source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, p):
if p < 0 or p > 1:
raise ValueError('Probability p must be in range [0, 1]')
if p == 0:
return self.xs[0]
if p == 1:
return self.xs[-1]
index = bisect.bisect(self.ps, p)
if p == self.ps[index - 1]:
return self.xs[index - 1]
else:
return self.xs[index]
|
Value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, p):\n if p < 0 or p > 1:\n raise ValueError('Probability p must be in range [0, 1]')\n if p == 0:\n return self.xs[0]\n if p == 1:\n return self.xs[-1]\n index = bisect.bisect(self.ps, p)\n if p == self.ps[index - 1]:\n return self.xs[index - 1]\n else:\n return self.xs[index]\n",
"role": "user"
},
{
"content": "Value",
"role": "assistant"
}
] |
def x(self):
old_p = 0
total = 0.0
for x, new_p in zip(self.xs, self.ps):
p = new_p - old_p
total += p * x
old_p = new_p
return total
|
Mean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n old_p = 0\n total = 0.0\n for x, new_p in zip(self.xs, self.ps):\n p = new_p - old_p\n total += p * x\n old_p = new_p\n return total\n",
"role": "user"
},
{
"content": "Mean",
"role": "assistant"
}
] |
def x(self, percentage=90):
prob = (1 - percentage / 100.0) / 2
interval = self.Value(prob), self.Value(1 - prob)
return interval
|
CredibleInterval
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, percentage=90):\n prob = (1 - percentage / 100.0) / 2\n interval = self.Value(prob), self.Value(1 - prob)\n return interval\n",
"role": "user"
},
{
"content": "CredibleInterval",
"role": "assistant"
}
] |
def x(self):
xs = [self.xs[0]]
ps = [0.0]
for i, p in enumerate(self.ps):
xs.append(self.xs[i])
ps.append(p)
try:
xs.append(self.xs[i + 1])
ps.append(p)
except IndexError:
pass
return xs, ps
|
Render
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n xs = [self.xs[0]]\n ps = [0.0]\n for i, p in enumerate(self.ps):\n xs.append(self.xs[i])\n ps.append(p)\n try:\n xs.append(self.xs[i + 1])\n ps.append(p)\n except IndexError:\n pass\n return xs, ps\n",
"role": "user"
},
{
"content": "Render",
"role": "assistant"
}
] |
def x(self, k):
cdf = self.Copy()
cdf.ps = [(p ** k) for p in cdf.ps]
return cdf
|
Max
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, k):\n cdf = self.Copy()\n cdf.ps = [(p ** k) for p in cdf.ps]\n return cdf\n",
"role": "user"
},
{
"content": "Max",
"role": "assistant"
}
] |
def x(self, data):
for hypo in self.Values():
like = self.LogLikelihood(data, hypo)
self.Incr(hypo, like)
|
LogUpdate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n for hypo in self.Values():\n like = self.LogLikelihood(data, hypo)\n self.Incr(hypo, like)\n",
"role": "user"
},
{
"content": "LogUpdate",
"role": "assistant"
}
] |
def x(self, dataset):
for data in dataset:
for hypo in self.Values():
like = self.Likelihood(data, hypo)
self.Mult(hypo, like)
return self.Normalize()
|
UpdateSet
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dataset):\n for data in dataset:\n for hypo in self.Values():\n like = self.Likelihood(data, hypo)\n self.Mult(hypo, like)\n return self.Normalize()\n",
"role": "user"
},
{
"content": "UpdateSet",
"role": "assistant"
}
] |
def x(self):
for hypo, prob in sorted(self.Items()):
print(hypo, prob)
|
Print
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for hypo, prob in sorted(self.Items()):\n print(hypo, prob)\n",
"role": "user"
},
{
"content": "Print",
"role": "assistant"
}
] |
def x(self):
for hypo, prob in self.Items():
if prob:
self.Set(hypo, Odds(prob))
else:
self.Remove(hypo)
|
MakeOdds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for hypo, prob in self.Items():\n if prob:\n self.Set(hypo, Odds(prob))\n else:\n self.Remove(hypo)\n",
"role": "user"
},
{
"content": "MakeOdds",
"role": "assistant"
}
] |
def x(self):
for hypo, odds in self.Items():
self.Set(hypo, Probability(odds))
|
MakeProbs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for hypo, odds in self.Items():\n self.Set(hypo, Probability(odds))\n",
"role": "user"
},
{
"content": "MakeProbs",
"role": "assistant"
}
] |
def x(self, xs, name=''):
pmf = Pmf(name=name)
for x in xs:
pmf.Set(x, self.Density(x))
pmf.Normalize()
return pmf
|
MakePmf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, xs, name=''):\n pmf = Pmf(name=name)\n for x in xs:\n pmf.Set(x, self.Density(x))\n pmf.Normalize()\n return pmf\n",
"role": "user"
},
{
"content": "MakePmf",
"role": "assistant"
}
] |
def x(self, data):
heads, tails = data
self.alpha += heads
self.beta += tails
|
Update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n heads, tails = data\n self.alpha += heads\n self.beta += tails\n",
"role": "user"
},
{
"content": "Update",
"role": "assistant"
}
] |
def x(self, n):
size = n,
return numpy.random.beta(self.alpha, self.beta, size)
|
Sample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n):\n size = n,\n return numpy.random.beta(self.alpha, self.beta, size)\n",
"role": "user"
},
{
"content": "Sample",
"role": "assistant"
}
] |
def x(self, steps=101, name=''):
if self.alpha < 1 or self.beta < 1:
cdf = self.MakeCdf()
pmf = cdf.MakePmf()
return pmf
xs = [(i / (steps - 1.0)) for i in xrange(steps)]
probs = [self.EvalPdf(x) for x in xs]
pmf = MakePmfFromDict(dict(zip(xs, probs)), name)
return pmf
|
MakePmf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, steps=101, name=''):\n if self.alpha < 1 or self.beta < 1:\n cdf = self.MakeCdf()\n pmf = cdf.MakePmf()\n return pmf\n xs = [(i / (steps - 1.0)) for i in xrange(steps)]\n probs = [self.EvalPdf(x) for x in xs]\n pmf = MakePmfFromDict(dict(zip(xs, probs)), name)\n return pmf\n",
"role": "user"
},
{
"content": "MakePmf",
"role": "assistant"
}
] |
def x(self, steps=101):
xs = [(i / (steps - 1.0)) for i in xrange(steps)]
ps = [scipy.special.betainc(self.alpha, self.beta, x) for x in xs]
cdf = Cdf(xs, ps)
return cdf
|
MakeCdf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, steps=101):\n xs = [(i / (steps - 1.0)) for i in xrange(steps)]\n ps = [scipy.special.betainc(self.alpha, self.beta, x) for x in xs]\n cdf = Cdf(xs, ps)\n return cdf\n",
"role": "user"
},
{
"content": "MakeCdf",
"role": "assistant"
}
] |
def x(self, data):
m = len(data)
self.params[:m] += data
|
Update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n m = len(data)\n self.params[:m] += data\n",
"role": "user"
},
{
"content": "Update",
"role": "assistant"
}
] |
def x(self):
p = numpy.random.gamma(self.params)
return p / p.sum()
|
Random
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n p = numpy.random.gamma(self.params)\n return p / p.sum()\n",
"role": "user"
},
{
"content": "Random",
"role": "assistant"
}
] |
def x(self, data):
m = len(data)
if self.n < m:
return 0
x = data
p = self.Random()
q = p[:m] ** x
return q.prod()
|
Likelihood
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n m = len(data)\n if self.n < m:\n return 0\n x = data\n p = self.Random()\n q = p[:m] ** x\n return q.prod()\n",
"role": "user"
},
{
"content": "Likelihood",
"role": "assistant"
}
] |
def x(self, data):
m = len(data)
if self.n < m:
return float('-inf')
x = self.Random()
y = numpy.log(x[:m]) * data
return y.sum()
|
LogLikelihood
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n m = len(data)\n if self.n < m:\n return float('-inf')\n x = self.Random()\n y = numpy.log(x[:m]) * data\n return y.sum()\n",
"role": "user"
},
{
"content": "LogLikelihood",
"role": "assistant"
}
] |
def x(self, i):
alpha0 = self.params.sum()
alpha = self.params[i]
return Beta(alpha, alpha0 - alpha)
|
MarginalBeta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, i):\n alpha0 = self.params.sum()\n alpha = self.params[i]\n return Beta(alpha, alpha0 - alpha)\n",
"role": "user"
},
{
"content": "MarginalBeta",
"role": "assistant"
}
] |
def x(self, xs, name=''):
alpha0 = self.params.sum()
ps = self.params / alpha0
return MakePmfFromItems(zip(xs, ps), name=name)
|
PredictivePmf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, xs, name=''):\n alpha0 = self.params.sum()\n ps = self.params / alpha0\n return MakePmfFromItems(zip(xs, ps), name=name)\n",
"role": "user"
},
{
"content": "PredictivePmf",
"role": "assistant"
}
] |
def x(dbs, features):
value = ''
for db, feature in zip(dbs, features):
value += db + ':' + feature
return value
|
get_ann
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dbs, features):\n value = ''\n for db, feature in zip(dbs, features):\n value += db + ':' + feature\n return value\n",
"role": "user"
},
{
"content": "get_ann",
"role": "assistant"
}
] |
def x(data, out_dir, args):
safe_dirs(out_dir)
main_table = []
header = ['id', 'ann']
n = len(data[0])
bar = ProgressBar(maxval=n)
bar.start()
bar.update(0)
for itern, c in enumerate(data[0]):
bar.update(itern)
logger.debug('creating cluser: {}'.format(c))
safe_dirs(os.path.join(out_dir, c))
valid, ann, pos_structure = _single_cluster(c, data, os.path.join(
out_dir, c, 'maps.tsv'), args)
data[0][c].update({'profile': pos_structure})
loci = data[0][c]['loci']
data[0][c]['precursor'] = {'seq': precursor_sequence(loci[0][0:5],
args.ref)}
data[0][c]['precursor']['colors'] = _parse(data[0][c]['profile'],
data[0][c]['precursor']['seq'])
data[0][c]['precursor'].update(run_rnafold(data[0][c]['precursor'][
'seq']))
return data
|
make_profile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, out_dir, args):\n safe_dirs(out_dir)\n main_table = []\n header = ['id', 'ann']\n n = len(data[0])\n bar = ProgressBar(maxval=n)\n bar.start()\n bar.update(0)\n for itern, c in enumerate(data[0]):\n bar.update(itern)\n logger.debug('creating cluser: {}'.format(c))\n safe_dirs(os.path.join(out_dir, c))\n valid, ann, pos_structure = _single_cluster(c, data, os.path.join(\n out_dir, c, 'maps.tsv'), args)\n data[0][c].update({'profile': pos_structure})\n loci = data[0][c]['loci']\n data[0][c]['precursor'] = {'seq': precursor_sequence(loci[0][0:5],\n args.ref)}\n data[0][c]['precursor']['colors'] = _parse(data[0][c]['profile'],\n data[0][c]['precursor']['seq'])\n data[0][c]['precursor'].update(run_rnafold(data[0][c]['precursor'][\n 'seq']))\n return data\n",
"role": "user"
},
{
"content": "make_profile",
"role": "assistant"
}
] |
def x(dat, counts, start, end):
for pos in range(start, end):
for s in counts:
dat[s][pos] += counts[s]
return dat
|
expand
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dat, counts, start, end):\n for pos in range(start, end):\n for s in counts:\n dat[s][pos] += counts[s]\n return dat\n",
"role": "user"
},
{
"content": "expand",
"role": "assistant"
}
] |
def x(in_file, freq, raw_file):
dat = defaultdict(Counter)
if isinstance(in_file, (str, unicode)):
with open(in_file) as in_handle:
for line in in_handle:
cols = line.strip().split('\t')
counts = freq[cols[3]]
dat = _expand(dat, counts, int(cols[1]), int(cols[2]))
else:
if raw_file:
out_handle = open(raw_file, 'w')
for name in in_file:
counts = freq[name]
if raw_file:
print('%s\t%s\t%s\t%s\t%s\t%s' % ('chr', in_file[name][0],
in_file[name][1], name, sum(counts.values()), '+'),
file=out_handle, end='')
dat = _expand(dat, counts, in_file[name][0], in_file[name][1])
for s in dat:
for p in dat[s]:
dat[s][p] = mlog2(dat[s][p] + 1)
return dat
|
convert_to_df
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(in_file, freq, raw_file):\n dat = defaultdict(Counter)\n if isinstance(in_file, (str, unicode)):\n with open(in_file) as in_handle:\n for line in in_handle:\n cols = line.strip().split('\\t')\n counts = freq[cols[3]]\n dat = _expand(dat, counts, int(cols[1]), int(cols[2]))\n else:\n if raw_file:\n out_handle = open(raw_file, 'w')\n for name in in_file:\n counts = freq[name]\n if raw_file:\n print('%s\\t%s\\t%s\\t%s\\t%s\\t%s' % ('chr', in_file[name][0],\n in_file[name][1], name, sum(counts.values()), '+'),\n file=out_handle, end='')\n dat = _expand(dat, counts, in_file[name][0], in_file[name][1])\n for s in dat:\n for p in dat[s]:\n dat[s][p] = mlog2(dat[s][p] + 1)\n return dat\n",
"role": "user"
},
{
"content": "convert_to_df",
"role": "assistant"
}
] |
def x(c):
ann = defaultdict(list)
for pos in c['ann']:
for db in pos:
ann[db] += list(pos[db])
logger.debug(ann)
valid = [l for l in c['valid']]
ann_list = [', '.join(list(set(ann[feature]))) for feature in ann if
feature in valid]
return valid, ann_list
|
make
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(c):\n ann = defaultdict(list)\n for pos in c['ann']:\n for db in pos:\n ann[db] += list(pos[db])\n logger.debug(ann)\n valid = [l for l in c['valid']]\n ann_list = [', '.join(list(set(ann[feature]))) for feature in ann if \n feature in valid]\n return valid, ann_list\n",
"role": "user"
},
{
"content": "make",
"role": "assistant"
}
] |
def x(c, data, out_file, args):
valid, ann = 0, 0
raw_file = None
freq = defaultdict()
[freq.update({s.keys()[0]: s.values()[0]}) for s in data[0][c]['freq']]
names = [s.keys()[0] for s in data[0][c]['seqs']]
seqs = [s.values()[0] for s in data[0][c]['seqs']]
loci = data[0][c]['loci']
if loci[0][3] - loci[0][2] > 500:
logger.info('locus bigger > 500 nt, skipping: %s' % loci)
return valid, ann, {}
if not file_exists(out_file):
if args.razer:
logger.debug('map with razer all sequences to all loci %s ' % loci)
map_to_precursors(seqs, names, {loci[0][0]: [loci[0][0:5]]},
out_file, args)
else:
logger.debug(
'map with biopython fn all sequences to all loci %s ' % loci)
if args.debug:
raw_file = out_file
out_file = map_to_precursor_biopython(seqs, names, loci[0][0:5],
args)
logger.debug('plot sequences on loci')
df = _convert_to_df(out_file, freq, raw_file)
if df:
valid, ann = _make(data[0][c])
return valid, ann, df
|
single_cluster
