source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, msg=None): if not self.stop_run.is_set(): if msg: logging.info('%s%s Stopping run...', msg, '' if msg[-1] in punctuation else '.') else: logging.info('Stopping run...') self.stop_run.set()
stop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, msg=None):\n if not self.stop_run.is_set():\n if msg:\n logging.info('%s%s Stopping run...', msg, '' if msg[-1] in\n punctuation else '.')\n else:\n logging.info('Stopping run...')\n self.stop_run.set()\n", "role": "user" }, { "content": "stop", "role": "assistant" } ]
def x(self, msg=None): if not self.abort_run.is_set(): if msg: logging.error('%s%s Aborting run...', msg, '' if msg[-1] in punctuation else '.') else: logging.error('Aborting run...') self.abort_run.set() self.stop_run.set()
abort
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, msg=None):\n if not self.abort_run.is_set():\n if msg:\n logging.error('%s%s Aborting run...', msg, '' if msg[-1] in\n punctuation else '.')\n else:\n logging.error('Aborting run...')\n self.abort_run.set()\n self.stop_run.set()\n", "role": "user" }, { "content": "abort", "role": "assistant" } ]
def x(self, run, conf=None, run_conf=None, use_thread=False, catch_exception=True): if isinstance(conf, basestring) and os.path.isfile(conf): logging.info('Updating configuration from file %s', os.path.abspath (conf)) elif conf is not None: logging.info('Updating configuration') conf = self.open_conf(conf) self._conf.update(conf) if isclass(run): run = run(conf=self._conf) local_run_conf = {} if 'run_conf' in self._conf: logging.info( 'Updating run configuration using run_conf key from configuration') local_run_conf.update(self._conf['run_conf']) if run.__class__.__name__ in self._conf: logging.info( 'Updating run configuration using %s key from configuration' % (run.__class__.__name__,)) local_run_conf.update(self._conf[run.__class__.__name__]) if isinstance(run_conf, basestring) and os.path.isfile(run_conf): logging.info('Updating run configuration from file %s', os.path. abspath(run_conf)) elif run_conf is not None: logging.info('Updating run configuration') run_conf = self.open_conf(run_conf) if run.__class__.__name__ in run_conf: run_conf = run_conf[run.__class__.__name__] local_run_conf.update(run_conf) if use_thread: self.current_run = run @thunkify(thread_name='RunThread', daemon=True, default_func=self. current_run.get_run_status) def x(): return run.run(run_conf=local_run_conf) signal.signal(signal.SIGINT, self._signal_handler) logging.info('Press Ctrl-C to stop run') return run_run_in_thread() else: self.current_run = run status = run.run(run_conf=local_run_conf) if not catch_exception and status != run_status.finished: raise RuntimeError('Exception occurred. Please read the log.') return status
run_run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, run, conf=None, run_conf=None, use_thread=False,\n catch_exception=True):\n if isinstance(conf, basestring) and os.path.isfile(conf):\n logging.info('Updating configuration from file %s', os.path.abspath\n (conf))\n elif conf is not None:\n logging.info('Updating configuration')\n conf = self.open_conf(conf)\n self._conf.update(conf)\n if isclass(run):\n run = run(conf=self._conf)\n local_run_conf = {}\n if 'run_conf' in self._conf:\n logging.info(\n 'Updating run configuration using run_conf key from configuration')\n local_run_conf.update(self._conf['run_conf'])\n if run.__class__.__name__ in self._conf:\n logging.info(\n 'Updating run configuration using %s key from configuration' %\n (run.__class__.__name__,))\n local_run_conf.update(self._conf[run.__class__.__name__])\n if isinstance(run_conf, basestring) and os.path.isfile(run_conf):\n logging.info('Updating run configuration from file %s', os.path.\n abspath(run_conf))\n elif run_conf is not None:\n logging.info('Updating run configuration')\n run_conf = self.open_conf(run_conf)\n if run.__class__.__name__ in run_conf:\n run_conf = run_conf[run.__class__.__name__]\n local_run_conf.update(run_conf)\n if use_thread:\n self.current_run = run\n\n @thunkify(thread_name='RunThread', daemon=True, default_func=self.\n current_run.get_run_status)\n def x():\n return run.run(run_conf=local_run_conf)\n signal.signal(signal.SIGINT, self._signal_handler)\n logging.info('Press Ctrl-C to stop run')\n return run_run_in_thread()\n else:\n self.current_run = run\n status = run.run(run_conf=local_run_conf)\n if not catch_exception and status != run_status.finished:\n raise RuntimeError('Exception occurred. Please read the log.')\n return status\n", "role": "user" }, { "content": "run_run", "role": "assistant" } ]
def x(self, primlist, skip_remaining=False): runlist = self.open_primlist(primlist) for index, run in enumerate(runlist): logging.info('Progressing with run %i out of %i...', index + 1, len (runlist)) join = self.run_run(run, use_thread=True) status = join() if skip_remaining and not status == run_status.finished: logging.error( 'Exited run %i with status %s: Skipping all remaining runs.', run.run_number, status) break
run_primlist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, primlist, skip_remaining=False):\n runlist = self.open_primlist(primlist)\n for index, run in enumerate(runlist):\n logging.info('Progressing with run %i out of %i...', index + 1, len\n (runlist))\n join = self.run_run(run, use_thread=True)\n status = join()\n if skip_remaining and not status == run_status.finished:\n logging.error(\n 'Exited run %i with status %s: Skipping all remaining runs.',\n run.run_number, status)\n break\n", "role": "user" }, { "content": "run_primlist", "role": "assistant" } ]
def x(scan_base, combine_n_readouts=1000, chunk_size=10000000, plot_occupancy_hists=False, output_pdf=None, output_file=None): time_stamp = [] x = [] y = [] for data_file in scan_base: with tb.open_file(data_file + '_interpreted.h5', mode='r+' ) as in_hit_file_h5: meta_data_array = in_hit_file_h5.root.meta_data[:] hit_table = in_hit_file_h5.root.Hits parameter_ranges = np.column_stack((analysis_utils. get_ranges_from_array(meta_data_array['timestamp_start'][:: combine_n_readouts]), analysis_utils.get_ranges_from_array( meta_data_array['event_number'][::combine_n_readouts]))) analysis_utils.index_event_number(hit_table) analyze_data = AnalyzeRawData() analyze_data.create_tot_hist = False analyze_data.create_bcid_hist = False analyze_data.histogram.set_no_scan_parameter() index = 0 best_chunk_size = chunk_size progress_bar = progressbar.ProgressBar(widgets=['', progressbar .Percentage(), ' ', progressbar.Bar(marker='*', left='|', right='|'), ' ', progressbar.AdaptiveETA()], maxval= hit_table.shape[0], term_width=80) progress_bar.start() for parameter_index, parameter_range in enumerate(parameter_ranges ): logging.debug('Analyze time stamp ' + str(parameter_range[0 ]) + ' and data from events = [' + str(parameter_range[ 2]) + ',' + str(parameter_range[3]) + '[ ' + str(int( float(float(parameter_index) / float(len( parameter_ranges)) * 100.0))) + '%') analyze_data.reset() readout_hit_len = 0 for hits, index in analysis_utils.data_aligned_at_events( hit_table, start_event_number=parameter_range[2], stop_event_number=parameter_range[3], start_index=index, chunk_size=best_chunk_size): analyze_data.analyze_hits(hits) readout_hit_len += hits.shape[0] progress_bar.update(index) best_chunk_size = int(1.5 * readout_hit_len) if int(1.05 * readout_hit_len) < chunk_size else chunk_size occupancy_array = analyze_data.histogram.get_occupancy() projection_x = np.sum(occupancy_array, axis=0).ravel() projection_y = np.sum(occupancy_array, axis=1).ravel() x.append(analysis_utils.get_mean_from_histogram( projection_x, bin_positions=range(0, 80))) y.append(analysis_utils.get_mean_from_histogram( projection_y, bin_positions=range(0, 336))) time_stamp.append(parameter_range[0]) if plot_occupancy_hists: plotting.plot_occupancy(occupancy_array[:, :, 0], title ='Occupancy for events between ' + time.strftime( '%H:%M:%S', time.localtime(parameter_range[0])) + ' and ' + time.strftime('%H:%M:%S', time.localtime( parameter_range[1])), filename=output_pdf) progress_bar.finish() plotting.plot_scatter([(i * 250) for i in x], [(i * 50) for i in y], title='Mean beam position', x_label='x [um]', y_label='y [um]', marker_style='-o', filename=output_pdf) if output_file: with tb.open_file(output_file, mode='a') as out_file_h5: rec_array = np.array(zip(time_stamp, x, y), dtype=[( 'time_stamp', float), ('x', float), ('y', float)]) try: beam_spot_table = out_file_h5.create_table(out_file_h5.root, name='Beamspot', description=rec_array, title= 'Beam spot position', filters=tb.Filters(complib= 'blosc', complevel=5, fletcher32=False)) beam_spot_table[:] = rec_array except tb.exceptions.NodeError: logging.warning(output_file + ' has already a Beamspot note, do not overwrite existing.') return time_stamp, x, y
analyze_beam_spot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(scan_base, combine_n_readouts=1000, chunk_size=10000000,\n plot_occupancy_hists=False, output_pdf=None, output_file=None):\n time_stamp = []\n x = []\n y = []\n for data_file in scan_base:\n with tb.open_file(data_file + '_interpreted.h5', mode='r+'\n ) as in_hit_file_h5:\n meta_data_array = in_hit_file_h5.root.meta_data[:]\n hit_table = in_hit_file_h5.root.Hits\n parameter_ranges = np.column_stack((analysis_utils.\n get_ranges_from_array(meta_data_array['timestamp_start'][::\n combine_n_readouts]), analysis_utils.get_ranges_from_array(\n meta_data_array['event_number'][::combine_n_readouts])))\n analysis_utils.index_event_number(hit_table)\n analyze_data = AnalyzeRawData()\n analyze_data.create_tot_hist = False\n analyze_data.create_bcid_hist = False\n analyze_data.histogram.set_no_scan_parameter()\n index = 0\n best_chunk_size = chunk_size\n progress_bar = progressbar.ProgressBar(widgets=['', progressbar\n .Percentage(), ' ', progressbar.Bar(marker='*', left='|',\n right='|'), ' ', progressbar.AdaptiveETA()], maxval=\n hit_table.shape[0], term_width=80)\n progress_bar.start()\n for parameter_index, parameter_range in enumerate(parameter_ranges\n ):\n logging.debug('Analyze time stamp ' + str(parameter_range[0\n ]) + ' and data from events = [' + str(parameter_range[\n 2]) + ',' + str(parameter_range[3]) + '[ ' + str(int(\n float(float(parameter_index) / float(len(\n parameter_ranges)) * 100.0))) + '%')\n analyze_data.reset()\n readout_hit_len = 0\n for hits, index in analysis_utils.data_aligned_at_events(\n hit_table, start_event_number=parameter_range[2],\n stop_event_number=parameter_range[3], start_index=index,\n chunk_size=best_chunk_size):\n analyze_data.analyze_hits(hits)\n readout_hit_len += hits.shape[0]\n progress_bar.update(index)\n best_chunk_size = int(1.5 * readout_hit_len) if int(1.05 *\n readout_hit_len) < chunk_size else chunk_size\n occupancy_array = analyze_data.histogram.get_occupancy()\n projection_x = np.sum(occupancy_array, axis=0).ravel()\n projection_y = np.sum(occupancy_array, axis=1).ravel()\n x.append(analysis_utils.get_mean_from_histogram(\n projection_x, bin_positions=range(0, 80)))\n y.append(analysis_utils.get_mean_from_histogram(\n projection_y, bin_positions=range(0, 336)))\n time_stamp.append(parameter_range[0])\n if plot_occupancy_hists:\n plotting.plot_occupancy(occupancy_array[:, :, 0], title\n ='Occupancy for events between ' + time.strftime(\n '%H:%M:%S', time.localtime(parameter_range[0])) +\n ' and ' + time.strftime('%H:%M:%S', time.localtime(\n parameter_range[1])), filename=output_pdf)\n progress_bar.finish()\n plotting.plot_scatter([(i * 250) for i in x], [(i * 50) for i in y],\n title='Mean beam position', x_label='x [um]', y_label='y [um]',\n marker_style='-o', filename=output_pdf)\n if output_file:\n with tb.open_file(output_file, mode='a') as out_file_h5:\n rec_array = np.array(zip(time_stamp, x, y), dtype=[(\n 'time_stamp', float), ('x', float), ('y', float)])\n try:\n beam_spot_table = out_file_h5.create_table(out_file_h5.root,\n name='Beamspot', description=rec_array, title=\n 'Beam spot position', filters=tb.Filters(complib=\n 'blosc', complevel=5, fletcher32=False))\n beam_spot_table[:] = rec_array\n except tb.exceptions.NodeError:\n logging.warning(output_file +\n ' has already a Beamspot note, do not overwrite existing.')\n return time_stamp, x, y\n", "role": "user" }, { "content": "analyze_beam_spot", "role": "assistant" } ]
def x(scan_base, combine_n_readouts=1000, time_line_absolute=True, output_pdf=None, output_file=None): time_stamp = [] rate = [] start_time_set = False for data_file in scan_base: with tb.open_file(data_file + '_interpreted.h5', mode='r' ) as in_file_h5: meta_data_array = in_file_h5.root.meta_data[:] parameter_ranges = np.column_stack((analysis_utils. get_ranges_from_array(meta_data_array['timestamp_start'][:: combine_n_readouts]), analysis_utils.get_ranges_from_array( meta_data_array['event_number'][::combine_n_readouts]))) if time_line_absolute: time_stamp.extend(parameter_ranges[:-1, 0]) else: if not start_time_set: start_time = parameter_ranges[0, 0] start_time_set = True time_stamp.extend((parameter_ranges[:-1, 0] - start_time) / 60.0) rate.extend((parameter_ranges[:-1, 3] - parameter_ranges[:-1, 2 ]) / (parameter_ranges[:-1, 1] - parameter_ranges[:-1, 0])) if time_line_absolute: plotting.plot_scatter_time(time_stamp, rate, title= 'Event rate [Hz]', marker_style='o', filename=output_pdf) else: plotting.plot_scatter(time_stamp, rate, title='Events per time', x_label='Progressed time [min.]', y_label='Events rate [Hz]', marker_style='o', filename=output_pdf) if output_file: with tb.open_file(output_file, mode='a') as out_file_h5: rec_array = np.array(zip(time_stamp, rate), dtype=[( 'time_stamp', float), ('rate', float)]).view(np.recarray) try: rate_table = out_file_h5.create_table(out_file_h5.root, name='Eventrate', description=rec_array, title= 'Event rate', filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False)) rate_table[:] = rec_array except tb.exceptions.NodeError: logging.warning(output_file + ' has already a Eventrate note, do not overwrite existing.' ) return time_stamp, rate
analyze_event_rate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(scan_base, combine_n_readouts=1000, time_line_absolute=True,\n output_pdf=None, output_file=None):\n time_stamp = []\n rate = []\n start_time_set = False\n for data_file in scan_base:\n with tb.open_file(data_file + '_interpreted.h5', mode='r'\n ) as in_file_h5:\n meta_data_array = in_file_h5.root.meta_data[:]\n parameter_ranges = np.column_stack((analysis_utils.\n get_ranges_from_array(meta_data_array['timestamp_start'][::\n combine_n_readouts]), analysis_utils.get_ranges_from_array(\n meta_data_array['event_number'][::combine_n_readouts])))\n if time_line_absolute:\n time_stamp.extend(parameter_ranges[:-1, 0])\n else:\n if not start_time_set:\n start_time = parameter_ranges[0, 0]\n start_time_set = True\n time_stamp.extend((parameter_ranges[:-1, 0] - start_time) /\n 60.0)\n rate.extend((parameter_ranges[:-1, 3] - parameter_ranges[:-1, 2\n ]) / (parameter_ranges[:-1, 1] - parameter_ranges[:-1, 0]))\n if time_line_absolute:\n plotting.plot_scatter_time(time_stamp, rate, title=\n 'Event rate [Hz]', marker_style='o', filename=output_pdf)\n else:\n plotting.plot_scatter(time_stamp, rate, title='Events per time',\n x_label='Progressed time [min.]', y_label='Events rate [Hz]',\n marker_style='o', filename=output_pdf)\n if output_file:\n with tb.open_file(output_file, mode='a') as out_file_h5:\n rec_array = np.array(zip(time_stamp, rate), dtype=[(\n 'time_stamp', float), ('rate', float)]).view(np.recarray)\n try:\n rate_table = out_file_h5.create_table(out_file_h5.root,\n name='Eventrate', description=rec_array, title=\n 'Event rate', filters=tb.Filters(complib='blosc',\n complevel=5, fletcher32=False))\n rate_table[:] = rec_array\n except tb.exceptions.NodeError:\n logging.warning(output_file +\n ' has already a Eventrate note, do not overwrite existing.'\n )\n return time_stamp, rate\n", "role": "user" }, { "content": "analyze_event_rate", "role": "assistant" } ]
def x(scan_base, include_no_cluster=False, time_line_absolute=True, combine_n_readouts=1000, chunk_size=10000000, plot_n_cluster_hists= False, output_pdf=None, output_file=None): time_stamp = [] n_cluster = [] start_time_set = False for data_file in scan_base: with tb.open_file(data_file + '_interpreted.h5', mode='r+' ) as in_cluster_file_h5: meta_data_array = in_cluster_file_h5.root.meta_data[:] cluster_table = in_cluster_file_h5.root.Cluster parameter_ranges = np.column_stack((analysis_utils. get_ranges_from_array(meta_data_array['timestamp_start'][:: combine_n_readouts]), analysis_utils.get_ranges_from_array( meta_data_array['event_number'][::combine_n_readouts]))) analysis_utils.index_event_number(cluster_table) analyze_data = AnalyzeRawData() analyze_data.create_tot_hist = False analyze_data.create_bcid_hist = False index = 0 best_chunk_size = chunk_size total_cluster = cluster_table.shape[0] progress_bar = progressbar.ProgressBar(widgets=['', progressbar .Percentage(), ' ', progressbar.Bar(marker='*', left='|', right='|'), ' ', progressbar.AdaptiveETA()], maxval= total_cluster, term_width=80) progress_bar.start() for parameter_index, parameter_range in enumerate(parameter_ranges ): logging.debug('Analyze time stamp ' + str(parameter_range[0 ]) + ' and data from events = [' + str(parameter_range[ 2]) + ',' + str(parameter_range[3]) + '[ ' + str(int( float(float(parameter_index) / float(len( parameter_ranges)) * 100.0))) + '%') analyze_data.reset() readout_cluster_len = 0 hist = None for clusters, index in analysis_utils.data_aligned_at_events( cluster_table, start_event_number=parameter_range[2], stop_event_number=parameter_range[3], start_index=index, chunk_size=best_chunk_size): n_cluster_per_event = (analysis_utils. get_n_cluster_in_events(clusters['event_number'])[:, 1] ) if hist is None: hist = np.histogram(n_cluster_per_event, bins=10, range=(0, 10))[0] else: hist = np.add(hist, np.histogram( n_cluster_per_event, bins=10, range=(0, 10))[0]) if include_no_cluster and parameter_range[3] is not None: hist[0] = parameter_range[3] - parameter_range[2 ] - len(n_cluster_per_event) readout_cluster_len += clusters.shape[0] total_cluster -= len(clusters) progress_bar.update(index) best_chunk_size = int(1.5 * readout_cluster_len) if int( 1.05 * readout_cluster_len) < chunk_size else chunk_size if plot_n_cluster_hists: plotting.plot_1d_hist(hist, title= 'Number of cluster per event at ' + str( parameter_range[0]), x_axis_title= 'Number of cluster', y_axis_title='#', log_y=True, filename=output_pdf) hist = hist.astype('f4') / np.sum(hist) if time_line_absolute: time_stamp.append(parameter_range[0]) else: if not start_time_set: start_time = parameter_ranges[0, 0] start_time_set = True time_stamp.append((parameter_range[0] - start_time) / 60.0) n_cluster.append(hist) progress_bar.finish() if total_cluster != 0: logging.warning( 'Not all clusters were selected during analysis. Analysis is therefore not exact' ) if time_line_absolute: plotting.plot_scatter_time(time_stamp, n_cluster, title= 'Number of cluster per event as a function of time', marker_style='o', filename=output_pdf, legend=('0 cluster', '1 cluster', '2 cluster', '3 cluster') if include_no_cluster else ('0 cluster not plotted', '1 cluster', '2 cluster', '3 cluster')) else: plotting.plot_scatter(time_stamp, n_cluster, title= 'Number of cluster per event as a function of time', x_label= 'time [min.]', marker_style='o', filename=output_pdf, legend=( '0 cluster', '1 cluster', '2 cluster', '3 cluster') if include_no_cluster else ('0 cluster not plotted', '1 cluster', '2 cluster', '3 cluster')) if output_file: with tb.open_file(output_file, mode='a') as out_file_h5: cluster_array = np.array(n_cluster) rec_array = np.array(zip(time_stamp, cluster_array[:, 0], cluster_array[:, 1], cluster_array[:, 2], cluster_array[:, 3], cluster_array[:, 4], cluster_array[:, 5]), dtype=[( 'time_stamp', float), ('cluster_0', float), ('cluster_1', float), ('cluster_2', float), ('cluster_3', float), ( 'cluster_4', float), ('cluster_5', float)]).view(np.recarray) try: n_cluster_table = out_file_h5.create_table(out_file_h5.root, name='n_cluster', description=rec_array, title= 'Cluster per event', filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False)) n_cluster_table[:] = rec_array except tb.exceptions.NodeError: logging.warning(output_file + ' has already a Beamspot note, do not overwrite existing.') return time_stamp, n_cluster
analyse_n_cluster_per_event
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(scan_base, include_no_cluster=False, time_line_absolute=True,\n combine_n_readouts=1000, chunk_size=10000000, plot_n_cluster_hists=\n False, output_pdf=None, output_file=None):\n time_stamp = []\n n_cluster = []\n start_time_set = False\n for data_file in scan_base:\n with tb.open_file(data_file + '_interpreted.h5', mode='r+'\n ) as in_cluster_file_h5:\n meta_data_array = in_cluster_file_h5.root.meta_data[:]\n cluster_table = in_cluster_file_h5.root.Cluster\n parameter_ranges = np.column_stack((analysis_utils.\n get_ranges_from_array(meta_data_array['timestamp_start'][::\n combine_n_readouts]), analysis_utils.get_ranges_from_array(\n meta_data_array['event_number'][::combine_n_readouts])))\n analysis_utils.index_event_number(cluster_table)\n analyze_data = AnalyzeRawData()\n analyze_data.create_tot_hist = False\n analyze_data.create_bcid_hist = False\n index = 0\n best_chunk_size = chunk_size\n total_cluster = cluster_table.shape[0]\n progress_bar = progressbar.ProgressBar(widgets=['', progressbar\n .Percentage(), ' ', progressbar.Bar(marker='*', left='|',\n right='|'), ' ', progressbar.AdaptiveETA()], maxval=\n total_cluster, term_width=80)\n progress_bar.start()\n for parameter_index, parameter_range in enumerate(parameter_ranges\n ):\n logging.debug('Analyze time stamp ' + str(parameter_range[0\n ]) + ' and data from events = [' + str(parameter_range[\n 2]) + ',' + str(parameter_range[3]) + '[ ' + str(int(\n float(float(parameter_index) / float(len(\n parameter_ranges)) * 100.0))) + '%')\n analyze_data.reset()\n readout_cluster_len = 0\n hist = None\n for clusters, index in analysis_utils.data_aligned_at_events(\n cluster_table, start_event_number=parameter_range[2],\n stop_event_number=parameter_range[3], start_index=index,\n chunk_size=best_chunk_size):\n n_cluster_per_event = (analysis_utils.\n get_n_cluster_in_events(clusters['event_number'])[:, 1]\n )\n if hist is None:\n hist = np.histogram(n_cluster_per_event, bins=10,\n range=(0, 10))[0]\n else:\n hist = np.add(hist, np.histogram(\n n_cluster_per_event, bins=10, range=(0, 10))[0])\n if include_no_cluster and parameter_range[3] is not None:\n hist[0] = parameter_range[3] - parameter_range[2\n ] - len(n_cluster_per_event)\n readout_cluster_len += clusters.shape[0]\n total_cluster -= len(clusters)\n progress_bar.update(index)\n best_chunk_size = int(1.5 * readout_cluster_len) if int(\n 1.05 * readout_cluster_len) < chunk_size else chunk_size\n if plot_n_cluster_hists:\n plotting.plot_1d_hist(hist, title=\n 'Number of cluster per event at ' + str(\n parameter_range[0]), x_axis_title=\n 'Number of cluster', y_axis_title='#', log_y=True,\n filename=output_pdf)\n hist = hist.astype('f4') / np.sum(hist)\n if time_line_absolute:\n time_stamp.append(parameter_range[0])\n else:\n if not start_time_set:\n start_time = parameter_ranges[0, 0]\n start_time_set = True\n time_stamp.append((parameter_range[0] - start_time) / 60.0)\n n_cluster.append(hist)\n progress_bar.finish()\n if total_cluster != 0:\n logging.warning(\n 'Not all clusters were selected during analysis. Analysis is therefore not exact'\n )\n if time_line_absolute:\n plotting.plot_scatter_time(time_stamp, n_cluster, title=\n 'Number of cluster per event as a function of time',\n marker_style='o', filename=output_pdf, legend=('0 cluster',\n '1 cluster', '2 cluster', '3 cluster') if include_no_cluster else\n ('0 cluster not plotted', '1 cluster', '2 cluster', '3 cluster'))\n else:\n plotting.plot_scatter(time_stamp, n_cluster, title=\n 'Number of cluster per event as a function of time', x_label=\n 'time [min.]', marker_style='o', filename=output_pdf, legend=(\n '0 cluster', '1 cluster', '2 cluster', '3 cluster') if\n include_no_cluster else ('0 cluster not plotted', '1 cluster',\n '2 cluster', '3 cluster'))\n if output_file:\n with tb.open_file(output_file, mode='a') as out_file_h5:\n cluster_array = np.array(n_cluster)\n rec_array = np.array(zip(time_stamp, cluster_array[:, 0],\n cluster_array[:, 1], cluster_array[:, 2], cluster_array[:, \n 3], cluster_array[:, 4], cluster_array[:, 5]), dtype=[(\n 'time_stamp', float), ('cluster_0', float), ('cluster_1',\n float), ('cluster_2', float), ('cluster_3', float), (\n 'cluster_4', float), ('cluster_5', float)]).view(np.recarray)\n try:\n n_cluster_table = out_file_h5.create_table(out_file_h5.root,\n name='n_cluster', description=rec_array, title=\n 'Cluster per event', filters=tb.Filters(complib='blosc',\n complevel=5, fletcher32=False))\n n_cluster_table[:] = rec_array\n except tb.exceptions.NodeError:\n logging.warning(output_file +\n ' has already a Beamspot note, do not overwrite existing.')\n return time_stamp, n_cluster\n", "role": "user" }, { "content": "analyse_n_cluster_per_event", "role": "assistant" } ]
