source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, callback): items = self.items for item in items: if callback(item) is False: break return self
each
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, callback):\n items = self.items\n for item in items:\n if callback(item) is False:\n break\n return self\n", "role": "user" }, { "content": "each", "role": "assistant" } ]
def x(self, step, offset=0): new = [] for position, item in enumerate(self.items): if position % step == offset: new.append(item) return self.__class__(new)
every
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, step, offset=0):\n new = []\n for position, item in enumerate(self.items):\n if position % step == offset:\n new.append(item)\n return self.__class__(new)\n", "role": "user" }, { "content": "every", "role": "assistant" } ]
def x(self, *keys): items = copy(self.items) keys = reversed(sorted(keys)) for key in keys: del items[key] return self.__class__(items)
without
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *keys):\n items = copy(self.items)\n keys = reversed(sorted(keys))\n for key in keys:\n del items[key]\n return self.__class__(items)\n", "role": "user" }, { "content": "without", "role": "assistant" } ]
def x(self, *keys): items = [] for key, value in enumerate(self.items): if key in keys: items.append(value) return self.__class__(items)
only
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *keys):\n items = []\n for key, value in enumerate(self.items):\n if key in keys:\n items.append(value)\n return self.__class__(items)\n", "role": "user" }, { "content": "only", "role": "assistant" } ]
def x(self, callback=None): if callback: return self.__class__(list(filter(callback, self.items))) return self.__class__(list(filter(None, self.items)))
filter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, callback=None):\n if callback:\n return self.__class__(list(filter(callback, self.items)))\n return self.__class__(list(filter(None, self.items)))\n", "role": "user" }, { "content": "filter", "role": "assistant" } ]
def x(self, key, value): return self.filter(lambda item: data_get(item, key) == value)
where
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key, value):\n return self.filter(lambda item: data_get(item, key) == value)\n", "role": "user" }, { "content": "where", "role": "assistant" } ]
def x(self, callback=None, default=None): if callback is not None: for val in self.items: if callback(val): return val return value(default) if len(self.items) > 0: return self.items[0] else: return default
first
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, callback=None, default=None):\n if callback is not None:\n for val in self.items:\n if callback(val):\n return val\n return value(default)\n if len(self.items) > 0:\n return self.items[0]\n else:\n return default\n", "role": "user" }, { "content": "first", "role": "assistant" } ]
def x(self): def x(d): if isinstance(d, dict): for v in d.values(): for nested_v in _flatten(v): yield nested_v elif isinstance(d, list): for list_v in d: for nested_v in _flatten(list_v): yield nested_v else: yield d return self.__class__(list(_flatten(self.items)))
flatten
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n\n def x(d):\n if isinstance(d, dict):\n for v in d.values():\n for nested_v in _flatten(v):\n yield nested_v\n elif isinstance(d, list):\n for list_v in d:\n for nested_v in _flatten(list_v):\n yield nested_v\n else:\n yield d\n return self.__class__(list(_flatten(self.items)))\n", "role": "user" }, { "content": "flatten", "role": "assistant" } ]
def x(self, *keys): keys = reversed(sorted(keys)) for key in keys: del self[key] return self
forget
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *keys):\n keys = reversed(sorted(keys))\n for key in keys:\n del self[key]\n return self\n", "role": "user" }, { "content": "forget", "role": "assistant" } ]
def x(self, key, default=None): try: return self.items[key] except IndexError: return value(default)
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key, default=None):\n try:\n return self.items[key]\n except IndexError:\n return value(default)\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self, value, glue=''): first = self.first() if not isinstance(first, basestring): return glue.join(self.pluck(value).all()) return value.join(self.items)
implode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value, glue=''):\n first = self.first()\n if not isinstance(first, basestring):\n return glue.join(self.pluck(value).all())\n return value.join(self.items)\n", "role": "user" }, { "content": "implode", "role": "assistant" } ]
def x(self, callback=None, default=None): if callback is not None: for val in reversed(self.items): if callback(val): return val return value(default) if len(self.items) > 0: return self.items[-1] else: return default
last
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, callback=None, default=None):\n if callback is not None:\n for val in reversed(self.items):\n if callback(val):\n return val\n return value(default)\n if len(self.items) > 0:\n return self.items[-1]\n else:\n return default\n", "role": "user" }, { "content": "last", "role": "assistant" } ]
def x(self, value, key=None): if key: return dict(map(lambda x: (data_get(x, key), data_get(x, value)), self.items)) else: results = list(map(lambda x: data_get(x, value), self.items)) return self.__class__(results)
pluck
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value, key=None):\n if key:\n return dict(map(lambda x: (data_get(x, key), data_get(x, value)),\n self.items))\n else:\n results = list(map(lambda x: data_get(x, value), self.items))\n return self.__class__(results)\n", "role": "user" }, { "content": "pluck", "role": "assistant" } ]
def x(self, callback): return self.__class__(list(map(callback, self.items)))
map
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, callback):\n return self.__class__(list(map(callback, self.items)))\n", "role": "user" }, { "content": "map", "role": "assistant" } ]
def x(self, key=None): def x(result, item): val = data_get(item, key) if result is None or val > result: return value return result return self.reduce(_max)
max
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key=None):\n\n def x(result, item):\n val = data_get(item, key)\n if result is None or val > result:\n return value\n return result\n return self.reduce(_max)\n", "role": "user" }, { "content": "max", "role": "assistant" } ]
def x(self, key=None): def x(result, item): val = data_get(item, key) if result is None or val < result: return value return result return self.reduce(_min)
min
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key=None):\n\n def x(result, item):\n val = data_get(item, key)\n if result is None or val < result:\n return value\n return result\n return self.reduce(_min)\n", "role": "user" }, { "content": "min", "role": "assistant" } ]
def x(self, page, per_page): start = (page - 1) * per_page return self[start:start + per_page]
for_page
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, page, per_page):\n start = (page - 1) * per_page\n return self[start:start + per_page]\n", "role": "user" }, { "content": "for_page", "role": "assistant" } ]
def x(self, key, default=None): val = self.get(key, default) self.forget(key) return val
pull
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key, default=None):\n val = self.get(key, default)\n self.forget(key)\n return val\n", "role": "user" }, { "content": "pull", "role": "assistant" } ]
def x(self, callback): if self._use_as_callable(callback): return self.filter(lambda item: not callback(item)) return self.filter(lambda item: item != callback)
reject
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, callback):\n if self._use_as_callable(callback):\n return self.filter(lambda item: not callback(item))\n return self.filter(lambda item: item != callback)\n", "role": "user" }, { "content": "reject", "role": "assistant" } ]
def x(self, callback=None): items = self.items if callback: return self.__class__(sorted(items, key=callback)) else: return self.__class__(sorted(items))
sort
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, callback=None):\n items = self.items\n if callback:\n return self.__class__(sorted(items, key=callback))\n else:\n return self.__class__(sorted(items))\n", "role": "user" }, { "content": "sort", "role": "assistant" } ]
def x(self, callback=None): if callback is None: return sum(self.items) callback = self._value_retriever(callback) return self.reduce(lambda result, item: (result or 0) + callback(item))
sum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, callback=None):\n if callback is None:\n return sum(self.items)\n callback = self._value_retriever(callback)\n return self.reduce(lambda result, item: (result or 0) + callback(item))\n", "role": "user" }, { "content": "sum", "role": "assistant" } ]
def x(self, key=None): if key is None: seen = set() seen_add = seen.add return self.__class__([x for x in self.items if not (x in seen or seen_add(x))]) key = self._value_retriever(key) exists = [] def x(item): id_ = key(item) if id_ in exists: return True exists.append(id_) return self.reject(_check)
unique
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key=None):\n if key is None:\n seen = set()\n seen_add = seen.add\n return self.__class__([x for x in self.items if not (x in seen or\n seen_add(x))])\n key = self._value_retriever(key)\n exists = []\n\n def x(item):\n id_ = key(item)\n if id_ in exists:\n return True\n exists.append(id_)\n return self.reject(_check)\n", "role": "user" }, { "content": "unique", "role": "assistant" } ]
def x(self, *items): return self.__class__(list(zip(self.items, *items)))
zip
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *items):\n return self.__class__(list(zip(self.items, *items)))\n", "role": "user" }, { "content": "zip", "role": "assistant" } ]
def x(self, items): if isinstance(items, BaseCollection): items = items.all() if not isinstance(items, list): raise ValueError('Unable to merge uncompatible types') self._items += items return self
merge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, items):\n if isinstance(items, BaseCollection):\n items = items.all()\n if not isinstance(items, list):\n raise ValueError('Unable to merge uncompatible types')\n self._items += items\n return self\n", "role": "user" }, { "content": "merge", "role": "assistant" } ]
def x(self, callback): self._items = self.map(callback).all() return self
transform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, callback):\n self._items = self.map(callback).all()\n return self\n", "role": "user" }, { "content": "transform", "role": "assistant" } ]
def x(self, value): if self._use_as_callable(value): return value return lambda item: data_get(item, value)
value_retriever
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if self._use_as_callable(value):\n return value\n return lambda item: data_get(item, value)\n", "role": "user" }, { "content": "value_retriever", "role": "assistant" } ]
def x(self): def x(value): if hasattr(value, 'serialize'): return value.serialize() elif hasattr(value, 'to_dict'): return value.to_dict() else: return value return list(map(_serialize, self.items))
serialize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n\n def x(value):\n if hasattr(value, 'serialize'):\n return value.serialize()\n elif hasattr(value, 'to_dict'):\n return value.to_dict()\n else:\n return value\n return list(map(_serialize, self.items))\n", "role": "user" }, { "content": "serialize", "role": "assistant" } ]
def x(self, *args, **kwargs): if is_scheme(self.validator): params = getcallargs(self.function, *args, **kwargs) params.update(kwargs) validator = self.validator(data=params, request=None) if validator.is_valid(): return raise self.exception(validator.errors) if hasattr(self.validator, 'is_valid'): validator = self.validator(*args, **kwargs) if validator.is_valid(): return if hasattr(validator, 'errors'): raise self.exception(validator.errors) if hasattr(validator, '_errors'): raise self.exception(validator._errors) raise self.exception validation_result = self.validator(*args, **kwargs) if isinstance(validation_result, string_types): raise self.exception(validation_result) if validation_result: return raise self.exception
