source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, p): if p < 0 or p > 1: raise ValueError('Probability p must be in range [0, 1]') if p == 0: return self.xs[0] if p == 1: return self.xs[-1] index = bisect.bisect(self.ps, p) if p == self.ps[index - 1]: return self.xs[index - 1] else: return self.xs[index]
Value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, p):\n if p < 0 or p > 1:\n raise ValueError('Probability p must be in range [0, 1]')\n if p == 0:\n return self.xs[0]\n if p == 1:\n return self.xs[-1]\n index = bisect.bisect(self.ps, p)\n if p == self.ps[index - 1]:\n return self.xs[index - 1]\n else:\n return self.xs[index]\n", "role": "user" }, { "content": "Value", "role": "assistant" } ]
def x(self): old_p = 0 total = 0.0 for x, new_p in zip(self.xs, self.ps): p = new_p - old_p total += p * x old_p = new_p return total
Mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n old_p = 0\n total = 0.0\n for x, new_p in zip(self.xs, self.ps):\n p = new_p - old_p\n total += p * x\n old_p = new_p\n return total\n", "role": "user" }, { "content": "Mean", "role": "assistant" } ]
def x(self, percentage=90): prob = (1 - percentage / 100.0) / 2 interval = self.Value(prob), self.Value(1 - prob) return interval
CredibleInterval
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, percentage=90):\n prob = (1 - percentage / 100.0) / 2\n interval = self.Value(prob), self.Value(1 - prob)\n return interval\n", "role": "user" }, { "content": "CredibleInterval", "role": "assistant" } ]
def x(self): xs = [self.xs[0]] ps = [0.0] for i, p in enumerate(self.ps): xs.append(self.xs[i]) ps.append(p) try: xs.append(self.xs[i + 1]) ps.append(p) except IndexError: pass return xs, ps
Render
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n xs = [self.xs[0]]\n ps = [0.0]\n for i, p in enumerate(self.ps):\n xs.append(self.xs[i])\n ps.append(p)\n try:\n xs.append(self.xs[i + 1])\n ps.append(p)\n except IndexError:\n pass\n return xs, ps\n", "role": "user" }, { "content": "Render", "role": "assistant" } ]
def x(self, k): cdf = self.Copy() cdf.ps = [(p ** k) for p in cdf.ps] return cdf
Max
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, k):\n cdf = self.Copy()\n cdf.ps = [(p ** k) for p in cdf.ps]\n return cdf\n", "role": "user" }, { "content": "Max", "role": "assistant" } ]
def x(self, data): for hypo in self.Values(): like = self.LogLikelihood(data, hypo) self.Incr(hypo, like)
LogUpdate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n for hypo in self.Values():\n like = self.LogLikelihood(data, hypo)\n self.Incr(hypo, like)\n", "role": "user" }, { "content": "LogUpdate", "role": "assistant" } ]
def x(self, dataset): for data in dataset: for hypo in self.Values(): like = self.Likelihood(data, hypo) self.Mult(hypo, like) return self.Normalize()
UpdateSet
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dataset):\n for data in dataset:\n for hypo in self.Values():\n like = self.Likelihood(data, hypo)\n self.Mult(hypo, like)\n return self.Normalize()\n", "role": "user" }, { "content": "UpdateSet", "role": "assistant" } ]
def x(self): for hypo, prob in sorted(self.Items()): print(hypo, prob)
Print
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for hypo, prob in sorted(self.Items()):\n print(hypo, prob)\n", "role": "user" }, { "content": "Print", "role": "assistant" } ]
def x(self): for hypo, prob in self.Items(): if prob: self.Set(hypo, Odds(prob)) else: self.Remove(hypo)
MakeOdds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for hypo, prob in self.Items():\n if prob:\n self.Set(hypo, Odds(prob))\n else:\n self.Remove(hypo)\n", "role": "user" }, { "content": "MakeOdds", "role": "assistant" } ]
def x(self): for hypo, odds in self.Items(): self.Set(hypo, Probability(odds))
MakeProbs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for hypo, odds in self.Items():\n self.Set(hypo, Probability(odds))\n", "role": "user" }, { "content": "MakeProbs", "role": "assistant" } ]
def x(self, xs, name=''): pmf = Pmf(name=name) for x in xs: pmf.Set(x, self.Density(x)) pmf.Normalize() return pmf
MakePmf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, xs, name=''):\n pmf = Pmf(name=name)\n for x in xs:\n pmf.Set(x, self.Density(x))\n pmf.Normalize()\n return pmf\n", "role": "user" }, { "content": "MakePmf", "role": "assistant" } ]
def x(self, data): heads, tails = data self.alpha += heads self.beta += tails
Update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n heads, tails = data\n self.alpha += heads\n self.beta += tails\n", "role": "user" }, { "content": "Update", "role": "assistant" } ]
def x(self, n): size = n, return numpy.random.beta(self.alpha, self.beta, size)
Sample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n):\n size = n,\n return numpy.random.beta(self.alpha, self.beta, size)\n", "role": "user" }, { "content": "Sample", "role": "assistant" } ]
def x(self, steps=101, name=''): if self.alpha < 1 or self.beta < 1: cdf = self.MakeCdf() pmf = cdf.MakePmf() return pmf xs = [(i / (steps - 1.0)) for i in xrange(steps)] probs = [self.EvalPdf(x) for x in xs] pmf = MakePmfFromDict(dict(zip(xs, probs)), name) return pmf
MakePmf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, steps=101, name=''):\n if self.alpha < 1 or self.beta < 1:\n cdf = self.MakeCdf()\n pmf = cdf.MakePmf()\n return pmf\n xs = [(i / (steps - 1.0)) for i in xrange(steps)]\n probs = [self.EvalPdf(x) for x in xs]\n pmf = MakePmfFromDict(dict(zip(xs, probs)), name)\n return pmf\n", "role": "user" }, { "content": "MakePmf", "role": "assistant" } ]
def x(self, steps=101): xs = [(i / (steps - 1.0)) for i in xrange(steps)] ps = [scipy.special.betainc(self.alpha, self.beta, x) for x in xs] cdf = Cdf(xs, ps) return cdf
MakeCdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, steps=101):\n xs = [(i / (steps - 1.0)) for i in xrange(steps)]\n ps = [scipy.special.betainc(self.alpha, self.beta, x) for x in xs]\n cdf = Cdf(xs, ps)\n return cdf\n", "role": "user" }, { "content": "MakeCdf", "role": "assistant" } ]
def x(self, data): m = len(data) self.params[:m] += data
Update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n m = len(data)\n self.params[:m] += data\n", "role": "user" }, { "content": "Update", "role": "assistant" } ]
def x(self): p = numpy.random.gamma(self.params) return p / p.sum()
Random
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n p = numpy.random.gamma(self.params)\n return p / p.sum()\n", "role": "user" }, { "content": "Random", "role": "assistant" } ]
def x(self, data): m = len(data) if self.n < m: return 0 x = data p = self.Random() q = p[:m] ** x return q.prod()
Likelihood
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n m = len(data)\n if self.n < m:\n return 0\n x = data\n p = self.Random()\n q = p[:m] ** x\n return q.prod()\n", "role": "user" }, { "content": "Likelihood", "role": "assistant" } ]
def x(self, data): m = len(data) if self.n < m: return float('-inf') x = self.Random() y = numpy.log(x[:m]) * data return y.sum()
LogLikelihood
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n m = len(data)\n if self.n < m:\n return float('-inf')\n x = self.Random()\n y = numpy.log(x[:m]) * data\n return y.sum()\n", "role": "user" }, { "content": "LogLikelihood", "role": "assistant" } ]
def x(self, i): alpha0 = self.params.sum() alpha = self.params[i] return Beta(alpha, alpha0 - alpha)
MarginalBeta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, i):\n alpha0 = self.params.sum()\n alpha = self.params[i]\n return Beta(alpha, alpha0 - alpha)\n", "role": "user" }, { "content": "MarginalBeta", "role": "assistant" } ]
def x(self, xs, name=''): alpha0 = self.params.sum() ps = self.params / alpha0 return MakePmfFromItems(zip(xs, ps), name=name)
PredictivePmf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, xs, name=''):\n alpha0 = self.params.sum()\n ps = self.params / alpha0\n return MakePmfFromItems(zip(xs, ps), name=name)\n", "role": "user" }, { "content": "PredictivePmf", "role": "assistant" } ]
def x(dbs, features): value = '' for db, feature in zip(dbs, features): value += db + ':' + feature return value
get_ann
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dbs, features):\n value = ''\n for db, feature in zip(dbs, features):\n value += db + ':' + feature\n return value\n", "role": "user" }, { "content": "get_ann", "role": "assistant" } ]
def x(data, out_dir, args): safe_dirs(out_dir) main_table = [] header = ['id', 'ann'] n = len(data[0]) bar = ProgressBar(maxval=n) bar.start() bar.update(0) for itern, c in enumerate(data[0]): bar.update(itern) logger.debug('creating cluser: {}'.format(c)) safe_dirs(os.path.join(out_dir, c)) valid, ann, pos_structure = _single_cluster(c, data, os.path.join( out_dir, c, 'maps.tsv'), args) data[0][c].update({'profile': pos_structure}) loci = data[0][c]['loci'] data[0][c]['precursor'] = {'seq': precursor_sequence(loci[0][0:5], args.ref)} data[0][c]['precursor']['colors'] = _parse(data[0][c]['profile'], data[0][c]['precursor']['seq']) data[0][c]['precursor'].update(run_rnafold(data[0][c]['precursor'][ 'seq'])) return data
make_profile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, out_dir, args):\n safe_dirs(out_dir)\n main_table = []\n header = ['id', 'ann']\n n = len(data[0])\n bar = ProgressBar(maxval=n)\n bar.start()\n bar.update(0)\n for itern, c in enumerate(data[0]):\n bar.update(itern)\n logger.debug('creating cluser: {}'.format(c))\n safe_dirs(os.path.join(out_dir, c))\n valid, ann, pos_structure = _single_cluster(c, data, os.path.join(\n out_dir, c, 'maps.tsv'), args)\n data[0][c].update({'profile': pos_structure})\n loci = data[0][c]['loci']\n data[0][c]['precursor'] = {'seq': precursor_sequence(loci[0][0:5],\n args.ref)}\n data[0][c]['precursor']['colors'] = _parse(data[0][c]['profile'],\n data[0][c]['precursor']['seq'])\n data[0][c]['precursor'].update(run_rnafold(data[0][c]['precursor'][\n 'seq']))\n return data\n", "role": "user" }, { "content": "make_profile", "role": "assistant" } ]
def x(dat, counts, start, end): for pos in range(start, end): for s in counts: dat[s][pos] += counts[s] return dat
expand
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dat, counts, start, end):\n for pos in range(start, end):\n for s in counts:\n dat[s][pos] += counts[s]\n return dat\n", "role": "user" }, { "content": "expand", "role": "assistant" } ]
def x(in_file, freq, raw_file): dat = defaultdict(Counter) if isinstance(in_file, (str, unicode)): with open(in_file) as in_handle: for line in in_handle: cols = line.strip().split('\t') counts = freq[cols[3]] dat = _expand(dat, counts, int(cols[1]), int(cols[2])) else: if raw_file: out_handle = open(raw_file, 'w') for name in in_file: counts = freq[name] if raw_file: print('%s\t%s\t%s\t%s\t%s\t%s' % ('chr', in_file[name][0], in_file[name][1], name, sum(counts.values()), '+'), file=out_handle, end='') dat = _expand(dat, counts, in_file[name][0], in_file[name][1]) for s in dat: for p in dat[s]: dat[s][p] = mlog2(dat[s][p] + 1) return dat
convert_to_df
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(in_file, freq, raw_file):\n dat = defaultdict(Counter)\n if isinstance(in_file, (str, unicode)):\n with open(in_file) as in_handle:\n for line in in_handle:\n cols = line.strip().split('\\t')\n counts = freq[cols[3]]\n dat = _expand(dat, counts, int(cols[1]), int(cols[2]))\n else:\n if raw_file:\n out_handle = open(raw_file, 'w')\n for name in in_file:\n counts = freq[name]\n if raw_file:\n print('%s\\t%s\\t%s\\t%s\\t%s\\t%s' % ('chr', in_file[name][0],\n in_file[name][1], name, sum(counts.values()), '+'),\n file=out_handle, end='')\n dat = _expand(dat, counts, in_file[name][0], in_file[name][1])\n for s in dat:\n for p in dat[s]:\n dat[s][p] = mlog2(dat[s][p] + 1)\n return dat\n", "role": "user" }, { "content": "convert_to_df", "role": "assistant" } ]
def x(c): ann = defaultdict(list) for pos in c['ann']: for db in pos: ann[db] += list(pos[db]) logger.debug(ann) valid = [l for l in c['valid']] ann_list = [', '.join(list(set(ann[feature]))) for feature in ann if feature in valid] return valid, ann_list
make
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(c):\n ann = defaultdict(list)\n for pos in c['ann']:\n for db in pos:\n ann[db] += list(pos[db])\n logger.debug(ann)\n valid = [l for l in c['valid']]\n ann_list = [', '.join(list(set(ann[feature]))) for feature in ann if \n feature in valid]\n return valid, ann_list\n", "role": "user" }, { "content": "make", "role": "assistant" } ]