def x(input_file_hits, output_file_hits, cluster_size_condition, n_cluster_condition, chunk_size=4000000): logging.info('Write hits of events from ' + str(input_file_hits) + ' with ' + cluster_size_condition + ' and ' + n_cluster_condition + ' into ' + str(output_file_hits)) with tb.open_file(input_file_hits, mode='r+') as in_hit_file_h5: analysis_utils.index_event_number(in_hit_file_h5.root.Hits) analysis_utils.index_event_number(in_hit_file_h5.root.Cluster) with tb.open_file(output_file_hits, mode='w') as out_hit_file_h5: hit_table_out = out_hit_file_h5.create_table(out_hit_file_h5. root, name='Hits', description=data_struct.HitInfoTable, title='hit_data', filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False)) cluster_table = in_hit_file_h5.root.Cluster last_word_number = 0 progress_bar = progressbar.ProgressBar(widgets=['', progressbar .Percentage(), ' ', progressbar.Bar(marker='*', left='|', right='|'), ' ', progressbar.AdaptiveETA()], maxval= cluster_table.shape[0], term_width=80) progress_bar.start() for data, index in analysis_utils.data_aligned_at_events( cluster_table, chunk_size=chunk_size): selected_events_1 = (analysis_utils. get_events_with_cluster_size(event_number=data[ 'event_number'], cluster_size=data['size'], condition= cluster_size_condition)) selected_events_2 = analysis_utils.get_events_with_n_cluster( event_number=data['event_number'], condition= n_cluster_condition) selected_events = analysis_utils.get_events_in_both_arrays( selected_events_1, selected_events_2) logging.debug('Selected ' + str(len(selected_events)) + ' events with ' + n_cluster_condition + ' and ' + cluster_size_condition) last_word_number = analysis_utils.write_hits_in_events( hit_table_in=in_hit_file_h5.root.Hits, hit_table_out= hit_table_out, events=selected_events, start_hit_word= last_word_number) progress_bar.update(index) progress_bar.finish() in_hit_file_h5.root.meta_data.copy(out_hit_file_h5.root)
select_hits_from_cluster_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input_file_hits, output_file_hits, cluster_size_condition,\n n_cluster_condition, chunk_size=4000000):\n logging.info('Write hits of events from ' + str(input_file_hits) +\n ' with ' + cluster_size_condition + ' and ' + n_cluster_condition +\n ' into ' + str(output_file_hits))\n with tb.open_file(input_file_hits, mode='r+') as in_hit_file_h5:\n analysis_utils.index_event_number(in_hit_file_h5.root.Hits)\n analysis_utils.index_event_number(in_hit_file_h5.root.Cluster)\n with tb.open_file(output_file_hits, mode='w') as out_hit_file_h5:\n hit_table_out = out_hit_file_h5.create_table(out_hit_file_h5.\n root, name='Hits', description=data_struct.HitInfoTable,\n title='hit_data', filters=tb.Filters(complib='blosc',\n complevel=5, fletcher32=False))\n cluster_table = in_hit_file_h5.root.Cluster\n last_word_number = 0\n progress_bar = progressbar.ProgressBar(widgets=['', progressbar\n .Percentage(), ' ', progressbar.Bar(marker='*', left='|',\n right='|'), ' ', progressbar.AdaptiveETA()], maxval=\n cluster_table.shape[0], term_width=80)\n progress_bar.start()\n for data, index in analysis_utils.data_aligned_at_events(\n cluster_table, chunk_size=chunk_size):\n selected_events_1 = (analysis_utils.\n get_events_with_cluster_size(event_number=data[\n 'event_number'], cluster_size=data['size'], condition=\n cluster_size_condition))\n selected_events_2 = analysis_utils.get_events_with_n_cluster(\n event_number=data['event_number'], condition=\n n_cluster_condition)\n selected_events = analysis_utils.get_events_in_both_arrays(\n selected_events_1, selected_events_2)\n logging.debug('Selected ' + str(len(selected_events)) +\n ' events with ' + n_cluster_condition + ' and ' +\n cluster_size_condition)\n last_word_number = analysis_utils.write_hits_in_events(\n hit_table_in=in_hit_file_h5.root.Hits, hit_table_out=\n hit_table_out, events=selected_events, start_hit_word=\n last_word_number)\n progress_bar.update(index)\n progress_bar.finish()\n in_hit_file_h5.root.meta_data.copy(out_hit_file_h5.root)\n", "role": "user" }, { "content": "select_hits_from_cluster_info", "role": "assistant" } ]
def x(input_file_hits, output_file_hits, condition=None, cluster_size_condition=None, n_cluster_condition=None, chunk_size=5000000): logging.info('Write hits with ' + condition + ' into ' + str( output_file_hits)) if cluster_size_condition is None and n_cluster_condition is None: with tb.open_file(input_file_hits, mode='r+') as in_hit_file_h5: analysis_utils.index_event_number(in_hit_file_h5.root.Hits) with tb.open_file(output_file_hits, mode='w') as out_hit_file_h5: hit_table_out = out_hit_file_h5.create_table(out_hit_file_h5 .root, name='Hits', description=data_struct. HitInfoTable, title='hit_data', filters=tb.Filters( complib='blosc', complevel=5, fletcher32=False)) analysis_utils.write_hits_in_event_range(hit_table_in= in_hit_file_h5.root.Hits, hit_table_out=hit_table_out, condition=condition) in_hit_file_h5.root.meta_data.copy(out_hit_file_h5.root) else: with tb.open_file(input_file_hits, mode='r+') as in_hit_file_h5: analysis_utils.index_event_number(in_hit_file_h5.root.Hits) analysis_utils.index_event_number(in_hit_file_h5.root.Cluster) with tb.open_file(output_file_hits, mode='w') as out_hit_file_h5: hit_table_out = out_hit_file_h5.create_table(out_hit_file_h5 .root, name='Hits', description=data_struct. HitInfoTable, title='hit_data', filters=tb.Filters( complib='blosc', complevel=5, fletcher32=False)) cluster_table = in_hit_file_h5.root.Cluster last_word_number = 0 progress_bar = progressbar.ProgressBar(widgets=['', progressbar.Percentage(), ' ', progressbar.Bar(marker= '*', left='|', right='|'), ' ', progressbar.AdaptiveETA ()], maxval=cluster_table.shape[0], term_width=80) progress_bar.start() for data, index in analysis_utils.data_aligned_at_events( cluster_table, chunk_size=chunk_size): if cluster_size_condition is not None: selected_events = (analysis_utils. get_events_with_cluster_size(event_number=data[ 'event_number'], cluster_size=data['size'], condition='cluster_size == ' + str( cluster_size_condition))) if n_cluster_condition is not None: selected_events_2 = (analysis_utils. get_events_with_n_cluster(event_number=data ['event_number'], condition='n_cluster == ' + str(n_cluster_condition))) selected_events = selected_events[analysis_utils .in1d_events(selected_events, selected_events_2)] elif n_cluster_condition is not None: selected_events = (analysis_utils. get_events_with_n_cluster(event_number=data[ 'event_number'], condition='n_cluster == ' + str(n_cluster_condition))) else: raise RuntimeError( 'Cannot understand cluster selection criterion') last_word_number = analysis_utils.write_hits_in_events( hit_table_in=in_hit_file_h5.root.Hits, hit_table_out=hit_table_out, events=selected_events, start_hit_word=last_word_number, condition= condition, chunk_size=chunk_size) progress_bar.update(index) progress_bar.finish() in_hit_file_h5.root.meta_data.copy(out_hit_file_h5.root)
select_hits
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input_file_hits, output_file_hits, condition=None,\n cluster_size_condition=None, n_cluster_condition=None, chunk_size=5000000):\n logging.info('Write hits with ' + condition + ' into ' + str(\n output_file_hits))\n if cluster_size_condition is None and n_cluster_condition is None:\n with tb.open_file(input_file_hits, mode='r+') as in_hit_file_h5:\n analysis_utils.index_event_number(in_hit_file_h5.root.Hits)\n with tb.open_file(output_file_hits, mode='w') as out_hit_file_h5:\n hit_table_out = out_hit_file_h5.create_table(out_hit_file_h5\n .root, name='Hits', description=data_struct.\n HitInfoTable, title='hit_data', filters=tb.Filters(\n complib='blosc', complevel=5, fletcher32=False))\n analysis_utils.write_hits_in_event_range(hit_table_in=\n in_hit_file_h5.root.Hits, hit_table_out=hit_table_out,\n condition=condition)\n in_hit_file_h5.root.meta_data.copy(out_hit_file_h5.root)\n else:\n with tb.open_file(input_file_hits, mode='r+') as in_hit_file_h5:\n analysis_utils.index_event_number(in_hit_file_h5.root.Hits)\n analysis_utils.index_event_number(in_hit_file_h5.root.Cluster)\n with tb.open_file(output_file_hits, mode='w') as out_hit_file_h5:\n hit_table_out = out_hit_file_h5.create_table(out_hit_file_h5\n .root, name='Hits', description=data_struct.\n HitInfoTable, title='hit_data', filters=tb.Filters(\n complib='blosc', complevel=5, fletcher32=False))\n cluster_table = in_hit_file_h5.root.Cluster\n last_word_number = 0\n progress_bar = progressbar.ProgressBar(widgets=['',\n progressbar.Percentage(), ' ', progressbar.Bar(marker=\n '*', left='|', right='|'), ' ', progressbar.AdaptiveETA\n ()], maxval=cluster_table.shape[0], term_width=80)\n progress_bar.start()\n for data, index in analysis_utils.data_aligned_at_events(\n cluster_table, chunk_size=chunk_size):\n if cluster_size_condition is not None:\n selected_events = (analysis_utils.\n get_events_with_cluster_size(event_number=data[\n 'event_number'], cluster_size=data['size'],\n condition='cluster_size == ' + str(\n cluster_size_condition)))\n if n_cluster_condition is not None:\n selected_events_2 = (analysis_utils.\n get_events_with_n_cluster(event_number=data\n ['event_number'], condition='n_cluster == ' +\n str(n_cluster_condition)))\n selected_events = selected_events[analysis_utils\n .in1d_events(selected_events,\n selected_events_2)]\n elif n_cluster_condition is not None:\n selected_events = (analysis_utils.\n get_events_with_n_cluster(event_number=data[\n 'event_number'], condition='n_cluster == ' +\n str(n_cluster_condition)))\n else:\n raise RuntimeError(\n 'Cannot understand cluster selection criterion')\n last_word_number = analysis_utils.write_hits_in_events(\n hit_table_in=in_hit_file_h5.root.Hits,\n hit_table_out=hit_table_out, events=selected_events,\n start_hit_word=last_word_number, condition=\n condition, chunk_size=chunk_size)\n progress_bar.update(index)\n progress_bar.finish()\n in_hit_file_h5.root.meta_data.copy(out_hit_file_h5.root)\n", "role": "user" }, { "content": "select_hits", "role": "assistant" } ]
def x(analyzed_data_file, output_file, chunk_size=10000000): with tb.open_file(analyzed_data_file, mode='r') as in_file_h5: with tb.open_file(output_file, mode='w') as out_file_h5: histogram = PyDataHistograming() histogram.create_occupancy_hist(True) scan_parameters = None event_number_indices = None scan_parameter_indices = None try: meta_data = in_file_h5.root.meta_data[:] scan_parameters = (analysis_utils. get_unique_scan_parameter_combinations(meta_data)) if scan_parameters is not None: scan_parameter_indices = np.array(range(0, len( scan_parameters)), dtype='u4') event_number_indices = np.ascontiguousarray(scan_parameters ['event_number']).astype(np.uint64) histogram.add_meta_event_index(event_number_indices, array_length=len(scan_parameters['event_number'])) histogram.add_scan_parameter(scan_parameter_indices) logging.info( 'Add %d different scan parameter(s) for analysis', len(scan_parameters)) else: logging.info('No scan parameter data provided') histogram.set_no_scan_parameter() except tb.exceptions.NoSuchNodeError: logging.info('No meta data provided, use no scan parameter') histogram.set_no_scan_parameter() logging.info('Histogram cluster seeds...') progress_bar = progressbar.ProgressBar(widgets=['', progressbar .Percentage(), ' ', progressbar.Bar(marker='*', left='|', right='|'), ' ', progressbar.AdaptiveETA()], maxval= in_file_h5.root.Cluster.shape[0], term_width=80) progress_bar.start() total_cluster = 0 for cluster, index in analysis_utils.data_aligned_at_events( in_file_h5.root.Cluster, chunk_size=chunk_size): total_cluster += len(cluster) histogram.add_cluster_seed_hits(cluster, len(cluster)) progress_bar.update(index) progress_bar.finish() filter_table = tb.Filters(complib='blosc', complevel=5, fletcher32=False) occupancy_array = histogram.get_occupancy().T occupancy_array_table = out_file_h5.create_carray(out_file_h5. root, name='HistOcc', title='Occupancy Histogram', atom=tb. Atom.from_dtype(occupancy_array.dtype), shape= occupancy_array.shape, filters=filter_table) occupancy_array_table[:] = occupancy_array if total_cluster != np.sum(occupancy_array): logging.warning( 'Analysis shows inconsistent number of cluster used. Check needed!' ) in_file_h5.root.meta_data.copy(out_file_h5.root)
histogram_cluster_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(analyzed_data_file, output_file, chunk_size=10000000):\n with tb.open_file(analyzed_data_file, mode='r') as in_file_h5:\n with tb.open_file(output_file, mode='w') as out_file_h5:\n histogram = PyDataHistograming()\n histogram.create_occupancy_hist(True)\n scan_parameters = None\n event_number_indices = None\n scan_parameter_indices = None\n try:\n meta_data = in_file_h5.root.meta_data[:]\n scan_parameters = (analysis_utils.\n get_unique_scan_parameter_combinations(meta_data))\n if scan_parameters is not None:\n scan_parameter_indices = np.array(range(0, len(\n scan_parameters)), dtype='u4')\n event_number_indices = np.ascontiguousarray(scan_parameters\n ['event_number']).astype(np.uint64)\n histogram.add_meta_event_index(event_number_indices,\n array_length=len(scan_parameters['event_number']))\n histogram.add_scan_parameter(scan_parameter_indices)\n logging.info(\n 'Add %d different scan parameter(s) for analysis',\n len(scan_parameters))\n else:\n logging.info('No scan parameter data provided')\n histogram.set_no_scan_parameter()\n except tb.exceptions.NoSuchNodeError:\n logging.info('No meta data provided, use no scan parameter')\n histogram.set_no_scan_parameter()\n logging.info('Histogram cluster seeds...')\n progress_bar = progressbar.ProgressBar(widgets=['', progressbar\n .Percentage(), ' ', progressbar.Bar(marker='*', left='|',\n right='|'), ' ', progressbar.AdaptiveETA()], maxval=\n in_file_h5.root.Cluster.shape[0], term_width=80)\n progress_bar.start()\n total_cluster = 0\n for cluster, index in analysis_utils.data_aligned_at_events(\n in_file_h5.root.Cluster, chunk_size=chunk_size):\n total_cluster += len(cluster)\n histogram.add_cluster_seed_hits(cluster, len(cluster))\n progress_bar.update(index)\n progress_bar.finish()\n filter_table = tb.Filters(complib='blosc', complevel=5,\n fletcher32=False)\n occupancy_array = histogram.get_occupancy().T\n occupancy_array_table = out_file_h5.create_carray(out_file_h5.\n root, name='HistOcc', title='Occupancy Histogram', atom=tb.\n Atom.from_dtype(occupancy_array.dtype), shape=\n occupancy_array.shape, filters=filter_table)\n occupancy_array_table[:] = occupancy_array\n if total_cluster != np.sum(occupancy_array):\n logging.warning(\n 'Analysis shows inconsistent number of cluster used. Check needed!'\n )\n in_file_h5.root.meta_data.copy(out_file_h5.root)\n", "role": "user" }, { "content": "histogram_cluster_table", "role": "assistant" } ]
def x(analyze_data, scan_parameters=None, chunk_size=50000): if (analyze_data.out_file_h5 is None or analyze_data.out_file_h5.isopen == 0): in_hit_file_h5 = tb.open_file(analyze_data._analyzed_data_file, 'r+') close_file = True else: in_hit_file_h5 = analyze_data.out_file_h5 close_file = False meta_data = in_hit_file_h5.root.meta_data[:] try: hit_table = in_hit_file_h5.root.Hits except tb.NoSuchNodeError: logging.error( 'analyze_hits_per_scan_parameter needs a hit table, but no hit table found.' ) return meta_data_table_at_scan_parameter = (analysis_utils. get_unique_scan_parameter_combinations(meta_data, scan_parameters= scan_parameters)) parameter_values = analysis_utils.get_scan_parameters_table_from_meta_data( meta_data_table_at_scan_parameter, scan_parameters) event_number_ranges = analysis_utils.get_ranges_from_array( meta_data_table_at_scan_parameter['event_number']) analysis_utils.index_event_number(hit_table) index = 0 best_chunk_size = chunk_size for parameter_index, (start_event_number, stop_event_number) in enumerate( event_number_ranges): logging.info('Analyze hits for ' + str(scan_parameters) + ' = ' + str(parameter_values[parameter_index])) analyze_data.reset() readout_hit_len = 0 for hits, index in analysis_utils.data_aligned_at_events(hit_table, start_event_number=start_event_number, stop_event_number= stop_event_number, start_index=index, chunk_size=best_chunk_size): analyze_data.analyze_hits(hits, scan_parameter=False) readout_hit_len += hits.shape[0] best_chunk_size = int(1.5 * readout_hit_len) if int(1.05 * readout_hit_len) < chunk_size and int(1.05 * readout_hit_len ) > 1000.0 else chunk_size file_name = ' '.join(re.findall('[a-zA-Z0-9]+', str(scan_parameters)) ) + '_' + ' '.join(re.findall('[a-zA-Z0-9]+', str( parameter_values[parameter_index]))) analyze_data._create_additional_hit_data(safe_to_file=False) analyze_data._create_additional_cluster_data(safe_to_file=False) yield analyze_data, file_name if close_file: in_hit_file_h5.close()
analyze_hits_per_scan_parameter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(analyze_data, scan_parameters=None, chunk_size=50000):\n if (analyze_data.out_file_h5 is None or analyze_data.out_file_h5.isopen ==\n 0):\n in_hit_file_h5 = tb.open_file(analyze_data._analyzed_data_file, 'r+')\n close_file = True\n else:\n in_hit_file_h5 = analyze_data.out_file_h5\n close_file = False\n meta_data = in_hit_file_h5.root.meta_data[:]\n try:\n hit_table = in_hit_file_h5.root.Hits\n except tb.NoSuchNodeError:\n logging.error(\n 'analyze_hits_per_scan_parameter needs a hit table, but no hit table found.'\n )\n return\n meta_data_table_at_scan_parameter = (analysis_utils.\n get_unique_scan_parameter_combinations(meta_data, scan_parameters=\n scan_parameters))\n parameter_values = analysis_utils.get_scan_parameters_table_from_meta_data(\n meta_data_table_at_scan_parameter, scan_parameters)\n event_number_ranges = analysis_utils.get_ranges_from_array(\n meta_data_table_at_scan_parameter['event_number'])\n analysis_utils.index_event_number(hit_table)\n index = 0\n best_chunk_size = chunk_size\n for parameter_index, (start_event_number, stop_event_number) in enumerate(\n event_number_ranges):\n logging.info('Analyze hits for ' + str(scan_parameters) + ' = ' +\n str(parameter_values[parameter_index]))\n analyze_data.reset()\n readout_hit_len = 0\n for hits, index in analysis_utils.data_aligned_at_events(hit_table,\n start_event_number=start_event_number, stop_event_number=\n stop_event_number, start_index=index, chunk_size=best_chunk_size):\n analyze_data.analyze_hits(hits, scan_parameter=False)\n readout_hit_len += hits.shape[0]\n best_chunk_size = int(1.5 * readout_hit_len) if int(1.05 *\n readout_hit_len) < chunk_size and int(1.05 * readout_hit_len\n ) > 1000.0 else chunk_size\n file_name = ' '.join(re.findall('[a-zA-Z0-9]+', str(scan_parameters))\n ) + '_' + ' '.join(re.findall('[a-zA-Z0-9]+', str(\n parameter_values[parameter_index])))\n analyze_data._create_additional_hit_data(safe_to_file=False)\n analyze_data._create_additional_cluster_data(safe_to_file=False)\n yield analyze_data, file_name\n if close_file:\n in_hit_file_h5.close()\n", "role": "user" }, { "content": "analyze_hits_per_scan_parameter", "role": "assistant" } ]
def x(preamble, data): voltage = np.array(data, dtype=np.float) meta_data = preamble.split(',')[5].split(';') time_unit = meta_data[3][1:-1] XZEro = float(meta_data[5]) XINcr = float(meta_data[4]) PT_Off = float(meta_data[6]) voltage_unit = meta_data[7][1:-1] YZEro = float(meta_data[10]) YMUlt = float(meta_data[8]) YOFf = float(meta_data[9]) time = XZEro + XINcr * (np.arange(0, voltage.size) - PT_Off) voltage = YZEro + YMUlt * (voltage - YOFf) return time, voltage, time_unit, voltage_unit
interpret_data_from_tektronix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(preamble, data):\n voltage = np.array(data, dtype=np.float)\n meta_data = preamble.split(',')[5].split(';')\n time_unit = meta_data[3][1:-1]\n XZEro = float(meta_data[5])\n XINcr = float(meta_data[4])\n PT_Off = float(meta_data[6])\n voltage_unit = meta_data[7][1:-1]\n YZEro = float(meta_data[10])\n YMUlt = float(meta_data[8])\n YOFf = float(meta_data[9])\n time = XZEro + XINcr * (np.arange(0, voltage.size) - PT_Off)\n voltage = YZEro + YMUlt * (voltage - YOFf)\n return time, voltage, time_unit, voltage_unit\n", "role": "user" }, { "content": "interpret_data_from_tektronix", "role": "assistant" } ]
def x(self): commands = [] commands.extend(self.register.get_commands('ConfMode')) self.register_utils.send_commands(commands) with self.readout(fill_buffer=True, callback=None, errback=None): if self.register.fei4b: commands = [] self.register.set_global_register_value('Efuse_Sense', 1) commands.extend(self.register.get_commands('WrRegister', name=[ 'Efuse_Sense'])) commands.extend(self.register.get_commands('GlobalPulse', Width=0)) self.register.set_global_register_value('Efuse_Sense', 0) commands.extend(self.register.get_commands('WrRegister', name=[ 'Efuse_Sense'])) self.register_utils.send_commands(commands) commands = [] self.register.set_global_register_value('Conf_AddrEnable', 1) commands.extend(self.register.get_commands('WrRegister', name=[ 'Conf_AddrEnable'])) chip_sn_address = self.register.get_global_register_attributes( 'addresses', name='Chip_SN') commands.extend(self.register.get_commands('RdRegister', addresses= chip_sn_address)) self.register_utils.send_commands(commands) data = self.read_data() if data.shape[0] == 0: logging.error('Chip S/N: No data') return read_values = [] for index, word in enumerate(np.nditer(data)): fei4_data_word = FEI4Record(word, self.register.chip_flavor) if fei4_data_word == 'AR': fei4_next_data_word = FEI4Record(data[index + 1], self.register .chip_flavor) if fei4_next_data_word == 'VR': read_value = fei4_next_data_word['value'] read_values.append(read_value) if len(read_values) == 0: logging.error('No Chip S/N was found') elif len(read_values) == 1: logging.info('Chip S/N: %d', read_values[0]) else: logging.warning('Ambiguous Chip S/N: %s', read_values)
read_chip_sn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n commands = []\n commands.extend(self.register.get_commands('ConfMode'))\n self.register_utils.send_commands(commands)\n with self.readout(fill_buffer=True, callback=None, errback=None):\n if self.register.fei4b:\n commands = []\n self.register.set_global_register_value('Efuse_Sense', 1)\n commands.extend(self.register.get_commands('WrRegister', name=[\n 'Efuse_Sense']))\n commands.extend(self.register.get_commands('GlobalPulse', Width=0))\n self.register.set_global_register_value('Efuse_Sense', 0)\n commands.extend(self.register.get_commands('WrRegister', name=[\n 'Efuse_Sense']))\n self.register_utils.send_commands(commands)\n commands = []\n self.register.set_global_register_value('Conf_AddrEnable', 1)\n commands.extend(self.register.get_commands('WrRegister', name=[\n 'Conf_AddrEnable']))\n chip_sn_address = self.register.get_global_register_attributes(\n 'addresses', name='Chip_SN')\n commands.extend(self.register.get_commands('RdRegister', addresses=\n chip_sn_address))\n self.register_utils.send_commands(commands)\n data = self.read_data()\n if data.shape[0] == 0:\n logging.error('Chip S/N: No data')\n return\n read_values = []\n for index, word in enumerate(np.nditer(data)):\n fei4_data_word = FEI4Record(word, self.register.chip_flavor)\n if fei4_data_word == 'AR':\n fei4_next_data_word = FEI4Record(data[index + 1], self.register\n .chip_flavor)\n if fei4_next_data_word == 'VR':\n read_value = fei4_next_data_word['value']\n read_values.append(read_value)\n if len(read_values) == 0:\n logging.error('No Chip S/N was found')\n elif len(read_values) == 1:\n logging.info('Chip S/N: %d', read_values[0])\n else:\n logging.warning('Ambiguous Chip S/N: %s', read_values)\n", "role": "user" }, { "content": "read_chip_sn", "role": "assistant" } ]
def x(self, name, overwrite_config=False): self.register_utils.send_commands(self.register.get_commands('ConfMode')) with self.readout(fill_buffer=True, callback=None, errback=None): commands = [] commands.extend(self.register.get_commands('RdRegister', name=name)) self.register_utils.send_commands(commands) data = self.read_data() register_object = self.register.get_global_register_objects(name=[name])[0] value = BitLogic(register_object['addresses'] * 16) index = 0 vr_count = 0 for word in np.nditer(data): fei4_data_word = FEI4Record(word, self.register.chip_flavor) if fei4_data_word == 'AR': address_value = fei4_data_word['address'] if address_value != register_object['address'] + index: raise Exception( 'Unexpected address from Address Record: read: %d, expected: %d' % (address_value, register_object['address'] + index)) elif fei4_data_word == 'VR': vr_count += 1 if vr_count >= 2: raise RuntimeError('Read more than 2 value records') read_value = BitLogic.from_value(fei4_data_word['value'], size=16) if register_object['register_littleendian']: read_value.reverse() value[index * 16 + 15:index * 16] = read_value index += 1 value = value[register_object['bitlength'] + register_object['offset'] - 1:register_object['offset']] if register_object['littleendian']: value.reverse() value = value.tovalue() if overwrite_config: self.register.set_global_register(name, value) return value
read_global_register