validate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, **kwargs):\n if is_scheme(self.validator):\n params = getcallargs(self.function, *args, **kwargs)\n params.update(kwargs)\n validator = self.validator(data=params, request=None)\n if validator.is_valid():\n return\n raise self.exception(validator.errors)\n if hasattr(self.validator, 'is_valid'):\n validator = self.validator(*args, **kwargs)\n if validator.is_valid():\n return\n if hasattr(validator, 'errors'):\n raise self.exception(validator.errors)\n if hasattr(validator, '_errors'):\n raise self.exception(validator._errors)\n raise self.exception\n validation_result = self.validator(*args, **kwargs)\n if isinstance(validation_result, string_types):\n raise self.exception(validation_result)\n if validation_result:\n return\n raise self.exception\n", "role": "user" }, { "content": "validate", "role": "assistant" } ]
def x(self, *args, **kwargs): self.validate(*args, **kwargs) return self.function(*args, **kwargs)
patched_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, **kwargs):\n self.validate(*args, **kwargs)\n return self.function(*args, **kwargs)\n", "role": "user" }, { "content": "patched_function", "role": "assistant" } ]
def x(self, *args, **kwargs): result = self.function(*args, **kwargs) self.validate(result) return result
patched_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, **kwargs):\n result = self.function(*args, **kwargs)\n self.validate(result)\n return result\n", "role": "user" }, { "content": "patched_function", "role": "assistant" } ]
def x(self): self._disable_patching = True self._validate_base(self) self._disable_patching = False
validate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._disable_patching = True\n self._validate_base(self)\n self._disable_patching = False\n", "role": "user" }, { "content": "validate", "role": "assistant" } ]
def x(self, method, *args, **kwargs): self._validate() result = method(*args, **kwargs) self._validate() return result
patched_method
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, method, *args, **kwargs):\n self._validate()\n result = method(*args, **kwargs)\n self._validate()\n return result\n", "role": "user" }, { "content": "patched_method", "role": "assistant" } ]
def x(input_file_list, output_file, relative=True, **kwargs): if not Path(output_file).parent.exists(): Path(output_file).parent.mkdir(parents=True, exist_ok=True) input_file_list = [str(Path(p).absolute()) for p in input_file_list] output_file = str(Path(output_file).absolute()) vrt_options = gdal.BuildVRTOptions(**kwargs) vrt = gdal.BuildVRT(output_file, input_file_list, options=vrt_options) vrt = None if relative: input_file_list_relative = [relpath(p, Path(output_file).parent) for p in input_file_list] with open(output_file, 'r') as file: lines = file.readlines() new_lines = [] counter = -1 for line in lines: if 'relativeToVRT="1"' in line: counter += 1 elif 'relativeToVRT="0"' in line: counter += 1 input_file = str(input_file_list[counter]) input_file_relative = str(input_file_list_relative[counter]) if input_file not in line: raise Exception( f'Expect path {input_file} not part of line {line}.') line = line.replace(input_file, input_file_relative) line = line.replace('relativeToVRT="0"', 'relativeToVRT="1"') else: pass new_lines.append(line) with open(output_file, 'w') as file: file.writelines(new_lines) return 0
buildvrt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input_file_list, output_file, relative=True, **kwargs):\n if not Path(output_file).parent.exists():\n Path(output_file).parent.mkdir(parents=True, exist_ok=True)\n input_file_list = [str(Path(p).absolute()) for p in input_file_list]\n output_file = str(Path(output_file).absolute())\n vrt_options = gdal.BuildVRTOptions(**kwargs)\n vrt = gdal.BuildVRT(output_file, input_file_list, options=vrt_options)\n vrt = None\n if relative:\n input_file_list_relative = [relpath(p, Path(output_file).parent) for\n p in input_file_list]\n with open(output_file, 'r') as file:\n lines = file.readlines()\n new_lines = []\n counter = -1\n for line in lines:\n if 'relativeToVRT=\"1\"' in line:\n counter += 1\n elif 'relativeToVRT=\"0\"' in line:\n counter += 1\n input_file = str(input_file_list[counter])\n input_file_relative = str(input_file_list_relative[counter])\n if input_file not in line:\n raise Exception(\n f'Expect path {input_file} not part of line {line}.')\n line = line.replace(input_file, input_file_relative)\n line = line.replace('relativeToVRT=\"0\"', 'relativeToVRT=\"1\"')\n else:\n pass\n new_lines.append(line)\n with open(output_file, 'w') as file:\n file.writelines(new_lines)\n return 0\n", "role": "user" }, { "content": "buildvrt", "role": "assistant" } ]
def x(src_file, dst_file, template_file, resampling='near', compress=None, overwrite=False): if not overwrite and Path(dst_file).exists(): print('Processing skipped. Destination file exists.') return 0 GDAL_RESAMPLING_ALGORITHMS = {'bilinear': 'GRA_Bilinear', 'cubic': 'GRA_Cubic', 'cubicspline': 'GRA_CubicSpline', 'lanczos': 'GRA_Lanczos', 'average': 'GRA_Average', 'mode': 'GRA_Mode', 'max': 'GRA_Max', 'min': 'GRA_Min', 'med': 'GRA_Med', 'near': 'GRA_NearestNeighbour', 'q1': 'GRA_Q1', 'q3': 'GRA_Q3'} compressions = ['lzw', 'packbits', 'deflate'] if resampling not in GDAL_RESAMPLING_ALGORITHMS.keys(): raise ValueError( f"'resampling must be one of {', '.join(GDAL_RESAMPLING_ALGORITHMS.keys())}" ) if compress is None: options = [] elif compress.lower() not in compressions: raise ValueError(f"'compress must be one of {', '.join(compressions)}") else: options = [f'COMPRESS={compress.upper()}'] src = gdal.Open(src_file, gdalconst.GA_ReadOnly) src_band = src.GetRasterBand(1) src_proj = src.GetProjection() match_ds = gdal.Open(template_file, gdalconst.GA_ReadOnly) match_proj = match_ds.GetProjection() match_geotrans = match_ds.GetGeoTransform() wide = match_ds.RasterXSize high = match_ds.RasterYSize Path(dst_file).parent.mkdir(parents=True, exist_ok=True) dst = gdal.GetDriverByName('GTiff').Create(dst_file, wide, high, 1, src_band.DataType, options=options) dst.SetGeoTransform(match_geotrans) dst.SetProjection(match_proj) gdal.ReprojectImage(src, dst, src_proj, match_proj, getattr(gdalconst, GDAL_RESAMPLING_ALGORITHMS[resampling])) del dst return 0
reproject_on_template_raster
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(src_file, dst_file, template_file, resampling='near', compress=None,\n overwrite=False):\n if not overwrite and Path(dst_file).exists():\n print('Processing skipped. Destination file exists.')\n return 0\n GDAL_RESAMPLING_ALGORITHMS = {'bilinear': 'GRA_Bilinear', 'cubic':\n 'GRA_Cubic', 'cubicspline': 'GRA_CubicSpline', 'lanczos':\n 'GRA_Lanczos', 'average': 'GRA_Average', 'mode': 'GRA_Mode', 'max':\n 'GRA_Max', 'min': 'GRA_Min', 'med': 'GRA_Med', 'near':\n 'GRA_NearestNeighbour', 'q1': 'GRA_Q1', 'q3': 'GRA_Q3'}\n compressions = ['lzw', 'packbits', 'deflate']\n if resampling not in GDAL_RESAMPLING_ALGORITHMS.keys():\n raise ValueError(\n f\"'resampling must be one of {', '.join(GDAL_RESAMPLING_ALGORITHMS.keys())}\"\n )\n if compress is None:\n options = []\n elif compress.lower() not in compressions:\n raise ValueError(f\"'compress must be one of {', '.join(compressions)}\")\n else:\n options = [f'COMPRESS={compress.upper()}']\n src = gdal.Open(src_file, gdalconst.GA_ReadOnly)\n src_band = src.GetRasterBand(1)\n src_proj = src.GetProjection()\n match_ds = gdal.Open(template_file, gdalconst.GA_ReadOnly)\n match_proj = match_ds.GetProjection()\n match_geotrans = match_ds.GetGeoTransform()\n wide = match_ds.RasterXSize\n high = match_ds.RasterYSize\n Path(dst_file).parent.mkdir(parents=True, exist_ok=True)\n dst = gdal.GetDriverByName('GTiff').Create(dst_file, wide, high, 1,\n src_band.DataType, options=options)\n dst.SetGeoTransform(match_geotrans)\n dst.SetProjection(match_proj)\n gdal.ReprojectImage(src, dst, src_proj, match_proj, getattr(gdalconst,\n GDAL_RESAMPLING_ALGORITHMS[resampling]))\n del dst\n return 0\n", "role": "user" }, { "content": "reproject_on_template_raster", "role": "assistant" } ]
def x(src_vector: str, burn_attribute: str, src_raster_template: str, dst_rasterized: str, gdal_dtype: int=4): data = gdal.Open(str(src_raster_template), gdalconst.GA_ReadOnly) geo_transform = data.GetGeoTransform() x_res = data.RasterXSize y_res = data.RasterYSize mb_v = ogr.Open(src_vector) mb_l = mb_v.GetLayer() target_ds = gdal.GetDriverByName('GTiff').Create(dst_rasterized, x_res, y_res, 1, gdal_dtype) target_ds.SetGeoTransform((geo_transform[0], geo_transform[1], 0, geo_transform[3], 0, geo_transform[5])) prj = data.GetProjection() target_ds.SetProjection(prj) band = target_ds.GetRasterBand(1) band.FlushCache() gdal.RasterizeLayer(target_ds, [1], mb_l, options=[ f'ATTRIBUTE={burn_attribute}']) target_ds = None
rasterize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(src_vector: str, burn_attribute: str, src_raster_template: str,\n dst_rasterized: str, gdal_dtype: int=4):\n data = gdal.Open(str(src_raster_template), gdalconst.GA_ReadOnly)\n geo_transform = data.GetGeoTransform()\n x_res = data.RasterXSize\n y_res = data.RasterYSize\n mb_v = ogr.Open(src_vector)\n mb_l = mb_v.GetLayer()\n target_ds = gdal.GetDriverByName('GTiff').Create(dst_rasterized, x_res,\n y_res, 1, gdal_dtype)\n target_ds.SetGeoTransform((geo_transform[0], geo_transform[1], 0,\n geo_transform[3], 0, geo_transform[5]))\n prj = data.GetProjection()\n target_ds.SetProjection(prj)\n band = target_ds.GetRasterBand(1)\n band.FlushCache()\n gdal.RasterizeLayer(target_ds, [1], mb_l, options=[\n f'ATTRIBUTE={burn_attribute}'])\n target_ds = None\n", "role": "user" }, { "content": "rasterize", "role": "assistant" } ]
def x(polygons, template_raster, dst_raster, overwrite=False, keep_interim_files=False): if Path(dst_raster).exists() and not overwrite: print(f'Returning 0 - File exists: {dst_raster}') return 0 with rasterio.open(template_raster) as tmp: crs = tmp.crs dst_raster = Path(dst_raster) dst_raster.parent.mkdir(exist_ok=True, parents=True) tempdir = Path(tempfile.mkdtemp(prefix=f'TEMPDIR_{dst_raster.stem}_', dir=dst_raster.parent)) interim_file_lines_vector = (tempdir / 'interim_sample_vector_dataset_lines.shp') interim_file_lines_raster = (tempdir / 'interim_sample_vector_dataset_lines.tif') exit_code = convert_polygons_to_lines(polygons, interim_file_lines_vector, crs=crs, add_allone_col=True) rasterize(src_vector=str(interim_file_lines_vector), burn_attribute= 'ALLONE', src_raster_template=str(template_raster), dst_rasterized= str(interim_file_lines_raster), gdal_dtype=1) cmd = ( f'{PROXIMITY_PATH} {str(Path(interim_file_lines_raster).absolute())} {str(Path(dst_raster).absolute())} -ot Float32 -distunits PIXEL -values 1 -maxdist 255' ) subprocess.check_call(cmd, shell=True) if not keep_interim_files: shutil.rmtree(tempdir) else: print(f'Interim files are in {tempdir}') return 0
calc_distance_to_border
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(polygons, template_raster, dst_raster, overwrite=False,\n keep_interim_files=False):\n if Path(dst_raster).exists() and not overwrite:\n print(f'Returning 0 - File exists: {dst_raster}')\n return 0\n with rasterio.open(template_raster) as tmp:\n crs = tmp.crs\n dst_raster = Path(dst_raster)\n dst_raster.parent.mkdir(exist_ok=True, parents=True)\n tempdir = Path(tempfile.mkdtemp(prefix=f'TEMPDIR_{dst_raster.stem}_',\n dir=dst_raster.parent))\n interim_file_lines_vector = (tempdir /\n 'interim_sample_vector_dataset_lines.shp')\n interim_file_lines_raster = (tempdir /\n 'interim_sample_vector_dataset_lines.tif')\n exit_code = convert_polygons_to_lines(polygons,\n interim_file_lines_vector, crs=crs, add_allone_col=True)\n rasterize(src_vector=str(interim_file_lines_vector), burn_attribute=\n 'ALLONE', src_raster_template=str(template_raster), dst_rasterized=\n str(interim_file_lines_raster), gdal_dtype=1)\n cmd = (\n f'{PROXIMITY_PATH} {str(Path(interim_file_lines_raster).absolute())} {str(Path(dst_raster).absolute())} -ot Float32 -distunits PIXEL -values 1 -maxdist 255'\n )\n subprocess.check_call(cmd, shell=True)\n if not keep_interim_files:\n shutil.rmtree(tempdir)\n else:\n print(f'Interim files are in {tempdir}')\n return 0\n", "role": "user" }, { "content": "calc_distance_to_border", "role": "assistant" } ]
def x(src_polygons, dst_lines, crs=None, add_allone_col=False): gdf = gpd.read_file(src_polygons) geom_coords = gdf['geometry'] lines = [] row_ids = [] for i_row, pol in tqdm(enumerate(geom_coords), total=len(geom_coords)): boundary = pol.boundary if boundary.type == 'MultiLineString': for line in boundary: lines.append(line) row_ids.append(i_row) else: lines.append(boundary) row_ids.append(i_row) gdf_lines = gdf.drop('geometry', axis=1).iloc[row_ids, :] gdf_lines['Coordinates'] = lines gdf_lines = gpd.GeoDataFrame(gdf_lines, geometry='Coordinates', crs=gdf.crs ) if crs is not None: gdf_lines = gdf_lines.to_crs(crs) if add_allone_col: gdf_lines['ALLONE'] = 1 Path(dst_lines).parent.mkdir(exist_ok=True, parents=True) gdf_lines.to_file(dst_lines) return 0