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(c, data, out_file, args):\n valid, ann = 0, 0\n raw_file = None\n freq = defaultdict()\n [freq.update({s.keys()[0]: s.values()[0]}) for s in data[0][c]['freq']]\n names = [s.keys()[0] for s in data[0][c]['seqs']]\n seqs = [s.values()[0] for s in data[0][c]['seqs']]\n loci = data[0][c]['loci']\n if loci[0][3] - loci[0][2] > 500:\n logger.info('locus bigger > 500 nt, skipping: %s' % loci)\n return valid, ann, {}\n if not file_exists(out_file):\n if args.razer:\n logger.debug('map with razer all sequences to all loci %s ' % loci)\n map_to_precursors(seqs, names, {loci[0][0]: [loci[0][0:5]]},\n out_file, args)\n else:\n logger.debug(\n 'map with biopython fn all sequences to all loci %s ' % loci)\n if args.debug:\n raw_file = out_file\n out_file = map_to_precursor_biopython(seqs, names, loci[0][0:5],\n args)\n logger.debug('plot sequences on loci')\n df = _convert_to_df(out_file, freq, raw_file)\n if df:\n valid, ann = _make(data[0][c])\n return valid, ann, df\n",
"role": "user"
},
{
"content": "single_cluster",
"role": "assistant"
}
] |
def x(data, id=1):
cl = cluster(1)
names = [s.keys()[0] for s in data['seqs']]
cl.add_id_member(names, 1)
freq = defaultdict()
[freq.update({s.keys()[0]: s.values()[0]}) for s in data['freq']]
|
read_cluster
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, id=1):\n cl = cluster(1)\n names = [s.keys()[0] for s in data['seqs']]\n cl.add_id_member(names, 1)\n freq = defaultdict()\n [freq.update({s.keys()[0]: s.values()[0]}) for s in data['freq']]\n",
"role": "user"
},
{
"content": "read_cluster",
"role": "assistant"
}
] |
def x(data, out_file):
with open(out_file, 'w') as handle_out:
handle_out.write(json.dumps([data], skipkeys=True, indent=2))
|
write_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, out_file):\n with open(out_file, 'w') as handle_out:\n handle_out.write(json.dumps([data], skipkeys=True, indent=2))\n",
"role": "user"
},
{
"content": "write_data",
"role": "assistant"
}
] |
def x(c1, c2, data):
seqs1 = data[c1]['seqs']
seqs2 = data[c2]['seqs']
seqs = list(set(seqs1 + seqs2))
names = []
for s in seqs:
if s in seqs1 and s in seqs2:
names.append('both')
elif s in seqs1:
names.append(c1)
else:
names.append(c2)
return seqs, names
|
get_sequences_from_cluster
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(c1, c2, data):\n seqs1 = data[c1]['seqs']\n seqs2 = data[c2]['seqs']\n seqs = list(set(seqs1 + seqs2))\n names = []\n for s in seqs:\n if s in seqs1 and s in seqs2:\n names.append('both')\n elif s in seqs1:\n names.append(c1)\n else:\n names.append(c2)\n return seqs, names\n",
"role": "user"
},
{
"content": "get_sequences_from_cluster",
"role": "assistant"
}
] |
def x(seqs, names, loci, out_file, args):
with make_temp_directory() as temp:
pre_fasta = os.path.join(temp, 'pre.fa')
seqs_fasta = os.path.join(temp, 'seqs.fa')
out_sam = os.path.join(temp, 'out.sam')
pre_fasta = get_loci_fasta(loci, pre_fasta, args.ref)
out_precursor_file = out_file.replace('tsv', 'fa')
seqs_fasta = get_seqs_fasta(seqs, names, seqs_fasta)
if find_cmd('razers3'):
cmd = (
'razers3 -dr 2 -i 80 -rr 90 -f -o {out_sam} {temp}/pre.fa {seqs_fasta}'
)
run(cmd.format(**locals()))
out_file = read_alignment(out_sam, loci, seqs, out_file)
shutil.copy(pre_fasta, out_precursor_file)
return out_file
|
map_to_precursors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seqs, names, loci, out_file, args):\n with make_temp_directory() as temp:\n pre_fasta = os.path.join(temp, 'pre.fa')\n seqs_fasta = os.path.join(temp, 'seqs.fa')\n out_sam = os.path.join(temp, 'out.sam')\n pre_fasta = get_loci_fasta(loci, pre_fasta, args.ref)\n out_precursor_file = out_file.replace('tsv', 'fa')\n seqs_fasta = get_seqs_fasta(seqs, names, seqs_fasta)\n if find_cmd('razers3'):\n cmd = (\n 'razers3 -dr 2 -i 80 -rr 90 -f -o {out_sam} {temp}/pre.fa {seqs_fasta}'\n )\n run(cmd.format(**locals()))\n out_file = read_alignment(out_sam, loci, seqs, out_file)\n shutil.copy(pre_fasta, out_precursor_file)\n return out_file\n",
"role": "user"
},
{
"content": "map_to_precursors",
"role": "assistant"
}
] |
def x(loci, reference):
region = '%s\t%s\t%s\t.\t.\t%s' % (loci[1], loci[2], loci[3], loci[4])
precursor = pybedtools.BedTool(str(region), from_string=True).sequence(fi
=reference, s=True)
return open(precursor.seqfn).read().split('\n')[1]
|
precursor_sequence
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(loci, reference):\n region = '%s\\t%s\\t%s\\t.\\t.\\t%s' % (loci[1], loci[2], loci[3], loci[4])\n precursor = pybedtools.BedTool(str(region), from_string=True).sequence(fi\n =reference, s=True)\n return open(precursor.seqfn).read().split('\\n')[1]\n",
"role": "user"
},
{
"content": "precursor_sequence",
"role": "assistant"
}
] |
def x(seqs, names, loci, args):
precursor = precursor_sequence(loci, args.ref).upper()
dat = dict()
for s, n in itertools.izip(seqs, names):
res = pyMatch.Match(precursor, str(s), 1, 3)
if res > -1:
dat[n] = [res, res + len(s)]
logger.debug('mapped in %s: %s out of %s' % (loci, len(dat), len(seqs)))
return dat
|
map_to_precursors_on_fly
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seqs, names, loci, args):\n precursor = precursor_sequence(loci, args.ref).upper()\n dat = dict()\n for s, n in itertools.izip(seqs, names):\n res = pyMatch.Match(precursor, str(s), 1, 3)\n if res > -1:\n dat[n] = [res, res + len(s)]\n logger.debug('mapped in %s: %s out of %s' % (loci, len(dat), len(seqs)))\n return dat\n",
"role": "user"
},
{
"content": "map_to_precursors_on_fly",
"role": "assistant"
}
] |
def x(x, y, local=False):
if local:
aligned_x = pairwise2.align.localxx(x, y)
else:
aligned_x = pairwise2.align.globalms(x, y, 1, -1, -1, -0.5)
if aligned_x:
sorted_alignments = sorted(aligned_x, key=operator.itemgetter(2))
e = enumerate(sorted_alignments[0][0])
nts = [i for i, c in e if c != '-']
return [min(nts), max(nts)]
|
align
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, local=False):\n if local:\n aligned_x = pairwise2.align.localxx(x, y)\n else:\n aligned_x = pairwise2.align.globalms(x, y, 1, -1, -1, -0.5)\n if aligned_x:\n sorted_alignments = sorted(aligned_x, key=operator.itemgetter(2))\n e = enumerate(sorted_alignments[0][0])\n nts = [i for i, c in e if c != '-']\n return [min(nts), max(nts)]\n",
"role": "user"
},
{
"content": "align",
"role": "assistant"
}
] |
def x(seqs, names, loci, args):
precursor = precursor_sequence(loci, args.ref).upper()
dat = dict()
for s, n in itertools.izip(seqs, names):
res = _align(str(s), precursor)
if res:
dat[n] = res
logger.debug('mapped in %s: %s out of %s' % (loci, len(dat), len(seqs)))
return dat
|
map_to_precursor_biopython
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seqs, names, loci, args):\n precursor = precursor_sequence(loci, args.ref).upper()\n dat = dict()\n for s, n in itertools.izip(seqs, names):\n res = _align(str(s), precursor)\n if res:\n dat[n] = res\n logger.debug('mapped in %s: %s out of %s' % (loci, len(dat), len(seqs)))\n return dat\n",
"role": "user"
},
{
"content": "map_to_precursor_biopython",
"role": "assistant"
}
] |
def x(seqs, names, out_fa):
with open(out_fa, 'w') as fa_handle:
for s, n in itertools.izip(seqs, names):
print('>cx{1}-{0}\n{0}'.format(s, n), file=fa_handle)
return out_fa
|
get_seqs_fasta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seqs, names, out_fa):\n with open(out_fa, 'w') as fa_handle:\n for s, n in itertools.izip(seqs, names):\n print('>cx{1}-{0}\\n{0}'.format(s, n), file=fa_handle)\n return out_fa\n",
"role": "user"
},
{
"content": "get_seqs_fasta",
"role": "assistant"
}
] |
def x(loci, out_fa, ref):
if not find_cmd('bedtools'):
raise ValueError('Not bedtools installed')
with make_temp_directory() as temp:
bed_file = os.path.join(temp, 'file.bed')
for nc, loci in loci.iteritems():
for l in loci:
with open(bed_file, 'w') as bed_handle:
logger.debug('get_fasta: loci %s' % l)
nc, c, s, e, st = l
print('{0}\t{1}\t{2}\t{3}\t{3}\t{4}'.format(c, s, e, nc,
st), file=bed_handle)
get_fasta(bed_file, ref, out_fa)
return out_fa
|
get_loci_fasta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(loci, out_fa, ref):\n if not find_cmd('bedtools'):\n raise ValueError('Not bedtools installed')\n with make_temp_directory() as temp:\n bed_file = os.path.join(temp, 'file.bed')\n for nc, loci in loci.iteritems():\n for l in loci:\n with open(bed_file, 'w') as bed_handle:\n logger.debug('get_fasta: loci %s' % l)\n nc, c, s, e, st = l\n print('{0}\\t{1}\\t{2}\\t{3}\\t{3}\\t{4}'.format(c, s, e, nc,\n st), file=bed_handle)\n get_fasta(bed_file, ref, out_fa)\n return out_fa\n",
"role": "user"
},
{
"content": "get_loci_fasta",
"role": "assistant"
}
] |
def x(out_sam, loci, seqs, out_file):
hits = defaultdict(list)
with open(out_file, 'w') as out_handle:
samfile = pysam.Samfile(out_sam, 'r')
for a in samfile.fetch():
if not a.is_unmapped:
nm = int([t[1] for t in a.tags if t[0] == 'NM'][0])
a = makeBED(a)
if not a:
continue
ref, locus = get_loci(samfile.getrname(int(a.chr)), loci)
hits[a.name].append((nm, '%s %s %s %s %s %s' % (a.name, a.
name.split('-')[0], locus, ref, a.start, a.end)))
for hit in hits.values():
nm = hit[0][0]
for l in hit:
if nm == l[0]:
print(l[1], file=out_handle)
return out_file
|
read_alignment
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(out_sam, loci, seqs, out_file):\n hits = defaultdict(list)\n with open(out_file, 'w') as out_handle:\n samfile = pysam.Samfile(out_sam, 'r')\n for a in samfile.fetch():\n if not a.is_unmapped:\n nm = int([t[1] for t in a.tags if t[0] == 'NM'][0])\n a = makeBED(a)\n if not a:\n continue\n ref, locus = get_loci(samfile.getrname(int(a.chr)), loci)\n hits[a.name].append((nm, '%s %s %s %s %s %s' % (a.name, a.\n name.split('-')[0], locus, ref, a.start, a.end)))\n for hit in hits.values():\n nm = hit[0][0]\n for l in hit:\n if nm == l[0]:\n print(l[1], file=out_handle)\n return out_file\n",
"role": "user"
},
{
"content": "read_alignment",
"role": "assistant"
}
] |
def x(args, version='CURRENT'):
if not args.hairpin or not args.mirna:
logger.info('Working with version %s' % version)
hairpin_fn = op.join(op.abspath(args.out), 'hairpin.fa.gz')
mirna_fn = op.join(op.abspath(args.out), 'miRNA.str.gz')
if not file_exists(hairpin_fn):
cmd_h = (
'wget ftp://mirbase.org/pub/mirbase/%s/hairpin.fa.gz -O %s && gunzip -f !$'
% (version, hairpin_fn))
do.run(cmd_h, 'download hairpin')
if not file_exists(mirna_fn):
cmd_m = (
'wget ftp://mirbase.org/pub/mirbase/%s/miRNA.str.gz -O %s && gunzip -f !$'
% (version, mirna_fn))
do.run(cmd_m, 'download mirna')
else:
return args.hairpin, args.mirna
|
download_mirbase
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args, version='CURRENT'):\n if not args.hairpin or not args.mirna:\n logger.info('Working with version %s' % version)\n hairpin_fn = op.join(op.abspath(args.out), 'hairpin.fa.gz')\n mirna_fn = op.join(op.abspath(args.out), 'miRNA.str.gz')\n if not file_exists(hairpin_fn):\n cmd_h = (\n 'wget ftp://mirbase.org/pub/mirbase/%s/hairpin.fa.gz -O %s && gunzip -f !$'\n % (version, hairpin_fn))\n do.run(cmd_h, 'download hairpin')\n if not file_exists(mirna_fn):\n cmd_m = (\n 'wget ftp://mirbase.org/pub/mirbase/%s/miRNA.str.gz -O %s && gunzip -f !$'\n % (version, mirna_fn))\n do.run(cmd_m, 'download mirna')\n else:\n return args.hairpin, args.mirna\n",
"role": "user"
},
{
"content": "download_mirbase",
"role": "assistant"
}
] |
def x(name, idx):
p = re.compile('.[aA-zZ]+_x[0-9]+')
if p.match(name):
tags = name[1:].split('_x')
return '>%s_%s_x%s' % (tags[0], idx, tags[1])
return name.replace('@', '>')
|
make_unique
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, idx):\n p = re.compile('.[aA-zZ]+_x[0-9]+')\n if p.match(name):\n tags = name[1:].split('_x')\n return '>%s_%s_x%s' % (tags[0], idx, tags[1])\n return name.replace('@', '>')\n",
"role": "user"
},
{
"content": "make_unique",
"role": "assistant"
}
] |
def x(fn):
out_file = op.splitext(fn)[0] + '_unique.fa'
idx = 0
if not file_exists(out_file):
with open(out_file, 'w') as out_handle:
with open(fn) as in_handle:
for line in in_handle:
if line.startswith('@') or line.startswith('>'):
fixed_name = _make_unique(line.strip(), idx)
seq = in_handle.next().strip()
counts = _get_freq(fixed_name)
if len(seq) < 26 and (counts > 1 or counts == 0):
idx += 1
print(fixed_name, file=out_handle, end='\n')
print(seq, file=out_handle, end='\n')
if line.startswith('@'):
in_handle.next()
in_handle.next()
return out_file
|
filter_seqs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fn):\n out_file = op.splitext(fn)[0] + '_unique.fa'\n idx = 0\n if not file_exists(out_file):\n with open(out_file, 'w') as out_handle:\n with open(fn) as in_handle:\n for line in in_handle:\n if line.startswith('@') or line.startswith('>'):\n fixed_name = _make_unique(line.strip(), idx)\n seq = in_handle.next().strip()\n counts = _get_freq(fixed_name)\n if len(seq) < 26 and (counts > 1 or counts == 0):\n idx += 1\n print(fixed_name, file=out_handle, end='\\n')\n print(seq, file=out_handle, end='\\n')\n if line.startswith('@'):\n in_handle.next()\n in_handle.next()\n return out_file\n",
"role": "user"
},
{
"content": "filter_seqs",
"role": "assistant"
}
] |
def x(precursor, sps):
hairpin = defaultdict(str)
name = None
with open(precursor) as in_handle:
for line in in_handle:
if line.startswith('>'):
if hairpin[name]:
hairpin[name] = hairpin[name] + 'NNNNNNNNNNNN'
name = line.strip().replace('>', ' ').split()[0]
else:
hairpin[name] += line.strip()
hairpin[name] = hairpin[name] + 'NNNNNNNNNNNN'
return hairpin
|
read_precursor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(precursor, sps):\n hairpin = defaultdict(str)\n name = None\n with open(precursor) as in_handle:\n for line in in_handle:\n if line.startswith('>'):\n if hairpin[name]:\n hairpin[name] = hairpin[name] + 'NNNNNNNNNNNN'\n name = line.strip().replace('>', ' ').split()[0]\n else:\n hairpin[name] += line.strip()\n hairpin[name] = hairpin[name] + 'NNNNNNNNNNNN'\n return hairpin\n",
"role": "user"
},
{
"content": "read_precursor",
"role": "assistant"
}
] |
def x(gtf):
if not gtf:
return gtf
db = defaultdict(list)
with open(gtf) as in_handle:
for line in in_handle:
if line.startswith('#'):
continue
cols = line.strip().split('\t')
name = [n.split('=')[1] for n in cols[-1].split(';') if n.