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, overwrite_config=False):\n self.register_utils.send_commands(self.register.get_commands('ConfMode'))\n with self.readout(fill_buffer=True, callback=None, errback=None):\n commands = []\n commands.extend(self.register.get_commands('RdRegister', name=name))\n self.register_utils.send_commands(commands)\n data = self.read_data()\n register_object = self.register.get_global_register_objects(name=[name])[0]\n value = BitLogic(register_object['addresses'] * 16)\n index = 0\n vr_count = 0\n for word in np.nditer(data):\n fei4_data_word = FEI4Record(word, self.register.chip_flavor)\n if fei4_data_word == 'AR':\n address_value = fei4_data_word['address']\n if address_value != register_object['address'] + index:\n raise Exception(\n 'Unexpected address from Address Record: read: %d, expected: %d'\n % (address_value, register_object['address'] + index))\n elif fei4_data_word == 'VR':\n vr_count += 1\n if vr_count >= 2:\n raise RuntimeError('Read more than 2 value records')\n read_value = BitLogic.from_value(fei4_data_word['value'], size=16)\n if register_object['register_littleendian']:\n read_value.reverse()\n value[index * 16 + 15:index * 16] = read_value\n index += 1\n value = value[register_object['bitlength'] + register_object['offset'] -\n 1:register_object['offset']]\n if register_object['littleendian']:\n value.reverse()\n value = value.tovalue()\n if overwrite_config:\n self.register.set_global_register(name, value)\n return value\n", "role": "user" }, { "content": "read_global_register", "role": "assistant" } ]
def x(self, pix_regs=None, dcs=range(40), overwrite_config=False): if pix_regs is None: pix_regs = ['EnableDigInj', 'Imon', 'Enable', 'C_High', 'C_Low', 'TDAC', 'FDAC'] self.register_utils.send_commands(self.register.get_commands('ConfMode')) result = [] for pix_reg in pix_regs: pixel_data = np.ma.masked_array(np.zeros(shape=(80, 336), dtype=np. uint32), mask=True) for dc in dcs: with self.readout(fill_buffer=True, callback=None, errback=None): self.register_utils.send_commands(self.register. get_commands('RdFrontEnd', name=[pix_reg], dcs=[dc])) data = self.read_data() interpret_pixel_data(data, dc, pixel_data, invert=False if pix_reg == 'EnableDigInj' else True) if overwrite_config: self.register.set_pixel_register(pix_reg, pixel_data.data) result.append(pixel_data) return result
read_pixel_register
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pix_regs=None, dcs=range(40), overwrite_config=False):\n if pix_regs is None:\n pix_regs = ['EnableDigInj', 'Imon', 'Enable', 'C_High', 'C_Low',\n 'TDAC', 'FDAC']\n self.register_utils.send_commands(self.register.get_commands('ConfMode'))\n result = []\n for pix_reg in pix_regs:\n pixel_data = np.ma.masked_array(np.zeros(shape=(80, 336), dtype=np.\n uint32), mask=True)\n for dc in dcs:\n with self.readout(fill_buffer=True, callback=None, errback=None):\n self.register_utils.send_commands(self.register.\n get_commands('RdFrontEnd', name=[pix_reg], dcs=[dc]))\n data = self.read_data()\n interpret_pixel_data(data, dc, pixel_data, invert=False if \n pix_reg == 'EnableDigInj' else True)\n if overwrite_config:\n self.register.set_pixel_register(pix_reg, pixel_data.data)\n result.append(pixel_data)\n return result\n", "role": "user" }, { "content": "read_pixel_register", "role": "assistant" } ]
def x(self): with self.readout(fill_buffer=True, callback=None, errback=None): commands = [] commands.extend(self.register.get_commands('ConfMode')) commands.extend(self.register.get_commands('RdRegister', address=[1])) self.register_utils.send_commands(commands) data = self.read_data() if len(data) != 0: return True if FEI4Record(data[-1], self.register.chip_flavor ) == 'VR' else False else: return False
is_fe_ready
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n with self.readout(fill_buffer=True, callback=None, errback=None):\n commands = []\n commands.extend(self.register.get_commands('ConfMode'))\n commands.extend(self.register.get_commands('RdRegister', address=[1]))\n self.register_utils.send_commands(commands)\n data = self.read_data()\n if len(data) != 0:\n return True if FEI4Record(data[-1], self.register.chip_flavor\n ) == 'VR' else False\n else:\n return False\n", "role": "user" }, { "content": "is_fe_ready", "role": "assistant" } ]
def x(mask): inverted_mask = np.ones(shape=(80, 336), dtype=np.dtype('>u1')) inverted_mask[mask >= 1] = 0 return inverted_mask
invert_pixel_mask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mask):\n inverted_mask = np.ones(shape=(80, 336), dtype=np.dtype('>u1'))\n inverted_mask[mask >= 1] = 0\n return inverted_mask\n", "role": "user" }, { "content": "invert_pixel_mask", "role": "assistant" } ]
def x(steps, shift, default=0, value=1, enable_columns=None, mask=None): shape = 80, 336 mask_array = np.full(shape, default, dtype=np.uint8) if enable_columns: odd_columns = [(odd - 1) for odd in enable_columns if odd % 2 != 0] even_columns = [(even - 1) for even in enable_columns if even % 2 == 0] else: odd_columns = range(0, 80, 2) even_columns = range(1, 80, 2) odd_rows = np.arange(shift % steps, 336, steps) even_row_offset = (steps // 2 + shift) % steps even_rows = np.arange(even_row_offset, 336, steps) if odd_columns: odd_col_rows = itertools.product(odd_columns, odd_rows) for odd_col_row in odd_col_rows: mask_array[odd_col_row[0], odd_col_row[1]] = value if even_columns: even_col_rows = itertools.product(even_columns, even_rows) for even_col_row in even_col_rows: mask_array[even_col_row[0], even_col_row[1]] = value if mask is not None: mask_array = np.ma.array(mask_array, mask=mask, fill_value=default) mask_array = mask_array.filled() return mask_array
make_pixel_mask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(steps, shift, default=0, value=1, enable_columns=None, mask=None):\n shape = 80, 336\n mask_array = np.full(shape, default, dtype=np.uint8)\n if enable_columns:\n odd_columns = [(odd - 1) for odd in enable_columns if odd % 2 != 0]\n even_columns = [(even - 1) for even in enable_columns if even % 2 == 0]\n else:\n odd_columns = range(0, 80, 2)\n even_columns = range(1, 80, 2)\n odd_rows = np.arange(shift % steps, 336, steps)\n even_row_offset = (steps // 2 + shift) % steps\n even_rows = np.arange(even_row_offset, 336, steps)\n if odd_columns:\n odd_col_rows = itertools.product(odd_columns, odd_rows)\n for odd_col_row in odd_col_rows:\n mask_array[odd_col_row[0], odd_col_row[1]] = value\n if even_columns:\n even_col_rows = itertools.product(even_columns, even_rows)\n for even_col_row in even_col_rows:\n mask_array[even_col_row[0], even_col_row[1]] = value\n if mask is not None:\n mask_array = np.ma.array(mask_array, mask=mask, fill_value=default)\n mask_array = mask_array.filled()\n return mask_array\n", "role": "user" }, { "content": "make_pixel_mask", "role": "assistant" } ]
def x(column, row, default=0, value=1): col_array = np.array(column) - 1 row_array = np.array(row) - 1 if np.any(col_array >= 80) or np.any(col_array < 0) or np.any(row_array >= 336) or np.any(row_array < 0): raise ValueError('Column and/or row out of range') shape = 80, 336 mask = np.full(shape, default, dtype=np.uint8) mask[col_array, row_array] = value return mask
make_pixel_mask_from_col_row
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(column, row, default=0, value=1):\n col_array = np.array(column) - 1\n row_array = np.array(row) - 1\n if np.any(col_array >= 80) or np.any(col_array < 0) or np.any(row_array >=\n 336) or np.any(row_array < 0):\n raise ValueError('Column and/or row out of range')\n shape = 80, 336\n mask = np.full(shape, default, dtype=np.uint8)\n mask[col_array, row_array] = value\n return mask\n", "role": "user" }, { "content": "make_pixel_mask_from_col_row", "role": "assistant" } ]
def x(column, row, default=0, value=1): col_array = np.array(column) - 1 row_array = np.array(row) - 1 if np.any(col_array >= 80) or np.any(col_array < 0) or np.any(row_array >= 336) or np.any(row_array < 0): raise ValueError('Column and/or row out of range') shape = 80, 336 mask = np.full(shape, default, dtype=np.uint8) if column and row: mask[col_array.min():col_array.max() + 1, row_array.min():row_array .max() + 1] = value return mask
make_box_pixel_mask_from_col_row
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(column, row, default=0, value=1):\n col_array = np.array(column) - 1\n row_array = np.array(row) - 1\n if np.any(col_array >= 80) or np.any(col_array < 0) or np.any(row_array >=\n 336) or np.any(row_array < 0):\n raise ValueError('Column and/or row out of range')\n shape = 80, 336\n mask = np.full(shape, default, dtype=np.uint8)\n if column and row:\n mask[col_array.min():col_array.max() + 1, row_array.min():row_array\n .max() + 1] = value\n return mask\n", "role": "user" }, { "content": "make_box_pixel_mask_from_col_row", "role": "assistant" } ]
def x(mask): col, row = mask.nonzero() row_plus_one = row + 1 del_index = np.where(row_plus_one > 335) row_plus_one = np.delete(row_plus_one, del_index) col_plus_one = np.delete(col.copy(), del_index) row_minus_one = row - 1 del_index = np.where(row_minus_one > 335) row_minus_one = np.delete(row_minus_one, del_index) col_minus_one = np.delete(col.copy(), del_index) col = np.concatenate((col_plus_one, col_minus_one)) row = np.concatenate((row_plus_one, row_minus_one)) return make_pixel_mask_from_col_row(col + 1, row + 1)
make_xtalk_mask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mask):\n col, row = mask.nonzero()\n row_plus_one = row + 1\n del_index = np.where(row_plus_one > 335)\n row_plus_one = np.delete(row_plus_one, del_index)\n col_plus_one = np.delete(col.copy(), del_index)\n row_minus_one = row - 1\n del_index = np.where(row_minus_one > 335)\n row_minus_one = np.delete(row_minus_one, del_index)\n col_minus_one = np.delete(col.copy(), del_index)\n col = np.concatenate((col_plus_one, col_minus_one))\n row = np.concatenate((row_plus_one, row_minus_one))\n return make_pixel_mask_from_col_row(col + 1, row + 1)\n", "role": "user" }, { "content": "make_xtalk_mask", "role": "assistant" } ]
def x(column_distance, row_distance, column_offset=0, row_offset=0, default =0, value=1): col_shape = 336, col = np.full(col_shape, fill_value=default, dtype=np.uint8) col[::row_distance] = value shape = 80, 336 chessboard_mask = np.full(shape, fill_value=default, dtype=np.uint8) chessboard_mask[column_offset::column_distance * 2] = np.roll(col, row_offset) chessboard_mask[column_distance + column_offset::column_distance * 2 ] = np.roll(col, row_distance / 2 + row_offset) return chessboard_mask
make_checkerboard_mask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(column_distance, row_distance, column_offset=0, row_offset=0, default\n =0, value=1):\n col_shape = 336,\n col = np.full(col_shape, fill_value=default, dtype=np.uint8)\n col[::row_distance] = value\n shape = 80, 336\n chessboard_mask = np.full(shape, fill_value=default, dtype=np.uint8)\n chessboard_mask[column_offset::column_distance * 2] = np.roll(col,\n row_offset)\n chessboard_mask[column_distance + column_offset::column_distance * 2\n ] = np.roll(col, row_distance / 2 + row_offset)\n return chessboard_mask\n", "role": "user" }, { "content": "make_checkerboard_mask", "role": "assistant" } ]
def x(self): logging.info('Resetting Service Records') commands = [] commands.extend(self.register.get_commands('ConfMode')) self.register.set_global_register_value('ReadErrorReq', 1) commands.extend(self.register.get_commands('WrRegister', name=[ 'ReadErrorReq'])) commands.extend(self.register.get_commands('GlobalPulse', Width=0)) self.register.set_global_register_value('ReadErrorReq', 0) commands.extend(self.register.get_commands('WrRegister', name=[ 'ReadErrorReq'])) commands.extend(self.register.get_commands('RunMode')) commands.extend(self.register.get_commands('ConfMode')) self.send_commands(commands)
reset_service_records
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n logging.info('Resetting Service Records')\n commands = []\n commands.extend(self.register.get_commands('ConfMode'))\n self.register.set_global_register_value('ReadErrorReq', 1)\n commands.extend(self.register.get_commands('WrRegister', name=[\n 'ReadErrorReq']))\n commands.extend(self.register.get_commands('GlobalPulse', Width=0))\n self.register.set_global_register_value('ReadErrorReq', 0)\n commands.extend(self.register.get_commands('WrRegister', name=[\n 'ReadErrorReq']))\n commands.extend(self.register.get_commands('RunMode'))\n commands.extend(self.register.get_commands('ConfMode'))\n self.send_commands(commands)\n", "role": "user" }, { "content": "reset_service_records", "role": "assistant" } ]
def x(self): logging.info('Resetting Bunch Counter') commands = [] commands.extend(self.register.get_commands('RunMode')) commands.extend(self.register.get_commands('BCR')) self.send_commands(commands) time.sleep(0.1) commands = [] commands.extend(self.register.get_commands('ConfMode')) self.send_commands(commands)
reset_bunch_counter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n logging.info('Resetting Bunch Counter')\n commands = []\n commands.extend(self.register.get_commands('RunMode'))\n commands.extend(self.register.get_commands('BCR'))\n self.send_commands(commands)\n time.sleep(0.1)\n commands = []\n commands.extend(self.register.get_commands('ConfMode'))\n self.send_commands(commands)\n", "role": "user" }, { "content": "reset_bunch_counter", "role": "assistant" } ]
def x(hist): masked_array = np.ma.masked_values(hist, 0) masked_array = np.ma.masked_greater(masked_array, 10 * np.ma.median(hist)) logging.info('Masking %d pixel(s)', np.ma.count_masked(masked_array)) return np.ma.getmaskarray(masked_array)
generate_threshold_mask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hist):\n masked_array = np.ma.masked_values(hist, 0)\n masked_array = np.ma.masked_greater(masked_array, 10 * np.ma.median(hist))\n logging.info('Masking %d pixel(s)', np.ma.count_masked(masked_array))\n return np.ma.getmaskarray(masked_array)\n", "role": "user" }, { "content": "generate_threshold_mask", "role": "assistant" } ]
def x(array, use_columns=None, selected_columns_only=False): if array.dtype.names is None: if use_columns is not None: a_cut = array[:, use_columns] else: a_cut = array if len(use_columns) > 1: b = np.ascontiguousarray(a_cut).view(np.dtype((np.void, a_cut. dtype.itemsize * a_cut.shape[1]))) else: b = np.ascontiguousarray(a_cut) _, index = np.unique(b, return_index=True) if not selected_columns_only: return array[np.sort(index)] else: return a_cut[np.sort(index)] else: names = list(array.dtype.names) if use_columns is not None: new_names = [names[i] for i in use_columns] else: new_names = names a_cut, index = np.unique(array[new_names], return_index=True) if not selected_columns_only: return array[np.sort(index)] else: return array[np.sort(index)][new_names]
unique_row
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(array, use_columns=None, selected_columns_only=False):\n if array.dtype.names is None:\n if use_columns is not None:\n a_cut = array[:, use_columns]\n else:\n a_cut = array\n if len(use_columns) > 1:\n b = np.ascontiguousarray(a_cut).view(np.dtype((np.void, a_cut.\n dtype.itemsize * a_cut.shape[1])))\n else:\n b = np.ascontiguousarray(a_cut)\n _, index = np.unique(b, return_index=True)\n if not selected_columns_only:\n return array[np.sort(index)]\n else:\n return a_cut[np.sort(index)]\n else:\n names = list(array.dtype.names)\n if use_columns is not None:\n new_names = [names[i] for i in use_columns]\n else:\n new_names = names\n a_cut, index = np.unique(array[new_names], return_index=True)\n if not selected_columns_only:\n return array[np.sort(index)]\n else:\n return array[np.sort(index)][new_names]\n", "role": "user" }, { "content": "unique_row", "role": "assistant" } ]
def x(arr, append_last=True): right = arr[1:] if append_last: left = arr[:] right = np.append(right, None) else: left = arr[:-1] return np.column_stack((left, right))
get_ranges_from_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, append_last=True):\n right = arr[1:]\n if append_last:\n left = arr[:]\n right = np.append(right, None)\n else:\n left = arr[:-1]\n return np.column_stack((left, right))\n", "role": "user" }, { "content": "get_ranges_from_array", "role": "assistant" } ]
def x(ar1, ar2): if ar1.shape[0] == 0 or ar2.shape[0] == 0: return [] inds = ar2.searchsorted(ar1) inds[inds == len(ar2)] = 0 return ar2[inds] == ar1
in1d_sorted
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ar1, ar2):\n if ar1.shape[0] == 0 or ar2.shape[0] == 0:\n return []\n inds = ar2.searchsorted(ar1)\n inds[inds == len(ar2)] = 0\n return ar2[inds] == ar1\n", "role": "user" }, { "content": "in1d_sorted", "role": "assistant" } ]
def x(x, y): if len(x) != len(y): raise ValueError('x, y must have the same length') z1 = np.hstack((y[0], y[:-1])) z2 = np.hstack((y[1:], y[-1])) dx1 = np.hstack((0, np.diff(x))) dx2 = np.hstack((np.diff(x), 0)) return (z2 - z1) / (dx2 + dx1)
central_difference
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y):\n if len(x) != len(y):\n raise ValueError('x, y must have the same length')\n z1 = np.hstack((y[0], y[:-1]))\n z2 = np.hstack((y[1:], y[-1]))\n dx1 = np.hstack((0, np.diff(x)))\n dx2 = np.hstack((np.diff(x), 0))\n return (z2 - z1) / (dx2 + dx1)\n", "role": "user" }, { "content": "central_difference", "role": "assistant" } ]
def x(x, y, n_bins=100): if len(x) != len(y): raise ValueError('x and y dimensions have to be the same') y = y.astype(np.float32) n, bin_edges = np.histogram(x, bins=n_bins) sy = np.histogram(x, bins=n_bins, weights=y)[0] sy2 = np.histogram(x, bins=n_bins, weights=y * y)[0] bin_centers = (bin_edges[1:] + bin_edges[:-1]) / 2 mean = sy / n std = np.sqrt(sy2 / n - mean * mean) std_mean = std / np.sqrt(n - 1) mean[np.isnan(mean)] = 0.0 std_mean[np.isnan(std_mean)] = 0.0 return bin_centers, mean, std_mean
get_profile_histogram
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, n_bins=100):\n if len(x) != len(y):\n raise ValueError('x and y dimensions have to be the same')\n y = y.astype(np.float32)\n n, bin_edges = np.histogram(x, bins=n_bins)\n sy = np.histogram(x, bins=n_bins, weights=y)[0]\n sy2 = np.histogram(x, bins=n_bins, weights=y * y)[0]\n bin_centers = (bin_edges[1:] + bin_edges[:-1]) / 2\n mean = sy / n\n std = np.sqrt(sy2 / n - mean * mean)\n std_mean = std / np.sqrt(n - 1)\n mean[np.isnan(mean)] = 0.0\n std_mean[np.isnan(std_mean)] = 0.0\n return bin_centers, mean, std_mean\n", "role": "user" }, { "content": "get_profile_histogram", "role": "assistant" } ]
def x(hit_file, parameter, reference='event', cluster_file=None, plot=False, chunk_size=500000): logging.info('Calculate the rate normalization') with tb.open_file(hit_file, mode='r+') as in_hit_file_h5: meta_data = in_hit_file_h5.root.meta_data[:] scan_parameter = get_scan_parameter(meta_data)[parameter] event_numbers = get_meta_data_at_scan_parameter(meta_data, parameter)[ 'event_number'] event_range = get_ranges_from_array(event_numbers) normalization_rate = [] normalization_multiplicity = [] try: event_range[-1, 1] = in_hit_file_h5.root.Hits[-1]['event_number' ] + 1 except tb.NoSuchNodeError: logging.error('Cannot find hits table') return if reference == 'event': n_events = event_range[:, 1] - event_range[:, 0] normalization_rate.extend(n_events) elif reference == 'time': time_start = get_meta_data_at_scan_parameter(meta_data, parameter)[ 'timestamp_start'] time_spend = np.diff(time_start) time_spend = np.append(time_spend, meta_data[-1][ 'timestamp_stop'] - time_start[-1]) normalization_rate.extend(time_spend) else: raise NotImplementedError('The normalization reference ' + reference + ' is not implemented') if cluster_file: cluster_table = in_hit_file_h5.root.Cluster index_event_number(cluster_table) index = 0 best_chunk_size = chunk_size total_cluster = 0 progress_bar = progressbar.ProgressBar(widgets=['', progressbar .Percentage(), ' ', progressbar.Bar(marker='*', left='|', right='|'), ' ', progressbar.AdaptiveETA()], maxval= cluster_table.shape[0], term_width=80) progress_bar.start() for start_event, stop_event in event_range: readout_cluster_len = 0 n_cluster_per_event = None for clusters, index in data_aligned_at_events(cluster_table, start_event_number=start_event, stop_event_number= stop_event, start_index=index, chunk_size=best_chunk_size): if n_cluster_per_event is None: n_cluster_per_event = (analysis_utils. get_n_cluster_in_events(clusters['event_number' ])[:, 1]) else: n_cluster_per_event = np.append(n_cluster_per_event, analysis_utils.get_n_cluster_in_events(clusters ['event_number'])[:, 1]) readout_cluster_len += clusters.shape[0] total_cluster += clusters.shape[0] progress_bar.update(index) best_chunk_size = int(1.5 * readout_cluster_len) if int( 1.05 * readout_cluster_len) < chunk_size else chunk_size normalization_multiplicity.append(np.mean(n_cluster_per_event)) progress_bar.finish() if total_cluster != cluster_table.shape[0]: logging.warning( 'Analysis shows inconsistent number of cluster (%d != %d). Check needed!' , total_cluster, cluster_table.shape[0]) if plot: x = scan_parameter if reference == 'event': plotting.plot_scatter(x, normalization_rate, title= 'Events per ' + parameter + ' setting', x_label=parameter, y_label='# events', log_x=True, filename=os.path.splitext( hit_file)[0] + '_n_event_normalization.pdf') elif reference == 'time': plotting.plot_scatter(x, normalization_rate, title= 'Measuring time per GDAC setting', x_label=parameter, y_label='time [s]', log_x=True, filename=os.path.splitext( hit_file)[0] + '_time_normalization.pdf') if cluster_file: plotting.plot_scatter(x, normalization_multiplicity, title= 'Mean number of particles per event', x_label=parameter, y_label='number of hits per event', log_x=True, filename=os .path.splitext(hit_file)[0] + '_n_particles_normalization.pdf') if cluster_file: normalization_rate = np.array(normalization_rate) normalization_multiplicity = np.array(normalization_multiplicity) return np.amax(normalization_rate * normalization_multiplicity).astype( 'f16') / (normalization_rate * normalization_multiplicity) return np.amax(np.array(normalization_rate)).astype('f16') / np.array( normalization_rate)
get_rate_normalization
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hit_file, parameter, reference='event', cluster_file=None, plot=False,\n chunk_size=500000):\n logging.info('Calculate the rate normalization')\n with tb.open_file(hit_file, mode='r+') as in_hit_file_h5:\n meta_data = in_hit_file_h5.root.meta_data[:]\n scan_parameter = get_scan_parameter(meta_data)[parameter]\n event_numbers = get_meta_data_at_scan_parameter(meta_data, parameter)[\n 'event_number']\n event_range = get_ranges_from_array(event_numbers)\n normalization_rate = []\n normalization_multiplicity = []\n try:\n event_range[-1, 1] = in_hit_file_h5.root.Hits[-1]['event_number'\n ] + 1\n except tb.NoSuchNodeError:\n logging.error('Cannot find hits table')\n return\n if reference == 'event':\n n_events = event_range[:, 1] - event_range[:, 0]\n normalization_rate.extend(n_events)\n elif reference == 'time':\n time_start = get_meta_data_at_scan_parameter(meta_data, parameter)[\n 'timestamp_start']\n time_spend = np.diff(time_start)\n time_spend = np.append(time_spend, meta_data[-1][\n 'timestamp_stop'] - time_start[-1])\n normalization_rate.extend(time_spend)\n else:\n raise NotImplementedError('The normalization reference ' +\n reference + ' is not implemented')\n if cluster_file:\n cluster_table = in_hit_file_h5.root.Cluster\n index_event_number(cluster_table)\n index = 0\n best_chunk_size = chunk_size\n total_cluster = 0\n progress_bar = progressbar.ProgressBar(widgets=['', progressbar\n .Percentage(), ' ', progressbar.Bar(marker='*', left='|',\n right='|'), ' ', progressbar.AdaptiveETA()], maxval=\n cluster_table.shape[0], term_width=80)\n progress_bar.start()\n for start_event, stop_event in event_range:\n readout_cluster_len = 0\n n_cluster_per_event = None\n for clusters, index in data_aligned_at_events(cluster_table,\n start_event_number=start_event, stop_event_number=\n stop_event, start_index=index, chunk_size=best_chunk_size):\n if n_cluster_per_event is None:\n n_cluster_per_event = (analysis_utils.\n get_n_cluster_in_events(clusters['event_number'\n ])[:, 1])\n else:\n n_cluster_per_event = np.append(n_cluster_per_event,\n analysis_utils.get_n_cluster_in_events(clusters\n ['event_number'])[:, 1])\n readout_cluster_len += clusters.shape[0]\n total_cluster += clusters.shape[0]\n progress_bar.update(index)\n best_chunk_size = int(1.5 * readout_cluster_len) if int(\n 1.05 * readout_cluster_len) < chunk_size else chunk_size\n normalization_multiplicity.append(np.mean(n_cluster_per_event))\n progress_bar.finish()\n if total_cluster != cluster_table.shape[0]:\n logging.warning(\n 'Analysis shows inconsistent number of cluster (%d != %d). Check needed!'\n , total_cluster, cluster_table.shape[0])\n if plot:\n x = scan_parameter\n if reference == 'event':\n plotting.plot_scatter(x, normalization_rate, title=\n 'Events per ' + parameter + ' setting', x_label=parameter,\n y_label='# events', log_x=True, filename=os.path.splitext(\n hit_file)[0] + '_n_event_normalization.pdf')\n elif reference == 'time':\n plotting.plot_scatter(x, normalization_rate, title=\n 'Measuring time per GDAC setting', x_label=parameter,\n y_label='time [s]', log_x=True, filename=os.path.splitext(\n hit_file)[0] + '_time_normalization.pdf')\n if cluster_file:\n plotting.plot_scatter(x, normalization_multiplicity, title=\n 'Mean number of particles per event', x_label=parameter,\n y_label='number of hits per event', log_x=True, filename=os\n .path.splitext(hit_file)[0] + '_n_particles_normalization.pdf')\n if cluster_file:\n normalization_rate = np.array(normalization_rate)\n normalization_multiplicity = np.array(normalization_multiplicity)\n return np.amax(normalization_rate * normalization_multiplicity).astype(\n 'f16') / (normalization_rate * normalization_multiplicity)\n return np.amax(np.array(normalization_rate)).astype('f16') / np.array(\n normalization_rate)\n", "role": "user" }, { "content": "get_rate_normalization", "role": "assistant" } ]
