargs(**kwargs)\n nlp = spacy.load(self.lang)\n kwargs = {'batch_size': batch_size, 'n_threads': n_threads, 'disable':\n ['ner']}\n texts_gen = utils._apply_generator(texts, lambda x: x.lower()\n ) if self.lower else texts\n for text_idx, doc in enumerate(nlp.pipe(texts_gen, **kwargs)):\n for sent_idx, sent in enumerate(doc.sents):\n for word in sent:\n for char in word:\n yield text_idx, sent_idx, char\n", "role": "user" }, { "content": "token_generator", "role": "assistant" } ]
def x(y, folds=2): n, classes = y.shape dist = y.sum(axis=0).astype('float') dist /= dist.sum() index_list = [] fold_dist = np.zeros((folds, classes), dtype='float') for _ in range(folds): index_list.append([]) for i in range(n): if i < folds: target_fold = i else: normed_folds = fold_dist.T / fold_dist.sum(axis=1) how_off = normed_folds.T - dist target_fold = np.argmin(np.dot((y[i] - 0.5).reshape(1, -1), how_off.T)) fold_dist[target_fold] += y[i] index_list[target_fold].append(i) logger.debug('Fold distributions:') logger.debug(fold_dist) return index_list
equal_distribution_folds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y, folds=2):\n n, classes = y.shape\n dist = y.sum(axis=0).astype('float')\n dist /= dist.sum()\n index_list = []\n fold_dist = np.zeros((folds, classes), dtype='float')\n for _ in range(folds):\n index_list.append([])\n for i in range(n):\n if i < folds:\n target_fold = i\n else:\n normed_folds = fold_dist.T / fold_dist.sum(axis=1)\n how_off = normed_folds.T - dist\n target_fold = np.argmin(np.dot((y[i] - 0.5).reshape(1, -1),\n how_off.T))\n fold_dist[target_fold] += y[i]\n index_list[target_fold].append(i)\n logger.debug('Fold distributions:')\n logger.debug(fold_dist)\n return index_list\n", "role": "user" }, { "content": "equal_distribution_folds", "role": "assistant" } ]
def x(self, token_encoder_model, sentence_encoder_model, trainable_embeddings=True, output_activation='softmax'): if not isinstance(token_encoder_model, SequenceEncoderBase): raise ValueError('`token_encoder_model` should be an instance of `{}`' .format(SequenceEncoderBase)) if not isinstance(sentence_encoder_model, SequenceEncoderBase): raise ValueError( '`sentence_encoder_model` should be an instance of `{}`'.format (SequenceEncoderBase)) if not sentence_encoder_model.allows_dynamic_length( ) and self.max_sents is None: raise ValueError( "Sentence encoder model '{}' requires padding. You need to provide `max_sents`" ) if self.embeddings_index is None: embedding_layer = Embedding(len(self.token_index), self. embedding_dims, input_length=self.max_tokens, mask_zero= token_encoder_model.allows_dynamic_length(), trainable= trainable_embeddings) else: embedding_layer = Embedding(len(self.token_index), self. embedding_dims, weights=[build_embedding_weights(self. token_index, self.embeddings_index)], input_length=self. max_tokens, mask_zero=token_encoder_model.allows_dynamic_length (), trainable=trainable_embeddings) word_input = Input(shape=(self.max_tokens,), dtype='int32') x = embedding_layer(word_input) word_encoding = token_encoder_model(x) token_encoder_model = Model(word_input, word_encoding, name='word_encoder') doc_input = Input(shape=(self.max_sents, self.max_tokens), dtype='int32') sent_encoding = TimeDistributed(token_encoder_model)(doc_input) x = sentence_encoder_model(sent_encoding) x = Dense(self.num_classes, activation=output_activation)(x) return Model(doc_input, x)
build_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, token_encoder_model, sentence_encoder_model,\n trainable_embeddings=True, output_activation='softmax'):\n if not isinstance(token_encoder_model, SequenceEncoderBase):\n raise ValueError('`token_encoder_model` should be an instance of `{}`'\n .format(SequenceEncoderBase))\n if not isinstance(sentence_encoder_model, SequenceEncoderBase):\n raise ValueError(\n '`sentence_encoder_model` should be an instance of `{}`'.format\n (SequenceEncoderBase))\n if not sentence_encoder_model.allows_dynamic_length(\n ) and self.max_sents is None:\n raise ValueError(\n \"Sentence encoder model '{}' requires padding. You need to provide `max_sents`\"\n )\n if self.embeddings_index is None:\n embedding_layer = Embedding(len(self.token_index), self.\n embedding_dims, input_length=self.max_tokens, mask_zero=\n token_encoder_model.allows_dynamic_length(), trainable=\n trainable_embeddings)\n else:\n embedding_layer = Embedding(len(self.token_index), self.\n embedding_dims, weights=[build_embedding_weights(self.\n token_index, self.embeddings_index)], input_length=self.\n max_tokens, mask_zero=token_encoder_model.allows_dynamic_length\n (), trainable=trainable_embeddings)\n word_input = Input(shape=(self.max_tokens,), dtype='int32')\n x = embedding_layer(word_input)\n word_encoding = token_encoder_model(x)\n token_encoder_model = Model(word_input, word_encoding, name='word_encoder')\n doc_input = Input(shape=(self.max_sents, self.max_tokens), dtype='int32')\n sent_encoding = TimeDistributed(token_encoder_model)(doc_input)\n x = sentence_encoder_model(sent_encoding)\n x = Dense(self.num_classes, activation=output_activation)(x)\n return Model(doc_input, x)\n", "role": "user" }, { "content": "build_model", "role": "assistant" } ]
def x(X, y, tokenizer, proc_data_path, max_len=400, train=False, ngrams= None, limit_top_tokens=None): if train and limit_top_tokens is not None: tokenizer.apply_encoding_options(limit_top_tokens=limit_top_tokens) X_encoded = tokenizer.encode_texts(X) if ngrams is not None: X_encoded = tokenizer.add_ngrams(X_encoded, n=ngrams, train=train) X_padded = tokenizer.pad_sequences(X_encoded, fixed_token_seq_length= max_len) if train: ds = Dataset(X_padded, y, tokenizer=tokenizer) else: ds = Dataset(X_padded, y) ds.save(proc_data_path)
process_save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, y, tokenizer, proc_data_path, max_len=400, train=False, ngrams=\n None, limit_top_tokens=None):\n if train and limit_top_tokens is not None:\n tokenizer.apply_encoding_options(limit_top_tokens=limit_top_tokens)\n X_encoded = tokenizer.encode_texts(X)\n if ngrams is not None:\n X_encoded = tokenizer.add_ngrams(X_encoded, n=ngrams, train=train)\n X_padded = tokenizer.pad_sequences(X_encoded, fixed_token_seq_length=\n max_len)\n if train:\n ds = Dataset(X_padded, y, tokenizer=tokenizer)\n else:\n ds = Dataset(X_padded, y)\n ds.save(proc_data_path)\n", "role": "user" }, { "content": "process_save", "role": "assistant" } ]
def x(X, y, tokenizer, proc_data_path, **kwargs): train = not tokenizer.has_vocab if train: tokenizer.build_vocab(X) process_save(X, y, tokenizer, proc_data_path, train=train, **kwargs) return tokenizer
setup_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, y, tokenizer, proc_data_path, **kwargs):\n train = not tokenizer.has_vocab\n if train:\n tokenizer.build_vocab(X)\n process_save(X, y, tokenizer, proc_data_path, train=train, **kwargs)\n return tokenizer\n", "role": "user" }, { "content": "setup_data", "role": "assistant" } ]