startswith('Name')]
chrom, start, end, strand = cols[0], cols[3], cols[4], cols[6]
if cols[2] == 'miRNA_primary_transcript':
db[name[0]].append([chrom, int(start), int(end), strand])
return db
|
read_gtf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(gtf):\n if not gtf:\n return gtf\n db = defaultdict(list)\n with open(gtf) as in_handle:\n for line in in_handle:\n if line.startswith('#'):\n continue\n cols = line.strip().split('\\t')\n name = [n.split('=')[1] for n in cols[-1].split(';') if n.\n startswith('Name')]\n chrom, start, end, strand = cols[0], cols[3], cols[4], cols[6]\n if cols[2] == 'miRNA_primary_transcript':\n db[name[0]].append([chrom, int(start), int(end), strand])\n return db\n",
"role": "user"
},
{
"content": "read_gtf",
"role": "assistant"
}
] |
def x(sequence, start, mirna, precursor, iso):
dif = abs(mirna[0] - start)
if start < mirna[0]:
iso.t5 = sequence[:dif].upper()
elif start > mirna[0]:
iso.t5 = precursor[mirna[0] - 1:mirna[0] - 1 + dif].lower()
elif start == mirna[0]:
iso.t5 = 'NA'
if dif > 4:
logger.debug('start > 3 %s %s %s %s %s' % (start, len(sequence),
dif, mirna, iso.format()))
return None
end = start + (len(sequence) - len(iso.add)) - 1
dif = abs(mirna[1] - end)
if iso.add:
sequence = sequence[:-len(iso.add)]
if end > mirna[1]:
iso.t3 = sequence[-dif:].upper()
elif end < mirna[1]:
iso.t3 = precursor[mirna[1] - dif:mirna[1]].lower()
elif end == mirna[1]:
iso.t3 = 'NA'
if dif > 4:
logger.debug('end > 3 %s %s %s %s %s' % (len(sequence), end, dif,
mirna, iso.format()))
return None
logger.debug('%s %s %s %s %s %s' % (start, len(sequence), end, dif,
mirna, iso.format()))
return True
|
coord
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sequence, start, mirna, precursor, iso):\n dif = abs(mirna[0] - start)\n if start < mirna[0]:\n iso.t5 = sequence[:dif].upper()\n elif start > mirna[0]:\n iso.t5 = precursor[mirna[0] - 1:mirna[0] - 1 + dif].lower()\n elif start == mirna[0]:\n iso.t5 = 'NA'\n if dif > 4:\n logger.debug('start > 3 %s %s %s %s %s' % (start, len(sequence),\n dif, mirna, iso.format()))\n return None\n end = start + (len(sequence) - len(iso.add)) - 1\n dif = abs(mirna[1] - end)\n if iso.add:\n sequence = sequence[:-len(iso.add)]\n if end > mirna[1]:\n iso.t3 = sequence[-dif:].upper()\n elif end < mirna[1]:\n iso.t3 = precursor[mirna[1] - dif:mirna[1]].lower()\n elif end == mirna[1]:\n iso.t3 = 'NA'\n if dif > 4:\n logger.debug('end > 3 %s %s %s %s %s' % (len(sequence), end, dif,\n mirna, iso.format()))\n return None\n logger.debug('%s %s %s %s %s %s' % (start, len(sequence), end, dif,\n mirna, iso.format()))\n return True\n",
"role": "user"
},
{
"content": "coord",
"role": "assistant"
}
] |
def x(reads, mirbase_ref, precursors):
for r in reads:
for p in reads[r].precursors:
start = reads[r].precursors[p].start + 1
end = start + len(reads[r].sequence)
for mature in mirbase_ref[p]:
mi = mirbase_ref[p][mature]
is_iso = _coord(reads[r].sequence, start, mi, precursors[p],
reads[r].precursors[p])
logger.debug(
'{r} {p} {start} {is_iso} {mature} {mi} {mature_s}'.
format(s=reads[r].sequence, mature_s=precursors[p][mi[0
] - 1:mi[1]], **locals()))
if is_iso:
reads[r].precursors[p].mirna = mature
break
return reads
|
annotate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(reads, mirbase_ref, precursors):\n for r in reads:\n for p in reads[r].precursors:\n start = reads[r].precursors[p].start + 1\n end = start + len(reads[r].sequence)\n for mature in mirbase_ref[p]:\n mi = mirbase_ref[p][mature]\n is_iso = _coord(reads[r].sequence, start, mi, precursors[p],\n reads[r].precursors[p])\n logger.debug(\n '{r} {p} {start} {is_iso} {mature} {mi} {mature_s}'.\n format(s=reads[r].sequence, mature_s=precursors[p][mi[0\n ] - 1:mi[1]], **locals()))\n if is_iso:\n reads[r].precursors[p].mirna = mature\n break\n return reads\n",
"role": "user"
},
{
"content": "annotate",
"role": "assistant"
}
] |
def x(seq, precursor, start):
error = set()
pattern_addition = [[1, 1, 0], [1, 0, 1], [0, 1, 0], [0, 1, 1], [0, 0,
1], [1, 1, 1]]
for pos in range(0, len(seq)):
if seq[pos] != precursor[start + pos]:
error.add(pos)
subs, add = [], []
for e in error:
if e < len(seq) - 3:
subs.append([e, seq[e], precursor[start + e]])
pattern, error_add = [], []
for e in range(len(seq) - 3, len(seq)):
if e in error:
pattern.append(1)
error_add.append(e)
else:
pattern.append(0)
for p in pattern_addition:
if pattern == p:
add = seq[error_add[0]:]
break
if not add and error_add:
for e in error_add:
subs.append([e, seq[e], precursor[start + e]])
return subs, add
|
realign
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq, precursor, start):\n error = set()\n pattern_addition = [[1, 1, 0], [1, 0, 1], [0, 1, 0], [0, 1, 1], [0, 0, \n 1], [1, 1, 1]]\n for pos in range(0, len(seq)):\n if seq[pos] != precursor[start + pos]:\n error.add(pos)\n subs, add = [], []\n for e in error:\n if e < len(seq) - 3:\n subs.append([e, seq[e], precursor[start + e]])\n pattern, error_add = [], []\n for e in range(len(seq) - 3, len(seq)):\n if e in error:\n pattern.append(1)\n error_add.append(e)\n else:\n pattern.append(0)\n for p in pattern_addition:\n if pattern == p:\n add = seq[error_add[0]:]\n break\n if not add and error_add:\n for e in error_add:\n subs.append([e, seq[e], precursor[start + e]])\n return subs, add\n",
"role": "user"
},
{
"content": "realign",
"role": "assistant"
}
] |
def x(reads):
new_reads = defaultdict(realign)
for r in reads:
world = {}
sc = 0
for p in reads[r].precursors:
world[p] = reads[r].precursors[p].get_score(len(reads[r].sequence))
if sc < world[p]:
sc = world[p]
new_reads[r] = reads[r]
for p in world:
logger.debug('score %s %s %s' % (r, p, world[p]))
if sc != world[p]:
logger.debug('remove %s %s %s' % (r, p, world[p]))
new_reads[r].remove_precursor(p)
return new_reads
|
clean_hits
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(reads):\n new_reads = defaultdict(realign)\n for r in reads:\n world = {}\n sc = 0\n for p in reads[r].precursors:\n world[p] = reads[r].precursors[p].get_score(len(reads[r].sequence))\n if sc < world[p]:\n sc = world[p]\n new_reads[r] = reads[r]\n for p in world:\n logger.debug('score %s %s %s' % (r, p, world[p]))\n if sc != world[p]:\n logger.debug('remove %s %s %s' % (r, p, world[p]))\n new_reads[r].remove_precursor(p)\n return new_reads\n",
"role": "user"
},
{
"content": "clean_hits",
"role": "assistant"
}
] |
def x(bam_fn, precursors):
mode = 'r' if bam_fn.endswith('sam') else 'rb'
handle = pysam.Samfile(bam_fn, mode)
reads = defaultdict(realign)
for line in handle:
chrom = handle.getrname(line.reference_id)
query_name = line.query_name
if query_name not in reads:
reads[query_name].sequence = line.query_sequence
iso = isomir()
iso.align = line
iso.start = line.reference_start
iso.subs, iso.add = _realign(reads[query_name].sequence, precursors
[chrom], line.reference_start)
reads[query_name].set_precursor(chrom, iso)
reads = _clean_hits(reads)
return reads
|
read_bam
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(bam_fn, precursors):\n mode = 'r' if bam_fn.endswith('sam') else 'rb'\n handle = pysam.Samfile(bam_fn, mode)\n reads = defaultdict(realign)\n for line in handle:\n chrom = handle.getrname(line.reference_id)\n query_name = line.query_name\n if query_name not in reads:\n reads[query_name].sequence = line.query_sequence\n iso = isomir()\n iso.align = line\n iso.start = line.reference_start\n iso.subs, iso.add = _realign(reads[query_name].sequence, precursors\n [chrom], line.reference_start)\n reads[query_name].set_precursor(chrom, iso)\n reads = _clean_hits(reads)\n return reads\n",
"role": "user"
},
{
"content": "read_bam",
"role": "assistant"
}
] |
def x(in_fn):
args = argparse.Namespace()
args.fastq = in_fn
args.minimum = 1
args.out = op.dirname(in_fn)
return collapse_fastq(args)
|
collapse_fastq
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(in_fn):\n args = argparse.Namespace()\n args.fastq = in_fn\n args.minimum = 1\n args.out = op.dirname(in_fn)\n return collapse_fastq(args)\n",
"role": "user"
},
{
"content": "collapse_fastq",
"role": "assistant"
}
] |
def x(fn, precursors):
with open(fn) as handle:
reads = defaultdict(realign)
for line in handle:
query_name, seq, chrom, reference_start, end, mism, add = (line
.split())
reference_start = int(reference_start)
if query_name not in reads:
reads[query_name].sequence = seq
iso = isomir()
iso.align = line
iso.start = reference_start
iso.subs, iso.add = _realign(reads[query_name].sequence,
precursors[chrom], reference_start)
logger.debug('%s %s %s %s %s' % (query_name, reference_start,
chrom, iso.subs, iso.add))
if len(iso.subs) > 1:
continue
reads[query_name].set_precursor(chrom, iso)
reads = _clean_hits(reads)
return reads
|
read_pyMatch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fn, precursors):\n with open(fn) as handle:\n reads = defaultdict(realign)\n for line in handle:\n query_name, seq, chrom, reference_start, end, mism, add = (line\n .split())\n reference_start = int(reference_start)\n if query_name not in reads:\n reads[query_name].sequence = seq\n iso = isomir()\n iso.align = line\n iso.start = reference_start\n iso.subs, iso.add = _realign(reads[query_name].sequence,\n precursors[chrom], reference_start)\n logger.debug('%s %s %s %s %s' % (query_name, reference_start,\n chrom, iso.subs, iso.add))\n if len(iso.subs) > 1:\n continue\n reads[query_name].set_precursor(chrom, iso)\n reads = _clean_hits(reads)\n return reads\n",
"role": "user"
},
{
"content": "read_pyMatch",
"role": "assistant"
}
] |
def x(subs):
if subs != '0':
subs = [[subs.replace(subs[-2:], ''), subs[-2], subs[-1]]]
return subs
|
parse_mut
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(subs):\n if subs != '0':\n subs = [[subs.replace(subs[-2:], ''), subs[-2], subs[-1]]]\n return subs\n",
"role": "user"
},
{
"content": "parse_mut",
"role": "assistant"
}
] |
def x(fn):
reads = defaultdict(realign)
with open(fn) as in_handle:
in_handle.next()
for line in in_handle:
cols = line.strip().split('\t')
iso = isomir()
query_name, seq = cols[1], cols[0]
chrom, reference_start = cols[-2], cols[3]
iso.mirna = cols[3]
subs, add, iso.t5, iso.t3 = cols[6:10]
if query_name not in reads:
reads[query_name].sequence = seq
iso.align = line
iso.start = reference_start
iso.subs, iso.add = _parse_mut(subs), add
logger.debug('%s %s %s %s %s' % (query_name, reference_start,
chrom, iso.subs, iso.add))
reads[query_name].set_precursor(chrom, iso)
return reads
|
read_miraligner
