source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(stream, filename, metadata, access_token, base_url=OH_BASE_URL,
remote_file_info=None, project_member_id=None, max_bytes=
MAX_FILE_DEFAULT, file_identifier=None):
if not file_identifier:
file_identifier = filename
old_position = stream.tell()
stream.seek(0, os.SEEK_END)
filesize = stream.tell()
stream.seek(old_position, os.SEEK_SET)
if filesize == 0:
raise Exception('The submitted file is empty.')
if _exceeds_size(filesize, max_bytes, file_identifier):
raise ValueError('Maximum file size exceeded')
if remote_file_info:
response = requests.get(remote_file_info['download_url'], stream=True)
remote_size = int(response.headers['Content-Length'])
if remote_size == filesize:
info_msg = ('Skipping {}, remote exists with matching file size'
.format(file_identifier))
logging.info(info_msg)
return info_msg
url = urlparse.urljoin(base_url,
'/api/direct-sharing/project/files/upload/direct/?{}'.format(
urlparse.urlencode({'access_token': access_token})))
if not project_member_id:
response = exchange_oauth2_member(access_token, base_url=base_url)
project_member_id = response['project_member_id']
data = {'project_member_id': project_member_id, 'metadata': json.dumps(
metadata), 'filename': filename}
r1 = requests.post(url, data=data)
handle_error(r1, 201)
r2 = requests.put(url=r1.json()['url'], data=stream)
handle_error(r2, 200)
done = urlparse.urljoin(base_url,
'/api/direct-sharing/project/files/upload/complete/?{}'.format(
urlparse.urlencode({'access_token': access_token})))
r3 = requests.post(done, data={'project_member_id': project_member_id,
'file_id': r1.json()['id']})
handle_error(r3, 200)
logging.info('Upload complete: {}'.format(file_identifier))
return r3
|
upload_stream
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(stream, filename, metadata, access_token, base_url=OH_BASE_URL,\n remote_file_info=None, project_member_id=None, max_bytes=\n MAX_FILE_DEFAULT, file_identifier=None):\n if not file_identifier:\n file_identifier = filename\n old_position = stream.tell()\n stream.seek(0, os.SEEK_END)\n filesize = stream.tell()\n stream.seek(old_position, os.SEEK_SET)\n if filesize == 0:\n raise Exception('The submitted file is empty.')\n if _exceeds_size(filesize, max_bytes, file_identifier):\n raise ValueError('Maximum file size exceeded')\n if remote_file_info:\n response = requests.get(remote_file_info['download_url'], stream=True)\n remote_size = int(response.headers['Content-Length'])\n if remote_size == filesize:\n info_msg = ('Skipping {}, remote exists with matching file size'\n .format(file_identifier))\n logging.info(info_msg)\n return info_msg\n url = urlparse.urljoin(base_url,\n '/api/direct-sharing/project/files/upload/direct/?{}'.format(\n urlparse.urlencode({'access_token': access_token})))\n if not project_member_id:\n response = exchange_oauth2_member(access_token, base_url=base_url)\n project_member_id = response['project_member_id']\n data = {'project_member_id': project_member_id, 'metadata': json.dumps(\n metadata), 'filename': filename}\n r1 = requests.post(url, data=data)\n handle_error(r1, 201)\n r2 = requests.put(url=r1.json()['url'], data=stream)\n handle_error(r2, 200)\n done = urlparse.urljoin(base_url,\n '/api/direct-sharing/project/files/upload/complete/?{}'.format(\n urlparse.urlencode({'access_token': access_token})))\n r3 = requests.post(done, data={'project_member_id': project_member_id,\n 'file_id': r1.json()['id']})\n handle_error(r3, 200)\n logging.info('Upload complete: {}'.format(file_identifier))\n return r3\n",
"role": "user"
},
{
"content": "upload_stream",
"role": "assistant"
}
] |
def x(target_filepath, metadata, access_token, base_url=OH_BASE_URL,
remote_file_info=None, project_member_id=None, max_bytes=MAX_FILE_DEFAULT):
with open(target_filepath, 'rb') as stream:
filename = os.path.basename(target_filepath)
return upload_stream(stream, filename, metadata, access_token,
base_url, remote_file_info, project_member_id, max_bytes,
file_identifier=target_filepath)
|
upload_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(target_filepath, metadata, access_token, base_url=OH_BASE_URL,\n remote_file_info=None, project_member_id=None, max_bytes=MAX_FILE_DEFAULT):\n with open(target_filepath, 'rb') as stream:\n filename = os.path.basename(target_filepath)\n return upload_stream(stream, filename, metadata, access_token,\n base_url, remote_file_info, project_member_id, max_bytes,\n file_identifier=target_filepath)\n",
"role": "user"
},
{
"content": "upload_file",
"role": "assistant"
}
] |
def x(target_filepath, metadata, access_token, base_url=OH_BASE_URL,
remote_file_info=None, project_member_id=None, max_bytes=MAX_FILE_DEFAULT):
return upload_file(target_filepath, metadata, access_token, base_url,
remote_file_info, project_member_id, max_bytes)
|
upload_aws
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(target_filepath, metadata, access_token, base_url=OH_BASE_URL,\n remote_file_info=None, project_member_id=None, max_bytes=MAX_FILE_DEFAULT):\n return upload_file(target_filepath, metadata, access_token, base_url,\n remote_file_info, project_member_id, max_bytes)\n",
"role": "user"
},
{
"content": "upload_aws",
"role": "assistant"
}
] |
def x(from_, pack_type):
if len(from_) == 0:
return bytes()
if pack_type == 'c':
if isinstance(from_, bytes):
from_ = [six.int2byte(b) for b in six.iterbytes(from_)]
elif isinstance(from_, six.string_types):
from_ = [six.int2byte(b) for b in bytearray(from_, 'utf-8')]
elif isinstance(from_[0], six.integer_types):
def x(v):
for _ in range(4):
v, r = divmod(v, 256)
yield r
from_ = [six.int2byte(b) for i in from_ for b in to_bytes(i)]
if isinstance(pack_type, six.string_types):
return struct.pack('=' + pack_type * len(from_), *from_)
else:
buf = six.BytesIO()
for item in from_:
if isinstance(item, Protobj) and hasattr(item, 'pack'):
buf.write(item.pack())
else:
buf.write(item)
return buf.getvalue()
|
pack_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(from_, pack_type):\n if len(from_) == 0:\n return bytes()\n if pack_type == 'c':\n if isinstance(from_, bytes):\n from_ = [six.int2byte(b) for b in six.iterbytes(from_)]\n elif isinstance(from_, six.string_types):\n from_ = [six.int2byte(b) for b in bytearray(from_, 'utf-8')]\n elif isinstance(from_[0], six.integer_types):\n\n def x(v):\n for _ in range(4):\n v, r = divmod(v, 256)\n yield r\n from_ = [six.int2byte(b) for i in from_ for b in to_bytes(i)]\n if isinstance(pack_type, six.string_types):\n return struct.pack('=' + pack_type * len(from_), *from_)\n else:\n buf = six.BytesIO()\n for item in from_:\n if isinstance(item, Protobj) and hasattr(item, 'pack'):\n buf.write(item.pack())\n else:\n buf.write(item)\n return buf.getvalue()\n",
"role": "user"
},
{
"content": "pack_list",
"role": "assistant"
}
] |
def x(f):
@functools.wraps(f)
def x(*args):
self = args[0]
self.invalid()
try:
return f(*args)
finally:
self.invalid()
return wrapper
|
ensure_connected
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f):\n\n @functools.wraps(f)\n def x(*args):\n self = args[0]\n self.invalid()\n try:\n return f(*args)\n finally:\n self.invalid()\n return wrapper\n",
"role": "user"
},
{
"content": "ensure_connected",
"role": "assistant"
}
] |
def x(self):
root_iter = lib.xcb_setup_roots_iterator(self._setup)
screens = [root_iter.data]
for i in range(self._setup.roots_len - 1):
lib.xcb_screen_next(ffi.addressof(root_iter))
screens.append(root_iter.data)
return screens
|
get_screen_pointers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n root_iter = lib.xcb_setup_roots_iterator(self._setup)\n screens = [root_iter.data]\n for i in range(self._setup.roots_len - 1):\n lib.xcb_screen_next(ffi.addressof(root_iter))\n screens.append(root_iter.data)\n return screens\n",
"role": "user"
},
{
"content": "get_screen_pointers",
"role": "assistant"
}
] |
def x(self, e):
if e.response_type == 0:
return self._process_error(ffi.cast('xcb_generic_error_t *', e))
event = self._event_offsets[e.response_type & 127]
buf = CffiUnpacker(e)
return event(buf)
|
hoist_event
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, e):\n if e.response_type == 0:\n return self._process_error(ffi.cast('xcb_generic_error_t *', e))\n event = self._event_offsets[e.response_type & 127]\n buf = CffiUnpacker(e)\n return event(buf)\n",
"role": "user"
},
{
"content": "hoist_event",
"role": "assistant"
}
] |
def x(self, value, greedy=True):
if greedy and not isinstance(value, Column):
value = self.normalize(value)
if isinstance(value, Column):
return value.id
else:
return value
|
serialize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value, greedy=True):\n if greedy and not isinstance(value, Column):\n value = self.normalize(value)\n if isinstance(value, Column):\n return value.id\n else:\n return value\n",
"role": "user"
},
{
"content": "serialize",
"role": "assistant"
}
] |
def x(profile, description):
api_type = description.pop('type', 'core')
api = getattr(profile, api_type)
return refine(api.query, description)
|
describe
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(profile, description):\n api_type = description.pop('type', 'core')\n api = getattr(profile, api_type)\n return refine(api.query, description)\n",
"role": "user"
},
{
"content": "describe",
"role": "assistant"
}
] |
def x(query, description):
for attribute, arguments in description.items():
if hasattr(query, attribute):
attribute = getattr(query, attribute)
else:
raise ValueError('Unknown query method: ' + attribute)
if utils.isempty(arguments):
continue
if callable(attribute):
method = attribute
if isinstance(arguments, dict):
query = method(**arguments)
elif isinstance(arguments, list):
query = method(*arguments)
else:
query = method(arguments)
else:
setattr(attribute, arguments)
return query
|
refine
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(query, description):\n for attribute, arguments in description.items():\n if hasattr(query, attribute):\n attribute = getattr(query, attribute)\n else:\n raise ValueError('Unknown query method: ' + attribute)\n if utils.isempty(arguments):\n continue\n if callable(attribute):\n method = attribute\n if isinstance(arguments, dict):\n query = method(**arguments)\n elif isinstance(arguments, list):\n query = method(*arguments)\n else:\n query = method(arguments)\n else:\n setattr(attribute, arguments)\n return query\n",
"role": "user"
},
{
"content": "refine",
"role": "assistant"
}
] |
def x(self, key=None, value=None, **kwargs):
serialize = partial(self.api.columns.serialize, greedy=False)
if key and value:
self.raw[key] = serialize(value)
elif key or kwargs:
properties = key or kwargs
for key, value in properties.items():
self.raw[key] = serialize(value)
else:
raise ValueError(
'Query#set requires a key and value, a properties dictionary or keyword arguments.'
)
return self
|
set
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key=None, value=None, **kwargs):\n serialize = partial(self.api.columns.serialize, greedy=False)\n if key and value:\n self.raw[key] = serialize(value)\n elif key or kwargs:\n properties = key or kwargs\n for key, value in properties.items():\n self.raw[key] = serialize(value)\n else:\n raise ValueError(\n 'Query#set requires a key and value, a properties dictionary or keyword arguments.'\n )\n return self\n",
"role": "user"
},
{
"content": "set",
"role": "assistant"
}
] |
def x(self):
if 'metrics' in self.raw:
metrics = self.raw['metrics']
head = metrics[0:-1] or metrics[0:1]
text = ', '.join(head)
if len(metrics) > 1:
tail = metrics[-1]
text = text + ' and ' + tail
else:
text = 'n/a'
return text
|
description
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if 'metrics' in self.raw:\n metrics = self.raw['metrics']\n head = metrics[0:-1] or metrics[0:1]\n text = ', '.join(head)\n if len(metrics) > 1:\n tail = metrics[-1]\n text = text + ' and ' + tail\n else:\n text = 'n/a'\n return text\n",
"role": "user"
},
{
"content": "description",
"role": "assistant"
}
] |
def x(self, *columns, **options):
sorts = self.meta.setdefault('sort', [])
for column in columns:
if isinstance(column, Column):
identifier = column.id
elif isinstance(column, utils.basestring):
descending = column.startswith('-') or options.get('descending',
False)
identifier = self.api.columns[column.lstrip('-')].id
else:
raise ValueError(
'Can only sort on columns or column strings. Received: {}'.
format(column))
if descending:
sign = '-'
else:
sign = ''
sorts.append(sign + identifier)
self.raw['sort'] = ','.join(sorts)
return self
|
sort
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *columns, **options):\n sorts = self.meta.setdefault('sort', [])\n for column in columns:\n if isinstance(column, Column):\n identifier = column.id\n elif isinstance(column, utils.basestring):\n descending = column.startswith('-') or options.get('descending',\n False)\n identifier = self.api.columns[column.lstrip('-')].id\n else:\n raise ValueError(\n 'Can only sort on columns or column strings. Received: {}'.\n format(column))\n if descending:\n sign = '-'\n else:\n sign = ''\n sorts.append(sign + identifier)\n self.raw['sort'] = ','.join(sorts)\n return self\n",
"role": "user"
},
{
"content": "sort",
"role": "assistant"
}
] |
def x(self, value=None, exclude=False, **selection):
filters = self.meta.setdefault('filters', [])
if value and len(selection):
raise ValueError(
'Cannot specify a filter string and a filter keyword selection at the same time.'