convert_polygons_to_lines
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(src_polygons, dst_lines, crs=None, add_allone_col=False):\n gdf = gpd.read_file(src_polygons)\n geom_coords = gdf['geometry']\n lines = []\n row_ids = []\n for i_row, pol in tqdm(enumerate(geom_coords), total=len(geom_coords)):\n boundary = pol.boundary\n if boundary.type == 'MultiLineString':\n for line in boundary:\n lines.append(line)\n row_ids.append(i_row)\n else:\n lines.append(boundary)\n row_ids.append(i_row)\n gdf_lines = gdf.drop('geometry', axis=1).iloc[row_ids, :]\n gdf_lines['Coordinates'] = lines\n gdf_lines = gpd.GeoDataFrame(gdf_lines, geometry='Coordinates', crs=gdf.crs\n )\n if crs is not None:\n gdf_lines = gdf_lines.to_crs(crs)\n if add_allone_col:\n gdf_lines['ALLONE'] = 1\n Path(dst_lines).parent.mkdir(exist_ok=True, parents=True)\n gdf_lines.to_file(dst_lines)\n return 0\n", "role": "user" }, { "content": "convert_polygons_to_lines", "role": "assistant" } ]
def x(df, dtype, return_=None): dtype_range = dtype_ranges[dtype] df_out_of_range = (df < dtype_range[0]) | (df > dtype_range[1] ) | ~np.isfinite(df) if df_out_of_range.any().any(): if return_ == 'colsums': df_out_of_range = df_out_of_range.apply(sum, axis=0) elif return_ == 'rowsums': df_out_of_range = df_out_of_range.apply(sum, axis=1) elif return_ == 'all': df_out_of_range = df_out_of_range else: df_out_of_range = 1 else: df_out_of_range = 0 return df_out_of_range
dtype_checker_df
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df, dtype, return_=None):\n dtype_range = dtype_ranges[dtype]\n df_out_of_range = (df < dtype_range[0]) | (df > dtype_range[1]\n ) | ~np.isfinite(df)\n if df_out_of_range.any().any():\n if return_ == 'colsums':\n df_out_of_range = df_out_of_range.apply(sum, axis=0)\n elif return_ == 'rowsums':\n df_out_of_range = df_out_of_range.apply(sum, axis=1)\n elif return_ == 'all':\n df_out_of_range = df_out_of_range\n else:\n df_out_of_range = 1\n else:\n df_out_of_range = 0\n return df_out_of_range\n", "role": "user" }, { "content": "dtype_checker_df", "role": "assistant" } ]
def x(self, band, date): df = self.df_layers.copy() df['index'] = range(df.shape[0]) idx_layers = [] if isinstance(band, str) and isinstance(date, str): idx_layers = df[(df['date'] == date) & (df['band'] == band)]['index' ].values[0] if isinstance(band, list) and isinstance(date, str): for b in band: idx = df[(df['date'] == date) & (df['band'] == b)]['index'].values[ 0] idx_layers.append(idx) elif isinstance(band, str) and isinstance(date, list): for d in date: idx = df[(df['band'] == band) & (df['date'] == d)]['index'].values[ 0] idx_layers.append(idx) return idx_layers
get_df_ilocs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, band, date):\n df = self.df_layers.copy()\n df['index'] = range(df.shape[0])\n idx_layers = []\n if isinstance(band, str) and isinstance(date, str):\n idx_layers = df[(df['date'] == date) & (df['band'] == band)]['index'\n ].values[0]\n if isinstance(band, list) and isinstance(date, str):\n for b in band:\n idx = df[(df['date'] == date) & (df['band'] == b)]['index'].values[\n 0]\n idx_layers.append(idx)\n elif isinstance(band, str) and isinstance(date, list):\n for d in date:\n idx = df[(df['band'] == band) & (df['date'] == d)]['index'].values[\n 0]\n idx_layers.append(idx)\n return idx_layers\n", "role": "user" }, { "content": "get_df_ilocs", "role": "assistant" } ]
def x(self): with rasterio.open(self._mrio._get_template_for_given_resolution(self. _mrio.dst_res, 'path')) as src_layer: pass win_transform = src_layer.window_transform(self._window) bounds = rasterio.windows.bounds(window=self._window, transform= win_transform, height=0, width=0) return bounds
get_spatial_bounds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n with rasterio.open(self._mrio._get_template_for_given_resolution(self.\n _mrio.dst_res, 'path')) as src_layer:\n pass\n win_transform = src_layer.window_transform(self._window)\n bounds = rasterio.windows.bounds(window=self._window, transform=\n win_transform, height=0, width=0)\n return bounds\n", "role": "user" }, { "content": "get_spatial_bounds", "role": "assistant" } ]
def x(self): if self._data_structure != 'DataFrame': raise Exception(f'Data is not a DataFrame but {self._data_structure}.') self._data = self._convert_to_ndarray(self._data) self._update_data_structure() return self
convert_data_to_ndarray
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._data_structure != 'DataFrame':\n raise Exception(f'Data is not a DataFrame but {self._data_structure}.')\n self._data = self._convert_to_ndarray(self._data)\n self._update_data_structure()\n return self\n", "role": "user" }, { "content": "convert_data_to_ndarray", "role": "assistant" } ]
def x(self, data): if data.__class__.__name__ != 'DataFrame': raise Exception( f'data is not a DataFrame but {data.__class__.__name__}.') shape_ndarray = self._height, self._width, data.shape[1] data_ndarray = data.values.reshape(shape_ndarray) return data_ndarray
convert_to_ndarray
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n if data.__class__.__name__ != 'DataFrame':\n raise Exception(\n f'data is not a DataFrame but {data.__class__.__name__}.')\n shape_ndarray = self._height, self._width, data.shape[1]\n data_ndarray = data.values.reshape(shape_ndarray)\n return data_ndarray\n", "role": "user" }, { "content": "convert_to_ndarray", "role": "assistant" } ]
def x(self, result, dst_paths, nodata=None, compress='lzw'): result = self._convert_to_ndarray(result) self.write_ndarray(result, dst_paths, nodata=nodata, compress=compress)
write_dataframe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, result, dst_paths, nodata=None, compress='lzw'):\n result = self._convert_to_ndarray(result)\n self.write_ndarray(result, dst_paths, nodata=nodata, compress=compress)\n", "role": "user" }, { "content": "write_dataframe", "role": "assistant" } ]
def x(self, result, dst_paths, nodata=None, compress='lzw'): assert len(dst_paths) == result.shape[2] assert result.shape[0] == self._height assert result.shape[1] == self._width assert result.shape[2] == len(dst_paths) with rasterio.open(self._mrio._get_template_for_given_resolution(self. _mrio.dst_res, 'path')) as src_layer: pass for i, pth in enumerate(dst_paths): dst_path_chunk = self.get_chunk_path_from_layer_path(pth, self.ji) result_layer_i = result[:, :, [i]] assert result_layer_i.shape[2] == 1 kwargs = self._mrio._get_template_for_given_resolution(res=self. _mrio.dst_res, return_='meta').copy() kwargs.update({'driver': 'GTiff', 'compress': compress, 'nodata': nodata, 'height': self._height, 'width': self._width, 'dtype': result_layer_i.dtype, 'transform': src_layer.window_transform( self._window)}) with rasterio.open(dst_path_chunk, 'w', **kwargs) as dst: dst.write(result_layer_i[:, :, 0], 1)
write_ndarray
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, result, dst_paths, nodata=None, compress='lzw'):\n assert len(dst_paths) == result.shape[2]\n assert result.shape[0] == self._height\n assert result.shape[1] == self._width\n assert result.shape[2] == len(dst_paths)\n with rasterio.open(self._mrio._get_template_for_given_resolution(self.\n _mrio.dst_res, 'path')) as src_layer:\n pass\n for i, pth in enumerate(dst_paths):\n dst_path_chunk = self.get_chunk_path_from_layer_path(pth, self.ji)\n result_layer_i = result[:, :, [i]]\n assert result_layer_i.shape[2] == 1\n kwargs = self._mrio._get_template_for_given_resolution(res=self.\n _mrio.dst_res, return_='meta').copy()\n kwargs.update({'driver': 'GTiff', 'compress': compress, 'nodata':\n nodata, 'height': self._height, 'width': self._width, 'dtype':\n result_layer_i.dtype, 'transform': src_layer.window_transform(\n self._window)})\n with rasterio.open(dst_path_chunk, 'w', **kwargs) as dst:\n dst.write(result_layer_i[:, :, 0], 1)\n", "role": "user" }, { "content": "write_ndarray", "role": "assistant" } ]
def x(arr, robust=False, vmin=None, vmax=None): def x(arr2d, vmin=None, vmax=None): if vmin is None: vmin = np.percentile(arr2d, 2) if robust else arr2d.min() if vmax is None: vmax = np.percentile(arr2d, 98) if robust else arr2d.max() return vmin, vmax if len(arr.shape) == 3 and vmin is None and vmax is None: vmin = [] vmax = [] for i in range(arr.shape[2]): arr_i = arr[:, :, i] vmin_i, vmax_i = _get_vmin_vmax(arr_i, vmin=None, vmax=None) vmin.append(vmin_i) vmax.append(vmax_i) else: vmin, vmax = _get_vmin_vmax(arr, vmin=vmin, vmax=vmax) return vmin, vmax
robust_data_range
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, robust=False, vmin=None, vmax=None):\n\n def x(arr2d, vmin=None, vmax=None):\n if vmin is None:\n vmin = np.percentile(arr2d, 2) if robust else arr2d.min()\n if vmax is None:\n vmax = np.percentile(arr2d, 98) if robust else arr2d.max()\n return vmin, vmax\n if len(arr.shape) == 3 and vmin is None and vmax is None:\n vmin = []\n vmax = []\n for i in range(arr.shape[2]):\n arr_i = arr[:, :, i]\n vmin_i, vmax_i = _get_vmin_vmax(arr_i, vmin=None, vmax=None)\n vmin.append(vmin_i)\n vmax.append(vmax_i)\n else:\n vmin, vmax = _get_vmin_vmax(arr, vmin=vmin, vmax=vmax)\n return vmin, vmax\n", "role": "user" }, { "content": "robust_data_range", "role": "assistant" } ]
def x(eocube, ji): eocubewin = EOCubeChunk(ji, eocube.df_layers, eocube.chunksize, eocube.wdir ) return eocubewin
from_eocube
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(eocube, ji):\n eocubewin = EOCubeChunk(ji, eocube.df_layers, eocube.chunksize, eocube.wdir\n )\n return eocubewin\n", "role": "user" }, { "content": "from_eocube", "role": "assistant" } ]
def x(self, ji): return EOCubeSceneCollectionChunk(ji=ji, df_layers=self.df_layers, chunksize=self.chunksize, variables=self.variables, qa=self.qa, qa_valid=self.qa_valid, wdir=self.wdir)
get_chunk
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ji):\n return EOCubeSceneCollectionChunk(ji=ji, df_layers=self.df_layers,\n chunksize=self.chunksize, variables=self.variables, qa=self.qa,\n qa_valid=self.qa_valid, wdir=self.wdir)\n", "role": "user" }, { "content": "get_chunk", "role": "assistant" } ]
def x(self, mask=True): def x(start, last_stopped, prefix): return time.time() start_time = time.time() last_stopped = time.time() last_stopped = print_elapsed_time(start_time, last_stopped, 'Starting chunk function') verbose = False self.read_data() last_stopped = print_elapsed_time(start_time, last_stopped, 'Data read') sc_chunk = self.convert_data_to_dataframe() last_stopped = print_elapsed_time(start_time, last_stopped, 'Data converted to df') if mask: ilocs_qa = np.where((self.df_layers['band'] == self.qa).values)[0] df_qa = self.data.iloc[:, ilocs_qa] df_qa.columns = self.df_layers['date'].iloc[ilocs_qa] df_clearsky = df_qa.isin(self.qa_valid) last_stopped = print_elapsed_time(start_time, last_stopped, 'Clearsky df created') return_bands = self.variables else: return_bands = self.variables + [self.qa] dfs_variables = {} for var in return_bands: if verbose: print('VARIABLE:', var) ilocs_var = np.where((self.df_layers['band'] == var).values)[0] df_var = self.data.iloc[:, ilocs_var] df_var.columns = self.df_layers['date'].iloc[ilocs_var] if mask: df_var = df_var.where(df_clearsky, other=np.nan) dfs_variables[var] = df_var last_stopped = print_elapsed_time(start_time, last_stopped, 'Clearsky df created') self._data = dfs_variables return self
read_data_by_variable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mask=True):\n\n def x(start, last_stopped, prefix):\n return time.time()\n start_time = time.time()\n last_stopped = time.time()\n last_stopped = print_elapsed_time(start_time, last_stopped,\n 'Starting chunk function')\n verbose = False\n self.read_data()\n last_stopped = print_elapsed_time(start_time, last_stopped, 'Data read')\n sc_chunk = self.convert_data_to_dataframe()\n last_stopped = print_elapsed_time(start_time, last_stopped,\n 'Data converted to df')\n if mask:\n ilocs_qa = np.where((self.df_layers['band'] == self.qa).values)[0]\n df_qa = self.data.iloc[:, ilocs_qa]\n df_qa.columns = self.df_layers['date'].iloc[ilocs_qa]\n df_clearsky = df_qa.isin(self.qa_valid)\n last_stopped = print_elapsed_time(start_time, last_stopped,\n 'Clearsky df created')\n return_bands = self.variables\n else:\n return_bands = self.variables + [self.qa]\n dfs_variables = {}\n for var in return_bands:\n if verbose:\n print('VARIABLE:', var)\n ilocs_var = np.where((self.df_layers['band'] == var).values)[0]\n df_var = self.data.iloc[:, ilocs_var]\n df_var.columns = self.df_layers['date'].iloc[ilocs_var]\n if mask:\n df_var = df_var.where(df_clearsky, other=np.nan)\n dfs_variables[var] = df_var\n last_stopped = print_elapsed_time(start_time, last_stopped,\n 'Clearsky df created')\n self._data = dfs_variables\n return self\n", "role": "user" }, { "content": "read_data_by_variable", "role": "assistant" } ]
