source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, callback):
items = self.items
for item in items:
if callback(item) is False:
break
return self
|
each
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, callback):\n items = self.items\n for item in items:\n if callback(item) is False:\n break\n return self\n",
"role": "user"
},
{
"content": "each",
"role": "assistant"
}
] |
def x(self, step, offset=0):
new = []
for position, item in enumerate(self.items):
if position % step == offset:
new.append(item)
return self.__class__(new)
|
every
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, step, offset=0):\n new = []\n for position, item in enumerate(self.items):\n if position % step == offset:\n new.append(item)\n return self.__class__(new)\n",
"role": "user"
},
{
"content": "every",
"role": "assistant"
}
] |
def x(self, *keys):
items = copy(self.items)
keys = reversed(sorted(keys))
for key in keys:
del items[key]
return self.__class__(items)
|
without
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *keys):\n items = copy(self.items)\n keys = reversed(sorted(keys))\n for key in keys:\n del items[key]\n return self.__class__(items)\n",
"role": "user"
},
{
"content": "without",
"role": "assistant"
}
] |
def x(self, *keys):
items = []
for key, value in enumerate(self.items):
if key in keys:
items.append(value)
return self.__class__(items)
|
only
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *keys):\n items = []\n for key, value in enumerate(self.items):\n if key in keys:\n items.append(value)\n return self.__class__(items)\n",
"role": "user"
},
{
"content": "only",
"role": "assistant"
}
] |
def x(self, callback=None):
if callback:
return self.__class__(list(filter(callback, self.items)))
return self.__class__(list(filter(None, self.items)))
|
filter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, callback=None):\n if callback:\n return self.__class__(list(filter(callback, self.items)))\n return self.__class__(list(filter(None, self.items)))\n",
"role": "user"
},
{
"content": "filter",
"role": "assistant"
}
] |
def x(self, key, value):
return self.filter(lambda item: data_get(item, key) == value)
|
where
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key, value):\n return self.filter(lambda item: data_get(item, key) == value)\n",
"role": "user"
},
{
"content": "where",
"role": "assistant"
}
] |
def x(self, callback=None, default=None):
if callback is not None:
for val in self.items:
if callback(val):
return val
return value(default)
if len(self.items) > 0:
return self.items[0]
else:
return default
|
first
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, callback=None, default=None):\n if callback is not None:\n for val in self.items:\n if callback(val):\n return val\n return value(default)\n if len(self.items) > 0:\n return self.items[0]\n else:\n return default\n",
"role": "user"
},
{
"content": "first",
"role": "assistant"
}
] |
def x(self):
def x(d):
if isinstance(d, dict):
for v in d.values():
for nested_v in _flatten(v):
yield nested_v
elif isinstance(d, list):
for list_v in d:
for nested_v in _flatten(list_v):
yield nested_v
else:
yield d
return self.__class__(list(_flatten(self.items)))
|
flatten
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n\n def x(d):\n if isinstance(d, dict):\n for v in d.values():\n for nested_v in _flatten(v):\n yield nested_v\n elif isinstance(d, list):\n for list_v in d:\n for nested_v in _flatten(list_v):\n yield nested_v\n else:\n yield d\n return self.__class__(list(_flatten(self.items)))\n",
"role": "user"
},
{
"content": "flatten",
"role": "assistant"
}
] |
def x(self, *keys):
keys = reversed(sorted(keys))
for key in keys:
del self[key]
return self
|
forget
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *keys):\n keys = reversed(sorted(keys))\n for key in keys:\n del self[key]\n return self\n",
"role": "user"
},
{
"content": "forget",
"role": "assistant"
}
] |
def x(self, key, default=None):
try:
return self.items[key]
except IndexError:
return value(default)
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key, default=None):\n try:\n return self.items[key]\n except IndexError:\n return value(default)\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self, value, glue=''):
first = self.first()
if not isinstance(first, basestring):
return glue.join(self.pluck(value).all())
return value.join(self.items)
|
implode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value, glue=''):\n first = self.first()\n if not isinstance(first, basestring):\n return glue.join(self.pluck(value).all())\n return value.join(self.items)\n",
"role": "user"
},
{
"content": "implode",
"role": "assistant"
}
] |
def x(self, callback=None, default=None):
if callback is not None:
for val in reversed(self.items):
if callback(val):
return val
return value(default)
if len(self.items) > 0:
return self.items[-1]
else:
return default
|
last
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, callback=None, default=None):\n if callback is not None:\n for val in reversed(self.items):\n if callback(val):\n return val\n return value(default)\n if len(self.items) > 0:\n return self.items[-1]\n else:\n return default\n",
"role": "user"
},
{
"content": "last",
"role": "assistant"
}
] |
def x(self, value, key=None):
if key:
return dict(map(lambda x: (data_get(x, key), data_get(x, value)),
self.items))
else:
results = list(map(lambda x: data_get(x, value), self.items))
return self.__class__(results)
|
pluck
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value, key=None):\n if key:\n return dict(map(lambda x: (data_get(x, key), data_get(x, value)),\n self.items))\n else:\n results = list(map(lambda x: data_get(x, value), self.items))\n return self.__class__(results)\n",
"role": "user"
},
{
"content": "pluck",
"role": "assistant"
}
] |
def x(self, callback):
return self.__class__(list(map(callback, self.items)))
|
map
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, callback):\n return self.__class__(list(map(callback, self.items)))\n",
"role": "user"
},
{
"content": "map",
"role": "assistant"
}
] |
def x(self, key=None):
def x(result, item):
val = data_get(item, key)
if result is None or val > result:
return value
return result
return self.reduce(_max)
|
max
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key=None):\n\n def x(result, item):\n val = data_get(item, key)\n if result is None or val > result:\n return value\n return result\n return self.reduce(_max)\n",
"role": "user"
},
{
"content": "max",
"role": "assistant"
}
] |
def x(self, key=None):
def x(result, item):
val = data_get(item, key)
if result is None or val < result:
return value
return result
return self.reduce(_min)
|
min
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key=None):\n\n def x(result, item):\n val = data_get(item, key)\n if result is None or val < result:\n return value\n return result\n return self.reduce(_min)\n",
"role": "user"
},
{
"content": "min",
"role": "assistant"
}
] |
def x(self, page, per_page):
start = (page - 1) * per_page
return self[start:start + per_page]
|
for_page
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, page, per_page):\n start = (page - 1) * per_page\n return self[start:start + per_page]\n",
"role": "user"
},
{
"content": "for_page",
"role": "assistant"
}
] |
def x(self, key, default=None):
val = self.get(key, default)
self.forget(key)
return val
|
pull
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key, default=None):\n val = self.get(key, default)\n self.forget(key)\n return val\n",
"role": "user"
},
{
"content": "pull",
"role": "assistant"
}
] |
def x(self, callback):
if self._use_as_callable(callback):
return self.filter(lambda item: not callback(item))
return self.filter(lambda item: item != callback)
|
reject
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, callback):\n if self._use_as_callable(callback):\n return self.filter(lambda item: not callback(item))\n return self.filter(lambda item: item != callback)\n",
"role": "user"
},
{
"content": "reject",
"role": "assistant"
}
] |
def x(self, callback=None):
items = self.items
if callback:
return self.__class__(sorted(items, key=callback))
else:
return self.__class__(sorted(items))
|
sort
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, callback=None):\n items = self.items\n if callback:\n return self.__class__(sorted(items, key=callback))\n else:\n return self.__class__(sorted(items))\n",
"role": "user"
},
{
"content": "sort",
"role": "assistant"
}
] |
def x(self, callback=None):
if callback is None:
return sum(self.items)
callback = self._value_retriever(callback)
return self.reduce(lambda result, item: (result or 0) + callback(item))
|
sum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, callback=None):\n if callback is None:\n return sum(self.items)\n callback = self._value_retriever(callback)\n return self.reduce(lambda result, item: (result or 0) + callback(item))\n",
"role": "user"
},
{
"content": "sum",
"role": "assistant"
}
] |
def x(self, key=None):
if key is None:
seen = set()
seen_add = seen.add
return self.__class__([x for x in self.items if not (x in seen or
seen_add(x))])
key = self._value_retriever(key)
exists = []
def x(item):
id_ = key(item)
if id_ in exists:
return True
exists.append(id_)
return self.reject(_check)
|
unique
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key=None):\n if key is None:\n seen = set()\n seen_add = seen.add\n return self.__class__([x for x in self.items if not (x in seen or\n seen_add(x))])\n key = self._value_retriever(key)\n exists = []\n\n def x(item):\n id_ = key(item)\n if id_ in exists:\n return True\n exists.append(id_)\n return self.reject(_check)\n",
"role": "user"
},
{
"content": "unique",
"role": "assistant"
}
] |
def x(self, *items):
return self.__class__(list(zip(self.items, *items)))
|
zip
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *items):\n return self.__class__(list(zip(self.items, *items)))\n",
"role": "user"
},
{
"content": "zip",
"role": "assistant"
}
] |
def x(self, items):
if isinstance(items, BaseCollection):
items = items.all()
if not isinstance(items, list):
raise ValueError('Unable to merge uncompatible types')
self._items += items
return self
|
merge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, items):\n if isinstance(items, BaseCollection):\n items = items.all()\n if not isinstance(items, list):\n raise ValueError('Unable to merge uncompatible types')\n self._items += items\n return self\n",
"role": "user"
},
{
"content": "merge",
"role": "assistant"
}
] |
def x(self, callback):
self._items = self.map(callback).all()
return self
|
transform
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, callback):\n self._items = self.map(callback).all()\n return self\n",
"role": "user"
},
{
"content": "transform",
"role": "assistant"
}
] |
def x(self, value):
if self._use_as_callable(value):
return value
return lambda item: data_get(item, value)
|
value_retriever
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if self._use_as_callable(value):\n return value\n return lambda item: data_get(item, value)\n",
"role": "user"
},
{
"content": "value_retriever",
"role": "assistant"
}
] |
def x(self):
def x(value):
if hasattr(value, 'serialize'):
return value.serialize()
elif hasattr(value, 'to_dict'):
return value.to_dict()
else:
return value
return list(map(_serialize, self.items))
|
serialize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n\n def x(value):\n if hasattr(value, 'serialize'):\n return value.serialize()\n elif hasattr(value, 'to_dict'):\n return value.to_dict()\n else:\n return value\n return list(map(_serialize, self.items))\n",
"role": "user"
},
{
"content": "serialize",
"role": "assistant"
}
] |
def x(self, *args, **kwargs):
if is_scheme(self.validator):
params = getcallargs(self.function, *args, **kwargs)
params.update(kwargs)
validator = self.validator(data=params, request=None)
if validator.is_valid():
return
raise self.exception(validator.errors)
if hasattr(self.validator, 'is_valid'):
validator = self.validator(*args, **kwargs)
if validator.is_valid():
return
if hasattr(validator, 'errors'):
raise self.exception(validator.errors)
if hasattr(validator, '_errors'):
raise self.exception(validator._errors)
raise self.exception
validation_result = self.validator(*args, **kwargs)
if isinstance(validation_result, string_types):
raise self.exception(validation_result)
if validation_result:
return
raise self.exception
|
validate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *args, **kwargs):\n if is_scheme(self.validator):\n params = getcallargs(self.function, *args, **kwargs)\n params.update(kwargs)\n validator = self.validator(data=params, request=None)\n if validator.is_valid():\n return\n raise self.exception(validator.errors)\n if hasattr(self.validator, 'is_valid'):\n validator = self.validator(*args, **kwargs)\n if validator.is_valid():\n return\n if hasattr(validator, 'errors'):\n raise self.exception(validator.errors)\n if hasattr(validator, '_errors'):\n raise self.exception(validator._errors)\n raise self.exception\n validation_result = self.validator(*args, **kwargs)\n if isinstance(validation_result, string_types):\n raise self.exception(validation_result)\n if validation_result:\n return\n raise self.exception\n",
"role": "user"
},
{
"content": "validate",
"role": "assistant"
}
] |
def x(self, *args, **kwargs):
self.validate(*args, **kwargs)
return self.function(*args, **kwargs)
|
patched_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *args, **kwargs):\n self.validate(*args, **kwargs)\n return self.function(*args, **kwargs)\n",
"role": "user"
},
{
"content": "patched_function",
"role": "assistant"
}
] |
def x(self, *args, **kwargs):
result = self.function(*args, **kwargs)
self.validate(result)
return result
|
patched_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *args, **kwargs):\n result = self.function(*args, **kwargs)\n self.validate(result)\n return result\n",
"role": "user"
},
{
"content": "patched_function",
"role": "assistant"
}
] |
def x(self):
self._disable_patching = True
self._validate_base(self)
self._disable_patching = False
|
validate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._disable_patching = True\n self._validate_base(self)\n self._disable_patching = False\n",
"role": "user"
},
{
"content": "validate",
"role": "assistant"
}
] |
def x(self, method, *args, **kwargs):
self._validate()
result = method(*args, **kwargs)
self._validate()
return result
|
patched_method
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, method, *args, **kwargs):\n self._validate()\n result = method(*args, **kwargs)\n self._validate()\n return result\n",
"role": "user"
},
{
"content": "patched_method",
"role": "assistant"
}
] |
def x(input_file_list, output_file, relative=True, **kwargs):
if not Path(output_file).parent.exists():
Path(output_file).parent.mkdir(parents=True, exist_ok=True)
input_file_list = [str(Path(p).absolute()) for p in input_file_list]
output_file = str(Path(output_file).absolute())
vrt_options = gdal.BuildVRTOptions(**kwargs)
vrt = gdal.BuildVRT(output_file, input_file_list, options=vrt_options)
vrt = None
if relative:
input_file_list_relative = [relpath(p, Path(output_file).parent) for
p in input_file_list]
with open(output_file, 'r') as file:
lines = file.readlines()
new_lines = []
counter = -1
for line in lines:
if 'relativeToVRT="1"' in line:
counter += 1
elif 'relativeToVRT="0"' in line:
counter += 1
input_file = str(input_file_list[counter])
input_file_relative = str(input_file_list_relative[counter])
if input_file not in line:
raise Exception(
f'Expect path {input_file} not part of line {line}.')