)
elif value:
value = [value]
elif len(selection):
value = select(self.api.columns, selection, invert=exclude)
filters.append(value)
self.raw['filters'] = utils.paste(filters, ',', ';')
return self
|
filter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value=None, exclude=False, **selection):\n filters = self.meta.setdefault('filters', [])\n if value and len(selection):\n raise ValueError(\n 'Cannot specify a filter string and a filter keyword selection at the same time.'\n )\n elif value:\n value = [value]\n elif len(selection):\n value = select(self.api.columns, selection, invert=exclude)\n filters.append(value)\n self.raw['filters'] = utils.paste(filters, ',', ';')\n return self\n",
"role": "user"
},
{
"content": "filter",
"role": "assistant"
}
] |
def x(self, precision):
if isinstance(precision, int):
precision = self.PRECISION_LEVELS[precision]
if precision not in self.PRECISION_LEVELS:
levels = ', '.join(self.PRECISION_LEVELS)
raise ValueError('Precision should be one of: ' + levels)
if precision != 'DEFAULT':
self.raw.update({'samplingLevel': precision})
return self
|
precision
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, precision):\n if isinstance(precision, int):\n precision = self.PRECISION_LEVELS[precision]\n if precision not in self.PRECISION_LEVELS:\n levels = ', '.join(self.PRECISION_LEVELS)\n raise ValueError('Precision should be one of: ' + levels)\n if precision != 'DEFAULT':\n self.raw.update({'samplingLevel': precision})\n return self\n",
"role": "user"
},
{
"content": "precision",
"role": "assistant"
}
] |
def x(self, granularity):
if granularity == 'total':
return self
if not isinstance(granularity, int):
if granularity in self.GRANULARITY_LEVELS:
granularity = self.GRANULARITY_LEVELS.index(granularity)
else:
levels = ', '.join(self.GRANULARITY_LEVELS)
raise ValueError('Granularity should be one of: lifetime, ' +
levels)
dimension = self.GRANULARITY_DIMENSIONS[granularity]
self.raw['dimensions'].insert(0, dimension)
return self
|
interval
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, granularity):\n if granularity == 'total':\n return self\n if not isinstance(granularity, int):\n if granularity in self.GRANULARITY_LEVELS:\n granularity = self.GRANULARITY_LEVELS.index(granularity)\n else:\n levels = ', '.join(self.GRANULARITY_LEVELS)\n raise ValueError('Granularity should be one of: lifetime, ' +\n levels)\n dimension = self.GRANULARITY_DIMENSIONS[granularity]\n self.raw['dimensions'].insert(0, dimension)\n return self\n",
"role": "user"
},
{
"content": "interval",
"role": "assistant"
}
] |
def x(self, start=None, stop=None, months=0, days=0):
start, stop = utils.date.range(start, stop, months, days)
self.raw.update({'start_date': start, 'end_date': stop})
return self
|
range
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, start=None, stop=None, months=0, days=0):\n start, stop = utils.date.range(start, stop, months, days)\n self.raw.update({'start_date': start, 'end_date': stop})\n return self\n",
"role": "user"
},
{
"content": "range",
"role": "assistant"
}
] |
def x(self, *_range):
if len(_range) == 2:
start, maximum = _range
else:
start = 1
maximum = _range[0]
self.meta['limit'] = maximum
self.raw.update({'start_index': start, 'max_results': maximum})
return self
|
limit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *_range):\n if len(_range) == 2:\n start, maximum = _range\n else:\n start = 1\n maximum = _range[0]\n self.meta['limit'] = maximum\n self.raw.update({'start_index': start, 'max_results': maximum})\n return self\n",
"role": "user"
},
{
"content": "limit",
"role": "assistant"
}
] |
def x(self, value=None, scope=None, metric_scope=None, **selection):
"""
Technical note to self about segments:
* users or sessions
* sequence or condition
* scope (perHit, perSession, perUser -- gte primary scope)
Multiple conditions can be ANDed or ORed together; these two are equivalent
users::condition::ga:revenue>10;ga:sessionDuration>60
users::condition::ga:revenue>10;users::condition::ga:sessionDuration>60
For sequences, prepending ^ means the first part of the sequence has to match
the first session/hit/...
* users and sessions conditions can be combined (but only with AND)
* sequences and conditions can also be combined (but only with AND)
sessions::sequence::ga:browser==Chrome;
condition::perHit::ga:timeOnPage>5
->>
ga:deviceCategory==mobile;ga:revenue>10;
users::sequence::ga:deviceCategory==desktop
->>
ga:deviceCategory=mobile;
ga:revenue>100;
condition::ga:browser==Chrome
Problem: keyword arguments are passed as a dictionary, not an ordered dictionary!
So e.g. this is risky
query.sessions(time_on_page__gt=5, device_category='mobile', followed_by=True)
"""
SCOPES = {'hits': 'perHit', 'sessions': 'perSession', 'users': 'perUser'}
segments = self.meta.setdefault('segments', [])
if value and len(selection):
raise ValueError(
'Cannot specify a filter string and a filter keyword selection at the same time.'
)
elif value:
value = [self.api.segments.serialize(value)]
elif len(selection):
if not scope:
raise ValueError('Scope is required. Choose from: users, sessions.'
)
if metric_scope:
metric_scope = SCOPES[metric_scope]
value = select(self.api.columns, selection)
value = [[scope, 'condition', metric_scope, condition] for
condition in value]
value = ['::'.join(filter(None, condition)) for condition in value]
segments.append(value)
self.raw['segment'] = utils.paste(segments, ',', ';')
return self
|
segment
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value=None, scope=None, metric_scope=None, **selection):\n \"\"\"\n Technical note to self about segments:\n\n * users or sessions\n * sequence or condition\n * scope (perHit, perSession, perUser -- gte primary scope)\n\n Multiple conditions can be ANDed or ORed together; these two are equivalent\n\n users::condition::ga:revenue>10;ga:sessionDuration>60\n users::condition::ga:revenue>10;users::condition::ga:sessionDuration>60\n\n For sequences, prepending ^ means the first part of the sequence has to match\n the first session/hit/...\n\n * users and sessions conditions can be combined (but only with AND)\n * sequences and conditions can also be combined (but only with AND)\n\n sessions::sequence::ga:browser==Chrome;\n condition::perHit::ga:timeOnPage>5\n ->>\n ga:deviceCategory==mobile;ga:revenue>10;\n\n users::sequence::ga:deviceCategory==desktop\n ->>\n ga:deviceCategory=mobile;\n ga:revenue>100;\n condition::ga:browser==Chrome\n\n Problem: keyword arguments are passed as a dictionary, not an ordered dictionary!\n So e.g. this is risky\n\n query.sessions(time_on_page__gt=5, device_category='mobile', followed_by=True)\n \"\"\"\n SCOPES = {'hits': 'perHit', 'sessions': 'perSession', 'users': 'perUser'}\n segments = self.meta.setdefault('segments', [])\n if value and len(selection):\n raise ValueError(\n 'Cannot specify a filter string and a filter keyword selection at the same time.'\n )\n elif value:\n value = [self.api.segments.serialize(value)]\n elif len(selection):\n if not scope:\n raise ValueError('Scope is required. Choose from: users, sessions.'\n )\n if metric_scope:\n metric_scope = SCOPES[metric_scope]\n value = select(self.api.columns, selection)\n value = [[scope, 'condition', metric_scope, condition] for\n condition in value]\n value = ['::'.join(filter(None, condition)) for condition in value]\n segments.append(value)\n self.raw['segment'] = utils.paste(segments, ',', ';')\n return self\n",
"role": "user"
},
{
"content": "segment",
"role": "assistant"
}
] |
def x(self):
step = self.raw.get('max_results', 1000)
start = self.raw.get('start_index', 1) + step
self.raw['start_index'] = start
return self
|
next
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n step = self.raw.get('max_results', 1000)\n start = self.raw.get('start_index', 1) + step\n self.raw['start_index'] = start\n return self\n",
"role": "user"
},
{
"content": "next",
"role": "assistant"
}
] |
def x(self):
cursor = self
report = None
is_complete = False
is_enough = False
while not (is_enough or is_complete):
chunk = cursor.execute()
if report:
report.append(chunk.raw[0], cursor)
else:
report = chunk
is_enough = len(report.rows) >= self.meta.get('limit', float('inf'))
is_complete = chunk.is_complete
cursor = cursor.next()
return report
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n cursor = self\n report = None\n is_complete = False\n is_enough = False\n while not (is_enough or is_complete):\n chunk = cursor.execute()\n if report:\n report.append(chunk.raw[0], cursor)\n else:\n report = chunk\n is_enough = len(report.rows) >= self.meta.get('limit', float('inf'))\n is_complete = chunk.is_complete\n cursor = cursor.next()\n return report\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self, maximum):
self.meta['limit'] = maximum
self.raw.update({'max_results': maximum})
return self
|
limit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, maximum):\n self.meta['limit'] = maximum\n self.raw.update({'max_results': maximum})\n return self\n",
"role": "user"
},
{
"content": "limit",
"role": "assistant"
}
] |
def x(self):
two_legged = self.client_email and self.private_key
three_legged = self.client_id and self.client_secret
return two_legged or three_legged or False
|
valid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n two_legged = self.client_email and self.private_key\n three_legged = self.client_id and self.client_secret\n return two_legged or three_legged or False\n",
"role": "user"
},
{
"content": "valid",
"role": "assistant"
}
] |
def x(self):
return self.valid and (self.access_token or self.refresh_token or self.
type == 2)
|
complete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return self.valid and (self.access_token or self.refresh_token or self.\n type == 2)\n",
"role": "user"
},
{
"content": "complete",
"role": "assistant"
}
] |
def x(client_id=None, client_secret=None, client_email=None, private_key=
None, access_token=None, refresh_token=None, account=None, webproperty=
None, profile=None, identity=None, prefix=None, suffix=None,
interactive=False, save=False):
credentials = oauth.Credentials.find(valid=True, interactive=
interactive, prefix=prefix, suffix=suffix, client_id=client_id,
client_secret=client_secret, client_email=client_email, private_key
=private_key, access_token=access_token, refresh_token=
refresh_token, identity=identity)
if credentials.incomplete:
if interactive:
credentials = authorize(client_id=credentials.client_id,
client_secret=credentials.client_secret, save=save,
identity=credentials.identity, prefix=prefix, suffix=suffix)
elif credentials.type == 2:
credentials = authorize(client_email=credentials.client_email,
private_key=credentials.private_key, identity=credentials.
identity, save=save)
else:
raise KeyError(
'Cannot authenticate: enable interactive authorization, pass a token or use a service account.'