def x(c, data, out_file, args): valid, ann = 0, 0 raw_file = None freq = defaultdict() [freq.update({s.keys()[0]: s.values()[0]}) for s in data[0][c]['freq']] names = [s.keys()[0] for s in data[0][c]['seqs']] seqs = [s.values()[0] for s in data[0][c]['seqs']] loci = data[0][c]['loci'] if loci[0][3] - loci[0][2] > 500: logger.info('locus bigger > 500 nt, skipping: %s' % loci) return valid, ann, {} if not file_exists(out_file): if args.razer: logger.debug('map with razer all sequences to all loci %s ' % loci) map_to_precursors(seqs, names, {loci[0][0]: [loci[0][0:5]]}, out_file, args) else: logger.debug( 'map with biopython fn all sequences to all loci %s ' % loci) if args.debug: raw_file = out_file out_file = map_to_precursor_biopython(seqs, names, loci[0][0:5], args) logger.debug('plot sequences on loci') df = _convert_to_df(out_file, freq, raw_file) if df: valid, ann = _make(data[0][c]) return valid, ann, df
single_cluster
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(c, data, out_file, args):\n valid, ann = 0, 0\n raw_file = None\n freq = defaultdict()\n [freq.update({s.keys()[0]: s.values()[0]}) for s in data[0][c]['freq']]\n names = [s.keys()[0] for s in data[0][c]['seqs']]\n seqs = [s.values()[0] for s in data[0][c]['seqs']]\n loci = data[0][c]['loci']\n if loci[0][3] - loci[0][2] > 500:\n logger.info('locus bigger > 500 nt, skipping: %s' % loci)\n return valid, ann, {}\n if not file_exists(out_file):\n if args.razer:\n logger.debug('map with razer all sequences to all loci %s ' % loci)\n map_to_precursors(seqs, names, {loci[0][0]: [loci[0][0:5]]},\n out_file, args)\n else:\n logger.debug(\n 'map with biopython fn all sequences to all loci %s ' % loci)\n if args.debug:\n raw_file = out_file\n out_file = map_to_precursor_biopython(seqs, names, loci[0][0:5],\n args)\n logger.debug('plot sequences on loci')\n df = _convert_to_df(out_file, freq, raw_file)\n if df:\n valid, ann = _make(data[0][c])\n return valid, ann, df\n", "role": "user" }, { "content": "single_cluster", "role": "assistant" } ]
def x(data, id=1): cl = cluster(1) names = [s.keys()[0] for s in data['seqs']] cl.add_id_member(names, 1) freq = defaultdict() [freq.update({s.keys()[0]: s.values()[0]}) for s in data['freq']]
read_cluster
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, id=1):\n cl = cluster(1)\n names = [s.keys()[0] for s in data['seqs']]\n cl.add_id_member(names, 1)\n freq = defaultdict()\n [freq.update({s.keys()[0]: s.values()[0]}) for s in data['freq']]\n", "role": "user" }, { "content": "read_cluster", "role": "assistant" } ]
def x(data, out_file): with open(out_file, 'w') as handle_out: handle_out.write(json.dumps([data], skipkeys=True, indent=2))
write_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, out_file):\n with open(out_file, 'w') as handle_out:\n handle_out.write(json.dumps([data], skipkeys=True, indent=2))\n", "role": "user" }, { "content": "write_data", "role": "assistant" } ]
def x(c1, c2, data): seqs1 = data[c1]['seqs'] seqs2 = data[c2]['seqs'] seqs = list(set(seqs1 + seqs2)) names = [] for s in seqs: if s in seqs1 and s in seqs2: names.append('both') elif s in seqs1: names.append(c1) else: names.append(c2) return seqs, names
get_sequences_from_cluster
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(c1, c2, data):\n seqs1 = data[c1]['seqs']\n seqs2 = data[c2]['seqs']\n seqs = list(set(seqs1 + seqs2))\n names = []\n for s in seqs:\n if s in seqs1 and s in seqs2:\n names.append('both')\n elif s in seqs1:\n names.append(c1)\n else:\n names.append(c2)\n return seqs, names\n", "role": "user" }, { "content": "get_sequences_from_cluster", "role": "assistant" } ]
def x(seqs, names, loci, out_file, args): with make_temp_directory() as temp: pre_fasta = os.path.join(temp, 'pre.fa') seqs_fasta = os.path.join(temp, 'seqs.fa') out_sam = os.path.join(temp, 'out.sam') pre_fasta = get_loci_fasta(loci, pre_fasta, args.ref) out_precursor_file = out_file.replace('tsv', 'fa') seqs_fasta = get_seqs_fasta(seqs, names, seqs_fasta) if find_cmd('razers3'): cmd = ( 'razers3 -dr 2 -i 80 -rr 90 -f -o {out_sam} {temp}/pre.fa {seqs_fasta}' ) run(cmd.format(**locals())) out_file = read_alignment(out_sam, loci, seqs, out_file) shutil.copy(pre_fasta, out_precursor_file) return out_file
map_to_precursors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seqs, names, loci, out_file, args):\n with make_temp_directory() as temp:\n pre_fasta = os.path.join(temp, 'pre.fa')\n seqs_fasta = os.path.join(temp, 'seqs.fa')\n out_sam = os.path.join(temp, 'out.sam')\n pre_fasta = get_loci_fasta(loci, pre_fasta, args.ref)\n out_precursor_file = out_file.replace('tsv', 'fa')\n seqs_fasta = get_seqs_fasta(seqs, names, seqs_fasta)\n if find_cmd('razers3'):\n cmd = (\n 'razers3 -dr 2 -i 80 -rr 90 -f -o {out_sam} {temp}/pre.fa {seqs_fasta}'\n )\n run(cmd.format(**locals()))\n out_file = read_alignment(out_sam, loci, seqs, out_file)\n shutil.copy(pre_fasta, out_precursor_file)\n return out_file\n", "role": "user" }, { "content": "map_to_precursors", "role": "assistant" } ]
def x(loci, reference): region = '%s\t%s\t%s\t.\t.\t%s' % (loci[1], loci[2], loci[3], loci[4]) precursor = pybedtools.BedTool(str(region), from_string=True).sequence(fi =reference, s=True) return open(precursor.seqfn).read().split('\n')[1]
precursor_sequence
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(loci, reference):\n region = '%s\\t%s\\t%s\\t.\\t.\\t%s' % (loci[1], loci[2], loci[3], loci[4])\n precursor = pybedtools.BedTool(str(region), from_string=True).sequence(fi\n =reference, s=True)\n return open(precursor.seqfn).read().split('\\n')[1]\n", "role": "user" }, { "content": "precursor_sequence", "role": "assistant" } ]
def x(seqs, names, loci, args): precursor = precursor_sequence(loci, args.ref).upper() dat = dict() for s, n in itertools.izip(seqs, names): res = pyMatch.Match(precursor, str(s), 1, 3) if res > -1: dat[n] = [res, res + len(s)] logger.debug('mapped in %s: %s out of %s' % (loci, len(dat), len(seqs))) return dat
map_to_precursors_on_fly
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seqs, names, loci, args):\n precursor = precursor_sequence(loci, args.ref).upper()\n dat = dict()\n for s, n in itertools.izip(seqs, names):\n res = pyMatch.Match(precursor, str(s), 1, 3)\n if res > -1:\n dat[n] = [res, res + len(s)]\n logger.debug('mapped in %s: %s out of %s' % (loci, len(dat), len(seqs)))\n return dat\n", "role": "user" }, { "content": "map_to_precursors_on_fly", "role": "assistant" } ]
def x(x, y, local=False): if local: aligned_x = pairwise2.align.localxx(x, y) else: aligned_x = pairwise2.align.globalms(x, y, 1, -1, -1, -0.5) if aligned_x: sorted_alignments = sorted(aligned_x, key=operator.itemgetter(2)) e = enumerate(sorted_alignments[0][0]) nts = [i for i, c in e if c != '-'] return [min(nts), max(nts)]
align
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, local=False):\n if local:\n aligned_x = pairwise2.align.localxx(x, y)\n else:\n aligned_x = pairwise2.align.globalms(x, y, 1, -1, -1, -0.5)\n if aligned_x:\n sorted_alignments = sorted(aligned_x, key=operator.itemgetter(2))\n e = enumerate(sorted_alignments[0][0])\n nts = [i for i, c in e if c != '-']\n return [min(nts), max(nts)]\n", "role": "user" }, { "content": "align", "role": "assistant" } ]
def x(seqs, names, loci, args): precursor = precursor_sequence(loci, args.ref).upper() dat = dict() for s, n in itertools.izip(seqs, names): res = _align(str(s), precursor) if res: dat[n] = res logger.debug('mapped in %s: %s out of %s' % (loci, len(dat), len(seqs))) return dat
map_to_precursor_biopython
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seqs, names, loci, args):\n precursor = precursor_sequence(loci, args.ref).upper()\n dat = dict()\n for s, n in itertools.izip(seqs, names):\n res = _align(str(s), precursor)\n if res:\n dat[n] = res\n logger.debug('mapped in %s: %s out of %s' % (loci, len(dat), len(seqs)))\n return dat\n", "role": "user" }, { "content": "map_to_precursor_biopython", "role": "assistant" } ]
def x(seqs, names, out_fa): with open(out_fa, 'w') as fa_handle: for s, n in itertools.izip(seqs, names): print('>cx{1}-{0}\n{0}'.format(s, n), file=fa_handle) return out_fa
get_seqs_fasta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seqs, names, out_fa):\n with open(out_fa, 'w') as fa_handle:\n for s, n in itertools.izip(seqs, names):\n print('>cx{1}-{0}\\n{0}'.format(s, n), file=fa_handle)\n return out_fa\n", "role": "user" }, { "content": "get_seqs_fasta", "role": "assistant" } ]
def x(loci, out_fa, ref): if not find_cmd('bedtools'): raise ValueError('Not bedtools installed') with make_temp_directory() as temp: bed_file = os.path.join(temp, 'file.bed') for nc, loci in loci.iteritems(): for l in loci: with open(bed_file, 'w') as bed_handle: logger.debug('get_fasta: loci %s' % l) nc, c, s, e, st = l print('{0}\t{1}\t{2}\t{3}\t{3}\t{4}'.format(c, s, e, nc, st), file=bed_handle) get_fasta(bed_file, ref, out_fa) return out_fa
get_loci_fasta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(loci, out_fa, ref):\n if not find_cmd('bedtools'):\n raise ValueError('Not bedtools installed')\n with make_temp_directory() as temp:\n bed_file = os.path.join(temp, 'file.bed')\n for nc, loci in loci.iteritems():\n for l in loci:\n with open(bed_file, 'w') as bed_handle:\n logger.debug('get_fasta: loci %s' % l)\n nc, c, s, e, st = l\n print('{0}\\t{1}\\t{2}\\t{3}\\t{3}\\t{4}'.format(c, s, e, nc,\n st), file=bed_handle)\n get_fasta(bed_file, ref, out_fa)\n return out_fa\n", "role": "user" }, { "content": "get_loci_fasta", "role": "assistant" } ]
def x(out_sam, loci, seqs, out_file): hits = defaultdict(list) with open(out_file, 'w') as out_handle: samfile = pysam.Samfile(out_sam, 'r') for a in samfile.fetch(): if not a.is_unmapped: nm = int([t[1] for t in a.tags if t[0] == 'NM'][0]) a = makeBED(a) if not a: continue ref, locus = get_loci(samfile.getrname(int(a.chr)), loci) hits[a.name].append((nm, '%s %s %s %s %s %s' % (a.name, a. name.split('-')[0], locus, ref, a.start, a.end))) for hit in hits.values(): nm = hit[0][0] for l in hit: if nm == l[0]: print(l[1], file=out_handle) return out_file
read_alignment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(out_sam, loci, seqs, out_file):\n hits = defaultdict(list)\n with open(out_file, 'w') as out_handle:\n samfile = pysam.Samfile(out_sam, 'r')\n for a in samfile.fetch():\n if not a.is_unmapped:\n nm = int([t[1] for t in a.tags if t[0] == 'NM'][0])\n a = makeBED(a)\n if not a:\n continue\n ref, locus = get_loci(samfile.getrname(int(a.chr)), loci)\n hits[a.name].append((nm, '%s %s %s %s %s %s' % (a.name, a.\n name.split('-')[0], locus, ref, a.start, a.end)))\n for hit in hits.values():\n nm = hit[0][0]\n for l in hit:\n if nm == l[0]:\n print(l[1], file=out_handle)\n return out_file\n", "role": "user" }, { "content": "read_alignment", "role": "assistant" } ]
def x(args, version='CURRENT'): if not args.hairpin or not args.mirna: logger.info('Working with version %s' % version) hairpin_fn = op.join(op.abspath(args.out), 'hairpin.fa.gz') mirna_fn = op.join(op.abspath(args.out), 'miRNA.str.gz') if not file_exists(hairpin_fn): cmd_h = ( 'wget ftp://mirbase.org/pub/mirbase/%s/hairpin.fa.gz -O %s && gunzip -f !$' % (version, hairpin_fn)) do.run(cmd_h, 'download hairpin') if not file_exists(mirna_fn): cmd_m = ( 'wget ftp://mirbase.org/pub/mirbase/%s/miRNA.str.gz -O %s && gunzip -f !$' % (version, mirna_fn)) do.run(cmd_m, 'download mirna') else: return args.hairpin, args.mirna
download_mirbase
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args, version='CURRENT'):\n if not args.hairpin or not args.mirna:\n logger.info('Working with version %s' % version)\n hairpin_fn = op.join(op.abspath(args.out), 'hairpin.fa.gz')\n mirna_fn = op.join(op.abspath(args.out), 'miRNA.str.gz')\n if not file_exists(hairpin_fn):\n cmd_h = (\n 'wget ftp://mirbase.org/pub/mirbase/%s/hairpin.fa.gz -O %s && gunzip -f !$'\n % (version, hairpin_fn))\n do.run(cmd_h, 'download hairpin')\n if not file_exists(mirna_fn):\n cmd_m = (\n 'wget ftp://mirbase.org/pub/mirbase/%s/miRNA.str.gz -O %s && gunzip -f !$'\n % (version, mirna_fn))\n do.run(cmd_m, 'download mirna')\n else:\n return args.hairpin, args.mirna\n", "role": "user" }, { "content": "download_mirbase", "role": "assistant" } ]
def x(name, idx): p = re.compile('.[aA-zZ]+_x[0-9]+') if p.match(name): tags = name[1:].split('_x') return '>%s_%s_x%s' % (tags[0], idx, tags[1]) return name.replace('@', '>')