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fn):\n reads = defaultdict(realign)\n with open(fn) as in_handle:\n in_handle.next()\n for line in in_handle:\n cols = line.strip().split('\\t')\n iso = isomir()\n query_name, seq = cols[1], cols[0]\n chrom, reference_start = cols[-2], cols[3]\n iso.mirna = cols[3]\n subs, add, iso.t5, iso.t3 = cols[6:10]\n if query_name not in reads:\n reads[query_name].sequence = seq\n iso.align = line\n iso.start = reference_start\n iso.subs, iso.add = _parse_mut(subs), add\n logger.debug('%s %s %s %s %s' % (query_name, reference_start,\n chrom, iso.subs, iso.add))\n reads[query_name].set_precursor(chrom, iso)\n return reads\n",
"role": "user"
},
{
"content": "read_miraligner",
"role": "assistant"
}
] |
def x(fn, out_file, species, hairpin, out):
tool = _get_miraligner()
path_db = op.dirname(op.abspath(hairpin))
cmd = (
'{tool} -freq -i {fn} -o {out_file} -s {species} -db {path_db} -sub 1 -trim 3 -add 3'
)
if not file_exists(out_file):
logger.info('Running miraligner with %s' % fn)
do.run(cmd.format(**locals()), 'miraligner with %s' % fn)
shutil.move(out_file + '.mirna', out_file)
return out_file
|
cmd_miraligner
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fn, out_file, species, hairpin, out):\n tool = _get_miraligner()\n path_db = op.dirname(op.abspath(hairpin))\n cmd = (\n '{tool} -freq -i {fn} -o {out_file} -s {species} -db {path_db} -sub 1 -trim 3 -add 3'\n )\n if not file_exists(out_file):\n logger.info('Running miraligner with %s' % fn)\n do.run(cmd.format(**locals()), 'miraligner with %s' % fn)\n shutil.move(out_file + '.mirna', out_file)\n return out_file\n",
"role": "user"
},
{
"content": "cmd_miraligner",
"role": "assistant"
}
] |
def x(out_files, hairpin, gff3, species, out):
args = argparse.Namespace()
args.hairpin = hairpin
args.sps = species
args.gtf = gff3
args.add_extra = True
args.files = out_files
args.format = 'seqbuster'
args.out_format = 'gff'
args.out = out
reader(args)
|
mirtop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(out_files, hairpin, gff3, species, out):\n args = argparse.Namespace()\n args.hairpin = hairpin\n args.sps = species\n args.gtf = gff3\n args.add_extra = True\n args.files = out_files\n args.format = 'seqbuster'\n args.out_format = 'gff'\n args.out = out\n reader(args)\n",
"role": "user"
},
{
"content": "mirtop",
"role": "assistant"
}
] |
def x(dts):
df = pd.concat(dts)
ma = df.pivot(index='isomir', columns='sample', values='counts')
ma_mirna = ma
ma = ma.fillna(0)
ma_mirna['mirna'] = [m.split(':')[0] for m in ma.index.values]
ma_mirna = ma_mirna.groupby(['mirna']).sum()
ma_mirna = ma_mirna.fillna(0)
return ma, ma_mirna
|
merge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dts):\n df = pd.concat(dts)\n ma = df.pivot(index='isomir', columns='sample', values='counts')\n ma_mirna = ma\n ma = ma.fillna(0)\n ma_mirna['mirna'] = [m.split(':')[0] for m in ma.index.values]\n ma_mirna = ma_mirna.groupby(['mirna']).sum()\n ma_mirna = ma_mirna.fillna(0)\n return ma, ma_mirna\n",
"role": "user"
},
{
"content": "merge",
"role": "assistant"
}
] |
def x(out_dts, out_dir):
ma, ma_mirna = _merge(out_dts)
out_ma = op.join(out_dir, 'counts.tsv')
out_ma_mirna = op.join(out_dir, 'counts_mirna.tsv')
ma.to_csv(out_ma, sep='\t')
ma_mirna.to_csv(out_ma_mirna, sep='\t')
return out_ma_mirna, out_ma
|
create_counts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(out_dts, out_dir):\n ma, ma_mirna = _merge(out_dts)\n out_ma = op.join(out_dir, 'counts.tsv')\n out_ma_mirna = op.join(out_dir, 'counts_mirna.tsv')\n ma.to_csv(out_ma, sep='\\t')\n ma_mirna.to_csv(out_ma_mirna, sep='\\t')\n return out_ma_mirna, out_ma\n",
"role": "user"
},
{
"content": "create_counts",
"role": "assistant"
}
] |
def x(args):
hairpin, mirna = _download_mirbase(args)
precursors = _read_precursor(args.hairpin, args.sps)
matures = _read_mature(args.mirna, args.sps)
gtf = _read_gtf(args.gtf)
out_dts = []
out_files = []
for bam_fn in args.files:
sample = op.splitext(op.basename(bam_fn))[0]
logger.info('Reading %s' % bam_fn)
if bam_fn.endswith('bam') or bam_fn.endswith('sam'):
bam_fn = _sam_to_bam(bam_fn)
bam_sort_by_n = op.splitext(bam_fn)[0] + '_sort'
pysam.sort('-n', bam_fn, bam_sort_by_n)
reads = _read_bam(bam_sort_by_n + '.bam', precursors)
elif bam_fn.endswith('fasta') or bam_fn.endswith('fa'
) or bam_fn.endswith('fastq'):
if args.collapse:
bam_fn = _collapse_fastq(bam_fn)
out_file = op.join(args.out, sample + '.premirna')
bam_fn = _filter_seqs(bam_fn)
if args.miraligner:
_cmd_miraligner(bam_fn, out_file, args.sps, args.hairpin,
args.out)
reads = _read_miraligner(out_file)
out_files.append(out_file)
else:
raise ValueError('Format not recognized.')
if args.miraligner:
_mirtop(out_files, args.hairpin, args.gtf, args.sps, args.out)
if not args.miraligner:
reads = _annotate(reads, matures, precursors)
out_file = op.join(args.out, sample + '.mirna')
out_file, dt, dt_pre = _tab_output(reads, out_file, sample)
try:
vcf_file = op.join(args.out, sample + '.vcf')
if not file_exists(vcf_file):
create_vcf(dt_pre, matures, gtf, vcf_file)
try:
import vcf
vcf.Reader(filename=vcf_file)
except Exception as e:
logger.warning(e.__doc__)
logger.warning(e.message)
except Exception as e:
logger.warning(e.__doc__)
logger.warning(e.message)
if isinstance(dt, pd.DataFrame):
out_dts.append(dt)
if out_dts:
_create_counts(out_dts, args.out)
else:
print('No files analyzed!')
|
miraligner
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n hairpin, mirna = _download_mirbase(args)\n precursors = _read_precursor(args.hairpin, args.sps)\n matures = _read_mature(args.mirna, args.sps)\n gtf = _read_gtf(args.gtf)\n out_dts = []\n out_files = []\n for bam_fn in args.files:\n sample = op.splitext(op.basename(bam_fn))[0]\n logger.info('Reading %s' % bam_fn)\n if bam_fn.endswith('bam') or bam_fn.endswith('sam'):\n bam_fn = _sam_to_bam(bam_fn)\n bam_sort_by_n = op.splitext(bam_fn)[0] + '_sort'\n pysam.sort('-n', bam_fn, bam_sort_by_n)\n reads = _read_bam(bam_sort_by_n + '.bam', precursors)\n elif bam_fn.endswith('fasta') or bam_fn.endswith('fa'\n ) or bam_fn.endswith('fastq'):\n if args.collapse:\n bam_fn = _collapse_fastq(bam_fn)\n out_file = op.join(args.out, sample + '.premirna')\n bam_fn = _filter_seqs(bam_fn)\n if args.miraligner:\n _cmd_miraligner(bam_fn, out_file, args.sps, args.hairpin,\n args.out)\n reads = _read_miraligner(out_file)\n out_files.append(out_file)\n else:\n raise ValueError('Format not recognized.')\n if args.miraligner:\n _mirtop(out_files, args.hairpin, args.gtf, args.sps, args.out)\n if not args.miraligner:\n reads = _annotate(reads, matures, precursors)\n out_file = op.join(args.out, sample + '.mirna')\n out_file, dt, dt_pre = _tab_output(reads, out_file, sample)\n try:\n vcf_file = op.join(args.out, sample + '.vcf')\n if not file_exists(vcf_file):\n create_vcf(dt_pre, matures, gtf, vcf_file)\n try:\n import vcf\n vcf.Reader(filename=vcf_file)\n except Exception as e:\n logger.warning(e.__doc__)\n logger.warning(e.message)\n except Exception as e:\n logger.warning(e.__doc__)\n logger.warning(e.message)\n if isinstance(dt, pd.DataFrame):\n out_dts.append(dt)\n if out_dts:\n _create_counts(out_dts, args.out)\n else:\n print('No files analyzed!')\n",
"role": "user"
},
{
"content": "miraligner",
"role": "assistant"
}
] |
def x(new_dir):
cur_dir = os.getcwd()
_mkdir(new_dir)
os.chdir(new_dir)
try:
yield
finally:
os.chdir(cur_dir)
|
chdir
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(new_dir):\n cur_dir = os.getcwd()\n _mkdir(new_dir)\n os.chdir(new_dir)\n try:\n yield\n finally:\n os.chdir(cur_dir)\n",
"role": "user"
},
{
"content": "chdir",
"role": "assistant"
}
] |
def x():
target = op.join('seqcluster', 'flavor')
url = 'https://github.com/lpantano/seqcluster.git'
if not os.path.exists(target):
subprocess.check_call(['git', 'clone', '-b', 'flavor',
'--single-branch', url])
return op.abspath(target)
|
get_flavor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n target = op.join('seqcluster', 'flavor')\n url = 'https://github.com/lpantano/seqcluster.git'\n if not os.path.exists(target):\n subprocess.check_call(['git', 'clone', '-b', 'flavor',\n '--single-branch', url])\n return op.abspath(target)\n",
"role": "user"
},
{
"content": "get_flavor",
"role": "assistant"
}
] |
def x(path, args):
try:
from bcbio import install as bcb
except:
raise ImportError('It needs bcbio to do the quick installation.')
path_flavor = _get_flavor()
s = {'fabricrc_overrides': {'system_install': path, 'local_install': os
.path.join(path, 'local_install'), 'use_sudo': 'false', 'edition':
'minimal'}}
s = {'flavor': path_flavor, 'vm_provider': 'novm', 'hostname':
'localhost', 'fabricrc_overrides': {'edition': 'minimal',
'use_sudo': 'false', 'keep_isolated': 'true', 'conda_cmd': bcb.
_get_conda_bin(), 'distribution': '__auto__', 'dist_name': '__auto__'}}
s['actions'] = ['install_biolinux']
s['fabricrc_overrides']['system_install'] = path
s['fabricrc_overrides']['local_install'] = os.path.join(path,
'local_install')
cbl = bcb.get_cloudbiolinux(bcb.REMOTES)
sys.path.insert(0, cbl['dir'])
cbl_deploy = __import__('cloudbio.deploy', fromlist=['deploy'])
cbl_deploy.deploy(s)
|
install
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path, args):\n try:\n from bcbio import install as bcb\n except:\n raise ImportError('It needs bcbio to do the quick installation.')\n path_flavor = _get_flavor()\n s = {'fabricrc_overrides': {'system_install': path, 'local_install': os\n .path.join(path, 'local_install'), 'use_sudo': 'false', 'edition':\n 'minimal'}}\n s = {'flavor': path_flavor, 'vm_provider': 'novm', 'hostname':\n 'localhost', 'fabricrc_overrides': {'edition': 'minimal',\n 'use_sudo': 'false', 'keep_isolated': 'true', 'conda_cmd': bcb.\n _get_conda_bin(), 'distribution': '__auto__', 'dist_name': '__auto__'}}\n s['actions'] = ['install_biolinux']\n s['fabricrc_overrides']['system_install'] = path\n s['fabricrc_overrides']['local_install'] = os.path.join(path,\n 'local_install')\n cbl = bcb.get_cloudbiolinux(bcb.REMOTES)\n sys.path.insert(0, cbl['dir'])\n cbl_deploy = __import__('cloudbio.deploy', fromlist=['deploy'])\n cbl_deploy.deploy(s)\n",
"role": "user"
},
{
"content": "install",
"role": "assistant"
}
] |
def x(data_dir, path_flavor, args):
try:
from bcbio import install as bcb
except:
raise ImportError('It needs bcbio to do the quick installation.')
bio_data = op.join(path_flavor, '../biodata.yaml')
s = {'flavor': path_flavor, 'vm_provider': 'novm', 'hostname':
'localhost', 'fabricrc_overrides': {'edition': 'minimal',
'use_sudo': 'false', 'keep_isolated': 'true', 'conda_cmd': bcb.