def x(dataset='s2l1c'): if dataset == 's2l1c': search_string = os.path.join(DIR_DATA, dataset, '**', '*_B??.jp2') files = glob.glob(search_string, recursive=True) if not files: raise IOError( f'Could not find raster files of the s2l1c dataset. Search string: {search_string}' ) basename_splitted = [pth.replace('.jp2', '').split('_')[-2:] for pth in files] dset = {'raster_files': files, 'raster_bands': [ele[1] for ele in basename_splitted], 'raster_times': [ele[0] for ele in basename_splitted], 'vector_file': os.path.join(DIR_DATA, 's2l1c', 's2l1c_ref.gpkg'), 'vector_file_osm': os.path.join( DIR_DATA, 's2l1c', 'gis_osm_landuse-water_a_free_1_area-10000-to-500000.gpkg')} elif dataset == 'lsts': search_string = os.path.join(DIR_DATA, dataset, '**', '*.tif') files = glob.glob(search_string, recursive=True) if not files: raise IOError( f'Could not find raster files of the lsts dataset. Search string: {search_string}' ) basename_splitted = [os.path.basename(pth).replace('.tif', ''). split('_') for pth in files] dset = {'raster_files': files, 'raster_bands': [ele[1] for ele in basename_splitted], 'raster_times': [ele[0][9:16] for ele in basename_splitted]} return dset
get_dataset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dataset='s2l1c'):\n if dataset == 's2l1c':\n search_string = os.path.join(DIR_DATA, dataset, '**', '*_B??.jp2')\n files = glob.glob(search_string, recursive=True)\n if not files:\n raise IOError(\n f'Could not find raster files of the s2l1c dataset. Search string: {search_string}'\n )\n basename_splitted = [pth.replace('.jp2', '').split('_')[-2:] for\n pth in files]\n dset = {'raster_files': files, 'raster_bands': [ele[1] for ele in\n basename_splitted], 'raster_times': [ele[0] for ele in\n basename_splitted], 'vector_file': os.path.join(DIR_DATA,\n 's2l1c', 's2l1c_ref.gpkg'), 'vector_file_osm': os.path.join(\n DIR_DATA, 's2l1c',\n 'gis_osm_landuse-water_a_free_1_area-10000-to-500000.gpkg')}\n elif dataset == 'lsts':\n search_string = os.path.join(DIR_DATA, dataset, '**', '*.tif')\n files = glob.glob(search_string, recursive=True)\n if not files:\n raise IOError(\n f'Could not find raster files of the lsts dataset. Search string: {search_string}'\n )\n basename_splitted = [os.path.basename(pth).replace('.tif', '').\n split('_') for pth in files]\n dset = {'raster_files': files, 'raster_bands': [ele[1] for ele in\n basename_splitted], 'raster_times': [ele[0][9:16] for ele in\n basename_splitted]}\n return dset\n", "role": "user" }, { "content": "get_dataset", "role": "assistant" } ]
def x(blocksize_xy, width, height): value_error_msg = ( "'blocksize must be an integer or a list of two integers.'") if isinstance(blocksize_xy, int): blockxsize, blockysize = blocksize_xy, blocksize_xy elif isinstance(blocksize_xy, list): if len(blocksize_xy) != 2: raise ValueError(value_error_msg) else: if not all([isinstance(blocksize_xy[0], int), isinstance( blocksize_xy[1], int)]): raise ValueError(value_error_msg) blockxsize, blockysize = blocksize_xy else: raise ValueError(value_error_msg) n_cols = int(np.ceil(width / blockxsize)) n_rows = int(np.ceil(height / blockysize)) col = list(range(n_cols)) * n_rows col_off = np.array(col) * blockxsize row = np.repeat(list(range(n_rows)), n_cols) row_off = row * blockysize blocksize_wins = [] for ridx, roff, cidx, coff in zip(row, row_off, col, col_off): if coff + blockxsize > width: bxsize = width - coff else: bxsize = blockxsize if roff + blockysize > height: bysize = height - roff else: bysize = blockysize blocksize_wins.append([[ridx, cidx], rasterio.windows.Window(coff, roff, bxsize, bysize)]) return blocksize_wins
windows_from_blocksize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(blocksize_xy, width, height):\n value_error_msg = (\n \"'blocksize must be an integer or a list of two integers.'\")\n if isinstance(blocksize_xy, int):\n blockxsize, blockysize = blocksize_xy, blocksize_xy\n elif isinstance(blocksize_xy, list):\n if len(blocksize_xy) != 2:\n raise ValueError(value_error_msg)\n else:\n if not all([isinstance(blocksize_xy[0], int), isinstance(\n blocksize_xy[1], int)]):\n raise ValueError(value_error_msg)\n blockxsize, blockysize = blocksize_xy\n else:\n raise ValueError(value_error_msg)\n n_cols = int(np.ceil(width / blockxsize))\n n_rows = int(np.ceil(height / blockysize))\n col = list(range(n_cols)) * n_rows\n col_off = np.array(col) * blockxsize\n row = np.repeat(list(range(n_rows)), n_cols)\n row_off = row * blockysize\n blocksize_wins = []\n for ridx, roff, cidx, coff in zip(row, row_off, col, col_off):\n if coff + blockxsize > width:\n bxsize = width - coff\n else:\n bxsize = blockxsize\n if roff + blockysize > height:\n bysize = height - roff\n else:\n bysize = blockysize\n blocksize_wins.append([[ridx, cidx], rasterio.windows.Window(coff,\n roff, bxsize, bysize)])\n return blocksize_wins\n", "role": "user" }, { "content": "windows_from_blocksize", "role": "assistant" } ]
def x(self, dst_res=None): if dst_res is None: dst_res = min(self._res_indices.keys()) return dst_res
get_dst_resolution
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dst_res=None):\n if dst_res is None:\n dst_res = min(self._res_indices.keys())\n return dst_res\n", "role": "user" }, { "content": "get_dst_resolution", "role": "assistant" } ]
def x(self, res=None): if res is None: res = max(self._res_indices.keys()) self._windows_res = res a_file_index_given_res = self._res_indices[res][0] with rasterio.open(self._layer_files[a_file_index_given_res]) as src: wins_of_first_dst_res_layer = tuple(src.block_windows()) self.windows = np.array([win[1] for win in wins_of_first_dst_res_layer]) self.windows_row = np.array([win[0][0] for win in wins_of_first_dst_res_layer]) self.windows_col = np.array([win[0][1] for win in wins_of_first_dst_res_layer])
block_windows
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, res=None):\n if res is None:\n res = max(self._res_indices.keys())\n self._windows_res = res\n a_file_index_given_res = self._res_indices[res][0]\n with rasterio.open(self._layer_files[a_file_index_given_res]) as src:\n wins_of_first_dst_res_layer = tuple(src.block_windows())\n self.windows = np.array([win[1] for win in wins_of_first_dst_res_layer])\n self.windows_row = np.array([win[0][0] for win in\n wins_of_first_dst_res_layer])\n self.windows_col = np.array([win[0][1] for win in\n wins_of_first_dst_res_layer])\n", "role": "user" }, { "content": "block_windows", "role": "assistant" } ]
def x(self, blocksize_xy=512): meta = self._get_template_for_given_resolution(self.dst_res, 'meta') width = meta['width'] height = meta['height'] blocksize_wins = windows_from_blocksize(blocksize_xy, width, height) self.windows = np.array([win[1] for win in blocksize_wins]) self.windows_row = np.array([win[0][0] for win in blocksize_wins]) self.windows_col = np.array([win[0][1] for win in blocksize_wins]) return self
windows_from_blocksize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, blocksize_xy=512):\n meta = self._get_template_for_given_resolution(self.dst_res, 'meta')\n width = meta['width']\n height = meta['height']\n blocksize_wins = windows_from_blocksize(blocksize_xy, width, height)\n self.windows = np.array([win[1] for win in blocksize_wins])\n self.windows_row = np.array([win[0][0] for win in blocksize_wins])\n self.windows_col = np.array([win[0][1] for win in blocksize_wins])\n return self\n", "role": "user" }, { "content": "windows_from_blocksize", "role": "assistant" } ]
def x(self, res, return_): path = self._layer_files[self._res_indices[res][0]] if return_ == 'path': return_value = path else: with rasterio.open(str(path)) as src: if return_ == 'meta': return_value = src.meta elif return_ == 'windows': return_value = tuple(src.block_windows()) else: raise ValueError( "'return_' must be 'path', meta' or 'windows'.") return return_value
get_template_for_given_resolution
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, res, return_):\n path = self._layer_files[self._res_indices[res][0]]\n if return_ == 'path':\n return_value = path\n else:\n with rasterio.open(str(path)) as src:\n if return_ == 'meta':\n return_value = src.meta\n elif return_ == 'windows':\n return_value = tuple(src.block_windows())\n else:\n raise ValueError(\n \"'return_' must be 'path', meta' or 'windows'.\")\n return return_value\n", "role": "user" }, { "content": "get_template_for_given_resolution", "role": "assistant" } ]
def x(self): import pandas as pd if self.windows is None: raise Exception('You need to call the block_windows or windows before.' ) df_wins = [] for row, col, win in zip(self.windows_row, self.windows_col, self.windows): df_wins.append(pd.DataFrame({'row': [row], 'col': [col], 'Window': [win]})) df_wins = pd.concat(df_wins).set_index(['row', 'col']) df_wins['window_index'] = range(df_wins.shape[0]) df_wins = df_wins.sort_index() return df_wins
windows_df
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n import pandas as pd\n if self.windows is None:\n raise Exception('You need to call the block_windows or windows before.'\n )\n df_wins = []\n for row, col, win in zip(self.windows_row, self.windows_col, self.windows):\n df_wins.append(pd.DataFrame({'row': [row], 'col': [col], 'Window':\n [win]}))\n df_wins = pd.concat(df_wins).set_index(['row', 'col'])\n df_wins['window_index'] = range(df_wins.shape[0])\n df_wins = df_wins.sort_index()\n return df_wins\n", "role": "user" }, { "content": "windows_df", "role": "assistant" } ]
def x(self, ij_win): ji_windows = {} transform_src = self._layer_meta[self._res_indices[self._windows_res][0]][ 'transform'] for res in self._res_indices: transform_dst = self._layer_meta[self._res_indices[res][0]]['transform' ] ji_windows[res] = window_from_window(window_src=self.windows[ij_win ], transform_src=transform_src, transform_dst=transform_dst) return ji_windows
ji_windows
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ij_win):\n ji_windows = {}\n transform_src = self._layer_meta[self._res_indices[self._windows_res][0]][\n 'transform']\n for res in self._res_indices:\n transform_dst = self._layer_meta[self._res_indices[res][0]]['transform'\n ]\n ji_windows[res] = window_from_window(window_src=self.windows[ij_win\n ], transform_src=transform_src, transform_dst=transform_dst)\n return ji_windows\n", "role": "user" }, { "content": "ji_windows", "role": "assistant" } ]
def x(self, ji_win): if isinstance(ji_win, dict): ji_windows = ji_win else: ji_windows = self.ji_windows(ji_win) arrays = [] for filename, res in zip(self._layer_files, self._layer_resolution): with rasterio.open(filename) as src: arr = src.read(1, window=ji_windows[res]) arrays.append(arr) if self.dst_res is not None: arrays = self._resample(arrays=arrays, ji_windows=ji_windows) return arrays
get_arrays
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ji_win):\n if isinstance(ji_win, dict):\n ji_windows = ji_win\n else:\n ji_windows = self.ji_windows(ji_win)\n arrays = []\n for filename, res in zip(self._layer_files, self._layer_resolution):\n with rasterio.open(filename) as src:\n arr = src.read(1, window=ji_windows[res])\n arrays.append(arr)\n if self.dst_res is not None:\n arrays = self._resample(arrays=arrays, ji_windows=ji_windows)\n return arrays\n", "role": "user" }, { "content": "get_arrays", "role": "assistant" } ]
def x(self, arrays, ji_windows): win_dst = ji_windows[self.dst_res] aff_dst = self._layer_meta[self._res_indices[self.dst_res][0]]['transform'] arrays_dst = list() for i, array in enumerate(arrays): arr_dst = np.zeros((int(win_dst.height), int(win_dst.width))) if self._layer_resolution[i] > self.dst_res: resampling = getattr(Resampling, self.upsampler) elif self._layer_resolution[i] < self.dst_res: resampling = getattr(Resampling, self.downsampler) else: arrays_dst.append(array.copy()) continue reproject(array, arr_dst, src_transform=self._layer_meta[i][ 'transform'], dst_transform=aff_dst, src_crs=self._layer_meta[0 ]['crs'], dst_crs=self._layer_meta[0]['crs'], resampling=resampling ) arrays_dst.append(arr_dst.copy()) arrays_dst = np.stack(arrays_dst, axis=2) return arrays_dst