def x(X, y, ratio=(0.8, 0.1, 0.1)): assert sum(ratio) == 1 and len(ratio) == 3 X_train, X_rest, y_train, y_rest = train_test_split(X, y, train_size= ratio[0]) X_val, X_test, y_val, y_test = train_test_split(X_rest, y_rest, train_size=ratio[1]) return X_train, X_val, X_test, y_train, y_val, y_test
split_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, y, ratio=(0.8, 0.1, 0.1)):\n assert sum(ratio) == 1 and len(ratio) == 3\n X_train, X_rest, y_train, y_rest = train_test_split(X, y, train_size=\n ratio[0])\n X_val, X_test, y_val, y_test = train_test_split(X_rest, y_rest,\n train_size=ratio[1])\n return X_train, X_val, X_test, y_train, y_val, y_test\n", "role": "user" }, { "content": "split_data", "role": "assistant" } ]
def x(X, y, tokenizer, proc_data_dir, **kwargs): X_train, X_val, X_test, y_train, y_val, y_test = split_data(X, y) tokenizer.build_vocab(X_train) process_save(X_train, y_train, tokenizer, path.join(proc_data_dir, 'train.bin'), train=True, **kwargs) process_save(X_val, y_val, tokenizer, path.join(proc_data_dir, 'val.bin'), **kwargs) process_save(X_test, y_test, tokenizer, path.join(proc_data_dir, 'test.bin'), **kwargs)
setup_data_split
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, y, tokenizer, proc_data_dir, **kwargs):\n X_train, X_val, X_test, y_train, y_val, y_test = split_data(X, y)\n tokenizer.build_vocab(X_train)\n process_save(X_train, y_train, tokenizer, path.join(proc_data_dir,\n 'train.bin'), train=True, **kwargs)\n process_save(X_val, y_val, tokenizer, path.join(proc_data_dir,\n 'val.bin'), **kwargs)\n process_save(X_test, y_test, tokenizer, path.join(proc_data_dir,\n 'test.bin'), **kwargs)\n", "role": "user" }, { "content": "setup_data_split", "role": "assistant" } ]
def x(proc_data_dir): ds_train = Dataset.load(path.join(proc_data_dir, 'train.bin')) ds_val = Dataset.load(path.join(proc_data_dir, 'val.bin')) ds_test = Dataset.load(path.join(proc_data_dir, 'test.bin')) return ds_train, ds_val, ds_test
load_data_split
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(proc_data_dir):\n ds_train = Dataset.load(path.join(proc_data_dir, 'train.bin'))\n ds_val = Dataset.load(path.join(proc_data_dir, 'val.bin'))\n ds_test = Dataset.load(path.join(proc_data_dir, 'test.bin'))\n return ds_train, ds_val, ds_test\n", "role": "user" }, { "content": "load_data_split", "role": "assistant" } ]
def x(self, token_encoder_model, trainable_embeddings=True, output_activation='softmax'): if not isinstance(token_encoder_model, SequenceEncoderBase): raise ValueError('`token_encoder_model` should be an instance of `{}`' .format(SequenceEncoderBase)) if not token_encoder_model.allows_dynamic_length( ) and self.max_tokens is None: raise ValueError( 'The provided `token_encoder_model` does not allow variable length mini-batches. You need to provide `max_tokens`' ) if self.embeddings_index is None: embedding_layer = Embedding(len(self.token_index), self. embedding_dims, input_length=self.max_tokens, mask_zero= token_encoder_model.allows_dynamic_length(), trainable= trainable_embeddings) else: embedding_layer = Embedding(len(self.token_index), self. embedding_dims, weights=[build_embedding_weights(self. token_index, self.embeddings_index)], input_length=self. max_tokens, mask_zero=token_encoder_model.allows_dynamic_length (), trainable=trainable_embeddings) sequence_input = Input(shape=(self.max_tokens,), dtype='int32') x = embedding_layer(sequence_input) x = token_encoder_model(x) x = Dense(self.num_classes, activation=output_activation)(x) return Model(sequence_input, x)
build_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, token_encoder_model, trainable_embeddings=True,\n output_activation='softmax'):\n if not isinstance(token_encoder_model, SequenceEncoderBase):\n raise ValueError('`token_encoder_model` should be an instance of `{}`'\n .format(SequenceEncoderBase))\n if not token_encoder_model.allows_dynamic_length(\n ) and self.max_tokens is None:\n raise ValueError(\n 'The provided `token_encoder_model` does not allow variable length mini-batches. You need to provide `max_tokens`'\n )\n if self.embeddings_index is None:\n embedding_layer = Embedding(len(self.token_index), self.\n embedding_dims, input_length=self.max_tokens, mask_zero=\n token_encoder_model.allows_dynamic_length(), trainable=\n trainable_embeddings)\n else:\n embedding_layer = Embedding(len(self.token_index), self.\n embedding_dims, weights=[build_embedding_weights(self.\n token_index, self.embeddings_index)], input_length=self.\n max_tokens, mask_zero=token_encoder_model.allows_dynamic_length\n (), trainable=trainable_embeddings)\n sequence_input = Input(shape=(self.max_tokens,), dtype='int32')\n x = embedding_layer(sequence_input)\n x = token_encoder_model(x)\n x = Dense(self.num_classes, activation=output_activation)(x)\n return Model(sequence_input, x)\n", "role": "user" }, { "content": "build_model", "role": "assistant" } ]
def x(x, dim): if K.backend() == 'tensorflow': import tensorflow as tf return tf.nn.softmax(x, dim) elif K.backend() is 'cntk': import cntk return cntk.softmax(x, dim) elif K.backend() == 'theano': perm = np.arange(K.ndim(x)) perm[dim], perm[-1] = perm[-1], perm[dim] x_perm = K.permute_dimensions(x, perm) output = K.softmax(x_perm) perm[dim], perm[-1] = perm[-1], perm[dim] output = K.permute_dimensions(x, output) return output else: raise ValueError("Backend '{}' not supported".format(K.backend()))
softmax
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, dim):\n if K.backend() == 'tensorflow':\n import tensorflow as tf\n return tf.nn.softmax(x, dim)\n elif K.backend() is 'cntk':\n import cntk\n return cntk.softmax(x, dim)\n elif K.backend() == 'theano':\n perm = np.arange(K.ndim(x))\n perm[dim], perm[-1] = perm[-1], perm[dim]\n x_perm = K.permute_dimensions(x, perm)\n output = K.softmax(x_perm)\n perm[dim], perm[-1] = perm[-1], perm[dim]\n output = K.permute_dimensions(x, output)\n return output\n else:\n raise ValueError(\"Backend '{}' not supported\".format(K.backend()))\n", "role": "user" }, { "content": "softmax", "role": "assistant" } ]
def x(self, token): if token.is_punct and self.remove_punct: return None if token.is_stop and self.remove_stop_words: return None if token.is_digit and self.remove_digits: return None if token.is_oov and self.exclude_oov: return None if token.pos_ in self.exclude_pos_tags: return None if token.ent_type_ in self.exclude_entities: return None if self.lemmatize: return token.lemma_ if self.lower: return token.lower_ return token.orth_
apply_options
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, token):\n if token.is_punct and self.remove_punct:\n return None\n if token.is_stop and self.remove_stop_words:\n return None\n if token.is_digit and self.remove_digits:\n return None\n if token.is_oov and self.exclude_oov:\n return None\n if token.pos_ in self.exclude_pos_tags:\n return None\n if token.ent_type_ in self.exclude_entities:\n return None\n if self.lemmatize:\n return token.lemma_\n if self.lower:\n return token.lower_\n return token.orth_\n", "role": "user" }, { "content": "apply_options", "role": "assistant" } ]