line = line.replace(input_file, input_file_relative)
line = line.replace('relativeToVRT="0"', 'relativeToVRT="1"')
else:
pass
new_lines.append(line)
with open(output_file, 'w') as file:
file.writelines(new_lines)
return 0
|
buildvrt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input_file_list, output_file, relative=True, **kwargs):\n if not Path(output_file).parent.exists():\n Path(output_file).parent.mkdir(parents=True, exist_ok=True)\n input_file_list = [str(Path(p).absolute()) for p in input_file_list]\n output_file = str(Path(output_file).absolute())\n vrt_options = gdal.BuildVRTOptions(**kwargs)\n vrt = gdal.BuildVRT(output_file, input_file_list, options=vrt_options)\n vrt = None\n if relative:\n input_file_list_relative = [relpath(p, Path(output_file).parent) for\n p in input_file_list]\n with open(output_file, 'r') as file:\n lines = file.readlines()\n new_lines = []\n counter = -1\n for line in lines:\n if 'relativeToVRT=\"1\"' in line:\n counter += 1\n elif 'relativeToVRT=\"0\"' in line:\n counter += 1\n input_file = str(input_file_list[counter])\n input_file_relative = str(input_file_list_relative[counter])\n if input_file not in line:\n raise Exception(\n f'Expect path {input_file} not part of line {line}.')\n line = line.replace(input_file, input_file_relative)\n line = line.replace('relativeToVRT=\"0\"', 'relativeToVRT=\"1\"')\n else:\n pass\n new_lines.append(line)\n with open(output_file, 'w') as file:\n file.writelines(new_lines)\n return 0\n",
"role": "user"
},
{
"content": "buildvrt",
"role": "assistant"
}
] |
def x(src_file, dst_file, template_file, resampling='near', compress=None,
overwrite=False):
if not overwrite and Path(dst_file).exists():
print('Processing skipped. Destination file exists.')
return 0
GDAL_RESAMPLING_ALGORITHMS = {'bilinear': 'GRA_Bilinear', 'cubic':
'GRA_Cubic', 'cubicspline': 'GRA_CubicSpline', 'lanczos':
'GRA_Lanczos', 'average': 'GRA_Average', 'mode': 'GRA_Mode', 'max':
'GRA_Max', 'min': 'GRA_Min', 'med': 'GRA_Med', 'near':
'GRA_NearestNeighbour', 'q1': 'GRA_Q1', 'q3': 'GRA_Q3'}
compressions = ['lzw', 'packbits', 'deflate']
if resampling not in GDAL_RESAMPLING_ALGORITHMS.keys():
raise ValueError(
f"'resampling must be one of {', '.join(GDAL_RESAMPLING_ALGORITHMS.keys())}"
)
if compress is None:
options = []
elif compress.lower() not in compressions:
raise ValueError(f"'compress must be one of {', '.join(compressions)}")
else:
options = [f'COMPRESS={compress.upper()}']
src = gdal.Open(src_file, gdalconst.GA_ReadOnly)
src_band = src.GetRasterBand(1)
src_proj = src.GetProjection()
match_ds = gdal.Open(template_file, gdalconst.GA_ReadOnly)
match_proj = match_ds.GetProjection()
match_geotrans = match_ds.GetGeoTransform()
wide = match_ds.RasterXSize
high = match_ds.RasterYSize
Path(dst_file).parent.mkdir(parents=True, exist_ok=True)
dst = gdal.GetDriverByName('GTiff').Create(dst_file, wide, high, 1,
src_band.DataType, options=options)
dst.SetGeoTransform(match_geotrans)
dst.SetProjection(match_proj)
gdal.ReprojectImage(src, dst, src_proj, match_proj, getattr(gdalconst,
GDAL_RESAMPLING_ALGORITHMS[resampling]))
del dst
return 0
|
reproject_on_template_raster
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(src_file, dst_file, template_file, resampling='near', compress=None,\n overwrite=False):\n if not overwrite and Path(dst_file).exists():\n print('Processing skipped. Destination file exists.')\n return 0\n GDAL_RESAMPLING_ALGORITHMS = {'bilinear': 'GRA_Bilinear', 'cubic':\n 'GRA_Cubic', 'cubicspline': 'GRA_CubicSpline', 'lanczos':\n 'GRA_Lanczos', 'average': 'GRA_Average', 'mode': 'GRA_Mode', 'max':\n 'GRA_Max', 'min': 'GRA_Min', 'med': 'GRA_Med', 'near':\n 'GRA_NearestNeighbour', 'q1': 'GRA_Q1', 'q3': 'GRA_Q3'}\n compressions = ['lzw', 'packbits', 'deflate']\n if resampling not in GDAL_RESAMPLING_ALGORITHMS.keys():\n raise ValueError(\n f\"'resampling must be one of {', '.join(GDAL_RESAMPLING_ALGORITHMS.keys())}\"\n )\n if compress is None:\n options = []\n elif compress.lower() not in compressions:\n raise ValueError(f\"'compress must be one of {', '.join(compressions)}\")\n else:\n options = [f'COMPRESS={compress.upper()}']\n src = gdal.Open(src_file, gdalconst.GA_ReadOnly)\n src_band = src.GetRasterBand(1)\n src_proj = src.GetProjection()\n match_ds = gdal.Open(template_file, gdalconst.GA_ReadOnly)\n match_proj = match_ds.GetProjection()\n match_geotrans = match_ds.GetGeoTransform()\n wide = match_ds.RasterXSize\n high = match_ds.RasterYSize\n Path(dst_file).parent.mkdir(parents=True, exist_ok=True)\n dst = gdal.GetDriverByName('GTiff').Create(dst_file, wide, high, 1,\n src_band.DataType, options=options)\n dst.SetGeoTransform(match_geotrans)\n dst.SetProjection(match_proj)\n gdal.ReprojectImage(src, dst, src_proj, match_proj, getattr(gdalconst,\n GDAL_RESAMPLING_ALGORITHMS[resampling]))\n del dst\n return 0\n",
"role": "user"
},
{
"content": "reproject_on_template_raster",
"role": "assistant"
}
] |
def x(src_vector: str, burn_attribute: str, src_raster_template: str,
dst_rasterized: str, gdal_dtype: int=4):
data = gdal.Open(str(src_raster_template), gdalconst.GA_ReadOnly)
geo_transform = data.GetGeoTransform()
x_res = data.RasterXSize
y_res = data.RasterYSize
mb_v = ogr.Open(src_vector)
mb_l = mb_v.GetLayer()
target_ds = gdal.GetDriverByName('GTiff').Create(dst_rasterized, x_res,
y_res, 1, gdal_dtype)
target_ds.SetGeoTransform((geo_transform[0], geo_transform[1], 0,
geo_transform[3], 0, geo_transform[5]))
prj = data.GetProjection()
target_ds.SetProjection(prj)
band = target_ds.GetRasterBand(1)
band.FlushCache()
gdal.RasterizeLayer(target_ds, [1], mb_l, options=[
f'ATTRIBUTE={burn_attribute}'])
target_ds = None
|
rasterize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(src_vector: str, burn_attribute: str, src_raster_template: str,\n dst_rasterized: str, gdal_dtype: int=4):\n data = gdal.Open(str(src_raster_template), gdalconst.GA_ReadOnly)\n geo_transform = data.GetGeoTransform()\n x_res = data.RasterXSize\n y_res = data.RasterYSize\n mb_v = ogr.Open(src_vector)\n mb_l = mb_v.GetLayer()\n target_ds = gdal.GetDriverByName('GTiff').Create(dst_rasterized, x_res,\n y_res, 1, gdal_dtype)\n target_ds.SetGeoTransform((geo_transform[0], geo_transform[1], 0,\n geo_transform[3], 0, geo_transform[5]))\n prj = data.GetProjection()\n target_ds.SetProjection(prj)\n band = target_ds.GetRasterBand(1)\n band.FlushCache()\n gdal.RasterizeLayer(target_ds, [1], mb_l, options=[\n f'ATTRIBUTE={burn_attribute}'])\n target_ds = None\n",
"role": "user"
},
{
"content": "rasterize",
"role": "assistant"
}
] |
def x(polygons, template_raster, dst_raster, overwrite=False,
keep_interim_files=False):
if Path(dst_raster).exists() and not overwrite:
print(f'Returning 0 - File exists: {dst_raster}')
return 0
with rasterio.open(template_raster) as tmp:
crs = tmp.crs
dst_raster = Path(dst_raster)
dst_raster.parent.mkdir(exist_ok=True, parents=True)
tempdir = Path(tempfile.mkdtemp(prefix=f'TEMPDIR_{dst_raster.stem}_',
dir=dst_raster.parent))
interim_file_lines_vector = (tempdir /
'interim_sample_vector_dataset_lines.shp')
interim_file_lines_raster = (tempdir /
'interim_sample_vector_dataset_lines.tif')
exit_code = convert_polygons_to_lines(polygons,
interim_file_lines_vector, crs=crs, add_allone_col=True)
rasterize(src_vector=str(interim_file_lines_vector), burn_attribute=
'ALLONE', src_raster_template=str(template_raster), dst_rasterized=
str(interim_file_lines_raster), gdal_dtype=1)
cmd = (
f'{PROXIMITY_PATH} {str(Path(interim_file_lines_raster).absolute())} {str(Path(dst_raster).absolute())} -ot Float32 -distunits PIXEL -values 1 -maxdist 255'
)
subprocess.check_call(cmd, shell=True)
if not keep_interim_files:
shutil.rmtree(tempdir)
else:
print(f'Interim files are in {tempdir}')
return 0
|
calc_distance_to_border
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(polygons, template_raster, dst_raster, overwrite=False,\n keep_interim_files=False):\n if Path(dst_raster).exists() and not overwrite:\n print(f'Returning 0 - File exists: {dst_raster}')\n return 0\n with rasterio.open(template_raster) as tmp:\n crs = tmp.crs\n dst_raster = Path(dst_raster)\n dst_raster.parent.mkdir(exist_ok=True, parents=True)\n tempdir = Path(tempfile.mkdtemp(prefix=f'TEMPDIR_{dst_raster.stem}_',\n dir=dst_raster.parent))\n interim_file_lines_vector = (tempdir /\n 'interim_sample_vector_dataset_lines.shp')\n interim_file_lines_raster = (tempdir /\n 'interim_sample_vector_dataset_lines.tif')\n exit_code = convert_polygons_to_lines(polygons,\n interim_file_lines_vector, crs=crs, add_allone_col=True)\n rasterize(src_vector=str(interim_file_lines_vector), burn_attribute=\n 'ALLONE', src_raster_template=str(template_raster), dst_rasterized=\n str(interim_file_lines_raster), gdal_dtype=1)\n cmd = (\n f'{PROXIMITY_PATH} {str(Path(interim_file_lines_raster).absolute())} {str(Path(dst_raster).absolute())} -ot Float32 -distunits PIXEL -values 1 -maxdist 255'\n )\n subprocess.check_call(cmd, shell=True)\n if not keep_interim_files:\n shutil.rmtree(tempdir)\n else:\n print(f'Interim files are in {tempdir}')\n return 0\n",
"role": "user"
},
{
"content": "calc_distance_to_border",
"role": "assistant"
}
] |
def x(src_polygons, dst_lines, crs=None, add_allone_col=False):
gdf = gpd.read_file(src_polygons)
geom_coords = gdf['geometry']
lines = []
row_ids = []
for i_row, pol in tqdm(enumerate(geom_coords), total=len(geom_coords)):
boundary = pol.boundary
if boundary.type == 'MultiLineString':
for line in boundary:
lines.append(line)
row_ids.append(i_row)
else:
lines.append(boundary)
row_ids.append(i_row)
gdf_lines = gdf.drop('geometry', axis=1).iloc[row_ids, :]
gdf_lines['Coordinates'] = lines
gdf_lines = gpd.GeoDataFrame(gdf_lines, geometry='Coordinates', crs=gdf.crs
)
if crs is not None:
gdf_lines = gdf_lines.to_crs(crs)
if add_allone_col:
gdf_lines['ALLONE'] = 1
Path(dst_lines).parent.mkdir(exist_ok=True, parents=True)
gdf_lines.to_file(dst_lines)
return 0
|
convert_polygons_to_lines
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(src_polygons, dst_lines, crs=None, add_allone_col=False):\n gdf = gpd.read_file(src_polygons)\n geom_coords = gdf['geometry']\n lines = []\n row_ids = []\n for i_row, pol in tqdm(enumerate(geom_coords), total=len(geom_coords)):\n boundary = pol.boundary\n if boundary.type == 'MultiLineString':\n for line in boundary:\n lines.append(line)\n row_ids.append(i_row)\n else:\n lines.append(boundary)\n row_ids.append(i_row)\n gdf_lines = gdf.drop('geometry', axis=1).iloc[row_ids, :]\n gdf_lines['Coordinates'] = lines\n gdf_lines = gpd.GeoDataFrame(gdf_lines, geometry='Coordinates', crs=gdf.crs\n )\n if crs is not None:\n gdf_lines = gdf_lines.to_crs(crs)\n if add_allone_col:\n gdf_lines['ALLONE'] = 1\n Path(dst_lines).parent.mkdir(exist_ok=True, parents=True)\n gdf_lines.to_file(dst_lines)\n return 0\n",