)
accounts = oauth.authenticate(credentials)
scope = navigate(accounts, account=account, webproperty=webproperty,
profile=profile)
return scope
|
authenticate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(client_id=None, client_secret=None, client_email=None, private_key=\n None, access_token=None, refresh_token=None, account=None, webproperty=\n None, profile=None, identity=None, prefix=None, suffix=None,\n interactive=False, save=False):\n credentials = oauth.Credentials.find(valid=True, interactive=\n interactive, prefix=prefix, suffix=suffix, client_id=client_id,\n client_secret=client_secret, client_email=client_email, private_key\n =private_key, access_token=access_token, refresh_token=\n refresh_token, identity=identity)\n if credentials.incomplete:\n if interactive:\n credentials = authorize(client_id=credentials.client_id,\n client_secret=credentials.client_secret, save=save,\n identity=credentials.identity, prefix=prefix, suffix=suffix)\n elif credentials.type == 2:\n credentials = authorize(client_email=credentials.client_email,\n private_key=credentials.private_key, identity=credentials.\n identity, save=save)\n else:\n raise KeyError(\n 'Cannot authenticate: enable interactive authorization, pass a token or use a service account.'\n )\n accounts = oauth.authenticate(credentials)\n scope = navigate(accounts, account=account, webproperty=webproperty,\n profile=profile)\n return scope\n",
"role": "user"
},
{
"content": "authenticate",
"role": "assistant"
}
] |
def x(client_id, client_secret, client_email=None, private_key=None,
access_token=None, refresh_token=None, identity=None, prefix=None,
suffix=None):
if client_email and private_key:
raise ValueError('Two-legged OAuth does not use revokable tokens.')
credentials = oauth.Credentials.find(complete=True, interactive=False,
identity=identity, client_id=client_id, client_secret=client_secret,
access_token=access_token, refresh_token=refresh_token, prefix=
prefix, suffix=suffix)
retval = credentials.revoke()
keyring.delete(credentials.identity)
return retval
|
revoke
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(client_id, client_secret, client_email=None, private_key=None,\n access_token=None, refresh_token=None, identity=None, prefix=None,\n suffix=None):\n if client_email and private_key:\n raise ValueError('Two-legged OAuth does not use revokable tokens.')\n credentials = oauth.Credentials.find(complete=True, interactive=False,\n identity=identity, client_id=client_id, client_secret=client_secret,\n access_token=access_token, refresh_token=refresh_token, prefix=\n prefix, suffix=suffix)\n retval = credentials.revoke()\n keyring.delete(credentials.identity)\n return retval\n",
"role": "user"
},
{
"content": "revoke",
"role": "assistant"
}
] |
def x(scope, blueprint, debug, output, with_metadata, realtime, **description):
if realtime:
description['type'] = 'realtime'
if blueprint:
queries = from_blueprint(scope, blueprint)
else:
if not isinstance(scope, ga.account.Profile):
raise ValueError('Account and webproperty needed for query.')
queries = from_args(scope, **description)
for query in queries:
if debug:
click.echo(query.build())
report = query.serialize(format=output, with_metadata=with_metadata)
click.echo(report)
|
query
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(scope, blueprint, debug, output, with_metadata, realtime, **description):\n if realtime:\n description['type'] = 'realtime'\n if blueprint:\n queries = from_blueprint(scope, blueprint)\n else:\n if not isinstance(scope, ga.account.Profile):\n raise ValueError('Account and webproperty needed for query.')\n queries = from_args(scope, **description)\n for query in queries:\n if debug:\n click.echo(query.build())\n report = query.serialize(format=output, with_metadata=with_metadata)\n click.echo(report)\n",
"role": "user"
},
{
"content": "query",
"role": "assistant"
}
] |
def x(fn):
@functools.wraps(fn)
def x(self, values, *vargs, **kwargs):
wrap = not isinstance(values, (list, tuple))
should_unwrap = not kwargs.setdefault('wrap', False)
unwrap = wrap and should_unwrap
del kwargs['wrap']
if wrap:
values = [values]
results = [fn(self, value, *vargs, **kwargs) for value in values]
if unwrap:
results = results[0]
return results
return vectorized_method
|
vectorize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fn):\n\n @functools.wraps(fn)\n def x(self, values, *vargs, **kwargs):\n wrap = not isinstance(values, (list, tuple))\n should_unwrap = not kwargs.setdefault('wrap', False)\n unwrap = wrap and should_unwrap\n del kwargs['wrap']\n if wrap:\n values = [values]\n results = [fn(self, value, *vargs, **kwargs) for value in values]\n if unwrap:\n results = results[0]\n return results\n return vectorized_method\n",
"role": "user"
},
{
"content": "vectorize",
"role": "assistant"
}
] |
def x(self):
raw_properties = self.service.management().webproperties().list(accountId
=self.id).execute()['items']
_webproperties = [WebProperty(raw, self) for raw in raw_properties]
return addressable.List(_webproperties, indices=['id', 'name'],
insensitive=True)
|
webproperties
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n raw_properties = self.service.management().webproperties().list(accountId\n =self.id).execute()['items']\n _webproperties = [WebProperty(raw, self) for raw in raw_properties]\n return addressable.List(_webproperties, indices=['id', 'name'],\n insensitive=True)\n",
"role": "user"
},
{
"content": "webproperties",
"role": "assistant"
}
] |
def x(self):
raw_profiles = self.account.service.management().profiles().list(accountId
=self.account.id, webPropertyId=self.id).execute()['items']
profiles = [Profile(raw, self) for raw in raw_profiles]
return addressable.List(profiles, indices=['id', 'name'], insensitive=True)
|
profiles
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n raw_profiles = self.account.service.management().profiles().list(accountId\n =self.account.id, webPropertyId=self.id).execute()['items']\n profiles = [Profile(raw, self) for raw in raw_profiles]\n return addressable.List(profiles, indices=['id', 'name'], insensitive=True)\n",
"role": "user"
},
{
"content": "profiles",
"role": "assistant"
}
] |
def x(*popenargs, **kwargs):
if 'stdout' in kwargs:
raise ValueError('stdout argument not allowed, it will be overridden.')
if 'input' in kwargs:
if 'stdin' in kwargs:
raise ValueError('stdin and input arguments may not both be used.')
inputdata = kwargs['input']
del kwargs['input']
kwargs['stdin'] = PIPE
else:
inputdata = None
process = Popen(*popenargs, stdout=PIPE, **kwargs)
try:
output, unused_err = process.communicate(inputdata)
except:
process.kill()
process.wait()
raise
retcode = process.poll()
if retcode:
cmd = kwargs.get('args')
if cmd is None:
cmd = popenargs[0]
raise CalledProcessError(retcode, cmd, output=output)
return output
|
check_output_input
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(*popenargs, **kwargs):\n if 'stdout' in kwargs:\n raise ValueError('stdout argument not allowed, it will be overridden.')\n if 'input' in kwargs:\n if 'stdin' in kwargs:\n raise ValueError('stdin and input arguments may not both be used.')\n inputdata = kwargs['input']\n del kwargs['input']\n kwargs['stdin'] = PIPE\n else:\n inputdata = None\n process = Popen(*popenargs, stdout=PIPE, **kwargs)\n try:\n output, unused_err = process.communicate(inputdata)\n except:\n process.kill()\n process.wait()\n raise\n retcode = process.poll()\n if retcode:\n cmd = kwargs.get('args')\n if cmd is None:\n cmd = popenargs[0]\n raise CalledProcessError(retcode, cmd, output=output)\n return output\n",
"role": "user"
},
{
"content": "check_output_input",
"role": "assistant"
}
] |
def x(self, tokens):
start_index = len(self.special_token)
indices = list(range(len(tokens) + start_index))
tokens_with_special = self.special_token + list(tokens)
self._token2idx = dict(list(zip(tokens_with_special, indices)))
self._idx2token = dict(list(zip(indices, tokens_with_special)))
|
create_token_indices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tokens):\n start_index = len(self.special_token)\n indices = list(range(len(tokens) + start_index))\n tokens_with_special = self.special_token + list(tokens)\n self._token2idx = dict(list(zip(tokens_with_special, indices)))\n self._idx2token = dict(list(zip(indices, tokens_with_special)))\n",
"role": "user"
},
{
"content": "create_token_indices",
"role": "assistant"
}
] |
def x(self, min_token_count=1, limit_top_tokens=None):
if not self.has_vocab:
raise ValueError(
'You need to build the vocabulary using `build_vocab` before using `apply_encoding_options`'
)
if min_token_count < 1:
raise ValueError('`min_token_count` should atleast be 1')
token_counts = list(self._token_counts.items())
token_counts = [x for x in token_counts if x[1] >= min_token_count]
if limit_top_tokens is not None:
token_counts.sort(key=lambda x: x[1], reverse=True)
filtered_tokens = list(zip(*token_counts))[0]
filtered_tokens = filtered_tokens[:limit_top_tokens]
else:
filtered_tokens = zip(*token_counts)[0]
self.create_token_indices(filtered_tokens)
|
apply_encoding_options
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, min_token_count=1, limit_top_tokens=None):\n if not self.has_vocab:\n raise ValueError(\n 'You need to build the vocabulary using `build_vocab` before using `apply_encoding_options`'\n )\n if min_token_count < 1:\n raise ValueError('`min_token_count` should atleast be 1')\n token_counts = list(self._token_counts.items())\n token_counts = [x for x in token_counts if x[1] >= min_token_count]\n if limit_top_tokens is not None:\n token_counts.sort(key=lambda x: x[1], reverse=True)\n filtered_tokens = list(zip(*token_counts))[0]\n filtered_tokens = filtered_tokens[:limit_top_tokens]\n else:\n filtered_tokens = zip(*token_counts)[0]\n self.create_token_indices(filtered_tokens)\n",
"role": "user"
},
{
"content": "apply_encoding_options",
"role": "assistant"
}
] |
def x(self, texts, unknown_token='<UNK>', verbose=1, **kwargs):
if not self.has_vocab:
raise ValueError(
'You need to build the vocabulary using `build_vocab` before using `encode_texts`'
)
if unknown_token and unknown_token not in self.special_token:
raise ValueError('Your special token (' + unknown_token +
') to replace unknown words is not in the list of special token: '
+ self.special_token)
progbar = Progbar(len(texts), verbose=verbose, interval=0.25)
encoded_texts = []
for token_data in self.token_generator(texts, **kwargs):
indices, token = token_data[:-1], token_data[-1]
token_idx = self._token2idx.get(token)
if token_idx is None and unknown_token:
token_idx = self.special_token.index(unknown_token)
if token_idx is not None:
utils._append(encoded_texts, indices, token_idx)
progbar.update(indices[0])
progbar.update(len(texts))
return encoded_texts
|
encode_texts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, texts, unknown_token='<UNK>', verbose=1, **kwargs):\n if not self.has_vocab:\n raise ValueError(\n 'You need to build the vocabulary using `build_vocab` before using `encode_texts`'\n )\n if unknown_token and unknown_token not in self.special_token:\n raise ValueError('Your special token (' + unknown_token +\n ') to replace unknown words is not in the list of special token: '\n + self.special_token)\n progbar = Progbar(len(texts), verbose=verbose, interval=0.25)\n encoded_texts = []\n for token_data in self.token_generator(texts, **kwargs):\n indices, token = token_data[:-1], token_data[-1]\n token_idx = self._token2idx.get(token)\n if token_idx is None and unknown_token:\n token_idx = self.special_token.index(unknown_token)\n if token_idx is not None:\n utils._append(encoded_texts, indices, token_idx)\n progbar.update(indices[0])\n progbar.update(len(texts))\n return encoded_texts\n",
"role": "user"
},
{
"content": "encode_texts",
"role": "assistant"
}
] |
def x(self, encoded_texts, unknown_token='<UNK>', inplace=True):
if len(self._token2idx) == 0:
raise ValueError(
'You need to build vocabulary using `build_vocab` before using `decode_texts`'
)
if not isinstance(encoded_texts, list):
encoded_texts = encoded_texts.tolist()
if not inplace:
encoded_texts = deepcopy(encoded_texts)
utils._recursive_apply(encoded_texts, lambda token_id: self._idx2token.
get(token_id) or unknown_token)
return encoded_texts
|
decode_texts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, encoded_texts, unknown_token='<UNK>', inplace=True):\n if len(self._token2idx) == 0:\n raise ValueError(\n 'You need to build vocabulary using `build_vocab` before using `decode_texts`'\n )\n if not isinstance(encoded_texts, list):\n encoded_texts = encoded_texts.tolist()\n if not inplace:\n encoded_texts = deepcopy(encoded_texts)\n utils._recursive_apply(encoded_texts, lambda token_id: self._idx2token.\n get(token_id) or unknown_token)\n return encoded_texts\n",
"role": "user"
},
{
"content": "decode_texts",
"role": "assistant"
}
] |
def x(self, texts, verbose=1, **kwargs):
if self.has_vocab:
logger.warn(
'Tokenizer already has existing vocabulary. Overriding and building new vocabulary.'
)
progbar = Progbar(len(texts), verbose=verbose, interval=0.25)
count_tracker = utils._CountTracker()
self._token_counts.clear()
self._num_texts = len(texts)
for token_data in self.token_generator(texts, **kwargs):
indices, token = token_data[:-1], token_data[-1]
count_tracker.update(indices)
self._token_counts[token] += 1
progbar.update(indices[0])
self.create_token_indices(self._token_counts.keys())
count_tracker.finalize()
self._counts = count_tracker.counts
progbar.update(len(texts))
|
build_vocab
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, texts, verbose=1, **kwargs):\n if self.has_vocab:\n logger.warn(\n 'Tokenizer already has existing vocabulary. Overriding and building new vocabulary.'\n )\n progbar = Progbar(len(texts), verbose=verbose, interval=0.25)\n count_tracker = utils._CountTracker()\n self._token_counts.clear()\n self._num_texts = len(texts)\n for token_data in self.token_generator(texts, **kwargs):\n indices, token = token_data[:-1], token_data[-1]\n count_tracker.update(indices)\n self._token_counts[token] += 1\n progbar.update(indices[0])\n self.create_token_indices(self._token_counts.keys())\n count_tracker.finalize()\n self._counts = count_tracker.counts\n progbar.update(len(texts))\n",
"role": "user"
},
{
"content": "build_vocab",
"role": "assistant"
}
] |
def x(self, sequences, fixed_sentences_seq_length=None,
fixed_token_seq_length=None, padding='pre', truncating='post',
padding_token='<PAD>'):
value = self.special_token.index(padding_token)
if value < 0:
raise ValueError('The padding token "' + padding_token +
' is not in the special tokens of the tokenizer.')