def x(self, texts, **kwargs): n_threads, batch_size = utils._parse_spacy_kwargs(**kwargs) nlp = spacy.load(self.lang) disabled = ['parser'] if len(self.exclude_entities) > 0: disabled.append('ner') kwargs = {'batch_size': batch_size, 'n_threads': n_threads, 'disable': disabled} for text_idx, doc in enumerate(nlp.pipe(texts, **kwargs)): for word in doc: processed_word = self._apply_options(word) if processed_word is not None: yield text_idx, processed_word
token_generator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, texts, **kwargs):\n n_threads, batch_size = utils._parse_spacy_kwargs(**kwargs)\n nlp = spacy.load(self.lang)\n disabled = ['parser']\n if len(self.exclude_entities) > 0:\n disabled.append('ner')\n kwargs = {'batch_size': batch_size, 'n_threads': n_threads, 'disable':\n disabled}\n for text_idx, doc in enumerate(nlp.pipe(texts, **kwargs)):\n for word in doc:\n processed_word = self._apply_options(word)\n if processed_word is not None:\n yield text_idx, processed_word\n", "role": "user" }, { "content": "token_generator", "role": "assistant" } ]
def x(lst, indices, value): for i, idx in enumerate(indices): while len(lst) <= idx: lst.append([]) lst = lst[idx] lst.append(value)
append
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lst, indices, value):\n for i, idx in enumerate(indices):\n while len(lst) <= idx:\n lst.append([])\n lst = lst[idx]\n lst.append(value)\n", "role": "user" }, { "content": "append", "role": "assistant" } ]
def x(**kwargs): n_threads = kwargs.get('n_threads') or kwargs.get('num_threads') batch_size = kwargs.get('batch_size') if n_threads is None or n_threads is -1: n_threads = cpu_count() - 1 if batch_size is None or batch_size is -1: batch_size = 1000 return n_threads, batch_size
parse_spacy_kwargs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(**kwargs):\n n_threads = kwargs.get('n_threads') or kwargs.get('num_threads')\n batch_size = kwargs.get('batch_size')\n if n_threads is None or n_threads is -1:\n n_threads = cpu_count() - 1\n if batch_size is None or batch_size is -1:\n batch_size = 1000\n return n_threads, batch_size\n", "role": "user" }, { "content": "parse_spacy_kwargs", "role": "assistant" } ]
def x(self, indices): if self._prev_indices is None: self._prev_indices = indices self._local_counts = np.full(len(indices) + 1, 1) self._local_counts[-1] = 0 self.counts = [[] for _ in range(len(self._local_counts))] has_reset = False for i in range(len(indices)): if indices[i] > self._prev_indices[i]: self._local_counts[i] += 1 has_reset = True for j in range(i + 1, len(self.counts)): self.counts[j].append(self._local_counts[j]) self._local_counts[j] = 1 if not has_reset: self._local_counts[-1] += 1 self._prev_indices = indices[:]
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, indices):\n if self._prev_indices is None:\n self._prev_indices = indices\n self._local_counts = np.full(len(indices) + 1, 1)\n self._local_counts[-1] = 0\n self.counts = [[] for _ in range(len(self._local_counts))]\n has_reset = False\n for i in range(len(indices)):\n if indices[i] > self._prev_indices[i]:\n self._local_counts[i] += 1\n has_reset = True\n for j in range(i + 1, len(self.counts)):\n self.counts[j].append(self._local_counts[j])\n self._local_counts[j] = 1\n if not has_reset:\n self._local_counts[-1] += 1\n self._prev_indices = indices[:]\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): for i in range(1, len(self._local_counts)): self.counts[i].append(self._local_counts[i]) self.counts.pop(0) for i in range(len(self.counts)): self.counts[i] = np.array(self.counts[i])
finalize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for i in range(1, len(self._local_counts)):\n self.counts[i].append(self._local_counts[i])\n self.counts.pop(0)\n for i in range(len(self.counts)):\n self.counts[i] = np.array(self.counts[i])\n", "role": "user" }, { "content": "finalize", "role": "assistant" } ]
def x(directory): res = [] for filename in os.listdir(directory): with io.open(os.path.join(directory, filename), encoding='utf-8') as f: content = f.read() res.append(content) return res
read_folder
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(directory):\n res = []\n for filename in os.listdir(directory):\n with io.open(os.path.join(directory, filename), encoding='utf-8') as f:\n content = f.read()\n res.append(content)\n return res\n", "role": "user" }, { "content": "read_folder", "role": "assistant" } ]
def x(path, folder, limit): training_pos_path = os.path.join(path, folder, 'pos') training_neg_path = os.path.join(path, folder, 'neg') X_pos = read_folder(training_pos_path) X_neg = read_folder(training_neg_path) if limit is None: X = X_pos + X_neg else: X = X_pos[:limit] + X_neg[:limit] y = [1] * int(len(X) / 2) + [0] * int(len(X) / 2) return X, y
read_pos_neg_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path, folder, limit):\n training_pos_path = os.path.join(path, folder, 'pos')\n training_neg_path = os.path.join(path, folder, 'neg')\n X_pos = read_folder(training_pos_path)\n X_neg = read_folder(training_neg_path)\n if limit is None:\n X = X_pos + X_neg\n else:\n X = X_pos[:limit] + X_neg[:limit]\n y = [1] * int(len(X) / 2) + [0] * int(len(X) / 2)\n return X, y\n", "role": "user" }, { "content": "read_pos_neg_data", "role": "assistant" } ]
def x(limit=None, shuffle=True): movie_review_url = ( 'http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz') path = keras.utils.get_file('aclImdb.tar.gz', movie_review_url, extract =True)[:-7] X_train, y_train = read_pos_neg_data(path, 'train', limit) X_test, y_test = read_pos_neg_data(path, 'test', limit) if shuffle: X_train, y_train = sklearn.utils.shuffle(X_train, y_train) X_test, y_test = sklearn.utils.shuffle(X_test, y_test) return X_train, X_test, y_train, y_test
imdb
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(limit=None, shuffle=True):\n movie_review_url = (\n 'http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz')\n path = keras.utils.get_file('aclImdb.tar.gz', movie_review_url, extract\n =True)[:-7]\n X_train, y_train = read_pos_neg_data(path, 'train', limit)\n X_test, y_test = read_pos_neg_data(path, 'test', limit)\n if shuffle:\n X_train, y_train = sklearn.utils.shuffle(X_train, y_train)\n X_test, y_test = sklearn.utils.shuffle(X_test, y_test)\n return X_train, X_test, y_train, y_test\n", "role": "user" }, { "content": "imdb", "role": "assistant" } ]
def x(self, x, y): return x + self.size / 2, y + self.size / 2
to_absolute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y):\n return x + self.size / 2, y + self.size / 2\n", "role": "user" }, { "content": "to_absolute", "role": "assistant" } ]