resample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, arrays, ji_windows):\n win_dst = ji_windows[self.dst_res]\n aff_dst = self._layer_meta[self._res_indices[self.dst_res][0]]['transform']\n arrays_dst = list()\n for i, array in enumerate(arrays):\n arr_dst = np.zeros((int(win_dst.height), int(win_dst.width)))\n if self._layer_resolution[i] > self.dst_res:\n resampling = getattr(Resampling, self.upsampler)\n elif self._layer_resolution[i] < self.dst_res:\n resampling = getattr(Resampling, self.downsampler)\n else:\n arrays_dst.append(array.copy())\n continue\n reproject(array, arr_dst, src_transform=self._layer_meta[i][\n 'transform'], dst_transform=aff_dst, src_crs=self._layer_meta[0\n ]['crs'], dst_crs=self._layer_meta[0]['crs'], resampling=resampling\n )\n arrays_dst.append(arr_dst.copy())\n arrays_dst = np.stack(arrays_dst, axis=2)\n return arrays_dst\n", "role": "user" }, { "content": "resample", "role": "assistant" } ]
def x(self, func, **kwargs): ji_results = self._process_windows(func, **kwargs) for idx_layer in range(len(ji_results[0])): for j in np.unique(self.windows_row): win_indices_j = np.where(self.windows_row == j)[0] layer_merged_j = np.hstack([ji_results[idx][idx_layer] for idx in win_indices_j]) if j == 0: layer_merged = layer_merged_j else: layer_merged = np.vstack([layer_merged, layer_merged_j]) if idx_layer == 0: layers_merged = layer_merged else: layers_merged = np.stack([layers_merged, layer_merged], axis=2) return layers_merged
process_windows_merge_stack
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, func, **kwargs):\n ji_results = self._process_windows(func, **kwargs)\n for idx_layer in range(len(ji_results[0])):\n for j in np.unique(self.windows_row):\n win_indices_j = np.where(self.windows_row == j)[0]\n layer_merged_j = np.hstack([ji_results[idx][idx_layer] for idx in\n win_indices_j])\n if j == 0:\n layer_merged = layer_merged_j\n else:\n layer_merged = np.vstack([layer_merged, layer_merged_j])\n if idx_layer == 0:\n layers_merged = layer_merged\n else:\n layers_merged = np.stack([layers_merged, layer_merged], axis=2)\n return layers_merged\n", "role": "user" }, { "content": "process_windows_merge_stack", "role": "assistant" } ]
def x(self, func, **kwargs): ji_results = [] for ji_win in range(len(self.windows)): ji_results.append(self._process_window(ji_win, func, **kwargs)) return ji_results
process_windows
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, func, **kwargs):\n ji_results = []\n for ji_win in range(len(self.windows)):\n ji_results.append(self._process_window(ji_win, func, **kwargs))\n return ji_results\n", "role": "user" }, { "content": "process_windows", "role": "assistant" } ]
def x(self, ji_win, func, **kwargs): arr = self.get_arrays(ji_win) result = func(arr, **kwargs) return result
process_window
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ji_win, func, **kwargs):\n arr = self.get_arrays(ji_win)\n result = func(arr, **kwargs)\n return result\n", "role": "user" }, { "content": "process_window", "role": "assistant" } ]
def x(self, xy): a_transform = self._get_template_for_given_resolution(res=self.dst_res, return_='meta')['transform'] row, col = transform.rowcol(a_transform, xy[0], xy[1]) ij_containing_xy = None for ji, win in enumerate(self.windows): (row_start, row_end), (col_start, col_end) = rasterio.windows.toranges( win) if (col >= col_start) & (col < col_end) & ((row >= row_start) & ( row < row_end)): ij_containing_xy = ji break if ij_containing_xy is None: raise ValueError("The given 'xy' value is not contained in any window." ) return ij_containing_xy
get_window_from_xy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, xy):\n a_transform = self._get_template_for_given_resolution(res=self.dst_res,\n return_='meta')['transform']\n row, col = transform.rowcol(a_transform, xy[0], xy[1])\n ij_containing_xy = None\n for ji, win in enumerate(self.windows):\n (row_start, row_end), (col_start, col_end) = rasterio.windows.toranges(\n win)\n if (col >= col_start) & (col < col_end) & ((row >= row_start) & (\n row < row_end)):\n ij_containing_xy = ji\n break\n if ij_containing_xy is None:\n raise ValueError(\"The given 'xy' value is not contained in any window.\"\n )\n return ij_containing_xy\n", "role": "user" }, { "content": "get_window_from_xy", "role": "assistant" } ]
def x(src_vector: str, burn_attribute: str, src_raster: list, dst_names: list, dst_dir: str, src_raster_template: str=None, gdal_dtype: int=4, n_jobs: int=1): if src_raster_template is None: src_raster_template = src_raster[0] path_rasterized = os.path.join(dst_dir, f'burn_attribute_rasterized_{burn_attribute}.tif') paths_extracted_aux = {ele: os.path.join(dst_dir, f'{ele}.npy') for ele in [f'aux_vector_{burn_attribute}', 'aux_coord_x', 'aux_coord_y']} paths_extracted_raster = {} for path, name in zip(src_raster, dst_names): dst = f'{os.path.join(dst_dir, name)}.npy' if not os.path.exists(dst): paths_extracted_raster[path] = dst if not os.path.exists(dst_dir): os.makedirs(dst_dir) if not os.path.exists(path_rasterized): if src_raster_template is None: src_raster_template = src_raster[0] rasterize(src_vector=src_vector, burn_attribute=burn_attribute, src_raster_template=src_raster_template, dst_rasterized= path_rasterized, gdal_dtype=gdal_dtype) if not (all([os.path.exists(path) for path in paths_extracted_aux. values()]) and all([os.path.exists(path) for path in paths_extracted_raster.values()])): mask_arr = _get_mask_array(path_rasterized, paths_extracted_aux, burn_attribute) else: return 0 if not all([os.path.exists(paths_extracted_aux['aux_coord_x']), os.path .exists(paths_extracted_aux['aux_coord_y'])]): _create_and_save_coords(path_rasterized, paths_extracted_aux, mask_arr) if n_jobs == 1: for path_src, path_dst in tqdm(paths_extracted_raster.items(), total=len(paths_extracted_raster)): _extract_and_save_one_layer(path_src, path_dst, mask_arr) else: import multiprocessing as mp if n_jobs == -1: n_jobs = mp.cpu_count() pool = mp.Pool(processes=n_jobs) _ = [pool.apply_async(_extract_and_save_one_layer, args=(src, dst, mask_arr)) for src, dst in paths_extracted_raster.items()] pool.close() pool.join() return 0
extract
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(src_vector: str, burn_attribute: str, src_raster: list, dst_names:\n list, dst_dir: str, src_raster_template: str=None, gdal_dtype: int=4,\n n_jobs: int=1):\n if src_raster_template is None:\n src_raster_template = src_raster[0]\n path_rasterized = os.path.join(dst_dir,\n f'burn_attribute_rasterized_{burn_attribute}.tif')\n paths_extracted_aux = {ele: os.path.join(dst_dir, f'{ele}.npy') for ele in\n [f'aux_vector_{burn_attribute}', 'aux_coord_x', 'aux_coord_y']}\n paths_extracted_raster = {}\n for path, name in zip(src_raster, dst_names):\n dst = f'{os.path.join(dst_dir, name)}.npy'\n if not os.path.exists(dst):\n paths_extracted_raster[path] = dst\n if not os.path.exists(dst_dir):\n os.makedirs(dst_dir)\n if not os.path.exists(path_rasterized):\n if src_raster_template is None:\n src_raster_template = src_raster[0]\n rasterize(src_vector=src_vector, burn_attribute=burn_attribute,\n src_raster_template=src_raster_template, dst_rasterized=\n path_rasterized, gdal_dtype=gdal_dtype)\n if not (all([os.path.exists(path) for path in paths_extracted_aux.\n values()]) and all([os.path.exists(path) for path in\n paths_extracted_raster.values()])):\n mask_arr = _get_mask_array(path_rasterized, paths_extracted_aux,\n burn_attribute)\n else:\n return 0\n if not all([os.path.exists(paths_extracted_aux['aux_coord_x']), os.path\n .exists(paths_extracted_aux['aux_coord_y'])]):\n _create_and_save_coords(path_rasterized, paths_extracted_aux, mask_arr)\n if n_jobs == 1:\n for path_src, path_dst in tqdm(paths_extracted_raster.items(),\n total=len(paths_extracted_raster)):\n _extract_and_save_one_layer(path_src, path_dst, mask_arr)\n else:\n import multiprocessing as mp\n if n_jobs == -1:\n n_jobs = mp.cpu_count()\n pool = mp.Pool(processes=n_jobs)\n _ = [pool.apply_async(_extract_and_save_one_layer, args=(src, dst,\n mask_arr)) for src, dst in paths_extracted_raster.items()]\n pool.close()\n pool.join()\n return 0\n", "role": "user" }, { "content": "extract", "role": "assistant" } ]
def x(src_dir: str, patterns='*.npy', vars_in_cols: bool=True, index: pd. Series=None): def x(path, index): if index is None: arr = np.load(str(path)) else: arr = np.load(str(path), mmap_mode='r')[index] return arr src_dir = Path(src_dir) paths = [] if isinstance(patterns, str): patterns = [patterns] for pat in patterns: paths += src_dir.glob(pat) if vars_in_cols: df_data = {} for path in paths: df_data[path.stem] = _load(path, index) df_data = pd.DataFrame(df_data) if index is not None: df_data.index = index.index[index] else: df_data = [] for path in paths: arr = _load(path, index) df_data.append(pd.DataFrame(np.expand_dims(arr, 0), index=[path .stem])) df_data = pd.concat(df_data) if index is not None: df_data.columns = index.index[index] return df_data
load_extracted
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(src_dir: str, patterns='*.npy', vars_in_cols: bool=True, index: pd.\n Series=None):\n\n def x(path, index):\n if index is None:\n arr = np.load(str(path))\n else:\n arr = np.load(str(path), mmap_mode='r')[index]\n return arr\n src_dir = Path(src_dir)\n paths = []\n if isinstance(patterns, str):\n patterns = [patterns]\n for pat in patterns:\n paths += src_dir.glob(pat)\n if vars_in_cols:\n df_data = {}\n for path in paths:\n df_data[path.stem] = _load(path, index)\n df_data = pd.DataFrame(df_data)\n if index is not None:\n df_data.index = index.index[index]\n else:\n df_data = []\n for path in paths:\n arr = _load(path, index)\n df_data.append(pd.DataFrame(np.expand_dims(arr, 0), index=[path\n .stem]))\n df_data = pd.concat(df_data)\n if index is not None:\n df_data.columns = index.index[index]\n return df_data\n", "role": "user" }, { "content": "load_extracted", "role": "assistant" } ]
def x(self, x0, y0, w, h): minimum = 9223372036854775807 maximum = 0 for y in range(y0, y0 + h): for x in range(x0, x0 + w): value = self[x, y] if value != self.filler: minimum = min(minimum, value) maximum = max(maximum, value) return minimum, maximum
extrema
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x0, y0, w, h):\n minimum = 9223372036854775807\n maximum = 0\n for y in range(y0, y0 + h):\n for x in range(x0, x0 + w):\n value = self[x, y]\n if value != self.filler:\n minimum = min(minimum, value)\n maximum = max(maximum, value)\n return minimum, maximum\n", "role": "user" }, { "content": "extrema", "role": "assistant" } ]
def x(rgb): incs = 0, 95, 135, 175, 215, 255 parts = [int(h, 16) for h in re.split('(..)(..)(..)', rgb)[1:4]] res = [] for part in parts: i = 0 while i < len(incs) - 1: s, b = incs[i], incs[i + 1] if s <= part <= b: s1 = abs(s - part) b1 = abs(b - part) if s1 < b1: closest = s else: closest = b res.append(closest) break i += 1 res = ''.join([('%02.x' % i) for i in res]) equiv = RGB2SHORT_DICT[res] return equiv, res
rgb2short
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(rgb):\n incs = 0, 95, 135, 175, 215, 255\n parts = [int(h, 16) for h in re.split('(..)(..)(..)', rgb)[1:4]]\n res = []\n for part in parts:\n i = 0\n while i < len(incs) - 1:\n s, b = incs[i], incs[i + 1]\n if s <= part <= b:\n s1 = abs(s - part)\n b1 = abs(b - part)\n if s1 < b1:\n closest = s\n else:\n closest = b\n res.append(closest)\n break\n i += 1\n res = ''.join([('%02.x' % i) for i in res])\n equiv = RGB2SHORT_DICT[res]\n return equiv, res\n", "role": "user" }, { "content": "rgb2short", "role": "assistant" } ]
def x(self, x, y): curses.curs_set(1) self.screen.move(y, x)
set_cursor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y):\n curses.curs_set(1)\n self.screen.move(y, x)\n", "role": "user" }, { "content": "set_cursor", "role": "assistant" } ]
def x(self, x, y, text, fg, bg): if x < self.width and y < self.height: try: self.screen.addstr(y, x, symbols.encode(text), self.pairs[fg, bg]) except curses.error: pass
put
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, text, fg, bg):\n if x < self.width and y < self.height:\n try:\n self.screen.addstr(y, x, symbols.encode(text), self.pairs[fg, bg])\n except curses.error:\n pass\n", "role": "user" }, { "content": "put", "role": "assistant" } ]