"role": "user"
},
{
"content": "convert_polygons_to_lines",
"role": "assistant"
}
] |
def x(df, dtype, return_=None):
dtype_range = dtype_ranges[dtype]
df_out_of_range = (df < dtype_range[0]) | (df > dtype_range[1]
) | ~np.isfinite(df)
if df_out_of_range.any().any():
if return_ == 'colsums':
df_out_of_range = df_out_of_range.apply(sum, axis=0)
elif return_ == 'rowsums':
df_out_of_range = df_out_of_range.apply(sum, axis=1)
elif return_ == 'all':
df_out_of_range = df_out_of_range
else:
df_out_of_range = 1
else:
df_out_of_range = 0
return df_out_of_range
|
dtype_checker_df
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df, dtype, return_=None):\n dtype_range = dtype_ranges[dtype]\n df_out_of_range = (df < dtype_range[0]) | (df > dtype_range[1]\n ) | ~np.isfinite(df)\n if df_out_of_range.any().any():\n if return_ == 'colsums':\n df_out_of_range = df_out_of_range.apply(sum, axis=0)\n elif return_ == 'rowsums':\n df_out_of_range = df_out_of_range.apply(sum, axis=1)\n elif return_ == 'all':\n df_out_of_range = df_out_of_range\n else:\n df_out_of_range = 1\n else:\n df_out_of_range = 0\n return df_out_of_range\n",
"role": "user"
},
{
"content": "dtype_checker_df",
"role": "assistant"
}
] |
def x(self, band, date):
df = self.df_layers.copy()
df['index'] = range(df.shape[0])
idx_layers = []
if isinstance(band, str) and isinstance(date, str):
idx_layers = df[(df['date'] == date) & (df['band'] == band)]['index'
].values[0]
if isinstance(band, list) and isinstance(date, str):
for b in band:
idx = df[(df['date'] == date) & (df['band'] == b)]['index'].values[
0]
idx_layers.append(idx)
elif isinstance(band, str) and isinstance(date, list):
for d in date:
idx = df[(df['band'] == band) & (df['date'] == d)]['index'].values[
0]
idx_layers.append(idx)
return idx_layers
|
get_df_ilocs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, band, date):\n df = self.df_layers.copy()\n df['index'] = range(df.shape[0])\n idx_layers = []\n if isinstance(band, str) and isinstance(date, str):\n idx_layers = df[(df['date'] == date) & (df['band'] == band)]['index'\n ].values[0]\n if isinstance(band, list) and isinstance(date, str):\n for b in band:\n idx = df[(df['date'] == date) & (df['band'] == b)]['index'].values[\n 0]\n idx_layers.append(idx)\n elif isinstance(band, str) and isinstance(date, list):\n for d in date:\n idx = df[(df['band'] == band) & (df['date'] == d)]['index'].values[\n 0]\n idx_layers.append(idx)\n return idx_layers\n",
"role": "user"
},
{
"content": "get_df_ilocs",
"role": "assistant"
}
] |
def x(self):
with rasterio.open(self._mrio._get_template_for_given_resolution(self.
_mrio.dst_res, 'path')) as src_layer:
pass
win_transform = src_layer.window_transform(self._window)
bounds = rasterio.windows.bounds(window=self._window, transform=
win_transform, height=0, width=0)
return bounds
|
get_spatial_bounds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n with rasterio.open(self._mrio._get_template_for_given_resolution(self.\n _mrio.dst_res, 'path')) as src_layer:\n pass\n win_transform = src_layer.window_transform(self._window)\n bounds = rasterio.windows.bounds(window=self._window, transform=\n win_transform, height=0, width=0)\n return bounds\n",
"role": "user"
},
{
"content": "get_spatial_bounds",
"role": "assistant"
}
] |
def x(self):
if self._data_structure != 'DataFrame':
raise Exception(f'Data is not a DataFrame but {self._data_structure}.')
self._data = self._convert_to_ndarray(self._data)
self._update_data_structure()
return self
|
convert_data_to_ndarray
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._data_structure != 'DataFrame':\n raise Exception(f'Data is not a DataFrame but {self._data_structure}.')\n self._data = self._convert_to_ndarray(self._data)\n self._update_data_structure()\n return self\n",
"role": "user"
},
{
"content": "convert_data_to_ndarray",
"role": "assistant"
}
] |
def x(self, data):
if data.__class__.__name__ != 'DataFrame':
raise Exception(
f'data is not a DataFrame but {data.__class__.__name__}.')
shape_ndarray = self._height, self._width, data.shape[1]
data_ndarray = data.values.reshape(shape_ndarray)
return data_ndarray
|
convert_to_ndarray
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n if data.__class__.__name__ != 'DataFrame':\n raise Exception(\n f'data is not a DataFrame but {data.__class__.__name__}.')\n shape_ndarray = self._height, self._width, data.shape[1]\n data_ndarray = data.values.reshape(shape_ndarray)\n return data_ndarray\n",
"role": "user"
},
{
"content": "convert_to_ndarray",
"role": "assistant"
}
] |
def x(self, result, dst_paths, nodata=None, compress='lzw'):
result = self._convert_to_ndarray(result)
self.write_ndarray(result, dst_paths, nodata=nodata, compress=compress)
|
write_dataframe
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, result, dst_paths, nodata=None, compress='lzw'):\n result = self._convert_to_ndarray(result)\n self.write_ndarray(result, dst_paths, nodata=nodata, compress=compress)\n",
"role": "user"
},
{
"content": "write_dataframe",
"role": "assistant"
}
] |
def x(self, result, dst_paths, nodata=None, compress='lzw'):
assert len(dst_paths) == result.shape[2]
assert result.shape[0] == self._height
assert result.shape[1] == self._width
assert result.shape[2] == len(dst_paths)
with rasterio.open(self._mrio._get_template_for_given_resolution(self.
_mrio.dst_res, 'path')) as src_layer:
pass
for i, pth in enumerate(dst_paths):
dst_path_chunk = self.get_chunk_path_from_layer_path(pth, self.ji)
result_layer_i = result[:, :, [i]]
assert result_layer_i.shape[2] == 1
kwargs = self._mrio._get_template_for_given_resolution(res=self.
_mrio.dst_res, return_='meta').copy()
kwargs.update({'driver': 'GTiff', 'compress': compress, 'nodata':
nodata, 'height': self._height, 'width': self._width, 'dtype':
result_layer_i.dtype, 'transform': src_layer.window_transform(
self._window)})
with rasterio.open(dst_path_chunk, 'w', **kwargs) as dst:
dst.write(result_layer_i[:, :, 0], 1)
|
write_ndarray
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, result, dst_paths, nodata=None, compress='lzw'):\n assert len(dst_paths) == result.shape[2]\n assert result.shape[0] == self._height\n assert result.shape[1] == self._width\n assert result.shape[2] == len(dst_paths)\n with rasterio.open(self._mrio._get_template_for_given_resolution(self.\n _mrio.dst_res, 'path')) as src_layer:\n pass\n for i, pth in enumerate(dst_paths):\n dst_path_chunk = self.get_chunk_path_from_layer_path(pth, self.ji)\n result_layer_i = result[:, :, [i]]\n assert result_layer_i.shape[2] == 1\n kwargs = self._mrio._get_template_for_given_resolution(res=self.\n _mrio.dst_res, return_='meta').copy()\n kwargs.update({'driver': 'GTiff', 'compress': compress, 'nodata':\n nodata, 'height': self._height, 'width': self._width, 'dtype':\n result_layer_i.dtype, 'transform': src_layer.window_transform(\n self._window)})\n with rasterio.open(dst_path_chunk, 'w', **kwargs) as dst:\n dst.write(result_layer_i[:, :, 0], 1)\n",
"role": "user"
},
{
"content": "write_ndarray",
"role": "assistant"
}
] |
def x(arr, robust=False, vmin=None, vmax=None):
def x(arr2d, vmin=None, vmax=None):
if vmin is None:
vmin = np.percentile(arr2d, 2) if robust else arr2d.min()
if vmax is None:
vmax = np.percentile(arr2d, 98) if robust else arr2d.max()
return vmin, vmax
if len(arr.shape) == 3 and vmin is None and vmax is None:
vmin = []
vmax = []
for i in range(arr.shape[2]):
arr_i = arr[:, :, i]
vmin_i, vmax_i = _get_vmin_vmax(arr_i, vmin=None, vmax=None)
vmin.append(vmin_i)
vmax.append(vmax_i)
else:
vmin, vmax = _get_vmin_vmax(arr, vmin=vmin, vmax=vmax)
return vmin, vmax
|
robust_data_range
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, robust=False, vmin=None, vmax=None):\n\n def x(arr2d, vmin=None, vmax=None):\n if vmin is None:\n vmin = np.percentile(arr2d, 2) if robust else arr2d.min()\n if vmax is None:\n vmax = np.percentile(arr2d, 98) if robust else arr2d.max()\n return vmin, vmax\n if len(arr.shape) == 3 and vmin is None and vmax is None:\n vmin = []\n vmax = []\n for i in range(arr.shape[2]):\n arr_i = arr[:, :, i]\n vmin_i, vmax_i = _get_vmin_vmax(arr_i, vmin=None, vmax=None)\n vmin.append(vmin_i)\n vmax.append(vmax_i)\n else:\n vmin, vmax = _get_vmin_vmax(arr, vmin=vmin, vmax=vmax)\n return vmin, vmax\n",
"role": "user"
},
{
"content": "robust_data_range",
"role": "assistant"
}
] |
def x(eocube, ji):
eocubewin = EOCubeChunk(ji, eocube.df_layers, eocube.chunksize, eocube.wdir
)
return eocubewin
|
from_eocube
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(eocube, ji):\n eocubewin = EOCubeChunk(ji, eocube.df_layers, eocube.chunksize, eocube.wdir\n )\n return eocubewin\n",
"role": "user"
},
{
"content": "from_eocube",
"role": "assistant"
}
] |
def x(self, ji):
return EOCubeSceneCollectionChunk(ji=ji, df_layers=self.df_layers,
chunksize=self.chunksize, variables=self.variables, qa=self.qa,
qa_valid=self.qa_valid, wdir=self.wdir)
|
get_chunk
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ji):\n return EOCubeSceneCollectionChunk(ji=ji, df_layers=self.df_layers,\n chunksize=self.chunksize, variables=self.variables, qa=self.qa,\n qa_valid=self.qa_valid, wdir=self.wdir)\n",
"role": "user"
},
{
"content": "get_chunk",
"role": "assistant"
}
] |
def x(self, mask=True):
def x(start, last_stopped, prefix):
return time.time()
start_time = time.time()
last_stopped = time.time()
last_stopped = print_elapsed_time(start_time, last_stopped,
'Starting chunk function')
verbose = False
self.read_data()
last_stopped = print_elapsed_time(start_time, last_stopped, 'Data read')
sc_chunk = self.convert_data_to_dataframe()
last_stopped = print_elapsed_time(start_time, last_stopped,
'Data converted to df')
if mask:
ilocs_qa = np.where((self.df_layers['band'] == self.qa).values)[0]
df_qa = self.data.iloc[:, ilocs_qa]
df_qa.columns = self.df_layers['date'].iloc[ilocs_qa]
df_clearsky = df_qa.isin(self.qa_valid)
last_stopped = print_elapsed_time(start_time, last_stopped,
'Clearsky df created')
return_bands = self.variables
else:
return_bands = self.variables + [self.qa]
dfs_variables = {}
for var in return_bands:
if verbose:
print('VARIABLE:', var)
ilocs_var = np.where((self.df_layers['band'] == var).values)[0]
df_var = self.data.iloc[:, ilocs_var]
df_var.columns = self.df_layers['date'].iloc[ilocs_var]
if mask:
df_var = df_var.where(df_clearsky, other=np.nan)
dfs_variables[var] = df_var
last_stopped = print_elapsed_time(start_time, last_stopped,
'Clearsky df created')
self._data = dfs_variables
return self
|
read_data_by_variable
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mask=True):\n\n def x(start, last_stopped, prefix):\n return time.time()\n start_time = time.time()\n last_stopped = time.time()\n last_stopped = print_elapsed_time(start_time, last_stopped,\n 'Starting chunk function')\n verbose = False\n self.read_data()\n last_stopped = print_elapsed_time(start_time, last_stopped, 'Data read')\n sc_chunk = self.convert_data_to_dataframe()\n last_stopped = print_elapsed_time(start_time, last_stopped,\n 'Data converted to df')\n if mask:\n ilocs_qa = np.where((self.df_layers['band'] == self.qa).values)[0]\n df_qa = self.data.iloc[:, ilocs_qa]\n df_qa.columns = self.df_layers['date'].iloc[ilocs_qa]\n df_clearsky = df_qa.isin(self.qa_valid)\n last_stopped = print_elapsed_time(start_time, last_stopped,\n 'Clearsky df created')\n return_bands = self.variables\n else:\n return_bands = self.variables + [self.qa]\n dfs_variables = {}\n for var in return_bands:\n if verbose:\n print('VARIABLE:', var)\n ilocs_var = np.where((self.df_layers['band'] == var).values)[0]\n df_var = self.data.iloc[:, ilocs_var]\n df_var.columns = self.df_layers['date'].iloc[ilocs_var]\n if mask:\n df_var = df_var.where(df_clearsky, other=np.nan)\n dfs_variables[var] = df_var\n last_stopped = print_elapsed_time(start_time, last_stopped,\n 'Clearsky df created')\n self._data = dfs_variables\n return self\n",
"role": "user"
},
{
"content": "read_data_by_variable",
"role": "assistant"
}
] |
def x(dataset='s2l1c'):
if dataset == 's2l1c':
search_string = os.path.join(DIR_DATA, dataset, '**', '*_B??.jp2')
files = glob.glob(search_string, recursive=True)
if not files:
raise IOError(
f'Could not find raster files of the s2l1c dataset. Search string: {search_string}'
)
basename_splitted = [pth.replace('.jp2', '').split('_')[-2:] for
pth in files]
dset = {'raster_files': files, 'raster_bands': [ele[1] for ele in
basename_splitted], 'raster_times': [ele[0] for ele in
basename_splitted], 'vector_file': os.path.join(DIR_DATA,
's2l1c', 's2l1c_ref.gpkg'), 'vector_file_osm': os.path.join(
DIR_DATA, 's2l1c',
'gis_osm_landuse-water_a_free_1_area-10000-to-500000.gpkg')}
elif dataset == 'lsts':
search_string = os.path.join(DIR_DATA, dataset, '**', '*.tif')
files = glob.glob(search_string, recursive=True)
if not files:
raise IOError(
f'Could not find raster files of the lsts dataset. Search string: {search_string}'
)
basename_splitted = [os.path.basename(pth).replace('.tif', '').
split('_') for pth in files]
dset = {'raster_files': files, 'raster_bands': [ele[1] for ele in
basename_splitted], 'raster_times': [ele[0][9:16] for ele in
basename_splitted]}
return dset
|
get_dataset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dataset='s2l1c'):\n if dataset == 's2l1c':\n search_string = os.path.join(DIR_DATA, dataset, '**', '*_B??.jp2')\n files = glob.glob(search_string, recursive=True)\n if not files:\n raise IOError(\n f'Could not find raster files of the s2l1c dataset. Search string: {search_string}'\n )\n basename_splitted = [pth.replace('.jp2', '').split('_')[-2:] for\n pth in files]\n dset = {'raster_files': files, 'raster_bands': [ele[1] for ele in\n basename_splitted], 'raster_times': [ele[0] for ele in\n basename_splitted], 'vector_file': os.path.join(DIR_DATA,\n 's2l1c', 's2l1c_ref.gpkg'), 'vector_file_osm': os.path.join(\n DIR_DATA, 's2l1c',\n 'gis_osm_landuse-water_a_free_1_area-10000-to-500000.gpkg')}\n elif dataset == 'lsts':\n search_string = os.path.join(DIR_DATA, dataset, '**', '*.tif')\n files = glob.glob(search_string, recursive=True)\n if not files:\n raise IOError(\n f'Could not find raster files of the lsts dataset. Search string: {search_string}'\n )\n basename_splitted = [os.path.basename(pth).replace('.tif', '').\n split('_') for pth in files]\n dset = {'raster_files': files, 'raster_bands': [ele[1] for ele in\n basename_splitted], 'raster_times': [ele[0][9:16] for ele in\n basename_splitted]}\n return dset\n",
"role": "user"
},
{
"content": "get_dataset",
"role": "assistant"
}
] |
def x(blocksize_xy, width, height):
value_error_msg = (
"'blocksize must be an integer or a list of two integers.'")
if isinstance(blocksize_xy, int):
blockxsize, blockysize = blocksize_xy, blocksize_xy
elif isinstance(blocksize_xy, list):
if len(blocksize_xy) != 2:
raise ValueError(value_error_msg)
else:
if not all([isinstance(blocksize_xy[0], int), isinstance(
blocksize_xy[1], int)]):
raise ValueError(value_error_msg)
blockxsize, blockysize = blocksize_xy
else:
raise ValueError(value_error_msg)
n_cols = int(np.ceil(width / blockxsize))
n_rows = int(np.ceil(height / blockysize))
col = list(range(n_cols)) * n_rows
col_off = np.array(col) * blockxsize
row = np.repeat(list(range(n_rows)), n_cols)
row_off = row * blockysize
blocksize_wins = []
for ridx, roff, cidx, coff in zip(row, row_off, col, col_off):
if coff + blockxsize > width:
bxsize = width - coff
else:
bxsize = blockxsize
if roff + blockysize > height:
bysize = height - roff
else:
bysize = blockysize
blocksize_wins.append([[ridx, cidx], rasterio.windows.Window(coff,
roff, bxsize, bysize)])
return blocksize_wins
|
windows_from_blocksize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(blocksize_xy, width, height):\n value_error_msg = (\n \"'blocksize must be an integer or a list of two integers.'\")\n if isinstance(blocksize_xy, int):\n blockxsize, blockysize = blocksize_xy, blocksize_xy\n elif isinstance(blocksize_xy, list):\n if len(blocksize_xy) != 2:\n raise ValueError(value_error_msg)\n else:\n if not all([isinstance(blocksize_xy[0], int), isinstance(\n blocksize_xy[1], int)]):\n raise ValueError(value_error_msg)\n blockxsize, blockysize = blocksize_xy\n else:\n raise ValueError(value_error_msg)\n n_cols = int(np.ceil(width / blockxsize))\n n_rows = int(np.ceil(height / blockysize))\n col = list(range(n_cols)) * n_rows\n col_off = np.array(col) * blockxsize\n row = np.repeat(list(range(n_rows)), n_cols)\n row_off = row * blockysize\n blocksize_wins = []\n for ridx, roff, cidx, coff in zip(row, row_off, col, col_off):\n if coff + blockxsize > width:\n bxsize = width - coff\n else:\n bxsize = blockxsize\n if roff + blockysize > height:\n bysize = height - roff\n else:\n bysize = blockysize\n blocksize_wins.append([[ridx, cidx], rasterio.windows.Window(coff,\n roff, bxsize, bysize)])\n return blocksize_wins\n",
"role": "user"
},
{
"content": "windows_from_blocksize",
"role": "assistant"
}
] |
def x(self, dst_res=None):
if dst_res is None:
dst_res = min(self._res_indices.keys())
return dst_res
|
get_dst_resolution
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dst_res=None):\n if dst_res is None:\n dst_res = min(self._res_indices.keys())\n return dst_res\n",
"role": "user"
},
{
"content": "get_dst_resolution",
"role": "assistant"
}
] |
def x(self, res=None):
if res is None:
res = max(self._res_indices.keys())
self._windows_res = res
a_file_index_given_res = self._res_indices[res][0]
with rasterio.open(self._layer_files[a_file_index_given_res]) as src:
wins_of_first_dst_res_layer = tuple(src.block_windows())
self.windows = np.array([win[1] for win in wins_of_first_dst_res_layer])
self.windows_row = np.array([win[0][0] for win in
wins_of_first_dst_res_layer])
self.windows_col = np.array([win[0][1] for win in
wins_of_first_dst_res_layer])
|
block_windows
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, res=None):\n if res is None:\n res = max(self._res_indices.keys())\n self._windows_res = res\n a_file_index_given_res = self._res_indices[res][0]\n with rasterio.open(self._layer_files[a_file_index_given_res]) as src:\n wins_of_first_dst_res_layer = tuple(src.block_windows())\n self.windows = np.array([win[1] for win in wins_of_first_dst_res_layer])\n self.windows_row = np.array([win[0][0] for win in\n wins_of_first_dst_res_layer])\n self.windows_col = np.array([win[0][1] for win in\n wins_of_first_dst_res_layer])\n",
"role": "user"
},
{
"content": "block_windows",
"role": "assistant"
}
] |
def x(self, blocksize_xy=512):
meta = self._get_template_for_given_resolution(self.dst_res, 'meta')
width = meta['width']
height = meta['height']
blocksize_wins = windows_from_blocksize(blocksize_xy, width, height)
self.windows = np.array([win[1] for win in blocksize_wins])
self.windows_row = np.array([win[0][0] for win in blocksize_wins])
self.windows_col = np.array([win[0][1] for win in blocksize_wins])
return self
|
windows_from_blocksize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, blocksize_xy=512):\n meta = self._get_template_for_given_resolution(self.dst_res, 'meta')\n width = meta['width']\n height = meta['height']\n blocksize_wins = windows_from_blocksize(blocksize_xy, width, height)\n self.windows = np.array([win[1] for win in blocksize_wins])\n self.windows_row = np.array([win[0][0] for win in blocksize_wins])\n self.windows_col = np.array([win[0][1] for win in blocksize_wins])\n return self\n",
"role": "user"
},
{
"content": "windows_from_blocksize",
"role": "assistant"
}
] |
def x(self, res, return_):
path = self._layer_files[self._res_indices[res][0]]
if return_ == 'path':
return_value = path
else:
with rasterio.open(str(path)) as src:
if return_ == 'meta':
return_value = src.meta
elif return_ == 'windows':
return_value = tuple(src.block_windows())
else:
raise ValueError(
"'return_' must be 'path', meta' or 'windows'.")
return return_value
|
get_template_for_given_resolution
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, res, return_):\n path = self._layer_files[self._res_indices[res][0]]\n if return_ == 'path':\n return_value = path\n else:\n with rasterio.open(str(path)) as src:\n if return_ == 'meta':\n return_value = src.meta\n elif return_ == 'windows':\n return_value = tuple(src.block_windows())\n else:\n raise ValueError(\n \"'return_' must be 'path', meta' or 'windows'.\")\n return return_value\n",
"role": "user"
},
{
"content": "get_template_for_given_resolution",
"role": "assistant"
}
] |
def x(self):
import pandas as pd
if self.windows is None:
raise Exception('You need to call the block_windows or windows before.'