def x(files, parameters=None, unique=False, sort=True): logging.debug('Get the parameter: ' + str(parameters) + ' values from the file names of ' + str(len(files)) + ' files') files_dict = collections.OrderedDict() if parameters is None: return files_dict if isinstance(parameters, basestring): parameters = parameters, search_string = '_'.join(parameters) for _ in parameters: search_string += '_(-?\\d+)' result = {} for one_file in files: parameter_values = re.findall(search_string, one_file) if parameter_values: if isinstance(parameter_values[0], tuple): parameter_values = list(reduce(lambda t1, t2: t1 + t2, parameter_values)) parameter_values = [[int(i)] for i in parameter_values] files_dict[one_file] = dict(zip(parameters, parameter_values)) if unique: for key, value in files_dict.items(): if value not in result.values(): result[key] = value else: result[one_file] = files_dict[one_file] return collections.OrderedDict(sorted(result.iteritems(), key= itemgetter(1)) if sort else files_dict)
get_parameter_value_from_file_names
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(files, parameters=None, unique=False, sort=True):\n logging.debug('Get the parameter: ' + str(parameters) +\n ' values from the file names of ' + str(len(files)) + ' files')\n files_dict = collections.OrderedDict()\n if parameters is None:\n return files_dict\n if isinstance(parameters, basestring):\n parameters = parameters,\n search_string = '_'.join(parameters)\n for _ in parameters:\n search_string += '_(-?\\\\d+)'\n result = {}\n for one_file in files:\n parameter_values = re.findall(search_string, one_file)\n if parameter_values:\n if isinstance(parameter_values[0], tuple):\n parameter_values = list(reduce(lambda t1, t2: t1 + t2,\n parameter_values))\n parameter_values = [[int(i)] for i in parameter_values]\n files_dict[one_file] = dict(zip(parameters, parameter_values))\n if unique:\n for key, value in files_dict.items():\n if value not in result.values():\n result[key] = value\n else:\n result[one_file] = files_dict[one_file]\n return collections.OrderedDict(sorted(result.iteritems(), key=\n itemgetter(1)) if sort else files_dict)\n", "role": "user" }, { "content": "get_parameter_value_from_file_names", "role": "assistant" } ]
def x(scan_base, filter_str=['_analyzed.h5', '_interpreted.h5', '_cut.h5', '_result.h5', '_hists.h5'], sort_by_time=True, meta_data_v2=True): data_files = [] if scan_base is None: return data_files if isinstance(scan_base, basestring): scan_base = [scan_base] for scan_base_str in scan_base: if '.h5' == os.path.splitext(scan_base_str)[1]: data_files.append(scan_base_str) else: data_files.extend(glob.glob(scan_base_str + '*.h5')) if filter_str: if isinstance(filter_str, basestring): filter_str = [filter_str] data_files = filter(lambda data_file: not any([(True if x in data_file else False) for x in filter_str]), data_files) if sort_by_time and len(data_files) > 1: f_list = {} for data_file in data_files: with tb.open_file(data_file, mode='r') as h5_file: try: meta_data = h5_file.root.meta_data except tb.NoSuchNodeError: logging.warning('File %s is missing meta_data' % h5_file.filename) else: try: if meta_data_v2: timestamp = meta_data[0]['timestamp_start'] else: timestamp = meta_data[0]['timestamp'] except IndexError: logging.info('File %s has empty meta_data' % h5_file.filename) else: f_list[data_file] = timestamp data_files = list(sorted(f_list, key=f_list.__getitem__, reverse=False) ) return data_files
get_data_file_names_from_scan_base
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(scan_base, filter_str=['_analyzed.h5', '_interpreted.h5', '_cut.h5',\n '_result.h5', '_hists.h5'], sort_by_time=True, meta_data_v2=True):\n data_files = []\n if scan_base is None:\n return data_files\n if isinstance(scan_base, basestring):\n scan_base = [scan_base]\n for scan_base_str in scan_base:\n if '.h5' == os.path.splitext(scan_base_str)[1]:\n data_files.append(scan_base_str)\n else:\n data_files.extend(glob.glob(scan_base_str + '*.h5'))\n if filter_str:\n if isinstance(filter_str, basestring):\n filter_str = [filter_str]\n data_files = filter(lambda data_file: not any([(True if x in\n data_file else False) for x in filter_str]), data_files)\n if sort_by_time and len(data_files) > 1:\n f_list = {}\n for data_file in data_files:\n with tb.open_file(data_file, mode='r') as h5_file:\n try:\n meta_data = h5_file.root.meta_data\n except tb.NoSuchNodeError:\n logging.warning('File %s is missing meta_data' %\n h5_file.filename)\n else:\n try:\n if meta_data_v2:\n timestamp = meta_data[0]['timestamp_start']\n else:\n timestamp = meta_data[0]['timestamp']\n except IndexError:\n logging.info('File %s has empty meta_data' %\n h5_file.filename)\n else:\n f_list[data_file] = timestamp\n data_files = list(sorted(f_list, key=f_list.__getitem__, reverse=False)\n )\n return data_files\n", "role": "user" }, { "content": "get_data_file_names_from_scan_base", "role": "assistant" } ]
def x(files, parameters=None, unique=False, sort=True): logging.debug('Get the parameter ' + str(parameters) + ' values from ' + str(len(files)) + ' files') files_dict = collections.OrderedDict() if isinstance(files, basestring): files = files, if isinstance(parameters, basestring): parameters = parameters, parameter_values_from_file_names_dict = ( get_parameter_value_from_file_names(files, parameters, unique= unique, sort=sort)) for file_name in files: with tb.open_file(file_name, mode='r') as in_file_h5: scan_parameter_values = collections.OrderedDict() try: scan_parameters = in_file_h5.root.scan_parameters[:] if parameters is None: parameters = get_scan_parameter_names(scan_parameters) for parameter in parameters: try: scan_parameter_values[parameter] = np.unique( scan_parameters[parameter]).tolist() except ValueError: pass except tb.NoSuchNodeError: try: scan_parameters = get_scan_parameter(in_file_h5.root. meta_data[:]) if scan_parameters: try: scan_parameter_values = np.unique(scan_parameters [parameters]).tolist() except ValueError: pass except tb.NoSuchNodeError: pass if not scan_parameter_values: try: scan_parameter_values = ( parameter_values_from_file_names_dict[file_name]) except KeyError: scan_parameter_values = None else: try: for key, value in scan_parameter_values.items(): if value and value[0 ] != parameter_values_from_file_names_dict[ file_name][key][0]: logging.warning( 'Parameter values in the file name and in the file differ. Take ' + str(key) + ' parameters ' + str(value) + ' found in %s.', file_name) except KeyError: pass except IndexError: raise IncompleteInputError('Something wrong check!') if unique and scan_parameter_values is not None: existing = False for parameter in scan_parameter_values: all_par_values = [values[parameter] for values in files_dict.values()] if any(x in [scan_parameter_values[parameter]] for x in all_par_values): existing = True break if not existing: files_dict[file_name] = scan_parameter_values else: logging.warning( 'Scan parameter value(s) from %s exists already, do not add to result' , file_name) else: files_dict[file_name] = scan_parameter_values return collections.OrderedDict(sorted(files_dict.iteritems(), key= itemgetter(1)) if sort else files_dict)
get_parameter_from_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(files, parameters=None, unique=False, sort=True):\n logging.debug('Get the parameter ' + str(parameters) + ' values from ' +\n str(len(files)) + ' files')\n files_dict = collections.OrderedDict()\n if isinstance(files, basestring):\n files = files,\n if isinstance(parameters, basestring):\n parameters = parameters,\n parameter_values_from_file_names_dict = (\n get_parameter_value_from_file_names(files, parameters, unique=\n unique, sort=sort))\n for file_name in files:\n with tb.open_file(file_name, mode='r') as in_file_h5:\n scan_parameter_values = collections.OrderedDict()\n try:\n scan_parameters = in_file_h5.root.scan_parameters[:]\n if parameters is None:\n parameters = get_scan_parameter_names(scan_parameters)\n for parameter in parameters:\n try:\n scan_parameter_values[parameter] = np.unique(\n scan_parameters[parameter]).tolist()\n except ValueError:\n pass\n except tb.NoSuchNodeError:\n try:\n scan_parameters = get_scan_parameter(in_file_h5.root.\n meta_data[:])\n if scan_parameters:\n try:\n scan_parameter_values = np.unique(scan_parameters\n [parameters]).tolist()\n except ValueError:\n pass\n except tb.NoSuchNodeError:\n pass\n if not scan_parameter_values:\n try:\n scan_parameter_values = (\n parameter_values_from_file_names_dict[file_name])\n except KeyError:\n scan_parameter_values = None\n else:\n try:\n for key, value in scan_parameter_values.items():\n if value and value[0\n ] != parameter_values_from_file_names_dict[\n file_name][key][0]:\n logging.warning(\n 'Parameter values in the file name and in the file differ. Take '\n + str(key) + ' parameters ' + str(value) +\n ' found in %s.', file_name)\n except KeyError:\n pass\n except IndexError:\n raise IncompleteInputError('Something wrong check!')\n if unique and scan_parameter_values is not None:\n existing = False\n for parameter in scan_parameter_values:\n all_par_values = [values[parameter] for values in\n files_dict.values()]\n if any(x in [scan_parameter_values[parameter]] for x in\n all_par_values):\n existing = True\n break\n if not existing:\n files_dict[file_name] = scan_parameter_values\n else:\n logging.warning(\n 'Scan parameter value(s) from %s exists already, do not add to result'\n , file_name)\n else:\n files_dict[file_name] = scan_parameter_values\n return collections.OrderedDict(sorted(files_dict.iteritems(), key=\n itemgetter(1)) if sort else files_dict)\n", "role": "user" }, { "content": "get_parameter_from_files", "role": "assistant" } ]
def x(files_dict): try: parameter_names = files_dict.itervalues().next().keys() except AttributeError: if any(i is not None for i in files_dict.itervalues()): return False else: return True if any(parameter_names != i.keys() for i in files_dict.itervalues()): return False return True
check_parameter_similarity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(files_dict):\n try:\n parameter_names = files_dict.itervalues().next().keys()\n except AttributeError:\n if any(i is not None for i in files_dict.itervalues()):\n return False\n else:\n return True\n if any(parameter_names != i.keys() for i in files_dict.itervalues()):\n return False\n return True\n", "role": "user" }, { "content": "check_parameter_similarity", "role": "assistant" } ]
def x(files_dict, meta_data_v2=True): if len(files_dict) > 10: logging.info('Combine the meta data from %d files', len(files_dict)) total_length = 0 for file_name in files_dict.iterkeys(): with tb.open_file(file_name, mode='r') as in_file_h5: total_length += in_file_h5.root.meta_data.shape[0] if meta_data_v2: meta_data_combined = np.empty((total_length,), dtype=[( 'index_start', np.uint32), ('index_stop', np.uint32), ( 'data_length', np.uint32), ('timestamp_start', np.float64), ( 'timestamp_stop', np.float64), ('error', np.uint32)]) else: meta_data_combined = np.empty((total_length,), dtype=[( 'start_index', np.uint32), ('stop_index', np.uint32), ('length', np.uint32), ('timestamp', np.float64), ('error', np.uint32)]) if len(files_dict) > 10: progress_bar = progressbar.ProgressBar(widgets=['', progressbar. Percentage(), ' ', progressbar.Bar(marker='*', left='|', right= '|'), ' ', progressbar.AdaptiveETA()], maxval=total_length, term_width=80) progress_bar.start() index = 0 for file_name in files_dict.iterkeys(): with tb.open_file(file_name, mode='r') as in_file_h5: array_length = in_file_h5.root.meta_data.shape[0] meta_data_combined[index:index + array_length ] = in_file_h5.root.meta_data[:] index += array_length if len(files_dict) > 10: progress_bar.update(index) if len(files_dict) > 10: progress_bar.finish() return meta_data_combined
combine_meta_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(files_dict, meta_data_v2=True):\n if len(files_dict) > 10:\n logging.info('Combine the meta data from %d files', len(files_dict))\n total_length = 0\n for file_name in files_dict.iterkeys():\n with tb.open_file(file_name, mode='r') as in_file_h5:\n total_length += in_file_h5.root.meta_data.shape[0]\n if meta_data_v2:\n meta_data_combined = np.empty((total_length,), dtype=[(\n 'index_start', np.uint32), ('index_stop', np.uint32), (\n 'data_length', np.uint32), ('timestamp_start', np.float64), (\n 'timestamp_stop', np.float64), ('error', np.uint32)])\n else:\n meta_data_combined = np.empty((total_length,), dtype=[(\n 'start_index', np.uint32), ('stop_index', np.uint32), ('length',\n np.uint32), ('timestamp', np.float64), ('error', np.uint32)])\n if len(files_dict) > 10:\n progress_bar = progressbar.ProgressBar(widgets=['', progressbar.\n Percentage(), ' ', progressbar.Bar(marker='*', left='|', right=\n '|'), ' ', progressbar.AdaptiveETA()], maxval=total_length,\n term_width=80)\n progress_bar.start()\n index = 0\n for file_name in files_dict.iterkeys():\n with tb.open_file(file_name, mode='r') as in_file_h5:\n array_length = in_file_h5.root.meta_data.shape[0]\n meta_data_combined[index:index + array_length\n ] = in_file_h5.root.meta_data[:]\n index += array_length\n if len(files_dict) > 10:\n progress_bar.update(index)\n if len(files_dict) > 10:\n progress_bar.finish()\n return meta_data_combined\n", "role": "user" }, { "content": "combine_meta_data", "role": "assistant" } ]
def x(x, y, weigths=None, order=5, smoothness=3, derivation=1): if len(x) != len(y): raise ValueError('x, y must have the same length') f = splrep(x, y, w=weigths, k=order, s=smoothness) return splev(x, f, der=derivation)
smooth_differentiation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, weigths=None, order=5, smoothness=3, derivation=1):\n if len(x) != len(y):\n raise ValueError('x, y must have the same length')\n f = splrep(x, y, w=weigths, k=order, s=smoothness)\n return splev(x, f, der=derivation)\n", "role": "user" }, { "content": "smooth_differentiation", "role": "assistant" } ]
def x(ar1, ar2): ar1 = np.asarray(ar1).ravel() ar2 = np.asarray(ar2).ravel() ar1_biggest_value = ar1[-1] ar1_smallest_value = ar1[0] ar2_biggest_value = ar2[-1] ar2_smallest_value = ar2[0] if (ar1_biggest_value < ar2_smallest_value or ar1_smallest_value > ar2_biggest_value): return ar1[0:0], ar2[0:0] min_index_ar1 = np.argmin(ar1 < ar2_smallest_value) max_index_ar1 = np.argmax(ar1 > ar2_biggest_value) min_index_ar2 = np.argmin(ar2 < ar1_smallest_value) max_index_ar2 = np.argmax(ar2 > ar1_biggest_value) if min_index_ar1 < 0: min_index_ar1 = 0 if min_index_ar2 < 0: min_index_ar2 = 0 if max_index_ar1 == 0 or max_index_ar1 > ar1.shape[0]: max_index_ar1 = ar1.shape[0] if max_index_ar2 == 0 or max_index_ar2 > ar2.shape[0]: max_index_ar2 = ar2.shape[0] return ar1[min_index_ar1:max_index_ar1], ar2[min_index_ar2:max_index_ar2]
reduce_sorted_to_intersect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ar1, ar2):\n ar1 = np.asarray(ar1).ravel()\n ar2 = np.asarray(ar2).ravel()\n ar1_biggest_value = ar1[-1]\n ar1_smallest_value = ar1[0]\n ar2_biggest_value = ar2[-1]\n ar2_smallest_value = ar2[0]\n if (ar1_biggest_value < ar2_smallest_value or ar1_smallest_value >\n ar2_biggest_value):\n return ar1[0:0], ar2[0:0]\n min_index_ar1 = np.argmin(ar1 < ar2_smallest_value)\n max_index_ar1 = np.argmax(ar1 > ar2_biggest_value)\n min_index_ar2 = np.argmin(ar2 < ar1_smallest_value)\n max_index_ar2 = np.argmax(ar2 > ar1_biggest_value)\n if min_index_ar1 < 0:\n min_index_ar1 = 0\n if min_index_ar2 < 0:\n min_index_ar2 = 0\n if max_index_ar1 == 0 or max_index_ar1 > ar1.shape[0]:\n max_index_ar1 = ar1.shape[0]\n if max_index_ar2 == 0 or max_index_ar2 > ar2.shape[0]:\n max_index_ar2 = ar2.shape[0]\n return ar1[min_index_ar1:max_index_ar1], ar2[min_index_ar2:max_index_ar2]\n", "role": "user" }, { "content": "reduce_sorted_to_intersect", "role": "assistant" } ]
def x(array): s = np.sort(array, axis=None) s = s[s[1:] == s[:-1]] return np.unique(s)
get_not_unique_values
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(array):\n s = np.sort(array, axis=None)\n s = s[s[1:] == s[:-1]]\n return np.unique(s)\n", "role": "user" }, { "content": "get_not_unique_values", "role": "assistant" } ]
def x(meta_data_array, scan_parameter_name): scan_parameter_values = meta_data_array[scan_parameter_name] diff = np.concatenate(([1], np.diff(scan_parameter_values))) idx = np.concatenate((np.where(diff)[0], [len(scan_parameter_values)])) index = np.empty(len(idx) - 1, dtype={'names': [scan_parameter_name, 'index'], 'formats': ['u4', 'u4']}) index[scan_parameter_name] = scan_parameter_values[idx[:-1]] index['index'] = idx[:-1] return index
get_meta_data_index_at_scan_parameter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(meta_data_array, scan_parameter_name):\n scan_parameter_values = meta_data_array[scan_parameter_name]\n diff = np.concatenate(([1], np.diff(scan_parameter_values)))\n idx = np.concatenate((np.where(diff)[0], [len(scan_parameter_values)]))\n index = np.empty(len(idx) - 1, dtype={'names': [scan_parameter_name,\n 'index'], 'formats': ['u4', 'u4']})\n index[scan_parameter_name] = scan_parameter_values[idx[:-1]]\n index['index'] = idx[:-1]\n return index\n", "role": "user" }, { "content": "get_meta_data_index_at_scan_parameter", "role": "assistant" } ]
def x(hits_array, condition=None): if condition is None: return hits_array for variable in set(re.findall('[a-zA-Z_]+', condition)): exec(variable + " = hits_array['" + variable + "']") return hits_array[ne.evaluate(condition)]
select_hits
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hits_array, condition=None):\n if condition is None:\n return hits_array\n for variable in set(re.findall('[a-zA-Z_]+', condition)):\n exec(variable + \" = hits_array['\" + variable + \"']\")\n return hits_array[ne.evaluate(condition)]\n", "role": "user" }, { "content": "select_hits", "role": "assistant" } ]
def x(hits_array, events, assume_sorted=True, condition=None): logging.debug('Calculate hits that exists in the given %d events.' % len(events)) if assume_sorted: events, _ = reduce_sorted_to_intersect(events, hits_array[ 'event_number']) if events.shape[0] == 0: return hits_array[0:0] try: if assume_sorted: selection = analysis_utils.in1d_events(hits_array[ 'event_number'], events) else: logging.warning( 'Events are usually sorted. Are you sure you want this?') selection = np.in1d(hits_array['event_number'], events) if condition is None: hits_in_events = hits_array[selection] else: for variable in set(re.findall('[a-zA-Z_]+', condition)): exec(variable + " = hits_array['" + variable + "']") hits_in_events = hits_array[ne.evaluate(condition + ' & selection') ] except MemoryError: logging.error( 'There are too many hits to do in RAM operations. Consider decreasing chunk size and use the write_hits_in_events function instead.' ) raise MemoryError return hits_in_events
get_hits_in_events
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hits_array, events, assume_sorted=True, condition=None):\n logging.debug('Calculate hits that exists in the given %d events.' %\n len(events))\n if assume_sorted:\n events, _ = reduce_sorted_to_intersect(events, hits_array[\n 'event_number'])\n if events.shape[0] == 0:\n return hits_array[0:0]\n try:\n if assume_sorted:\n selection = analysis_utils.in1d_events(hits_array[\n 'event_number'], events)\n else:\n logging.warning(\n 'Events are usually sorted. Are you sure you want this?')\n selection = np.in1d(hits_array['event_number'], events)\n if condition is None:\n hits_in_events = hits_array[selection]\n else:\n for variable in set(re.findall('[a-zA-Z_]+', condition)):\n exec(variable + \" = hits_array['\" + variable + \"']\")\n hits_in_events = hits_array[ne.evaluate(condition + ' & selection')\n ]\n except MemoryError:\n logging.error(\n 'There are too many hits to do in RAM operations. Consider decreasing chunk size and use the write_hits_in_events function instead.'\n )\n raise MemoryError\n return hits_in_events\n", "role": "user" }, { "content": "get_hits_in_events", "role": "assistant" } ]
def x(input_file_hits, scan_parameters=None, try_speedup=False, chunk_size= 10000000): with tb.open_file(input_file_hits, mode='r+') as in_file_h5: hit_table = in_file_h5.root.Hits meta_data = in_file_h5.root.meta_data[:] meta_data_table_at_scan_parameter = ( get_unique_scan_parameter_combinations(meta_data, scan_parameters=scan_parameters)) parameter_values = get_scan_parameters_table_from_meta_data( meta_data_table_at_scan_parameter, scan_parameters) event_number_ranges = get_ranges_from_array( meta_data_table_at_scan_parameter['event_number']) index_event_number(hit_table) index = 0 best_chunk_size = chunk_size for parameter_index, (start_event_number, stop_event_number ) in enumerate(event_number_ranges): logging.debug('Read hits for ' + str(scan_parameters) + ' = ' + str(parameter_values[parameter_index])) readout_hit_len = 0 for hits, index in data_aligned_at_events(hit_table, start_event_number=start_event_number, stop_event_number= stop_event_number, start_index=index, try_speedup= try_speedup, chunk_size=best_chunk_size): yield parameter_values[parameter_index], hits readout_hit_len += hits.shape[0] best_chunk_size = int(1.5 * readout_hit_len) if int(1.05 * readout_hit_len) < chunk_size and int(1.05 * readout_hit_len ) > 1000.0 else chunk_size
get_hits_of_scan_parameter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input_file_hits, scan_parameters=None, try_speedup=False, chunk_size=\n 10000000):\n with tb.open_file(input_file_hits, mode='r+') as in_file_h5:\n hit_table = in_file_h5.root.Hits\n meta_data = in_file_h5.root.meta_data[:]\n meta_data_table_at_scan_parameter = (\n get_unique_scan_parameter_combinations(meta_data,\n scan_parameters=scan_parameters))\n parameter_values = get_scan_parameters_table_from_meta_data(\n meta_data_table_at_scan_parameter, scan_parameters)\n event_number_ranges = get_ranges_from_array(\n meta_data_table_at_scan_parameter['event_number'])\n index_event_number(hit_table)\n index = 0\n best_chunk_size = chunk_size\n for parameter_index, (start_event_number, stop_event_number\n ) in enumerate(event_number_ranges):\n logging.debug('Read hits for ' + str(scan_parameters) + ' = ' +\n str(parameter_values[parameter_index]))\n readout_hit_len = 0\n for hits, index in data_aligned_at_events(hit_table,\n start_event_number=start_event_number, stop_event_number=\n stop_event_number, start_index=index, try_speedup=\n try_speedup, chunk_size=best_chunk_size):\n yield parameter_values[parameter_index], hits\n readout_hit_len += hits.shape[0]\n best_chunk_size = int(1.5 * readout_hit_len) if int(1.05 *\n readout_hit_len) < chunk_size and int(1.05 * readout_hit_len\n ) > 1000.0 else chunk_size\n", "role": "user" }, { "content": "get_hits_of_scan_parameter", "role": "assistant" } ]
def x(array, event_start=None, event_stop=None, assume_sorted=True): logging.debug('Calculate data of the the given event range [' + str( event_start) + ', ' + str(event_stop) + '[') event_number = array['event_number'] if assume_sorted: data_event_start = event_number[0] data_event_stop = event_number[-1] if (event_start is not None and event_stop is not None) and ( data_event_stop < event_start or data_event_start > event_stop or event_start == event_stop): return array[0:0] if event_start is None: min_index_data = 0 else: min_index_data = np.argmin(event_number < event_start) if event_stop is None: max_index_data = event_number.shape[0] else: max_index_data = np.argmax(event_number >= event_stop) if min_index_data < 0: min_index_data = 0 if max_index_data == 0 or max_index_data > event_number.shape[0]: max_index_data = event_number.shape[0] return array[min_index_data:max_index_data] else: return array[ne.evaluate( 'event_number >= event_start & event_number < event_stop')]
get_data_in_event_range
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(array, event_start=None, event_stop=None, assume_sorted=True):\n logging.debug('Calculate data of the the given event range [' + str(\n event_start) + ', ' + str(event_stop) + '[')\n event_number = array['event_number']\n if assume_sorted:\n data_event_start = event_number[0]\n data_event_stop = event_number[-1]\n if (event_start is not None and event_stop is not None) and (\n data_event_stop < event_start or data_event_start > event_stop or\n event_start == event_stop):\n return array[0:0]\n if event_start is None:\n min_index_data = 0\n else:\n min_index_data = np.argmin(event_number < event_start)\n if event_stop is None:\n max_index_data = event_number.shape[0]\n else:\n max_index_data = np.argmax(event_number >= event_stop)\n if min_index_data < 0:\n min_index_data = 0\n if max_index_data == 0 or max_index_data > event_number.shape[0]:\n max_index_data = event_number.shape[0]\n return array[min_index_data:max_index_data]\n else:\n return array[ne.evaluate(\n 'event_number >= event_start & event_number < event_stop')]\n", "role": "user" }, { "content": "get_data_in_event_range", "role": "assistant" } ]
def x(hit_table_in, hit_table_out, events, start_hit_word=0, chunk_size= 5000000, condition=None): if len(events) > 0: min_event = np.amin(events) max_event = np.amax(events) logging.debug( 'Write hits from hit number >= %d that exists in the selected %d events with %d <= event number <= %d into a new hit table.' % (start_hit_word, len(events), min_event, max_event)) table_size = hit_table_in.shape[0] iHit = 0 for iHit in range(start_hit_word, table_size, chunk_size): hits = hit_table_in.read(iHit, iHit + chunk_size) last_event_number = hits[-1]['event_number'] hit_table_out.append(get_hits_in_events(hits, events=events, condition=condition)) if last_event_number > max_event: return iHit return start_hit_word