make_unique
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, idx):\n p = re.compile('.[aA-zZ]+_x[0-9]+')\n if p.match(name):\n tags = name[1:].split('_x')\n return '>%s_%s_x%s' % (tags[0], idx, tags[1])\n return name.replace('@', '>')\n", "role": "user" }, { "content": "make_unique", "role": "assistant" } ]
def x(fn): out_file = op.splitext(fn)[0] + '_unique.fa' idx = 0 if not file_exists(out_file): with open(out_file, 'w') as out_handle: with open(fn) as in_handle: for line in in_handle: if line.startswith('@') or line.startswith('>'): fixed_name = _make_unique(line.strip(), idx) seq = in_handle.next().strip() counts = _get_freq(fixed_name) if len(seq) < 26 and (counts > 1 or counts == 0): idx += 1 print(fixed_name, file=out_handle, end='\n') print(seq, file=out_handle, end='\n') if line.startswith('@'): in_handle.next() in_handle.next() return out_file
filter_seqs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fn):\n out_file = op.splitext(fn)[0] + '_unique.fa'\n idx = 0\n if not file_exists(out_file):\n with open(out_file, 'w') as out_handle:\n with open(fn) as in_handle:\n for line in in_handle:\n if line.startswith('@') or line.startswith('>'):\n fixed_name = _make_unique(line.strip(), idx)\n seq = in_handle.next().strip()\n counts = _get_freq(fixed_name)\n if len(seq) < 26 and (counts > 1 or counts == 0):\n idx += 1\n print(fixed_name, file=out_handle, end='\\n')\n print(seq, file=out_handle, end='\\n')\n if line.startswith('@'):\n in_handle.next()\n in_handle.next()\n return out_file\n", "role": "user" }, { "content": "filter_seqs", "role": "assistant" } ]
def x(precursor, sps): hairpin = defaultdict(str) name = None with open(precursor) as in_handle: for line in in_handle: if line.startswith('>'): if hairpin[name]: hairpin[name] = hairpin[name] + 'NNNNNNNNNNNN' name = line.strip().replace('>', ' ').split()[0] else: hairpin[name] += line.strip() hairpin[name] = hairpin[name] + 'NNNNNNNNNNNN' return hairpin
read_precursor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(precursor, sps):\n hairpin = defaultdict(str)\n name = None\n with open(precursor) as in_handle:\n for line in in_handle:\n if line.startswith('>'):\n if hairpin[name]:\n hairpin[name] = hairpin[name] + 'NNNNNNNNNNNN'\n name = line.strip().replace('>', ' ').split()[0]\n else:\n hairpin[name] += line.strip()\n hairpin[name] = hairpin[name] + 'NNNNNNNNNNNN'\n return hairpin\n", "role": "user" }, { "content": "read_precursor", "role": "assistant" } ]
def x(gtf): if not gtf: return gtf db = defaultdict(list) with open(gtf) as in_handle: for line in in_handle: if line.startswith('#'): continue cols = line.strip().split('\t') name = [n.split('=')[1] for n in cols[-1].split(';') if n. startswith('Name')] chrom, start, end, strand = cols[0], cols[3], cols[4], cols[6] if cols[2] == 'miRNA_primary_transcript': db[name[0]].append([chrom, int(start), int(end), strand]) return db
read_gtf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(gtf):\n if not gtf:\n return gtf\n db = defaultdict(list)\n with open(gtf) as in_handle:\n for line in in_handle:\n if line.startswith('#'):\n continue\n cols = line.strip().split('\\t')\n name = [n.split('=')[1] for n in cols[-1].split(';') if n.\n startswith('Name')]\n chrom, start, end, strand = cols[0], cols[3], cols[4], cols[6]\n if cols[2] == 'miRNA_primary_transcript':\n db[name[0]].append([chrom, int(start), int(end), strand])\n return db\n", "role": "user" }, { "content": "read_gtf", "role": "assistant" } ]
def x(sequence, start, mirna, precursor, iso): dif = abs(mirna[0] - start) if start < mirna[0]: iso.t5 = sequence[:dif].upper() elif start > mirna[0]: iso.t5 = precursor[mirna[0] - 1:mirna[0] - 1 + dif].lower() elif start == mirna[0]: iso.t5 = 'NA' if dif > 4: logger.debug('start > 3 %s %s %s %s %s' % (start, len(sequence), dif, mirna, iso.format())) return None end = start + (len(sequence) - len(iso.add)) - 1 dif = abs(mirna[1] - end) if iso.add: sequence = sequence[:-len(iso.add)] if end > mirna[1]: iso.t3 = sequence[-dif:].upper() elif end < mirna[1]: iso.t3 = precursor[mirna[1] - dif:mirna[1]].lower() elif end == mirna[1]: iso.t3 = 'NA' if dif > 4: logger.debug('end > 3 %s %s %s %s %s' % (len(sequence), end, dif, mirna, iso.format())) return None logger.debug('%s %s %s %s %s %s' % (start, len(sequence), end, dif, mirna, iso.format())) return True
coord
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sequence, start, mirna, precursor, iso):\n dif = abs(mirna[0] - start)\n if start < mirna[0]:\n iso.t5 = sequence[:dif].upper()\n elif start > mirna[0]:\n iso.t5 = precursor[mirna[0] - 1:mirna[0] - 1 + dif].lower()\n elif start == mirna[0]:\n iso.t5 = 'NA'\n if dif > 4:\n logger.debug('start > 3 %s %s %s %s %s' % (start, len(sequence),\n dif, mirna, iso.format()))\n return None\n end = start + (len(sequence) - len(iso.add)) - 1\n dif = abs(mirna[1] - end)\n if iso.add:\n sequence = sequence[:-len(iso.add)]\n if end > mirna[1]:\n iso.t3 = sequence[-dif:].upper()\n elif end < mirna[1]:\n iso.t3 = precursor[mirna[1] - dif:mirna[1]].lower()\n elif end == mirna[1]:\n iso.t3 = 'NA'\n if dif > 4:\n logger.debug('end > 3 %s %s %s %s %s' % (len(sequence), end, dif,\n mirna, iso.format()))\n return None\n logger.debug('%s %s %s %s %s %s' % (start, len(sequence), end, dif,\n mirna, iso.format()))\n return True\n", "role": "user" }, { "content": "coord", "role": "assistant" } ]
def x(reads, mirbase_ref, precursors): for r in reads: for p in reads[r].precursors: start = reads[r].precursors[p].start + 1 end = start + len(reads[r].sequence) for mature in mirbase_ref[p]: mi = mirbase_ref[p][mature] is_iso = _coord(reads[r].sequence, start, mi, precursors[p], reads[r].precursors[p]) logger.debug( '{r} {p} {start} {is_iso} {mature} {mi} {mature_s}'. format(s=reads[r].sequence, mature_s=precursors[p][mi[0 ] - 1:mi[1]], **locals())) if is_iso: reads[r].precursors[p].mirna = mature break return reads
annotate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(reads, mirbase_ref, precursors):\n for r in reads:\n for p in reads[r].precursors:\n start = reads[r].precursors[p].start + 1\n end = start + len(reads[r].sequence)\n for mature in mirbase_ref[p]:\n mi = mirbase_ref[p][mature]\n is_iso = _coord(reads[r].sequence, start, mi, precursors[p],\n reads[r].precursors[p])\n logger.debug(\n '{r} {p} {start} {is_iso} {mature} {mi} {mature_s}'.\n format(s=reads[r].sequence, mature_s=precursors[p][mi[0\n ] - 1:mi[1]], **locals()))\n if is_iso:\n reads[r].precursors[p].mirna = mature\n break\n return reads\n", "role": "user" }, { "content": "annotate", "role": "assistant" } ]
def x(seq, precursor, start): error = set() pattern_addition = [[1, 1, 0], [1, 0, 1], [0, 1, 0], [0, 1, 1], [0, 0, 1], [1, 1, 1]] for pos in range(0, len(seq)): if seq[pos] != precursor[start + pos]: error.add(pos) subs, add = [], [] for e in error: if e < len(seq) - 3: subs.append([e, seq[e], precursor[start + e]]) pattern, error_add = [], [] for e in range(len(seq) - 3, len(seq)): if e in error: pattern.append(1) error_add.append(e) else: pattern.append(0) for p in pattern_addition: if pattern == p: add = seq[error_add[0]:] break if not add and error_add: for e in error_add: subs.append([e, seq[e], precursor[start + e]]) return subs, add
realign
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq, precursor, start):\n error = set()\n pattern_addition = [[1, 1, 0], [1, 0, 1], [0, 1, 0], [0, 1, 1], [0, 0, \n 1], [1, 1, 1]]\n for pos in range(0, len(seq)):\n if seq[pos] != precursor[start + pos]:\n error.add(pos)\n subs, add = [], []\n for e in error:\n if e < len(seq) - 3:\n subs.append([e, seq[e], precursor[start + e]])\n pattern, error_add = [], []\n for e in range(len(seq) - 3, len(seq)):\n if e in error:\n pattern.append(1)\n error_add.append(e)\n else:\n pattern.append(0)\n for p in pattern_addition:\n if pattern == p:\n add = seq[error_add[0]:]\n break\n if not add and error_add:\n for e in error_add:\n subs.append([e, seq[e], precursor[start + e]])\n return subs, add\n", "role": "user" }, { "content": "realign", "role": "assistant" } ]
def x(reads): new_reads = defaultdict(realign) for r in reads: world = {} sc = 0 for p in reads[r].precursors: world[p] = reads[r].precursors[p].get_score(len(reads[r].sequence)) if sc < world[p]: sc = world[p] new_reads[r] = reads[r] for p in world: logger.debug('score %s %s %s' % (r, p, world[p])) if sc != world[p]: logger.debug('remove %s %s %s' % (r, p, world[p])) new_reads[r].remove_precursor(p) return new_reads
clean_hits
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(reads):\n new_reads = defaultdict(realign)\n for r in reads:\n world = {}\n sc = 0\n for p in reads[r].precursors:\n world[p] = reads[r].precursors[p].get_score(len(reads[r].sequence))\n if sc < world[p]:\n sc = world[p]\n new_reads[r] = reads[r]\n for p in world:\n logger.debug('score %s %s %s' % (r, p, world[p]))\n if sc != world[p]:\n logger.debug('remove %s %s %s' % (r, p, world[p]))\n new_reads[r].remove_precursor(p)\n return new_reads\n", "role": "user" }, { "content": "clean_hits", "role": "assistant" } ]
def x(bam_fn, precursors): mode = 'r' if bam_fn.endswith('sam') else 'rb' handle = pysam.Samfile(bam_fn, mode) reads = defaultdict(realign) for line in handle: chrom = handle.getrname(line.reference_id) query_name = line.query_name if query_name not in reads: reads[query_name].sequence = line.query_sequence iso = isomir() iso.align = line iso.start = line.reference_start iso.subs, iso.add = _realign(reads[query_name].sequence, precursors [chrom], line.reference_start) reads[query_name].set_precursor(chrom, iso) reads = _clean_hits(reads) return reads
read_bam
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(bam_fn, precursors):\n mode = 'r' if bam_fn.endswith('sam') else 'rb'\n handle = pysam.Samfile(bam_fn, mode)\n reads = defaultdict(realign)\n for line in handle:\n chrom = handle.getrname(line.reference_id)\n query_name = line.query_name\n if query_name not in reads:\n reads[query_name].sequence = line.query_sequence\n iso = isomir()\n iso.align = line\n iso.start = line.reference_start\n iso.subs, iso.add = _realign(reads[query_name].sequence, precursors\n [chrom], line.reference_start)\n reads[query_name].set_precursor(chrom, iso)\n reads = _clean_hits(reads)\n return reads\n", "role": "user" }, { "content": "read_bam", "role": "assistant" } ]
def x(in_fn): args = argparse.Namespace() args.fastq = in_fn args.minimum = 1 args.out = op.dirname(in_fn) return collapse_fastq(args)
collapse_fastq
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(in_fn):\n args = argparse.Namespace()\n args.fastq = in_fn\n args.minimum = 1\n args.out = op.dirname(in_fn)\n return collapse_fastq(args)\n", "role": "user" }, { "content": "collapse_fastq", "role": "assistant" } ]
def x(fn, precursors): with open(fn) as handle: reads = defaultdict(realign) for line in handle: query_name, seq, chrom, reference_start, end, mism, add = (line .split()) reference_start = int(reference_start) if query_name not in reads: reads[query_name].sequence = seq iso = isomir() iso.align = line iso.start = reference_start iso.subs, iso.add = _realign(reads[query_name].sequence, precursors[chrom], reference_start) logger.debug('%s %s %s %s %s' % (query_name, reference_start, chrom, iso.subs, iso.add)) if len(iso.subs) > 1: continue reads[query_name].set_precursor(chrom, iso) reads = _clean_hits(reads) return reads
read_pyMatch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fn, precursors):\n with open(fn) as handle:\n reads = defaultdict(realign)\n for line in handle:\n query_name, seq, chrom, reference_start, end, mism, add = (line\n .split())\n reference_start = int(reference_start)\n if query_name not in reads:\n reads[query_name].sequence = seq\n iso = isomir()\n iso.align = line\n iso.start = reference_start\n iso.subs, iso.add = _realign(reads[query_name].sequence,\n precursors[chrom], reference_start)\n logger.debug('%s %s %s %s %s' % (query_name, reference_start,\n chrom, iso.subs, iso.add))\n if len(iso.subs) > 1:\n continue\n reads[query_name].set_precursor(chrom, iso)\n reads = _clean_hits(reads)\n return reads\n", "role": "user" }, { "content": "read_pyMatch", "role": "assistant" } ]
def x(subs): if subs != '0': subs = [[subs.replace(subs[-2:], ''), subs[-2], subs[-1]]] return subs
parse_mut