)
df_wins = []
for row, col, win in zip(self.windows_row, self.windows_col, self.windows):
df_wins.append(pd.DataFrame({'row': [row], 'col': [col], 'Window':
[win]}))
df_wins = pd.concat(df_wins).set_index(['row', 'col'])
df_wins['window_index'] = range(df_wins.shape[0])
df_wins = df_wins.sort_index()
return df_wins
|
windows_df
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n import pandas as pd\n if self.windows is None:\n raise Exception('You need to call the block_windows or windows before.'\n )\n df_wins = []\n for row, col, win in zip(self.windows_row, self.windows_col, self.windows):\n df_wins.append(pd.DataFrame({'row': [row], 'col': [col], 'Window':\n [win]}))\n df_wins = pd.concat(df_wins).set_index(['row', 'col'])\n df_wins['window_index'] = range(df_wins.shape[0])\n df_wins = df_wins.sort_index()\n return df_wins\n",
"role": "user"
},
{
"content": "windows_df",
"role": "assistant"
}
] |
def x(self, ij_win):
ji_windows = {}
transform_src = self._layer_meta[self._res_indices[self._windows_res][0]][
'transform']
for res in self._res_indices:
transform_dst = self._layer_meta[self._res_indices[res][0]]['transform'
]
ji_windows[res] = window_from_window(window_src=self.windows[ij_win
], transform_src=transform_src, transform_dst=transform_dst)
return ji_windows
|
ji_windows
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ij_win):\n ji_windows = {}\n transform_src = self._layer_meta[self._res_indices[self._windows_res][0]][\n 'transform']\n for res in self._res_indices:\n transform_dst = self._layer_meta[self._res_indices[res][0]]['transform'\n ]\n ji_windows[res] = window_from_window(window_src=self.windows[ij_win\n ], transform_src=transform_src, transform_dst=transform_dst)\n return ji_windows\n",
"role": "user"
},
{
"content": "ji_windows",
"role": "assistant"
}
] |
def x(self, ji_win):
if isinstance(ji_win, dict):
ji_windows = ji_win
else:
ji_windows = self.ji_windows(ji_win)
arrays = []
for filename, res in zip(self._layer_files, self._layer_resolution):
with rasterio.open(filename) as src:
arr = src.read(1, window=ji_windows[res])
arrays.append(arr)
if self.dst_res is not None:
arrays = self._resample(arrays=arrays, ji_windows=ji_windows)
return arrays
|
get_arrays
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ji_win):\n if isinstance(ji_win, dict):\n ji_windows = ji_win\n else:\n ji_windows = self.ji_windows(ji_win)\n arrays = []\n for filename, res in zip(self._layer_files, self._layer_resolution):\n with rasterio.open(filename) as src:\n arr = src.read(1, window=ji_windows[res])\n arrays.append(arr)\n if self.dst_res is not None:\n arrays = self._resample(arrays=arrays, ji_windows=ji_windows)\n return arrays\n",
"role": "user"
},
{
"content": "get_arrays",
"role": "assistant"
}
] |
def x(self, arrays, ji_windows):
win_dst = ji_windows[self.dst_res]
aff_dst = self._layer_meta[self._res_indices[self.dst_res][0]]['transform']
arrays_dst = list()
for i, array in enumerate(arrays):
arr_dst = np.zeros((int(win_dst.height), int(win_dst.width)))
if self._layer_resolution[i] > self.dst_res:
resampling = getattr(Resampling, self.upsampler)
elif self._layer_resolution[i] < self.dst_res:
resampling = getattr(Resampling, self.downsampler)
else:
arrays_dst.append(array.copy())
continue
reproject(array, arr_dst, src_transform=self._layer_meta[i][
'transform'], dst_transform=aff_dst, src_crs=self._layer_meta[0
]['crs'], dst_crs=self._layer_meta[0]['crs'], resampling=resampling
)
arrays_dst.append(arr_dst.copy())
arrays_dst = np.stack(arrays_dst, axis=2)
return arrays_dst
|
resample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, arrays, ji_windows):\n win_dst = ji_windows[self.dst_res]\n aff_dst = self._layer_meta[self._res_indices[self.dst_res][0]]['transform']\n arrays_dst = list()\n for i, array in enumerate(arrays):\n arr_dst = np.zeros((int(win_dst.height), int(win_dst.width)))\n if self._layer_resolution[i] > self.dst_res:\n resampling = getattr(Resampling, self.upsampler)\n elif self._layer_resolution[i] < self.dst_res:\n resampling = getattr(Resampling, self.downsampler)\n else:\n arrays_dst.append(array.copy())\n continue\n reproject(array, arr_dst, src_transform=self._layer_meta[i][\n 'transform'], dst_transform=aff_dst, src_crs=self._layer_meta[0\n ]['crs'], dst_crs=self._layer_meta[0]['crs'], resampling=resampling\n )\n arrays_dst.append(arr_dst.copy())\n arrays_dst = np.stack(arrays_dst, axis=2)\n return arrays_dst\n",
"role": "user"
},
{
"content": "resample",
"role": "assistant"
}
] |
def x(self, func, **kwargs):
ji_results = self._process_windows(func, **kwargs)
for idx_layer in range(len(ji_results[0])):
for j in np.unique(self.windows_row):
win_indices_j = np.where(self.windows_row == j)[0]
layer_merged_j = np.hstack([ji_results[idx][idx_layer] for idx in
win_indices_j])
if j == 0:
layer_merged = layer_merged_j
else:
layer_merged = np.vstack([layer_merged, layer_merged_j])
if idx_layer == 0:
layers_merged = layer_merged
else:
layers_merged = np.stack([layers_merged, layer_merged], axis=2)
return layers_merged
|
process_windows_merge_stack
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, func, **kwargs):\n ji_results = self._process_windows(func, **kwargs)\n for idx_layer in range(len(ji_results[0])):\n for j in np.unique(self.windows_row):\n win_indices_j = np.where(self.windows_row == j)[0]\n layer_merged_j = np.hstack([ji_results[idx][idx_layer] for idx in\n win_indices_j])\n if j == 0:\n layer_merged = layer_merged_j\n else:\n layer_merged = np.vstack([layer_merged, layer_merged_j])\n if idx_layer == 0:\n layers_merged = layer_merged\n else:\n layers_merged = np.stack([layers_merged, layer_merged], axis=2)\n return layers_merged\n",
"role": "user"
},
{
"content": "process_windows_merge_stack",
"role": "assistant"
}
] |
def x(self, func, **kwargs):
ji_results = []
for ji_win in range(len(self.windows)):
ji_results.append(self._process_window(ji_win, func, **kwargs))
return ji_results
|
process_windows
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, func, **kwargs):\n ji_results = []\n for ji_win in range(len(self.windows)):\n ji_results.append(self._process_window(ji_win, func, **kwargs))\n return ji_results\n",
"role": "user"
},
{
"content": "process_windows",
"role": "assistant"
}
] |
def x(self, ji_win, func, **kwargs):
arr = self.get_arrays(ji_win)
result = func(arr, **kwargs)
return result
|
process_window
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ji_win, func, **kwargs):\n arr = self.get_arrays(ji_win)\n result = func(arr, **kwargs)\n return result\n",
"role": "user"
},
{
"content": "process_window",
"role": "assistant"
}
] |
def x(self, xy):
a_transform = self._get_template_for_given_resolution(res=self.dst_res,
return_='meta')['transform']
row, col = transform.rowcol(a_transform, xy[0], xy[1])
ij_containing_xy = None
for ji, win in enumerate(self.windows):
(row_start, row_end), (col_start, col_end) = rasterio.windows.toranges(
win)
if (col >= col_start) & (col < col_end) & ((row >= row_start) & (
row < row_end)):
ij_containing_xy = ji
break
if ij_containing_xy is None:
raise ValueError("The given 'xy' value is not contained in any window."
)
return ij_containing_xy
|
get_window_from_xy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, xy):\n a_transform = self._get_template_for_given_resolution(res=self.dst_res,\n return_='meta')['transform']\n row, col = transform.rowcol(a_transform, xy[0], xy[1])\n ij_containing_xy = None\n for ji, win in enumerate(self.windows):\n (row_start, row_end), (col_start, col_end) = rasterio.windows.toranges(\n win)\n if (col >= col_start) & (col < col_end) & ((row >= row_start) & (\n row < row_end)):\n ij_containing_xy = ji\n break\n if ij_containing_xy is None:\n raise ValueError(\"The given 'xy' value is not contained in any window.\"\n )\n return ij_containing_xy\n",
"role": "user"
},
{
"content": "get_window_from_xy",
"role": "assistant"
}
] |
def x(src_vector: str, burn_attribute: str, src_raster: list, dst_names:
list, dst_dir: str, src_raster_template: str=None, gdal_dtype: int=4,
n_jobs: int=1):
if src_raster_template is None:
src_raster_template = src_raster[0]
path_rasterized = os.path.join(dst_dir,
f'burn_attribute_rasterized_{burn_attribute}.tif')
paths_extracted_aux = {ele: os.path.join(dst_dir, f'{ele}.npy') for ele in
[f'aux_vector_{burn_attribute}', 'aux_coord_x', 'aux_coord_y']}
paths_extracted_raster = {}
for path, name in zip(src_raster, dst_names):
dst = f'{os.path.join(dst_dir, name)}.npy'
if not os.path.exists(dst):
paths_extracted_raster[path] = dst
if not os.path.exists(dst_dir):
os.makedirs(dst_dir)
if not os.path.exists(path_rasterized):
if src_raster_template is None:
src_raster_template = src_raster[0]
rasterize(src_vector=src_vector, burn_attribute=burn_attribute,
src_raster_template=src_raster_template, dst_rasterized=
path_rasterized, gdal_dtype=gdal_dtype)
if not (all([os.path.exists(path) for path in paths_extracted_aux.
values()]) and all([os.path.exists(path) for path in
paths_extracted_raster.values()])):
mask_arr = _get_mask_array(path_rasterized, paths_extracted_aux,
burn_attribute)
else:
return 0
if not all([os.path.exists(paths_extracted_aux['aux_coord_x']), os.path
.exists(paths_extracted_aux['aux_coord_y'])]):
_create_and_save_coords(path_rasterized, paths_extracted_aux, mask_arr)
if n_jobs == 1:
for path_src, path_dst in tqdm(paths_extracted_raster.items(),
total=len(paths_extracted_raster)):
_extract_and_save_one_layer(path_src, path_dst, mask_arr)
else:
import multiprocessing as mp
if n_jobs == -1:
n_jobs = mp.cpu_count()
pool = mp.Pool(processes=n_jobs)
_ = [pool.apply_async(_extract_and_save_one_layer, args=(src, dst,
mask_arr)) for src, dst in paths_extracted_raster.items()]
pool.close()
pool.join()
return 0
|
extract
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(src_vector: str, burn_attribute: str, src_raster: list, dst_names:\n list, dst_dir: str, src_raster_template: str=None, gdal_dtype: int=4,\n n_jobs: int=1):\n if src_raster_template is None:\n src_raster_template = src_raster[0]\n path_rasterized = os.path.join(dst_dir,\n f'burn_attribute_rasterized_{burn_attribute}.tif')\n paths_extracted_aux = {ele: os.path.join(dst_dir, f'{ele}.npy') for ele in\n [f'aux_vector_{burn_attribute}', 'aux_coord_x', 'aux_coord_y']}\n paths_extracted_raster = {}\n for path, name in zip(src_raster, dst_names):\n dst = f'{os.path.join(dst_dir, name)}.npy'\n if not os.path.exists(dst):\n paths_extracted_raster[path] = dst\n if not os.path.exists(dst_dir):\n os.makedirs(dst_dir)\n if not os.path.exists(path_rasterized):\n if src_raster_template is None:\n src_raster_template = src_raster[0]\n rasterize(src_vector=src_vector, burn_attribute=burn_attribute,\n src_raster_template=src_raster_template, dst_rasterized=\n path_rasterized, gdal_dtype=gdal_dtype)\n if not (all([os.path.exists(path) for path in paths_extracted_aux.\n values()]) and all([os.path.exists(path) for path in\n paths_extracted_raster.values()])):\n mask_arr = _get_mask_array(path_rasterized, paths_extracted_aux,\n burn_attribute)\n else:\n return 0\n if not all([os.path.exists(paths_extracted_aux['aux_coord_x']), os.path\n .exists(paths_extracted_aux['aux_coord_y'])]):\n _create_and_save_coords(path_rasterized, paths_extracted_aux, mask_arr)\n if n_jobs == 1:\n for path_src, path_dst in tqdm(paths_extracted_raster.items(),\n total=len(paths_extracted_raster)):\n _extract_and_save_one_layer(path_src, path_dst, mask_arr)\n else:\n import multiprocessing as mp\n if n_jobs == -1:\n n_jobs = mp.cpu_count()\n pool = mp.Pool(processes=n_jobs)\n _ = [pool.apply_async(_extract_and_save_one_layer, args=(src, dst,\n mask_arr)) for src, dst in paths_extracted_raster.items()]\n pool.close()\n pool.join()\n return 0\n",
"role": "user"
},
{
"content": "extract",
"role": "assistant"
}
] |
def x(src_dir: str, patterns='*.npy', vars_in_cols: bool=True, index: pd.