if isinstance(sequences[0][0], list):
x = utils._pad_sent_sequences(sequences, fixed_sentences_seq_length,
fixed_token_seq_length, padding, truncating, value)
else:
x = utils._pad_token_sequences(sequences, fixed_token_seq_length,
padding, truncating, value)
return np.array(x, dtype='int32')
|
pad_sequences
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sequences, fixed_sentences_seq_length=None,\n fixed_token_seq_length=None, padding='pre', truncating='post',\n padding_token='<PAD>'):\n value = self.special_token.index(padding_token)\n if value < 0:\n raise ValueError('The padding token \"' + padding_token +\n ' is not in the special tokens of the tokenizer.')\n if isinstance(sequences[0][0], list):\n x = utils._pad_sent_sequences(sequences, fixed_sentences_seq_length,\n fixed_token_seq_length, padding, truncating, value)\n else:\n x = utils._pad_token_sequences(sequences, fixed_token_seq_length,\n padding, truncating, value)\n return np.array(x, dtype='int32')\n",
"role": "user"
},
{
"content": "pad_sequences",
"role": "assistant"
}
] |
def x(self, i):
result = OrderedDict()
result['min'] = np.min(self._counts[i])
result['max'] = np.max(self._counts[i])
result['std'] = np.std(self._counts[i])
result['mean'] = np.mean(self._counts[i])
return result
|
get_stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, i):\n result = OrderedDict()\n result['min'] = np.min(self._counts[i])\n result['max'] = np.max(self._counts[i])\n result['std'] = np.std(self._counts[i])\n result['mean'] = np.mean(self._counts[i])\n return result\n",
"role": "user"
},
{
"content": "get_stats",
"role": "assistant"
}
] |
def x(word_index, embeddings_index):
logger.info('Loading embeddings for all words in the corpus')
embedding_dim = list(embeddings_index.values())[0].shape[-1]
embedding_weights = np.zeros((len(word_index), embedding_dim))
for word, i in word_index.items():
word_vector = embeddings_index.get(word)
if word_vector is not None:
embedding_weights[i] = word_vector
return embedding_weights
|
build_embedding_weights
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(word_index, embeddings_index):\n logger.info('Loading embeddings for all words in the corpus')\n embedding_dim = list(embeddings_index.values())[0].shape[-1]\n embedding_weights = np.zeros((len(word_index), embedding_dim))\n for word, i in word_index.items():\n word_vector = embeddings_index.get(word)\n if word_vector is not None:\n embedding_weights[i] = word_vector\n return embedding_weights\n",
"role": "user"
},
{
"content": "build_embedding_weights",
"role": "assistant"
}
] |
def x(embedding_type):
lang = embedding_type.split('.')[2]
return {'file': 'wiki.{}.vec'.format(lang), 'url':
'https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.{}.vec'.
format(lang), 'extract': False}
|
build_fasttext_wiki_embedding_obj
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(embedding_type):\n lang = embedding_type.split('.')[2]\n return {'file': 'wiki.{}.vec'.format(lang), 'url':\n 'https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.{}.vec'.\n format(lang), 'extract': False}\n",
"role": "user"
},
{
"content": "build_fasttext_wiki_embedding_obj",
"role": "assistant"
}
] |
def x(embedding_type):
lang = embedding_type.split('.')[2]
return {'file': 'cc.{}.300.vec.gz'.format(lang), 'url':
'https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.{}.300.vec.gz'
.format(lang), 'extract': False}
|
build_fasttext_cc_embedding_obj
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(embedding_type):\n lang = embedding_type.split('.')[2]\n return {'file': 'cc.{}.300.vec.gz'.format(lang), 'url':\n 'https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.{}.300.vec.gz'\n .format(lang), 'extract': False}\n",
"role": "user"
},
{
"content": "build_fasttext_cc_embedding_obj",
"role": "assistant"
}
] |
def x(embedding_type='glove.42B.300d', embedding_dims=None, embedding_path=
None, cache=True):
if embedding_path is not None:
embedding_type = embedding_path
embeddings_index = _EMBEDDINGS_CACHE.get(embedding_type)
if embeddings_index is not None:
return embeddings_index
if embedding_path is None:
embedding_type_obj = get_embedding_type(embedding_type)
extract = embedding_type_obj.get('extract', True)
file_path = get_file(embedding_type_obj['file'], origin=
embedding_type_obj['url'], extract=extract, cache_subdir=
'embeddings', file_hash=embedding_type_obj.get('file_hash'))
if 'file_in_zip' in embedding_type_obj:
zip_folder = file_path.split('.zip')[0]
with ZipFile(file_path, 'r') as zf:
zf.extractall(zip_folder)
file_path = os.path.join(zip_folder, embedding_type_obj[
'file_in_zip'])
elif extract:
if file_path.endswith('.zip'):
file_path = file_path.split('.zip')[0]
else:
file_path = embedding_path
embeddings_index = _build_embeddings_index(file_path, embedding_dims)
if cache:
_EMBEDDINGS_CACHE[embedding_type] = embeddings_index
return embeddings_index
|
get_embeddings_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(embedding_type='glove.42B.300d', embedding_dims=None, embedding_path=\n None, cache=True):\n if embedding_path is not None:\n embedding_type = embedding_path\n embeddings_index = _EMBEDDINGS_CACHE.get(embedding_type)\n if embeddings_index is not None:\n return embeddings_index\n if embedding_path is None:\n embedding_type_obj = get_embedding_type(embedding_type)\n extract = embedding_type_obj.get('extract', True)\n file_path = get_file(embedding_type_obj['file'], origin=\n embedding_type_obj['url'], extract=extract, cache_subdir=\n 'embeddings', file_hash=embedding_type_obj.get('file_hash'))\n if 'file_in_zip' in embedding_type_obj:\n zip_folder = file_path.split('.zip')[0]\n with ZipFile(file_path, 'r') as zf:\n zf.extractall(zip_folder)\n file_path = os.path.join(zip_folder, embedding_type_obj[\n 'file_in_zip'])\n elif extract:\n if file_path.endswith('.zip'):\n file_path = file_path.split('.zip')[0]\n else:\n file_path = embedding_path\n embeddings_index = _build_embeddings_index(file_path, embedding_dims)\n if cache:\n _EMBEDDINGS_CACHE[embedding_type] = embeddings_index\n return embeddings_index\n",
"role": "user"
},
{
"content": "get_embeddings_index",
"role": "assistant"
}
] |
def x(self, texts, **kwargs):
for text_idx, text in enumerate(texts):
if self.lower:
text = text.lower()
for char in text:
yield text_idx, char
|
token_generator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, texts, **kwargs):\n for text_idx, text in enumerate(texts):\n if self.lower:\n text = text.lower()\n for char in text:\n yield text_idx, char\n",
"role": "user"
},
{
"content": "token_generator",
"role": "assistant"
}
] |
def x(self, texts, **kwargs):
n_threads, batch_size = utils._parse_spacy_kwargs(**kwargs)
nlp = spacy.load(self.lang)
kwargs = {'batch_size': batch_size, 'n_threads': n_threads, 'disable':
['ner']}
texts_gen = utils._apply_generator(texts, lambda x: x.lower()
) if self.lower else texts
for text_idx, doc in enumerate(nlp.pipe(texts_gen, **kwargs)):
for sent_idx, sent in enumerate(doc.sents):
for word in sent:
for char in word:
yield text_idx, sent_idx, char
|
token_generator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, texts, **kwargs):\n n_threads, batch_size = utils._parse_spacy_kwargs(**kwargs)\n nlp = spacy.load(self.lang)\n kwargs = {'batch_size': batch_size, 'n_threads': n_threads, 'disable':\n ['ner']}\n texts_gen = utils._apply_generator(texts, lambda x: x.lower()\n ) if self.lower else texts\n for text_idx, doc in enumerate(nlp.pipe(texts_gen, **kwargs)):\n for sent_idx, sent in enumerate(doc.sents):\n for word in sent:\n for char in word:\n yield text_idx, sent_idx, char\n",
"role": "user"
},
{
"content": "token_generator",
"role": "assistant"
}
] |
def x(y, folds=2):
n, classes = y.shape
dist = y.sum(axis=0).astype('float')
dist /= dist.sum()
index_list = []
fold_dist = np.zeros((folds, classes), dtype='float')
for _ in range(folds):
index_list.append([])
for i in range(n):
if i < folds:
target_fold = i
else:
normed_folds = fold_dist.T / fold_dist.sum(axis=1)
how_off = normed_folds.T - dist
target_fold = np.argmin(np.dot((y[i] - 0.5).reshape(1, -1),
how_off.T))
fold_dist[target_fold] += y[i]
index_list[target_fold].append(i)
logger.debug('Fold distributions:')
logger.debug(fold_dist)
return index_list
|
equal_distribution_folds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y, folds=2):\n n, classes = y.shape\n dist = y.sum(axis=0).astype('float')\n dist /= dist.sum()\n index_list = []\n fold_dist = np.zeros((folds, classes), dtype='float')\n for _ in range(folds):\n index_list.append([])\n for i in range(n):\n if i < folds:\n target_fold = i\n else:\n normed_folds = fold_dist.T / fold_dist.sum(axis=1)\n how_off = normed_folds.T - dist\n target_fold = np.argmin(np.dot((y[i] - 0.5).reshape(1, -1),\n how_off.T))\n fold_dist[target_fold] += y[i]\n index_list[target_fold].append(i)\n logger.debug('Fold distributions:')\n logger.debug(fold_dist)\n return index_list\n",
"role": "user"
},
{
"content": "equal_distribution_folds",
"role": "assistant"
}
] |
def x(self, token_encoder_model, sentence_encoder_model,
trainable_embeddings=True, output_activation='softmax'):
if not isinstance(token_encoder_model, SequenceEncoderBase):
raise ValueError('`token_encoder_model` should be an instance of `{}`'
.format(SequenceEncoderBase))
if not isinstance(sentence_encoder_model, SequenceEncoderBase):
raise ValueError(
'`sentence_encoder_model` should be an instance of `{}`'.format
(SequenceEncoderBase))
if not sentence_encoder_model.allows_dynamic_length(
) and self.max_sents is None:
raise ValueError(
"Sentence encoder model '{}' requires padding. You need to provide `max_sents`"
)
if self.embeddings_index is None:
embedding_layer = Embedding(len(self.token_index), self.
embedding_dims, input_length=self.max_tokens, mask_zero=
token_encoder_model.allows_dynamic_length(), trainable=
trainable_embeddings)
else:
embedding_layer = Embedding(len(self.token_index), self.
embedding_dims, weights=[build_embedding_weights(self.
token_index, self.embeddings_index)], input_length=self.