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(subs):\n if subs != '0':\n subs = [[subs.replace(subs[-2:], ''), subs[-2], subs[-1]]]\n return subs\n", "role": "user" }, { "content": "parse_mut", "role": "assistant" } ]
def x(fn): reads = defaultdict(realign) with open(fn) as in_handle: in_handle.next() for line in in_handle: cols = line.strip().split('\t') iso = isomir() query_name, seq = cols[1], cols[0] chrom, reference_start = cols[-2], cols[3] iso.mirna = cols[3] subs, add, iso.t5, iso.t3 = cols[6:10] if query_name not in reads: reads[query_name].sequence = seq iso.align = line iso.start = reference_start iso.subs, iso.add = _parse_mut(subs), add logger.debug('%s %s %s %s %s' % (query_name, reference_start, chrom, iso.subs, iso.add)) reads[query_name].set_precursor(chrom, iso) return reads
read_miraligner
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fn):\n reads = defaultdict(realign)\n with open(fn) as in_handle:\n in_handle.next()\n for line in in_handle:\n cols = line.strip().split('\\t')\n iso = isomir()\n query_name, seq = cols[1], cols[0]\n chrom, reference_start = cols[-2], cols[3]\n iso.mirna = cols[3]\n subs, add, iso.t5, iso.t3 = cols[6:10]\n if query_name not in reads:\n reads[query_name].sequence = seq\n iso.align = line\n iso.start = reference_start\n iso.subs, iso.add = _parse_mut(subs), add\n logger.debug('%s %s %s %s %s' % (query_name, reference_start,\n chrom, iso.subs, iso.add))\n reads[query_name].set_precursor(chrom, iso)\n return reads\n", "role": "user" }, { "content": "read_miraligner", "role": "assistant" } ]
def x(fn, out_file, species, hairpin, out): tool = _get_miraligner() path_db = op.dirname(op.abspath(hairpin)) cmd = ( '{tool} -freq -i {fn} -o {out_file} -s {species} -db {path_db} -sub 1 -trim 3 -add 3' ) if not file_exists(out_file): logger.info('Running miraligner with %s' % fn) do.run(cmd.format(**locals()), 'miraligner with %s' % fn) shutil.move(out_file + '.mirna', out_file) return out_file
cmd_miraligner
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fn, out_file, species, hairpin, out):\n tool = _get_miraligner()\n path_db = op.dirname(op.abspath(hairpin))\n cmd = (\n '{tool} -freq -i {fn} -o {out_file} -s {species} -db {path_db} -sub 1 -trim 3 -add 3'\n )\n if not file_exists(out_file):\n logger.info('Running miraligner with %s' % fn)\n do.run(cmd.format(**locals()), 'miraligner with %s' % fn)\n shutil.move(out_file + '.mirna', out_file)\n return out_file\n", "role": "user" }, { "content": "cmd_miraligner", "role": "assistant" } ]
def x(out_files, hairpin, gff3, species, out): args = argparse.Namespace() args.hairpin = hairpin args.sps = species args.gtf = gff3 args.add_extra = True args.files = out_files args.format = 'seqbuster' args.out_format = 'gff' args.out = out reader(args)
mirtop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(out_files, hairpin, gff3, species, out):\n args = argparse.Namespace()\n args.hairpin = hairpin\n args.sps = species\n args.gtf = gff3\n args.add_extra = True\n args.files = out_files\n args.format = 'seqbuster'\n args.out_format = 'gff'\n args.out = out\n reader(args)\n", "role": "user" }, { "content": "mirtop", "role": "assistant" } ]
def x(dts): df = pd.concat(dts) ma = df.pivot(index='isomir', columns='sample', values='counts') ma_mirna = ma ma = ma.fillna(0) ma_mirna['mirna'] = [m.split(':')[0] for m in ma.index.values] ma_mirna = ma_mirna.groupby(['mirna']).sum() ma_mirna = ma_mirna.fillna(0) return ma, ma_mirna
merge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dts):\n df = pd.concat(dts)\n ma = df.pivot(index='isomir', columns='sample', values='counts')\n ma_mirna = ma\n ma = ma.fillna(0)\n ma_mirna['mirna'] = [m.split(':')[0] for m in ma.index.values]\n ma_mirna = ma_mirna.groupby(['mirna']).sum()\n ma_mirna = ma_mirna.fillna(0)\n return ma, ma_mirna\n", "role": "user" }, { "content": "merge", "role": "assistant" } ]
def x(out_dts, out_dir): ma, ma_mirna = _merge(out_dts) out_ma = op.join(out_dir, 'counts.tsv') out_ma_mirna = op.join(out_dir, 'counts_mirna.tsv') ma.to_csv(out_ma, sep='\t') ma_mirna.to_csv(out_ma_mirna, sep='\t') return out_ma_mirna, out_ma
create_counts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(out_dts, out_dir):\n ma, ma_mirna = _merge(out_dts)\n out_ma = op.join(out_dir, 'counts.tsv')\n out_ma_mirna = op.join(out_dir, 'counts_mirna.tsv')\n ma.to_csv(out_ma, sep='\\t')\n ma_mirna.to_csv(out_ma_mirna, sep='\\t')\n return out_ma_mirna, out_ma\n", "role": "user" }, { "content": "create_counts", "role": "assistant" } ]
def x(args): hairpin, mirna = _download_mirbase(args) precursors = _read_precursor(args.hairpin, args.sps) matures = _read_mature(args.mirna, args.sps) gtf = _read_gtf(args.gtf) out_dts = [] out_files = [] for bam_fn in args.files: sample = op.splitext(op.basename(bam_fn))[0] logger.info('Reading %s' % bam_fn) if bam_fn.endswith('bam') or bam_fn.endswith('sam'): bam_fn = _sam_to_bam(bam_fn) bam_sort_by_n = op.splitext(bam_fn)[0] + '_sort' pysam.sort('-n', bam_fn, bam_sort_by_n) reads = _read_bam(bam_sort_by_n + '.bam', precursors) elif bam_fn.endswith('fasta') or bam_fn.endswith('fa' ) or bam_fn.endswith('fastq'): if args.collapse: bam_fn = _collapse_fastq(bam_fn) out_file = op.join(args.out, sample + '.premirna') bam_fn = _filter_seqs(bam_fn) if args.miraligner: _cmd_miraligner(bam_fn, out_file, args.sps, args.hairpin, args.out) reads = _read_miraligner(out_file) out_files.append(out_file) else: raise ValueError('Format not recognized.') if args.miraligner: _mirtop(out_files, args.hairpin, args.gtf, args.sps, args.out) if not args.miraligner: reads = _annotate(reads, matures, precursors) out_file = op.join(args.out, sample + '.mirna') out_file, dt, dt_pre = _tab_output(reads, out_file, sample) try: vcf_file = op.join(args.out, sample + '.vcf') if not file_exists(vcf_file): create_vcf(dt_pre, matures, gtf, vcf_file) try: import vcf vcf.Reader(filename=vcf_file) except Exception as e: logger.warning(e.__doc__) logger.warning(e.message) except Exception as e: logger.warning(e.__doc__) logger.warning(e.message) if isinstance(dt, pd.DataFrame): out_dts.append(dt) if out_dts: _create_counts(out_dts, args.out) else: print('No files analyzed!')
miraligner
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args):\n hairpin, mirna = _download_mirbase(args)\n precursors = _read_precursor(args.hairpin, args.sps)\n matures = _read_mature(args.mirna, args.sps)\n gtf = _read_gtf(args.gtf)\n out_dts = []\n out_files = []\n for bam_fn in args.files:\n sample = op.splitext(op.basename(bam_fn))[0]\n logger.info('Reading %s' % bam_fn)\n if bam_fn.endswith('bam') or bam_fn.endswith('sam'):\n bam_fn = _sam_to_bam(bam_fn)\n bam_sort_by_n = op.splitext(bam_fn)[0] + '_sort'\n pysam.sort('-n', bam_fn, bam_sort_by_n)\n reads = _read_bam(bam_sort_by_n + '.bam', precursors)\n elif bam_fn.endswith('fasta') or bam_fn.endswith('fa'\n ) or bam_fn.endswith('fastq'):\n if args.collapse:\n bam_fn = _collapse_fastq(bam_fn)\n out_file = op.join(args.out, sample + '.premirna')\n bam_fn = _filter_seqs(bam_fn)\n if args.miraligner:\n _cmd_miraligner(bam_fn, out_file, args.sps, args.hairpin,\n args.out)\n reads = _read_miraligner(out_file)\n out_files.append(out_file)\n else:\n raise ValueError('Format not recognized.')\n if args.miraligner:\n _mirtop(out_files, args.hairpin, args.gtf, args.sps, args.out)\n if not args.miraligner:\n reads = _annotate(reads, matures, precursors)\n out_file = op.join(args.out, sample + '.mirna')\n out_file, dt, dt_pre = _tab_output(reads, out_file, sample)\n try:\n vcf_file = op.join(args.out, sample + '.vcf')\n if not file_exists(vcf_file):\n create_vcf(dt_pre, matures, gtf, vcf_file)\n try:\n import vcf\n vcf.Reader(filename=vcf_file)\n except Exception as e:\n logger.warning(e.__doc__)\n logger.warning(e.message)\n except Exception as e:\n logger.warning(e.__doc__)\n logger.warning(e.message)\n if isinstance(dt, pd.DataFrame):\n out_dts.append(dt)\n if out_dts:\n _create_counts(out_dts, args.out)\n else:\n print('No files analyzed!')\n", "role": "user" }, { "content": "miraligner", "role": "assistant" } ]
def x(new_dir): cur_dir = os.getcwd() _mkdir(new_dir) os.chdir(new_dir) try: yield finally: os.chdir(cur_dir)
chdir
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(new_dir):\n cur_dir = os.getcwd()\n _mkdir(new_dir)\n os.chdir(new_dir)\n try:\n yield\n finally:\n os.chdir(cur_dir)\n", "role": "user" }, { "content": "chdir", "role": "assistant" } ]
def x(): target = op.join('seqcluster', 'flavor') url = 'https://github.com/lpantano/seqcluster.git' if not os.path.exists(target): subprocess.check_call(['git', 'clone', '-b', 'flavor', '--single-branch', url]) return op.abspath(target)
get_flavor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n target = op.join('seqcluster', 'flavor')\n url = 'https://github.com/lpantano/seqcluster.git'\n if not os.path.exists(target):\n subprocess.check_call(['git', 'clone', '-b', 'flavor',\n '--single-branch', url])\n return op.abspath(target)\n", "role": "user" }, { "content": "get_flavor", "role": "assistant" } ]
def x(path, args): try: from bcbio import install as bcb except: raise ImportError('It needs bcbio to do the quick installation.') path_flavor = _get_flavor() s = {'fabricrc_overrides': {'system_install': path, 'local_install': os .path.join(path, 'local_install'), 'use_sudo': 'false', 'edition': 'minimal'}} s = {'flavor': path_flavor, 'vm_provider': 'novm', 'hostname': 'localhost', 'fabricrc_overrides': {'edition': 'minimal', 'use_sudo': 'false', 'keep_isolated': 'true', 'conda_cmd': bcb. _get_conda_bin(), 'distribution': '__auto__', 'dist_name': '__auto__'}} s['actions'] = ['install_biolinux'] s['fabricrc_overrides']['system_install'] = path s['fabricrc_overrides']['local_install'] = os.path.join(path, 'local_install') cbl = bcb.get_cloudbiolinux(bcb.REMOTES) sys.path.insert(0, cbl['dir']) cbl_deploy = __import__('cloudbio.deploy', fromlist=['deploy']) cbl_deploy.deploy(s)
install
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path, args):\n try:\n from bcbio import install as bcb\n except:\n raise ImportError('It needs bcbio to do the quick installation.')\n path_flavor = _get_flavor()\n s = {'fabricrc_overrides': {'system_install': path, 'local_install': os\n .path.join(path, 'local_install'), 'use_sudo': 'false', 'edition':\n 'minimal'}}\n s = {'flavor': path_flavor, 'vm_provider': 'novm', 'hostname':\n 'localhost', 'fabricrc_overrides': {'edition': 'minimal',\n 'use_sudo': 'false', 'keep_isolated': 'true', 'conda_cmd': bcb.\n _get_conda_bin(), 'distribution': '__auto__', 'dist_name': '__auto__'}}\n s['actions'] = ['install_biolinux']\n s['fabricrc_overrides']['system_install'] = path\n s['fabricrc_overrides']['local_install'] = os.path.join(path,\n 'local_install')\n cbl = bcb.get_cloudbiolinux(bcb.REMOTES)\n sys.path.insert(0, cbl['dir'])\n cbl_deploy = __import__('cloudbio.deploy', fromlist=['deploy'])\n cbl_deploy.deploy(s)\n", "role": "user" }, { "content": "install", "role": "assistant" } ]
def x(data_dir, path_flavor, args): try: from bcbio import install as bcb except: raise ImportError('It needs bcbio to do the quick installation.') bio_data = op.join(path_flavor, '../biodata.yaml') s = {'flavor': path_flavor, 'vm_provider': 'novm', 'hostname': 'localhost', 'fabricrc_overrides': {'edition': 'minimal', 'use_sudo': 'false', 'keep_isolated': 'true', 'conda_cmd': bcb. _get_conda_bin(), 'distribution': '__auto__', 'dist_name': '__auto__'}} s['actions'] = ['setup_biodata'] s['fabricrc_overrides']['data_files'] = data_dir s['fabricrc_overrides']['galaxy_home'] = os.path.join(data_dir, 'galaxy') cbl = bcb.get_cloudbiolinux(bcb.REMOTES) s['genomes'] = _get_biodata(bio_data, args) sys.path.insert(0, cbl['dir']) cbl_deploy = __import__('cloudbio.deploy', fromlist=['deploy']) cbl_deploy.deploy(s)
install_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data_dir, path_flavor, args):\n try:\n from bcbio import install as bcb\n except:\n raise ImportError('It needs bcbio to do the quick installation.')\n bio_data = op.join(path_flavor, '../biodata.yaml')\n s = {'flavor': path_flavor, 'vm_provider': 'novm', 'hostname':\n 'localhost', 'fabricrc_overrides': {'edition': 'minimal',\n 'use_sudo': 'false', 'keep_isolated': 'true', 'conda_cmd': bcb.\n _get_conda_bin(), 'distribution': '__auto__', 'dist_name': '__auto__'}}\n s['actions'] = ['setup_biodata']\n s['fabricrc_overrides']['data_files'] = data_dir\n s['fabricrc_overrides']['galaxy_home'] = os.path.join(data_dir, 'galaxy')\n cbl = bcb.get_cloudbiolinux(bcb.REMOTES)\n s['genomes'] = _get_biodata(bio_data, args)\n sys.path.insert(0, cbl['dir'])\n cbl_deploy = __import__('cloudbio.deploy', fromlist=['deploy'])\n cbl_deploy.deploy(s)\n", "role": "user" }, { "content": "install_data", "role": "assistant" } ]