def x(self, number: (float, int)): self.canvas.delete('all') self.canvas.create_image(0, 0, image=self.image, anchor='nw') number = number if number <= self.max_value else self.max_value number = 0.0 if number < 0.0 else number radius = 0.9 * self.size / 2.0 angle_in_radians = 2.0 * cmath.pi / 3.0 + number / self.max_value * ( 5.0 * cmath.pi / 3.0) center = cmath.rect(0, 0) outer = cmath.rect(radius, angle_in_radians) if self.needle_thickness == 0: line_width = int(5 * self.size / 200) line_width = 1 if line_width < 1 else line_width else: line_width = self.needle_thickness self.canvas.create_line(*self.to_absolute(center.real, center.imag), * self.to_absolute(outer.real, outer.imag), width=line_width, fill= self.needle_color) self.readout['text'] = '{}{}'.format(number, self.unit)
set_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, number: (float, int)):\n self.canvas.delete('all')\n self.canvas.create_image(0, 0, image=self.image, anchor='nw')\n number = number if number <= self.max_value else self.max_value\n number = 0.0 if number < 0.0 else number\n radius = 0.9 * self.size / 2.0\n angle_in_radians = 2.0 * cmath.pi / 3.0 + number / self.max_value * (\n 5.0 * cmath.pi / 3.0)\n center = cmath.rect(0, 0)\n outer = cmath.rect(radius, angle_in_radians)\n if self.needle_thickness == 0:\n line_width = int(5 * self.size / 200)\n line_width = 1 if line_width < 1 else line_width\n else:\n line_width = self.needle_thickness\n self.canvas.create_line(*self.to_absolute(center.real, center.imag), *\n self.to_absolute(outer.real, outer.imag), width=line_width, fill=\n self.needle_color)\n self.readout['text'] = '{}{}'.format(number, self.unit)\n", "role": "user" }, { "content": "set_value", "role": "assistant" } ]
def x(self, divisions=10): self.canvas.create_arc(2, 2, self.size - 2, self.size - 2, style=tk. PIESLICE, start=-60, extent=30, fill='red') self.canvas.create_arc(2, 2, self.size - 2, self.size - 2, style=tk. PIESLICE, start=-30, extent=60, fill='yellow') self.canvas.create_arc(2, 2, self.size - 2, self.size - 2, style=tk. PIESLICE, start=30, extent=210, fill='green') inner_tick_radius = int(self.size * 0.4) outer_tick_radius = int(self.size * 0.5) for tick in range(divisions): angle_in_radians = 2.0 * cmath.pi / 3.0 + tick / divisions * (5.0 * cmath.pi / 3.0) inner_point = cmath.rect(inner_tick_radius, angle_in_radians) outer_point = cmath.rect(outer_tick_radius, angle_in_radians) self.canvas.create_line(*self.to_absolute(inner_point.real, inner_point.imag), *self.to_absolute(outer_point.real, outer_point.imag), width=1)
draw_background
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, divisions=10):\n self.canvas.create_arc(2, 2, self.size - 2, self.size - 2, style=tk.\n PIESLICE, start=-60, extent=30, fill='red')\n self.canvas.create_arc(2, 2, self.size - 2, self.size - 2, style=tk.\n PIESLICE, start=-30, extent=60, fill='yellow')\n self.canvas.create_arc(2, 2, self.size - 2, self.size - 2, style=tk.\n PIESLICE, start=30, extent=210, fill='green')\n inner_tick_radius = int(self.size * 0.4)\n outer_tick_radius = int(self.size * 0.5)\n for tick in range(divisions):\n angle_in_radians = 2.0 * cmath.pi / 3.0 + tick / divisions * (5.0 *\n cmath.pi / 3.0)\n inner_point = cmath.rect(inner_tick_radius, angle_in_radians)\n outer_point = cmath.rect(outer_tick_radius, angle_in_radians)\n self.canvas.create_line(*self.to_absolute(inner_point.real,\n inner_point.imag), *self.to_absolute(outer_point.real,\n outer_point.imag), width=1)\n", "role": "user" }, { "content": "draw_background", "role": "assistant" } ]
def x(self): self.canvas.delete('all') rect = 50, 50, self.w - 50, self.h - 50 self.canvas.create_rectangle(rect, outline='black') for x in self.frange(0, self.x_max - self.x_min + 1, self.x_tick): value = Decimal(self.x_min + x) if self.x_min <= value <= self.x_max: x_step = self.px_x * x / self.x_tick coord = 50 + x_step, self.h - 50, 50 + x_step, self.h - 45 self.canvas.create_line(coord, fill='black') coord = 50 + x_step, self.h - 40 label = round(Decimal(self.x_min + x), 1) self.canvas.create_text(coord, fill='black', text=label) for y in self.frange(0, self.y_max - self.y_min + 1, self.y_tick): value = Decimal(self.y_max - y) if self.y_min <= value <= self.y_max: y_step = self.px_y * y / self.y_tick coord = 45, 50 + y_step, 50, 50 + y_step self.canvas.create_line(coord, fill='black') coord = 35, 50 + y_step label = round(value, 1) self.canvas.create_text(coord, fill='black', text=label)
draw_axes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.canvas.delete('all')\n rect = 50, 50, self.w - 50, self.h - 50\n self.canvas.create_rectangle(rect, outline='black')\n for x in self.frange(0, self.x_max - self.x_min + 1, self.x_tick):\n value = Decimal(self.x_min + x)\n if self.x_min <= value <= self.x_max:\n x_step = self.px_x * x / self.x_tick\n coord = 50 + x_step, self.h - 50, 50 + x_step, self.h - 45\n self.canvas.create_line(coord, fill='black')\n coord = 50 + x_step, self.h - 40\n label = round(Decimal(self.x_min + x), 1)\n self.canvas.create_text(coord, fill='black', text=label)\n for y in self.frange(0, self.y_max - self.y_min + 1, self.y_tick):\n value = Decimal(self.y_max - y)\n if self.y_min <= value <= self.y_max:\n y_step = self.px_y * y / self.y_tick\n coord = 45, 50 + y_step, 50, 50 + y_step\n self.canvas.create_line(coord, fill='black')\n coord = 35, 50 + y_step\n label = round(value, 1)\n self.canvas.create_text(coord, fill='black', text=label)\n", "role": "user" }, { "content": "draw_axes", "role": "assistant" } ]
def x(self, x, y, visible=True, color='black', size=5): xp = self.px_x * (x - self.x_min) / self.x_tick yp = self.px_y * (self.y_max - y) / self.y_tick coord = 50 + xp, 50 + yp if visible: size = int(size / 2) if int(size / 2) > 1 else 1 x, y = coord self.canvas.create_oval(x - size, y - size, x + size, y + size, fill=color) return coord
plot_point
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, visible=True, color='black', size=5):\n xp = self.px_x * (x - self.x_min) / self.x_tick\n yp = self.px_y * (self.y_max - y) / self.y_tick\n coord = 50 + xp, 50 + yp\n if visible:\n size = int(size / 2) if int(size / 2) > 1 else 1\n x, y = coord\n self.canvas.create_oval(x - size, y - size, x + size, y + size,\n fill=color)\n return coord\n", "role": "user" }, { "content": "plot_point", "role": "assistant" } ]
def x(self, points: list, color='black', point_visibility=False): last_point = () for point in points: this_point = self.plot_point(point[0], point[1], color=color, visible=point_visibility) if last_point: self.canvas.create_line(last_point + this_point, fill=color) last_point = this_point
plot_line
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, points: list, color='black', point_visibility=False):\n last_point = ()\n for point in points:\n this_point = self.plot_point(point[0], point[1], color=color,\n visible=point_visibility)\n if last_point:\n self.canvas.create_line(last_point + this_point, fill=color)\n last_point = this_point\n", "role": "user" }, { "content": "plot_line", "role": "assistant" } ]
def x(start, stop, step, digits_to_round=3): while start < stop: yield round(start, digits_to_round) start += step
frange