write_hits_in_events
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hit_table_in, hit_table_out, events, start_hit_word=0, chunk_size=\n 5000000, condition=None):\n if len(events) > 0:\n min_event = np.amin(events)\n max_event = np.amax(events)\n logging.debug(\n 'Write hits from hit number >= %d that exists in the selected %d events with %d <= event number <= %d into a new hit table.'\n % (start_hit_word, len(events), min_event, max_event))\n table_size = hit_table_in.shape[0]\n iHit = 0\n for iHit in range(start_hit_word, table_size, chunk_size):\n hits = hit_table_in.read(iHit, iHit + chunk_size)\n last_event_number = hits[-1]['event_number']\n hit_table_out.append(get_hits_in_events(hits, events=events,\n condition=condition))\n if last_event_number > max_event:\n return iHit\n return start_hit_word\n", "role": "user" }, { "content": "write_hits_in_events", "role": "assistant" } ]
def x(hit_table_in, hit_table_out, event_start=None, event_stop=None, start_hit_word=0, chunk_size=5000000, condition=None): logging.debug('Write hits that exists in the given event range from + ' + str(event_start) + ' to ' + str(event_stop) + ' into a new hit table') table_size = hit_table_in.shape[0] for iHit in range(0, table_size, chunk_size): hits = hit_table_in.read(iHit, iHit + chunk_size) last_event_number = hits[-1]['event_number'] selected_hits = get_data_in_event_range(hits, event_start= event_start, event_stop=event_stop) if condition is not None: for variable in set(re.findall('[a-zA-Z_]+', condition)): exec(variable + " = hits['" + variable + "']") selected_hits = selected_hits[ne.evaluate(condition)] hit_table_out.append(selected_hits) if last_event_number > event_stop: return iHit + chunk_size return start_hit_word
write_hits_in_event_range
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hit_table_in, hit_table_out, event_start=None, event_stop=None,\n start_hit_word=0, chunk_size=5000000, condition=None):\n logging.debug('Write hits that exists in the given event range from + ' +\n str(event_start) + ' to ' + str(event_stop) + ' into a new hit table')\n table_size = hit_table_in.shape[0]\n for iHit in range(0, table_size, chunk_size):\n hits = hit_table_in.read(iHit, iHit + chunk_size)\n last_event_number = hits[-1]['event_number']\n selected_hits = get_data_in_event_range(hits, event_start=\n event_start, event_stop=event_stop)\n if condition is not None:\n for variable in set(re.findall('[a-zA-Z_]+', condition)):\n exec(variable + \" = hits['\" + variable + \"']\")\n selected_hits = selected_hits[ne.evaluate(condition)]\n hit_table_out.append(selected_hits)\n if last_event_number > event_stop:\n return iHit + chunk_size\n return start_hit_word\n", "role": "user" }, { "content": "write_hits_in_event_range", "role": "assistant" } ]
def x(event_number, condition='n_cluster==1'): logging.debug('Calculate events with clusters where ' + condition) n_cluster_in_events = analysis_utils.get_n_cluster_in_events(event_number) n_cluster = n_cluster_in_events[:, 1] return n_cluster_in_events[ne.evaluate(condition), 0]
get_events_with_n_cluster
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(event_number, condition='n_cluster==1'):\n logging.debug('Calculate events with clusters where ' + condition)\n n_cluster_in_events = analysis_utils.get_n_cluster_in_events(event_number)\n n_cluster = n_cluster_in_events[:, 1]\n return n_cluster_in_events[ne.evaluate(condition), 0]\n", "role": "user" }, { "content": "get_events_with_n_cluster", "role": "assistant" } ]
def x(event_number, cluster_size, condition='cluster_size==1'): logging.debug('Calculate events with clusters with ' + condition) return np.unique(event_number[ne.evaluate(condition)])
get_events_with_cluster_size
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(event_number, cluster_size, condition='cluster_size==1'):\n logging.debug('Calculate events with clusters with ' + condition)\n return np.unique(event_number[ne.evaluate(condition)])\n", "role": "user" }, { "content": "get_events_with_cluster_size", "role": "assistant" } ]
def x(event_number, event_status, select_mask=65535, condition=0): logging.debug('Calculate events with certain error code') return np.unique(event_number[event_status & select_mask == condition])
get_events_with_error_code
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(event_number, event_status, select_mask=65535, condition=0):\n logging.debug('Calculate events with certain error code')\n return np.unique(event_number[event_status & select_mask == condition])\n", "role": "user" }, { "content": "get_events_with_error_code", "role": "assistant" } ]
def x(meta_data_array, unique=True): try: last_not_parameter_column = meta_data_array.dtype.names.index( 'error_code') except ValueError: last_not_parameter_column = meta_data_array.dtype.names.index('error') if last_not_parameter_column == len(meta_data_array.dtype.names) - 1: return scan_parameters = collections.OrderedDict() for scan_par_name in meta_data_array.dtype.names[4:]: scan_parameters[scan_par_name] = np.unique(meta_data_array[ scan_par_name]) if unique else meta_data_array[scan_par_name] return scan_parameters
get_scan_parameter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(meta_data_array, unique=True):\n try:\n last_not_parameter_column = meta_data_array.dtype.names.index(\n 'error_code')\n except ValueError:\n last_not_parameter_column = meta_data_array.dtype.names.index('error')\n if last_not_parameter_column == len(meta_data_array.dtype.names) - 1:\n return\n scan_parameters = collections.OrderedDict()\n for scan_par_name in meta_data_array.dtype.names[4:]:\n scan_parameters[scan_par_name] = np.unique(meta_data_array[\n scan_par_name]) if unique else meta_data_array[scan_par_name]\n return scan_parameters\n", "role": "user" }, { "content": "get_scan_parameter", "role": "assistant" } ]
def x(meta_data_array, scan_parameters=None): if scan_parameters is None: try: last_not_parameter_column = meta_data_array.dtype.names.index( 'error_code') except ValueError: return if last_not_parameter_column == len(meta_data_array.dtype.names) - 1: return scan_par_data = {name: meta_data_array.dtype.fields[name] for name in meta_data_array.dtype.names[last_not_parameter_column + 1:]} else: scan_par_data = collections.OrderedDict() for name in scan_parameters: scan_par_data[name] = meta_data_array.dtype.fields[name] return np.ndarray(meta_data_array.shape, np.dtype(scan_par_data), meta_data_array, 0, meta_data_array.strides)
get_scan_parameters_table_from_meta_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(meta_data_array, scan_parameters=None):\n if scan_parameters is None:\n try:\n last_not_parameter_column = meta_data_array.dtype.names.index(\n 'error_code')\n except ValueError:\n return\n if last_not_parameter_column == len(meta_data_array.dtype.names) - 1:\n return\n scan_par_data = {name: meta_data_array.dtype.fields[name] for name in\n meta_data_array.dtype.names[last_not_parameter_column + 1:]}\n else:\n scan_par_data = collections.OrderedDict()\n for name in scan_parameters:\n scan_par_data[name] = meta_data_array.dtype.fields[name]\n return np.ndarray(meta_data_array.shape, np.dtype(scan_par_data),\n meta_data_array, 0, meta_data_array.strides)\n", "role": "user" }, { "content": "get_scan_parameters_table_from_meta_data", "role": "assistant" } ]
def x(scan_parameter): _, index = np.unique(scan_parameter, return_index=True) index = np.sort(index) values = np.array(range(0, len(index)), dtype='i4') index = np.append(index, len(scan_parameter)) counts = np.diff(index) return np.repeat(values, counts)
get_scan_parameters_index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(scan_parameter):\n _, index = np.unique(scan_parameter, return_index=True)\n index = np.sort(index)\n values = np.array(range(0, len(index)), dtype='i4')\n index = np.append(index, len(scan_parameter))\n counts = np.diff(index)\n return np.repeat(values, counts)\n", "role": "user" }, { "content": "get_scan_parameters_index", "role": "assistant" } ]
def x(meta_data_array, scan_parameters=None, scan_parameter_columns_only=False ): try: last_not_parameter_column = meta_data_array.dtype.names.index( 'error_code') except ValueError: last_not_parameter_column = meta_data_array.dtype.names.index('error') if last_not_parameter_column == len(meta_data_array.dtype.names) - 1: return if scan_parameters is None: return unique_row(meta_data_array, use_columns=range(4, len( meta_data_array.dtype.names)), selected_columns_only= scan_parameter_columns_only) else: use_columns = [] for scan_parameter in scan_parameters: try: use_columns.append(meta_data_array.dtype.names.index( scan_parameter)) except ValueError: logging.error('No scan parameter ' + scan_parameter + ' found') raise RuntimeError('Scan parameter not found') return unique_row(meta_data_array, use_columns=use_columns, selected_columns_only=scan_parameter_columns_only)
get_unique_scan_parameter_combinations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(meta_data_array, scan_parameters=None, scan_parameter_columns_only=False\n ):\n try:\n last_not_parameter_column = meta_data_array.dtype.names.index(\n 'error_code')\n except ValueError:\n last_not_parameter_column = meta_data_array.dtype.names.index('error')\n if last_not_parameter_column == len(meta_data_array.dtype.names) - 1:\n return\n if scan_parameters is None:\n return unique_row(meta_data_array, use_columns=range(4, len(\n meta_data_array.dtype.names)), selected_columns_only=\n scan_parameter_columns_only)\n else:\n use_columns = []\n for scan_parameter in scan_parameters:\n try:\n use_columns.append(meta_data_array.dtype.names.index(\n scan_parameter))\n except ValueError:\n logging.error('No scan parameter ' + scan_parameter + ' found')\n raise RuntimeError('Scan parameter not found')\n return unique_row(meta_data_array, use_columns=use_columns,\n selected_columns_only=scan_parameter_columns_only)\n", "role": "user" }, { "content": "get_unique_scan_parameter_combinations", "role": "assistant" } ]
def x(hits, col_span, row_span, min_cut_threshold=0.2, max_cut_threshold=2.0): hits = np.sum(hits, axis=-1).astype('u8') mask = np.ones(shape=(80, 336), dtype=np.uint8) mask[min(col_span):max(col_span) + 1, min(row_span):max(row_span) + 1] = 0 ma = np.ma.masked_where(mask, hits) if max_cut_threshold is not None: return np.ma.masked_where(np.logical_or(ma < min_cut_threshold * np .ma.median(ma), ma > max_cut_threshold * np.ma.median(ma)), ma) else: return np.ma.masked_where(ma < min_cut_threshold * np.ma.median(ma), ma )
select_good_pixel_region
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hits, col_span, row_span, min_cut_threshold=0.2, max_cut_threshold=2.0):\n hits = np.sum(hits, axis=-1).astype('u8')\n mask = np.ones(shape=(80, 336), dtype=np.uint8)\n mask[min(col_span):max(col_span) + 1, min(row_span):max(row_span) + 1] = 0\n ma = np.ma.masked_where(mask, hits)\n if max_cut_threshold is not None:\n return np.ma.masked_where(np.logical_or(ma < min_cut_threshold * np\n .ma.median(ma), ma > max_cut_threshold * np.ma.median(ma)), ma)\n else:\n return np.ma.masked_where(ma < min_cut_threshold * np.ma.median(ma), ma\n )\n", "role": "user" }, { "content": "select_good_pixel_region", "role": "assistant" } ]
def x(gdacs, calibration_gdacs, cluster_size_histogram): logging.info( 'Calculate the correction factor for the single hit cluster rate at %d given GDAC settings' , len(gdacs)) if len(calibration_gdacs) != cluster_size_histogram.shape[0]: raise ValueError( 'Length of the provided pixel GDACs does not match the dimension of the cluster size array' ) hist_sum = np.sum(cluster_size_histogram, axis=1) hist_rel = cluster_size_histogram / hist_sum[:, np.newaxis].astype('f4' ) * 100.0 maximum_rate = np.amax(hist_rel[:, 1]) correction_factor = maximum_rate / hist_rel[:, 1] calibration_gdacs_sorted = np.array(calibration_gdacs) correction_factor_sorted = correction_factor[np.argsort( calibration_gdacs_sorted)] calibration_gdacs_sorted = np.sort(calibration_gdacs_sorted) interpolation = interp1d(calibration_gdacs_sorted.tolist(), correction_factor_sorted.tolist(), kind='cubic', bounds_error=True) return interpolation(gdacs)
get_hit_rate_correction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(gdacs, calibration_gdacs, cluster_size_histogram):\n logging.info(\n 'Calculate the correction factor for the single hit cluster rate at %d given GDAC settings'\n , len(gdacs))\n if len(calibration_gdacs) != cluster_size_histogram.shape[0]:\n raise ValueError(\n 'Length of the provided pixel GDACs does not match the dimension of the cluster size array'\n )\n hist_sum = np.sum(cluster_size_histogram, axis=1)\n hist_rel = cluster_size_histogram / hist_sum[:, np.newaxis].astype('f4'\n ) * 100.0\n maximum_rate = np.amax(hist_rel[:, 1])\n correction_factor = maximum_rate / hist_rel[:, 1]\n calibration_gdacs_sorted = np.array(calibration_gdacs)\n correction_factor_sorted = correction_factor[np.argsort(\n calibration_gdacs_sorted)]\n calibration_gdacs_sorted = np.sort(calibration_gdacs_sorted)\n interpolation = interp1d(calibration_gdacs_sorted.tolist(),\n correction_factor_sorted.tolist(), kind='cubic', bounds_error=True)\n return interpolation(gdacs)\n", "role": "user" }, { "content": "get_hit_rate_correction", "role": "assistant" } ]
def x(gdac, mean_threshold_calibration): interpolation = interp1d(mean_threshold_calibration['parameter_value'], mean_threshold_calibration['mean_threshold'], kind='slinear', bounds_error=True) return interpolation(gdac)
get_mean_threshold_from_calibration
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(gdac, mean_threshold_calibration):\n interpolation = interp1d(mean_threshold_calibration['parameter_value'],\n mean_threshold_calibration['mean_threshold'], kind='slinear',\n bounds_error=True)\n return interpolation(gdac)\n", "role": "user" }, { "content": "get_mean_threshold_from_calibration", "role": "assistant" } ]
def x(gdacs, calibration_gdacs, threshold_calibration_array, bounds_error=True ): if len(calibration_gdacs) != threshold_calibration_array.shape[2]: raise ValueError( 'Length of the provided pixel GDACs does not match the third dimension of the calibration array' ) interpolation = interp1d(x=calibration_gdacs, y= threshold_calibration_array, kind='slinear', bounds_error=bounds_error) return interpolation(gdacs)
get_pixel_thresholds_from_calibration_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(gdacs, calibration_gdacs, threshold_calibration_array, bounds_error=True\n ):\n if len(calibration_gdacs) != threshold_calibration_array.shape[2]:\n raise ValueError(\n 'Length of the provided pixel GDACs does not match the third dimension of the calibration array'\n )\n interpolation = interp1d(x=calibration_gdacs, y=\n threshold_calibration_array, kind='slinear', bounds_error=bounds_error)\n return interpolation(gdacs)\n", "role": "user" }, { "content": "get_pixel_thresholds_from_calibration_array", "role": "assistant" } ]
def x(cluster_table): logging.info('Histogram number of cluster per event') cluster_in_events = analysis_utils.get_n_cluster_in_events(cluster_table)[ :, 1] return np.histogram(cluster_in_events, bins=range(0, np.max( cluster_in_events) + 2))
get_n_cluster_per_event_hist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cluster_table):\n logging.info('Histogram number of cluster per event')\n cluster_in_events = analysis_utils.get_n_cluster_in_events(cluster_table)[\n :, 1]\n return np.histogram(cluster_in_events, bins=range(0, np.max(\n cluster_in_events) + 2))\n", "role": "user" }, { "content": "get_n_cluster_per_event_hist", "role": "assistant" } ]
def x(condition): d = np.diff(condition, n=1) idx, = d.nonzero() idx += 1 if condition[0]: idx = np.r_[0, idx] if condition[-1]: idx = np.r_[idx, condition.size] idx.shape = -1, 2 return idx
contiguous_regions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(condition):\n d = np.diff(condition, n=1)\n idx, = d.nonzero()\n idx += 1\n if condition[0]:\n idx = np.r_[0, idx]\n if condition[-1]:\n idx = np.r_[idx, condition.size]\n idx.shape = -1, 2\n return idx\n", "role": "user" }, { "content": "contiguous_regions", "role": "assistant" } ]
def x(raw_data, prepend_data_headers=None, trig_count=None): consecutive_triggers = 16 if trig_count == 0 else trig_count is_fe_data_header = logical_and(is_fe_word, is_data_header) trigger_idx = np.where(is_trigger_word(raw_data) >= 1)[0] fe_dh_idx = np.where(is_fe_data_header(raw_data) >= 1)[0] n_triggers = trigger_idx.shape[0] n_dh = fe_dh_idx.shape[0] if n_triggers: last_event_data_headers_cnt = np.where(fe_dh_idx > trigger_idx[-1])[0 ].shape[0] if (consecutive_triggers and last_event_data_headers_cnt == consecutive_triggers): if not np.all(trigger_idx[-1] > fe_dh_idx): trigger_idx = np.r_[trigger_idx, raw_data.shape] last_event_data_headers_cnt = None elif last_event_data_headers_cnt != 0: fe_dh_idx = fe_dh_idx[:-last_event_data_headers_cnt] elif not np.all(trigger_idx[-1] > fe_dh_idx): trigger_idx = np.r_[trigger_idx, raw_data.shape] elif n_dh: trigger_idx = np.r_[trigger_idx, raw_data.shape] last_event_data_headers_cnt = None else: return False, prepend_data_headers, n_triggers, n_dh n_triggers_cleaned = trigger_idx.shape[0] n_dh_cleaned = fe_dh_idx.shape[0] if (prepend_data_headers is None and n_triggers_cleaned and n_dh_cleaned and not trigger_idx[0] < fe_dh_idx[0]): return True, last_event_data_headers_cnt, n_triggers, n_dh elif consecutive_triggers and prepend_data_headers is not None and n_triggers_cleaned and n_dh_cleaned and trigger_idx[ 0] < fe_dh_idx[0]: return True, last_event_data_headers_cnt, n_triggers, n_dh elif consecutive_triggers is None and prepend_data_headers == 0 and n_triggers_cleaned and n_dh_cleaned and trigger_idx[ 0] < fe_dh_idx[0]: return True, last_event_data_headers_cnt, n_triggers, n_dh elif prepend_data_headers is not None: trigger_idx += prepend_data_headers + 1 fe_dh_idx += prepend_data_headers + 1 trigger_idx = np.r_[0, trigger_idx] fe_dh_idx = np.r_[range(1, prepend_data_headers + 1), fe_dh_idx] event_hist, bins = np.histogram(fe_dh_idx, trigger_idx) if consecutive_triggers is None and np.any(event_hist == 0): return True, last_event_data_headers_cnt, n_triggers, n_dh elif consecutive_triggers and np.any(event_hist != consecutive_triggers): return True, last_event_data_headers_cnt, n_triggers, n_dh return False, last_event_data_headers_cnt, n_triggers, n_dh
check_bad_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(raw_data, prepend_data_headers=None, trig_count=None):\n consecutive_triggers = 16 if trig_count == 0 else trig_count\n is_fe_data_header = logical_and(is_fe_word, is_data_header)\n trigger_idx = np.where(is_trigger_word(raw_data) >= 1)[0]\n fe_dh_idx = np.where(is_fe_data_header(raw_data) >= 1)[0]\n n_triggers = trigger_idx.shape[0]\n n_dh = fe_dh_idx.shape[0]\n if n_triggers:\n last_event_data_headers_cnt = np.where(fe_dh_idx > trigger_idx[-1])[0\n ].shape[0]\n if (consecutive_triggers and last_event_data_headers_cnt ==\n consecutive_triggers):\n if not np.all(trigger_idx[-1] > fe_dh_idx):\n trigger_idx = np.r_[trigger_idx, raw_data.shape]\n last_event_data_headers_cnt = None\n elif last_event_data_headers_cnt != 0:\n fe_dh_idx = fe_dh_idx[:-last_event_data_headers_cnt]\n elif not np.all(trigger_idx[-1] > fe_dh_idx):\n trigger_idx = np.r_[trigger_idx, raw_data.shape]\n elif n_dh:\n trigger_idx = np.r_[trigger_idx, raw_data.shape]\n last_event_data_headers_cnt = None\n else:\n return False, prepend_data_headers, n_triggers, n_dh\n n_triggers_cleaned = trigger_idx.shape[0]\n n_dh_cleaned = fe_dh_idx.shape[0]\n if (prepend_data_headers is None and n_triggers_cleaned and\n n_dh_cleaned and not trigger_idx[0] < fe_dh_idx[0]):\n return True, last_event_data_headers_cnt, n_triggers, n_dh\n elif consecutive_triggers and prepend_data_headers is not None and n_triggers_cleaned and n_dh_cleaned and trigger_idx[\n 0] < fe_dh_idx[0]:\n return True, last_event_data_headers_cnt, n_triggers, n_dh\n elif consecutive_triggers is None and prepend_data_headers == 0 and n_triggers_cleaned and n_dh_cleaned and trigger_idx[\n 0] < fe_dh_idx[0]:\n return True, last_event_data_headers_cnt, n_triggers, n_dh\n elif prepend_data_headers is not None:\n trigger_idx += prepend_data_headers + 1\n fe_dh_idx += prepend_data_headers + 1\n trigger_idx = np.r_[0, trigger_idx]\n fe_dh_idx = np.r_[range(1, prepend_data_headers + 1), fe_dh_idx]\n event_hist, bins = np.histogram(fe_dh_idx, trigger_idx)\n if consecutive_triggers is None and np.any(event_hist == 0):\n return True, last_event_data_headers_cnt, n_triggers, n_dh\n elif consecutive_triggers and np.any(event_hist != consecutive_triggers):\n return True, last_event_data_headers_cnt, n_triggers, n_dh\n return False, last_event_data_headers_cnt, n_triggers, n_dh\n", "role": "user" }, { "content": "check_bad_data", "role": "assistant" } ]
def x(data, stepsize=1): return np.split(data, np.where(np.diff(data) != stepsize)[0] + 1)
consecutive
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, stepsize=1):\n return np.split(data, np.where(np.diff(data) != stepsize)[0] + 1)\n", "role": "user" }, { "content": "consecutive", "role": "assistant" } ]
def x(self, pbar): self.n_refresh += 1 if pbar.currval == 0: return 'ETA: --:--:--' elif pbar.finished: return 'Time: %s' % self.format_time(pbar.seconds_elapsed) else: elapsed = pbar.seconds_elapsed try: speed = pbar.currval / elapsed if self.speed_smooth is not None: self.speed_smooth = self.speed_smooth * (1 - self.SMOOTHING ) + speed * self.SMOOTHING else: self.speed_smooth = speed eta = float(pbar.maxval ) / self.speed_smooth - elapsed + 1 if float(pbar.maxval ) / self.speed_smooth - elapsed + 1 > 0 else 0 if float(pbar.currval) / pbar.maxval > 0.3 or self.n_refresh > 10: return 'ETA: %s' % self.format_time(eta) if self.old_eta is not None and self.old_eta < eta: return 'ETA: ~%s' % self.format_time(self.old_eta) else: self.old_eta = eta return 'ETA: ~%s' % self.format_time(eta) except ZeroDivisionError: speed = 0
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pbar):\n self.n_refresh += 1\n if pbar.currval == 0:\n return 'ETA: --:--:--'\n elif pbar.finished:\n return 'Time: %s' % self.format_time(pbar.seconds_elapsed)\n else:\n elapsed = pbar.seconds_elapsed\n try:\n speed = pbar.currval / elapsed\n if self.speed_smooth is not None:\n self.speed_smooth = self.speed_smooth * (1 - self.SMOOTHING\n ) + speed * self.SMOOTHING\n else:\n self.speed_smooth = speed\n eta = float(pbar.maxval\n ) / self.speed_smooth - elapsed + 1 if float(pbar.maxval\n ) / self.speed_smooth - elapsed + 1 > 0 else 0\n if float(pbar.currval) / pbar.maxval > 0.3 or self.n_refresh > 10:\n return 'ETA: %s' % self.format_time(eta)\n if self.old_eta is not None and self.old_eta < eta:\n return 'ETA: ~%s' % self.format_time(self.old_eta)\n else:\n self.old_eta = eta\n return 'ETA: ~%s' % self.format_time(eta)\n except ZeroDivisionError:\n speed = 0\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(x_p, y_p, y_p_e, smoothed_data, smoothed_data_diff, filename=None): logging.info('Plot results') plt.close() p1 = plt.errorbar(x_p * analysis_configuration['vcal_calibration'], y_p, yerr=y_p_e, fmt='o') p2, = plt.plot(x_p * analysis_configuration['vcal_calibration'], smoothed_data, '-r') factor = np.amax(y_p) / np.amin(smoothed_data_diff) * 1.1 p3, = plt.plot(x_p * analysis_configuration['vcal_calibration'], factor * smoothed_data_diff, '-', lw=2) mpv_index = np.argmax(-analysis_utils.smooth_differentiation(x_p, y_p, weigths=1 / y_p_e, order=3, smoothness=analysis_configuration[ 'smoothness'], derivation=1)) p4, = plt.plot([x_p[mpv_index] * analysis_configuration[ 'vcal_calibration'], x_p[mpv_index] * analysis_configuration[ 'vcal_calibration']], [0, factor * smoothed_data_diff[mpv_index]], 'k-', lw=2) text = 'MPV ' + str(int(x_p[mpv_index] * analysis_configuration[ 'vcal_calibration'])) + ' e' plt.text(1.01 * x_p[mpv_index] * analysis_configuration[ 'vcal_calibration'], -10.0 * smoothed_data_diff[mpv_index], text, ha='left') plt.legend([p1, p2, p3, p4], ['data', 'smoothed spline', 'spline differentiation', text], prop={'size': 12}, loc=0) plt.title("'Single hit cluster'-occupancy for different pixel thresholds") plt.xlabel('Pixel threshold [e]') plt.ylabel('Single hit cluster occupancy [a.u.]') plt.ylim(0, np.amax(y_p) * 1.15) if filename is None: plt.show() else: filename.savefig(plt.gcf()) return smoothed_data_diff
plot_result
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x_p, y_p, y_p_e, smoothed_data, smoothed_data_diff, filename=None):\n logging.info('Plot results')\n plt.close()\n p1 = plt.errorbar(x_p * analysis_configuration['vcal_calibration'], y_p,\n yerr=y_p_e, fmt='o')\n p2, = plt.plot(x_p * analysis_configuration['vcal_calibration'],\n smoothed_data, '-r')\n factor = np.amax(y_p) / np.amin(smoothed_data_diff) * 1.1\n p3, = plt.plot(x_p * analysis_configuration['vcal_calibration'], factor *\n smoothed_data_diff, '-', lw=2)\n mpv_index = np.argmax(-analysis_utils.smooth_differentiation(x_p, y_p,\n weigths=1 / y_p_e, order=3, smoothness=analysis_configuration[\n 'smoothness'], derivation=1))\n p4, = plt.plot([x_p[mpv_index] * analysis_configuration[\n 'vcal_calibration'], x_p[mpv_index] * analysis_configuration[\n 'vcal_calibration']], [0, factor * smoothed_data_diff[mpv_index]],\n 'k-', lw=2)\n text = 'MPV ' + str(int(x_p[mpv_index] * analysis_configuration[\n 'vcal_calibration'])) + ' e'\n plt.text(1.01 * x_p[mpv_index] * analysis_configuration[\n 'vcal_calibration'], -10.0 * smoothed_data_diff[mpv_index], text,\n ha='left')\n plt.legend([p1, p2, p3, p4], ['data', 'smoothed spline',\n 'spline differentiation', text], prop={'size': 12}, loc=0)\n plt.title(\"'Single hit cluster'-occupancy for different pixel thresholds\")\n plt.xlabel('Pixel threshold [e]')\n plt.ylabel('Single hit cluster occupancy [a.u.]')\n plt.ylim(0, np.amax(y_p) * 1.15)\n if filename is None:\n plt.show()\n else:\n filename.savefig(plt.gcf())\n return smoothed_data_diff\n", "role": "user" }, { "content": "plot_result", "role": "assistant" } ]