def x(args): logger.info(args) logger.info('reading sequeces') out_file = os.path.abspath(os.path.splitext(args.json)[0] + '_prediction.json') data = load_data(args.json) out_dir = os.path.abspath(safe_dirs(os.path.join(args.out, 'predictions'))) logger.info('make predictions') data = is_tRNA(data, out_dir, args) if args.coral: logger.info('make CoRaL predictions') run_coral(data, out_dir, args) write_data(data[0], out_file) logger.info('Done')
predictions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args):\n logger.info(args)\n logger.info('reading sequeces')\n out_file = os.path.abspath(os.path.splitext(args.json)[0] +\n '_prediction.json')\n data = load_data(args.json)\n out_dir = os.path.abspath(safe_dirs(os.path.join(args.out, 'predictions')))\n logger.info('make predictions')\n data = is_tRNA(data, out_dir, args)\n if args.coral:\n logger.info('make CoRaL predictions')\n run_coral(data, out_dir, args)\n write_data(data[0], out_file)\n logger.info('Done')\n", "role": "user" }, { "content": "predictions", "role": "assistant" } ]
def x(c, loci): data_loci = [[x, loci[x].chr, int(loci[x].start), int(loci[x].end), loci[x].strand, len(c.loci2seq[x])] for x in list(c.loci2seq.keys())] data_loci = sorted(data_loci, key=itemgetter(5), reverse=True) return data_loci
sort_precursor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(c, loci):\n data_loci = [[x, loci[x].chr, int(loci[x].start), int(loci[x].end),\n loci[x].strand, len(c.loci2seq[x])] for x in list(c.loci2seq.keys())]\n data_loci = sorted(data_loci, key=itemgetter(5), reverse=True)\n return data_loci\n", "role": "user" }, { "content": "sort_precursor", "role": "assistant" } ]
def x(clus, loci): data_loci = sort_precursor(clus, loci) current_size = data_loci[0][5] best = 0 for item, locus in enumerate(data_loci): if locus[3] - locus[2] > 70: if locus[5] > current_size * 0.8: best = item break best_loci = data_loci[best] del data_loci[best] data_loci.insert(0, best_loci) return data_loci
best_precursor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(clus, loci):\n data_loci = sort_precursor(clus, loci)\n current_size = data_loci[0][5]\n best = 0\n for item, locus in enumerate(data_loci):\n if locus[3] - locus[2] > 70:\n if locus[5] > current_size * 0.8:\n best = item\n break\n best_loci = data_loci[best]\n del data_loci[best]\n data_loci.insert(0, best_loci)\n return data_loci\n", "role": "user" }, { "content": "best_precursor", "role": "assistant" } ]
def x(in_file): _, ext = os.path.splitext(in_file) if ext == '.gz': return gzip.open(in_file, 'rb') if ext in ['.fastq', '.fq']: return open(in_file, 'r') return open(in_file, 'r')
open_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(in_file):\n _, ext = os.path.splitext(in_file)\n if ext == '.gz':\n return gzip.open(in_file, 'rb')\n if ext in ['.fastq', '.fq']:\n return open(in_file, 'r')\n return open(in_file, 'r')\n", "role": "user" }, { "content": "open_file", "role": "assistant" } ]
def x(mirna, snp, out): with open(out, 'w') as out_handle: print(_create_header(mirna, snp, out), file=out_handle, end='') snp_in_mirna = pybedtools.BedTool(snp).intersect(pybedtools.BedTool (mirna), wo=True) for single in snp_in_mirna: if single[10] == 'miRNA' and len(single[3]) + len(single[4]) == 2: line = [] rel_p = _lift_positions(single) line.append(_get_mirna_name(single[16])) line.append(str(rel_p)) line.append(single[2]) line.append(_complement(single[3], single[14])) line.append(_complement(single[4], single[14])) line.append(single[5]) line.append(single[6]) line.append(single[7]) print('\t'.join(line), file=out_handle, end='') return out
select_snps
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mirna, snp, out):\n with open(out, 'w') as out_handle:\n print(_create_header(mirna, snp, out), file=out_handle, end='')\n snp_in_mirna = pybedtools.BedTool(snp).intersect(pybedtools.BedTool\n (mirna), wo=True)\n for single in snp_in_mirna:\n if single[10] == 'miRNA' and len(single[3]) + len(single[4]) == 2:\n line = []\n rel_p = _lift_positions(single)\n line.append(_get_mirna_name(single[16]))\n line.append(str(rel_p))\n line.append(single[2])\n line.append(_complement(single[3], single[14]))\n line.append(_complement(single[4], single[14]))\n line.append(single[5])\n line.append(single[6])\n line.append(single[7])\n print('\\t'.join(line), file=out_handle, end='')\n return out\n", "role": "user" }, { "content": "select_snps", "role": "assistant" } ]
def x(x, s, p): if 1.0 * x / s >= p: return True elif stat.binom_test(x, s, p) > 0.01: return True return False
up_threshold
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, s, p):\n if 1.0 * x / s >= p:\n return True\n elif stat.binom_test(x, s, p) > 0.01:\n return True\n return False\n", "role": "user" }, { "content": "up_threshold", "role": "assistant" } ]
def x(positions): scores = [] for start in range(0, len(positions) - 17, 5): end = start = 17 scores.add(_enrichment(positions[start:end], positions[:start], positions[end:]))
scan
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(positions):\n scores = []\n for start in range(0, len(positions) - 17, 5):\n end = start = 17\n scores.add(_enrichment(positions[start:end], positions[:start],\n positions[end:]))\n", "role": "user" }, { "content": "scan", "role": "assistant" } ]
def x(args): args = _check_args(args) read_stats_file = op.join(args.dir_out, 'read_stats.tsv') if file_exists(read_stats_file): os.remove(read_stats_file) bam_file, seq_obj = _clean_alignment(args) logger.info('Parsing matrix file') seqL, y, l = parse_ma_file(seq_obj, args.ffile) logger.info('counts after: %s' % sum(y.values())) logger.info('# sequences after: %s' % l) dt = pd.DataFrame({'sample': y.keys(), 'counts': y.values()}) dt['step'] = 'aligned' dt.to_csv(read_stats_file, sep='\t', index=False, header=False, mode='a') if len(seqL.keys()) < 10: logger.error( 'It seems you have low coverage. Please check your fastq files have enough sequences.' ) raise ValueError('So few sequences.') logger.info('Cleaning bam file') y, l = _total_counts(seqL.keys(), seqL) logger.info('counts after: %s' % sum(y.values())) logger.info('# sequences after: %s' % l) dt = pd.DataFrame({'sample': y.keys(), 'counts': y.values()}) dt['step'] = 'cleaned' dt.to_csv(read_stats_file, sep='\t', index=False, header=False, mode='a') clusL = _create_clusters(seqL, bam_file, args) y, l = _total_counts(clusL.seq.keys(), clusL.seq, aligned=True) logger.info('counts after: %s' % sum(y.values())) logger.info('# sequences after: %s' % l) dt = pd.DataFrame({'sample': y.keys(), 'counts': y.values()}) dt['step'] = 'clusters' dt.to_csv(read_stats_file, sep='\t', index=False, header=False, mode='a') logger.info('Solving multi-mapping events in the network of clusters') clusLred = _cleaning(clusL, args.dir_out) y, l = _total_counts(clusLred.clus, seqL) logger.info('counts after: %s' % sum(y.values())) logger.info('# sequences after: %s' % l) dt = pd.DataFrame({'sample': y.keys(), 'counts': y.values()}) dt['step'] = 'meta-cluster' dt.to_csv(read_stats_file, sep='\t', index=False, header=False, mode='a') logger.info('Clusters up to %s' % len(clusLred.clus.keys())) if args.show: logger.info('Creating sequences alignment to precursor') clusLred = show_seq(clusLred, args.index) clusLred = peak_calling(clusLred) clusLred = _annotate(args, clusLred) logger.info('Creating json and count matrix') json_file = _create_json(clusLred, args) logger.info('Output file in: %s' % args.dir_out) if args.db: name = args.db + '.db' logger.info('Create database: database/' + name) data = load_data(json_file) out_dir = op.join(args.dir_out, 'database') make_database(data, name, out_dir) logger.info('Finished')
cluster
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args):\n args = _check_args(args)\n read_stats_file = op.join(args.dir_out, 'read_stats.tsv')\n if file_exists(read_stats_file):\n os.remove(read_stats_file)\n bam_file, seq_obj = _clean_alignment(args)\n logger.info('Parsing matrix file')\n seqL, y, l = parse_ma_file(seq_obj, args.ffile)\n logger.info('counts after: %s' % sum(y.values()))\n logger.info('# sequences after: %s' % l)\n dt = pd.DataFrame({'sample': y.keys(), 'counts': y.values()})\n dt['step'] = 'aligned'\n dt.to_csv(read_stats_file, sep='\\t', index=False, header=False, mode='a')\n if len(seqL.keys()) < 10:\n logger.error(\n 'It seems you have low coverage. Please check your fastq files have enough sequences.'\n )\n raise ValueError('So few sequences.')\n logger.info('Cleaning bam file')\n y, l = _total_counts(seqL.keys(), seqL)\n logger.info('counts after: %s' % sum(y.values()))\n logger.info('# sequences after: %s' % l)\n dt = pd.DataFrame({'sample': y.keys(), 'counts': y.values()})\n dt['step'] = 'cleaned'\n dt.to_csv(read_stats_file, sep='\\t', index=False, header=False, mode='a')\n clusL = _create_clusters(seqL, bam_file, args)\n y, l = _total_counts(clusL.seq.keys(), clusL.seq, aligned=True)\n logger.info('counts after: %s' % sum(y.values()))\n logger.info('# sequences after: %s' % l)\n dt = pd.DataFrame({'sample': y.keys(), 'counts': y.values()})\n dt['step'] = 'clusters'\n dt.to_csv(read_stats_file, sep='\\t', index=False, header=False, mode='a')\n logger.info('Solving multi-mapping events in the network of clusters')\n clusLred = _cleaning(clusL, args.dir_out)\n y, l = _total_counts(clusLred.clus, seqL)\n logger.info('counts after: %s' % sum(y.values()))\n logger.info('# sequences after: %s' % l)\n dt = pd.DataFrame({'sample': y.keys(), 'counts': y.values()})\n dt['step'] = 'meta-cluster'\n dt.to_csv(read_stats_file, sep='\\t', index=False, header=False, mode='a')\n logger.info('Clusters up to %s' % len(clusLred.clus.keys()))\n if args.show:\n logger.info('Creating sequences alignment to precursor')\n clusLred = show_seq(clusLred, args.index)\n clusLred = peak_calling(clusLred)\n clusLred = _annotate(args, clusLred)\n logger.info('Creating json and count matrix')\n json_file = _create_json(clusLred, args)\n logger.info('Output file in: %s' % args.dir_out)\n if args.db:\n name = args.db + '.db'\n logger.info('Create database: database/' + name)\n data = load_data(json_file)\n out_dir = op.join(args.dir_out, 'database')\n make_database(data, name, out_dir)\n logger.info('Finished')\n", "role": "user" }, { "content": "cluster", "role": "assistant" } ]
def x(args): logger.info('Checking parameters and files') args.dir_out = args.out args.samplename = 'pro' global decision_cluster global similar if not os.path.isdir(args.out): logger.warning("the output folder doens't exists") os.mkdirs(args.out) if args.bed and args.gtf: logger.error('cannot provide -b and -g at the same time') raise SyntaxError if args.debug: logger.info('DEBUG messages will be showed in file.') if args.bed: args.list_files = args.bed args.type_ann = 'bed' if args.gtf: args.list_files = args.gtf args.type_ann = 'gtf' logger.info('Output dir will be: %s' % args.dir_out) if not all([file_exists(args.ffile), file_exists(args.afile)]): logger.error('I/O error: Seqs.ma or Seqs.bam. ') raise IOError("Seqs.ma or/and Seqs.bam doesn't exists.") if hasattr(args, 'list_files'): beds = args.list_files.split(',') for filebed in beds: if not file_exists(filebed): logger.error('I/O error: {0}'.format(filebed)) raise IOError("%s annotation files doesn't exist" % filebed) param.decision_cluster = args.method if args.similar: param.similar = float(args.similar) if args.min_seqs: param.min_seqs = int(args.min_seqs) return args
check_args