max_tokens, mask_zero=token_encoder_model.allows_dynamic_length
(), trainable=trainable_embeddings)
word_input = Input(shape=(self.max_tokens,), dtype='int32')
x = embedding_layer(word_input)
word_encoding = token_encoder_model(x)
token_encoder_model = Model(word_input, word_encoding, name='word_encoder')
doc_input = Input(shape=(self.max_sents, self.max_tokens), dtype='int32')
sent_encoding = TimeDistributed(token_encoder_model)(doc_input)
x = sentence_encoder_model(sent_encoding)
x = Dense(self.num_classes, activation=output_activation)(x)
return Model(doc_input, x)
|
build_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, token_encoder_model, sentence_encoder_model,\n trainable_embeddings=True, output_activation='softmax'):\n if not isinstance(token_encoder_model, SequenceEncoderBase):\n raise ValueError('`token_encoder_model` should be an instance of `{}`'\n .format(SequenceEncoderBase))\n if not isinstance(sentence_encoder_model, SequenceEncoderBase):\n raise ValueError(\n '`sentence_encoder_model` should be an instance of `{}`'.format\n (SequenceEncoderBase))\n if not sentence_encoder_model.allows_dynamic_length(\n ) and self.max_sents is None:\n raise ValueError(\n \"Sentence encoder model '{}' requires padding. You need to provide `max_sents`\"\n )\n if self.embeddings_index is None:\n embedding_layer = Embedding(len(self.token_index), self.\n embedding_dims, input_length=self.max_tokens, mask_zero=\n token_encoder_model.allows_dynamic_length(), trainable=\n trainable_embeddings)\n else:\n embedding_layer = Embedding(len(self.token_index), self.\n embedding_dims, weights=[build_embedding_weights(self.\n token_index, self.embeddings_index)], input_length=self.\n max_tokens, mask_zero=token_encoder_model.allows_dynamic_length\n (), trainable=trainable_embeddings)\n word_input = Input(shape=(self.max_tokens,), dtype='int32')\n x = embedding_layer(word_input)\n word_encoding = token_encoder_model(x)\n token_encoder_model = Model(word_input, word_encoding, name='word_encoder')\n doc_input = Input(shape=(self.max_sents, self.max_tokens), dtype='int32')\n sent_encoding = TimeDistributed(token_encoder_model)(doc_input)\n x = sentence_encoder_model(sent_encoding)\n x = Dense(self.num_classes, activation=output_activation)(x)\n return Model(doc_input, x)\n",
"role": "user"
},
{
"content": "build_model",
"role": "assistant"
}
] |
def x(X, y, tokenizer, proc_data_path, max_len=400, train=False, ngrams=
None, limit_top_tokens=None):
if train and limit_top_tokens is not None:
tokenizer.apply_encoding_options(limit_top_tokens=limit_top_tokens)
X_encoded = tokenizer.encode_texts(X)
if ngrams is not None:
X_encoded = tokenizer.add_ngrams(X_encoded, n=ngrams, train=train)
X_padded = tokenizer.pad_sequences(X_encoded, fixed_token_seq_length=
max_len)
if train:
ds = Dataset(X_padded, y, tokenizer=tokenizer)
else:
ds = Dataset(X_padded, y)
ds.save(proc_data_path)
|
process_save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, y, tokenizer, proc_data_path, max_len=400, train=False, ngrams=\n None, limit_top_tokens=None):\n if train and limit_top_tokens is not None:\n tokenizer.apply_encoding_options(limit_top_tokens=limit_top_tokens)\n X_encoded = tokenizer.encode_texts(X)\n if ngrams is not None:\n X_encoded = tokenizer.add_ngrams(X_encoded, n=ngrams, train=train)\n X_padded = tokenizer.pad_sequences(X_encoded, fixed_token_seq_length=\n max_len)\n if train:\n ds = Dataset(X_padded, y, tokenizer=tokenizer)\n else:\n ds = Dataset(X_padded, y)\n ds.save(proc_data_path)\n",
"role": "user"
},
{
"content": "process_save",
"role": "assistant"
}
] |
def x(X, y, tokenizer, proc_data_path, **kwargs):
train = not tokenizer.has_vocab
if train:
tokenizer.build_vocab(X)
process_save(X, y, tokenizer, proc_data_path, train=train, **kwargs)
return tokenizer
|
setup_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, y, tokenizer, proc_data_path, **kwargs):\n train = not tokenizer.has_vocab\n if train:\n tokenizer.build_vocab(X)\n process_save(X, y, tokenizer, proc_data_path, train=train, **kwargs)\n return tokenizer\n",
"role": "user"
},
{
"content": "setup_data",
"role": "assistant"
}
] |
def x(X, y, ratio=(0.8, 0.1, 0.1)):
assert sum(ratio) == 1 and len(ratio) == 3
X_train, X_rest, y_train, y_rest = train_test_split(X, y, train_size=
ratio[0])
X_val, X_test, y_val, y_test = train_test_split(X_rest, y_rest,
train_size=ratio[1])
return X_train, X_val, X_test, y_train, y_val, y_test
|
split_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, y, ratio=(0.8, 0.1, 0.1)):\n assert sum(ratio) == 1 and len(ratio) == 3\n X_train, X_rest, y_train, y_rest = train_test_split(X, y, train_size=\n ratio[0])\n X_val, X_test, y_val, y_test = train_test_split(X_rest, y_rest,\n train_size=ratio[1])\n return X_train, X_val, X_test, y_train, y_val, y_test\n",
"role": "user"
},
{
"content": "split_data",
"role": "assistant"
}
] |
def x(X, y, tokenizer, proc_data_dir, **kwargs):
X_train, X_val, X_test, y_train, y_val, y_test = split_data(X, y)
tokenizer.build_vocab(X_train)
process_save(X_train, y_train, tokenizer, path.join(proc_data_dir,
'train.bin'), train=True, **kwargs)
process_save(X_val, y_val, tokenizer, path.join(proc_data_dir,
'val.bin'), **kwargs)
process_save(X_test, y_test, tokenizer, path.join(proc_data_dir,
'test.bin'), **kwargs)
|
setup_data_split
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, y, tokenizer, proc_data_dir, **kwargs):\n X_train, X_val, X_test, y_train, y_val, y_test = split_data(X, y)\n tokenizer.build_vocab(X_train)\n process_save(X_train, y_train, tokenizer, path.join(proc_data_dir,\n 'train.bin'), train=True, **kwargs)\n process_save(X_val, y_val, tokenizer, path.join(proc_data_dir,\n 'val.bin'), **kwargs)\n process_save(X_test, y_test, tokenizer, path.join(proc_data_dir,\n 'test.bin'), **kwargs)\n",
"role": "user"
},
{
"content": "setup_data_split",
"role": "assistant"
}
] |
def x(proc_data_dir):
ds_train = Dataset.load(path.join(proc_data_dir, 'train.bin'))
ds_val = Dataset.load(path.join(proc_data_dir, 'val.bin'))
ds_test = Dataset.load(path.join(proc_data_dir, 'test.bin'))
return ds_train, ds_val, ds_test
|
load_data_split
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(proc_data_dir):\n ds_train = Dataset.load(path.join(proc_data_dir, 'train.bin'))\n ds_val = Dataset.load(path.join(proc_data_dir, 'val.bin'))\n ds_test = Dataset.load(path.join(proc_data_dir, 'test.bin'))\n return ds_train, ds_val, ds_test\n",
"role": "user"
},
{
"content": "load_data_split",
"role": "assistant"
}
] |
def x(self, token_encoder_model, trainable_embeddings=True,
output_activation='softmax'):
if not isinstance(token_encoder_model, SequenceEncoderBase):
raise ValueError('`token_encoder_model` should be an instance of `{}`'
.format(SequenceEncoderBase))
if not token_encoder_model.allows_dynamic_length(
) and self.max_tokens is None:
raise ValueError(
'The provided `token_encoder_model` does not allow variable length mini-batches. You need to provide `max_tokens`'
)
if self.embeddings_index is None:
embedding_layer = Embedding(len(self.token_index), self.
embedding_dims, input_length=self.max_tokens, mask_zero=
token_encoder_model.allows_dynamic_length(), trainable=
trainable_embeddings)
else:
embedding_layer = Embedding(len(self.token_index), self.
embedding_dims, weights=[build_embedding_weights(self.
token_index, self.embeddings_index)], input_length=self.
max_tokens, mask_zero=token_encoder_model.allows_dynamic_length
(), trainable=trainable_embeddings)
sequence_input = Input(shape=(self.max_tokens,), dtype='int32')
x = embedding_layer(sequence_input)
x = token_encoder_model(x)
x = Dense(self.num_classes, activation=output_activation)(x)
return Model(sequence_input, x)
|
build_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, token_encoder_model, trainable_embeddings=True,\n output_activation='softmax'):\n if not isinstance(token_encoder_model, SequenceEncoderBase):\n raise ValueError('`token_encoder_model` should be an instance of `{}`'\n .format(SequenceEncoderBase))\n if not token_encoder_model.allows_dynamic_length(\n ) and self.max_tokens is None:\n raise ValueError(\n 'The provided `token_encoder_model` does not allow variable length mini-batches. You need to provide `max_tokens`'\n )\n if self.embeddings_index is None:\n embedding_layer = Embedding(len(self.token_index), self.\n embedding_dims, input_length=self.max_tokens, mask_zero=\n token_encoder_model.allows_dynamic_length(), trainable=\n trainable_embeddings)\n else:\n embedding_layer = Embedding(len(self.token_index), self.\n embedding_dims, weights=[build_embedding_weights(self.\n token_index, self.embeddings_index)], input_length=self.\n max_tokens, mask_zero=token_encoder_model.allows_dynamic_length\n (), trainable=trainable_embeddings)\n sequence_input = Input(shape=(self.max_tokens,), dtype='int32')\n x = embedding_layer(sequence_input)\n x = token_encoder_model(x)\n x = Dense(self.num_classes, activation=output_activation)(x)\n return Model(sequence_input, x)\n",
"role": "user"
},
{
"content": "build_model",
"role": "assistant"
}
] |
def x(x, dim):
if K.backend() == 'tensorflow':
import tensorflow as tf
return tf.nn.softmax(x, dim)
elif K.backend() is 'cntk':
import cntk
return cntk.softmax(x, dim)
elif K.backend() == 'theano':
perm = np.arange(K.ndim(x))
perm[dim], perm[-1] = perm[-1], perm[dim]
x_perm = K.permute_dimensions(x, perm)
output = K.softmax(x_perm)
perm[dim], perm[-1] = perm[-1], perm[dim]
output = K.permute_dimensions(x, output)
return output
else:
raise ValueError("Backend '{}' not supported".format(K.backend()))
|
softmax
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, dim):\n if K.backend() == 'tensorflow':\n import tensorflow as tf\n return tf.nn.softmax(x, dim)\n elif K.backend() is 'cntk':\n import cntk\n return cntk.softmax(x, dim)\n elif K.backend() == 'theano':\n perm = np.arange(K.ndim(x))\n perm[dim], perm[-1] = perm[-1], perm[dim]\n x_perm = K.permute_dimensions(x, perm)\n output = K.softmax(x_perm)\n perm[dim], perm[-1] = perm[-1], perm[dim]\n output = K.permute_dimensions(x, output)\n return output\n else:\n raise ValueError(\"Backend '{}' not supported\".format(K.backend()))\n",
"role": "user"
},
{
"content": "softmax",
"role": "assistant"
}
] |
def x(self, token):
if token.is_punct and self.remove_punct:
return None
if token.is_stop and self.remove_stop_words:
return None
if token.is_digit and self.remove_digits:
return None
if token.is_oov and self.exclude_oov:
return None
if token.pos_ in self.exclude_pos_tags:
return None
if token.ent_type_ in self.exclude_entities:
return None
if self.lemmatize:
return token.lemma_
if self.lower:
return token.lower_
return token.orth_
|
apply_options
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, token):\n if token.is_punct and self.remove_punct:\n return None\n if token.is_stop and self.remove_stop_words:\n return None\n if token.is_digit and self.remove_digits:\n return None\n if token.is_oov and self.exclude_oov:\n return None\n if token.pos_ in self.exclude_pos_tags:\n return None\n if token.ent_type_ in self.exclude_entities:\n return None\n if self.lemmatize:\n return token.lemma_\n if self.lower:\n return token.lower_\n return token.orth_\n",
"role": "user"
},
{
"content": "apply_options",
"role": "assistant"
}
] |
def x(self, texts, **kwargs):
n_threads, batch_size = utils._parse_spacy_kwargs(**kwargs)
nlp = spacy.load(self.lang)
disabled = ['parser']
if len(self.exclude_entities) > 0:
disabled.append('ner')
kwargs = {'batch_size': batch_size, 'n_threads': n_threads, 'disable':
disabled}
for text_idx, doc in enumerate(nlp.pipe(texts, **kwargs)):
for word in doc:
processed_word = self._apply_options(word)
if processed_word is not None:
yield text_idx, processed_word
|
token_generator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, texts, **kwargs):\n n_threads, batch_size = utils._parse_spacy_kwargs(**kwargs)\n nlp = spacy.load(self.lang)\n disabled = ['parser']\n if len(self.exclude_entities) > 0:\n disabled.append('ner')\n kwargs = {'batch_size': batch_size, 'n_threads': n_threads, 'disable':\n disabled}\n for text_idx, doc in enumerate(nlp.pipe(texts, **kwargs)):\n for word in doc:\n processed_word = self._apply_options(word)\n if processed_word is not None:\n yield text_idx, processed_word\n",
"role": "user"
},
{
"content": "token_generator",
"role": "assistant"
}
] |
def x(lst, indices, value):
for i, idx in enumerate(indices):
while len(lst) <= idx:
lst.append([])
lst = lst[idx]
lst.append(value)
|
append
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lst, indices, value):\n for i, idx in enumerate(indices):\n while len(lst) <= idx:\n lst.append([])\n lst = lst[idx]\n lst.append(value)\n",
"role": "user"
},
{
"content": "append",
"role": "assistant"
}
] |
def x(**kwargs):
n_threads = kwargs.get('n_threads') or kwargs.get('num_threads')
batch_size = kwargs.get('batch_size')
if n_threads is None or n_threads is -1:
n_threads = cpu_count() - 1
if batch_size is None or batch_size is -1:
batch_size = 1000
return n_threads, batch_size
|
parse_spacy_kwargs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(**kwargs):\n n_threads = kwargs.get('n_threads') or kwargs.get('num_threads')\n batch_size = kwargs.get('batch_size')\n if n_threads is None or n_threads is -1:\n n_threads = cpu_count() - 1\n if batch_size is None or batch_size is -1:\n batch_size = 1000\n return n_threads, batch_size\n",
"role": "user"
},
{
"content": "parse_spacy_kwargs",
"role": "assistant"
}
] |
def x(self, indices):
if self._prev_indices is None:
self._prev_indices = indices
self._local_counts = np.full(len(indices) + 1, 1)
self._local_counts[-1] = 0
self.counts = [[] for _ in range(len(self._local_counts))]
has_reset = False
for i in range(len(indices)):
if indices[i] > self._prev_indices[i]:
self._local_counts[i] += 1
has_reset = True
for j in range(i + 1, len(self.counts)):
self.counts[j].append(self._local_counts[j])
self._local_counts[j] = 1
if not has_reset:
self._local_counts[-1] += 1
self._prev_indices = indices[:]