Series=None):
def x(path, index):
if index is None:
arr = np.load(str(path))
else:
arr = np.load(str(path), mmap_mode='r')[index]
return arr
src_dir = Path(src_dir)
paths = []
if isinstance(patterns, str):
patterns = [patterns]
for pat in patterns:
paths += src_dir.glob(pat)
if vars_in_cols:
df_data = {}
for path in paths:
df_data[path.stem] = _load(path, index)
df_data = pd.DataFrame(df_data)
if index is not None:
df_data.index = index.index[index]
else:
df_data = []
for path in paths:
arr = _load(path, index)
df_data.append(pd.DataFrame(np.expand_dims(arr, 0), index=[path
.stem]))
df_data = pd.concat(df_data)
if index is not None:
df_data.columns = index.index[index]
return df_data
|
load_extracted
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(src_dir: str, patterns='*.npy', vars_in_cols: bool=True, index: pd.\n Series=None):\n\n def x(path, index):\n if index is None:\n arr = np.load(str(path))\n else:\n arr = np.load(str(path), mmap_mode='r')[index]\n return arr\n src_dir = Path(src_dir)\n paths = []\n if isinstance(patterns, str):\n patterns = [patterns]\n for pat in patterns:\n paths += src_dir.glob(pat)\n if vars_in_cols:\n df_data = {}\n for path in paths:\n df_data[path.stem] = _load(path, index)\n df_data = pd.DataFrame(df_data)\n if index is not None:\n df_data.index = index.index[index]\n else:\n df_data = []\n for path in paths:\n arr = _load(path, index)\n df_data.append(pd.DataFrame(np.expand_dims(arr, 0), index=[path\n .stem]))\n df_data = pd.concat(df_data)\n if index is not None:\n df_data.columns = index.index[index]\n return df_data\n",
"role": "user"
},
{
"content": "load_extracted",
"role": "assistant"
}
] |
def x(self, x0, y0, w, h):
minimum = 9223372036854775807
maximum = 0
for y in range(y0, y0 + h):
for x in range(x0, x0 + w):
value = self[x, y]
if value != self.filler:
minimum = min(minimum, value)
maximum = max(maximum, value)
return minimum, maximum
|
extrema
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x0, y0, w, h):\n minimum = 9223372036854775807\n maximum = 0\n for y in range(y0, y0 + h):\n for x in range(x0, x0 + w):\n value = self[x, y]\n if value != self.filler:\n minimum = min(minimum, value)\n maximum = max(maximum, value)\n return minimum, maximum\n",
"role": "user"
},
{
"content": "extrema",
"role": "assistant"
}
] |
def x(rgb):
incs = 0, 95, 135, 175, 215, 255
parts = [int(h, 16) for h in re.split('(..)(..)(..)', rgb)[1:4]]
res = []
for part in parts:
i = 0
while i < len(incs) - 1:
s, b = incs[i], incs[i + 1]
if s <= part <= b:
s1 = abs(s - part)
b1 = abs(b - part)
if s1 < b1:
closest = s
else:
closest = b
res.append(closest)
break
i += 1
res = ''.join([('%02.x' % i) for i in res])
equiv = RGB2SHORT_DICT[res]
return equiv, res
|
rgb2short
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(rgb):\n incs = 0, 95, 135, 175, 215, 255\n parts = [int(h, 16) for h in re.split('(..)(..)(..)', rgb)[1:4]]\n res = []\n for part in parts:\n i = 0\n while i < len(incs) - 1:\n s, b = incs[i], incs[i + 1]\n if s <= part <= b:\n s1 = abs(s - part)\n b1 = abs(b - part)\n if s1 < b1:\n closest = s\n else:\n closest = b\n res.append(closest)\n break\n i += 1\n res = ''.join([('%02.x' % i) for i in res])\n equiv = RGB2SHORT_DICT[res]\n return equiv, res\n",
"role": "user"
},
{
"content": "rgb2short",
"role": "assistant"
}
] |
def x(self, x, y):
curses.curs_set(1)
self.screen.move(y, x)
|
set_cursor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y):\n curses.curs_set(1)\n self.screen.move(y, x)\n",
"role": "user"
},
{
"content": "set_cursor",
"role": "assistant"
}
] |
def x(self, x, y, text, fg, bg):
if x < self.width and y < self.height:
try:
self.screen.addstr(y, x, symbols.encode(text), self.pairs[fg, bg])
except curses.error:
pass
|
put
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, text, fg, bg):\n if x < self.width and y < self.height:\n try:\n self.screen.addstr(y, x, symbols.encode(text), self.pairs[fg, bg])\n except curses.error:\n pass\n",
"role": "user"
},
{
"content": "put",
"role": "assistant"
}
] |
def x(self):
curses.flushinp()
ch = self.screen.getch()
if ch == 27:
return EVENT_ESC
elif ch == -1 or ch == curses.KEY_RESIZE:
return EVENT_RESIZE
elif ch == 10 or ch == curses.KEY_ENTER:
return EVENT_ENTER
elif ch == 127 or ch == curses.KEY_BACKSPACE:
return EVENT_BACKSPACE
elif ch == curses.KEY_UP:
return EVENT_UP
elif ch == curses.KEY_DOWN:
return EVENT_DOWN
elif ch == curses.KEY_LEFT:
return EVENT_LEFT
elif ch == curses.KEY_RIGHT:
return EVENT_RIGHT
elif ch == 3:
return EVENT_CTRL_C
elif 0 <= ch < 256:
return chr(ch)
else:
return EVENT_UNHANDLED
|
poll_event
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n curses.flushinp()\n ch = self.screen.getch()\n if ch == 27:\n return EVENT_ESC\n elif ch == -1 or ch == curses.KEY_RESIZE:\n return EVENT_RESIZE\n elif ch == 10 or ch == curses.KEY_ENTER:\n return EVENT_ENTER\n elif ch == 127 or ch == curses.KEY_BACKSPACE:\n return EVENT_BACKSPACE\n elif ch == curses.KEY_UP:\n return EVENT_UP\n elif ch == curses.KEY_DOWN:\n return EVENT_DOWN\n elif ch == curses.KEY_LEFT:\n return EVENT_LEFT\n elif ch == curses.KEY_RIGHT:\n return EVENT_RIGHT\n elif ch == 3:\n return EVENT_CTRL_C\n elif 0 <= ch < 256:\n return chr(ch)\n else:\n return EVENT_UNHANDLED\n",
"role": "user"
},
{
"content": "poll_event",
"role": "assistant"
}
] |
def x(args):
x, y, params = args
"""Callable function for the multiprocessing pool."""
return x, y, mandelbrot(x, y, params)
|
compute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n x, y, params = args\n \"\"\"Callable function for the multiprocessing pool.\"\"\"\n return x, y, mandelbrot(x, y, params)\n",
"role": "user"
},
{
"content": "compute",
"role": "assistant"
}
] |
def x(args):
x, y, w, h, params = args
"""Callable function for the multiprocessing pool."""
return x, y, mandelbrot_capture(x, y, w, h, params)
|
compute_capture
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n x, y, w, h, params = args\n \"\"\"Callable function for the multiprocessing pool.\"\"\"\n return x, y, mandelbrot_capture(x, y, w, h, params)\n",
"role": "user"
},
{
"content": "compute_capture",
"role": "assistant"
}
] |
def x(cb, pool, params, plane):
w = cb.width - MENU_WIDTH - 1
h = cb.height - 1
params.plane_w = w
params.plane_h = h
params.resize(w, h)
palette = PALETTES[params.palette][1]
if params.reverse_palette:
palette = palette[::-1]
generated = 0
missing_coords = []
xs = range(params.plane_x0, params.plane_x0 + params.plane_w - 1)
ys = range(params.plane_y0, params.plane_y0 + params.plane_h - 1)
for x in xs:
for y in ys:
if plane[x, y] is None:
missing_coords.append((x, y, params))
generated += 1
n_processes = 0
if len(missing_coords) > 0:
n_cores = pool._processes
n_processes = len(missing_coords) // 256
if n_processes > n_cores:
n_processes = n_cores
start = time.time()
for i, result in enumerate(pool.imap_unordered(compute,
missing_coords, chunksize=256)):
plane[result[0], result[1]] = result[2]
if time.time() - start > 2:
if i % 200 == 0:
draw_progress_bar(cb,
'Render is taking a longer time...', i, len(
missing_coords))
cb.refresh()
if generated > 0:
params.log('Added %d missing cells' % generated)
if n_processes > 1:
params.log('(Used %d processes)' % n_processes)
min_value = 0.0
max_value = params.max_iterations
max_iterations = params.max_iterations
if params.adaptive_palette:
min_value, max_value = plane.extrema(params.plane_x0, params.
plane_y0, params.plane_w, params.plane_h)
crosshairs_coord = None
if params.crosshairs:
crosshairs_coord = params.crosshairs_coord
for x in xs:
for y in ys:
value = (plane[x, y] + params.palette_offset) % (params.
max_iterations + 1)
if params.adaptive_palette:
if max_value - min_value > 0:
value = (value - min_value) / (max_value - min_value
) * max_iterations
else:
value = max_iterations
if params.dither_type < 2:
draw_dithered_color(cb, x - params.plane_x0 + 1, y - params
.plane_y0 + 1, palette, params.dither_type, value,
max_iterations, crosshairs_coord=crosshairs_coord)
else:
draw_color(cb, x - params.plane_x0 + 1, y - params.plane_y0 +
1, value, max_iterations, palette, crosshairs_coord=
crosshairs_coord)
draw_box(cb, 0, 0, w + 1, h + 1)
|
draw_panel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cb, pool, params, plane):\n w = cb.width - MENU_WIDTH - 1\n h = cb.height - 1\n params.plane_w = w\n params.plane_h = h\n params.resize(w, h)\n palette = PALETTES[params.palette][1]\n if params.reverse_palette:\n palette = palette[::-1]\n generated = 0\n missing_coords = []\n xs = range(params.plane_x0, params.plane_x0 + params.plane_w - 1)\n ys = range(params.plane_y0, params.plane_y0 + params.plane_h - 1)\n for x in xs:\n for y in ys:\n if plane[x, y] is None:\n missing_coords.append((x, y, params))\n generated += 1\n n_processes = 0\n if len(missing_coords) > 0:\n n_cores = pool._processes\n n_processes = len(missing_coords) // 256\n if n_processes > n_cores:\n n_processes = n_cores\n start = time.time()\n for i, result in enumerate(pool.imap_unordered(compute,\n missing_coords, chunksize=256)):\n plane[result[0], result[1]] = result[2]\n if time.time() - start > 2:\n if i % 200 == 0:\n draw_progress_bar(cb,\n 'Render is taking a longer time...', i, len(\n missing_coords))\n cb.refresh()\n if generated > 0:\n params.log('Added %d missing cells' % generated)\n if n_processes > 1:\n params.log('(Used %d processes)' % n_processes)\n min_value = 0.0\n max_value = params.max_iterations\n max_iterations = params.max_iterations\n if params.adaptive_palette:\n min_value, max_value = plane.extrema(params.plane_x0, params.\n plane_y0, params.plane_w, params.plane_h)\n crosshairs_coord = None\n if params.crosshairs:\n crosshairs_coord = params.crosshairs_coord\n for x in xs:\n for y in ys:\n value = (plane[x, y] + params.palette_offset) % (params.\n max_iterations + 1)\n if params.adaptive_palette:\n if max_value - min_value > 0:\n value = (value - min_value) / (max_value - min_value\n ) * max_iterations\n else:\n value = max_iterations\n if params.dither_type < 2:\n draw_dithered_color(cb, x - params.plane_x0 + 1, y - params\n .plane_y0 + 1, palette, params.dither_type, value,\n max_iterations, crosshairs_coord=crosshairs_coord)\n else:\n draw_color(cb, x - params.plane_x0 + 1, y - params.plane_y0 +\n 1, value, max_iterations, palette, crosshairs_coord=\n crosshairs_coord)\n draw_box(cb, 0, 0, w + 1, h + 1)\n",
"role": "user"
},
{
"content": "draw_panel",
"role": "assistant"
}
] |
def x(cb, params, qwertz):
w = cb.width
h = cb.height
x0 = w - MENU_WIDTH + 1
fill(cb, x0, 1, MENU_WIDTH, h - 2, ' ')
def x(key, value, shortcuts):
draw_text(cb, x0 + 1, 2 + draw_option.counter, '%s %s %s' % (key,
str(value).rjust(MENU_WIDTH - 14 - len(key)), shortcuts))
draw_option.counter += 1
draw_option.counter = 1
z = 'Z'
y = 'Y'
if qwertz:
z, y = y, z
h_seps = [2]
draw_text(cb, x0, 1, ('Almonds %s' % __version__).center(MENU_WIDTH - 2))
draw_option('Real', '{0:.13g}'.format(params.mb_cx), '$[' + symbols[
'ARROW_LEFT'] + ']$, $[' + symbols['ARROW_RIGHT'] + ']$')
draw_option('Imaginary', '{0:.13g}'.format(params.mb_cy), '$[' +
symbols['ARROW_UP'] + ']$, $[' + symbols['ARROW_DOWN'] + ']$')
if is_native_windows():
cb.put_arrow(x0 + 30, 3, 'up', colors.default_bg(), colors.default_fg()
)
cb.put_arrow(x0 + 35, 3, 'down', colors.default_bg(), colors.