_get_conda_bin(), 'distribution': '__auto__', 'dist_name': '__auto__'}}
s['actions'] = ['setup_biodata']
s['fabricrc_overrides']['data_files'] = data_dir
s['fabricrc_overrides']['galaxy_home'] = os.path.join(data_dir, 'galaxy')
cbl = bcb.get_cloudbiolinux(bcb.REMOTES)
s['genomes'] = _get_biodata(bio_data, args)
sys.path.insert(0, cbl['dir'])
cbl_deploy = __import__('cloudbio.deploy', fromlist=['deploy'])
cbl_deploy.deploy(s)
|
install_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data_dir, path_flavor, args):\n try:\n from bcbio import install as bcb\n except:\n raise ImportError('It needs bcbio to do the quick installation.')\n bio_data = op.join(path_flavor, '../biodata.yaml')\n s = {'flavor': path_flavor, 'vm_provider': 'novm', 'hostname':\n 'localhost', 'fabricrc_overrides': {'edition': 'minimal',\n 'use_sudo': 'false', 'keep_isolated': 'true', 'conda_cmd': bcb.\n _get_conda_bin(), 'distribution': '__auto__', 'dist_name': '__auto__'}}\n s['actions'] = ['setup_biodata']\n s['fabricrc_overrides']['data_files'] = data_dir\n s['fabricrc_overrides']['galaxy_home'] = os.path.join(data_dir, 'galaxy')\n cbl = bcb.get_cloudbiolinux(bcb.REMOTES)\n s['genomes'] = _get_biodata(bio_data, args)\n sys.path.insert(0, cbl['dir'])\n cbl_deploy = __import__('cloudbio.deploy', fromlist=['deploy'])\n cbl_deploy.deploy(s)\n",
"role": "user"
},
{
"content": "install_data",
"role": "assistant"
}
] |
def x(args):
logger.info(args)
logger.info('reading sequeces')
out_file = os.path.abspath(os.path.splitext(args.json)[0] +
'_prediction.json')
data = load_data(args.json)
out_dir = os.path.abspath(safe_dirs(os.path.join(args.out, 'predictions')))
logger.info('make predictions')
data = is_tRNA(data, out_dir, args)
if args.coral:
logger.info('make CoRaL predictions')
run_coral(data, out_dir, args)
write_data(data[0], out_file)
logger.info('Done')
|
predictions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n logger.info(args)\n logger.info('reading sequeces')\n out_file = os.path.abspath(os.path.splitext(args.json)[0] +\n '_prediction.json')\n data = load_data(args.json)\n out_dir = os.path.abspath(safe_dirs(os.path.join(args.out, 'predictions')))\n logger.info('make predictions')\n data = is_tRNA(data, out_dir, args)\n if args.coral:\n logger.info('make CoRaL predictions')\n run_coral(data, out_dir, args)\n write_data(data[0], out_file)\n logger.info('Done')\n",
"role": "user"
},
{
"content": "predictions",
"role": "assistant"
}
] |
def x(c, loci):
data_loci = [[x, loci[x].chr, int(loci[x].start), int(loci[x].end),
loci[x].strand, len(c.loci2seq[x])] for x in list(c.loci2seq.keys())]
data_loci = sorted(data_loci, key=itemgetter(5), reverse=True)
return data_loci
|
sort_precursor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(c, loci):\n data_loci = [[x, loci[x].chr, int(loci[x].start), int(loci[x].end),\n loci[x].strand, len(c.loci2seq[x])] for x in list(c.loci2seq.keys())]\n data_loci = sorted(data_loci, key=itemgetter(5), reverse=True)\n return data_loci\n",
"role": "user"
},
{
"content": "sort_precursor",
"role": "assistant"
}
] |
def x(clus, loci):
data_loci = sort_precursor(clus, loci)
current_size = data_loci[0][5]
best = 0
for item, locus in enumerate(data_loci):
if locus[3] - locus[2] > 70:
if locus[5] > current_size * 0.8:
best = item
break
best_loci = data_loci[best]
del data_loci[best]
data_loci.insert(0, best_loci)
return data_loci
|
best_precursor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(clus, loci):\n data_loci = sort_precursor(clus, loci)\n current_size = data_loci[0][5]\n best = 0\n for item, locus in enumerate(data_loci):\n if locus[3] - locus[2] > 70:\n if locus[5] > current_size * 0.8:\n best = item\n break\n best_loci = data_loci[best]\n del data_loci[best]\n data_loci.insert(0, best_loci)\n return data_loci\n",
"role": "user"
},
{
"content": "best_precursor",
"role": "assistant"
}
] |
def x(in_file):
_, ext = os.path.splitext(in_file)
if ext == '.gz':
return gzip.open(in_file, 'rb')
if ext in ['.fastq', '.fq']:
return open(in_file, 'r')
return open(in_file, 'r')
|
open_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(in_file):\n _, ext = os.path.splitext(in_file)\n if ext == '.gz':\n return gzip.open(in_file, 'rb')\n if ext in ['.fastq', '.fq']:\n return open(in_file, 'r')\n return open(in_file, 'r')\n",
"role": "user"
},
{
"content": "open_file",
"role": "assistant"
}
] |
def x(mirna, snp, out):
with open(out, 'w') as out_handle:
print(_create_header(mirna, snp, out), file=out_handle, end='')
snp_in_mirna = pybedtools.BedTool(snp).intersect(pybedtools.BedTool
(mirna), wo=True)
for single in snp_in_mirna:
if single[10] == 'miRNA' and len(single[3]) + len(single[4]) == 2:
line = []
rel_p = _lift_positions(single)
line.append(_get_mirna_name(single[16]))
line.append(str(rel_p))
line.append(single[2])
line.append(_complement(single[3], single[14]))
line.append(_complement(single[4], single[14]))
line.append(single[5])
line.append(single[6])
line.append(single[7])
print('\t'.join(line), file=out_handle, end='')
return out
|
select_snps
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mirna, snp, out):\n with open(out, 'w') as out_handle:\n print(_create_header(mirna, snp, out), file=out_handle, end='')\n snp_in_mirna = pybedtools.BedTool(snp).intersect(pybedtools.BedTool\n (mirna), wo=True)\n for single in snp_in_mirna:\n if single[10] == 'miRNA' and len(single[3]) + len(single[4]) == 2:\n line = []\n rel_p = _lift_positions(single)\n line.append(_get_mirna_name(single[16]))\n line.append(str(rel_p))\n line.append(single[2])\n line.append(_complement(single[3], single[14]))\n line.append(_complement(single[4], single[14]))\n line.append(single[5])\n line.append(single[6])\n line.append(single[7])\n print('\\t'.join(line), file=out_handle, end='')\n return out\n",
"role": "user"
},
{
"content": "select_snps",
"role": "assistant"
}
] |
def x(x, s, p):
if 1.0 * x / s >= p:
return True
elif stat.binom_test(x, s, p) > 0.01:
return True
return False
|
up_threshold
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, s, p):\n if 1.0 * x / s >= p:\n return True\n elif stat.binom_test(x, s, p) > 0.01:\n return True\n return False\n",
"role": "user"
},
{
"content": "up_threshold",
"role": "assistant"
}
] |
def x(positions):
scores = []
for start in range(0, len(positions) - 17, 5):
end = start = 17
scores.add(_enrichment(positions[start:end], positions[:start],
positions[end:]))
|
scan
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(positions):\n scores = []\n for start in range(0, len(positions) - 17, 5):\n end = start = 17\n scores.add(_enrichment(positions[start:end], positions[:start],\n positions[end:]))\n",
"role": "user"
},
{
"content": "scan",
"role": "assistant"
}
] |
def x(args):
args = _check_args(args)
read_stats_file = op.join(args.dir_out, 'read_stats.tsv')
if file_exists(read_stats_file):
os.remove(read_stats_file)
bam_file, seq_obj = _clean_alignment(args)
logger.info('Parsing matrix file')
seqL, y, l = parse_ma_file(seq_obj, args.ffile)
logger.info('counts after: %s' % sum(y.values()))
logger.info('# sequences after: %s' % l)
dt = pd.DataFrame({'sample': y.keys(), 'counts': y.values()})
dt['step'] = 'aligned'
dt.to_csv(read_stats_file, sep='\t', index=False, header=False, mode='a')
if len(seqL.keys()) < 10:
logger.error(
'It seems you have low coverage. Please check your fastq files have enough sequences.'
)
raise ValueError('So few sequences.')
logger.info('Cleaning bam file')
y, l = _total_counts(seqL.keys(), seqL)
logger.info('counts after: %s' % sum(y.values()))
logger.info('# sequences after: %s' % l)
dt = pd.DataFrame({'sample': y.keys(), 'counts': y.values()})
dt['step'] = 'cleaned'
dt.to_csv(read_stats_file, sep='\t', index=False, header=False, mode='a')
clusL = _create_clusters(seqL, bam_file, args)
y, l = _total_counts(clusL.seq.keys(), clusL.seq, aligned=True)
logger.info('counts after: %s' % sum(y.values()))
logger.info('# sequences after: %s' % l)
dt = pd.DataFrame({'sample': y.keys(), 'counts': y.values()})
dt['step'] = 'clusters'
dt.to_csv(read_stats_file, sep='\t', index=False, header=False, mode='a')
logger.info('Solving multi-mapping events in the network of clusters')
clusLred = _cleaning(clusL, args.dir_out)
y, l = _total_counts(clusLred.clus, seqL)
logger.info('counts after: %s' % sum(y.values()))
logger.info('# sequences after: %s' % l)
dt = pd.DataFrame({'sample': y.keys(), 'counts': y.values()})
dt['step'] = 'meta-cluster'
dt.to_csv(read_stats_file, sep='\t', index=False, header=False, mode='a')
logger.info('Clusters up to %s' % len(clusLred.clus.keys()))
if args.show:
logger.info('Creating sequences alignment to precursor')
clusLred = show_seq(clusLred, args.index)
clusLred = peak_calling(clusLred)
clusLred = _annotate(args, clusLred)
logger.info('Creating json and count matrix')
json_file = _create_json(clusLred, args)
logger.info('Output file in: %s' % args.dir_out)
if args.db:
name = args.db + '.db'
logger.info('Create database: database/' + name)
data = load_data(json_file)
out_dir = op.join(args.dir_out, 'database')
make_database(data, name, out_dir)
logger.info('Finished')
|
cluster
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n args = _check_args(args)\n read_stats_file = op.join(args.dir_out, 'read_stats.tsv')\n if file_exists(read_stats_file):\n os.remove(read_stats_file)\n bam_file, seq_obj = _clean_alignment(args)\n logger.info('Parsing matrix file')\n seqL, y, l = parse_ma_file(seq_obj, args.ffile)\n logger.info('counts after: %s' % sum(y.values()))\n logger.info('# sequences after: %s' % l)\n dt = pd.DataFrame({'sample': y.keys(), 'counts': y.values()})\n dt['step'] = 'aligned'\n dt.to_csv(read_stats_file, sep='\\t', index=False, header=False, mode='a')\n if len(seqL.keys()) < 10:\n logger.error(\n 'It seems you have low coverage. Please check your fastq files have enough sequences.'\n )\n raise ValueError('So few sequences.')\n logger.info('Cleaning bam file')\n y, l = _total_counts(seqL.keys(), seqL)\n logger.info('counts after: %s' % sum(y.values()))\n logger.info('# sequences after: %s' % l)\n dt = pd.DataFrame({'sample': y.keys(), 'counts': y.values()})\n dt['step'] = 'cleaned'\n dt.to_csv(read_stats_file, sep='\\t', index=False, header=False, mode='a')\n clusL = _create_clusters(seqL, bam_file, args)\n y, l = _total_counts(clusL.seq.keys(), clusL.seq, aligned=True)\n logger.info('counts after: %s' % sum(y.values()))\n logger.info('# sequences after: %s' % l)\n dt = pd.DataFrame({'sample': y.keys(), 'counts': y.values()})\n dt['step'] = 'clusters'\n dt.to_csv(read_stats_file, sep='\\t', index=False, header=False, mode='a')\n logger.info('Solving multi-mapping events in the network of clusters')\n clusLred = _cleaning(clusL, args.dir_out)\n y, l = _total_counts(clusLred.clus, seqL)\n logger.info('counts after: %s' % sum(y.values()))\n logger.info('# sequences after: %s' % l)\n dt = pd.DataFrame({'sample': y.keys(), 'counts': y.values()})\n dt['step'] = 'meta-cluster'\n dt.to_csv(read_stats_file, sep='\\t', index=False, header=False, mode='a')\n logger.info('Clusters up to %s' % len(clusLred.clus.keys()))\n if args.show:\n logger.info('Creating sequences alignment to precursor')\n clusLred = show_seq(clusLred, args.index)\n clusLred = peak_calling(clusLred)\n clusLred = _annotate(args, clusLred)\n logger.info('Creating json and count matrix')\n json_file = _create_json(clusLred, args)\n logger.info('Output file in: %s' % args.dir_out)\n if args.db:\n name = args.db + '.db'\n logger.info('Create database: database/' + name)\n data = load_data(json_file)\n out_dir = op.join(args.dir_out, 'database')\n make_database(data, name, out_dir)\n logger.info('Finished')\n",
"role": "user"
},
{
"content": "cluster",
"role": "assistant"
}
] |
def x(args):
logger.info('Checking parameters and files')
args.dir_out = args.out
args.samplename = 'pro'
global decision_cluster
global similar
if not os.path.isdir(args.out):
logger.warning("the output folder doens't exists")
os.mkdirs(args.out)
if args.bed and args.gtf:
logger.error('cannot provide -b and -g at the same time')
raise SyntaxError
if args.debug:
logger.info('DEBUG messages will be showed in file.')
if args.bed:
args.list_files = args.bed
args.type_ann = 'bed'
if args.gtf:
args.list_files = args.gtf
args.type_ann = 'gtf'
logger.info('Output dir will be: %s' % args.dir_out)
if not all([file_exists(args.ffile), file_exists(args.afile)]):
logger.error('I/O error: Seqs.ma or Seqs.bam. ')
raise IOError("Seqs.ma or/and Seqs.bam doesn't exists.")
if hasattr(args, 'list_files'):
beds = args.list_files.split(',')
for filebed in beds:
if not file_exists(filebed):
logger.error('I/O error: {0}'.format(filebed))
raise IOError("%s annotation files doesn't exist" % filebed)
param.decision_cluster = args.method
if args.similar:
param.similar = float(args.similar)
if args.min_seqs:
param.min_seqs = int(args.min_seqs)
return args
|
check_args
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n logger.info('Checking parameters and files')\n args.dir_out = args.out\n args.samplename = 'pro'\n global decision_cluster\n global similar\n if not os.path.isdir(args.out):\n logger.warning(\"the output folder doens't exists\")\n os.mkdirs(args.out)\n if args.bed and args.gtf:\n logger.error('cannot provide -b and -g at the same time')\n raise SyntaxError\n if args.debug:\n logger.info('DEBUG messages will be showed in file.')\n if args.bed:\n args.list_files = args.bed\n args.type_ann = 'bed'\n if args.gtf:\n args.list_files = args.gtf\n args.type_ann = 'gtf'\n logger.info('Output dir will be: %s' % args.dir_out)\n if not all([file_exists(args.ffile), file_exists(args.afile)]):\n logger.error('I/O error: Seqs.ma or Seqs.bam. ')\n raise IOError(\"Seqs.ma or/and Seqs.bam doesn't exists.\")\n if hasattr(args, 'list_files'):\n beds = args.list_files.split(',')\n for filebed in beds:\n if not file_exists(filebed):\n logger.error('I/O error: {0}'.format(filebed))\n raise IOError(\"%s annotation files doesn't exist\" % filebed)\n param.decision_cluster = args.method\n if args.similar:\n param.similar = float(args.similar)\n if args.min_seqs:\n param.min_seqs = int(args.min_seqs)\n return args\n",
"role": "user"
},
{
"content": "check_args",
"role": "assistant"
}
] |
def x(seqs, seqL, aligned=False):
total = Counter()
if isinstance(seqs, list):
if not aligned:
l = len([total.update(seqL[s].freq) for s in seqs])
else:
l = len([total.update(seqL[s].freq) for s in seqs if seqL[s].