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, indices):\n if self._prev_indices is None:\n self._prev_indices = indices\n self._local_counts = np.full(len(indices) + 1, 1)\n self._local_counts[-1] = 0\n self.counts = [[] for _ in range(len(self._local_counts))]\n has_reset = False\n for i in range(len(indices)):\n if indices[i] > self._prev_indices[i]:\n self._local_counts[i] += 1\n has_reset = True\n for j in range(i + 1, len(self.counts)):\n self.counts[j].append(self._local_counts[j])\n self._local_counts[j] = 1\n if not has_reset:\n self._local_counts[-1] += 1\n self._prev_indices = indices[:]\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
for i in range(1, len(self._local_counts)):
self.counts[i].append(self._local_counts[i])
self.counts.pop(0)
for i in range(len(self.counts)):
self.counts[i] = np.array(self.counts[i])
|
finalize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for i in range(1, len(self._local_counts)):\n self.counts[i].append(self._local_counts[i])\n self.counts.pop(0)\n for i in range(len(self.counts)):\n self.counts[i] = np.array(self.counts[i])\n",
"role": "user"
},
{
"content": "finalize",
"role": "assistant"
}
] |
def x(directory):
res = []
for filename in os.listdir(directory):
with io.open(os.path.join(directory, filename), encoding='utf-8') as f:
content = f.read()
res.append(content)
return res
|
read_folder
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(directory):\n res = []\n for filename in os.listdir(directory):\n with io.open(os.path.join(directory, filename), encoding='utf-8') as f:\n content = f.read()\n res.append(content)\n return res\n",
"role": "user"
},
{
"content": "read_folder",
"role": "assistant"
}
] |
def x(path, folder, limit):
training_pos_path = os.path.join(path, folder, 'pos')
training_neg_path = os.path.join(path, folder, 'neg')
X_pos = read_folder(training_pos_path)
X_neg = read_folder(training_neg_path)
if limit is None:
X = X_pos + X_neg
else:
X = X_pos[:limit] + X_neg[:limit]
y = [1] * int(len(X) / 2) + [0] * int(len(X) / 2)
return X, y
|
read_pos_neg_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path, folder, limit):\n training_pos_path = os.path.join(path, folder, 'pos')\n training_neg_path = os.path.join(path, folder, 'neg')\n X_pos = read_folder(training_pos_path)\n X_neg = read_folder(training_neg_path)\n if limit is None:\n X = X_pos + X_neg\n else:\n X = X_pos[:limit] + X_neg[:limit]\n y = [1] * int(len(X) / 2) + [0] * int(len(X) / 2)\n return X, y\n",
"role": "user"
},
{
"content": "read_pos_neg_data",
"role": "assistant"
}
] |
def x(limit=None, shuffle=True):
movie_review_url = (
'http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz')
path = keras.utils.get_file('aclImdb.tar.gz', movie_review_url, extract
=True)[:-7]
X_train, y_train = read_pos_neg_data(path, 'train', limit)
X_test, y_test = read_pos_neg_data(path, 'test', limit)
if shuffle:
X_train, y_train = sklearn.utils.shuffle(X_train, y_train)
X_test, y_test = sklearn.utils.shuffle(X_test, y_test)
return X_train, X_test, y_train, y_test
|
imdb
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(limit=None, shuffle=True):\n movie_review_url = (\n 'http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz')\n path = keras.utils.get_file('aclImdb.tar.gz', movie_review_url, extract\n =True)[:-7]\n X_train, y_train = read_pos_neg_data(path, 'train', limit)\n X_test, y_test = read_pos_neg_data(path, 'test', limit)\n if shuffle:\n X_train, y_train = sklearn.utils.shuffle(X_train, y_train)\n X_test, y_test = sklearn.utils.shuffle(X_test, y_test)\n return X_train, X_test, y_train, y_test\n",
"role": "user"
},
{
"content": "imdb",
"role": "assistant"
}
] |
def x(self, x, y):
return x + self.size / 2, y + self.size / 2
|
to_absolute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y):\n return x + self.size / 2, y + self.size / 2\n",
"role": "user"
},
{
"content": "to_absolute",
"role": "assistant"
}
] |
def x(self, number: (float, int)):
self.canvas.delete('all')
self.canvas.create_image(0, 0, image=self.image, anchor='nw')
number = number if number <= self.max_value else self.max_value
number = 0.0 if number < 0.0 else number
radius = 0.9 * self.size / 2.0
angle_in_radians = 2.0 * cmath.pi / 3.0 + number / self.max_value * (
5.0 * cmath.pi / 3.0)
center = cmath.rect(0, 0)
outer = cmath.rect(radius, angle_in_radians)
if self.needle_thickness == 0:
line_width = int(5 * self.size / 200)
line_width = 1 if line_width < 1 else line_width
else:
line_width = self.needle_thickness
self.canvas.create_line(*self.to_absolute(center.real, center.imag), *
self.to_absolute(outer.real, outer.imag), width=line_width, fill=
self.needle_color)
self.readout['text'] = '{}{}'.format(number, self.unit)
|
set_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, number: (float, int)):\n self.canvas.delete('all')\n self.canvas.create_image(0, 0, image=self.image, anchor='nw')\n number = number if number <= self.max_value else self.max_value\n number = 0.0 if number < 0.0 else number\n radius = 0.9 * self.size / 2.0\n angle_in_radians = 2.0 * cmath.pi / 3.0 + number / self.max_value * (\n 5.0 * cmath.pi / 3.0)\n center = cmath.rect(0, 0)\n outer = cmath.rect(radius, angle_in_radians)\n if self.needle_thickness == 0:\n line_width = int(5 * self.size / 200)\n line_width = 1 if line_width < 1 else line_width\n else:\n line_width = self.needle_thickness\n self.canvas.create_line(*self.to_absolute(center.real, center.imag), *\n self.to_absolute(outer.real, outer.imag), width=line_width, fill=\n self.needle_color)\n self.readout['text'] = '{}{}'.format(number, self.unit)\n",
"role": "user"
},
{
"content": "set_value",
"role": "assistant"
}
] |
def x(self, divisions=10):
self.canvas.create_arc(2, 2, self.size - 2, self.size - 2, style=tk.
PIESLICE, start=-60, extent=30, fill='red')
self.canvas.create_arc(2, 2, self.size - 2, self.size - 2, style=tk.
PIESLICE, start=-30, extent=60, fill='yellow')
self.canvas.create_arc(2, 2, self.size - 2, self.size - 2, style=tk.
PIESLICE, start=30, extent=210, fill='green')
inner_tick_radius = int(self.size * 0.4)
outer_tick_radius = int(self.size * 0.5)
for tick in range(divisions):
angle_in_radians = 2.0 * cmath.pi / 3.0 + tick / divisions * (5.0 *
cmath.pi / 3.0)
inner_point = cmath.rect(inner_tick_radius, angle_in_radians)
outer_point = cmath.rect(outer_tick_radius, angle_in_radians)
self.canvas.create_line(*self.to_absolute(inner_point.real,
inner_point.imag), *self.to_absolute(outer_point.real,
outer_point.imag), width=1)
|
draw_background
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, divisions=10):\n self.canvas.create_arc(2, 2, self.size - 2, self.size - 2, style=tk.\n PIESLICE, start=-60, extent=30, fill='red')\n self.canvas.create_arc(2, 2, self.size - 2, self.size - 2, style=tk.\n PIESLICE, start=-30, extent=60, fill='yellow')\n self.canvas.create_arc(2, 2, self.size - 2, self.size - 2, style=tk.\n PIESLICE, start=30, extent=210, fill='green')\n inner_tick_radius = int(self.size * 0.4)\n outer_tick_radius = int(self.size * 0.5)\n for tick in range(divisions):\n angle_in_radians = 2.0 * cmath.pi / 3.0 + tick / divisions * (5.0 *\n cmath.pi / 3.0)\n inner_point = cmath.rect(inner_tick_radius, angle_in_radians)\n outer_point = cmath.rect(outer_tick_radius, angle_in_radians)\n self.canvas.create_line(*self.to_absolute(inner_point.real,\n inner_point.imag), *self.to_absolute(outer_point.real,\n outer_point.imag), width=1)\n",
"role": "user"
},
{
"content": "draw_background",
"role": "assistant"
}
] |
def x(self):
self.canvas.delete('all')
rect = 50, 50, self.w - 50, self.h - 50
self.canvas.create_rectangle(rect, outline='black')
for x in self.frange(0, self.x_max - self.x_min + 1, self.x_tick):
value = Decimal(self.x_min + x)
if self.x_min <= value <= self.x_max:
x_step = self.px_x * x / self.x_tick
coord = 50 + x_step, self.h - 50, 50 + x_step, self.h - 45
self.canvas.create_line(coord, fill='black')
coord = 50 + x_step, self.h - 40
label = round(Decimal(self.x_min + x), 1)
self.canvas.create_text(coord, fill='black', text=label)
for y in self.frange(0, self.y_max - self.y_min + 1, self.y_tick):
value = Decimal(self.y_max - y)
if self.y_min <= value <= self.y_max:
y_step = self.px_y * y / self.y_tick
coord = 45, 50 + y_step, 50, 50 + y_step
self.canvas.create_line(coord, fill='black')
coord = 35, 50 + y_step
label = round(value, 1)
self.canvas.create_text(coord, fill='black', text=label)
|
draw_axes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.canvas.delete('all')\n rect = 50, 50, self.w - 50, self.h - 50\n self.canvas.create_rectangle(rect, outline='black')\n for x in self.frange(0, self.x_max - self.x_min + 1, self.x_tick):\n value = Decimal(self.x_min + x)\n if self.x_min <= value <= self.x_max:\n x_step = self.px_x * x / self.x_tick\n coord = 50 + x_step, self.h - 50, 50 + x_step, self.h - 45\n self.canvas.create_line(coord, fill='black')\n coord = 50 + x_step, self.h - 40\n label = round(Decimal(self.x_min + x), 1)\n self.canvas.create_text(coord, fill='black', text=label)\n for y in self.frange(0, self.y_max - self.y_min + 1, self.y_tick):\n value = Decimal(self.y_max - y)\n if self.y_min <= value <= self.y_max:\n y_step = self.px_y * y / self.y_tick\n coord = 45, 50 + y_step, 50, 50 + y_step\n self.canvas.create_line(coord, fill='black')\n coord = 35, 50 + y_step\n label = round(value, 1)\n self.canvas.create_text(coord, fill='black', text=label)\n",
"role": "user"
},
{
"content": "draw_axes",
"role": "assistant"
}
] |
def x(self, x, y, visible=True, color='black', size=5):
xp = self.px_x * (x - self.x_min) / self.x_tick
yp = self.px_y * (self.y_max - y) / self.y_tick
coord = 50 + xp, 50 + yp
if visible:
size = int(size / 2) if int(size / 2) > 1 else 1
x, y = coord
self.canvas.create_oval(x - size, y - size, x + size, y + size,
fill=color)
return coord
|
plot_point
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, visible=True, color='black', size=5):\n xp = self.px_x * (x - self.x_min) / self.x_tick\n yp = self.px_y * (self.y_max - y) / self.y_tick\n coord = 50 + xp, 50 + yp\n if visible:\n size = int(size / 2) if int(size / 2) > 1 else 1\n x, y = coord\n self.canvas.create_oval(x - size, y - size, x + size, y + size,\n fill=color)\n return coord\n",
"role": "user"
},
{
"content": "plot_point",
"role": "assistant"
}
] |
def x(self, points: list, color='black', point_visibility=False):
last_point = ()
for point in points:
this_point = self.plot_point(point[0], point[1], color=color,
visible=point_visibility)
if last_point:
self.canvas.create_line(last_point + this_point, fill=color)
last_point = this_point
|
plot_line
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, points: list, color='black', point_visibility=False):\n last_point = ()\n for point in points:\n this_point = self.plot_point(point[0], point[1], color=color,\n visible=point_visibility)\n if last_point:\n self.canvas.create_line(last_point + this_point, fill=color)\n last_point = this_point\n",
"role": "user"
},
{
"content": "plot_line",
"role": "assistant"
}
] |
def x(start, stop, step, digits_to_round=3):
while start < stop:
yield round(start, digits_to_round)
start += step
|
frange
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(start, stop, step, digits_to_round=3):\n while start < stop:\n yield round(start, digits_to_round)\n start += step\n",
"role": "user"
},
{
"content": "frange",
"role": "assistant"
}
] |
def x(self, img_data: str):
self._image = tk.PhotoImage(data=img_data)
self._image = self._image.subsample(int(200 / self._size), int(200 /
self._size))
self._canvas.delete('all')
self._canvas.create_image(0, 0, image=self._image, anchor='nw')
if self._user_click_callback is not None:
self._user_click_callback(self._on)
|
load_new
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, img_data: str):\n self._image = tk.PhotoImage(data=img_data)\n self._image = self._image.subsample(int(200 / self._size), int(200 /\n self._size))\n self._canvas.delete('all')\n self._canvas.create_image(0, 0, image=self._image, anchor='nw')\n if self._user_click_callback is not None:\n self._user_click_callback(self._on)\n",
"role": "user"
},
{
"content": "load_new",
"role": "assistant"
}
] |
def x(self, on: bool=False):
self._on = False
self._load_new(led_grey)
|
to_grey
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, on: bool=False):\n self._on = False\n self._load_new(led_grey)\n",
"role": "user"
},
{
"content": "to_grey",
"role": "assistant"
}
] |
def x(self, on: bool=False):
self._on = on
if on:
self._load_new(led_green_on)
if self._toggle_on_click:
self._canvas.bind('<Button-1>', lambda x: self.to_green(False))
else:
self._load_new(led_green)
if self._toggle_on_click:
self._canvas.bind('<Button-1>', lambda x: self.to_green(True))
|
to_green
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, on: bool=False):\n self._on = on\n if on:\n self._load_new(led_green_on)\n if self._toggle_on_click:\n self._canvas.bind('<Button-1>', lambda x: self.to_green(False))\n else:\n self._load_new(led_green)\n if self._toggle_on_click:\n self._canvas.bind('<Button-1>', lambda x: self.to_green(True))\n",
"role": "user"
},
{
"content": "to_green",
"role": "assistant"
}
] |
def x(self, on: bool=False):
self._on = on
if on:
self._load_new(led_red_on)
if self._toggle_on_click:
self._canvas.bind('<Button-1>', lambda x: self.to_red(False))
else:
self._load_new(led_red)
if self._toggle_on_click:
self._canvas.bind('<Button-1>', lambda x: self.to_red(True))
|
to_red
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, on: bool=False):\n self._on = on\n if on:\n self._load_new(led_red_on)\n if self._toggle_on_click:\n self._canvas.bind('<Button-1>', lambda x: self.to_red(False))\n else:\n self._load_new(led_red)\n if self._toggle_on_click:\n self._canvas.bind('<Button-1>', lambda x: self.to_red(True))\n",
"role": "user"
},
{
"content": "to_red",
"role": "assistant"
}
] |
def x(self, on: bool=False):
self._on = on
if on:
self._load_new(led_yellow_on)
if self._toggle_on_click:
self._canvas.bind('<Button-1>', lambda x: self.to_yellow(False))
else:
self._load_new(led_yellow)
if self._toggle_on_click:
self._canvas.bind('<Button-1>', lambda x: self.to_yellow(True))
|
to_yellow
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, on: bool=False):\n self._on = on\n if on:\n self._load_new(led_yellow_on)\n if self._toggle_on_click:\n self._canvas.bind('<Button-1>', lambda x: self.to_yellow(False))\n else:\n self._load_new(led_yellow)\n if self._toggle_on_click:\n self._canvas.bind('<Button-1>', lambda x: self.to_yellow(True))\n",
"role": "user"