def x(interval): def x(f): @wraps(f) def x(*args, **kwargs): stopped = Event() def x(): while not stopped.wait(interval): f(*args, **kwargs) t = Thread(name='IntervalTimerThread', target=loop) t.daemon = True t.start() return stopped.set return wrapper return decorator
interval_timed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(interval):\n\n def x(f):\n\n @wraps(f)\n def x(*args, **kwargs):\n stopped = Event()\n\n def x():\n while not stopped.wait(interval):\n f(*args, **kwargs)\n t = Thread(name='IntervalTimerThread', target=loop)\n t.daemon = True\n t.start()\n return stopped.set\n return wrapper\n return decorator\n", "role": "user" }, { "content": "interval_timed", "role": "assistant" } ]
def x(interval, func, *args, **kwargs): stopped = Event() def x(): while not stopped.wait(interval): func(*args, **kwargs) Thread(name='IntervalTimerThread', target=loop).start() return stopped.set
interval_timer
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(interval, func, *args, **kwargs):\n stopped = Event()\n\n def x():\n while not stopped.wait(interval):\n func(*args, **kwargs)\n Thread(name='IntervalTimerThread', target=loop).start()\n return stopped.set\n", "role": "user" }, { "content": "interval_timer", "role": "assistant" } ]
def x(subject, body, smtp_server, user, password, from_addr, to_addrs): logging.info('Send status E-Mail (' + subject + ')') content = string.join(('From: %s' % from_addr, 'To: %s' % ','.join( to_addrs), 'Subject: %s' % subject, '', body), '\r\n') server = smtplib.SMTP_SSL(smtp_server) server.login(user, password) server.sendmail(from_addr, to_addrs, content) server.quit()
send_mail
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(subject, body, smtp_server, user, password, from_addr, to_addrs):\n logging.info('Send status E-Mail (' + subject + ')')\n content = string.join(('From: %s' % from_addr, 'To: %s' % ','.join(\n to_addrs), 'Subject: %s' % subject, '', body), '\\r\\n')\n server = smtplib.SMTP_SSL(smtp_server)\n server.login(user, password)\n server.sendmail(from_addr, to_addrs, content)\n server.quit()\n", "role": "user" }, { "content": "send_mail", "role": "assistant" } ]
def x(self): if 'dut' not in self._conf or self._conf['dut'] is None: raise ValueError('Parameter "dut" not defined.') if 'dut_configuration' not in self._conf or self._conf['dut_configuration' ] is None: raise ValueError('Parameter "dut_configuration" not defined.') self._conf.setdefault('working_dir', None) if 'modules' in self._conf and self._conf['modules']: for module_id, module_cfg in [(key, value) for key, value in self. _conf['modules'].items() if 'activate' not in value or 'activate' in value and value['activate'] is True]: if 'module_group' in module_id: raise ValueError( 'The module ID "%s" contains the reserved name "module_group".' % module_id) if 'flavor' not in module_cfg or module_cfg['flavor'] is None: raise ValueError( 'No parameter "flavor" defined for module "%s".' % module_id) if module_cfg['flavor'] in fe_flavors: for driver_name in _reserved_driver_names: if driver_name == 'TDC': module_cfg.setdefault('TDC', None) continue if driver_name not in module_cfg or module_cfg[driver_name ] is None: raise ValueError( 'No parameter "%s" defined for module "%s".' % (driver_name, module_id)) if 'rx_channel' not in module_cfg or module_cfg['rx_channel' ] is None: raise ValueError( 'No parameter "rx_channel" defined for module "%s".' % module_id) if 'tx_channel' not in module_cfg or module_cfg['tx_channel' ] is None: raise ValueError( 'No parameter "tx_channel" defined for module "%s".' % module_id) if 'chip_address' not in module_cfg: raise ValueError( 'No parameter "chip_address" defined for module "%s".' % module_id) module_cfg.setdefault('tdc_channel', None) module_cfg.setdefault('configuration', None) module_cfg.setdefault('send_data', None) module_cfg.setdefault('activate', True) self._module_cfgs[module_id] = module_cfg self._modules[module_id] = [module_id] else: raise ValueError('No module configuration specified')
parse_module_cfgs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if 'dut' not in self._conf or self._conf['dut'] is None:\n raise ValueError('Parameter \"dut\" not defined.')\n if 'dut_configuration' not in self._conf or self._conf['dut_configuration'\n ] is None:\n raise ValueError('Parameter \"dut_configuration\" not defined.')\n self._conf.setdefault('working_dir', None)\n if 'modules' in self._conf and self._conf['modules']:\n for module_id, module_cfg in [(key, value) for key, value in self.\n _conf['modules'].items() if 'activate' not in value or \n 'activate' in value and value['activate'] is True]:\n if 'module_group' in module_id:\n raise ValueError(\n 'The module ID \"%s\" contains the reserved name \"module_group\".'\n % module_id)\n if 'flavor' not in module_cfg or module_cfg['flavor'] is None:\n raise ValueError(\n 'No parameter \"flavor\" defined for module \"%s\".' %\n module_id)\n if module_cfg['flavor'] in fe_flavors:\n for driver_name in _reserved_driver_names:\n if driver_name == 'TDC':\n module_cfg.setdefault('TDC', None)\n continue\n if driver_name not in module_cfg or module_cfg[driver_name\n ] is None:\n raise ValueError(\n 'No parameter \"%s\" defined for module \"%s\".' %\n (driver_name, module_id))\n if 'rx_channel' not in module_cfg or module_cfg['rx_channel'\n ] is None:\n raise ValueError(\n 'No parameter \"rx_channel\" defined for module \"%s\".' %\n module_id)\n if 'tx_channel' not in module_cfg or module_cfg['tx_channel'\n ] is None:\n raise ValueError(\n 'No parameter \"tx_channel\" defined for module \"%s\".' %\n module_id)\n if 'chip_address' not in module_cfg:\n raise ValueError(\n 'No parameter \"chip_address\" defined for module \"%s\".'\n % module_id)\n module_cfg.setdefault('tdc_channel', None)\n module_cfg.setdefault('configuration', None)\n module_cfg.setdefault('send_data', None)\n module_cfg.setdefault('activate', True)\n self._module_cfgs[module_id] = module_cfg\n self._modules[module_id] = [module_id]\n else:\n raise ValueError('No module configuration specified')\n", "role": "user" }, { "content": "parse_module_cfgs", "role": "assistant" } ]
def x(self): self._module_cfgs[None] = {'flavor': None, 'chip_address': None, 'FIFO': list(set([self._module_cfgs[module_id]['FIFO'] for module_id in self._modules])), 'RX': list(set([self._module_cfgs[module_id]['RX' ] for module_id in self._modules])), 'rx_channel': list(set([self. _module_cfgs[module_id]['rx_channel'] for module_id in self. _modules])), 'TX': list(set([self._module_cfgs[module_id]['TX'] for module_id in self._modules])), 'tx_channel': list(set([self. _module_cfgs[module_id]['tx_channel'] for module_id in self. _modules])), 'TDC': list(set([self._module_cfgs[module_id]['TDC'] for module_id in self._modules])), 'tdc_channel': list(set([self. _module_cfgs[module_id]['tdc_channel'] for module_id in self. _modules])), 'TLU': list(set([self._module_cfgs[module_id]['TLU'] for module_id in self._modules])), 'configuration': None, 'send_data': None } tx_groups = groupby_dict({key: value for key, value in self. _module_cfgs.items() if key in self._modules}, 'TX') for tx, module_group in tx_groups.items(): flavors = list(set([module_cfg['flavor'] for module_id, module_cfg in self._module_cfgs.items() if module_id in module_group])) if len(flavors) != 1: raise ValueError( "Parameter 'flavor' must be the same for module group TX=%s." % tx) chip_addresses = list(set([module_cfg['chip_address'] for module_id, module_cfg in self._module_cfgs.items() if module_id in module_group])) if len(module_group) != len(chip_addresses) or len(module_group ) != 1 and None in chip_addresses: raise ValueError( "Parameter 'chip_address' must be different for each module in module group TX=%s." % tx) self._module_cfgs['module_group_TX=' + tx] = {'flavor': flavors[0], 'chip_address': None, 'FIFO': list(set([module_cfg['FIFO'] for module_id, module_cfg in self._module_cfgs.items() if module_id in module_group])), 'RX': list(set([module_cfg['RX'] for module_id, module_cfg in self._module_cfgs.items() if module_id in module_group])), 'rx_channel': list(set([module_cfg[ 'rx_channel'] for module_id, module_cfg in self._module_cfgs. items() if module_id in module_group])), 'TX': tx, 'tx_channel': list(set([module_cfg['tx_channel'] for module_id, module_cfg in self._module_cfgs.items() if module_id in module_group])), 'TDC': list(set([module_cfg['TDC'] for module_id, module_cfg in self._module_cfgs.items() if module_id in module_group])), 'tdc_channel': list(set([module_cfg['tdc_channel'] for module_id, module_cfg in self._module_cfgs.items() if module_id in module_group])), 'TLU': list(set([module_cfg['TLU'] for module_id, module_cfg in self._module_cfgs.items() if module_id in module_group])), 'configuration': None, 'send_data': None} self._tx_module_groups['module_group_TX=' + tx] = module_group self._module_attr = {key: {} for key in self._module_cfgs} for module_id in self._module_cfgs: sc = namedtuple('run_configuration', field_names=self. _default_run_conf.keys()) run_conf = sc(**self._run_conf) if (module_id in self._modules and self.__class__.__name__ in self. _conf['modules'][module_id] and self._conf['modules'][module_id ][self.__class__.__name__] is not None): self._module_run_conf[module_id] = run_conf._replace(**self. _conf['modules'][module_id][self.__class__.__name__])._asdict() else: self._module_run_conf[module_id] = run_conf._asdict() if module_id in self._tx_module_groups and self._tx_module_groups[ module_id]: selected_module_id = self._tx_module_groups[module_id][0] if self.__class__.__name__ in self._conf['modules'][ selected_module_id] and self._conf['modules'][ selected_module_id][self.__class__.__name__] is not None: self._module_run_conf[module_id] = run_conf._replace(** self._conf['modules'][selected_module_id][self. __class__.__name__])._asdict()
set_default_cfg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._module_cfgs[None] = {'flavor': None, 'chip_address': None, 'FIFO':\n list(set([self._module_cfgs[module_id]['FIFO'] for module_id in\n self._modules])), 'RX': list(set([self._module_cfgs[module_id]['RX'\n ] for module_id in self._modules])), 'rx_channel': list(set([self.\n _module_cfgs[module_id]['rx_channel'] for module_id in self.\n _modules])), 'TX': list(set([self._module_cfgs[module_id]['TX'] for\n module_id in self._modules])), 'tx_channel': list(set([self.\n _module_cfgs[module_id]['tx_channel'] for module_id in self.\n _modules])), 'TDC': list(set([self._module_cfgs[module_id]['TDC'] for\n module_id in self._modules])), 'tdc_channel': list(set([self.\n _module_cfgs[module_id]['tdc_channel'] for module_id in self.\n _modules])), 'TLU': list(set([self._module_cfgs[module_id]['TLU'] for\n module_id in self._modules])), 'configuration': None, 'send_data': None\n }\n tx_groups = groupby_dict({key: value for key, value in self.\n _module_cfgs.items() if key in self._modules}, 'TX')\n for tx, module_group in tx_groups.items():\n flavors = list(set([module_cfg['flavor'] for module_id, module_cfg in\n self._module_cfgs.items() if module_id in module_group]))\n if len(flavors) != 1:\n raise ValueError(\n \"Parameter 'flavor' must be the same for module group TX=%s.\" %\n tx)\n chip_addresses = list(set([module_cfg['chip_address'] for module_id,\n module_cfg in self._module_cfgs.items() if module_id in\n module_group]))\n if len(module_group) != len(chip_addresses) or len(module_group\n ) != 1 and None in chip_addresses:\n raise ValueError(\n \"Parameter 'chip_address' must be different for each module in module group TX=%s.\"\n % tx)\n self._module_cfgs['module_group_TX=' + tx] = {'flavor': flavors[0],\n 'chip_address': None, 'FIFO': list(set([module_cfg['FIFO'] for \n module_id, module_cfg in self._module_cfgs.items() if module_id in\n module_group])), 'RX': list(set([module_cfg['RX'] for module_id,\n module_cfg in self._module_cfgs.items() if module_id in\n module_group])), 'rx_channel': list(set([module_cfg[\n 'rx_channel'] for module_id, module_cfg in self._module_cfgs.\n items() if module_id in module_group])), 'TX': tx, 'tx_channel':\n list(set([module_cfg['tx_channel'] for module_id, module_cfg in\n self._module_cfgs.items() if module_id in module_group])),\n 'TDC': list(set([module_cfg['TDC'] for module_id, module_cfg in\n self._module_cfgs.items() if module_id in module_group])),\n 'tdc_channel': list(set([module_cfg['tdc_channel'] for \n module_id, module_cfg in self._module_cfgs.items() if module_id in\n module_group])), 'TLU': list(set([module_cfg['TLU'] for \n module_id, module_cfg in self._module_cfgs.items() if module_id in\n module_group])), 'configuration': None, 'send_data': None}\n self._tx_module_groups['module_group_TX=' + tx] = module_group\n self._module_attr = {key: {} for key in self._module_cfgs}\n for module_id in self._module_cfgs:\n sc = namedtuple('run_configuration', field_names=self.\n _default_run_conf.keys())\n run_conf = sc(**self._run_conf)\n if (module_id in self._modules and self.__class__.__name__ in self.\n _conf['modules'][module_id] and self._conf['modules'][module_id\n ][self.__class__.__name__] is not None):\n self._module_run_conf[module_id] = run_conf._replace(**self.\n _conf['modules'][module_id][self.__class__.__name__])._asdict()\n else:\n self._module_run_conf[module_id] = run_conf._asdict()\n if module_id in self._tx_module_groups and self._tx_module_groups[\n module_id]:\n selected_module_id = self._tx_module_groups[module_id][0]\n if self.__class__.__name__ in self._conf['modules'][\n selected_module_id] and self._conf['modules'][\n selected_module_id][self.__class__.__name__] is not None:\n self._module_run_conf[module_id] = run_conf._replace(**\n self._conf['modules'][selected_module_id][self.\n __class__.__name__])._asdict()\n", "role": "user" }, { "content": "set_default_cfg", "role": "assistant" } ]
def x(self): for module_id, module_cfg in self._module_cfgs.items(): if module_id in self._modules or module_id in self._tx_module_groups: if module_id in self._modules: module_id_str = 'module ' + module_id else: module_id_str = module_id.split('=', 1) module_id_str[0] = module_id_str[0].replace('_', ' ') module_id_str = '='.join(module_id_str) logging.info('Initializing configuration for %s...' % module_id_str ) if 'scan_parameters' in self._module_run_conf[module_id ] and self._module_run_conf[module_id]['scan_parameters' ] is not None: if isinstance(self._module_run_conf[module_id][ 'scan_parameters'], basestring): self._module_run_conf[module_id]['scan_parameters' ] = ast.literal_eval(self._module_run_conf[ module_id]['scan_parameters']) sp = namedtuple('scan_parameters', field_names=zip(*self. _module_run_conf[module_id]['scan_parameters'])[0]) self._scan_parameters[module_id] = sp(*zip(*self. _module_run_conf[module_id]['scan_parameters'])[1]) else: sp = namedtuple_with_defaults('scan_parameters', field_names=[] ) self._scan_parameters[module_id] = sp() if module_id in self._modules: last_configuration = self.get_configuration(module_id=module_id ) else: last_configuration = None if ('configuration' not in module_cfg or module_cfg[ 'configuration'] is None ) and last_configuration is None or isinstance(module_cfg[ 'configuration'], (int, long)) and module_cfg['configuration' ] <= 0: if 'chip_address' in module_cfg: if module_cfg['chip_address'] is None: chip_address = 0 broadcast = True else: chip_address = module_cfg['chip_address'] broadcast = False else: raise ValueError( 'Parameter "chip_address" not specified for module "%s".' % module_id) if 'flavor' in module_cfg and module_cfg['flavor']: module_cfg['configuration'] = FEI4Register(fe_type= module_cfg['flavor'], chip_address=chip_address, broadcast=broadcast) else: raise ValueError( 'Parameter "flavor" not specified for module "%s".' % module_id) elif not module_cfg['configuration'] and last_configuration: module_cfg['configuration'] = FEI4Register(configuration_file =last_configuration) elif isinstance(module_cfg['configuration'], basestring): if os.path.isabs(module_cfg['configuration']): module_cfg['configuration'] = FEI4Register( configuration_file=module_cfg['configuration']) else: module_cfg['configuration'] = FEI4Register( configuration_file=os.path.join(module_cfg[ 'working_dir'], module_cfg['configuration'])) elif isinstance(module_cfg['configuration'], (int, long) ) and module_cfg['configuration'] > 0: module_cfg['configuration'] = FEI4Register(configuration_file =self.get_configuration(module_id=module_id, run_number =module_cfg['configuration'])) elif not isinstance(module_cfg['configuration'], FEI4Register): raise ValueError( 'Found no valid value for parameter "configuration" for module "%s".' % module_id) self._registers[module_id] = self._module_cfgs[module_id][ 'configuration'] self._register_utils[module_id] = FEI4RegisterUtils(self. _module_dut[module_id], self._module_cfgs[module_id][ 'configuration']) if module_id in self._modules: module_path = self.get_module_path(module_id) if not os.path.exists(module_path): os.makedirs(module_path) for module_id in self._tx_module_groups: with self.access_module(module_id=module_id): self.register_utils.set_conf_mode() for module_id in self._modules: logging.info('Configuring %s...' % module_id) with self.access_module(module_id=module_id): if self._run_conf['configure_fe']: self.register_utils.global_reset() self.register_utils.configure_all() else: self.register_utils.set_conf_mode() if is_fe_ready(self): fe_not_ready = False else: fe_not_ready = True if self._run_conf['reset_fe']: self.register_utils.reset_bunch_counter() self.register_utils.reset_event_counter() if fe_not_ready: self.register_utils.reset_service_records() if not is_fe_ready(self): logging.warning('Module "%s" is not sending any data.' % module_id) self.register_utils.set_conf_mode()
init_modules
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for module_id, module_cfg in self._module_cfgs.items():\n if module_id in self._modules or module_id in self._tx_module_groups:\n if module_id in self._modules:\n module_id_str = 'module ' + module_id\n else:\n module_id_str = module_id.split('=', 1)\n module_id_str[0] = module_id_str[0].replace('_', ' ')\n module_id_str = '='.join(module_id_str)\n logging.info('Initializing configuration for %s...' % module_id_str\n )\n if 'scan_parameters' in self._module_run_conf[module_id\n ] and self._module_run_conf[module_id]['scan_parameters'\n ] is not None:\n if isinstance(self._module_run_conf[module_id][\n 'scan_parameters'], basestring):\n self._module_run_conf[module_id]['scan_parameters'\n ] = ast.literal_eval(self._module_run_conf[\n module_id]['scan_parameters'])\n sp = namedtuple('scan_parameters', field_names=zip(*self.\n _module_run_conf[module_id]['scan_parameters'])[0])\n self._scan_parameters[module_id] = sp(*zip(*self.\n _module_run_conf[module_id]['scan_parameters'])[1])\n else:\n sp = namedtuple_with_defaults('scan_parameters', field_names=[]\n )\n self._scan_parameters[module_id] = sp()\n if module_id in self._modules:\n last_configuration = self.get_configuration(module_id=module_id\n )\n else:\n last_configuration = None\n if ('configuration' not in module_cfg or module_cfg[\n 'configuration'] is None\n ) and last_configuration is None or isinstance(module_cfg[\n 'configuration'], (int, long)) and module_cfg['configuration'\n ] <= 0:\n if 'chip_address' in module_cfg:\n if module_cfg['chip_address'] is None:\n chip_address = 0\n broadcast = True\n else:\n chip_address = module_cfg['chip_address']\n broadcast = False\n else:\n raise ValueError(\n 'Parameter \"chip_address\" not specified for module \"%s\".'\n % module_id)\n if 'flavor' in module_cfg and module_cfg['flavor']:\n module_cfg['configuration'] = FEI4Register(fe_type=\n module_cfg['flavor'], chip_address=chip_address,\n broadcast=broadcast)\n else:\n raise ValueError(\n 'Parameter \"flavor\" not specified for module \"%s\".' %\n module_id)\n elif not module_cfg['configuration'] and last_configuration:\n module_cfg['configuration'] = FEI4Register(configuration_file\n =last_configuration)\n elif isinstance(module_cfg['configuration'], basestring):\n if os.path.isabs(module_cfg['configuration']):\n module_cfg['configuration'] = FEI4Register(\n configuration_file=module_cfg['configuration'])\n else:\n module_cfg['configuration'] = FEI4Register(\n configuration_file=os.path.join(module_cfg[\n 'working_dir'], module_cfg['configuration']))\n elif isinstance(module_cfg['configuration'], (int, long)\n ) and module_cfg['configuration'] > 0:\n module_cfg['configuration'] = FEI4Register(configuration_file\n =self.get_configuration(module_id=module_id, run_number\n =module_cfg['configuration']))\n elif not isinstance(module_cfg['configuration'], FEI4Register):\n raise ValueError(\n 'Found no valid value for parameter \"configuration\" for module \"%s\".'\n % module_id)\n self._registers[module_id] = self._module_cfgs[module_id][\n 'configuration']\n self._register_utils[module_id] = FEI4RegisterUtils(self.\n _module_dut[module_id], self._module_cfgs[module_id][\n 'configuration'])\n if module_id in self._modules:\n module_path = self.get_module_path(module_id)\n if not os.path.exists(module_path):\n os.makedirs(module_path)\n for module_id in self._tx_module_groups:\n with self.access_module(module_id=module_id):\n self.register_utils.set_conf_mode()\n for module_id in self._modules:\n logging.info('Configuring %s...' % module_id)\n with self.access_module(module_id=module_id):\n if self._run_conf['configure_fe']:\n self.register_utils.global_reset()\n self.register_utils.configure_all()\n else:\n self.register_utils.set_conf_mode()\n if is_fe_ready(self):\n fe_not_ready = False\n else:\n fe_not_ready = True\n if self._run_conf['reset_fe']:\n self.register_utils.reset_bunch_counter()\n self.register_utils.reset_event_counter()\n if fe_not_ready:\n self.register_utils.reset_service_records()\n if not is_fe_ready(self):\n logging.warning('Module \"%s\" is not sending any data.' %\n module_id)\n self.register_utils.set_conf_mode()\n", "role": "user" }, { "content": "init_modules", "role": "assistant" } ]
def x(self): try: self.dut.close() except Exception: logging.warning('Closing DUT was not successful') else: logging.debug('Closed DUT')
close
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n self.dut.close()\n except Exception:\n logging.warning('Closing DUT was not successful')\n else:\n logging.debug('Closed DUT')\n", "role": "user" }, { "content": "close", "role": "assistant" } ]
def x(self, data, new_file=False, flush=True): for i, module_id in enumerate(self._selected_modules): if data[i] is None: continue self._raw_data_files[module_id].append(data_iterable=data[i], scan_parameters=self._scan_parameters[module_id]._asdict(), new_file=new_file, flush=flush)
handle_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, new_file=False, flush=True):\n for i, module_id in enumerate(self._selected_modules):\n if data[i] is None:\n continue\n self._raw_data_files[module_id].append(data_iterable=data[i],\n scan_parameters=self._scan_parameters[module_id]._asdict(),\n new_file=new_file, flush=flush)\n", "role": "user" }, { "content": "handle_data", "role": "assistant" } ]
def x(self, exc): if self.reset_rx_on_error and isinstance(exc[1], (RxSyncError, EightbTenbError)): self.fifo_readout.print_readout_status() self.fifo_readout.reset_rx() else: if not self.abort_run.is_set(): self.abort(msg=exc[1].__class__.__name__ + ': ' + str(exc[1])) self.err_queue.put(exc)
handle_err
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, exc):\n if self.reset_rx_on_error and isinstance(exc[1], (RxSyncError,\n EightbTenbError)):\n self.fifo_readout.print_readout_status()\n self.fifo_readout.reset_rx()\n else:\n if not self.abort_run.is_set():\n self.abort(msg=exc[1].__class__.__name__ + ': ' + str(exc[1]))\n self.err_queue.put(exc)\n", "role": "user" }, { "content": "handle_err", "role": "assistant" } ]
def x(self, module_id, run_number=None): def x(run_number): module_path = self.get_module_path(module_id) for root, _, files in os.walk(module_path): for cfgfile in files: cfg_root, cfg_ext = os.path.splitext(cfgfile) if cfg_root.startswith(''.join([str(run_number), '_', module_id])) and cfg_ext.endswith('.cfg'): return os.path.join(root, cfgfile) if not run_number: run_numbers = sorted(self._get_run_numbers(status='FINISHED').keys( ), reverse=True) found_fin_run_cfg = True if not run_numbers: return None last_fin_run = run_numbers[0] for run_number in run_numbers: cfg_file = find_file(run_number) if cfg_file: if not found_fin_run_cfg: logging.warning( "Module '%s' has no configuration for run %d, use config of run %d" , module_id, last_fin_run, run_number) return cfg_file else: found_fin_run_cfg = False else: cfg_file = find_file(run_number) if cfg_file: return cfg_file else: raise ValueError('Found no configuration with run number %s' % run_number)