def x(self): curses.flushinp() ch = self.screen.getch() if ch == 27: return EVENT_ESC elif ch == -1 or ch == curses.KEY_RESIZE: return EVENT_RESIZE elif ch == 10 or ch == curses.KEY_ENTER: return EVENT_ENTER elif ch == 127 or ch == curses.KEY_BACKSPACE: return EVENT_BACKSPACE elif ch == curses.KEY_UP: return EVENT_UP elif ch == curses.KEY_DOWN: return EVENT_DOWN elif ch == curses.KEY_LEFT: return EVENT_LEFT elif ch == curses.KEY_RIGHT: return EVENT_RIGHT elif ch == 3: return EVENT_CTRL_C elif 0 <= ch < 256: return chr(ch) else: return EVENT_UNHANDLED
poll_event
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n curses.flushinp()\n ch = self.screen.getch()\n if ch == 27:\n return EVENT_ESC\n elif ch == -1 or ch == curses.KEY_RESIZE:\n return EVENT_RESIZE\n elif ch == 10 or ch == curses.KEY_ENTER:\n return EVENT_ENTER\n elif ch == 127 or ch == curses.KEY_BACKSPACE:\n return EVENT_BACKSPACE\n elif ch == curses.KEY_UP:\n return EVENT_UP\n elif ch == curses.KEY_DOWN:\n return EVENT_DOWN\n elif ch == curses.KEY_LEFT:\n return EVENT_LEFT\n elif ch == curses.KEY_RIGHT:\n return EVENT_RIGHT\n elif ch == 3:\n return EVENT_CTRL_C\n elif 0 <= ch < 256:\n return chr(ch)\n else:\n return EVENT_UNHANDLED\n", "role": "user" }, { "content": "poll_event", "role": "assistant" } ]
def x(args): x, y, params = args """Callable function for the multiprocessing pool.""" return x, y, mandelbrot(x, y, params)
compute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args):\n x, y, params = args\n \"\"\"Callable function for the multiprocessing pool.\"\"\"\n return x, y, mandelbrot(x, y, params)\n", "role": "user" }, { "content": "compute", "role": "assistant" } ]
def x(args): x, y, w, h, params = args """Callable function for the multiprocessing pool.""" return x, y, mandelbrot_capture(x, y, w, h, params)
compute_capture
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args):\n x, y, w, h, params = args\n \"\"\"Callable function for the multiprocessing pool.\"\"\"\n return x, y, mandelbrot_capture(x, y, w, h, params)\n", "role": "user" }, { "content": "compute_capture", "role": "assistant" } ]
def x(cb, pool, params, plane): w = cb.width - MENU_WIDTH - 1 h = cb.height - 1 params.plane_w = w params.plane_h = h params.resize(w, h) palette = PALETTES[params.palette][1] if params.reverse_palette: palette = palette[::-1] generated = 0 missing_coords = [] xs = range(params.plane_x0, params.plane_x0 + params.plane_w - 1) ys = range(params.plane_y0, params.plane_y0 + params.plane_h - 1) for x in xs: for y in ys: if plane[x, y] is None: missing_coords.append((x, y, params)) generated += 1 n_processes = 0 if len(missing_coords) > 0: n_cores = pool._processes n_processes = len(missing_coords) // 256 if n_processes > n_cores: n_processes = n_cores start = time.time() for i, result in enumerate(pool.imap_unordered(compute, missing_coords, chunksize=256)): plane[result[0], result[1]] = result[2] if time.time() - start > 2: if i % 200 == 0: draw_progress_bar(cb, 'Render is taking a longer time...', i, len( missing_coords)) cb.refresh() if generated > 0: params.log('Added %d missing cells' % generated) if n_processes > 1: params.log('(Used %d processes)' % n_processes) min_value = 0.0 max_value = params.max_iterations max_iterations = params.max_iterations if params.adaptive_palette: min_value, max_value = plane.extrema(params.plane_x0, params. plane_y0, params.plane_w, params.plane_h) crosshairs_coord = None if params.crosshairs: crosshairs_coord = params.crosshairs_coord for x in xs: for y in ys: value = (plane[x, y] + params.palette_offset) % (params. max_iterations + 1) if params.adaptive_palette: if max_value - min_value > 0: value = (value - min_value) / (max_value - min_value ) * max_iterations else: value = max_iterations if params.dither_type < 2: draw_dithered_color(cb, x - params.plane_x0 + 1, y - params .plane_y0 + 1, palette, params.dither_type, value, max_iterations, crosshairs_coord=crosshairs_coord) else: draw_color(cb, x - params.plane_x0 + 1, y - params.plane_y0 + 1, value, max_iterations, palette, crosshairs_coord= crosshairs_coord) draw_box(cb, 0, 0, w + 1, h + 1)
draw_panel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cb, pool, params, plane):\n w = cb.width - MENU_WIDTH - 1\n h = cb.height - 1\n params.plane_w = w\n params.plane_h = h\n params.resize(w, h)\n palette = PALETTES[params.palette][1]\n if params.reverse_palette:\n palette = palette[::-1]\n generated = 0\n missing_coords = []\n xs = range(params.plane_x0, params.plane_x0 + params.plane_w - 1)\n ys = range(params.plane_y0, params.plane_y0 + params.plane_h - 1)\n for x in xs:\n for y in ys:\n if plane[x, y] is None:\n missing_coords.append((x, y, params))\n generated += 1\n n_processes = 0\n if len(missing_coords) > 0:\n n_cores = pool._processes\n n_processes = len(missing_coords) // 256\n if n_processes > n_cores:\n n_processes = n_cores\n start = time.time()\n for i, result in enumerate(pool.imap_unordered(compute,\n missing_coords, chunksize=256)):\n plane[result[0], result[1]] = result[2]\n if time.time() - start > 2:\n if i % 200 == 0:\n draw_progress_bar(cb,\n 'Render is taking a longer time...', i, len(\n missing_coords))\n cb.refresh()\n if generated > 0:\n params.log('Added %d missing cells' % generated)\n if n_processes > 1:\n params.log('(Used %d processes)' % n_processes)\n min_value = 0.0\n max_value = params.max_iterations\n max_iterations = params.max_iterations\n if params.adaptive_palette:\n min_value, max_value = plane.extrema(params.plane_x0, params.\n plane_y0, params.plane_w, params.plane_h)\n crosshairs_coord = None\n if params.crosshairs:\n crosshairs_coord = params.crosshairs_coord\n for x in xs:\n for y in ys:\n value = (plane[x, y] + params.palette_offset) % (params.\n max_iterations + 1)\n if params.adaptive_palette:\n if max_value - min_value > 0:\n value = (value - min_value) / (max_value - min_value\n ) * max_iterations\n else:\n value = max_iterations\n if params.dither_type < 2:\n draw_dithered_color(cb, x - params.plane_x0 + 1, y - params\n .plane_y0 + 1, palette, params.dither_type, value,\n max_iterations, crosshairs_coord=crosshairs_coord)\n else:\n draw_color(cb, x - params.plane_x0 + 1, y - params.plane_y0 +\n 1, value, max_iterations, palette, crosshairs_coord=\n crosshairs_coord)\n draw_box(cb, 0, 0, w + 1, h + 1)\n", "role": "user" }, { "content": "draw_panel", "role": "assistant" } ]
def x(cb, params, qwertz): w = cb.width h = cb.height x0 = w - MENU_WIDTH + 1 fill(cb, x0, 1, MENU_WIDTH, h - 2, ' ') def x(key, value, shortcuts): draw_text(cb, x0 + 1, 2 + draw_option.counter, '%s %s %s' % (key, str(value).rjust(MENU_WIDTH - 14 - len(key)), shortcuts)) draw_option.counter += 1 draw_option.counter = 1 z = 'Z' y = 'Y' if qwertz: z, y = y, z h_seps = [2] draw_text(cb, x0, 1, ('Almonds %s' % __version__).center(MENU_WIDTH - 2)) draw_option('Real', '{0:.13g}'.format(params.mb_cx), '$[' + symbols[ 'ARROW_LEFT'] + ']$, $[' + symbols['ARROW_RIGHT'] + ']$') draw_option('Imaginary', '{0:.13g}'.format(params.mb_cy), '$[' + symbols['ARROW_UP'] + ']$, $[' + symbols['ARROW_DOWN'] + ']$') if is_native_windows(): cb.put_arrow(x0 + 30, 3, 'up', colors.default_bg(), colors.default_fg() ) cb.put_arrow(x0 + 35, 3, 'down', colors.default_bg(), colors. default_fg()) cb.put_arrow(x0 + 30, 4, 'left', colors.default_bg(), colors. default_fg()) cb.put_arrow(x0 + 35, 4, 'right', colors.default_bg(), colors. default_fg()) draw_option('Input coordinates...', '', '$[Enter]$') draw_option.counter += 1 h_seps.append(draw_option.counter + 1) draw_option('Move speed', params.move_speed, '$[C]$, $[V]$') draw_option('Zoom', '{0:.13g}'.format(params.zoom), '$[' + y + ']$, $[U]$') draw_option('Iterations', params.max_iterations, '$[I]$, $[O]$') draw_option('Julia mode', 'On' if params.julia else 'Off', '$[J]$') draw_option.counter += 1 h_seps.append(draw_option.counter + 1) draw_option('Palette', PALETTES[params.palette][0], '$[P]$') draw_option('Color mode', DITHER_TYPES[params.dither_type][0], '$[D]$') draw_option('Order', 'Reversed' if params.reverse_palette else 'Normal', '$[R]$') draw_option('Mode', 'Adaptive' if params.adaptive_palette else 'Linear', '$[A]$') draw_option('Cycle!', '', '$[' + z + ']$') draw_option.counter += 1 h_seps.append(draw_option.counter + 1) draw_option('Hi-res capture', '', '$[H]$') draw_option('Crosshairs', 'On' if params.crosshairs else 'Off', '$[X]$') draw_option('Theme', 'Dark' if colors.dark else 'Light', '$[T]$') draw_option('Save', '', '$[S]$') draw_option('Load...', '', '$[L]$') draw_option('Exit', '', '$[ESC]$') middle = 3 + draw_option.counter draw_box(cb, w - MENU_WIDTH, 0, MENU_WIDTH, h, h_seps=h_seps + [middle - 1, middle + 1]) draw_text(cb, x0, middle, 'Event log'.center(MENU_WIDTH - 2)) latest_logs = params.log.get_latest(h - middle) latest_logs = [textwrap.wrap(l, MENU_WIDTH - 4)[::-1] for l in latest_logs] latest_logs = [l for ls in latest_logs for l in ls] i = h - 2 for l in latest_logs: draw_text(cb, x0 + 1, i, l) i -= 1 if i == middle + 1: break
draw_menu
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cb, params, qwertz):\n w = cb.width\n h = cb.height\n x0 = w - MENU_WIDTH + 1\n fill(cb, x0, 1, MENU_WIDTH, h - 2, ' ')\n\n def x(key, value, shortcuts):\n draw_text(cb, x0 + 1, 2 + draw_option.counter, '%s %s %s' % (key,\n str(value).rjust(MENU_WIDTH - 14 - len(key)), shortcuts))\n draw_option.counter += 1\n draw_option.counter = 1\n z = 'Z'\n y = 'Y'\n if qwertz:\n z, y = y, z\n h_seps = [2]\n draw_text(cb, x0, 1, ('Almonds %s' % __version__).center(MENU_WIDTH - 2))\n draw_option('Real', '{0:.13g}'.format(params.mb_cx), '$[' + symbols[\n 'ARROW_LEFT'] + ']$, $[' + symbols['ARROW_RIGHT'] + ']$')\n draw_option('Imaginary', '{0:.13g}'.format(params.mb_cy), '$[' +\n symbols['ARROW_UP'] + ']$, $[' + symbols['ARROW_DOWN'] + ']$')\n if is_native_windows():\n cb.put_arrow(x0 + 30, 3, 'up', colors.default_bg(), colors.default_fg()\n )\n cb.put_arrow(x0 + 35, 3, 'down', colors.default_bg(), colors.\n default_fg())\n cb.put_arrow(x0 + 30, 4, 'left', colors.default_bg(), colors.\n default_fg())\n cb.put_arrow(x0 + 35, 4, 'right', colors.default_bg(), colors.\n default_fg())\n draw_option('Input coordinates...', '', '$[Enter]$')\n draw_option.counter += 1\n h_seps.append(draw_option.counter + 1)\n draw_option('Move speed', params.move_speed, '$[C]$, $[V]$')\n draw_option('Zoom', '{0:.13g}'.format(params.zoom), '$[' + y + ']$, $[U]$')\n draw_option('Iterations', params.max_iterations, '$[I]$, $[O]$')\n draw_option('Julia mode', 'On' if params.julia else 'Off', '$[J]$')\n draw_option.counter += 1\n h_seps.append(draw_option.counter + 1)\n draw_option('Palette', PALETTES[params.palette][0], '$[P]$')\n draw_option('Color mode', DITHER_TYPES[params.dither_type][0], '$[D]$')\n draw_option('Order', 'Reversed' if params.reverse_palette else 'Normal',\n '$[R]$')\n draw_option('Mode', 'Adaptive' if params.adaptive_palette else 'Linear',\n '$[A]$')\n draw_option('Cycle!', '', '$[' + z + ']$')\n draw_option.counter += 1\n h_seps.append(draw_option.counter + 1)\n draw_option('Hi-res capture', '', '$[H]$')\n draw_option('Crosshairs', 'On' if params.crosshairs else 'Off', '$[X]$')\n draw_option('Theme', 'Dark' if colors.dark else 'Light', '$[T]$')\n draw_option('Save', '', '$[S]$')\n draw_option('Load...', '', '$[L]$')\n draw_option('Exit', '', '$[ESC]$')\n middle = 3 + draw_option.counter\n draw_box(cb, w - MENU_WIDTH, 0, MENU_WIDTH, h, h_seps=h_seps + [middle -\n 1, middle + 1])\n draw_text(cb, x0, middle, 'Event log'.center(MENU_WIDTH - 2))\n latest_logs = params.log.get_latest(h - middle)\n latest_logs = [textwrap.wrap(l, MENU_WIDTH - 4)[::-1] for l in latest_logs]\n latest_logs = [l for ls in latest_logs for l in ls]\n i = h - 2\n for l in latest_logs:\n draw_text(cb, x0 + 1, i, l)\n i -= 1\n if i == middle + 1:\n break\n", "role": "user" }, { "content": "draw_menu", "role": "assistant" } ]
def x(cb, pool, params, plane, qwertz): cb.clear() draw_panel(cb, pool, params, plane) update_position(params) draw_menu(cb, params, qwertz) cb.refresh()
update_display
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cb, pool, params, plane, qwertz):\n cb.clear()\n draw_panel(cb, pool, params, plane)\n update_position(params)\n draw_menu(cb, params, qwertz)\n cb.refresh()\n", "role": "user" }, { "content": "update_display", "role": "assistant" } ]
def x(params): if is_python3(): import pickle cPickle = pickle else: import cPickle ts = datetime.datetime.fromtimestamp(time.time()).strftime( '%Y-%m-%d_%H-%M-%S') if not os.path.exists('saves/'): os.makedirs('saves/') with open('saves/almonds_%s.params' % ts, 'wb') as f: cPickle.dump(params, f) params.log('Current scene saved!')