},
{
"content": "to_yellow",
"role": "assistant"
}
] |
def x(self):
for row in self._rows:
for widget in row:
widget.grid_forget()
offset = 0 if not self.headers else 1
for i, row in enumerate(self._rows):
for j, widget in enumerate(row):
widget.grid(row=i + offset, column=j)
|
redraw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for row in self._rows:\n for widget in row:\n widget.grid_forget()\n offset = 0 if not self.headers else 1\n for i, row in enumerate(self._rows):\n for j, widget in enumerate(row):\n widget.grid(row=i + offset, column=j)\n",
"role": "user"
},
{
"content": "redraw",
"role": "assistant"
}
] |
def x(self, row_number: int=-1):
if len(self._rows) == 0:
return
row = self._rows.pop(row_number)
for widget in row:
widget.destroy()
|
remove_row
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, row_number: int=-1):\n if len(self._rows) == 0:\n return\n row = self._rows.pop(row_number)\n for widget in row:\n widget.destroy()\n",
"role": "user"
},
{
"content": "remove_row",
"role": "assistant"
}
] |
def x(self, data: list):
if self.headers:
if len(self.headers) != len(data):
raise ValueError
if len(data) != self.num_of_columns:
raise ValueError
offset = 0 if not self.headers else 1
row = list()
for i, element in enumerate(data):
label = ttk.Label(self, text=str(element), relief=tk.GROOVE,
padding=self.padding)
label.grid(row=len(self._rows) + offset, column=i, sticky='E,W')
row.append(label)
self._rows.append(row)
|
add_row
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data: list):\n if self.headers:\n if len(self.headers) != len(data):\n raise ValueError\n if len(data) != self.num_of_columns:\n raise ValueError\n offset = 0 if not self.headers else 1\n row = list()\n for i, element in enumerate(data):\n label = ttk.Label(self, text=str(element), relief=tk.GROOVE,\n padding=self.padding)\n label.grid(row=len(self._rows) + offset, column=i, sticky='E,W')\n row.append(label)\n self._rows.append(row)\n",
"role": "user"
},
{
"content": "add_row",
"role": "assistant"
}
] |
def x(self, data: list=None):
if self.headers and data:
if len(self.headers) != len(data):
raise ValueError
offset = 0 if not self.headers else 1
row = list()
if data:
for i, element in enumerate(data):
contents = '' if element is None else str(element)
entry = ttk.Entry(self)
entry.insert(0, contents)
entry.grid(row=len(self._rows) + offset, column=i, sticky='E,W')
row.append(entry)
else:
for i in range(self.num_of_columns):
entry = ttk.Entry(self)
entry.grid(row=len(self._rows) + offset, column=i, sticky='E,W')
row.append(entry)
self._rows.append(row)
for row in self._rows:
for widget in row:
widget.unbind('<Tab>')
def x(e):
self.add_row()
last_entry = self._rows[-1][-1]
last_entry.bind('<Tab>', add)
e = self._rows[-1][0]
e.focus_set()
self._redraw()
|
add_row
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data: list=None):\n if self.headers and data:\n if len(self.headers) != len(data):\n raise ValueError\n offset = 0 if not self.headers else 1\n row = list()\n if data:\n for i, element in enumerate(data):\n contents = '' if element is None else str(element)\n entry = ttk.Entry(self)\n entry.insert(0, contents)\n entry.grid(row=len(self._rows) + offset, column=i, sticky='E,W')\n row.append(entry)\n else:\n for i in range(self.num_of_columns):\n entry = ttk.Entry(self)\n entry.grid(row=len(self._rows) + offset, column=i, sticky='E,W')\n row.append(entry)\n self._rows.append(row)\n for row in self._rows:\n for widget in row:\n widget.unbind('<Tab>')\n\n def x(e):\n self.add_row()\n last_entry = self._rows[-1][-1]\n last_entry.bind('<Tab>', add)\n e = self._rows[-1][0]\n e.focus_set()\n self._redraw()\n",
"role": "user"
},
{
"content": "add_row",
"role": "assistant"
}
] |
def x(self):
data = list()
for row in self._rows:
row_data = OrderedDict()
for i, header in enumerate(self.headers):
row_data[header.cget('text')] = row[i].get()
data.append(row_data)
return data
|
read_as_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n data = list()\n for row in self._rows:\n row_data = OrderedDict()\n for i, header in enumerate(self.headers):\n row_data[header.cget('text')] = row[i].get()\n data.append(row_data)\n return data\n",
"role": "user"
},
{
"content": "read_as_dict",
"role": "assistant"
}
] |
def x(self):
rows = list()
for row in self._rows:
rows.append([row[i].get() for i in range(self.num_of_columns)])
return rows
|
read_as_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n rows = list()\n for row in self._rows:\n rows.append([row[i].get() for i in range(self.num_of_columns)])\n return rows\n",
"role": "user"
},
{
"content": "read_as_table",
"role": "assistant"
}
] |
def x(self, data: list):
if self.headers and data:
if len(self.headers) != len(data):
raise ValueError
offset = 0 if not self.headers else 1
row = list()
for i, e in enumerate(data):
if not isinstance(e, tuple):
raise ValueError(
'all elements must be a tuple consisting of ("label", <command>)'
)
label, command = e
button = tk.Button(self, text=str(label), relief=tk.RAISED, command
=command, padx=self.padding, pady=self.padding)
button.grid(row=len(self._rows) + offset, column=i, sticky='ew')
row.append(button)
self._rows.append(row)
|
add_row
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data: list):\n if self.headers and data:\n if len(self.headers) != len(data):\n raise ValueError\n offset = 0 if not self.headers else 1\n row = list()\n for i, e in enumerate(data):\n if not isinstance(e, tuple):\n raise ValueError(\n 'all elements must be a tuple consisting of (\"label\", <command>)'\n )\n label, command = e\n button = tk.Button(self, text=str(label), relief=tk.RAISED, command\n =command, padx=self.padding, pady=self.padding)\n button.grid(row=len(self._rows) + offset, column=i, sticky='ew')\n row.append(button)\n self._rows.append(row)\n",
"role": "user"
},
{
"content": "add_row",
"role": "assistant"
}
] |
def x(self, key: str, default: str=None, unit_label: str=None, enable: bool
=None):
self.keys.append(ttk.Label(self, text=key))
self.defaults.append(default)
self.unit_labels.append(ttk.Label(self, text=unit_label if unit_label else
''))
self.enables.append(enable)
self.values.append(ttk.Entry(self))
row_offset = 1 if self.title is not None else 0
for i in range(len(self.keys)):
self.keys[i].grid_forget()
self.keys[i].grid(row=row_offset, column=0, sticky='e')
self.values[i].grid(row=row_offset, column=1)
if self.unit_labels[i]:
self.unit_labels[i].grid(row=row_offset, column=3, sticky='w')
if self.defaults[i]:
self.values[i].config(state=tk.NORMAL)
self.values[i].delete(0, tk.END)
self.values[i].insert(0, self.defaults[i])
if self.enables[i] in [True, None]:
self.values[i].config(state=tk.NORMAL)
elif self.enables[i] is False:
self.values[i].config(state=tk.DISABLED)
row_offset += 1
self.values[i].unbind('<Return>')
self.values[i].unbind('<Tab>')
if self.callback is not None:
def x(event):
self.callback()
self.values[i].bind('<Return>', callback)
self.values[i].bind('<Tab>', callback)
|
add_row
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key: str, default: str=None, unit_label: str=None, enable: bool\n =None):\n self.keys.append(ttk.Label(self, text=key))\n self.defaults.append(default)\n self.unit_labels.append(ttk.Label(self, text=unit_label if unit_label else\n ''))\n self.enables.append(enable)\n self.values.append(ttk.Entry(self))\n row_offset = 1 if self.title is not None else 0\n for i in range(len(self.keys)):\n self.keys[i].grid_forget()\n self.keys[i].grid(row=row_offset, column=0, sticky='e')\n self.values[i].grid(row=row_offset, column=1)\n if self.unit_labels[i]:\n self.unit_labels[i].grid(row=row_offset, column=3, sticky='w')\n if self.defaults[i]:\n self.values[i].config(state=tk.NORMAL)\n self.values[i].delete(0, tk.END)\n self.values[i].insert(0, self.defaults[i])\n if self.enables[i] in [True, None]:\n self.values[i].config(state=tk.NORMAL)\n elif self.enables[i] is False:\n self.values[i].config(state=tk.DISABLED)\n row_offset += 1\n self.values[i].unbind('<Return>')\n self.values[i].unbind('<Tab>')\n if self.callback is not None:\n\n def x(event):\n self.callback()\n self.values[i].bind('<Return>', callback)\n self.values[i].bind('<Tab>', callback)\n",
"role": "user"
},
{
"content": "add_row",
"role": "assistant"
}
] |
def x(self):
for i in range(len(self.values)):
self.values[i].delete(0, tk.END)
if self.defaults[i] is not None:
self.values[i].insert(0, self.defaults[i])
|
reset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for i in range(len(self.values)):\n self.values[i].delete(0, tk.END)\n if self.defaults[i] is not None:\n self.values[i].insert(0, self.defaults[i])\n",
"role": "user"
},
{
"content": "reset",
"role": "assistant"
}
] |
def x(self, enables_list: list):
for i, entry in enumerate(self.values):
if enables_list[i]:
entry.config(state=tk.NORMAL)
else:
entry.config(state=tk.DISABLED)
|
change_enables
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, enables_list: list):\n for i, entry in enumerate(self.values):\n if enables_list[i]:\n entry.config(state=tk.NORMAL)\n else:\n entry.config(state=tk.DISABLED)\n",
"role": "user"
},
{
"content": "change_enables",
"role": "assistant"
}
] |
def x(self, data: dict):
for i, label in enumerate(self.keys):
key = label.cget('text')
if key in data.keys():
entry_was_enabled = True if self.values[i].cget('state'
) == 'normal' else False
if not entry_was_enabled:
self.values[i].config(state='normal')
self.values[i].delete(0, tk.END)
self.values[i].insert(0, str(data[key]))
if not entry_was_enabled:
self.values[i].config(state='disabled')
|
load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data: dict):\n for i, label in enumerate(self.keys):\n key = label.cget('text')\n if key in data.keys():\n entry_was_enabled = True if self.values[i].cget('state'\n ) == 'normal' else False\n if not entry_was_enabled:\n self.values[i].config(state='normal')\n self.values[i].delete(0, tk.END)\n self.values[i].insert(0, str(data[key]))\n if not entry_was_enabled:\n self.values[i].config(state='disabled')\n",
"role": "user"
},
{
"content": "load",
"role": "assistant"
}
] |
def x(self):
data = dict()
for label, entry in zip(self.keys, self.values):
data[label.cget('text')] = entry.get()
return data
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n data = dict()\n for label, entry in zip(self.keys, self.values):\n data[label.cget('text')] = entry.get()\n return data\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self, evt):
x, y, widget = evt.x, evt.y, evt.widget
item = widget.identify_row(y)
column = widget.identify_column(x)
if not column or not item in self._items:
return
item_values = widget.item(item)['values']
if not len(item_values):
return
text = item_values[int(column[1]) - 1]
if not text:
return
bbox = widget.bbox(item, column)
if not bbox:
return
text = '%02d' % text
self._selection = text, item, column
self._show_selection(text, bbox)
if self.callback is not None:
self.callback()
|
pressed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, evt):\n x, y, widget = evt.x, evt.y, evt.widget\n item = widget.identify_row(y)\n column = widget.identify_column(x)\n if not column or not item in self._items:\n return\n item_values = widget.item(item)['values']\n if not len(item_values):\n return\n text = item_values[int(column[1]) - 1]\n if not text:\n return\n bbox = widget.bbox(item, column)\n if not bbox:\n return\n text = '%02d' % text\n self._selection = text, item, column\n self._show_selection(text, bbox)\n if self.callback is not None:\n self.callback()\n",
"role": "user"
},
{
"content": "pressed",
"role": "assistant"
}
] |
def x(self, string: (str, list)):
if len(self._entries) == 1:
self._entries[0].delete(0, 'end')
self._entries[0].insert(0, string)
else:
if len(string) != len(self._entries):
raise ValueError(
'the "string" list must be equal to the number of entries')
for i, e in enumerate(self._entries):
self._entries[i].delete(0, 'end')
self._entries[i].insert(0, string[i])
|
add
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, string: (str, list)):\n if len(self._entries) == 1:\n self._entries[0].delete(0, 'end')\n self._entries[0].insert(0, string)\n else:\n if len(string) != len(self._entries):\n raise ValueError(\n 'the \"string\" list must be equal to the number of entries')\n for i, e in enumerate(self._entries):\n self._entries[i].delete(0, 'end')\n self._entries[i].insert(0, string[i])\n",
"role": "user"
},
{
"content": "add",
"role": "assistant"
}
] |
def x(self):
for e in self._entries:
e.grid_forget()
e.destroy()
self._remove_btn.grid_forget()
self._remove_btn.destroy()
self.deleted = True
if self._remove_callback:
self._remove_callback()
|
remove
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for e in self._entries:\n e.grid_forget()\n e.destroy()\n self._remove_btn.grid_forget()\n self._remove_btn.destroy()\n self.deleted = True\n if self._remove_callback:\n self._remove_callback()\n",
"role": "user"
},
{
"content": "remove",
"role": "assistant"
}
] |
def x(self):
values = [e.get() for e in self._entries]
if len(self._entries) == 1:
return values[0]
else:
return values
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n values = [e.get() for e in self._entries]\n if len(self._entries) == 1:\n return values[0]\n else:\n return values\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self):
if self._blank_label:
self._blank_label.grid_forget()
self._blank_label.destroy()
self._blank_label = None
for slot in self._slots:
slot.grid_forget()
self._slots = [slot for slot in self._slots if not slot.deleted]
max_per_col = 8
for i, slot in enumerate(self._slots):
slot.grid(row=i % max_per_col, column=int(i / max_per_col), sticky='ew'
)
|
redraw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._blank_label:\n self._blank_label.grid_forget()\n self._blank_label.destroy()\n self._blank_label = None\n for slot in self._slots:\n slot.grid_forget()\n self._slots = [slot for slot in self._slots if not slot.deleted]\n max_per_col = 8\n for i, slot in enumerate(self._slots):\n slot.grid(row=i % max_per_col, column=int(i / max_per_col), sticky='ew'\n )\n",
"role": "user"
},
{
"content": "redraw",
"role": "assistant"
}
] |
def x(self, string: (str, list)):
slot = _SlotFrame(self, remove_callback=self._redraw, entries=self.