get_configuration
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, module_id, run_number=None):\n\n def x(run_number):\n module_path = self.get_module_path(module_id)\n for root, _, files in os.walk(module_path):\n for cfgfile in files:\n cfg_root, cfg_ext = os.path.splitext(cfgfile)\n if cfg_root.startswith(''.join([str(run_number), '_',\n module_id])) and cfg_ext.endswith('.cfg'):\n return os.path.join(root, cfgfile)\n if not run_number:\n run_numbers = sorted(self._get_run_numbers(status='FINISHED').keys(\n ), reverse=True)\n found_fin_run_cfg = True\n if not run_numbers:\n return None\n last_fin_run = run_numbers[0]\n for run_number in run_numbers:\n cfg_file = find_file(run_number)\n if cfg_file:\n if not found_fin_run_cfg:\n logging.warning(\n \"Module '%s' has no configuration for run %d, use config of run %d\"\n , module_id, last_fin_run, run_number)\n return cfg_file\n else:\n found_fin_run_cfg = False\n else:\n cfg_file = find_file(run_number)\n if cfg_file:\n return cfg_file\n else:\n raise ValueError('Found no configuration with run number %s' %\n run_number)\n", "role": "user" }, { "content": "get_configuration", "role": "assistant" } ]
def x(self, module_id): if not isinstance(module_id, basestring) and isinstance(module_id, Iterable ) and set(module_id) - set(self._modules): raise ValueError('Module IDs invalid:' % ', '.join(set(module_id) - set(self._modules))) if isinstance(module_id, basestring ) and module_id not in self._module_cfgs: raise ValueError('Module ID "%s" is not valid' % module_id) if self._current_module_handle is not None: raise RuntimeError( 'Module handle "%s" cannot be set because another module is active' % module_id) if module_id is None: self._selected_modules = self._modules.keys() elif not isinstance(module_id, basestring) and isinstance(module_id, Iterable): self._selected_modules = module_id elif module_id in self._modules: self._selected_modules = [module_id] elif module_id in self._tx_module_groups: self._selected_modules = self._tx_module_groups[module_id] else: RuntimeError('Cannot open files. Module handle "%s" is not valid.' % self.current_module_handle) self._selected_fifos = list(set([module_cfg['FIFO'] for name, module_cfg in self._module_cfgs.items() if name in self. _selected_modules])) self._readout_fifos = [] self._filter = [] self._converter = [] for selected_module_id in self._selected_modules: module_cfg = self._module_cfgs[selected_module_id] self._readout_fifos.append(module_cfg['FIFO']) if 'tdc_channel' not in module_cfg: tdc_filter = false self._converter.append(None) elif module_cfg['tdc_channel'] is None: tdc_filter = is_tdc_word self._converter.append(convert_tdc_to_channel(channel= module_cfg['tdc_channel'])) else: tdc_filter = logical_and(is_tdc_word, is_tdc_from_channel( module_cfg['tdc_channel'])) self._converter.append(convert_tdc_to_channel(channel= module_cfg['tdc_channel'])) if 'rx_channel' not in module_cfg: self._filter.append(logical_or(is_trigger_word, tdc_filter)) elif module_cfg['rx_channel'] is None: self._filter.append(logical_or(is_trigger_word, logical_or( tdc_filter, is_fe_word))) else: self._filter.append(logical_or(is_trigger_word, logical_or( tdc_filter, logical_and(is_fe_word, is_data_from_channel( module_cfg['rx_channel']))))) self._enabled_fe_channels = list(set([config['RX'] for name, config in self._module_cfgs.items() if name in self._selected_modules])) tx_channels = list(set([(1 << config['tx_channel']) for name, config in self._module_cfgs.items() if name in self._selected_modules])) if tx_channels: self.dut['TX']['OUTPUT_ENABLE'] = reduce(lambda x, y: x | y, tx_channels) else: self.dut['TX']['OUTPUT_ENABLE'] = 0 if not isinstance(module_id, basestring) and isinstance(module_id, Iterable ): self._current_module_handle = None else: self._current_module_handle = module_id if module_id is not None and isinstance(module_id, basestring): current_thread().name = module_id
select_module
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, module_id):\n if not isinstance(module_id, basestring) and isinstance(module_id, Iterable\n ) and set(module_id) - set(self._modules):\n raise ValueError('Module IDs invalid:' % ', '.join(set(module_id) -\n set(self._modules)))\n if isinstance(module_id, basestring\n ) and module_id not in self._module_cfgs:\n raise ValueError('Module ID \"%s\" is not valid' % module_id)\n if self._current_module_handle is not None:\n raise RuntimeError(\n 'Module handle \"%s\" cannot be set because another module is active'\n % module_id)\n if module_id is None:\n self._selected_modules = self._modules.keys()\n elif not isinstance(module_id, basestring) and isinstance(module_id,\n Iterable):\n self._selected_modules = module_id\n elif module_id in self._modules:\n self._selected_modules = [module_id]\n elif module_id in self._tx_module_groups:\n self._selected_modules = self._tx_module_groups[module_id]\n else:\n RuntimeError('Cannot open files. Module handle \"%s\" is not valid.' %\n self.current_module_handle)\n self._selected_fifos = list(set([module_cfg['FIFO'] for name,\n module_cfg in self._module_cfgs.items() if name in self.\n _selected_modules]))\n self._readout_fifos = []\n self._filter = []\n self._converter = []\n for selected_module_id in self._selected_modules:\n module_cfg = self._module_cfgs[selected_module_id]\n self._readout_fifos.append(module_cfg['FIFO'])\n if 'tdc_channel' not in module_cfg:\n tdc_filter = false\n self._converter.append(None)\n elif module_cfg['tdc_channel'] is None:\n tdc_filter = is_tdc_word\n self._converter.append(convert_tdc_to_channel(channel=\n module_cfg['tdc_channel']))\n else:\n tdc_filter = logical_and(is_tdc_word, is_tdc_from_channel(\n module_cfg['tdc_channel']))\n self._converter.append(convert_tdc_to_channel(channel=\n module_cfg['tdc_channel']))\n if 'rx_channel' not in module_cfg:\n self._filter.append(logical_or(is_trigger_word, tdc_filter))\n elif module_cfg['rx_channel'] is None:\n self._filter.append(logical_or(is_trigger_word, logical_or(\n tdc_filter, is_fe_word)))\n else:\n self._filter.append(logical_or(is_trigger_word, logical_or(\n tdc_filter, logical_and(is_fe_word, is_data_from_channel(\n module_cfg['rx_channel'])))))\n self._enabled_fe_channels = list(set([config['RX'] for name, config in\n self._module_cfgs.items() if name in self._selected_modules]))\n tx_channels = list(set([(1 << config['tx_channel']) for name, config in\n self._module_cfgs.items() if name in self._selected_modules]))\n if tx_channels:\n self.dut['TX']['OUTPUT_ENABLE'] = reduce(lambda x, y: x | y,\n tx_channels)\n else:\n self.dut['TX']['OUTPUT_ENABLE'] = 0\n if not isinstance(module_id, basestring) and isinstance(module_id, Iterable\n ):\n self._current_module_handle = None\n else:\n self._current_module_handle = module_id\n if module_id is not None and isinstance(module_id, basestring):\n current_thread().name = module_id\n", "role": "user" }, { "content": "select_module", "role": "assistant" } ]
def x(self): self._enabled_fe_channels = [] self._readout_fifos = [] self._filter = [] self._converter = [] self.dut['TX']['OUTPUT_ENABLE'] = 0 self._current_module_handle = None if isinstance(current_thread(), _MainThread): current_thread().name = 'MainThread'
deselect_module
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._enabled_fe_channels = []\n self._readout_fifos = []\n self._filter = []\n self._converter = []\n self.dut['TX']['OUTPUT_ENABLE'] = 0\n self._current_module_handle = None\n if isinstance(current_thread(), _MainThread):\n current_thread().name = 'MainThread'\n", "role": "user" }, { "content": "deselect_module", "role": "assistant" } ]
def x(self): if self._scan_threads and self.current_module_handle not in [t.name for t in self._scan_threads]: raise RuntimeError('Thread name "%s" is not valid.') if (self._scan_threads and self.current_module_handle in self. _curr_sync_threads): raise RuntimeError('Thread "%s" is already actively reading FIFO.') with self._sync_lock: self._curr_sync_threads.append(self.current_module_handle) self._enter_sync_event.clear() while not self._enter_sync_event.wait(0.01): if self.abort_run.is_set(): break with self._sync_lock: if len(set(self._curr_sync_threads) & set([t.name for t in self ._scan_threads if t.is_alive()])) == len(set([t.name for t in self._scan_threads if t.is_alive()]) ) or not self._scan_threads: self._enter_sync_event.set()
enter_sync
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._scan_threads and self.current_module_handle not in [t.name for\n t in self._scan_threads]:\n raise RuntimeError('Thread name \"%s\" is not valid.')\n if (self._scan_threads and self.current_module_handle in self.\n _curr_sync_threads):\n raise RuntimeError('Thread \"%s\" is already actively reading FIFO.')\n with self._sync_lock:\n self._curr_sync_threads.append(self.current_module_handle)\n self._enter_sync_event.clear()\n while not self._enter_sync_event.wait(0.01):\n if self.abort_run.is_set():\n break\n with self._sync_lock:\n if len(set(self._curr_sync_threads) & set([t.name for t in self\n ._scan_threads if t.is_alive()])) == len(set([t.name for t in\n self._scan_threads if t.is_alive()])\n ) or not self._scan_threads:\n self._enter_sync_event.set()\n", "role": "user" }, { "content": "enter_sync", "role": "assistant" } ]
def x(self): if self._scan_threads and self.current_module_handle not in [t.name for t in self._scan_threads]: raise RuntimeError('Thread name "%s" is not valid.') if (self._scan_threads and self.current_module_handle not in self. _curr_sync_threads): raise RuntimeError('Thread "%s" is not reading FIFO.') with self._sync_lock: self._curr_sync_threads.remove(self.current_module_handle) self._exit_sync_event.clear() while not self._exit_sync_event.wait(0.01): if self.abort_run.is_set(): break with self._sync_lock: if len(set(self._curr_sync_threads) & set([t.name for t in self ._scan_threads if t.is_alive()]) ) == 0 or not self._scan_threads: self._exit_sync_event.set()
exit_sync
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._scan_threads and self.current_module_handle not in [t.name for\n t in self._scan_threads]:\n raise RuntimeError('Thread name \"%s\" is not valid.')\n if (self._scan_threads and self.current_module_handle not in self.\n _curr_sync_threads):\n raise RuntimeError('Thread \"%s\" is not reading FIFO.')\n with self._sync_lock:\n self._curr_sync_threads.remove(self.current_module_handle)\n self._exit_sync_event.clear()\n while not self._exit_sync_event.wait(0.01):\n if self.abort_run.is_set():\n break\n with self._sync_lock:\n if len(set(self._curr_sync_threads) & set([t.name for t in self\n ._scan_threads if t.is_alive()])\n ) == 0 or not self._scan_threads:\n self._exit_sync_event.set()\n", "role": "user" }, { "content": "exit_sync", "role": "assistant" } ]
def x(self, *args, **kwargs): timeout = kwargs.pop('timeout', 10.0) self.start_readout(*args, **kwargs) try: yield finally: try: self.stop_readout(timeout=timeout) except Exception: if self.abort_run.is_set(): with self._readout_lock: if self.fifo_readout.is_running: self.fifo_readout.stop(timeout=0.0)
readout
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, **kwargs):\n timeout = kwargs.pop('timeout', 10.0)\n self.start_readout(*args, **kwargs)\n try:\n yield\n finally:\n try:\n self.stop_readout(timeout=timeout)\n except Exception:\n if self.abort_run.is_set():\n with self._readout_lock:\n if self.fifo_readout.is_running:\n self.fifo_readout.stop(timeout=0.0)\n", "role": "user" }, { "content": "readout", "role": "assistant" } ]
def x(self, *args, **kwargs): callback = kwargs.pop('callback', self.handle_data) errback = kwargs.pop('errback', self.handle_err) reset_rx = kwargs.pop('reset_rx', True) reset_fifo = kwargs.pop('reset_fifo', True) fill_buffer = kwargs.pop('fill_buffer', False) no_data_timeout = kwargs.pop('no_data_timeout', None) enabled_fe_channels = kwargs.pop('enabled_fe_channels', self. _enabled_fe_channels) if args or kwargs: self.set_scan_parameters(*args, **kwargs) if self._scan_threads and self.current_module_handle not in [t.name for t in self._scan_threads]: raise RuntimeError('Thread name "%s" is not valid.' % t.name) if (self._scan_threads and self.current_module_handle in self. _curr_readout_threads): raise RuntimeError('Thread "%s" is already actively reading FIFO.') with self._readout_lock: self._curr_readout_threads.append(self.current_module_handle) self._starting_readout_event.clear() while not self._starting_readout_event.wait(0.01): if self.abort_run.is_set(): break with self._readout_lock: if len(set(self._curr_readout_threads) & set([t.name for t in self._scan_threads if t.is_alive()])) == len(set([t.name for t in self._scan_threads if t.is_alive()]) ) or not self._scan_threads: if not self.fifo_readout.is_running: self.fifo_readout.start(fifos=self._selected_fifos, callback=callback, errback=errback, reset_rx= reset_rx, reset_fifo=reset_fifo, fill_buffer= fill_buffer, no_data_timeout=no_data_timeout, filter_func=self._filter, converter_func=self. _converter, fifo_select=self._readout_fifos, enabled_fe_channels=enabled_fe_channels) self._starting_readout_event.set()
start_readout
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, **kwargs):\n callback = kwargs.pop('callback', self.handle_data)\n errback = kwargs.pop('errback', self.handle_err)\n reset_rx = kwargs.pop('reset_rx', True)\n reset_fifo = kwargs.pop('reset_fifo', True)\n fill_buffer = kwargs.pop('fill_buffer', False)\n no_data_timeout = kwargs.pop('no_data_timeout', None)\n enabled_fe_channels = kwargs.pop('enabled_fe_channels', self.\n _enabled_fe_channels)\n if args or kwargs:\n self.set_scan_parameters(*args, **kwargs)\n if self._scan_threads and self.current_module_handle not in [t.name for\n t in self._scan_threads]:\n raise RuntimeError('Thread name \"%s\" is not valid.' % t.name)\n if (self._scan_threads and self.current_module_handle in self.\n _curr_readout_threads):\n raise RuntimeError('Thread \"%s\" is already actively reading FIFO.')\n with self._readout_lock:\n self._curr_readout_threads.append(self.current_module_handle)\n self._starting_readout_event.clear()\n while not self._starting_readout_event.wait(0.01):\n if self.abort_run.is_set():\n break\n with self._readout_lock:\n if len(set(self._curr_readout_threads) & set([t.name for t in\n self._scan_threads if t.is_alive()])) == len(set([t.name for\n t in self._scan_threads if t.is_alive()])\n ) or not self._scan_threads:\n if not self.fifo_readout.is_running:\n self.fifo_readout.start(fifos=self._selected_fifos,\n callback=callback, errback=errback, reset_rx=\n reset_rx, reset_fifo=reset_fifo, fill_buffer=\n fill_buffer, no_data_timeout=no_data_timeout,\n filter_func=self._filter, converter_func=self.\n _converter, fifo_select=self._readout_fifos,\n enabled_fe_channels=enabled_fe_channels)\n self._starting_readout_event.set()\n", "role": "user" }, { "content": "start_readout", "role": "assistant" } ]
def x(self, timeout=10.0): if self._scan_threads and self.current_module_handle not in [t.name for t in self._scan_threads]: raise RuntimeError('Thread name "%s" is not valid.') if (self._scan_threads and self.current_module_handle not in self. _curr_readout_threads): raise RuntimeError('Thread "%s" is not reading FIFO.') with self._readout_lock: self._curr_readout_threads.remove(self.current_module_handle) self._stopping_readout_event.clear() while not self._stopping_readout_event.wait(0.01): with self._readout_lock: if len(set(self._curr_readout_threads) & set([t.name for t in self._scan_threads if t.is_alive()]) ) == 0 or not self._scan_threads or self.abort_run.is_set(): if self.fifo_readout.is_running: self.fifo_readout.stop(timeout=timeout) self._stopping_readout_event.set()
stop_readout
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, timeout=10.0):\n if self._scan_threads and self.current_module_handle not in [t.name for\n t in self._scan_threads]:\n raise RuntimeError('Thread name \"%s\" is not valid.')\n if (self._scan_threads and self.current_module_handle not in self.\n _curr_readout_threads):\n raise RuntimeError('Thread \"%s\" is not reading FIFO.')\n with self._readout_lock:\n self._curr_readout_threads.remove(self.current_module_handle)\n self._stopping_readout_event.clear()\n while not self._stopping_readout_event.wait(0.01):\n with self._readout_lock:\n if len(set(self._curr_readout_threads) & set([t.name for t in\n self._scan_threads if t.is_alive()])\n ) == 0 or not self._scan_threads or self.abort_run.is_set():\n if self.fifo_readout.is_running:\n self.fifo_readout.stop(timeout=timeout)\n self._stopping_readout_event.set()\n", "role": "user" }, { "content": "stop_readout", "role": "assistant" } ]
def x(max_tdc, tdc_calibration_values, tdc_pixel_calibration): charge_calibration = np.zeros(shape=(80, 336, max_tdc)) for column in range(80): for row in range(336): actual_pixel_calibration = tdc_pixel_calibration[column, row, :] if np.any(actual_pixel_calibration != 0) and np.any(np.isfinite (actual_pixel_calibration)): selected_measurements = np.isfinite(actual_pixel_calibration) selected_actual_pixel_calibration = actual_pixel_calibration[ selected_measurements] selected_tdc_calibration_values = tdc_calibration_values[ selected_measurements] interpolation = interp1d(x= selected_actual_pixel_calibration, y= selected_tdc_calibration_values, kind='slinear', bounds_error=False, fill_value=0) charge_calibration[column, row, :] = interpolation(np. arange(max_tdc)) return charge_calibration
get_charge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(max_tdc, tdc_calibration_values, tdc_pixel_calibration):\n charge_calibration = np.zeros(shape=(80, 336, max_tdc))\n for column in range(80):\n for row in range(336):\n actual_pixel_calibration = tdc_pixel_calibration[column, row, :]\n if np.any(actual_pixel_calibration != 0) and np.any(np.isfinite\n (actual_pixel_calibration)):\n selected_measurements = np.isfinite(actual_pixel_calibration)\n selected_actual_pixel_calibration = actual_pixel_calibration[\n selected_measurements]\n selected_tdc_calibration_values = tdc_calibration_values[\n selected_measurements]\n interpolation = interp1d(x=\n selected_actual_pixel_calibration, y=\n selected_tdc_calibration_values, kind='slinear',\n bounds_error=False, fill_value=0)\n charge_calibration[column, row, :] = interpolation(np.\n arange(max_tdc))\n return charge_calibration\n", "role": "user" }, { "content": "get_charge", "role": "assistant" } ]
def x(calibation_file, max_tdc): with tb.open_file(calibation_file, mode='r') as in_file_calibration_h5: tdc_calibration = in_file_calibration_h5.root.HitOrCalibration[:, :, :, 1] tdc_calibration_values = (in_file_calibration_h5.root. HitOrCalibration.attrs.scan_parameter_values[:]) return get_charge(max_tdc, tdc_calibration_values, tdc_calibration)
get_charge_calibration
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(calibation_file, max_tdc):\n with tb.open_file(calibation_file, mode='r') as in_file_calibration_h5:\n tdc_calibration = in_file_calibration_h5.root.HitOrCalibration[:, :,\n :, 1]\n tdc_calibration_values = (in_file_calibration_h5.root.\n HitOrCalibration.attrs.scan_parameter_values[:])\n return get_charge(max_tdc, tdc_calibration_values, tdc_calibration)\n", "role": "user" }, { "content": "get_charge_calibration", "role": "assistant" } ]
def x(self): export_icon = QtGui.QIcon() pixmap = QtGui.QPixmap(os.path.join(PLUGINSDIR, 'csv/icons/document-export.png')) export_icon.addPixmap(pixmap, QtGui.QIcon.Normal, QtGui.QIcon.On) self.plot_action = QtGui.QAction(translate('PlotpyBARdata', 'Plot data with pyBAR plugin', 'Plot data with pyBAR plugin'), self, shortcut=QtGui.QKeySequence.UnknownKey, triggered=self.plot, icon= export_icon, statusTip=translate('PlotpyBARdata', 'Plotting of selected data with pyBAR', 'Status bar text for the Dataset -> Plot pyBAR data... action')) menu = self.vtgui.dataset_menu menu.addSeparator() menu.addAction(self.plot_action) cmenu = self.vtgui.leaf_node_cm cmenu.addSeparator() cmenu.addAction(self.plot_action)
addEntry
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n export_icon = QtGui.QIcon()\n pixmap = QtGui.QPixmap(os.path.join(PLUGINSDIR,\n 'csv/icons/document-export.png'))\n export_icon.addPixmap(pixmap, QtGui.QIcon.Normal, QtGui.QIcon.On)\n self.plot_action = QtGui.QAction(translate('PlotpyBARdata',\n 'Plot data with pyBAR plugin', 'Plot data with pyBAR plugin'), self,\n shortcut=QtGui.QKeySequence.UnknownKey, triggered=self.plot, icon=\n export_icon, statusTip=translate('PlotpyBARdata',\n 'Plotting of selected data with pyBAR',\n 'Status bar text for the Dataset -> Plot pyBAR data... action'))\n menu = self.vtgui.dataset_menu\n menu.addSeparator()\n menu.addAction(self.plot_action)\n cmenu = self.vtgui.leaf_node_cm\n cmenu.addSeparator()\n cmenu.addAction(self.plot_action)\n", "role": "user" }, { "content": "addEntry", "role": "assistant" } ]
def x(self): enabled = True current = self.vtgui.dbs_tree_view.currentIndex() if current: leaf = self.vtgui.dbs_tree_model.nodeFromIndex(current) if leaf.node_kind in (u'group', u'root group'): enabled = False self.plot_action.setEnabled(enabled)
updateDatasetMenu
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n enabled = True\n current = self.vtgui.dbs_tree_view.currentIndex()\n if current:\n leaf = self.vtgui.dbs_tree_model.nodeFromIndex(current)\n if leaf.node_kind in (u'group', u'root group'):\n enabled = False\n self.plot_action.setEnabled(enabled)\n", "role": "user" }, { "content": "updateDatasetMenu", "role": "assistant" } ]
def x(self): about_text = translate('pyBarPlugin', """<qt> <p>Data plotting plug-in for pyBAR. </qt>""" , 'About') descr = dict(module_name='pyBarPlugin', folder=PLUGINSDIR, version= __version__, plugin_name='pyBarPlugin', author= 'David-Leon Pohl <david-leon.pohl@rub.de>, Jens Janssen <janssen@physik.uni-bonn.de>' , descr=about_text) return descr
helpAbout
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n about_text = translate('pyBarPlugin',\n \"\"\"<qt>\n <p>Data plotting plug-in for pyBAR.\n </qt>\"\"\"\n , 'About')\n descr = dict(module_name='pyBarPlugin', folder=PLUGINSDIR, version=\n __version__, plugin_name='pyBarPlugin', author=\n 'David-Leon Pohl <david-leon.pohl@rub.de>, Jens Janssen <janssen@physik.uni-bonn.de>'\n , descr=about_text)\n return descr\n", "role": "user" }, { "content": "helpAbout", "role": "assistant" } ]
def x(socket, conf, name): meta_data = dict(name=name, conf=conf) try: socket.send_json(meta_data, flags=zmq.NOBLOCK) except zmq.Again: pass
send_meta_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(socket, conf, name):\n meta_data = dict(name=name, conf=conf)\n try:\n socket.send_json(meta_data, flags=zmq.NOBLOCK)\n except zmq.Again:\n pass\n", "role": "user" }, { "content": "send_meta_data", "role": "assistant" } ]
def x(socket, data, scan_parameters={}, name='ReadoutData'): if not scan_parameters: scan_parameters = {} data_meta_data = dict(name=name, dtype=str(data[0].dtype), shape=data[0 ].shape, timestamp_start=data[1], timestamp_stop=data[2], readout_error=data[3], scan_parameters=scan_parameters) try: socket.send_json(data_meta_data, flags=zmq.SNDMORE | zmq.NOBLOCK) socket.send(data[0], flags=zmq.NOBLOCK) except zmq.Again: pass
send_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(socket, data, scan_parameters={}, name='ReadoutData'):\n if not scan_parameters:\n scan_parameters = {}\n data_meta_data = dict(name=name, dtype=str(data[0].dtype), shape=data[0\n ].shape, timestamp_start=data[1], timestamp_stop=data[2],\n readout_error=data[3], scan_parameters=scan_parameters)\n try:\n socket.send_json(data_meta_data, flags=zmq.SNDMORE | zmq.NOBLOCK)\n socket.send(data[0], flags=zmq.NOBLOCK)\n except zmq.Again:\n pass\n", "role": "user" }, { "content": "send_data", "role": "assistant" } ]
def x(filename, mode='w', title='', scan_parameters=None, socket_address=None): return RawDataFile(filename=filename, mode=mode, title=title, scan_parameters=scan_parameters, socket_address=socket_address)
open_raw_data_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, mode='w', title='', scan_parameters=None, socket_address=None):\n return RawDataFile(filename=filename, mode=mode, title=title,\n scan_parameters=scan_parameters, socket_address=socket_address)\n", "role": "user" }, { "content": "open_raw_data_file", "role": "assistant" } ]
def x(data_queue, filename, mode='a', title='', scan_parameters=None): if not scan_parameters: scan_parameters = {} with open_raw_data_file(filename, mode='a', title='', scan_parameters= list(dict.iterkeys(scan_parameters))) as raw_data_file: raw_data_file.append(data_queue, scan_parameters=scan_parameters)
save_raw_data_from_data_queue
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data_queue, filename, mode='a', title='', scan_parameters=None):\n if not scan_parameters:\n scan_parameters = {}\n with open_raw_data_file(filename, mode='a', title='', scan_parameters=\n list(dict.iterkeys(scan_parameters))) as raw_data_file:\n raw_data_file.append(data_queue, scan_parameters=scan_parameters)\n", "role": "user" }, { "content": "save_raw_data_from_data_queue", "role": "assistant" } ]