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(start, stop, step, digits_to_round=3):\n while start < stop:\n yield round(start, digits_to_round)\n start += step\n", "role": "user" }, { "content": "frange", "role": "assistant" } ]
def x(self, img_data: str): self._image = tk.PhotoImage(data=img_data) self._image = self._image.subsample(int(200 / self._size), int(200 / self._size)) self._canvas.delete('all') self._canvas.create_image(0, 0, image=self._image, anchor='nw') if self._user_click_callback is not None: self._user_click_callback(self._on)
load_new
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, img_data: str):\n self._image = tk.PhotoImage(data=img_data)\n self._image = self._image.subsample(int(200 / self._size), int(200 /\n self._size))\n self._canvas.delete('all')\n self._canvas.create_image(0, 0, image=self._image, anchor='nw')\n if self._user_click_callback is not None:\n self._user_click_callback(self._on)\n", "role": "user" }, { "content": "load_new", "role": "assistant" } ]
def x(self, on: bool=False): self._on = False self._load_new(led_grey)
to_grey
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, on: bool=False):\n self._on = False\n self._load_new(led_grey)\n", "role": "user" }, { "content": "to_grey", "role": "assistant" } ]
def x(self, on: bool=False): self._on = on if on: self._load_new(led_green_on) if self._toggle_on_click: self._canvas.bind('<Button-1>', lambda x: self.to_green(False)) else: self._load_new(led_green) if self._toggle_on_click: self._canvas.bind('<Button-1>', lambda x: self.to_green(True))
to_green
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, on: bool=False):\n self._on = on\n if on:\n self._load_new(led_green_on)\n if self._toggle_on_click:\n self._canvas.bind('<Button-1>', lambda x: self.to_green(False))\n else:\n self._load_new(led_green)\n if self._toggle_on_click:\n self._canvas.bind('<Button-1>', lambda x: self.to_green(True))\n", "role": "user" }, { "content": "to_green", "role": "assistant" } ]
def x(self, on: bool=False): self._on = on if on: self._load_new(led_red_on) if self._toggle_on_click: self._canvas.bind('<Button-1>', lambda x: self.to_red(False)) else: self._load_new(led_red) if self._toggle_on_click: self._canvas.bind('<Button-1>', lambda x: self.to_red(True))
to_red
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, on: bool=False):\n self._on = on\n if on:\n self._load_new(led_red_on)\n if self._toggle_on_click:\n self._canvas.bind('<Button-1>', lambda x: self.to_red(False))\n else:\n self._load_new(led_red)\n if self._toggle_on_click:\n self._canvas.bind('<Button-1>', lambda x: self.to_red(True))\n", "role": "user" }, { "content": "to_red", "role": "assistant" } ]
def x(self, on: bool=False): self._on = on if on: self._load_new(led_yellow_on) if self._toggle_on_click: self._canvas.bind('<Button-1>', lambda x: self.to_yellow(False)) else: self._load_new(led_yellow) if self._toggle_on_click: self._canvas.bind('<Button-1>', lambda x: self.to_yellow(True))
to_yellow
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, on: bool=False):\n self._on = on\n if on:\n self._load_new(led_yellow_on)\n if self._toggle_on_click:\n self._canvas.bind('<Button-1>', lambda x: self.to_yellow(False))\n else:\n self._load_new(led_yellow)\n if self._toggle_on_click:\n self._canvas.bind('<Button-1>', lambda x: self.to_yellow(True))\n", "role": "user" }, { "content": "to_yellow", "role": "assistant" } ]
def x(self): for row in self._rows: for widget in row: widget.grid_forget() offset = 0 if not self.headers else 1 for i, row in enumerate(self._rows): for j, widget in enumerate(row): widget.grid(row=i + offset, column=j)
redraw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for row in self._rows:\n for widget in row:\n widget.grid_forget()\n offset = 0 if not self.headers else 1\n for i, row in enumerate(self._rows):\n for j, widget in enumerate(row):\n widget.grid(row=i + offset, column=j)\n", "role": "user" }, { "content": "redraw", "role": "assistant" } ]
def x(self, row_number: int=-1): if len(self._rows) == 0: return row = self._rows.pop(row_number) for widget in row: widget.destroy()
remove_row
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, row_number: int=-1):\n if len(self._rows) == 0:\n return\n row = self._rows.pop(row_number)\n for widget in row:\n widget.destroy()\n", "role": "user" }, { "content": "remove_row", "role": "assistant" } ]
def x(self, data: list): if self.headers: if len(self.headers) != len(data): raise ValueError if len(data) != self.num_of_columns: raise ValueError offset = 0 if not self.headers else 1 row = list() for i, element in enumerate(data): label = ttk.Label(self, text=str(element), relief=tk.GROOVE, padding=self.padding) label.grid(row=len(self._rows) + offset, column=i, sticky='E,W') row.append(label) self._rows.append(row)
add_row
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data: list):\n if self.headers:\n if len(self.headers) != len(data):\n raise ValueError\n if len(data) != self.num_of_columns:\n raise ValueError\n offset = 0 if not self.headers else 1\n row = list()\n for i, element in enumerate(data):\n label = ttk.Label(self, text=str(element), relief=tk.GROOVE,\n padding=self.padding)\n label.grid(row=len(self._rows) + offset, column=i, sticky='E,W')\n row.append(label)\n self._rows.append(row)\n", "role": "user" }, { "content": "add_row", "role": "assistant" } ]
def x(self, data: list=None): if self.headers and data: if len(self.headers) != len(data): raise ValueError offset = 0 if not self.headers else 1 row = list() if data: for i, element in enumerate(data): contents = '' if element is None else str(element) entry = ttk.Entry(self) entry.insert(0, contents) entry.grid(row=len(self._rows) + offset, column=i, sticky='E,W') row.append(entry) else: for i in range(self.num_of_columns): entry = ttk.Entry(self) entry.grid(row=len(self._rows) + offset, column=i, sticky='E,W') row.append(entry) self._rows.append(row) for row in self._rows: for widget in row: widget.unbind('<Tab>') def x(e): self.add_row() last_entry = self._rows[-1][-1] last_entry.bind('<Tab>', add) e = self._rows[-1][0] e.focus_set() self._redraw()
add_row
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data: list=None):\n if self.headers and data:\n if len(self.headers) != len(data):\n raise ValueError\n offset = 0 if not self.headers else 1\n row = list()\n if data:\n for i, element in enumerate(data):\n contents = '' if element is None else str(element)\n entry = ttk.Entry(self)\n entry.insert(0, contents)\n entry.grid(row=len(self._rows) + offset, column=i, sticky='E,W')\n row.append(entry)\n else:\n for i in range(self.num_of_columns):\n entry = ttk.Entry(self)\n entry.grid(row=len(self._rows) + offset, column=i, sticky='E,W')\n row.append(entry)\n self._rows.append(row)\n for row in self._rows:\n for widget in row:\n widget.unbind('<Tab>')\n\n def x(e):\n self.add_row()\n last_entry = self._rows[-1][-1]\n last_entry.bind('<Tab>', add)\n e = self._rows[-1][0]\n e.focus_set()\n self._redraw()\n", "role": "user" }, { "content": "add_row", "role": "assistant" } ]