save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(params):\n if is_python3():\n import pickle\n cPickle = pickle\n else:\n import cPickle\n ts = datetime.datetime.fromtimestamp(time.time()).strftime(\n '%Y-%m-%d_%H-%M-%S')\n if not os.path.exists('saves/'):\n os.makedirs('saves/')\n with open('saves/almonds_%s.params' % ts, 'wb') as f:\n cPickle.dump(params, f)\n params.log('Current scene saved!')\n", "role": "user" }, { "content": "save", "role": "assistant" } ]
def x(cb, pool, params): w, h = screen_resolution() old_ratio = w / h new_ratio = params.plane_ratio if old_ratio > new_ratio: w = int(h * new_ratio) else: h = int(w / new_ratio) image = Image.new('RGB', (w, h), 'white') pixels = image.load() palette = PALETTES[params.palette][1] if params.reverse_palette: palette = palette[::-1] coords = [(x, y, w, h, params) for x in range(w) for y in range(h)] results = [] for i, result in enumerate(pool.imap_unordered(compute_capture, coords, chunksize=256)): results.append(result) if i % 2000 == 0: draw_progress_bar(cb, 'Capturing current scene...', i, w * h) cb.refresh() min_value = 0.0 max_value = params.max_iterations max_iterations = params.max_iterations if params.adaptive_palette: from operator import itemgetter min_value = min(results, key=itemgetter(2))[2] max_value = max(results, key=itemgetter(2))[2] for result in results: value = result[2] if params.adaptive_palette: if max_value - min_value > 0: value = (value - min_value) / (max_value - min_value ) * max_iterations else: value = max_iterations pixels[result[0], result[1]] = get_color(value, params. max_iterations, palette) if not os.path.exists('captures/'): os.makedirs('captures/') ts = datetime.datetime.fromtimestamp(time.time()).strftime( '%Y-%m-%d_%H-%M-%S') filename = 'captures/almonds_%s.png' % ts image.save(filename, 'PNG') params.log('Current scene captured!') params.log('(Used %d processes)' % pool._processes) open_file(filename)
capture
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cb, pool, params):\n w, h = screen_resolution()\n old_ratio = w / h\n new_ratio = params.plane_ratio\n if old_ratio > new_ratio:\n w = int(h * new_ratio)\n else:\n h = int(w / new_ratio)\n image = Image.new('RGB', (w, h), 'white')\n pixels = image.load()\n palette = PALETTES[params.palette][1]\n if params.reverse_palette:\n palette = palette[::-1]\n coords = [(x, y, w, h, params) for x in range(w) for y in range(h)]\n results = []\n for i, result in enumerate(pool.imap_unordered(compute_capture, coords,\n chunksize=256)):\n results.append(result)\n if i % 2000 == 0:\n draw_progress_bar(cb, 'Capturing current scene...', i, w * h)\n cb.refresh()\n min_value = 0.0\n max_value = params.max_iterations\n max_iterations = params.max_iterations\n if params.adaptive_palette:\n from operator import itemgetter\n min_value = min(results, key=itemgetter(2))[2]\n max_value = max(results, key=itemgetter(2))[2]\n for result in results:\n value = result[2]\n if params.adaptive_palette:\n if max_value - min_value > 0:\n value = (value - min_value) / (max_value - min_value\n ) * max_iterations\n else:\n value = max_iterations\n pixels[result[0], result[1]] = get_color(value, params.\n max_iterations, palette)\n if not os.path.exists('captures/'):\n os.makedirs('captures/')\n ts = datetime.datetime.fromtimestamp(time.time()).strftime(\n '%Y-%m-%d_%H-%M-%S')\n filename = 'captures/almonds_%s.png' % ts\n image.save(filename, 'PNG')\n params.log('Current scene captured!')\n params.log('(Used %d processes)' % pool._processes)\n open_file(filename)\n", "role": "user" }, { "content": "capture", "role": "assistant" } ]
def x(cb, pool, params, plane): step = params.max_iterations // 20 if step == 0: step = 1 for i in range(0, params.max_iterations, step): params.palette_offset = i draw_panel(cb, pool, params, plane) cb.refresh() params.palette_offset = 0
cycle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cb, pool, params, plane):\n step = params.max_iterations // 20\n if step == 0:\n step = 1\n for i in range(0, params.max_iterations, step):\n params.palette_offset = i\n draw_panel(cb, pool, params, plane)\n cb.refresh()\n params.palette_offset = 0\n", "role": "user" }, { "content": "cycle", "role": "assistant" } ]
def x(cb, params): w = cb.width - MENU_WIDTH - 1 h = cb.height - 1 params.plane_w = w params.plane_h = h params.resize(w, h) zoom(params, 1)
init_coords
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cb, params):\n w = cb.width - MENU_WIDTH - 1\n h = cb.height - 1\n params.plane_w = w\n params.plane_h = h\n params.resize(w, h)\n zoom(params, 1)\n", "role": "user" }, { "content": "init_coords", "role": "assistant" } ]
def x(n, lower, upper): if lower > upper: lower, upper = upper, lower return max(min(upper, n), lower)
clamp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n, lower, upper):\n if lower > upper:\n lower, upper = upper, lower\n return max(min(upper, n), lower)\n", "role": "user" }, { "content": "clamp", "role": "assistant" } ]
def x(): w = 0 h = 0 try: import ctypes user32 = ctypes.windll.user32 w, h = user32.GetSystemMetrics(0), user32.GetSystemMetrics(1) except AttributeError: try: import AppKit size = AppKit.NSScreen.screens()[0].frame().size w, h = int(size.width), int(size.height) except ImportError: try: import Xlib import Xlib.display display = Xlib.display.Display() root = display.screen().root size = root.get_geometry() w, h = size.width, size.height except ImportError: w = 1920 h = 1080 return w, h
screen_resolution
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n w = 0\n h = 0\n try:\n import ctypes\n user32 = ctypes.windll.user32\n w, h = user32.GetSystemMetrics(0), user32.GetSystemMetrics(1)\n except AttributeError:\n try:\n import AppKit\n size = AppKit.NSScreen.screens()[0].frame().size\n w, h = int(size.width), int(size.height)\n except ImportError:\n try:\n import Xlib\n import Xlib.display\n display = Xlib.display.Display()\n root = display.screen().root\n size = root.get_geometry()\n w, h = size.width, size.height\n except ImportError:\n w = 1920\n h = 1080\n return w, h\n", "role": "user" }, { "content": "screen_resolution", "role": "assistant" } ]
def x(filename): if sys.platform.startswith('darwin'): subprocess.call(('open', filename)) elif sys.platform == 'cygwin': subprocess.call(('cygstart', filename)) elif os.name == 'nt': os.system('start %s' % filename) elif os.name == 'posix': subprocess.call(('xdg-open', filename))
open_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n if sys.platform.startswith('darwin'):\n subprocess.call(('open', filename))\n elif sys.platform == 'cygwin':\n subprocess.call(('cygstart', filename))\n elif os.name == 'nt':\n os.system('start %s' % filename)\n elif os.name == 'posix':\n subprocess.call(('xdg-open', filename))\n", "role": "user" }, { "content": "open_file", "role": "assistant" } ]
def x(value, dither): dither = DITHER_TYPES[dither][1] return dither[int(round(value * (len(dither) - 1)))]
dither_symbol
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value, dither):\n dither = DITHER_TYPES[dither][1]\n return dither[int(round(value * (len(dither) - 1)))]\n", "role": "user" }, { "content": "dither_symbol", "role": "assistant" } ]
def x(cb, x, y, palette, dither, n, n_max, crosshairs_coord=None): i = n * (len(palette) - 1) / n_max c1 = palette[int(math.floor(i))] c2 = palette[int(math.ceil(i))] value = i - int(math.floor(i)) symbol = dither_symbol(value, dither) if crosshairs_coord is not None: old_symbol = symbol symbol, crosshairs = get_crosshairs_symbol(x, y, old_symbol, crosshairs_coord) if crosshairs: sorted_palette = sort_palette(palette) if old_symbol == DITHER_TYPES[dither][1][0]: c2 = c1 sorted_index = sorted_palette.index(c2) if sorted_index > len(sorted_palette) // 2: c1 = sorted_palette[0] else: c1 = sorted_palette[-1] cb.put(x, y, symbol, c1(), c2())
draw_dithered_color
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cb, x, y, palette, dither, n, n_max, crosshairs_coord=None):\n i = n * (len(palette) - 1) / n_max\n c1 = palette[int(math.floor(i))]\n c2 = palette[int(math.ceil(i))]\n value = i - int(math.floor(i))\n symbol = dither_symbol(value, dither)\n if crosshairs_coord is not None:\n old_symbol = symbol\n symbol, crosshairs = get_crosshairs_symbol(x, y, old_symbol,\n crosshairs_coord)\n if crosshairs:\n sorted_palette = sort_palette(palette)\n if old_symbol == DITHER_TYPES[dither][1][0]:\n c2 = c1\n sorted_index = sorted_palette.index(c2)\n if sorted_index > len(sorted_palette) // 2:\n c1 = sorted_palette[0]\n else:\n c1 = sorted_palette[-1]\n cb.put(x, y, symbol, c1(), c2())\n", "role": "user" }, { "content": "draw_dithered_color", "role": "assistant" } ]
def x(cb, x0, y0, w, h, fg=colors.default_fg, bg=colors.default_bg, h_seps= [], v_seps=[]): w -= 1 h -= 1 corners = [(x0, y0), (x0 + w, y0), (x0, y0 + h), (x0 + w, y0 + h)] fg = fg() bg = bg() for i, c in enumerate(corners): cb.put(c[0], c[1], BOX_CORNERS[i], fg, bg) for s in (h_seps + [0, h]): cb.put(x0 + 1, y0 + s, symbols['BOX_HORIZONTAL'] * (w - 1), fg, bg) for y in range(1, h): for s in (v_seps + [0, w]): cb.put(x0 + s, y0 + y, symbols['BOX_VERTICAL'], fg, bg) for s in h_seps: cb.put(x0, y0 + s, symbols['BOX_X_LEFT'], fg, bg) cb.put(x0 + w, y0 + s, symbols['BOX_X_RIGHT'], fg, bg) for s in v_seps: cb.put(x0 + s, y0, symbols['BOX_X_TOP'], fg, bg) cb.put(x0 + s, y0 + h, symbols['BOX_X_BOTTOM'], fg, bg)
draw_box
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cb, x0, y0, w, h, fg=colors.default_fg, bg=colors.default_bg, h_seps=\n [], v_seps=[]):\n w -= 1\n h -= 1\n corners = [(x0, y0), (x0 + w, y0), (x0, y0 + h), (x0 + w, y0 + h)]\n fg = fg()\n bg = bg()\n for i, c in enumerate(corners):\n cb.put(c[0], c[1], BOX_CORNERS[i], fg, bg)\n for s in (h_seps + [0, h]):\n cb.put(x0 + 1, y0 + s, symbols['BOX_HORIZONTAL'] * (w - 1), fg, bg)\n for y in range(1, h):\n for s in (v_seps + [0, w]):\n cb.put(x0 + s, y0 + y, symbols['BOX_VERTICAL'], fg, bg)\n for s in h_seps:\n cb.put(x0, y0 + s, symbols['BOX_X_LEFT'], fg, bg)\n cb.put(x0 + w, y0 + s, symbols['BOX_X_RIGHT'], fg, bg)\n for s in v_seps:\n cb.put(x0 + s, y0, symbols['BOX_X_TOP'], fg, bg)\n cb.put(x0 + s, y0 + h, symbols['BOX_X_BOTTOM'], fg, bg)\n", "role": "user" }, { "content": "draw_box", "role": "assistant" } ]
def x(cb, message, value, max_value): m_x = cb.width // 2 m_y = cb.height // 2 w = len(message) + 4 h = 3 draw_box(cb, m_x - w // 2, m_y - 1, w, h) message = ' %s ' % message i = int(value / max_value * (len(message) + 2)) message = '$' + message[:i] + '$' + message[i:] draw_text(cb, m_x - w // 2 + 1, m_y, message)
draw_progress_bar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cb, message, value, max_value):\n m_x = cb.width // 2\n m_y = cb.height // 2\n w = len(message) + 4\n h = 3\n draw_box(cb, m_x - w // 2, m_y - 1, w, h)\n message = ' %s ' % message\n i = int(value / max_value * (len(message) + 2))\n message = '$' + message[:i] + '$' + message[i:]\n draw_text(cb, m_x - w // 2 + 1, m_y, message)\n", "role": "user" }, { "content": "draw_progress_bar", "role": "assistant" } ]
def x(c, max_iterations, julia_seed=None): z = c if julia_seed is not None: c = julia_seed for iterations in range(max_iterations): z = z * z + c if abs(z) > 1000: return z, iterations return z, max_iterations
mandelbrot_iterate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(c, max_iterations, julia_seed=None):\n z = c\n if julia_seed is not None:\n c = julia_seed\n for iterations in range(max_iterations):\n z = z * z + c\n if abs(z) > 1000:\n return z, iterations\n return z, max_iterations\n", "role": "user" }, { "content": "mandelbrot_iterate", "role": "assistant" } ]
def x(x, y, params): n_x = x * 2.0 / params.plane_w * params.plane_ratio - 1.0 n_y = y * 2.0 / params.plane_h - 1.0 mb_x = params.zoom * n_x mb_y = params.zoom * n_y return mb_x, mb_y
get_coords
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, params):\n n_x = x * 2.0 / params.plane_w * params.plane_ratio - 1.0\n n_y = y * 2.0 / params.plane_h - 1.0\n mb_x = params.zoom * n_x\n mb_y = params.zoom * n_y\n return mb_x, mb_y\n", "role": "user" }, { "content": "get_coords", "role": "assistant" } ]
def x(x, y, params): mb_x, mb_y = get_coords(x, y, params) mb = mandelbrot_iterate(mb_x + 1.0j * mb_y, params.max_iterations, params.julia_seed) return mb[1]
mandelbrot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, params):\n mb_x, mb_y = get_coords(x, y, params)\n mb = mandelbrot_iterate(mb_x + 1.0j * mb_y, params.max_iterations,\n params.julia_seed)\n return mb[1]\n", "role": "user" }, { "content": "mandelbrot", "role": "assistant" } ]
def x(x, y, w, h, params): if params.plane_ratio >= 1.0: x -= params.plane_w else: x += 3.0 * params.plane_w ratio = w / h n_x = x * 2.0 / w * ratio - 1.0 n_y = y * 2.0 / h - 1.0 mb_x = params.zoom * n_x + params.mb_cx mb_y = params.zoom * n_y + params.mb_cy mb = mandelbrot_iterate(mb_x + 1.0j * mb_y, params.max_iterations, params.julia_seed) z, iterations = mb nu = params.max_iterations if iterations < params.max_iterations: nu = iterations + 2 - abs(cmath.log(cmath.log(abs(z)) / cmath.log( params.max_iterations), 2)) return clamp(nu, 0, params.max_iterations)
mandelbrot_capture
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, w, h, params):\n if params.plane_ratio >= 1.0:\n x -= params.plane_w\n else:\n x += 3.0 * params.plane_w\n ratio = w / h\n n_x = x * 2.0 / w * ratio - 1.0\n n_y = y * 2.0 / h - 1.0\n mb_x = params.zoom * n_x + params.mb_cx\n mb_y = params.zoom * n_y + params.mb_cy\n mb = mandelbrot_iterate(mb_x + 1.0j * mb_y, params.max_iterations,\n params.julia_seed)\n z, iterations = mb\n nu = params.max_iterations\n if iterations < params.max_iterations:\n nu = iterations + 2 - abs(cmath.log(cmath.log(abs(z)) / cmath.log(\n params.max_iterations), 2))\n return clamp(nu, 0, params.max_iterations)\n", "role": "user" }, { "content": "mandelbrot_capture", "role": "assistant" } ]
def x(params): cx = params.plane_x0 + params.plane_w / 2.0 cy = params.plane_y0 + params.plane_h / 2.0 params.mb_cx, params.mb_cy = get_coords(cx, cy, params)
update_position
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(params):\n cx = params.plane_x0 + params.plane_w / 2.0\n cy = params.plane_y0 + params.plane_h / 2.0\n params.mb_cx, params.mb_cy = get_coords(cx, cy, params)\n", "role": "user" }, { "content": "update_position", "role": "assistant" } ]
def x(params, factor): params.zoom /= factor n_x = params.mb_cx / params.zoom n_y = params.mb_cy / params.zoom params.plane_x0 = int((n_x + 1.0) * params.plane_w / (2.0 * params. plane_ratio)) - params.plane_w // 2 params.plane_y0 = int((n_y + 1.0) * params.plane_h / 2.0 ) - params.plane_h // 2
zoom
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(params, factor):\n params.zoom /= factor\n n_x = params.mb_cx / params.zoom\n n_y = params.mb_cy / params.zoom\n params.plane_x0 = int((n_x + 1.0) * params.plane_w / (2.0 * params.\n plane_ratio)) - params.plane_w // 2\n params.plane_y0 = int((n_y + 1.0) * params.plane_h / 2.0\n ) - params.plane_h // 2\n", "role": "user" }, { "content": "zoom", "role": "assistant" } ]