default_fg())
cb.put_arrow(x0 + 30, 4, 'left', colors.default_bg(), colors.
default_fg())
cb.put_arrow(x0 + 35, 4, 'right', colors.default_bg(), colors.
default_fg())
draw_option('Input coordinates...', '', '$[Enter]$')
draw_option.counter += 1
h_seps.append(draw_option.counter + 1)
draw_option('Move speed', params.move_speed, '$[C]$, $[V]$')
draw_option('Zoom', '{0:.13g}'.format(params.zoom), '$[' + y + ']$, $[U]$')
draw_option('Iterations', params.max_iterations, '$[I]$, $[O]$')
draw_option('Julia mode', 'On' if params.julia else 'Off', '$[J]$')
draw_option.counter += 1
h_seps.append(draw_option.counter + 1)
draw_option('Palette', PALETTES[params.palette][0], '$[P]$')
draw_option('Color mode', DITHER_TYPES[params.dither_type][0], '$[D]$')
draw_option('Order', 'Reversed' if params.reverse_palette else 'Normal',
'$[R]$')
draw_option('Mode', 'Adaptive' if params.adaptive_palette else 'Linear',
'$[A]$')
draw_option('Cycle!', '', '$[' + z + ']$')
draw_option.counter += 1
h_seps.append(draw_option.counter + 1)
draw_option('Hi-res capture', '', '$[H]$')
draw_option('Crosshairs', 'On' if params.crosshairs else 'Off', '$[X]$')
draw_option('Theme', 'Dark' if colors.dark else 'Light', '$[T]$')
draw_option('Save', '', '$[S]$')
draw_option('Load...', '', '$[L]$')
draw_option('Exit', '', '$[ESC]$')
middle = 3 + draw_option.counter
draw_box(cb, w - MENU_WIDTH, 0, MENU_WIDTH, h, h_seps=h_seps + [middle -
1, middle + 1])
draw_text(cb, x0, middle, 'Event log'.center(MENU_WIDTH - 2))
latest_logs = params.log.get_latest(h - middle)
latest_logs = [textwrap.wrap(l, MENU_WIDTH - 4)[::-1] for l in latest_logs]
latest_logs = [l for ls in latest_logs for l in ls]
i = h - 2
for l in latest_logs:
draw_text(cb, x0 + 1, i, l)
i -= 1
if i == middle + 1:
break
|
draw_menu
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cb, params, qwertz):\n w = cb.width\n h = cb.height\n x0 = w - MENU_WIDTH + 1\n fill(cb, x0, 1, MENU_WIDTH, h - 2, ' ')\n\n def x(key, value, shortcuts):\n draw_text(cb, x0 + 1, 2 + draw_option.counter, '%s %s %s' % (key,\n str(value).rjust(MENU_WIDTH - 14 - len(key)), shortcuts))\n draw_option.counter += 1\n draw_option.counter = 1\n z = 'Z'\n y = 'Y'\n if qwertz:\n z, y = y, z\n h_seps = [2]\n draw_text(cb, x0, 1, ('Almonds %s' % __version__).center(MENU_WIDTH - 2))\n draw_option('Real', '{0:.13g}'.format(params.mb_cx), '$[' + symbols[\n 'ARROW_LEFT'] + ']$, $[' + symbols['ARROW_RIGHT'] + ']$')\n draw_option('Imaginary', '{0:.13g}'.format(params.mb_cy), '$[' +\n symbols['ARROW_UP'] + ']$, $[' + symbols['ARROW_DOWN'] + ']$')\n if is_native_windows():\n cb.put_arrow(x0 + 30, 3, 'up', colors.default_bg(), colors.default_fg()\n )\n cb.put_arrow(x0 + 35, 3, 'down', colors.default_bg(), colors.\n default_fg())\n cb.put_arrow(x0 + 30, 4, 'left', colors.default_bg(), colors.\n default_fg())\n cb.put_arrow(x0 + 35, 4, 'right', colors.default_bg(), colors.\n default_fg())\n draw_option('Input coordinates...', '', '$[Enter]$')\n draw_option.counter += 1\n h_seps.append(draw_option.counter + 1)\n draw_option('Move speed', params.move_speed, '$[C]$, $[V]$')\n draw_option('Zoom', '{0:.13g}'.format(params.zoom), '$[' + y + ']$, $[U]$')\n draw_option('Iterations', params.max_iterations, '$[I]$, $[O]$')\n draw_option('Julia mode', 'On' if params.julia else 'Off', '$[J]$')\n draw_option.counter += 1\n h_seps.append(draw_option.counter + 1)\n draw_option('Palette', PALETTES[params.palette][0], '$[P]$')\n draw_option('Color mode', DITHER_TYPES[params.dither_type][0], '$[D]$')\n draw_option('Order', 'Reversed' if params.reverse_palette else 'Normal',\n '$[R]$')\n draw_option('Mode', 'Adaptive' if params.adaptive_palette else 'Linear',\n '$[A]$')\n draw_option('Cycle!', '', '$[' + z + ']$')\n draw_option.counter += 1\n h_seps.append(draw_option.counter + 1)\n draw_option('Hi-res capture', '', '$[H]$')\n draw_option('Crosshairs', 'On' if params.crosshairs else 'Off', '$[X]$')\n draw_option('Theme', 'Dark' if colors.dark else 'Light', '$[T]$')\n draw_option('Save', '', '$[S]$')\n draw_option('Load...', '', '$[L]$')\n draw_option('Exit', '', '$[ESC]$')\n middle = 3 + draw_option.counter\n draw_box(cb, w - MENU_WIDTH, 0, MENU_WIDTH, h, h_seps=h_seps + [middle -\n 1, middle + 1])\n draw_text(cb, x0, middle, 'Event log'.center(MENU_WIDTH - 2))\n latest_logs = params.log.get_latest(h - middle)\n latest_logs = [textwrap.wrap(l, MENU_WIDTH - 4)[::-1] for l in latest_logs]\n latest_logs = [l for ls in latest_logs for l in ls]\n i = h - 2\n for l in latest_logs:\n draw_text(cb, x0 + 1, i, l)\n i -= 1\n if i == middle + 1:\n break\n",
"role": "user"
},
{
"content": "draw_menu",
"role": "assistant"
}
] |
def x(cb, pool, params, plane, qwertz):
cb.clear()
draw_panel(cb, pool, params, plane)
update_position(params)
draw_menu(cb, params, qwertz)
cb.refresh()
|
update_display
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cb, pool, params, plane, qwertz):\n cb.clear()\n draw_panel(cb, pool, params, plane)\n update_position(params)\n draw_menu(cb, params, qwertz)\n cb.refresh()\n",
"role": "user"
},
{
"content": "update_display",
"role": "assistant"
}
] |
def x(params):
if is_python3():
import pickle
cPickle = pickle
else:
import cPickle
ts = datetime.datetime.fromtimestamp(time.time()).strftime(
'%Y-%m-%d_%H-%M-%S')
if not os.path.exists('saves/'):
os.makedirs('saves/')
with open('saves/almonds_%s.params' % ts, 'wb') as f:
cPickle.dump(params, f)
params.log('Current scene saved!')
|
save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(params):\n if is_python3():\n import pickle\n cPickle = pickle\n else:\n import cPickle\n ts = datetime.datetime.fromtimestamp(time.time()).strftime(\n '%Y-%m-%d_%H-%M-%S')\n if not os.path.exists('saves/'):\n os.makedirs('saves/')\n with open('saves/almonds_%s.params' % ts, 'wb') as f:\n cPickle.dump(params, f)\n params.log('Current scene saved!')\n",
"role": "user"
},
{
"content": "save",
"role": "assistant"
}
] |
def x(cb, pool, params):
w, h = screen_resolution()
old_ratio = w / h
new_ratio = params.plane_ratio
if old_ratio > new_ratio:
w = int(h * new_ratio)
else:
h = int(w / new_ratio)
image = Image.new('RGB', (w, h), 'white')
pixels = image.load()
palette = PALETTES[params.palette][1]
if params.reverse_palette:
palette = palette[::-1]
coords = [(x, y, w, h, params) for x in range(w) for y in range(h)]
results = []
for i, result in enumerate(pool.imap_unordered(compute_capture, coords,
chunksize=256)):
results.append(result)
if i % 2000 == 0:
draw_progress_bar(cb, 'Capturing current scene...', i, w * h)
cb.refresh()
min_value = 0.0
max_value = params.max_iterations
max_iterations = params.max_iterations
if params.adaptive_palette:
from operator import itemgetter
min_value = min(results, key=itemgetter(2))[2]
max_value = max(results, key=itemgetter(2))[2]
for result in results:
value = result[2]
if params.adaptive_palette:
if max_value - min_value > 0:
value = (value - min_value) / (max_value - min_value
) * max_iterations
else:
value = max_iterations
pixels[result[0], result[1]] = get_color(value, params.
max_iterations, palette)
if not os.path.exists('captures/'):
os.makedirs('captures/')
ts = datetime.datetime.fromtimestamp(time.time()).strftime(
'%Y-%m-%d_%H-%M-%S')
filename = 'captures/almonds_%s.png' % ts
image.save(filename, 'PNG')
params.log('Current scene captured!')