def x(self): data = list() for row in self._rows: row_data = OrderedDict() for i, header in enumerate(self.headers): row_data[header.cget('text')] = row[i].get() data.append(row_data) return data
read_as_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n data = list()\n for row in self._rows:\n row_data = OrderedDict()\n for i, header in enumerate(self.headers):\n row_data[header.cget('text')] = row[i].get()\n data.append(row_data)\n return data\n", "role": "user" }, { "content": "read_as_dict", "role": "assistant" } ]
def x(self): rows = list() for row in self._rows: rows.append([row[i].get() for i in range(self.num_of_columns)]) return rows
read_as_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n rows = list()\n for row in self._rows:\n rows.append([row[i].get() for i in range(self.num_of_columns)])\n return rows\n", "role": "user" }, { "content": "read_as_table", "role": "assistant" } ]
def x(self, data: list): if self.headers and data: if len(self.headers) != len(data): raise ValueError offset = 0 if not self.headers else 1 row = list() for i, e in enumerate(data): if not isinstance(e, tuple): raise ValueError( 'all elements must be a tuple consisting of ("label", <command>)' ) label, command = e button = tk.Button(self, text=str(label), relief=tk.RAISED, command =command, padx=self.padding, pady=self.padding) button.grid(row=len(self._rows) + offset, column=i, sticky='ew') row.append(button) self._rows.append(row)
add_row
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data: list):\n if self.headers and data:\n if len(self.headers) != len(data):\n raise ValueError\n offset = 0 if not self.headers else 1\n row = list()\n for i, e in enumerate(data):\n if not isinstance(e, tuple):\n raise ValueError(\n 'all elements must be a tuple consisting of (\"label\", <command>)'\n )\n label, command = e\n button = tk.Button(self, text=str(label), relief=tk.RAISED, command\n =command, padx=self.padding, pady=self.padding)\n button.grid(row=len(self._rows) + offset, column=i, sticky='ew')\n row.append(button)\n self._rows.append(row)\n", "role": "user" }, { "content": "add_row", "role": "assistant" } ]
def x(self, key: str, default: str=None, unit_label: str=None, enable: bool =None): self.keys.append(ttk.Label(self, text=key)) self.defaults.append(default) self.unit_labels.append(ttk.Label(self, text=unit_label if unit_label else '')) self.enables.append(enable) self.values.append(ttk.Entry(self)) row_offset = 1 if self.title is not None else 0 for i in range(len(self.keys)): self.keys[i].grid_forget() self.keys[i].grid(row=row_offset, column=0, sticky='e') self.values[i].grid(row=row_offset, column=1) if self.unit_labels[i]: self.unit_labels[i].grid(row=row_offset, column=3, sticky='w') if self.defaults[i]: self.values[i].config(state=tk.NORMAL) self.values[i].delete(0, tk.END) self.values[i].insert(0, self.defaults[i]) if self.enables[i] in [True, None]: self.values[i].config(state=tk.NORMAL) elif self.enables[i] is False: self.values[i].config(state=tk.DISABLED) row_offset += 1 self.values[i].unbind('<Return>') self.values[i].unbind('<Tab>') if self.callback is not None: def x(event): self.callback() self.values[i].bind('<Return>', callback) self.values[i].bind('<Tab>', callback)
add_row
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key: str, default: str=None, unit_label: str=None, enable: bool\n =None):\n self.keys.append(ttk.Label(self, text=key))\n self.defaults.append(default)\n self.unit_labels.append(ttk.Label(self, text=unit_label if unit_label else\n ''))\n self.enables.append(enable)\n self.values.append(ttk.Entry(self))\n row_offset = 1 if self.title is not None else 0\n for i in range(len(self.keys)):\n self.keys[i].grid_forget()\n self.keys[i].grid(row=row_offset, column=0, sticky='e')\n self.values[i].grid(row=row_offset, column=1)\n if self.unit_labels[i]:\n self.unit_labels[i].grid(row=row_offset, column=3, sticky='w')\n if self.defaults[i]:\n self.values[i].config(state=tk.NORMAL)\n self.values[i].delete(0, tk.END)\n self.values[i].insert(0, self.defaults[i])\n if self.enables[i] in [True, None]:\n self.values[i].config(state=tk.NORMAL)\n elif self.enables[i] is False:\n self.values[i].config(state=tk.DISABLED)\n row_offset += 1\n self.values[i].unbind('<Return>')\n self.values[i].unbind('<Tab>')\n if self.callback is not None:\n\n def x(event):\n self.callback()\n self.values[i].bind('<Return>', callback)\n self.values[i].bind('<Tab>', callback)\n", "role": "user" }, { "content": "add_row", "role": "assistant" } ]
def x(self): for i in range(len(self.values)): self.values[i].delete(0, tk.END) if self.defaults[i] is not None: self.values[i].insert(0, self.defaults[i])
reset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for i in range(len(self.values)):\n self.values[i].delete(0, tk.END)\n if self.defaults[i] is not None:\n self.values[i].insert(0, self.defaults[i])\n", "role": "user" }, { "content": "reset", "role": "assistant" } ]
def x(self, enables_list: list): for i, entry in enumerate(self.values): if enables_list[i]: entry.config(state=tk.NORMAL) else: entry.config(state=tk.DISABLED)
change_enables
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, enables_list: list):\n for i, entry in enumerate(self.values):\n if enables_list[i]:\n entry.config(state=tk.NORMAL)\n else:\n entry.config(state=tk.DISABLED)\n", "role": "user" }, { "content": "change_enables", "role": "assistant" } ]
def x(self, data: dict): for i, label in enumerate(self.keys): key = label.cget('text') if key in data.keys(): entry_was_enabled = True if self.values[i].cget('state' ) == 'normal' else False if not entry_was_enabled: self.values[i].config(state='normal') self.values[i].delete(0, tk.END) self.values[i].insert(0, str(data[key])) if not entry_was_enabled: self.values[i].config(state='disabled')
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data: dict):\n for i, label in enumerate(self.keys):\n key = label.cget('text')\n if key in data.keys():\n entry_was_enabled = True if self.values[i].cget('state'\n ) == 'normal' else False\n if not entry_was_enabled:\n self.values[i].config(state='normal')\n self.values[i].delete(0, tk.END)\n self.values[i].insert(0, str(data[key]))\n if not entry_was_enabled:\n self.values[i].config(state='disabled')\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(self): data = dict() for label, entry in zip(self.keys, self.values): data[label.cget('text')] = entry.get() return data
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n data = dict()\n for label, entry in zip(self.keys, self.values):\n data[label.cget('text')] = entry.get()\n return data\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self, evt): x, y, widget = evt.x, evt.y, evt.widget item = widget.identify_row(y) column = widget.identify_column(x) if not column or not item in self._items: return item_values = widget.item(item)['values'] if not len(item_values): return text = item_values[int(column[1]) - 1] if not text: return bbox = widget.bbox(item, column) if not bbox: return text = '%02d' % text self._selection = text, item, column self._show_selection(text, bbox) if self.callback is not None: self.callback()