_slot_columns)
slot.add(string)
self._slots.append(slot)
self._redraw()
|
add
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, string: (str, list)):\n slot = _SlotFrame(self, remove_callback=self._redraw, entries=self.\n _slot_columns)\n slot.add(string)\n self._slots.append(slot)\n self._redraw()\n",
"role": "user"
},
{
"content": "add",
"role": "assistant"
}
] |
def x(self):
for slot in self._slots:
slot.grid_forget()
slot.destroy()
self._slots = []
|
clear
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for slot in self._slots:\n slot.grid_forget()\n slot.destroy()\n self._slots = []\n",
"role": "user"
},
{
"content": "clear",
"role": "assistant"
}
] |
def x(self):
for _, frame in self._segments.items():
frame.configure(background=self._bg_color)
|
clear
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for _, frame in self._segments.items():\n frame.configure(background=self._bg_color)\n",
"role": "user"
},
{
"content": "clear",
"role": "assistant"
}
] |
def x(self, value: str):
self.clear()
if '.' in value:
self._segments['period'].configure(background=self._color)
if value in ['0', '0.']:
self._segments['a'].configure(background=self._color)
self._segments['b'].configure(background=self._color)
self._segments['c'].configure(background=self._color)
self._segments['d'].configure(background=self._color)
self._segments['e'].configure(background=self._color)
self._segments['f'].configure(background=self._color)
elif value in ['1', '1.']:
self._segments['b'].configure(background=self._color)
self._segments['c'].configure(background=self._color)
elif value in ['2', '2.']:
self._segments['a'].configure(background=self._color)
self._segments['b'].configure(background=self._color)
self._segments['g'].configure(background=self._color)
self._segments['e'].configure(background=self._color)
self._segments['d'].configure(background=self._color)
elif value in ['3', '3.']:
self._segments['a'].configure(background=self._color)
self._segments['b'].configure(background=self._color)
self._segments['g'].configure(background=self._color)
self._segments['c'].configure(background=self._color)
self._segments['d'].configure(background=self._color)
elif value in ['4', '4.']:
self._segments['f'].configure(background=self._color)
self._segments['g'].configure(background=self._color)
self._segments['b'].configure(background=self._color)
self._segments['c'].configure(background=self._color)
elif value in ['5', '5.']:
self._segments['a'].configure(background=self._color)
self._segments['f'].configure(background=self._color)
self._segments['g'].configure(background=self._color)
self._segments['c'].configure(background=self._color)
self._segments['d'].configure(background=self._color)
elif value in ['6', '6.']:
self._segments['f'].configure(background=self._color)
self._segments['g'].configure(background=self._color)
self._segments['c'].configure(background=self._color)
self._segments['d'].configure(background=self._color)
self._segments['e'].configure(background=self._color)
elif value in ['7', '7.']:
self._segments['a'].configure(background=self._color)
self._segments['b'].configure(background=self._color)
self._segments['c'].configure(background=self._color)
elif value in ['8', '8.']:
self._segments['a'].configure(background=self._color)
self._segments['b'].configure(background=self._color)
self._segments['c'].configure(background=self._color)
self._segments['d'].configure(background=self._color)
self._segments['e'].configure(background=self._color)
self._segments['f'].configure(background=self._color)
self._segments['g'].configure(background=self._color)
elif value in ['9', '9.']:
self._segments['a'].configure(background=self._color)
self._segments['b'].configure(background=self._color)
self._segments['c'].configure(background=self._color)
self._segments['f'].configure(background=self._color)
self._segments['g'].configure(background=self._color)
elif value in ['-']:
self._segments['g'].configure(background=self._color)
else:
raise ValueError('unsupported character: {}'.format(value))
|
set_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value: str):\n self.clear()\n if '.' in value:\n self._segments['period'].configure(background=self._color)\n if value in ['0', '0.']:\n self._segments['a'].configure(background=self._color)\n self._segments['b'].configure(background=self._color)\n self._segments['c'].configure(background=self._color)\n self._segments['d'].configure(background=self._color)\n self._segments['e'].configure(background=self._color)\n self._segments['f'].configure(background=self._color)\n elif value in ['1', '1.']:\n self._segments['b'].configure(background=self._color)\n self._segments['c'].configure(background=self._color)\n elif value in ['2', '2.']:\n self._segments['a'].configure(background=self._color)\n self._segments['b'].configure(background=self._color)\n self._segments['g'].configure(background=self._color)\n self._segments['e'].configure(background=self._color)\n self._segments['d'].configure(background=self._color)\n elif value in ['3', '3.']:\n self._segments['a'].configure(background=self._color)\n self._segments['b'].configure(background=self._color)\n self._segments['g'].configure(background=self._color)\n self._segments['c'].configure(background=self._color)\n self._segments['d'].configure(background=self._color)\n elif value in ['4', '4.']:\n self._segments['f'].configure(background=self._color)\n self._segments['g'].configure(background=self._color)\n self._segments['b'].configure(background=self._color)\n self._segments['c'].configure(background=self._color)\n elif value in ['5', '5.']:\n self._segments['a'].configure(background=self._color)\n self._segments['f'].configure(background=self._color)\n self._segments['g'].configure(background=self._color)\n self._segments['c'].configure(background=self._color)\n self._segments['d'].configure(background=self._color)\n elif value in ['6', '6.']:\n self._segments['f'].configure(background=self._color)\n self._segments['g'].configure(background=self._color)\n self._segments['c'].configure(background=self._color)\n self._segments['d'].configure(background=self._color)\n self._segments['e'].configure(background=self._color)\n elif value in ['7', '7.']:\n self._segments['a'].configure(background=self._color)\n self._segments['b'].configure(background=self._color)\n self._segments['c'].configure(background=self._color)\n elif value in ['8', '8.']:\n self._segments['a'].configure(background=self._color)\n self._segments['b'].configure(background=self._color)\n self._segments['c'].configure(background=self._color)\n self._segments['d'].configure(background=self._color)\n self._segments['e'].configure(background=self._color)\n self._segments['f'].configure(background=self._color)\n self._segments['g'].configure(background=self._color)\n elif value in ['9', '9.']:\n self._segments['a'].configure(background=self._color)\n self._segments['b'].configure(background=self._color)\n self._segments['c'].configure(background=self._color)\n self._segments['f'].configure(background=self._color)\n self._segments['g'].configure(background=self._color)\n elif value in ['-']:\n self._segments['g'].configure(background=self._color)\n else:\n raise ValueError('unsupported character: {}'.format(value))\n",
"role": "user"
},
{
"content": "set_value",
"role": "assistant"
}
] |
def x(self, value: str):
reversed_v = value[::-1]
parts = []
has_period = False
for c in reversed_v:
if has_period:
parts.append(c + '.')
has_period = False
elif c == '.':
has_period = True
else:
parts.append(c)
parts = parts[:len(self._digits)]
return parts
|
group
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value: str):\n reversed_v = value[::-1]\n parts = []\n has_period = False\n for c in reversed_v:\n if has_period:\n parts.append(c + '.')\n has_period = False\n elif c == '.':\n has_period = True\n else:\n parts.append(c)\n parts = parts[:len(self._digits)]\n return parts\n",
"role": "user"
},
{
"content": "group",
"role": "assistant"
}
] |
def x(self, value: str):
[digit.clear() for digit in self._digits]
grouped = self._group(value)
digits = self._digits[::-1]
has_period = False
for i, digit_value in enumerate(grouped):
try:
if has_period:
digits[i].set_value(digit_value + '.')
has_period = False
elif grouped[i] == '.':
has_period = True
else:
digits[i].set_value(digit_value)
except IndexError:
raise ValueError('the value "{}" contains too many digits'.
format(value))
|
set_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value: str):\n [digit.clear() for digit in self._digits]\n grouped = self._group(value)\n digits = self._digits[::-1]\n has_period = False\n for i, digit_value in enumerate(grouped):\n try:\n if has_period:\n digits[i].set_value(digit_value + '.')\n has_period = False\n elif grouped[i] == '.':\n has_period = True\n else:\n digits[i].set_value(digit_value)\n except IndexError:\n raise ValueError('the value \"{}\" contains too many digits'.\n format(value))\n",
"role": "user"
},
{
"content": "set_value",
"role": "assistant"
}
] |
def x(self, callback: callable):
def x(*args):
try:
callback()
except TypeError:
callback(self.get())
self._var.trace('w', internal_callback)
|
add_callback
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, callback: callable):\n\n def x(*args):\n try:\n callback()\n except TypeError:\n callback(self.get())\n self._var.trace('w', internal_callback)\n",
"role": "user"
},
{
"content": "add_callback",
"role": "assistant"
}
] |
def x(self, value: int):
max_value = int(''.join(['1' for _ in range(self._bit_width)]), 2)
if value > max_value:
raise ValueError('the value {} is larger than the maximum value {}'
.format(value, max_value))
self._value = value
self._text_update()
|
set
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value: int):\n max_value = int(''.join(['1' for _ in range(self._bit_width)]), 2)\n if value > max_value:\n raise ValueError('the value {} is larger than the maximum value {}'\n .format(value, max_value))\n self._value = value\n self._text_update()\n",
"role": "user"
},
{
"content": "set",
"role": "assistant"
}
] |
def x(self, position: int):
if position > self._bit_width - 1:
raise ValueError('position greater than the bit width')
if self._value & 1 << position:
return 1
else:
return 0
|
get_bit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, position: int):\n if position > self._bit_width - 1:\n raise ValueError('position greater than the bit width')\n if self._value & 1 << position:\n return 1\n else:\n return 0\n",
"role": "user"
},
{
"content": "get_bit",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.