align > 0])
elif isinstance(seqs, dict):
[total.update(seqs[s].get_freq(seqL)) for s in seqs]
l = sum(len(seqs[s].idmembers) for s in seqs)
return total, l
|
total_counts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seqs, seqL, aligned=False):\n total = Counter()\n if isinstance(seqs, list):\n if not aligned:\n l = len([total.update(seqL[s].freq) for s in seqs])\n else:\n l = len([total.update(seqL[s].freq) for s in seqs if seqL[s].\n align > 0])\n elif isinstance(seqs, dict):\n [total.update(seqs[s].get_freq(seqL)) for s in seqs]\n l = sum(len(seqs[s].idmembers) for s in seqs)\n return total, l\n",
"role": "user"
},
{
"content": "total_counts",
"role": "assistant"
}
] |
def x(c, loci):
data_ann_temp = {}
data_ann = []
counts = Counter()
for lid in c.loci2seq:
for dbi in list(loci[lid].db_ann.keys()):
data_ann_temp[dbi] = {dbi: [loci[lid].db_ann[dbi].ann[x].name for
x in list(loci[lid].db_ann[dbi].ann.keys())]}
logger.debug('_json_: data_ann_temp %s %s' % (dbi,
data_ann_temp[dbi]))
counts[dbi] += 1
data_ann = data_ann + [data_ann_temp[x] for x in list(data_ann_temp
.keys())]
logger.debug('_json_: data_ann %s' % data_ann)
counts = {k: v for k, v in counts.iteritems()}
total_loci = sum([counts[db] for db in counts])
valid_ann = [k for k, v in counts.iteritems() if up_threshold(v,
total_loci, 0.7)]
return data_ann, valid_ann
|
get_annotation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(c, loci):\n data_ann_temp = {}\n data_ann = []\n counts = Counter()\n for lid in c.loci2seq:\n for dbi in list(loci[lid].db_ann.keys()):\n data_ann_temp[dbi] = {dbi: [loci[lid].db_ann[dbi].ann[x].name for\n x in list(loci[lid].db_ann[dbi].ann.keys())]}\n logger.debug('_json_: data_ann_temp %s %s' % (dbi,\n data_ann_temp[dbi]))\n counts[dbi] += 1\n data_ann = data_ann + [data_ann_temp[x] for x in list(data_ann_temp\n .keys())]\n logger.debug('_json_: data_ann %s' % data_ann)\n counts = {k: v for k, v in counts.iteritems()}\n total_loci = sum([counts[db] for db in counts])\n valid_ann = [k for k, v in counts.iteritems() if up_threshold(v,\n total_loci, 0.7)]\n return data_ann, valid_ann\n",
"role": "user"
},
{
"content": "get_annotation",
"role": "assistant"
}
] |
def x(seqs_freq, samples_order):
n = len(seqs_freq[seqs_freq.keys()[0]].freq.keys())
y = np.array([0] * n)
for s in seqs_freq:
x = seqs_freq[s].freq
exp = [seqs_freq[s].freq[sam] for sam in samples_order]
y = list(np.array(exp) + y)
return y
|
sum_by_samples
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seqs_freq, samples_order):\n n = len(seqs_freq[seqs_freq.keys()[0]].freq.keys())\n y = np.array([0] * n)\n for s in seqs_freq:\n x = seqs_freq[s].freq\n exp = [seqs_freq[s].freq[sam] for sam in samples_order]\n y = list(np.array(exp) + y)\n return y\n",
"role": "user"
},
{
"content": "sum_by_samples",
"role": "assistant"
}
] |
def x(args, setclus):
logger.info('Creating bed file')
bedfile = generate_position_bed(setclus)
a = pybedtools.BedTool(bedfile, from_string=True)
beds = []
logger.info('Annotating clusters')
if hasattr(args, 'list_files'):
beds = args.list_files.split(',')
for filebed in beds:
logger.info('Using %s ' % filebed)
db = os.path.basename(filebed)
b = pybedtools.BedTool(filebed)
c = a.intersect(b, wo=True)
setclus = anncluster(c, setclus, db, args.type_ann, args.feature_id
)
return setclus
|
annotate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args, setclus):\n logger.info('Creating bed file')\n bedfile = generate_position_bed(setclus)\n a = pybedtools.BedTool(bedfile, from_string=True)\n beds = []\n logger.info('Annotating clusters')\n if hasattr(args, 'list_files'):\n beds = args.list_files.split(',')\n for filebed in beds:\n logger.info('Using %s ' % filebed)\n db = os.path.basename(filebed)\n b = pybedtools.BedTool(filebed)\n c = a.intersect(b, wo=True)\n setclus = anncluster(c, setclus, db, args.type_ann, args.feature_id\n )\n return setclus\n",
"role": "user"
},
{
"content": "annotate",
"role": "assistant"
}
] |
def x(args):
logger.info(
'Clean bam file with highly repetitive reads with low counts. sum(counts)/n_hits > 1%'
)
bam_file, seq_obj = clean_bam_file(args.afile, args.mask)
logger.info('Using %s file' % bam_file)
detect_complexity(bam_file, args.ref, args.out)
return bam_file, seq_obj
|
clean_alignment
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n logger.info(\n 'Clean bam file with highly repetitive reads with low counts. sum(counts)/n_hits > 1%'\n )\n bam_file, seq_obj = clean_bam_file(args.afile, args.mask)\n logger.info('Using %s file' % bam_file)\n detect_complexity(bam_file, args.ref, args.out)\n return bam_file, seq_obj\n",
"role": "user"
},
{
"content": "clean_alignment",
"role": "assistant"
}
] |
def x(seqL, bam_file, args):
clus_obj = []
cluster_file = op.join(args.out, 'cluster.bed')
if not os.path.exists(op.join(args.out, 'list_obj.pk')):
if not file_exists(cluster_file):
logger.info('Parsing aligned file')
logger.info('Merging sequences')
bedtools = os.path.join(os.path.dirname(sys.executable), 'bedtools'
)
bedtools = bedtools if os.path.exists(bedtools) else 'bedtools'
parse_cmd = (
'awk \'{i=i+1;print $1"\\t"$2"\\t"$3"\\t"$4"\\t"i"\\t"$6}\'')
cmd = (
'{bedtools} bamtobed -i {bam_file} | {parse_cmd} | {bedtools} cluster -s -d 20 -i - > {cluster_file}'
)
do.run(cmd.format(**locals()))
c = pybedtools.BedTool(cluster_file)
logger.info('Creating clusters')
clus_obj = detect_clusters(c, seqL, args.min_seqs, args.non_un_gl)
with open(op.join(args.out, 'list_obj.pk'), 'wb') as output:
pickle.dump(clus_obj, output, pickle.HIGHEST_PROTOCOL)
else:
logger.info('Loading previous clusters')
with open(op.join(args.out, 'list_obj.pk'), 'rb') as input:
clus_obj = pickle.load(input)
logger.info('%s clusters found' % len(clus_obj.clusid))
return clus_obj
|
create_clusters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seqL, bam_file, args):\n clus_obj = []\n cluster_file = op.join(args.out, 'cluster.bed')\n if not os.path.exists(op.join(args.out, 'list_obj.pk')):\n if not file_exists(cluster_file):\n logger.info('Parsing aligned file')\n logger.info('Merging sequences')\n bedtools = os.path.join(os.path.dirname(sys.executable), 'bedtools'\n )\n bedtools = bedtools if os.path.exists(bedtools) else 'bedtools'\n parse_cmd = (\n 'awk \\'{i=i+1;print $1\"\\\\t\"$2\"\\\\t\"$3\"\\\\t\"$4\"\\\\t\"i\"\\\\t\"$6}\\'')\n cmd = (\n '{bedtools} bamtobed -i {bam_file} | {parse_cmd} | {bedtools} cluster -s -d 20 -i - > {cluster_file}'\n )\n do.run(cmd.format(**locals()))\n c = pybedtools.BedTool(cluster_file)\n logger.info('Creating clusters')\n clus_obj = detect_clusters(c, seqL, args.min_seqs, args.non_un_gl)\n with open(op.join(args.out, 'list_obj.pk'), 'wb') as output:\n pickle.dump(clus_obj, output, pickle.HIGHEST_PROTOCOL)\n else:\n logger.info('Loading previous clusters')\n with open(op.join(args.out, 'list_obj.pk'), 'rb') as input:\n clus_obj = pickle.load(input)\n logger.info('%s clusters found' % len(clus_obj.clusid))\n return clus_obj\n",
"role": "user"
},
{
"content": "create_clusters",
"role": "assistant"
}
] |
def x(clusL, path):
backup = op.join(path, 'list_obj_red.pk')
if not op.exists(backup):
clus_obj = reduceloci(clusL, path)
with open(backup, 'wb') as output:
pickle.dump(clus_obj, output, pickle.HIGHEST_PROTOCOL)
return clus_obj
else:
logger.info('Loading previous reduced clusters')
with open(backup, 'rb') as in_handle:
clus_obj = pickle.load(in_handle)
return clus_obj
|
cleaning
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(clusL, path):\n backup = op.join(path, 'list_obj_red.pk')\n if not op.exists(backup):\n clus_obj = reduceloci(clusL, path)\n with open(backup, 'wb') as output:\n pickle.dump(clus_obj, output, pickle.HIGHEST_PROTOCOL)\n return clus_obj\n else:\n logger.info('Loading previous reduced clusters')\n with open(backup, 'rb') as in_handle:\n clus_obj = pickle.load(in_handle)\n return clus_obj\n",
"role": "user"
},
{
"content": "cleaning",
"role": "assistant"
}
] |
def x(args):
logger.info('reading sequeces')
data = load_data(args.json)
logger.info('get sequences from json')
c1, c2 = args.names.split(',')
seqs, names = get_sequences_from_cluster(c1, c2, data[0])
loci = get_precursors_from_cluster(c1, c2, data[0])
logger.info('map all sequences to all loci')
print('%s' % loci)
map_to_precursors(seqs, names, loci, os.path.join(args.out, 'map.tsv'),
args)
logger.info('plot sequences on loci')
logger.info('Done')
|
explore
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n logger.info('reading sequeces')\n data = load_data(args.json)\n logger.info('get sequences from json')\n c1, c2 = args.names.split(',')\n seqs, names = get_sequences_from_cluster(c1, c2, data[0])\n loci = get_precursors_from_cluster(c1, c2, data[0])\n logger.info('map all sequences to all loci')\n print('%s' % loci)\n map_to_precursors(seqs, names, loci, os.path.join(args.out, 'map.tsv'),\n args)\n logger.info('plot sequences on loci')\n logger.info('Done')\n",
"role": "user"
},
{
"content": "explore",
"role": "assistant"
}
] |
def x(args):
try:
f = open(args.config, 'r')
seq_out = open(op.join(args.out, 'seqs.fastq'), 'w')
ma_out = open(op.join(args.out, 'seqs.ma'), 'w')
except IOError as e:
traceback.print_exc()
raise IOError('Can not create output files: %s, %s or read %s' % (
op.join(args.out, 'seqs.ma'), op.join(args.out, 'seqs.fastq'),
args.config))
logger.info('Reading sequeces')
seq_l, sample_l = _read_fastq_files(f, args)
logger.info('Creating matrix with unique sequences')
logger.info(
'Filtering: min counts %s, min size %s, max size %s, min shared %s' %
(args.minc, args.minl, args.maxl, args.min_shared))
_create_matrix_uniq_seq(sample_l, seq_l, ma_out, seq_out, args.min_shared)
logger.info(
'Finish preprocessing. Get a sorted BAM file of seqs.fa and run seqcluster cluster.'
)
|
prepare
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n try:\n f = open(args.config, 'r')\n seq_out = open(op.join(args.out, 'seqs.fastq'), 'w')\n ma_out = open(op.join(args.out, 'seqs.ma'), 'w')\n except IOError as e:\n traceback.print_exc()\n raise IOError('Can not create output files: %s, %s or read %s' % (\n op.join(args.out, 'seqs.ma'), op.join(args.out, 'seqs.fastq'),\n args.config))\n logger.info('Reading sequeces')\n seq_l, sample_l = _read_fastq_files(f, args)\n logger.info('Creating matrix with unique sequences')\n logger.info(\n 'Filtering: min counts %s, min size %s, max size %s, min shared %s' %\n (args.minc, args.minl, args.maxl, args.min_shared))\n _create_matrix_uniq_seq(sample_l, seq_l, ma_out, seq_out, args.min_shared)\n logger.info(\n 'Finish preprocessing. Get a sorted BAM file of seqs.fa and run seqcluster cluster.'\n )\n",
"role": "user"
},
{
"content": "prepare",
"role": "assistant"
}
] |
def x(f, args):
seq_l = {}
sample_l = []
idx = 1
for line1 in f:
line1 = line1.strip()
cols = line1.split('\t')
with open(cols[0], 'r') as fasta:
sample_l.append(cols[1])
for line in fasta:
if line.startswith('>'):
idx += 1
counts = int(re.search('x([0-9]+)', line.strip()).group(1))
else:
seq = line.strip()
seq = seq[0:int(args.maxl)] if len(seq) > int(args.maxl
) else seq
if counts > int(args.minc) and len(seq) > int(args.minl):
if seq not in seq_l:
seq_l[seq] = sequence_unique(idx, seq)
seq_l[seq].add_exp(cols[1], counts)
return seq_l, sample_l
|
read_fasta_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f, args):\n seq_l = {}\n sample_l = []\n idx = 1\n for line1 in f:\n line1 = line1.strip()\n cols = line1.split('\\t')\n with open(cols[0], 'r') as fasta:\n sample_l.append(cols[1])\n for line in fasta:\n if line.startswith('>'):\n idx += 1\n counts = int(re.search('x([0-9]+)', line.strip()).group(1))\n else:\n seq = line.strip()\n seq = seq[0:int(args.maxl)] if len(seq) > int(args.maxl\n ) else seq\n if counts > int(args.minc) and len(seq) > int(args.minl):\n if seq not in seq_l:\n seq_l[seq] = sequence_unique(idx, seq)\n seq_l[seq].add_exp(cols[1], counts)\n return seq_l, sample_l\n",
"role": "user"
},
{
"content": "read_fasta_files",
"role": "assistant"
}
] |
def x(f, args):
seq_l = {}
sample_l = []
idx = 1
p = re.compile('^[ATCGNU]+$')
with open(op.join(args.out, 'stats_prepare.tsv'), 'w') as out_handle:
for line1 in f:
line1 = line1.strip()
cols = line1.split('\t')
with open_fastq(cols[0]) as handle:
sample_l.append(cols[1])
total = added = 0
for line in handle:
if line.startswith('@') or line.startswith('>'):
seq = handle.next().strip()
if not p.match(seq):
continue
idx += 1
total += 1
keep = {}
counts = int(re.search('x([0-9]+)', line.strip()).