pressed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, evt):\n x, y, widget = evt.x, evt.y, evt.widget\n item = widget.identify_row(y)\n column = widget.identify_column(x)\n if not column or not item in self._items:\n return\n item_values = widget.item(item)['values']\n if not len(item_values):\n return\n text = item_values[int(column[1]) - 1]\n if not text:\n return\n bbox = widget.bbox(item, column)\n if not bbox:\n return\n text = '%02d' % text\n self._selection = text, item, column\n self._show_selection(text, bbox)\n if self.callback is not None:\n self.callback()\n", "role": "user" }, { "content": "pressed", "role": "assistant" } ]
def x(self, string: (str, list)): if len(self._entries) == 1: self._entries[0].delete(0, 'end') self._entries[0].insert(0, string) else: if len(string) != len(self._entries): raise ValueError( 'the "string" list must be equal to the number of entries') for i, e in enumerate(self._entries): self._entries[i].delete(0, 'end') self._entries[i].insert(0, string[i])
add
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, string: (str, list)):\n if len(self._entries) == 1:\n self._entries[0].delete(0, 'end')\n self._entries[0].insert(0, string)\n else:\n if len(string) != len(self._entries):\n raise ValueError(\n 'the \"string\" list must be equal to the number of entries')\n for i, e in enumerate(self._entries):\n self._entries[i].delete(0, 'end')\n self._entries[i].insert(0, string[i])\n", "role": "user" }, { "content": "add", "role": "assistant" } ]
def x(self): for e in self._entries: e.grid_forget() e.destroy() self._remove_btn.grid_forget() self._remove_btn.destroy() self.deleted = True if self._remove_callback: self._remove_callback()
remove
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for e in self._entries:\n e.grid_forget()\n e.destroy()\n self._remove_btn.grid_forget()\n self._remove_btn.destroy()\n self.deleted = True\n if self._remove_callback:\n self._remove_callback()\n", "role": "user" }, { "content": "remove", "role": "assistant" } ]
def x(self): values = [e.get() for e in self._entries] if len(self._entries) == 1: return values[0] else: return values
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n values = [e.get() for e in self._entries]\n if len(self._entries) == 1:\n return values[0]\n else:\n return values\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self): if self._blank_label: self._blank_label.grid_forget() self._blank_label.destroy() self._blank_label = None for slot in self._slots: slot.grid_forget() self._slots = [slot for slot in self._slots if not slot.deleted] max_per_col = 8 for i, slot in enumerate(self._slots): slot.grid(row=i % max_per_col, column=int(i / max_per_col), sticky='ew' )
redraw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._blank_label:\n self._blank_label.grid_forget()\n self._blank_label.destroy()\n self._blank_label = None\n for slot in self._slots:\n slot.grid_forget()\n self._slots = [slot for slot in self._slots if not slot.deleted]\n max_per_col = 8\n for i, slot in enumerate(self._slots):\n slot.grid(row=i % max_per_col, column=int(i / max_per_col), sticky='ew'\n )\n", "role": "user" }, { "content": "redraw", "role": "assistant" } ]
def x(self, string: (str, list)): slot = _SlotFrame(self, remove_callback=self._redraw, entries=self. _slot_columns) slot.add(string) self._slots.append(slot) self._redraw()
add
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, string: (str, list)):\n slot = _SlotFrame(self, remove_callback=self._redraw, entries=self.\n _slot_columns)\n slot.add(string)\n self._slots.append(slot)\n self._redraw()\n", "role": "user" }, { "content": "add", "role": "assistant" } ]
def x(self): for slot in self._slots: slot.grid_forget() slot.destroy() self._slots = []
clear
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for slot in self._slots:\n slot.grid_forget()\n slot.destroy()\n self._slots = []\n", "role": "user" }, { "content": "clear", "role": "assistant" } ]
def x(self): for _, frame in self._segments.items(): frame.configure(background=self._bg_color)
clear
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for _, frame in self._segments.items():\n frame.configure(background=self._bg_color)\n", "role": "user" }, { "content": "clear", "role": "assistant" } ]
def x(self, value: str): self.clear() if '.' in value: self._segments['period'].configure(background=self._color) if value in ['0', '0.']: self._segments['a'].configure(background=self._color) self._segments['b'].configure(background=self._color) self._segments['c'].configure(background=self._color) self._segments['d'].configure(background=self._color) self._segments['e'].configure(background=self._color) self._segments['f'].configure(background=self._color) elif value in ['1', '1.']: self._segments['b'].configure(background=self._color) self._segments['c'].configure(background=self._color) elif value in ['2', '2.']: self._segments['a'].configure(background=self._color) self._segments['b'].configure(background=self._color) self._segments['g'].configure(background=self._color) self._segments['e'].configure(background=self._color) self._segments['d'].configure(background=self._color) elif value in ['3', '3.']: self._segments['a'].configure(background=self._color) self._segments['b'].configure(background=self._color) self._segments['g'].configure(background=self._color) self._segments['c'].configure(background=self._color) self._segments['d'].configure(background=self._color) elif value in ['4', '4.']: self._segments['f'].configure(background=self._color) self._segments['g'].configure(background=self._color) self._segments['b'].configure(background=self._color) self._segments['c'].configure(background=self._color) elif value in ['5', '5.']: self._segments['a'].configure(background=self._color) self._segments['f'].configure(background=self._color) self._segments['g'].configure(background=self._color) self._segments['c'].configure(background=self._color) self._segments['d'].configure(background=self._color) elif value in ['6', '6.']: self._segments['f'].configure(background=self._color) self._segments['g'].configure(background=self._color) self._segments['c'].configure(background=self._color) self._segments['d'].configure(background=self._color) self._segments['e'].configure(background=self._color) elif value in ['7', '7.']: self._segments['a'].configure(background=self._color) self._segments['b'].configure(background=self._color) self._segments['c'].configure(background=self._color) elif value in ['8', '8.']: self._segments['a'].configure(background=self._color) self._segments['b'].configure(background=self._color) self._segments['c'].configure(background=self._color) self._segments['d'].configure(background=self._color) self._segments['e'].configure(background=self._color) self._segments['f'].configure(background=self._color) self._segments['g'].configure(background=self._color) elif value in ['9', '9.']: self._segments['a'].configure(background=self._color) self._segments['b'].configure(background=self._color) self._segments['c'].configure(background=self._color) self._segments['f'].configure(background=self._color) self._segments['g'].configure(background=self._color) elif value in ['-']: self._segments['g'].configure(background=self._color) else: raise ValueError('unsupported character: {}'.format(value))