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args):\n logger.info('Checking parameters and files')\n args.dir_out = args.out\n args.samplename = 'pro'\n global decision_cluster\n global similar\n if not os.path.isdir(args.out):\n logger.warning(\"the output folder doens't exists\")\n os.mkdirs(args.out)\n if args.bed and args.gtf:\n logger.error('cannot provide -b and -g at the same time')\n raise SyntaxError\n if args.debug:\n logger.info('DEBUG messages will be showed in file.')\n if args.bed:\n args.list_files = args.bed\n args.type_ann = 'bed'\n if args.gtf:\n args.list_files = args.gtf\n args.type_ann = 'gtf'\n logger.info('Output dir will be: %s' % args.dir_out)\n if not all([file_exists(args.ffile), file_exists(args.afile)]):\n logger.error('I/O error: Seqs.ma or Seqs.bam. ')\n raise IOError(\"Seqs.ma or/and Seqs.bam doesn't exists.\")\n if hasattr(args, 'list_files'):\n beds = args.list_files.split(',')\n for filebed in beds:\n if not file_exists(filebed):\n logger.error('I/O error: {0}'.format(filebed))\n raise IOError(\"%s annotation files doesn't exist\" % filebed)\n param.decision_cluster = args.method\n if args.similar:\n param.similar = float(args.similar)\n if args.min_seqs:\n param.min_seqs = int(args.min_seqs)\n return args\n", "role": "user" }, { "content": "check_args", "role": "assistant" } ]
def x(seqs, seqL, aligned=False): total = Counter() if isinstance(seqs, list): if not aligned: l = len([total.update(seqL[s].freq) for s in seqs]) else: l = len([total.update(seqL[s].freq) for s in seqs if seqL[s]. align > 0]) elif isinstance(seqs, dict): [total.update(seqs[s].get_freq(seqL)) for s in seqs] l = sum(len(seqs[s].idmembers) for s in seqs) return total, l
total_counts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seqs, seqL, aligned=False):\n total = Counter()\n if isinstance(seqs, list):\n if not aligned:\n l = len([total.update(seqL[s].freq) for s in seqs])\n else:\n l = len([total.update(seqL[s].freq) for s in seqs if seqL[s].\n align > 0])\n elif isinstance(seqs, dict):\n [total.update(seqs[s].get_freq(seqL)) for s in seqs]\n l = sum(len(seqs[s].idmembers) for s in seqs)\n return total, l\n", "role": "user" }, { "content": "total_counts", "role": "assistant" } ]
def x(c, loci): data_ann_temp = {} data_ann = [] counts = Counter() for lid in c.loci2seq: for dbi in list(loci[lid].db_ann.keys()): data_ann_temp[dbi] = {dbi: [loci[lid].db_ann[dbi].ann[x].name for x in list(loci[lid].db_ann[dbi].ann.keys())]} logger.debug('_json_: data_ann_temp %s %s' % (dbi, data_ann_temp[dbi])) counts[dbi] += 1 data_ann = data_ann + [data_ann_temp[x] for x in list(data_ann_temp .keys())] logger.debug('_json_: data_ann %s' % data_ann) counts = {k: v for k, v in counts.iteritems()} total_loci = sum([counts[db] for db in counts]) valid_ann = [k for k, v in counts.iteritems() if up_threshold(v, total_loci, 0.7)] return data_ann, valid_ann
get_annotation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(c, loci):\n data_ann_temp = {}\n data_ann = []\n counts = Counter()\n for lid in c.loci2seq:\n for dbi in list(loci[lid].db_ann.keys()):\n data_ann_temp[dbi] = {dbi: [loci[lid].db_ann[dbi].ann[x].name for\n x in list(loci[lid].db_ann[dbi].ann.keys())]}\n logger.debug('_json_: data_ann_temp %s %s' % (dbi,\n data_ann_temp[dbi]))\n counts[dbi] += 1\n data_ann = data_ann + [data_ann_temp[x] for x in list(data_ann_temp\n .keys())]\n logger.debug('_json_: data_ann %s' % data_ann)\n counts = {k: v for k, v in counts.iteritems()}\n total_loci = sum([counts[db] for db in counts])\n valid_ann = [k for k, v in counts.iteritems() if up_threshold(v,\n total_loci, 0.7)]\n return data_ann, valid_ann\n", "role": "user" }, { "content": "get_annotation", "role": "assistant" } ]
def x(seqs_freq, samples_order): n = len(seqs_freq[seqs_freq.keys()[0]].freq.keys()) y = np.array([0] * n) for s in seqs_freq: x = seqs_freq[s].freq exp = [seqs_freq[s].freq[sam] for sam in samples_order] y = list(np.array(exp) + y) return y
sum_by_samples
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seqs_freq, samples_order):\n n = len(seqs_freq[seqs_freq.keys()[0]].freq.keys())\n y = np.array([0] * n)\n for s in seqs_freq:\n x = seqs_freq[s].freq\n exp = [seqs_freq[s].freq[sam] for sam in samples_order]\n y = list(np.array(exp) + y)\n return y\n", "role": "user" }, { "content": "sum_by_samples", "role": "assistant" } ]
def x(args, setclus): logger.info('Creating bed file') bedfile = generate_position_bed(setclus) a = pybedtools.BedTool(bedfile, from_string=True) beds = [] logger.info('Annotating clusters') if hasattr(args, 'list_files'): beds = args.list_files.split(',') for filebed in beds: logger.info('Using %s ' % filebed) db = os.path.basename(filebed) b = pybedtools.BedTool(filebed) c = a.intersect(b, wo=True) setclus = anncluster(c, setclus, db, args.type_ann, args.feature_id ) return setclus
annotate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args, setclus):\n logger.info('Creating bed file')\n bedfile = generate_position_bed(setclus)\n a = pybedtools.BedTool(bedfile, from_string=True)\n beds = []\n logger.info('Annotating clusters')\n if hasattr(args, 'list_files'):\n beds = args.list_files.split(',')\n for filebed in beds:\n logger.info('Using %s ' % filebed)\n db = os.path.basename(filebed)\n b = pybedtools.BedTool(filebed)\n c = a.intersect(b, wo=True)\n setclus = anncluster(c, setclus, db, args.type_ann, args.feature_id\n )\n return setclus\n", "role": "user" }, { "content": "annotate", "role": "assistant" } ]
def x(args): logger.info( 'Clean bam file with highly repetitive reads with low counts. sum(counts)/n_hits > 1%' ) bam_file, seq_obj = clean_bam_file(args.afile, args.mask) logger.info('Using %s file' % bam_file) detect_complexity(bam_file, args.ref, args.out) return bam_file, seq_obj
clean_alignment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args):\n logger.info(\n 'Clean bam file with highly repetitive reads with low counts. sum(counts)/n_hits > 1%'\n )\n bam_file, seq_obj = clean_bam_file(args.afile, args.mask)\n logger.info('Using %s file' % bam_file)\n detect_complexity(bam_file, args.ref, args.out)\n return bam_file, seq_obj\n", "role": "user" }, { "content": "clean_alignment", "role": "assistant" } ]
def x(seqL, bam_file, args): clus_obj = [] cluster_file = op.join(args.out, 'cluster.bed') if not os.path.exists(op.join(args.out, 'list_obj.pk')): if not file_exists(cluster_file): logger.info('Parsing aligned file') logger.info('Merging sequences') bedtools = os.path.join(os.path.dirname(sys.executable), 'bedtools' ) bedtools = bedtools if os.path.exists(bedtools) else 'bedtools' parse_cmd = ( 'awk \'{i=i+1;print $1"\\t"$2"\\t"$3"\\t"$4"\\t"i"\\t"$6}\'') cmd = ( '{bedtools} bamtobed -i {bam_file} | {parse_cmd} | {bedtools} cluster -s -d 20 -i - > {cluster_file}' ) do.run(cmd.format(**locals())) c = pybedtools.BedTool(cluster_file) logger.info('Creating clusters') clus_obj = detect_clusters(c, seqL, args.min_seqs, args.non_un_gl) with open(op.join(args.out, 'list_obj.pk'), 'wb') as output: pickle.dump(clus_obj, output, pickle.HIGHEST_PROTOCOL) else: logger.info('Loading previous clusters') with open(op.join(args.out, 'list_obj.pk'), 'rb') as input: clus_obj = pickle.load(input) logger.info('%s clusters found' % len(clus_obj.clusid)) return clus_obj
create_clusters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seqL, bam_file, args):\n clus_obj = []\n cluster_file = op.join(args.out, 'cluster.bed')\n if not os.path.exists(op.join(args.out, 'list_obj.pk')):\n if not file_exists(cluster_file):\n logger.info('Parsing aligned file')\n logger.info('Merging sequences')\n bedtools = os.path.join(os.path.dirname(sys.executable), 'bedtools'\n )\n bedtools = bedtools if os.path.exists(bedtools) else 'bedtools'\n parse_cmd = (\n 'awk \\'{i=i+1;print $1\"\\\\t\"$2\"\\\\t\"$3\"\\\\t\"$4\"\\\\t\"i\"\\\\t\"$6}\\'')\n cmd = (\n '{bedtools} bamtobed -i {bam_file} | {parse_cmd} | {bedtools} cluster -s -d 20 -i - > {cluster_file}'\n )\n do.run(cmd.format(**locals()))\n c = pybedtools.BedTool(cluster_file)\n logger.info('Creating clusters')\n clus_obj = detect_clusters(c, seqL, args.min_seqs, args.non_un_gl)\n with open(op.join(args.out, 'list_obj.pk'), 'wb') as output:\n pickle.dump(clus_obj, output, pickle.HIGHEST_PROTOCOL)\n else:\n logger.info('Loading previous clusters')\n with open(op.join(args.out, 'list_obj.pk'), 'rb') as input:\n clus_obj = pickle.load(input)\n logger.info('%s clusters found' % len(clus_obj.clusid))\n return clus_obj\n", "role": "user" }, { "content": "create_clusters", "role": "assistant" } ]
def x(clusL, path): backup = op.join(path, 'list_obj_red.pk') if not op.exists(backup): clus_obj = reduceloci(clusL, path) with open(backup, 'wb') as output: pickle.dump(clus_obj, output, pickle.HIGHEST_PROTOCOL) return clus_obj else: logger.info('Loading previous reduced clusters') with open(backup, 'rb') as in_handle: clus_obj = pickle.load(in_handle) return clus_obj
cleaning
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(clusL, path):\n backup = op.join(path, 'list_obj_red.pk')\n if not op.exists(backup):\n clus_obj = reduceloci(clusL, path)\n with open(backup, 'wb') as output:\n pickle.dump(clus_obj, output, pickle.HIGHEST_PROTOCOL)\n return clus_obj\n else:\n logger.info('Loading previous reduced clusters')\n with open(backup, 'rb') as in_handle:\n clus_obj = pickle.load(in_handle)\n return clus_obj\n", "role": "user" }, { "content": "cleaning", "role": "assistant" } ]
def x(args): logger.info('reading sequeces') data = load_data(args.json) logger.info('get sequences from json') c1, c2 = args.names.split(',') seqs, names = get_sequences_from_cluster(c1, c2, data[0]) loci = get_precursors_from_cluster(c1, c2, data[0]) logger.info('map all sequences to all loci') print('%s' % loci) map_to_precursors(seqs, names, loci, os.path.join(args.out, 'map.tsv'), args) logger.info('plot sequences on loci') logger.info('Done')
explore
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args):\n logger.info('reading sequeces')\n data = load_data(args.json)\n logger.info('get sequences from json')\n c1, c2 = args.names.split(',')\n seqs, names = get_sequences_from_cluster(c1, c2, data[0])\n loci = get_precursors_from_cluster(c1, c2, data[0])\n logger.info('map all sequences to all loci')\n print('%s' % loci)\n map_to_precursors(seqs, names, loci, os.path.join(args.out, 'map.tsv'),\n args)\n logger.info('plot sequences on loci')\n logger.info('Done')\n", "role": "user" }, { "content": "explore", "role": "assistant" } ]
def x(args): try: f = open(args.config, 'r') seq_out = open(op.join(args.out, 'seqs.fastq'), 'w') ma_out = open(op.join(args.out, 'seqs.ma'), 'w') except IOError as e: traceback.print_exc() raise IOError('Can not create output files: %s, %s or read %s' % ( op.join(args.out, 'seqs.ma'), op.join(args.out, 'seqs.fastq'), args.config)) logger.info('Reading sequeces') seq_l, sample_l = _read_fastq_files(f, args) logger.info('Creating matrix with unique sequences') logger.info( 'Filtering: min counts %s, min size %s, max size %s, min shared %s' % (args.minc, args.minl, args.maxl, args.min_shared)) _create_matrix_uniq_seq(sample_l, seq_l, ma_out, seq_out, args.min_shared) logger.info( 'Finish preprocessing. Get a sorted BAM file of seqs.fa and run seqcluster cluster.' )
prepare
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args):\n try:\n f = open(args.config, 'r')\n seq_out = open(op.join(args.out, 'seqs.fastq'), 'w')\n ma_out = open(op.join(args.out, 'seqs.ma'), 'w')\n except IOError as e:\n traceback.print_exc()\n raise IOError('Can not create output files: %s, %s or read %s' % (\n op.join(args.out, 'seqs.ma'), op.join(args.out, 'seqs.fastq'),\n args.config))\n logger.info('Reading sequeces')\n seq_l, sample_l = _read_fastq_files(f, args)\n logger.info('Creating matrix with unique sequences')\n logger.info(\n 'Filtering: min counts %s, min size %s, max size %s, min shared %s' %\n (args.minc, args.minl, args.maxl, args.min_shared))\n _create_matrix_uniq_seq(sample_l, seq_l, ma_out, seq_out, args.min_shared)\n logger.info(\n 'Finish preprocessing. Get a sorted BAM file of seqs.fa and run seqcluster cluster.'\n )\n", "role": "user" }, { "content": "prepare", "role": "assistant" } ]
def x(f, args): seq_l = {} sample_l = [] idx = 1 for line1 in f: line1 = line1.strip() cols = line1.split('\t') with open(cols[0], 'r') as fasta: sample_l.append(cols[1]) for line in fasta: if line.startswith('>'): idx += 1 counts = int(re.search('x([0-9]+)', line.strip()).group(1)) else: seq = line.strip() seq = seq[0:int(args.maxl)] if len(seq) > int(args.maxl ) else seq if counts > int(args.minc) and len(seq) > int(args.minl): if seq not in seq_l: seq_l[seq] = sequence_unique(idx, seq) seq_l[seq].add_exp(cols[1], counts) return seq_l, sample_l