def x(self): for iteration in range(0, self.global_iterations): if self.stop_run.is_set(): break logging.info('Global tuning step %d / %d', iteration + 1, self. global_iterations) self.set_scan_parameters(global_step=self.scan_parameters. global_step + 1) GdacTuning.scan(self) commands = [] commands.extend(self.register.get_commands('ConfMode')) commands.extend(self.register.get_commands('WrRegister', name=[ 'Vthin_AltCoarse', 'Vthin_AltFine'])) commands.extend(self.register.get_commands('RunMode')) self.register_utils.send_commands(commands) if self.stop_run.is_set(): break self.set_scan_parameters(global_step=self.scan_parameters. global_step + 1) FeedbackTuning.scan(self) commands = [] commands.extend(self.register.get_commands('ConfMode')) commands.extend(self.register.get_commands('WrRegister', name=[ 'PrmpVbpf'])) commands.extend(self.register.get_commands('RunMode')) self.register_utils.send_commands(commands) if self.global_iterations >= 0 and not self.stop_run.is_set(): self.set_scan_parameters(global_step=self.scan_parameters. global_step + 1) GdacTuning.scan(self) commands = [] commands.extend(self.register.get_commands('ConfMode')) commands.extend(self.register.get_commands('WrRegister', name=[ 'Vthin_AltCoarse', 'Vthin_AltFine'])) commands.extend(self.register.get_commands('RunMode')) self.register_utils.send_commands(commands) Vthin_AC = self.register.get_global_register_value('Vthin_AltCoarse') Vthin_AF = self.register.get_global_register_value('Vthin_AltFine') PrmpVbpf = self.register.get_global_register_value('PrmpVbpf') logging.info( 'Results of global threshold tuning: Vthin_AltCoarse / Vthin_AltFine = %d / %d' , Vthin_AC, Vthin_AF) logging.info('Results of global feedback tuning: PrmpVbpf = %d', PrmpVbpf) for iteration in range(0, self.local_iterations): if self.stop_run.is_set(): break logging.info('Local tuning step %d / %d', iteration + 1, self. local_iterations) self.set_scan_parameters(local_step=self.scan_parameters.local_step + 1 ) TdacTuning.scan(self) commands = [] commands.extend(self.register.get_commands('ConfMode')) commands.extend(self.register.get_commands('WrFrontEnd', same_mask_for_all_dc=False, name='TDAC')) commands.extend(self.register.get_commands('RunMode')) self.register_utils.send_commands(commands) if self.stop_run.is_set(): break self.set_scan_parameters(local_step=self.scan_parameters.local_step + 1 ) FdacTuning.scan(self) commands = [] commands.extend(self.register.get_commands('ConfMode')) commands.extend(self.register.get_commands('WrFrontEnd', same_mask_for_all_dc=False, name='FDAC')) commands.extend(self.register.get_commands('RunMode')) self.register_utils.send_commands(commands) if self.local_iterations >= 0 and not self.stop_run.is_set(): self.set_scan_parameters(local_step=self.scan_parameters.local_step + 1 ) TdacTuning.scan(self) commands = [] commands.extend(self.register.get_commands('ConfMode')) commands.extend(self.register.get_commands('WrFrontEnd', same_mask_for_all_dc=False, name='TDAC')) commands.extend(self.register.get_commands('RunMode')) self.register_utils.send_commands(commands)
scan
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for iteration in range(0, self.global_iterations):\n if self.stop_run.is_set():\n break\n logging.info('Global tuning step %d / %d', iteration + 1, self.\n global_iterations)\n self.set_scan_parameters(global_step=self.scan_parameters.\n global_step + 1)\n GdacTuning.scan(self)\n commands = []\n commands.extend(self.register.get_commands('ConfMode'))\n commands.extend(self.register.get_commands('WrRegister', name=[\n 'Vthin_AltCoarse', 'Vthin_AltFine']))\n commands.extend(self.register.get_commands('RunMode'))\n self.register_utils.send_commands(commands)\n if self.stop_run.is_set():\n break\n self.set_scan_parameters(global_step=self.scan_parameters.\n global_step + 1)\n FeedbackTuning.scan(self)\n commands = []\n commands.extend(self.register.get_commands('ConfMode'))\n commands.extend(self.register.get_commands('WrRegister', name=[\n 'PrmpVbpf']))\n commands.extend(self.register.get_commands('RunMode'))\n self.register_utils.send_commands(commands)\n if self.global_iterations >= 0 and not self.stop_run.is_set():\n self.set_scan_parameters(global_step=self.scan_parameters.\n global_step + 1)\n GdacTuning.scan(self)\n commands = []\n commands.extend(self.register.get_commands('ConfMode'))\n commands.extend(self.register.get_commands('WrRegister', name=[\n 'Vthin_AltCoarse', 'Vthin_AltFine']))\n commands.extend(self.register.get_commands('RunMode'))\n self.register_utils.send_commands(commands)\n Vthin_AC = self.register.get_global_register_value('Vthin_AltCoarse')\n Vthin_AF = self.register.get_global_register_value('Vthin_AltFine')\n PrmpVbpf = self.register.get_global_register_value('PrmpVbpf')\n logging.info(\n 'Results of global threshold tuning: Vthin_AltCoarse / Vthin_AltFine = %d / %d'\n , Vthin_AC, Vthin_AF)\n logging.info('Results of global feedback tuning: PrmpVbpf = %d',\n PrmpVbpf)\n for iteration in range(0, self.local_iterations):\n if self.stop_run.is_set():\n break\n logging.info('Local tuning step %d / %d', iteration + 1, self.\n local_iterations)\n self.set_scan_parameters(local_step=self.scan_parameters.local_step + 1\n )\n TdacTuning.scan(self)\n commands = []\n commands.extend(self.register.get_commands('ConfMode'))\n commands.extend(self.register.get_commands('WrFrontEnd',\n same_mask_for_all_dc=False, name='TDAC'))\n commands.extend(self.register.get_commands('RunMode'))\n self.register_utils.send_commands(commands)\n if self.stop_run.is_set():\n break\n self.set_scan_parameters(local_step=self.scan_parameters.local_step + 1\n )\n FdacTuning.scan(self)\n commands = []\n commands.extend(self.register.get_commands('ConfMode'))\n commands.extend(self.register.get_commands('WrFrontEnd',\n same_mask_for_all_dc=False, name='FDAC'))\n commands.extend(self.register.get_commands('RunMode'))\n self.register_utils.send_commands(commands)\n if self.local_iterations >= 0 and not self.stop_run.is_set():\n self.set_scan_parameters(local_step=self.scan_parameters.local_step + 1\n )\n TdacTuning.scan(self)\n commands = []\n commands.extend(self.register.get_commands('ConfMode'))\n commands.extend(self.register.get_commands('WrFrontEnd',\n same_mask_for_all_dc=False, name='TDAC'))\n commands.extend(self.register.get_commands('RunMode'))\n self.register_utils.send_commands(commands)\n", "role": "user" }, { "content": "scan", "role": "assistant" } ]
def x(x, y, x_err=None, y_err=None, title=None, point_label=None, legend= None, plot_range=None, plot_range_y=None, x_label=None, y_label=None, y_2_label=None, log_x=False, log_y=False, size=None, filename=None): fig = Figure() FigureCanvas(fig) ax = fig.add_subplot(111) if x_err is not None: x_err = [x_err, x_err] if y_err is not None: y_err = [y_err, y_err] ax.set_title(title) if y_label is not None: ax.set_ylabel(y_label) if log_x: ax.set_xscale('log') if log_y: ax.set_yscale('log') if plot_range: ax.set_xlim((min(plot_range), max(plot_range))) if plot_range_y: ax.set_ylim((min(plot_range_y), max(plot_range_y))) if legend: fig.legend(legend, 0) ax.grid(True) ax.errorbar(x, y, xerr=x_err, yerr=y_err, fmt='o', color='black') if point_label is not None: for X, Y, Z in zip(x, y, point_label): ax.annotate('{}'.format(Z), xy=(X, Y), xytext=(-5, 5), ha= 'right', textcoords='offset points') line_fit, _ = np.polyfit(x, y, 1, full=False, cov=True) fit_fn = np.poly1d(line_fit) ax.plot(x, fit_fn(x), '-', lw=2, color='gray') setp(ax.get_xticklabels(), visible=False) divider = make_axes_locatable(ax) ax_bottom_plot = divider.append_axes('bottom', 2.0, pad=0.0, sharex=ax) ax_bottom_plot.bar(x, y - fit_fn(x), align='center', width=np.amin(np. diff(x)) / 2, color='gray') ax_bottom_plot.grid(True) if x_label is not None: ax.set_xlabel(x_label) if y_2_label is not None: ax.set_ylabel(y_2_label) ax.set_ylim(-np.amax(np.abs(y - fit_fn(x))), np.amax(np.abs(y - fit_fn(x))) ) ax.plot(ax.set_xlim(), [0, 0], '-', color='black') setp(ax_bottom_plot.get_yticklabels()[-2:-1], visible=False) if size is not None: fig.set_size_inches(size) if not filename: fig.show() elif isinstance(filename, PdfPages): filename.savefig(fig) elif filename: fig.savefig(filename, bbox_inches='tight') return fig
plot_linear_relation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, x_err=None, y_err=None, title=None, point_label=None, legend=\n None, plot_range=None, plot_range_y=None, x_label=None, y_label=None,\n y_2_label=None, log_x=False, log_y=False, size=None, filename=None):\n fig = Figure()\n FigureCanvas(fig)\n ax = fig.add_subplot(111)\n if x_err is not None:\n x_err = [x_err, x_err]\n if y_err is not None:\n y_err = [y_err, y_err]\n ax.set_title(title)\n if y_label is not None:\n ax.set_ylabel(y_label)\n if log_x:\n ax.set_xscale('log')\n if log_y:\n ax.set_yscale('log')\n if plot_range:\n ax.set_xlim((min(plot_range), max(plot_range)))\n if plot_range_y:\n ax.set_ylim((min(plot_range_y), max(plot_range_y)))\n if legend:\n fig.legend(legend, 0)\n ax.grid(True)\n ax.errorbar(x, y, xerr=x_err, yerr=y_err, fmt='o', color='black')\n if point_label is not None:\n for X, Y, Z in zip(x, y, point_label):\n ax.annotate('{}'.format(Z), xy=(X, Y), xytext=(-5, 5), ha=\n 'right', textcoords='offset points')\n line_fit, _ = np.polyfit(x, y, 1, full=False, cov=True)\n fit_fn = np.poly1d(line_fit)\n ax.plot(x, fit_fn(x), '-', lw=2, color='gray')\n setp(ax.get_xticklabels(), visible=False)\n divider = make_axes_locatable(ax)\n ax_bottom_plot = divider.append_axes('bottom', 2.0, pad=0.0, sharex=ax)\n ax_bottom_plot.bar(x, y - fit_fn(x), align='center', width=np.amin(np.\n diff(x)) / 2, color='gray')\n ax_bottom_plot.grid(True)\n if x_label is not None:\n ax.set_xlabel(x_label)\n if y_2_label is not None:\n ax.set_ylabel(y_2_label)\n ax.set_ylim(-np.amax(np.abs(y - fit_fn(x))), np.amax(np.abs(y - fit_fn(x)))\n )\n ax.plot(ax.set_xlim(), [0, 0], '-', color='black')\n setp(ax_bottom_plot.get_yticklabels()[-2:-1], visible=False)\n if size is not None:\n fig.set_size_inches(size)\n if not filename:\n fig.show()\n elif isinstance(filename, PdfPages):\n filename.savefig(fig)\n elif filename:\n fig.savefig(filename, bbox_inches='tight')\n return fig\n", "role": "user" }, { "content": "plot_linear_relation", "role": "assistant" } ]
def x(x, y, n_bins=100, title=None, x_label=None, y_label=None, log_y=False, filename=None): if len(x) != len(y): raise ValueError('x and y dimensions have to be the same') n, bin_edges = np.histogram(x, bins=n_bins) sy = np.histogram(x, bins=n_bins, weights=y)[0] sy2 = np.histogram(x, bins=n_bins, weights=y * y)[0] bin_centers = (bin_edges[1:] + bin_edges[:-1]) / 2 mean = sy / n std = np.sqrt(sy2 / n - mean * mean) std_mean = std / np.sqrt(n - 1) mean[np.isnan(mean)] = 0.0 std_mean[np.isnan(std_mean)] = 0.0 fig = Figure() FigureCanvas(fig) ax = fig.add_subplot(111) ax.errorbar(bin_centers, mean, yerr=std_mean, fmt='o') ax.set_title(title) if x_label is not None: ax.set_xlabel(x_label) if y_label is not None: ax.set_ylabel(y_label) if log_y: ax.yscale('log') ax.grid(True) if not filename: fig.show() elif isinstance(filename, PdfPages): filename.savefig(fig) else: fig.savefig(filename)
plot_profile_histogram
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, n_bins=100, title=None, x_label=None, y_label=None, log_y=False,\n filename=None):\n if len(x) != len(y):\n raise ValueError('x and y dimensions have to be the same')\n n, bin_edges = np.histogram(x, bins=n_bins)\n sy = np.histogram(x, bins=n_bins, weights=y)[0]\n sy2 = np.histogram(x, bins=n_bins, weights=y * y)[0]\n bin_centers = (bin_edges[1:] + bin_edges[:-1]) / 2\n mean = sy / n\n std = np.sqrt(sy2 / n - mean * mean)\n std_mean = std / np.sqrt(n - 1)\n mean[np.isnan(mean)] = 0.0\n std_mean[np.isnan(std_mean)] = 0.0\n fig = Figure()\n FigureCanvas(fig)\n ax = fig.add_subplot(111)\n ax.errorbar(bin_centers, mean, yerr=std_mean, fmt='o')\n ax.set_title(title)\n if x_label is not None:\n ax.set_xlabel(x_label)\n if y_label is not None:\n ax.set_ylabel(y_label)\n if log_y:\n ax.yscale('log')\n ax.grid(True)\n if not filename:\n fig.show()\n elif isinstance(filename, PdfPages):\n filename.savefig(fig)\n else:\n fig.savefig(filename)\n", "role": "user" }, { "content": "plot_profile_histogram", "role": "assistant" } ]
def x(number, multiple): multiple = int(multiple) if multiple == 0: multiple = 1 ceil_mod_number = number - number % -multiple return int(ceil_mod_number)
round_to_multiple
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(number, multiple):\n multiple = int(multiple)\n if multiple == 0:\n multiple = 1\n ceil_mod_number = number - number % -multiple\n return int(ceil_mod_number)\n", "role": "user" }, { "content": "round_to_multiple", "role": "assistant" } ]
def x(hist, prob=(0.05, 0.95), return_indices=False, copy=True): hist_t = np.array(hist) cdf = np.cumsum(hist_t) if cdf[-1] == 0: normcdf = cdf.astype('float') else: normcdf = cdf.astype('float') / cdf[-1] unormcdf, indices = np.unique(normcdf, return_index=True) try: hp = np.where(unormcdf > prob[1])[0][0] lp = np.where(unormcdf >= prob[0])[0][0] except IndexError: hp_index = hist_t.shape[0] lp_index = 0 else: hp_index = indices[hp] lp_index = indices[lp] masked_hist = np.ma.array(hist, copy=copy, mask=True) masked_hist.mask[lp_index:hp_index + 1] = False if return_indices: return masked_hist, (lp_index, hp_index) else: return masked_hist
hist_quantiles
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hist, prob=(0.05, 0.95), return_indices=False, copy=True):\n hist_t = np.array(hist)\n cdf = np.cumsum(hist_t)\n if cdf[-1] == 0:\n normcdf = cdf.astype('float')\n else:\n normcdf = cdf.astype('float') / cdf[-1]\n unormcdf, indices = np.unique(normcdf, return_index=True)\n try:\n hp = np.where(unormcdf > prob[1])[0][0]\n lp = np.where(unormcdf >= prob[0])[0][0]\n except IndexError:\n hp_index = hist_t.shape[0]\n lp_index = 0\n else:\n hp_index = indices[hp]\n lp_index = indices[lp]\n masked_hist = np.ma.array(hist, copy=copy, mask=True)\n masked_hist.mask[lp_index:hp_index + 1] = False\n if return_indices:\n return masked_hist, (lp_index, hp_index)\n else:\n return masked_hist\n", "role": "user" }, { "content": "hist_quantiles", "role": "assistant" } ]
def x(hist, return_index=False, copy=True): hist_t = np.array(hist) index = np.where(hist_t)[-1][-1] + 1 if np.sum(hist_t ) > 1 else hist_t.shape[0] masked_hist = np.ma.array(hist, copy=copy, mask=True) masked_hist.mask[index:] = False if return_index: return masked_hist, index else: return masked_hist
hist_last_nonzero
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hist, return_index=False, copy=True):\n hist_t = np.array(hist)\n index = np.where(hist_t)[-1][-1] + 1 if np.sum(hist_t\n ) > 1 else hist_t.shape[0]\n masked_hist = np.ma.array(hist, copy=copy, mask=True)\n masked_hist.mask[index:] = False\n if return_index:\n return masked_hist, index\n else:\n return masked_hist\n", "role": "user" }, { "content": "hist_last_nonzero", "role": "assistant" } ]
def x(self, fifo, no_data_timeout=None): logging.info('Starting readout thread for %s', fifo) time_last_data = time() time_wait = 0.0 empty_reads = 0 while not self.force_stop[fifo].wait(time_wait if time_wait >= 0.0 else 0.0 ): time_read = time() try: if (no_data_timeout and time_last_data + no_data_timeout < get_float_time()): raise NoDataTimeout( 'Received no data for %0.1f second(s) from %s' % ( no_data_timeout, fifo)) raw_data = self.read_raw_data_from_fifo(fifo) except NoDataTimeout: no_data_timeout = None if self.errback: self.errback(sys.exc_info()) else: raise except Exception: if self.errback: self.errback(sys.exc_info()) else: raise if self.stop_readout.is_set(): break else: n_data_words = raw_data.shape[0] if n_data_words > 0: time_last_data = time() empty_reads = 0 time_start_read, time_stop_read = self.update_timestamp(fifo) status = 0 self._fifo_data_deque[fifo].append((raw_data, time_start_read, time_stop_read, status)) with self._fifo_conditions[fifo]: self._fifo_conditions[fifo].notify_all() elif self.stop_readout.is_set(): if empty_reads == self._n_empty_reads: break else: empty_reads += 1 finally: time_wait = self.readout_interval - (time() - time_read) self._fifo_data_deque[fifo].append(None) with self._fifo_conditions[fifo]: self._fifo_conditions[fifo].notify_all() logging.info('Stopping readout thread for %s', fifo)
readout
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fifo, no_data_timeout=None):\n logging.info('Starting readout thread for %s', fifo)\n time_last_data = time()\n time_wait = 0.0\n empty_reads = 0\n while not self.force_stop[fifo].wait(time_wait if time_wait >= 0.0 else 0.0\n ):\n time_read = time()\n try:\n if (no_data_timeout and time_last_data + no_data_timeout <\n get_float_time()):\n raise NoDataTimeout(\n 'Received no data for %0.1f second(s) from %s' % (\n no_data_timeout, fifo))\n raw_data = self.read_raw_data_from_fifo(fifo)\n except NoDataTimeout:\n no_data_timeout = None\n if self.errback:\n self.errback(sys.exc_info())\n else:\n raise\n except Exception:\n if self.errback:\n self.errback(sys.exc_info())\n else:\n raise\n if self.stop_readout.is_set():\n break\n else:\n n_data_words = raw_data.shape[0]\n if n_data_words > 0:\n time_last_data = time()\n empty_reads = 0\n time_start_read, time_stop_read = self.update_timestamp(fifo)\n status = 0\n self._fifo_data_deque[fifo].append((raw_data,\n time_start_read, time_stop_read, status))\n with self._fifo_conditions[fifo]:\n self._fifo_conditions[fifo].notify_all()\n elif self.stop_readout.is_set():\n if empty_reads == self._n_empty_reads:\n break\n else:\n empty_reads += 1\n finally:\n time_wait = self.readout_interval - (time() - time_read)\n self._fifo_data_deque[fifo].append(None)\n with self._fifo_conditions[fifo]:\n self._fifo_conditions[fifo].notify_all()\n logging.info('Stopping readout thread for %s', fifo)\n", "role": "user" }, { "content": "readout", "role": "assistant" } ]
def x(self, fifo): logging.debug('Starting worker thread for %s', fifo) self._fifo_conditions[fifo].acquire() while True: try: data_tuple = self._fifo_data_deque[fifo].popleft() except IndexError: self._fifo_conditions[fifo].wait(self.readout_interval) else: if data_tuple is None: break else: for index, (filter_func, converter_func, fifo_select ) in enumerate(izip(self.filter_func, self. converter_func, self.fifo_select)): if fifo_select is None or fifo_select == fifo: converted_data_tuple = convert_data_iterable(( data_tuple,), filter_func=filter_func, converter_func=converter_func)[0] n_data_words = converted_data_tuple[0].shape[0] with self.data_words_per_second_lock: self._words_per_read[index].append(( n_data_words, converted_data_tuple[1], converted_data_tuple[2])) self._data_deque[index].append(converted_data_tuple) with self._data_conditions[index]: self._data_conditions[index].notify_all() for index, fifo_select in enumerate(self.fifo_select): if fifo_select is None or fifo_select == fifo: self._data_deque[index].append(None) with self._data_conditions[index]: self._data_conditions[index].notify_all() self._fifo_conditions[fifo].release() logging.debug('Stopping worker thread for %s', fifo)
worker
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fifo):\n logging.debug('Starting worker thread for %s', fifo)\n self._fifo_conditions[fifo].acquire()\n while True:\n try:\n data_tuple = self._fifo_data_deque[fifo].popleft()\n except IndexError:\n self._fifo_conditions[fifo].wait(self.readout_interval)\n else:\n if data_tuple is None:\n break\n else:\n for index, (filter_func, converter_func, fifo_select\n ) in enumerate(izip(self.filter_func, self.\n converter_func, self.fifo_select)):\n if fifo_select is None or fifo_select == fifo:\n converted_data_tuple = convert_data_iterable((\n data_tuple,), filter_func=filter_func,\n converter_func=converter_func)[0]\n n_data_words = converted_data_tuple[0].shape[0]\n with self.data_words_per_second_lock:\n self._words_per_read[index].append((\n n_data_words, converted_data_tuple[1],\n converted_data_tuple[2]))\n self._data_deque[index].append(converted_data_tuple)\n with self._data_conditions[index]:\n self._data_conditions[index].notify_all()\n for index, fifo_select in enumerate(self.fifo_select):\n if fifo_select is None or fifo_select == fifo:\n self._data_deque[index].append(None)\n with self._data_conditions[index]:\n self._data_conditions[index].notify_all()\n self._fifo_conditions[fifo].release()\n logging.debug('Stopping worker thread for %s', fifo)\n", "role": "user" }, { "content": "worker", "role": "assistant" } ]
def x(self, index, no_data_timeout=None): is_fe_data_header = logical_and(is_fe_word, is_data_header) logging.debug('Starting writer thread with index %d', index) self._data_conditions[index].acquire() time_last_data = time() time_write = time() converted_data_tuple_list = [None] * len(self.filter_func) while True: try: if no_data_timeout and time_last_data + no_data_timeout < time(): raise NoDataTimeout( 'Received no data for %0.1f second(s) for writer thread with index %d' % (no_data_timeout, index)) converted_data_tuple = self._data_deque[index].popleft() except NoDataTimeout: no_data_timeout = None if self.errback: self.errback(sys.exc_info()) else: raise except IndexError: self._data_conditions[index].wait(self.readout_interval) else: if converted_data_tuple is None: if self.callback and any(converted_data_tuple_list): try: self.callback(converted_data_tuple_list) except Exception: self.errback(sys.exc_info()) break else: if no_data_timeout and np.any(is_fe_data_header( converted_data_tuple[0])): time_last_data = time() if converted_data_tuple_list[index]: converted_data_tuple_list[index].append( converted_data_tuple) else: converted_data_tuple_list[index] = [converted_data_tuple] if self.fill_buffer: self._data_buffer[index].append(converted_data_tuple) if self.callback and any(converted_data_tuple_list) and (self. write_interval and time() - time_write >= self.write_interval or not self.write_interval): try: self.callback(converted_data_tuple_list) except Exception: self.errback(sys.exc_info()) else: converted_data_tuple_list = [None] * len(self.filter_func) time_write = time() self._data_conditions[index].release() logging.debug('Stopping writer thread with index %d', index)
writer
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index, no_data_timeout=None):\n is_fe_data_header = logical_and(is_fe_word, is_data_header)\n logging.debug('Starting writer thread with index %d', index)\n self._data_conditions[index].acquire()\n time_last_data = time()\n time_write = time()\n converted_data_tuple_list = [None] * len(self.filter_func)\n while True:\n try:\n if no_data_timeout and time_last_data + no_data_timeout < time():\n raise NoDataTimeout(\n 'Received no data for %0.1f second(s) for writer thread with index %d'\n % (no_data_timeout, index))\n converted_data_tuple = self._data_deque[index].popleft()\n except NoDataTimeout:\n no_data_timeout = None\n if self.errback:\n self.errback(sys.exc_info())\n else:\n raise\n except IndexError:\n self._data_conditions[index].wait(self.readout_interval)\n else:\n if converted_data_tuple is None:\n if self.callback and any(converted_data_tuple_list):\n try:\n self.callback(converted_data_tuple_list)\n except Exception:\n self.errback(sys.exc_info())\n break\n else:\n if no_data_timeout and np.any(is_fe_data_header(\n converted_data_tuple[0])):\n time_last_data = time()\n if converted_data_tuple_list[index]:\n converted_data_tuple_list[index].append(\n converted_data_tuple)\n else:\n converted_data_tuple_list[index] = [converted_data_tuple]\n if self.fill_buffer:\n self._data_buffer[index].append(converted_data_tuple)\n if self.callback and any(converted_data_tuple_list) and (self.\n write_interval and time() - time_write >= self.write_interval or\n not self.write_interval):\n try:\n self.callback(converted_data_tuple_list)\n except Exception:\n self.errback(sys.exc_info())\n else:\n converted_data_tuple_list = [None] * len(self.filter_func)\n time_write = time()\n self._data_conditions[index].release()\n logging.debug('Stopping writer thread with index %d', index)\n", "role": "user" }, { "content": "writer", "role": "assistant" } ]
def x(self, filter_func=None, converter_func=None): if self._is_running: raise RuntimeError('Readout thread running') if not self.fill_buffer: logging.warning('Data buffer is not activated') return [convert_data_iterable(data_iterable, filter_func=filter_func, converter_func=converter_func) for data_iterable in self._data_buffer]
get_data_from_buffer
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filter_func=None, converter_func=None):\n if self._is_running:\n raise RuntimeError('Readout thread running')\n if not self.fill_buffer:\n logging.warning('Data buffer is not activated')\n return [convert_data_iterable(data_iterable, filter_func=filter_func,\n converter_func=converter_func) for data_iterable in self._data_buffer]\n", "role": "user" }, { "content": "get_data_from_buffer", "role": "assistant" } ]
def x(self, filter_func=None, converter_func=None): if self._is_running: raise RuntimeError('Readout thread running') if not self.fill_buffer: logging.warning('Data buffer is not activated') return [convert_data_array(data_array_from_data_iterable(data_iterable), filter_func=filter_func, converter_func=converter_func) for data_iterable in self._data_buffer]
get_raw_data_from_buffer
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filter_func=None, converter_func=None):\n if self._is_running:\n raise RuntimeError('Readout thread running')\n if not self.fill_buffer:\n logging.warning('Data buffer is not activated')\n return [convert_data_array(data_array_from_data_iterable(data_iterable),\n filter_func=filter_func, converter_func=converter_func) for\n data_iterable in self._data_buffer]\n", "role": "user" }, { "content": "get_raw_data_from_buffer", "role": "assistant" } ]