def x(self, w, h): self.plane_w = w self.plane_h = h self.plane_ratio = self.char_ratio * w / h if self.crosshairs: self.crosshairs_coord = (w + 2) // 2, (h + 2) // 2
resize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, w, h):\n self.plane_w = w\n self.plane_h = h\n self.plane_ratio = self.char_ratio * w / h\n if self.crosshairs:\n self.crosshairs_coord = (w + 2) // 2, (h + 2) // 2\n", "role": "user" }, { "content": "resize", "role": "assistant" } ]
def x(sender_handle, entity_handle): if sender_handle != entity_handle: logger.warning( "sender_handle and entity_handle don't match, aborting! sender_handle: %s, entity_handle: %s" , sender_handle, entity_handle) return False return True
check_sender_and_entity_handle_match
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sender_handle, entity_handle):\n if sender_handle != entity_handle:\n logger.warning(\n \"sender_handle and entity_handle don't match, aborting! sender_handle: %s, entity_handle: %s\"\n , sender_handle, entity_handle)\n return False\n return True\n", "role": "user" }, { "content": "check_sender_and_entity_handle_match", "role": "assistant" } ]
def x(element: etree.ElementTree, sender: str, sender_key_fetcher: Callable [[str], str]=None, user: UserType=None) ->List: entities = [] cls = MAPPINGS.get(element.tag) if not cls: return [] attrs = xml_children_as_dict(element) transformed = transform_attributes(attrs, cls) if hasattr(cls, 'fill_extra_attributes'): transformed = cls.fill_extra_attributes(transformed) entity = cls(**transformed) entity._source_protocol = 'diaspora' entity._source_object = etree.tostring(element) if user: entity._receiving_actor_id = user.id if issubclass(cls, DiasporaRelayableMixin): entity._xml_tags = get_element_child_info(element, 'tag') if sender_key_fetcher: entity._sender_key = sender_key_fetcher(entity.actor_id) else: profile = retrieve_and_parse_profile(entity.handle) if profile: entity._sender_key = profile.public_key elif not check_sender_and_entity_handle_match(sender, entity.handle): return [] try: entity.validate() except ValueError as ex: logger.error('Failed to validate entity %s: %s', entity, ex, extra= {'attrs': attrs, 'transformed': transformed}) return [] entity._mentions = entity.extract_mentions() for child in element: entity._children.extend(element_to_objects(child, sender, user=user)) entities.append(entity) return entities
element_to_objects
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(element: etree.ElementTree, sender: str, sender_key_fetcher: Callable\n [[str], str]=None, user: UserType=None) ->List:\n entities = []\n cls = MAPPINGS.get(element.tag)\n if not cls:\n return []\n attrs = xml_children_as_dict(element)\n transformed = transform_attributes(attrs, cls)\n if hasattr(cls, 'fill_extra_attributes'):\n transformed = cls.fill_extra_attributes(transformed)\n entity = cls(**transformed)\n entity._source_protocol = 'diaspora'\n entity._source_object = etree.tostring(element)\n if user:\n entity._receiving_actor_id = user.id\n if issubclass(cls, DiasporaRelayableMixin):\n entity._xml_tags = get_element_child_info(element, 'tag')\n if sender_key_fetcher:\n entity._sender_key = sender_key_fetcher(entity.actor_id)\n else:\n profile = retrieve_and_parse_profile(entity.handle)\n if profile:\n entity._sender_key = profile.public_key\n elif not check_sender_and_entity_handle_match(sender, entity.handle):\n return []\n try:\n entity.validate()\n except ValueError as ex:\n logger.error('Failed to validate entity %s: %s', entity, ex, extra=\n {'attrs': attrs, 'transformed': transformed})\n return []\n entity._mentions = entity.extract_mentions()\n for child in element:\n entity._children.extend(element_to_objects(child, sender, user=user))\n entities.append(entity)\n return entities\n", "role": "user" }, { "content": "element_to_objects", "role": "assistant" } ]
def x(message: str, sender: str, sender_key_fetcher: Callable[[str], str]= None, user: UserType=None) ->List: doc = etree.fromstring(message) if doc.tag in TAGS: return element_to_objects(doc, sender, sender_key_fetcher, user) return []
message_to_objects
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(message: str, sender: str, sender_key_fetcher: Callable[[str], str]=\n None, user: UserType=None) ->List:\n doc = etree.fromstring(message)\n if doc.tag in TAGS:\n return element_to_objects(doc, sender, sender_key_fetcher, user)\n return []\n", "role": "user" }, { "content": "message_to_objects", "role": "assistant" } ]
def x(attrs, cls): transformed = {} for key, value in attrs.items(): if value is None: value = '' if key == 'text': transformed['raw_content'] = value elif key == 'author': if cls == DiasporaProfile: profile = retrieve_and_parse_profile(value) transformed['id'] = value transformed['guid'] = profile.guid else: transformed['actor_id'] = value transformed['handle'] = value elif key == 'guid': if cls != DiasporaProfile: transformed['id'] = value transformed['guid'] = value elif key in ('root_author', 'recipient'): transformed['target_id'] = value transformed['target_handle'] = value elif key in ('target_guid', 'root_guid', 'parent_guid'): transformed['target_id'] = value transformed['target_guid'] = value elif key in ('first_name', 'last_name'): values = [attrs.get('first_name'), attrs.get('last_name')] values = [v for v in values if v] transformed['name'] = ' '.join(values) elif key == 'image_url': if 'image_urls' not in transformed: transformed['image_urls'] = {} transformed['image_urls']['large'] = value elif key == 'image_url_small': if 'image_urls' not in transformed: transformed['image_urls'] = {} transformed['image_urls']['small'] = value elif key == 'image_url_medium': if 'image_urls' not in transformed: transformed['image_urls'] = {} transformed['image_urls']['medium'] = value elif key == 'tag_string': if value: transformed['tag_list'] = value.replace('#', '').split(' ') elif key == 'bio': transformed['raw_content'] = value elif key == 'searchable': transformed['public'] = True if value == 'true' else False elif key in ['target_type'] and cls == DiasporaRetraction: transformed['entity_type' ] = DiasporaRetraction.entity_type_from_remote(value) elif key == 'remote_photo_path': transformed['remote_path'] = value elif key == 'remote_photo_name': transformed['remote_name'] = value elif key == 'status_message_guid': transformed['linked_guid'] = value transformed['linked_type'] = 'Post' elif key == 'author_signature': transformed['signature'] = value elif key in BOOLEAN_KEYS: transformed[key] = True if value == 'true' else False elif key in DATETIME_KEYS: transformed[key] = datetime.strptime(value, '%Y-%m-%dT%H:%M:%SZ') elif key in INTEGER_KEYS: transformed[key] = int(value) else: transformed[key] = value return transformed
transform_attributes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(attrs, cls):\n transformed = {}\n for key, value in attrs.items():\n if value is None:\n value = ''\n if key == 'text':\n transformed['raw_content'] = value\n elif key == 'author':\n if cls == DiasporaProfile:\n profile = retrieve_and_parse_profile(value)\n transformed['id'] = value\n transformed['guid'] = profile.guid\n else:\n transformed['actor_id'] = value\n transformed['handle'] = value\n elif key == 'guid':\n if cls != DiasporaProfile:\n transformed['id'] = value\n transformed['guid'] = value\n elif key in ('root_author', 'recipient'):\n transformed['target_id'] = value\n transformed['target_handle'] = value\n elif key in ('target_guid', 'root_guid', 'parent_guid'):\n transformed['target_id'] = value\n transformed['target_guid'] = value\n elif key in ('first_name', 'last_name'):\n values = [attrs.get('first_name'), attrs.get('last_name')]\n values = [v for v in values if v]\n transformed['name'] = ' '.join(values)\n elif key == 'image_url':\n if 'image_urls' not in transformed:\n transformed['image_urls'] = {}\n transformed['image_urls']['large'] = value\n elif key == 'image_url_small':\n if 'image_urls' not in transformed:\n transformed['image_urls'] = {}\n transformed['image_urls']['small'] = value\n elif key == 'image_url_medium':\n if 'image_urls' not in transformed:\n transformed['image_urls'] = {}\n transformed['image_urls']['medium'] = value\n elif key == 'tag_string':\n if value:\n transformed['tag_list'] = value.replace('#', '').split(' ')\n elif key == 'bio':\n transformed['raw_content'] = value\n elif key == 'searchable':\n transformed['public'] = True if value == 'true' else False\n elif key in ['target_type'] and cls == DiasporaRetraction:\n transformed['entity_type'\n ] = DiasporaRetraction.entity_type_from_remote(value)\n elif key == 'remote_photo_path':\n transformed['remote_path'] = value\n elif key == 'remote_photo_name':\n transformed['remote_name'] = value\n elif key == 'status_message_guid':\n transformed['linked_guid'] = value\n transformed['linked_type'] = 'Post'\n elif key == 'author_signature':\n transformed['signature'] = value\n elif key in BOOLEAN_KEYS:\n transformed[key] = True if value == 'true' else False\n elif key in DATETIME_KEYS:\n transformed[key] = datetime.strptime(value, '%Y-%m-%dT%H:%M:%SZ')\n elif key in INTEGER_KEYS:\n transformed[key] = int(value)\n else:\n transformed[key] = value\n return transformed\n", "role": "user" }, { "content": "transform_attributes", "role": "assistant" } ]
def x(entity: BaseEntity, private_key: RsaKey): if getattr(entity, 'outbound_doc', None): return entity outbound = None cls = entity.__class__ if cls in [DiasporaPost, DiasporaImage, DiasporaComment, DiasporaLike, DiasporaProfile, DiasporaRetraction, DiasporaContact, DiasporaReshare]: outbound = entity elif cls == Post: outbound = DiasporaPost.from_base(entity) elif cls == Comment: outbound = DiasporaComment.from_base(entity) elif cls == Reaction: if entity.reaction == 'like': outbound = DiasporaLike.from_base(entity) elif cls == Follow: outbound = DiasporaContact.from_base(entity) elif cls == Profile: outbound = DiasporaProfile.from_base(entity) elif cls == Retraction: outbound = DiasporaRetraction.from_base(entity) elif cls == Share: outbound = DiasporaReshare.from_base(entity) if not outbound: raise ValueError( "Don't know how to convert this base entity to Diaspora protocol entities." ) if isinstance(outbound, DiasporaRelayableMixin) and not outbound.signature: outbound.sign(private_key) outbound.parent_signature = outbound.signature return outbound
get_outbound_entity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(entity: BaseEntity, private_key: RsaKey):\n if getattr(entity, 'outbound_doc', None):\n return entity\n outbound = None\n cls = entity.__class__\n if cls in [DiasporaPost, DiasporaImage, DiasporaComment, DiasporaLike,\n DiasporaProfile, DiasporaRetraction, DiasporaContact, DiasporaReshare]:\n outbound = entity\n elif cls == Post:\n outbound = DiasporaPost.from_base(entity)\n elif cls == Comment:\n outbound = DiasporaComment.from_base(entity)\n elif cls == Reaction:\n if entity.reaction == 'like':\n outbound = DiasporaLike.from_base(entity)\n elif cls == Follow:\n outbound = DiasporaContact.from_base(entity)\n elif cls == Profile:\n outbound = DiasporaProfile.from_base(entity)\n elif cls == Retraction:\n outbound = DiasporaRetraction.from_base(entity)\n elif cls == Share:\n outbound = DiasporaReshare.from_base(entity)\n if not outbound:\n raise ValueError(\n \"Don't know how to convert this base entity to Diaspora protocol entities.\"\n )\n if isinstance(outbound, DiasporaRelayableMixin) and not outbound.signature:\n outbound.sign(private_key)\n outbound.parent_signature = outbound.signature\n return outbound\n", "role": "user" }, { "content": "get_outbound_entity", "role": "assistant" } ]
def x(doc, attr): props = [] for child in doc: if child.tag not in ['author_signature', 'parent_author_signature']: props.append(getattr(child, attr)) return props
get_element_child_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(doc, attr):\n props = []\n for child in doc:\n if child.tag not in ['author_signature', 'parent_author_signature']:\n props.append(getattr(child, attr))\n return props\n", "role": "user" }, { "content": "get_element_child_info", "role": "assistant" } ]
def x(public_key, doc, signature): sig_hash = _create_signature_hash(doc) cipher = PKCS1_v1_5.new(RSA.importKey(public_key)) return cipher.verify(sig_hash, b64decode(signature))
verify_relayable_signature
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(public_key, doc, signature):\n sig_hash = _create_signature_hash(doc)\n cipher = PKCS1_v1_5.new(RSA.importKey(public_key))\n return cipher.verify(sig_hash, b64decode(signature))\n", "role": "user" }, { "content": "verify_relayable_signature", "role": "assistant" } ]
def x(request, *args, **kwargs): resource = request.GET.get('resource') if not resource: return HttpResponseBadRequest('No resource found') if not resource.startswith('acct:'): return HttpResponseBadRequest('Invalid resource') handle = resource.replace('acct:', '').lower() profile_func = get_function_from_config('get_profile_function') try: profile = profile_func(handle=handle, request=request) except Exception as exc: logger.warning( 'rfc7033_webfinger_view - Failed to get profile by handle %s: %s', handle, exc) return HttpResponseNotFound() config = get_configuration() webfinger = RFC7033Webfinger(id=profile.id, handle=profile.handle, guid =profile.guid, base_url=config.get('base_url'), profile_path= get_path_from_url(profile.url), hcard_path=config.get('hcard_path'), atom_path=get_path_from_url(profile.atom_url), search_path=config. get('search_path')) return JsonResponse(webfinger.render(), content_type='application/jrd+json' )
rfc7033_webfinger_view
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request, *args, **kwargs):\n resource = request.GET.get('resource')\n if not resource:\n return HttpResponseBadRequest('No resource found')\n if not resource.startswith('acct:'):\n return HttpResponseBadRequest('Invalid resource')\n handle = resource.replace('acct:', '').lower()\n profile_func = get_function_from_config('get_profile_function')\n try:\n profile = profile_func(handle=handle, request=request)\n except Exception as exc:\n logger.warning(\n 'rfc7033_webfinger_view - Failed to get profile by handle %s: %s',\n handle, exc)\n return HttpResponseNotFound()\n config = get_configuration()\n webfinger = RFC7033Webfinger(id=profile.id, handle=profile.handle, guid\n =profile.guid, base_url=config.get('base_url'), profile_path=\n get_path_from_url(profile.url), hcard_path=config.get('hcard_path'),\n atom_path=get_path_from_url(profile.atom_url), search_path=config.\n get('search_path'))\n return JsonResponse(webfinger.render(), content_type='application/jrd+json'\n )\n", "role": "user" }, { "content": "rfc7033_webfinger_view", "role": "assistant" } ]