read_fasta_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f, args):\n seq_l = {}\n sample_l = []\n idx = 1\n for line1 in f:\n line1 = line1.strip()\n cols = line1.split('\\t')\n with open(cols[0], 'r') as fasta:\n sample_l.append(cols[1])\n for line in fasta:\n if line.startswith('>'):\n idx += 1\n counts = int(re.search('x([0-9]+)', line.strip()).group(1))\n else:\n seq = line.strip()\n seq = seq[0:int(args.maxl)] if len(seq) > int(args.maxl\n ) else seq\n if counts > int(args.minc) and len(seq) > int(args.minl):\n if seq not in seq_l:\n seq_l[seq] = sequence_unique(idx, seq)\n seq_l[seq].add_exp(cols[1], counts)\n return seq_l, sample_l\n", "role": "user" }, { "content": "read_fasta_files", "role": "assistant" } ]
def x(f, args): seq_l = {} sample_l = [] idx = 1 p = re.compile('^[ATCGNU]+$') with open(op.join(args.out, 'stats_prepare.tsv'), 'w') as out_handle: for line1 in f: line1 = line1.strip() cols = line1.split('\t') with open_fastq(cols[0]) as handle: sample_l.append(cols[1]) total = added = 0 for line in handle: if line.startswith('@') or line.startswith('>'): seq = handle.next().strip() if not p.match(seq): continue idx += 1 total += 1 keep = {} counts = int(re.search('x([0-9]+)', line.strip()). group(1)) if is_fastq(cols[0]): handle.next().strip() qual = handle.next().strip() else: qual = 'I' * len(seq) qual = qual[0:int(args.maxl)] if len(qual) > int(args .maxl) else qual seq = seq[0:int(args.maxl)] if len(seq) > int(args.maxl ) else seq if counts > int(args.minc) and len(seq) > int(args.minl ): added += 1 if seq in keep: keep[seq].update(qual) else: keep[seq] = quality(qual) if seq not in seq_l: seq_l[seq] = sequence_unique(idx, seq) seq_l[seq].add_exp(cols[1], counts) seq_l[seq].quality = keep[seq].get() print('total\t%s\t%s' % (idx, cols[1]), file=out_handle, end='' ) print('added\t%s\t%s' % (len(seq_l), cols[1]), file= out_handle, end='') logger.info('%s: Total read %s ; Total added %s' % (cols[1], idx, len(seq_l))) return seq_l, sample_l
read_fastq_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f, args):\n seq_l = {}\n sample_l = []\n idx = 1\n p = re.compile('^[ATCGNU]+$')\n with open(op.join(args.out, 'stats_prepare.tsv'), 'w') as out_handle:\n for line1 in f:\n line1 = line1.strip()\n cols = line1.split('\\t')\n with open_fastq(cols[0]) as handle:\n sample_l.append(cols[1])\n total = added = 0\n for line in handle:\n if line.startswith('@') or line.startswith('>'):\n seq = handle.next().strip()\n if not p.match(seq):\n continue\n idx += 1\n total += 1\n keep = {}\n counts = int(re.search('x([0-9]+)', line.strip()).\n group(1))\n if is_fastq(cols[0]):\n handle.next().strip()\n qual = handle.next().strip()\n else:\n qual = 'I' * len(seq)\n qual = qual[0:int(args.maxl)] if len(qual) > int(args\n .maxl) else qual\n seq = seq[0:int(args.maxl)] if len(seq) > int(args.maxl\n ) else seq\n if counts > int(args.minc) and len(seq) > int(args.minl\n ):\n added += 1\n if seq in keep:\n keep[seq].update(qual)\n else:\n keep[seq] = quality(qual)\n if seq not in seq_l:\n seq_l[seq] = sequence_unique(idx, seq)\n seq_l[seq].add_exp(cols[1], counts)\n seq_l[seq].quality = keep[seq].get()\n print('total\\t%s\\t%s' % (idx, cols[1]), file=out_handle, end=''\n )\n print('added\\t%s\\t%s' % (len(seq_l), cols[1]), file=\n out_handle, end='')\n logger.info('%s: Total read %s ; Total added %s' % (cols[1],\n idx, len(seq_l)))\n return seq_l, sample_l\n", "role": "user" }, { "content": "read_fastq_files", "role": "assistant" } ]
def x(sample_l, seq_l, maout, out, min_shared): skip = 0 if int(min_shared) > len(sample_l): min_shared = len(sample_l) maout.write('id\tseq') for g in sample_l: maout.write('\t%s' % g) for s in seq_l.keys(): seen = sum([(1) for g in seq_l[s].group if seq_l[s].group[g] > 0]) if seen < int(min_shared): skip += 1 continue maout.write('\nseq_%s\t%s' % (seq_l[s].idx, seq_l[s].seq)) for g in sample_l: if g in seq_l[s].group: maout.write('\t%s' % seq_l[s].group[g]) else: maout.write('\t0') qual = ''.join(seq_l[s].quality) out.write('@seq_%s\n%s\n+\n%s\n' % (seq_l[s].idx, seq_l[s].seq, qual)) out.close() maout.close() logger.info('Total skipped due to --min-shared parameter (%s) : %s' % ( min_shared, skip))
create_matrix_uniq_seq
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sample_l, seq_l, maout, out, min_shared):\n skip = 0\n if int(min_shared) > len(sample_l):\n min_shared = len(sample_l)\n maout.write('id\\tseq')\n for g in sample_l:\n maout.write('\\t%s' % g)\n for s in seq_l.keys():\n seen = sum([(1) for g in seq_l[s].group if seq_l[s].group[g] > 0])\n if seen < int(min_shared):\n skip += 1\n continue\n maout.write('\\nseq_%s\\t%s' % (seq_l[s].idx, seq_l[s].seq))\n for g in sample_l:\n if g in seq_l[s].group:\n maout.write('\\t%s' % seq_l[s].group[g])\n else:\n maout.write('\\t0')\n qual = ''.join(seq_l[s].quality)\n out.write('@seq_%s\\n%s\\n+\\n%s\\n' % (seq_l[s].idx, seq_l[s].seq, qual))\n out.close()\n maout.close()\n logger.info('Total skipped due to --min-shared parameter (%s) : %s' % (\n min_shared, skip))\n", "role": "user" }, { "content": "create_matrix_uniq_seq", "role": "assistant" } ]
def x(clus_obj, out_dir, args): if not args.bed: raise ValueError( 'This module needs the bed file output from cluster subcmd.') workdir = op.abspath(op.join(args.out, 'coral')) safe_dirs(workdir) bam_in = op.abspath(args.bam) bed_in = op.abspath(args.bed) reference = op.abspath(args.ref) with chdir(workdir): bam_clean = coral.prepare_bam(bam_in, bed_in) out_dir = op.join(workdir, 'regions') safe_dirs(out_dir) prefix = 'seqcluster' loci_file = coral.detect_regions(bam_clean, bed_in, out_dir, prefix) coral.create_features(bam_clean, loci_file, reference, out_dir)
run_coral
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(clus_obj, out_dir, args):\n if not args.bed:\n raise ValueError(\n 'This module needs the bed file output from cluster subcmd.')\n workdir = op.abspath(op.join(args.out, 'coral'))\n safe_dirs(workdir)\n bam_in = op.abspath(args.bam)\n bed_in = op.abspath(args.bed)\n reference = op.abspath(args.ref)\n with chdir(workdir):\n bam_clean = coral.prepare_bam(bam_in, bed_in)\n out_dir = op.join(workdir, 'regions')\n safe_dirs(out_dir)\n prefix = 'seqcluster'\n loci_file = coral.detect_regions(bam_clean, bed_in, out_dir, prefix)\n coral.create_features(bam_clean, loci_file, reference, out_dir)\n", "role": "user" }, { "content": "run_coral", "role": "assistant" } ]
def x(clus_obj, out_dir, args): ref = os.path.abspath(args.reference) utils.safe_dirs(out_dir) for nc in clus_obj[0]: c = clus_obj[0][nc] loci = c['loci'] out_fa = 'cluster_' + nc if loci[0][3] - loci[0][2] < 500: with make_temp_directory() as tmpdir: os.chdir(tmpdir) get_loci_fasta({loci[0][0]: [loci[0][0:5]]}, out_fa, ref) summary_file, str_file = _run_tRNA_scan(out_fa) if 'predictions' not in c: c['predictions'] = {} c['predictions']['tRNA'] = _read_tRNA_scan(summary_file) score = _read_tRNA_scan(summary_file) logger.debug(score) shutil.move(summary_file, op.join(out_dir, summary_file)) shutil.move(str_file, op.join(out_dir, str_file)) else: c['errors'].add('precursor too long') clus_obj[0][nc] = c return clus_obj
is_tRNA
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(clus_obj, out_dir, args):\n ref = os.path.abspath(args.reference)\n utils.safe_dirs(out_dir)\n for nc in clus_obj[0]:\n c = clus_obj[0][nc]\n loci = c['loci']\n out_fa = 'cluster_' + nc\n if loci[0][3] - loci[0][2] < 500:\n with make_temp_directory() as tmpdir:\n os.chdir(tmpdir)\n get_loci_fasta({loci[0][0]: [loci[0][0:5]]}, out_fa, ref)\n summary_file, str_file = _run_tRNA_scan(out_fa)\n if 'predictions' not in c:\n c['predictions'] = {}\n c['predictions']['tRNA'] = _read_tRNA_scan(summary_file)\n score = _read_tRNA_scan(summary_file)\n logger.debug(score)\n shutil.move(summary_file, op.join(out_dir, summary_file))\n shutil.move(str_file, op.join(out_dir, str_file))\n else:\n c['errors'].add('precursor too long')\n clus_obj[0][nc] = c\n return clus_obj\n", "role": "user" }, { "content": "is_tRNA", "role": "assistant" } ]
def x(summary_file): score = 0 if os.path.getsize(summary_file) == 0: return 0 with open(summary_file) as in_handle: for line in in_handle: if not line.startswith('--'): pre = line.strip().split() score = pre[-1] return score
read_tRNA_scan
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(summary_file):\n score = 0\n if os.path.getsize(summary_file) == 0:\n return 0\n with open(summary_file) as in_handle:\n for line in in_handle:\n if not line.startswith('--'):\n pre = line.strip().split()\n score = pre[-1]\n return score\n", "role": "user" }, { "content": "read_tRNA_scan", "role": "assistant" } ]
def x(fasta_file): out_file = fasta_file + '_trnascan' se_file = fasta_file + '_second_str' cmd = 'tRNAscan-SE -q -o {out_file} -f {se_file} {fasta_file}' run(cmd.format(**locals())) return out_file, se_file
run_tRNA_scan
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fasta_file):\n out_file = fasta_file + '_trnascan'\n se_file = fasta_file + '_second_str'\n cmd = 'tRNAscan-SE -q -o {out_file} -f {se_file} {fasta_file}'\n run(cmd.format(**locals()))\n return out_file, se_file\n", "role": "user" }, { "content": "run_tRNA_scan", "role": "assistant" } ]
def x(mut): multiplier = 1 if mut.startswith('-'): mut = mut[1:] multiplier = -1 nt = mut.strip('0123456789') pos = int(mut[:-2]) * multiplier return nt, pos
parse_mut
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mut):\n multiplier = 1\n if mut.startswith('-'):\n mut = mut[1:]\n multiplier = -1\n nt = mut.strip('0123456789')\n pos = int(mut[:-2]) * multiplier\n return nt, pos\n", "role": "user" }, { "content": "parse_mut", "role": "assistant" } ]
def x(isomir): mut = isomir.split(':')[1] if mut == '0': return mut nt, pos = _parse_mut(mut) trim5 = isomir.split(':')[-2] off = -1 * len(trim5) if trim5.islower(): off = len(trim5) if trim5 == 'NA' or trim5 == '0': off = 0 return '%s%s' % (pos + off, nt)
get_reference_position
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(isomir):\n mut = isomir.split(':')[1]\n if mut == '0':\n return mut\n nt, pos = _parse_mut(mut)\n trim5 = isomir.split(':')[-2]\n off = -1 * len(trim5)\n if trim5.islower():\n off = len(trim5)\n if trim5 == 'NA' or trim5 == '0':\n off = 0\n return '%s%s' % (pos + off, nt)\n", "role": "user" }, { "content": "get_reference_position", "role": "assistant" } ]
def x(isomirs, mirna): pass_pos = [] for isomir in isomirs.iterrows(): mir = isomir[1]['chrom'] mut = isomir[1]['sv'] mut_counts = isomir[1]['counts'] total = mirna.loc[mir, 'counts'] * 1.0 - mut_counts mut_diff = isomir[1]['diff'] ratio = mut_counts / total if mut_counts > 10 and ratio > 0.4 and mut != '0' and mut_diff > 1: isomir[1]['ratio'] = ratio pass_pos.append(isomir[1]) return pass_pos
get_pct
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(isomirs, mirna):\n pass_pos = []\n for isomir in isomirs.iterrows():\n mir = isomir[1]['chrom']\n mut = isomir[1]['sv']\n mut_counts = isomir[1]['counts']\n total = mirna.loc[mir, 'counts'] * 1.0 - mut_counts\n mut_diff = isomir[1]['diff']\n ratio = mut_counts / total\n if mut_counts > 10 and ratio > 0.4 and mut != '0' and mut_diff > 1:\n isomir[1]['ratio'] = ratio\n pass_pos.append(isomir[1])\n return pass_pos\n", "role": "user" }, { "content": "get_pct", "role": "assistant" } ]
def x(data): print('##fileformat=VCFv4.2', file=STDOUT, end='') print('##source=seqbuster2.3', file=STDOUT, end='') print('##reference=mirbase', file=STDOUT, end='') for pos in data: print('##contig=<ID=%s>' % pos['chrom'], file=STDOUT, end='') print('##INFO=<ID=ID,Number=1,Type=String,Description="miRNA name">', file=STDOUT, end='') print('##FORMAT=<ID=GT,Number=1,Type=Integer,Description="Genotype">', file=STDOUT, end='') print( '##FORMAT=<ID=NR,Number=A,Type=Integer,Description="Total reads supporting the variant">' , file=STDOUT, end='') print( '##FORMAT=<ID=NS,Number=A,Type=Float,Description="Total number of different sequences supporting the variant">' , file=STDOUT, end='') print('#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tSAMP001', file=STDOUT, end='')
print_header
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n print('##fileformat=VCFv4.2', file=STDOUT, end='')\n print('##source=seqbuster2.3', file=STDOUT, end='')\n print('##reference=mirbase', file=STDOUT, end='')\n for pos in data:\n print('##contig=<ID=%s>' % pos['chrom'], file=STDOUT, end='')\n print('##INFO=<ID=ID,Number=1,Type=String,Description=\"miRNA name\">',\n file=STDOUT, end='')\n print('##FORMAT=<ID=GT,Number=1,Type=Integer,Description=\"Genotype\">',\n file=STDOUT, end='')\n print(\n '##FORMAT=<ID=NR,Number=A,Type=Integer,Description=\"Total reads supporting the variant\">'\n , file=STDOUT, end='')\n print(\n '##FORMAT=<ID=NS,Number=A,Type=Float,Description=\"Total number of different sequences supporting the variant\">'\n , file=STDOUT, end='')\n print('#CHROM\\tPOS\\tID\\tREF\\tALT\\tQUAL\\tFILTER\\tINFO\\tFORMAT\\tSAMP001',\n file=STDOUT, end='')\n", "role": "user" }, { "content": "print_header", "role": "assistant" } ]