set_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value: str):\n self.clear()\n if '.' in value:\n self._segments['period'].configure(background=self._color)\n if value in ['0', '0.']:\n self._segments['a'].configure(background=self._color)\n self._segments['b'].configure(background=self._color)\n self._segments['c'].configure(background=self._color)\n self._segments['d'].configure(background=self._color)\n self._segments['e'].configure(background=self._color)\n self._segments['f'].configure(background=self._color)\n elif value in ['1', '1.']:\n self._segments['b'].configure(background=self._color)\n self._segments['c'].configure(background=self._color)\n elif value in ['2', '2.']:\n self._segments['a'].configure(background=self._color)\n self._segments['b'].configure(background=self._color)\n self._segments['g'].configure(background=self._color)\n self._segments['e'].configure(background=self._color)\n self._segments['d'].configure(background=self._color)\n elif value in ['3', '3.']:\n self._segments['a'].configure(background=self._color)\n self._segments['b'].configure(background=self._color)\n self._segments['g'].configure(background=self._color)\n self._segments['c'].configure(background=self._color)\n self._segments['d'].configure(background=self._color)\n elif value in ['4', '4.']:\n self._segments['f'].configure(background=self._color)\n self._segments['g'].configure(background=self._color)\n self._segments['b'].configure(background=self._color)\n self._segments['c'].configure(background=self._color)\n elif value in ['5', '5.']:\n self._segments['a'].configure(background=self._color)\n self._segments['f'].configure(background=self._color)\n self._segments['g'].configure(background=self._color)\n self._segments['c'].configure(background=self._color)\n self._segments['d'].configure(background=self._color)\n elif value in ['6', '6.']:\n self._segments['f'].configure(background=self._color)\n self._segments['g'].configure(background=self._color)\n self._segments['c'].configure(background=self._color)\n self._segments['d'].configure(background=self._color)\n self._segments['e'].configure(background=self._color)\n elif value in ['7', '7.']:\n self._segments['a'].configure(background=self._color)\n self._segments['b'].configure(background=self._color)\n self._segments['c'].configure(background=self._color)\n elif value in ['8', '8.']:\n self._segments['a'].configure(background=self._color)\n self._segments['b'].configure(background=self._color)\n self._segments['c'].configure(background=self._color)\n self._segments['d'].configure(background=self._color)\n self._segments['e'].configure(background=self._color)\n self._segments['f'].configure(background=self._color)\n self._segments['g'].configure(background=self._color)\n elif value in ['9', '9.']:\n self._segments['a'].configure(background=self._color)\n self._segments['b'].configure(background=self._color)\n self._segments['c'].configure(background=self._color)\n self._segments['f'].configure(background=self._color)\n self._segments['g'].configure(background=self._color)\n elif value in ['-']:\n self._segments['g'].configure(background=self._color)\n else:\n raise ValueError('unsupported character: {}'.format(value))\n", "role": "user" }, { "content": "set_value", "role": "assistant" } ]
def x(self, value: str): reversed_v = value[::-1] parts = [] has_period = False for c in reversed_v: if has_period: parts.append(c + '.') has_period = False elif c == '.': has_period = True else: parts.append(c) parts = parts[:len(self._digits)] return parts
group
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value: str):\n reversed_v = value[::-1]\n parts = []\n has_period = False\n for c in reversed_v:\n if has_period:\n parts.append(c + '.')\n has_period = False\n elif c == '.':\n has_period = True\n else:\n parts.append(c)\n parts = parts[:len(self._digits)]\n return parts\n", "role": "user" }, { "content": "group", "role": "assistant" } ]
def x(self, value: str): [digit.clear() for digit in self._digits] grouped = self._group(value) digits = self._digits[::-1] has_period = False for i, digit_value in enumerate(grouped): try: if has_period: digits[i].set_value(digit_value + '.') has_period = False elif grouped[i] == '.': has_period = True else: digits[i].set_value(digit_value) except IndexError: raise ValueError('the value "{}" contains too many digits'. format(value))
set_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value: str):\n [digit.clear() for digit in self._digits]\n grouped = self._group(value)\n digits = self._digits[::-1]\n has_period = False\n for i, digit_value in enumerate(grouped):\n try:\n if has_period:\n digits[i].set_value(digit_value + '.')\n has_period = False\n elif grouped[i] == '.':\n has_period = True\n else:\n digits[i].set_value(digit_value)\n except IndexError:\n raise ValueError('the value \"{}\" contains too many digits'.\n format(value))\n", "role": "user" }, { "content": "set_value", "role": "assistant" } ]
def x(self, callback: callable): def x(*args): try: callback() except TypeError: callback(self.get()) self._var.trace('w', internal_callback)
add_callback
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, callback: callable):\n\n def x(*args):\n try:\n callback()\n except TypeError:\n callback(self.get())\n self._var.trace('w', internal_callback)\n", "role": "user" }, { "content": "add_callback", "role": "assistant" } ]
def x(self, value: int): max_value = int(''.join(['1' for _ in range(self._bit_width)]), 2) if value > max_value: raise ValueError('the value {} is larger than the maximum value {}' .format(value, max_value)) self._value = value self._text_update()
set
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value: int):\n max_value = int(''.join(['1' for _ in range(self._bit_width)]), 2)\n if value > max_value:\n raise ValueError('the value {} is larger than the maximum value {}'\n .format(value, max_value))\n self._value = value\n self._text_update()\n", "role": "user" }, { "content": "set", "role": "assistant" } ]
def x(self, position: int): if position > self._bit_width - 1: raise ValueError('position greater than the bit width') if self._value & 1 << position: return 1 else: return 0
get_bit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, position: int):\n if position > self._bit_width - 1:\n raise ValueError('position greater than the bit width')\n if self._value & 1 << position:\n return 1\n else:\n return 0\n", "role": "user" }, { "content": "get_bit", "role": "assistant" } ]