group(1))
if is_fastq(cols[0]):
handle.next().strip()
qual = handle.next().strip()
else:
qual = 'I' * len(seq)
qual = qual[0:int(args.maxl)] if len(qual) > int(args
.maxl) else qual
seq = seq[0:int(args.maxl)] if len(seq) > int(args.maxl
) else seq
if counts > int(args.minc) and len(seq) > int(args.minl
):
added += 1
if seq in keep:
keep[seq].update(qual)
else:
keep[seq] = quality(qual)
if seq not in seq_l:
seq_l[seq] = sequence_unique(idx, seq)
seq_l[seq].add_exp(cols[1], counts)
seq_l[seq].quality = keep[seq].get()
print('total\t%s\t%s' % (idx, cols[1]), file=out_handle, end=''
)
print('added\t%s\t%s' % (len(seq_l), cols[1]), file=
out_handle, end='')
logger.info('%s: Total read %s ; Total added %s' % (cols[1],
idx, len(seq_l)))
return seq_l, sample_l
|
read_fastq_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f, args):\n seq_l = {}\n sample_l = []\n idx = 1\n p = re.compile('^[ATCGNU]+$')\n with open(op.join(args.out, 'stats_prepare.tsv'), 'w') as out_handle:\n for line1 in f:\n line1 = line1.strip()\n cols = line1.split('\\t')\n with open_fastq(cols[0]) as handle:\n sample_l.append(cols[1])\n total = added = 0\n for line in handle:\n if line.startswith('@') or line.startswith('>'):\n seq = handle.next().strip()\n if not p.match(seq):\n continue\n idx += 1\n total += 1\n keep = {}\n counts = int(re.search('x([0-9]+)', line.strip()).\n group(1))\n if is_fastq(cols[0]):\n handle.next().strip()\n qual = handle.next().strip()\n else:\n qual = 'I' * len(seq)\n qual = qual[0:int(args.maxl)] if len(qual) > int(args\n .maxl) else qual\n seq = seq[0:int(args.maxl)] if len(seq) > int(args.maxl\n ) else seq\n if counts > int(args.minc) and len(seq) > int(args.minl\n ):\n added += 1\n if seq in keep:\n keep[seq].update(qual)\n else:\n keep[seq] = quality(qual)\n if seq not in seq_l:\n seq_l[seq] = sequence_unique(idx, seq)\n seq_l[seq].add_exp(cols[1], counts)\n seq_l[seq].quality = keep[seq].get()\n print('total\\t%s\\t%s' % (idx, cols[1]), file=out_handle, end=''\n )\n print('added\\t%s\\t%s' % (len(seq_l), cols[1]), file=\n out_handle, end='')\n logger.info('%s: Total read %s ; Total added %s' % (cols[1],\n idx, len(seq_l)))\n return seq_l, sample_l\n",
"role": "user"
},
{
"content": "read_fastq_files",
"role": "assistant"
}
] |
def x(sample_l, seq_l, maout, out, min_shared):
skip = 0
if int(min_shared) > len(sample_l):
min_shared = len(sample_l)
maout.write('id\tseq')
for g in sample_l:
maout.write('\t%s' % g)
for s in seq_l.keys():
seen = sum([(1) for g in seq_l[s].group if seq_l[s].group[g] > 0])
if seen < int(min_shared):
skip += 1
continue
maout.write('\nseq_%s\t%s' % (seq_l[s].idx, seq_l[s].seq))
for g in sample_l:
if g in seq_l[s].group:
maout.write('\t%s' % seq_l[s].group[g])
else:
maout.write('\t0')
qual = ''.join(seq_l[s].quality)
out.write('@seq_%s\n%s\n+\n%s\n' % (seq_l[s].idx, seq_l[s].seq, qual))
out.close()
maout.close()
logger.info('Total skipped due to --min-shared parameter (%s) : %s' % (
min_shared, skip))
|
create_matrix_uniq_seq
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sample_l, seq_l, maout, out, min_shared):\n skip = 0\n if int(min_shared) > len(sample_l):\n min_shared = len(sample_l)\n maout.write('id\\tseq')\n for g in sample_l:\n maout.write('\\t%s' % g)\n for s in seq_l.keys():\n seen = sum([(1) for g in seq_l[s].group if seq_l[s].group[g] > 0])\n if seen < int(min_shared):\n skip += 1\n continue\n maout.write('\\nseq_%s\\t%s' % (seq_l[s].idx, seq_l[s].seq))\n for g in sample_l:\n if g in seq_l[s].group:\n maout.write('\\t%s' % seq_l[s].group[g])\n else:\n maout.write('\\t0')\n qual = ''.join(seq_l[s].quality)\n out.write('@seq_%s\\n%s\\n+\\n%s\\n' % (seq_l[s].idx, seq_l[s].seq, qual))\n out.close()\n maout.close()\n logger.info('Total skipped due to --min-shared parameter (%s) : %s' % (\n min_shared, skip))\n",
"role": "user"
},
{
"content": "create_matrix_uniq_seq",
"role": "assistant"
}
] |
def x(clus_obj, out_dir, args):
if not args.bed:
raise ValueError(
'This module needs the bed file output from cluster subcmd.')
workdir = op.abspath(op.join(args.out, 'coral'))
safe_dirs(workdir)
bam_in = op.abspath(args.bam)
bed_in = op.abspath(args.bed)
reference = op.abspath(args.ref)
with chdir(workdir):
bam_clean = coral.prepare_bam(bam_in, bed_in)
out_dir = op.join(workdir, 'regions')
safe_dirs(out_dir)
prefix = 'seqcluster'
loci_file = coral.detect_regions(bam_clean, bed_in, out_dir, prefix)
coral.create_features(bam_clean, loci_file, reference, out_dir)
|
run_coral
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(clus_obj, out_dir, args):\n if not args.bed:\n raise ValueError(\n 'This module needs the bed file output from cluster subcmd.')\n workdir = op.abspath(op.join(args.out, 'coral'))\n safe_dirs(workdir)\n bam_in = op.abspath(args.bam)\n bed_in = op.abspath(args.bed)\n reference = op.abspath(args.ref)\n with chdir(workdir):\n bam_clean = coral.prepare_bam(bam_in, bed_in)\n out_dir = op.join(workdir, 'regions')\n safe_dirs(out_dir)\n prefix = 'seqcluster'\n loci_file = coral.detect_regions(bam_clean, bed_in, out_dir, prefix)\n coral.create_features(bam_clean, loci_file, reference, out_dir)\n",
"role": "user"
},
{
"content": "run_coral",
"role": "assistant"
}
] |
def x(clus_obj, out_dir, args):
ref = os.path.abspath(args.reference)
utils.safe_dirs(out_dir)
for nc in clus_obj[0]:
c = clus_obj[0][nc]
loci = c['loci']
out_fa = 'cluster_' + nc
if loci[0][3] - loci[0][2] < 500:
with make_temp_directory() as tmpdir:
os.chdir(tmpdir)
get_loci_fasta({loci[0][0]: [loci[0][0:5]]}, out_fa, ref)
summary_file, str_file = _run_tRNA_scan(out_fa)
if 'predictions' not in c:
c['predictions'] = {}
c['predictions']['tRNA'] = _read_tRNA_scan(summary_file)
score = _read_tRNA_scan(summary_file)
logger.debug(score)
shutil.move(summary_file, op.join(out_dir, summary_file))
shutil.move(str_file, op.join(out_dir, str_file))
else:
c['errors'].add('precursor too long')
clus_obj[0][nc] = c
return clus_obj
|
is_tRNA
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(clus_obj, out_dir, args):\n ref = os.path.abspath(args.reference)\n utils.safe_dirs(out_dir)\n for nc in clus_obj[0]:\n c = clus_obj[0][nc]\n loci = c['loci']\n out_fa = 'cluster_' + nc\n if loci[0][3] - loci[0][2] < 500:\n with make_temp_directory() as tmpdir:\n os.chdir(tmpdir)\n get_loci_fasta({loci[0][0]: [loci[0][0:5]]}, out_fa, ref)\n summary_file, str_file = _run_tRNA_scan(out_fa)\n if 'predictions' not in c:\n c['predictions'] = {}\n c['predictions']['tRNA'] = _read_tRNA_scan(summary_file)\n score = _read_tRNA_scan(summary_file)\n logger.debug(score)\n shutil.move(summary_file, op.join(out_dir, summary_file))\n shutil.move(str_file, op.join(out_dir, str_file))\n else:\n c['errors'].add('precursor too long')\n clus_obj[0][nc] = c\n return clus_obj\n",
"role": "user"
},
{
"content": "is_tRNA",
"role": "assistant"
}
] |
def x(summary_file):
score = 0
if os.path.getsize(summary_file) == 0:
return 0
with open(summary_file) as in_handle:
for line in in_handle:
if not line.startswith('--'):
pre = line.strip().split()
score = pre[-1]
return score
|
read_tRNA_scan
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(summary_file):\n score = 0\n if os.path.getsize(summary_file) == 0:\n return 0\n with open(summary_file) as in_handle:\n for line in in_handle:\n if not line.startswith('--'):\n pre = line.strip().split()\n score = pre[-1]\n return score\n",
"role": "user"
},
{
"content": "read_tRNA_scan",
"role": "assistant"
}
] |
def x(fasta_file):
out_file = fasta_file + '_trnascan'
se_file = fasta_file + '_second_str'
cmd = 'tRNAscan-SE -q -o {out_file} -f {se_file} {fasta_file}'
run(cmd.format(**locals()))
return out_file, se_file
|
run_tRNA_scan
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fasta_file):\n out_file = fasta_file + '_trnascan'\n se_file = fasta_file + '_second_str'\n cmd = 'tRNAscan-SE -q -o {out_file} -f {se_file} {fasta_file}'\n run(cmd.format(**locals()))\n return out_file, se_file\n",
"role": "user"
},
{
"content": "run_tRNA_scan",
"role": "assistant"
}
] |
def x(mut):
multiplier = 1
if mut.startswith('-'):
mut = mut[1:]
multiplier = -1
nt = mut.strip('0123456789')
pos = int(mut[:-2]) * multiplier
return nt, pos
|
parse_mut
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mut):\n multiplier = 1\n if mut.startswith('-'):\n mut = mut[1:]\n multiplier = -1\n nt = mut.strip('0123456789')\n pos = int(mut[:-2]) * multiplier\n return nt, pos\n",
"role": "user"
},
{
"content": "parse_mut",
"role": "assistant"
}
] |
def x(isomir):
mut = isomir.split(':')[1]
if mut == '0':
return mut
nt, pos = _parse_mut(mut)
trim5 = isomir.split(':')[-2]
off = -1 * len(trim5)
if trim5.islower():
off = len(trim5)
if trim5 == 'NA' or trim5 == '0':
off = 0
return '%s%s' % (pos + off, nt)
|
get_reference_position
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(isomir):\n mut = isomir.split(':')[1]\n if mut == '0':\n return mut\n nt, pos = _parse_mut(mut)\n trim5 = isomir.split(':')[-2]\n off = -1 * len(trim5)\n if trim5.islower():\n off = len(trim5)\n if trim5 == 'NA' or trim5 == '0':\n off = 0\n return '%s%s' % (pos + off, nt)\n",
"role": "user"
},
{
"content": "get_reference_position",
"role": "assistant"
}
] |
def x(isomirs, mirna):
pass_pos = []
for isomir in isomirs.iterrows():
mir = isomir[1]['chrom']
mut = isomir[1]['sv']
mut_counts = isomir[1]['counts']
total = mirna.loc[mir, 'counts'] * 1.0 - mut_counts
mut_diff = isomir[1]['diff']
ratio = mut_counts / total
if mut_counts > 10 and ratio > 0.4 and mut != '0' and mut_diff > 1:
isomir[1]['ratio'] = ratio
pass_pos.append(isomir[1])
return pass_pos
|
get_pct
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(isomirs, mirna):\n pass_pos = []\n for isomir in isomirs.iterrows():\n mir = isomir[1]['chrom']\n mut = isomir[1]['sv']\n mut_counts = isomir[1]['counts']\n total = mirna.loc[mir, 'counts'] * 1.0 - mut_counts\n mut_diff = isomir[1]['diff']\n ratio = mut_counts / total\n if mut_counts > 10 and ratio > 0.4 and mut != '0' and mut_diff > 1:\n isomir[1]['ratio'] = ratio\n pass_pos.append(isomir[1])\n return pass_pos\n",
"role": "user"
},
{
"content": "get_pct",
"role": "assistant"
}
] |
def x(data):
print('##fileformat=VCFv4.2', file=STDOUT, end='')
print('##source=seqbuster2.3', file=STDOUT, end='')
print('##reference=mirbase', file=STDOUT, end='')
for pos in data:
print('##contig=<ID=%s>' % pos['chrom'], file=STDOUT, end='')
print('##INFO=<ID=ID,Number=1,Type=String,Description="miRNA name">',
file=STDOUT, end='')
print('##FORMAT=<ID=GT,Number=1,Type=Integer,Description="Genotype">',
file=STDOUT, end='')
print(
'##FORMAT=<ID=NR,Number=A,Type=Integer,Description="Total reads supporting the variant">'
, file=STDOUT, end='')
print(
'##FORMAT=<ID=NS,Number=A,Type=Float,Description="Total number of different sequences supporting the variant">'
, file=STDOUT, end='')
print('#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tSAMP001',
file=STDOUT, end='')
|
print_header
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n print('##fileformat=VCFv4.2', file=STDOUT, end='')\n print('##source=seqbuster2.3', file=STDOUT, end='')\n print('##reference=mirbase', file=STDOUT, end='')\n for pos in data:\n print('##contig=<ID=%s>' % pos['chrom'], file=STDOUT, end='')\n print('##INFO=<ID=ID,Number=1,Type=String,Description=\"miRNA name\">',\n file=STDOUT, end='')\n print('##FORMAT=<ID=GT,Number=1,Type=Integer,Description=\"Genotype\">',\n file=STDOUT, end='')\n print(\n '##FORMAT=<ID=NR,Number=A,Type=Integer,Description=\"Total reads supporting the variant\">'\n , file=STDOUT, end='')\n print(\n '##FORMAT=<ID=NS,Number=A,Type=Float,Description=\"Total number of different sequences supporting the variant\">'\n , file=STDOUT, end='')\n print('#CHROM\\tPOS\\tID\\tREF\\tALT\\tQUAL\\tFILTER\\tINFO\\tFORMAT\\tSAMP001',\n file=STDOUT, end='')\n",
"role": "user"
},
{
"content": "print_header",
"role": "assistant"
}
] |
def x(data):
id_name = '.'
qual = '.'