def x(data): id_name = '.' qual = '.' chrom = data['chrom'] pos = data['pre_pos'] nt_ref = data['nt'][1] nt_snp = data['nt'][0] flt = 'PASS' info = 'ID=%s' % data['mature'] frmt = 'GT:NR:NS' gntp = '%s:%s:%s' % (_genotype(data), data['counts'], data['diff']) print('\t'.join(map(str, [chrom, pos, id_name, nt_ref, nt_snp, qual, flt, info, frmt, gntp])), file=STDOUT, end='')
print_vcf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n id_name = '.'\n qual = '.'\n chrom = data['chrom']\n pos = data['pre_pos']\n nt_ref = data['nt'][1]\n nt_snp = data['nt'][0]\n flt = 'PASS'\n info = 'ID=%s' % data['mature']\n frmt = 'GT:NR:NS'\n gntp = '%s:%s:%s' % (_genotype(data), data['counts'], data['diff'])\n print('\\t'.join(map(str, [chrom, pos, id_name, nt_ref, nt_snp, qual,\n flt, info, frmt, gntp])), file=STDOUT, end='')\n", "role": "user" }, { "content": "print_vcf", "role": "assistant" } ]
def x(pass_pos, matures): fixed_pos = [] _print_header(pass_pos) for pos in pass_pos: mir = pos['mature'] db_pos = matures[pos['chrom']] mut = _parse_mut(pos['sv']) print([db_pos[mir], mut, pos['sv']]) pos['pre_pos'] = db_pos[mir][0] + mut[1] - 1 pos['nt'] = list(mut[0]) fixed_pos.append(pos) print_vcf(pos) return fixed_pos
liftover
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pass_pos, matures):\n fixed_pos = []\n _print_header(pass_pos)\n for pos in pass_pos:\n mir = pos['mature']\n db_pos = matures[pos['chrom']]\n mut = _parse_mut(pos['sv'])\n print([db_pos[mir], mut, pos['sv']])\n pos['pre_pos'] = db_pos[mir][0] + mut[1] - 1\n pos['nt'] = list(mut[0])\n fixed_pos.append(pos)\n print_vcf(pos)\n return fixed_pos\n", "role": "user" }, { "content": "liftover", "role": "assistant" } ]
def x(isomirs, matures, gtf, vcf_file=None): global STDOUT isomirs['sv'] = [_get_reference_position(m) for m in isomirs['isomir']] mirna = isomirs.groupby(['chrom']).sum() sv = isomirs.groupby(['chrom', 'mature', 'sv'], as_index=False).sum() sv['diff'] = isomirs.groupby(['chrom', 'mature', 'sv'], as_index=False ).size().reset_index().loc[:, 0] pass_pos = _get_pct(sv, mirna) if vcf_file: with open(vcf_file, 'w') as out_handle: STDOUT = out_handle pass_pos = liftover(pass_pos, matures) if gtf: vcf_genome_file = vcf_file.replace('.vcf', '_genome.vcf') with open(vcf_genome_file, 'w') as out_handle: STDOUT = out_handle pass_pos = liftover_to_genome(pass_pos, gtf)
create_vcf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(isomirs, matures, gtf, vcf_file=None):\n global STDOUT\n isomirs['sv'] = [_get_reference_position(m) for m in isomirs['isomir']]\n mirna = isomirs.groupby(['chrom']).sum()\n sv = isomirs.groupby(['chrom', 'mature', 'sv'], as_index=False).sum()\n sv['diff'] = isomirs.groupby(['chrom', 'mature', 'sv'], as_index=False\n ).size().reset_index().loc[:, 0]\n pass_pos = _get_pct(sv, mirna)\n if vcf_file:\n with open(vcf_file, 'w') as out_handle:\n STDOUT = out_handle\n pass_pos = liftover(pass_pos, matures)\n if gtf:\n vcf_genome_file = vcf_file.replace('.vcf', '_genome.vcf')\n with open(vcf_genome_file, 'w') as out_handle:\n STDOUT = out_handle\n pass_pos = liftover_to_genome(pass_pos, gtf)\n", "role": "user" }, { "content": "create_vcf", "role": "assistant" } ]
def x(pass_pos, gtf): fixed_pos = [] for pos in pass_pos: if pos['chrom'] not in gtf: continue db_pos = gtf[pos['chrom']][0] mut = _parse_mut(pos['sv']) print([db_pos, pos]) if db_pos[3] == '+': pos['pre_pos'] = db_pos[1] + pos['pre_pos'] + 1 else: pos['pre_pos'] = db_pos[2] - (pos['pre_pos'] - 1) pos['chrom'] = db_pos[0] pos['nt'] = list(mut[0]) fixed_pos.append(pos) _print_header(fixed_pos) for pos in fixed_pos: print_vcf(pos)
liftover_to_genome
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pass_pos, gtf):\n fixed_pos = []\n for pos in pass_pos:\n if pos['chrom'] not in gtf:\n continue\n db_pos = gtf[pos['chrom']][0]\n mut = _parse_mut(pos['sv'])\n print([db_pos, pos])\n if db_pos[3] == '+':\n pos['pre_pos'] = db_pos[1] + pos['pre_pos'] + 1\n else:\n pos['pre_pos'] = db_pos[2] - (pos['pre_pos'] - 1)\n pos['chrom'] = db_pos[0]\n pos['nt'] = list(mut[0])\n fixed_pos.append(pos)\n _print_header(fixed_pos)\n for pos in fixed_pos:\n print_vcf(pos)\n", "role": "user" }, { "content": "liftover_to_genome", "role": "assistant" } ]
def x(seqs, seen): already_in = set() not_in = [] already_in = map(seen.get, seqs) already_in = filter(None, already_in) not_in = set(seqs) - set(seen.keys()) return list(set(already_in)), list(not_in)
get_seqs_from_cluster
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seqs, seen):\n already_in = set()\n not_in = []\n already_in = map(seen.get, seqs)\n already_in = filter(None, already_in)\n not_in = set(seqs) - set(seen.keys())\n return list(set(already_in)), list(not_in)\n", "role": "user" }, { "content": "get_seqs_from_cluster", "role": "assistant" } ]
def x(clus_obj, path): filtered = {} n_cluster = 0 large = 0 current = clus_obj.clusid logger.info('Number of loci: %s' % len(clus_obj.loci.keys())) bar = ProgressBar(maxval=len(current)) bar.start() bar.update(0) for itern, idmc in enumerate(current): bar.update(itern) logger.debug('_reduceloci: cluster %s' % idmc) c = copy.deepcopy(list(current[idmc])) n_loci = len(c) if n_loci < 1000: filtered, n_cluster = _iter_loci(c, clus_obj.clus, (clus_obj. loci, clus_obj.seq), filtered, n_cluster) else: large += 1 n_cluster += 1 _write_cluster(c, clus_obj.clus, clus_obj.loci, n_cluster, path) filtered[n_cluster] = _add_complete_cluster(n_cluster, c, clus_obj.clus) clus_obj.clus = filtered seqs = 0 for idc in filtered: seqs += len(filtered[idc].idmembers) logger.info('seqs in clusters %s' % seqs) logger.info('Clusters too long to be analized: %s' % large) logger.info( 'Number of clusters removed because low number of reads: %s' % REMOVED) logger.info('Number of clusters with conflicts: %s' % CONFLICT) return clus_obj
reduceloci
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(clus_obj, path):\n filtered = {}\n n_cluster = 0\n large = 0\n current = clus_obj.clusid\n logger.info('Number of loci: %s' % len(clus_obj.loci.keys()))\n bar = ProgressBar(maxval=len(current))\n bar.start()\n bar.update(0)\n for itern, idmc in enumerate(current):\n bar.update(itern)\n logger.debug('_reduceloci: cluster %s' % idmc)\n c = copy.deepcopy(list(current[idmc]))\n n_loci = len(c)\n if n_loci < 1000:\n filtered, n_cluster = _iter_loci(c, clus_obj.clus, (clus_obj.\n loci, clus_obj.seq), filtered, n_cluster)\n else:\n large += 1\n n_cluster += 1\n _write_cluster(c, clus_obj.clus, clus_obj.loci, n_cluster, path)\n filtered[n_cluster] = _add_complete_cluster(n_cluster, c,\n clus_obj.clus)\n clus_obj.clus = filtered\n seqs = 0\n for idc in filtered:\n seqs += len(filtered[idc].idmembers)\n logger.info('seqs in clusters %s' % seqs)\n logger.info('Clusters too long to be analized: %s' % large)\n logger.info(\n 'Number of clusters removed because low number of reads: %s' % REMOVED)\n logger.info('Number of clusters with conflicts: %s' % CONFLICT)\n return clus_obj\n", "role": "user" }, { "content": "reduceloci", "role": "assistant" } ]
def x(metacluster, cluster, loci, idx, path): out_file = op.join(path, 'log', str(idx) + '.bed') with utils.safe_run(out_file): with open(out_file, 'w') as out_handle: for idc in metacluster: for idl in cluster[idc].loci2seq: pos = loci[idl].list() print('\t'.join(pos[:4] + [str(len(cluster[idc]. loci2seq[idl]))] + [pos[-1]]), file=out_handle, end='')
write_cluster
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(metacluster, cluster, loci, idx, path):\n out_file = op.join(path, 'log', str(idx) + '.bed')\n with utils.safe_run(out_file):\n with open(out_file, 'w') as out_handle:\n for idc in metacluster:\n for idl in cluster[idc].loci2seq:\n pos = loci[idl].list()\n print('\\t'.join(pos[:4] + [str(len(cluster[idc].\n loci2seq[idl]))] + [pos[-1]]), file=out_handle, end='')\n", "role": "user" }, { "content": "write_cluster", "role": "assistant" } ]
def x(meta, clusters, s2p, filtered, n_cluster): global CONFLICT loci = dict(zip(meta, [clusters[idc] for idc in meta])) n_loci = len(meta) n_loci_prev = n_loci + 1 cicle = 0 internal_cluster = {} if n_loci == 1: n_cluster += 1 filtered[n_cluster] = clusters[meta[0]] filtered[n_cluster].update(id=n_cluster) filtered[n_cluster].set_freq(s2p[1]) while n_loci < n_loci_prev and n_loci != 1: n_loci_prev = n_loci cicle += 1 if cicle % 1 == 0: logger.debug('_iter_loci:number of cicle: %s with n_loci %s' % (cicle, n_loci)) loci_similarity = _calculate_similarity(loci) internal_cluster = _merge_similar(loci, loci_similarity) n_loci = len(internal_cluster) loci = internal_cluster logger.debug('_iter_loci: n_loci %s' % n_loci) if n_loci > 1: n_internal_cluster = sorted(internal_cluster.keys(), reverse=True)[0] CONFLICT += 1 internal_cluster = _solve_conflict(internal_cluster, s2p, n_internal_cluster) internal_cluster = _clean_cluster(internal_cluster) for idc in internal_cluster: n_cluster += 1 logger.debug('_iter_loci: add to filtered %s' % n_cluster) filtered[n_cluster] = internal_cluster[idc] filtered[n_cluster].id = n_cluster filtered[n_cluster].update(id=n_cluster) filtered[n_cluster].set_freq(s2p[1]) logger.debug('_iter_loci: filtered %s' % filtered.keys()) return filtered, n_cluster
iter_loci
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(meta, clusters, s2p, filtered, n_cluster):\n global CONFLICT\n loci = dict(zip(meta, [clusters[idc] for idc in meta]))\n n_loci = len(meta)\n n_loci_prev = n_loci + 1\n cicle = 0\n internal_cluster = {}\n if n_loci == 1:\n n_cluster += 1\n filtered[n_cluster] = clusters[meta[0]]\n filtered[n_cluster].update(id=n_cluster)\n filtered[n_cluster].set_freq(s2p[1])\n while n_loci < n_loci_prev and n_loci != 1:\n n_loci_prev = n_loci\n cicle += 1\n if cicle % 1 == 0:\n logger.debug('_iter_loci:number of cicle: %s with n_loci %s' %\n (cicle, n_loci))\n loci_similarity = _calculate_similarity(loci)\n internal_cluster = _merge_similar(loci, loci_similarity)\n n_loci = len(internal_cluster)\n loci = internal_cluster\n logger.debug('_iter_loci: n_loci %s' % n_loci)\n if n_loci > 1:\n n_internal_cluster = sorted(internal_cluster.keys(), reverse=True)[0]\n CONFLICT += 1\n internal_cluster = _solve_conflict(internal_cluster, s2p,\n n_internal_cluster)\n internal_cluster = _clean_cluster(internal_cluster)\n for idc in internal_cluster:\n n_cluster += 1\n logger.debug('_iter_loci: add to filtered %s' % n_cluster)\n filtered[n_cluster] = internal_cluster[idc]\n filtered[n_cluster].id = n_cluster\n filtered[n_cluster].update(id=n_cluster)\n filtered[n_cluster].set_freq(s2p[1])\n logger.debug('_iter_loci: filtered %s' % filtered.keys())\n return filtered, n_cluster\n", "role": "user" }, { "content": "iter_loci", "role": "assistant" } ]
def x(c): new_dict = {} n_cluster = 0 logger.debug('_convert_to_cluster: loci %s' % c.loci2seq.keys()) for idl in c.loci2seq: n_cluster += 1 new_c = cluster(n_cluster) new_c.loci2seq[idl] = c.loci2seq[idl] new_dict[n_cluster] = new_c logger.debug('_convert_to_cluster: new ids %s' % new_dict.keys()) return new_dict
convert_to_clusters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(c):\n new_dict = {}\n n_cluster = 0\n logger.debug('_convert_to_cluster: loci %s' % c.loci2seq.keys())\n for idl in c.loci2seq:\n n_cluster += 1\n new_c = cluster(n_cluster)\n new_c.loci2seq[idl] = c.loci2seq[idl]\n new_dict[n_cluster] = new_c\n logger.debug('_convert_to_cluster: new ids %s' % new_dict.keys())\n return new_dict\n", "role": "user" }, { "content": "convert_to_clusters", "role": "assistant" } ]
def x(c): ma = {} for idc in c: set1 = _get_seqs(c[idc]) [ma.update({(idc, idc2): _common(set1, _get_seqs(c[idc2]), idc, idc2)}) for idc2 in c if idc != idc2 and (idc2, idc) not in ma] return ma
calculate_similarity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(c):\n ma = {}\n for idc in c:\n set1 = _get_seqs(c[idc])\n [ma.update({(idc, idc2): _common(set1, _get_seqs(c[idc2]), idc,\n idc2)}) for idc2 in c if idc != idc2 and (idc2, idc) not in ma]\n return ma\n", "role": "user" }, { "content": "calculate_similarity", "role": "assistant" } ]