chrom = data['chrom']
pos = data['pre_pos']
nt_ref = data['nt'][1]
nt_snp = data['nt'][0]
flt = 'PASS'
info = 'ID=%s' % data['mature']
frmt = 'GT:NR:NS'
gntp = '%s:%s:%s' % (_genotype(data), data['counts'], data['diff'])
print('\t'.join(map(str, [chrom, pos, id_name, nt_ref, nt_snp, qual,
flt, info, frmt, gntp])), file=STDOUT, end='')
|
print_vcf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n id_name = '.'\n qual = '.'\n chrom = data['chrom']\n pos = data['pre_pos']\n nt_ref = data['nt'][1]\n nt_snp = data['nt'][0]\n flt = 'PASS'\n info = 'ID=%s' % data['mature']\n frmt = 'GT:NR:NS'\n gntp = '%s:%s:%s' % (_genotype(data), data['counts'], data['diff'])\n print('\\t'.join(map(str, [chrom, pos, id_name, nt_ref, nt_snp, qual,\n flt, info, frmt, gntp])), file=STDOUT, end='')\n",
"role": "user"
},
{
"content": "print_vcf",
"role": "assistant"
}
] |
def x(pass_pos, matures):
fixed_pos = []
_print_header(pass_pos)
for pos in pass_pos:
mir = pos['mature']
db_pos = matures[pos['chrom']]
mut = _parse_mut(pos['sv'])
print([db_pos[mir], mut, pos['sv']])
pos['pre_pos'] = db_pos[mir][0] + mut[1] - 1
pos['nt'] = list(mut[0])
fixed_pos.append(pos)
print_vcf(pos)
return fixed_pos
|
liftover
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pass_pos, matures):\n fixed_pos = []\n _print_header(pass_pos)\n for pos in pass_pos:\n mir = pos['mature']\n db_pos = matures[pos['chrom']]\n mut = _parse_mut(pos['sv'])\n print([db_pos[mir], mut, pos['sv']])\n pos['pre_pos'] = db_pos[mir][0] + mut[1] - 1\n pos['nt'] = list(mut[0])\n fixed_pos.append(pos)\n print_vcf(pos)\n return fixed_pos\n",
"role": "user"
},
{
"content": "liftover",
"role": "assistant"
}
] |
def x(isomirs, matures, gtf, vcf_file=None):
global STDOUT
isomirs['sv'] = [_get_reference_position(m) for m in isomirs['isomir']]
mirna = isomirs.groupby(['chrom']).sum()
sv = isomirs.groupby(['chrom', 'mature', 'sv'], as_index=False).sum()
sv['diff'] = isomirs.groupby(['chrom', 'mature', 'sv'], as_index=False
).size().reset_index().loc[:, 0]
pass_pos = _get_pct(sv, mirna)
if vcf_file:
with open(vcf_file, 'w') as out_handle:
STDOUT = out_handle
pass_pos = liftover(pass_pos, matures)
if gtf:
vcf_genome_file = vcf_file.replace('.vcf', '_genome.vcf')
with open(vcf_genome_file, 'w') as out_handle:
STDOUT = out_handle
pass_pos = liftover_to_genome(pass_pos, gtf)
|
create_vcf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(isomirs, matures, gtf, vcf_file=None):\n global STDOUT\n isomirs['sv'] = [_get_reference_position(m) for m in isomirs['isomir']]\n mirna = isomirs.groupby(['chrom']).sum()\n sv = isomirs.groupby(['chrom', 'mature', 'sv'], as_index=False).sum()\n sv['diff'] = isomirs.groupby(['chrom', 'mature', 'sv'], as_index=False\n ).size().reset_index().loc[:, 0]\n pass_pos = _get_pct(sv, mirna)\n if vcf_file:\n with open(vcf_file, 'w') as out_handle:\n STDOUT = out_handle\n pass_pos = liftover(pass_pos, matures)\n if gtf:\n vcf_genome_file = vcf_file.replace('.vcf', '_genome.vcf')\n with open(vcf_genome_file, 'w') as out_handle:\n STDOUT = out_handle\n pass_pos = liftover_to_genome(pass_pos, gtf)\n",
"role": "user"
},
{
"content": "create_vcf",
"role": "assistant"
}
] |
def x(pass_pos, gtf):
fixed_pos = []
for pos in pass_pos:
if pos['chrom'] not in gtf:
continue
db_pos = gtf[pos['chrom']][0]
mut = _parse_mut(pos['sv'])
print([db_pos, pos])
if db_pos[3] == '+':
pos['pre_pos'] = db_pos[1] + pos['pre_pos'] + 1
else:
pos['pre_pos'] = db_pos[2] - (pos['pre_pos'] - 1)
pos['chrom'] = db_pos[0]
pos['nt'] = list(mut[0])
fixed_pos.append(pos)
_print_header(fixed_pos)
for pos in fixed_pos:
print_vcf(pos)
|
liftover_to_genome
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pass_pos, gtf):\n fixed_pos = []\n for pos in pass_pos:\n if pos['chrom'] not in gtf:\n continue\n db_pos = gtf[pos['chrom']][0]\n mut = _parse_mut(pos['sv'])\n print([db_pos, pos])\n if db_pos[3] == '+':\n pos['pre_pos'] = db_pos[1] + pos['pre_pos'] + 1\n else:\n pos['pre_pos'] = db_pos[2] - (pos['pre_pos'] - 1)\n pos['chrom'] = db_pos[0]\n pos['nt'] = list(mut[0])\n fixed_pos.append(pos)\n _print_header(fixed_pos)\n for pos in fixed_pos:\n print_vcf(pos)\n",
"role": "user"
},
{
"content": "liftover_to_genome",
"role": "assistant"
}
] |
def x(seqs, seen):
already_in = set()
not_in = []
already_in = map(seen.get, seqs)
already_in = filter(None, already_in)
not_in = set(seqs) - set(seen.keys())
return list(set(already_in)), list(not_in)
|
get_seqs_from_cluster
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seqs, seen):\n already_in = set()\n not_in = []\n already_in = map(seen.get, seqs)\n already_in = filter(None, already_in)\n not_in = set(seqs) - set(seen.keys())\n return list(set(already_in)), list(not_in)\n",
"role": "user"
},
{
"content": "get_seqs_from_cluster",
"role": "assistant"
}
] |
def x(clus_obj, path):
filtered = {}
n_cluster = 0
large = 0
current = clus_obj.clusid
logger.info('Number of loci: %s' % len(clus_obj.loci.keys()))
bar = ProgressBar(maxval=len(current))
bar.start()
bar.update(0)
for itern, idmc in enumerate(current):
bar.update(itern)
logger.debug('_reduceloci: cluster %s' % idmc)
c = copy.deepcopy(list(current[idmc]))
n_loci = len(c)
if n_loci < 1000:
filtered, n_cluster = _iter_loci(c, clus_obj.clus, (clus_obj.
loci, clus_obj.seq), filtered, n_cluster)
else:
large += 1
n_cluster += 1
_write_cluster(c, clus_obj.clus, clus_obj.loci, n_cluster, path)
filtered[n_cluster] = _add_complete_cluster(n_cluster, c,
clus_obj.clus)
clus_obj.clus = filtered
seqs = 0
for idc in filtered:
seqs += len(filtered[idc].idmembers)
logger.info('seqs in clusters %s' % seqs)
logger.info('Clusters too long to be analized: %s' % large)
logger.info(
'Number of clusters removed because low number of reads: %s' % REMOVED)
logger.info('Number of clusters with conflicts: %s' % CONFLICT)
return clus_obj
|
reduceloci
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(clus_obj, path):\n filtered = {}\n n_cluster = 0\n large = 0\n current = clus_obj.clusid\n logger.info('Number of loci: %s' % len(clus_obj.loci.keys()))\n bar = ProgressBar(maxval=len(current))\n bar.start()\n bar.update(0)\n for itern, idmc in enumerate(current):\n bar.update(itern)\n logger.debug('_reduceloci: cluster %s' % idmc)\n c = copy.deepcopy(list(current[idmc]))\n n_loci = len(c)\n if n_loci < 1000:\n filtered, n_cluster = _iter_loci(c, clus_obj.clus, (clus_obj.\n loci, clus_obj.seq), filtered, n_cluster)\n else:\n large += 1\n n_cluster += 1\n _write_cluster(c, clus_obj.clus, clus_obj.loci, n_cluster, path)\n filtered[n_cluster] = _add_complete_cluster(n_cluster, c,\n clus_obj.clus)\n clus_obj.clus = filtered\n seqs = 0\n for idc in filtered:\n seqs += len(filtered[idc].idmembers)\n logger.info('seqs in clusters %s' % seqs)\n logger.info('Clusters too long to be analized: %s' % large)\n logger.info(\n 'Number of clusters removed because low number of reads: %s' % REMOVED)\n logger.info('Number of clusters with conflicts: %s' % CONFLICT)\n return clus_obj\n",
"role": "user"
},
{
"content": "reduceloci",
"role": "assistant"
}
] |
def x(metacluster, cluster, loci, idx, path):
out_file = op.join(path, 'log', str(idx) + '.bed')
with utils.safe_run(out_file):
with open(out_file, 'w') as out_handle:
for idc in metacluster:
for idl in cluster[idc].loci2seq:
pos = loci[idl].list()
print('\t'.join(pos[:4] + [str(len(cluster[idc].
loci2seq[idl]))] + [pos[-1]]), file=out_handle, end='')
|
write_cluster
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(metacluster, cluster, loci, idx, path):\n out_file = op.join(path, 'log', str(idx) + '.bed')\n with utils.safe_run(out_file):\n with open(out_file, 'w') as out_handle:\n for idc in metacluster:\n for idl in cluster[idc].loci2seq:\n pos = loci[idl].list()\n print('\\t'.join(pos[:4] + [str(len(cluster[idc].\n loci2seq[idl]))] + [pos[-1]]), file=out_handle, end='')\n",
"role": "user"
},
{
"content": "write_cluster",
"role": "assistant"
}
] |
def x(meta, clusters, s2p, filtered, n_cluster):
global CONFLICT
loci = dict(zip(meta, [clusters[idc] for idc in meta]))
n_loci = len(meta)
n_loci_prev = n_loci + 1
cicle = 0
internal_cluster = {}
if n_loci == 1:
n_cluster += 1
filtered[n_cluster] = clusters[meta[0]]
filtered[n_cluster].update(id=n_cluster)
filtered[n_cluster].set_freq(s2p[1])
while n_loci < n_loci_prev and n_loci != 1:
n_loci_prev = n_loci
cicle += 1
if cicle % 1 == 0:
logger.debug('_iter_loci:number of cicle: %s with n_loci %s' %
(cicle, n_loci))
loci_similarity = _calculate_similarity(loci)
internal_cluster = _merge_similar(loci, loci_similarity)
n_loci = len(internal_cluster)
loci = internal_cluster
logger.debug('_iter_loci: n_loci %s' % n_loci)
if n_loci > 1:
n_internal_cluster = sorted(internal_cluster.keys(), reverse=True)[0]
CONFLICT += 1
internal_cluster = _solve_conflict(internal_cluster, s2p,
n_internal_cluster)
internal_cluster = _clean_cluster(internal_cluster)
for idc in internal_cluster:
n_cluster += 1
logger.debug('_iter_loci: add to filtered %s' % n_cluster)
filtered[n_cluster] = internal_cluster[idc]
filtered[n_cluster].id = n_cluster
filtered[n_cluster].update(id=n_cluster)
filtered[n_cluster].set_freq(s2p[1])
logger.debug('_iter_loci: filtered %s' % filtered.keys())
return filtered, n_cluster
|
iter_loci
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(meta, clusters, s2p, filtered, n_cluster):\n global CONFLICT\n loci = dict(zip(meta, [clusters[idc] for idc in meta]))\n n_loci = len(meta)\n n_loci_prev = n_loci + 1\n cicle = 0\n internal_cluster = {}\n if n_loci == 1:\n n_cluster += 1\n filtered[n_cluster] = clusters[meta[0]]\n filtered[n_cluster].update(id=n_cluster)\n filtered[n_cluster].set_freq(s2p[1])\n while n_loci < n_loci_prev and n_loci != 1:\n n_loci_prev = n_loci\n cicle += 1\n if cicle % 1 == 0:\n logger.debug('_iter_loci:number of cicle: %s with n_loci %s' %\n (cicle, n_loci))\n loci_similarity = _calculate_similarity(loci)\n internal_cluster = _merge_similar(loci, loci_similarity)\n n_loci = len(internal_cluster)\n loci = internal_cluster\n logger.debug('_iter_loci: n_loci %s' % n_loci)\n if n_loci > 1:\n n_internal_cluster = sorted(internal_cluster.keys(), reverse=True)[0]\n CONFLICT += 1\n internal_cluster = _solve_conflict(internal_cluster, s2p,\n n_internal_cluster)\n internal_cluster = _clean_cluster(internal_cluster)\n for idc in internal_cluster:\n n_cluster += 1\n logger.debug('_iter_loci: add to filtered %s' % n_cluster)\n filtered[n_cluster] = internal_cluster[idc]\n filtered[n_cluster].id = n_cluster\n filtered[n_cluster].update(id=n_cluster)\n filtered[n_cluster].set_freq(s2p[1])\n logger.debug('_iter_loci: filtered %s' % filtered.keys())\n return filtered, n_cluster\n",
"role": "user"
},
{
"content": "iter_loci",
"role": "assistant"
}
] |
def x(c):
new_dict = {}
n_cluster = 0
logger.debug('_convert_to_cluster: loci %s' % c.loci2seq.keys())
for idl in c.loci2seq:
n_cluster += 1
new_c = cluster(n_cluster)
new_c.loci2seq[idl] = c.loci2seq[idl]
new_dict[n_cluster] = new_c
logger.debug('_convert_to_cluster: new ids %s' % new_dict.keys())
return new_dict
|
convert_to_clusters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(c):\n new_dict = {}\n n_cluster = 0\n logger.debug('_convert_to_cluster: loci %s' % c.loci2seq.keys())\n for idl in c.loci2seq:\n n_cluster += 1\n new_c = cluster(n_cluster)\n new_c.loci2seq[idl] = c.loci2seq[idl]\n new_dict[n_cluster] = new_c\n logger.debug('_convert_to_cluster: new ids %s' % new_dict.keys())\n return new_dict\n",
"role": "user"
},
{
"content": "convert_to_clusters",
"role": "assistant"
}
] |
def x(c):
ma = {}
for idc in c:
set1 = _get_seqs(c[idc])
[ma.update({(idc, idc2): _common(set1, _get_seqs(c[idc2]), idc,
idc2)}) for idc2 in c if idc != idc2 and (idc2, idc) not in ma]
return ma
|
calculate_similarity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(c):\n ma = {}\n for idc in c:\n set1 = _get_seqs(c[idc])\n [ma.update({(idc, idc2): _common(set1, _get_seqs(c[idc2]), idc,\n idc2)}) for idc2 in c if idc != idc2 and (idc2, idc) not in ma]\n return ma\n",
"role": "user"
},
{
"content": "calculate_similarity",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.