params.log('(Used %d processes)' % pool._processes)
open_file(filename)
|
capture
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cb, pool, params):\n w, h = screen_resolution()\n old_ratio = w / h\n new_ratio = params.plane_ratio\n if old_ratio > new_ratio:\n w = int(h * new_ratio)\n else:\n h = int(w / new_ratio)\n image = Image.new('RGB', (w, h), 'white')\n pixels = image.load()\n palette = PALETTES[params.palette][1]\n if params.reverse_palette:\n palette = palette[::-1]\n coords = [(x, y, w, h, params) for x in range(w) for y in range(h)]\n results = []\n for i, result in enumerate(pool.imap_unordered(compute_capture, coords,\n chunksize=256)):\n results.append(result)\n if i % 2000 == 0:\n draw_progress_bar(cb, 'Capturing current scene...', i, w * h)\n cb.refresh()\n min_value = 0.0\n max_value = params.max_iterations\n max_iterations = params.max_iterations\n if params.adaptive_palette:\n from operator import itemgetter\n min_value = min(results, key=itemgetter(2))[2]\n max_value = max(results, key=itemgetter(2))[2]\n for result in results:\n value = result[2]\n if params.adaptive_palette:\n if max_value - min_value > 0:\n value = (value - min_value) / (max_value - min_value\n ) * max_iterations\n else:\n value = max_iterations\n pixels[result[0], result[1]] = get_color(value, params.\n max_iterations, palette)\n if not os.path.exists('captures/'):\n os.makedirs('captures/')\n ts = datetime.datetime.fromtimestamp(time.time()).strftime(\n '%Y-%m-%d_%H-%M-%S')\n filename = 'captures/almonds_%s.png' % ts\n image.save(filename, 'PNG')\n params.log('Current scene captured!')\n params.log('(Used %d processes)' % pool._processes)\n open_file(filename)\n",
"role": "user"
},
{
"content": "capture",
"role": "assistant"
}
] |
def x(cb, pool, params, plane):
step = params.max_iterations // 20
if step == 0:
step = 1
for i in range(0, params.max_iterations, step):
params.palette_offset = i
draw_panel(cb, pool, params, plane)
cb.refresh()
params.palette_offset = 0
|
cycle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cb, pool, params, plane):\n step = params.max_iterations // 20\n if step == 0:\n step = 1\n for i in range(0, params.max_iterations, step):\n params.palette_offset = i\n draw_panel(cb, pool, params, plane)\n cb.refresh()\n params.palette_offset = 0\n",
"role": "user"
},
{
"content": "cycle",
"role": "assistant"
}
] |
def x(cb, params):
w = cb.width - MENU_WIDTH - 1
h = cb.height - 1
params.plane_w = w
params.plane_h = h
params.resize(w, h)
zoom(params, 1)
|
init_coords
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cb, params):\n w = cb.width - MENU_WIDTH - 1\n h = cb.height - 1\n params.plane_w = w\n params.plane_h = h\n params.resize(w, h)\n zoom(params, 1)\n",
"role": "user"
},
{
"content": "init_coords",
"role": "assistant"
}
] |
def x(n, lower, upper):
if lower > upper:
lower, upper = upper, lower
return max(min(upper, n), lower)
|
clamp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n, lower, upper):\n if lower > upper:\n lower, upper = upper, lower\n return max(min(upper, n), lower)\n",
"role": "user"
},
{
"content": "clamp",
"role": "assistant"
}
] |
def x():
w = 0
h = 0
try:
import ctypes
user32 = ctypes.windll.user32
w, h = user32.GetSystemMetrics(0), user32.GetSystemMetrics(1)
except AttributeError:
try:
import AppKit
size = AppKit.NSScreen.screens()[0].frame().size
w, h = int(size.width), int(size.height)
except ImportError:
try:
import Xlib
import Xlib.display
display = Xlib.display.Display()
root = display.screen().root
size = root.get_geometry()
w, h = size.width, size.height
except ImportError:
w = 1920
h = 1080
return w, h
|
screen_resolution
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n w = 0\n h = 0\n try:\n import ctypes\n user32 = ctypes.windll.user32\n w, h = user32.GetSystemMetrics(0), user32.GetSystemMetrics(1)\n except AttributeError:\n try:\n import AppKit\n size = AppKit.NSScreen.screens()[0].frame().size\n w, h = int(size.width), int(size.height)\n except ImportError:\n try:\n import Xlib\n import Xlib.display\n display = Xlib.display.Display()\n root = display.screen().root\n size = root.get_geometry()\n w, h = size.width, size.height\n except ImportError:\n w = 1920\n h = 1080\n return w, h\n",
"role": "user"
},
{
"content": "screen_resolution",
"role": "assistant"
}
] |
def x(filename):
if sys.platform.startswith('darwin'):
subprocess.call(('open', filename))
elif sys.platform == 'cygwin':
subprocess.call(('cygstart', filename))
elif os.name == 'nt':
os.system('start %s' % filename)
elif os.name == 'posix':
subprocess.call(('xdg-open', filename))
|
open_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n if sys.platform.startswith('darwin'):\n subprocess.call(('open', filename))\n elif sys.platform == 'cygwin':\n subprocess.call(('cygstart', filename))\n elif os.name == 'nt':\n os.system('start %s' % filename)\n elif os.name == 'posix':\n subprocess.call(('xdg-open', filename))\n",
"role": "user"
},
{
"content": "open_file",
"role": "assistant"
}
] |
def x(value, dither):
dither = DITHER_TYPES[dither][1]
return dither[int(round(value * (len(dither) - 1)))]
|
dither_symbol
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value, dither):\n dither = DITHER_TYPES[dither][1]\n return dither[int(round(value * (len(dither) - 1)))]\n",
"role": "user"
},
{
"content": "dither_symbol",
"role": "assistant"
}
] |
def x(cb, x, y, palette, dither, n, n_max, crosshairs_coord=None):
i = n * (len(palette) - 1) / n_max
c1 = palette[int(math.floor(i))]
c2 = palette[int(math.ceil(i))]
value = i - int(math.floor(i))
symbol = dither_symbol(value, dither)
if crosshairs_coord is not None:
old_symbol = symbol
symbol, crosshairs = get_crosshairs_symbol(x, y, old_symbol,
crosshairs_coord)
if crosshairs:
sorted_palette = sort_palette(palette)
if old_symbol == DITHER_TYPES[dither][1][0]:
c2 = c1
sorted_index = sorted_palette.index(c2)
if sorted_index > len(sorted_palette) // 2:
c1 = sorted_palette[0]
else:
c1 = sorted_palette[-1]
cb.put(x, y, symbol, c1(), c2())
|
draw_dithered_color
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cb, x, y, palette, dither, n, n_max, crosshairs_coord=None):\n i = n * (len(palette) - 1) / n_max\n c1 = palette[int(math.floor(i))]\n c2 = palette[int(math.ceil(i))]\n value = i - int(math.floor(i))\n symbol = dither_symbol(value, dither)\n if crosshairs_coord is not None:\n old_symbol = symbol\n symbol, crosshairs = get_crosshairs_symbol(x, y, old_symbol,\n crosshairs_coord)\n if crosshairs:\n sorted_palette = sort_palette(palette)\n if old_symbol == DITHER_TYPES[dither][1][0]:\n c2 = c1\n sorted_index = sorted_palette.index(c2)\n if sorted_index > len(sorted_palette) // 2:\n c1 = sorted_palette[0]\n else:\n c1 = sorted_palette[-1]\n cb.put(x, y, symbol, c1(), c2())\n",
"role": "user"
},
{
"content": "draw_dithered_color",
"role": "assistant"
}
] |
def x(cb, x0, y0, w, h, fg=colors.default_fg, bg=colors.default_bg, h_seps=
[], v_seps=[]):
w -= 1
h -= 1
corners = [(x0, y0), (x0 + w, y0), (x0, y0 + h), (x0 + w, y0 + h)]
fg = fg()
bg = bg()
for i, c in enumerate(corners):
cb.put(c[0], c[1], BOX_CORNERS[i], fg, bg)
for s in (h_seps + [0, h]):
cb.put(x0 + 1, y0 + s, symbols['BOX_HORIZONTAL'] * (w - 1), fg, bg)
for y in range(1, h):
for s in (v_seps + [0, w]):
cb.put(x0 + s, y0 + y, symbols['BOX_VERTICAL'], fg, bg)
for s in h_seps:
cb.put(x0, y0 + s, symbols['BOX_X_LEFT'], fg, bg)
cb.put(x0 + w, y0 + s, symbols['BOX_X_RIGHT'], fg, bg)
for s in v_seps:
cb.put(x0 + s, y0, symbols['BOX_X_TOP'], fg, bg)
cb.put(x0 + s, y0 + h, symbols['BOX_X_BOTTOM'], fg, bg)
|
draw_box
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cb, x0, y0, w, h, fg=colors.default_fg, bg=colors.default_bg, h_seps=\n [], v_seps=[]):\n w -= 1\n h -= 1\n corners = [(x0, y0), (x0 + w, y0), (x0, y0 + h), (x0 + w, y0 + h)]\n fg = fg()\n bg = bg()\n for i, c in enumerate(corners):\n cb.put(c[0], c[1], BOX_CORNERS[i], fg, bg)\n for s in (h_seps + [0, h]):\n cb.put(x0 + 1, y0 + s, symbols['BOX_HORIZONTAL'] * (w - 1), fg, bg)\n for y in range(1, h):\n for s in (v_seps + [0, w]):\n cb.put(x0 + s, y0 + y, symbols['BOX_VERTICAL'], fg, bg)\n for s in h_seps:\n cb.put(x0, y0 + s, symbols['BOX_X_LEFT'], fg, bg)\n cb.put(x0 + w, y0 + s, symbols['BOX_X_RIGHT'], fg, bg)\n for s in v_seps:\n cb.put(x0 + s, y0, symbols['BOX_X_TOP'], fg, bg)\n cb.put(x0 + s, y0 + h, symbols['BOX_X_BOTTOM'], fg, bg)\n",
"role": "user"
},
{
"content": "draw_box",
"role": "assistant"
}
] |
def x(cb, message, value, max_value):
m_x = cb.width // 2
m_y = cb.height // 2
w = len(message) + 4
h = 3
draw_box(cb, m_x - w // 2, m_y - 1, w, h)
message = ' %s ' % message
i = int(value / max_value * (len(message) + 2))
message = '$' + message[:i] + '$' + message[i:]
draw_text(cb, m_x - w // 2 + 1, m_y, message)
|
draw_progress_bar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cb, message, value, max_value):\n m_x = cb.width // 2\n m_y = cb.height // 2\n w = len(message) + 4\n h = 3\n draw_box(cb, m_x - w // 2, m_y - 1, w, h)\n message = ' %s ' % message\n i = int(value / max_value * (len(message) + 2))\n message = '$' + message[:i] + '$' + message[i:]\n draw_text(cb, m_x - w // 2 + 1, m_y, message)\n",
"role": "user"
},
{
"content": "draw_progress_bar",
"role": "assistant"
}
] |
def x(c, max_iterations, julia_seed=None):
z = c
if julia_seed is not None:
c = julia_seed
for iterations in range(max_iterations):
z = z * z + c
if abs(z) > 1000:
return z, iterations
return z, max_iterations
|
mandelbrot_iterate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(c, max_iterations, julia_seed=None):\n z = c\n if julia_seed is not None:\n c = julia_seed\n for iterations in range(max_iterations):\n z = z * z + c\n if abs(z) > 1000:\n return z, iterations\n return z, max_iterations\n",
"role": "user"
},
{
"content": "mandelbrot_iterate",
"role": "assistant"
}
] |
def x(x, y, params):
n_x = x * 2.0 / params.plane_w * params.plane_ratio - 1.0
n_y = y * 2.0 / params.plane_h - 1.0
mb_x = params.zoom * n_x
mb_y = params.zoom * n_y
return mb_x, mb_y
|
get_coords
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, params):\n n_x = x * 2.0 / params.plane_w * params.plane_ratio - 1.0\n n_y = y * 2.0 / params.plane_h - 1.0\n mb_x = params.zoom * n_x\n mb_y = params.zoom * n_y\n return mb_x, mb_y\n",
"role": "user"
},
{
"content": "get_coords",
"role": "assistant"
}
] |
def x(x, y, params):
mb_x, mb_y = get_coords(x, y, params)
mb = mandelbrot_iterate(mb_x + 1.0j * mb_y, params.max_iterations,
params.julia_seed)
return mb[1]
|
mandelbrot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, params):\n mb_x, mb_y = get_coords(x, y, params)\n mb = mandelbrot_iterate(mb_x + 1.0j * mb_y, params.max_iterations,\n params.julia_seed)\n return mb[1]\n",
"role": "user"
},
{
"content": "mandelbrot",
"role": "assistant"
}
] |
def x(x, y, w, h, params):
if params.plane_ratio >= 1.0:
x -= params.plane_w
else:
x += 3.0 * params.plane_w
ratio = w / h
n_x = x * 2.0 / w * ratio - 1.0
n_y = y * 2.0 / h - 1.0
mb_x = params.zoom * n_x + params.mb_cx
mb_y = params.zoom * n_y + params.mb_cy
mb = mandelbrot_iterate(mb_x + 1.0j * mb_y, params.max_iterations,
params.julia_seed)
z, iterations = mb
nu = params.max_iterations
if iterations < params.max_iterations:
nu = iterations + 2 - abs(cmath.log(cmath.log(abs(z)) / cmath.log(
params.max_iterations), 2))
return clamp(nu, 0, params.max_iterations)
|
mandelbrot_capture
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, w, h, params):\n if params.plane_ratio >= 1.0:\n x -= params.plane_w\n else:\n x += 3.0 * params.plane_w\n ratio = w / h\n n_x = x * 2.0 / w * ratio - 1.0\n n_y = y * 2.0 / h - 1.0\n mb_x = params.zoom * n_x + params.mb_cx\n mb_y = params.zoom * n_y + params.mb_cy\n mb = mandelbrot_iterate(mb_x + 1.0j * mb_y, params.max_iterations,\n params.julia_seed)\n z, iterations = mb\n nu = params.max_iterations\n if iterations < params.max_iterations:\n nu = iterations + 2 - abs(cmath.log(cmath.log(abs(z)) / cmath.log(\n params.max_iterations), 2))\n return clamp(nu, 0, params.max_iterations)\n",
"role": "user"
},
{
"content": "mandelbrot_capture",
"role": "assistant"
}
] |
def x(params):
cx = params.plane_x0 + params.plane_w / 2.0
cy = params.plane_y0 + params.plane_h / 2.0
params.mb_cx, params.mb_cy = get_coords(cx, cy, params)
|
update_position
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(params):\n cx = params.plane_x0 + params.plane_w / 2.0\n cy = params.plane_y0 + params.plane_h / 2.0\n params.mb_cx, params.mb_cy = get_coords(cx, cy, params)\n",
"role": "user"
},
{
"content": "update_position",
"role": "assistant"
}
] |
def x(params, factor):
params.zoom /= factor
n_x = params.mb_cx / params.zoom
n_y = params.mb_cy / params.zoom
params.plane_x0 = int((n_x + 1.0) * params.plane_w / (2.0 * params.
plane_ratio)) - params.plane_w // 2
params.plane_y0 = int((n_y + 1.0) * params.plane_h / 2.0
) - params.plane_h // 2
|
zoom
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(params, factor):\n params.zoom /= factor\n n_x = params.mb_cx / params.zoom\n n_y = params.mb_cy / params.zoom\n params.plane_x0 = int((n_x + 1.0) * params.plane_w / (2.0 * params.\n plane_ratio)) - params.plane_w // 2\n params.plane_y0 = int((n_y + 1.0) * params.plane_h / 2.0\n ) - params.plane_h // 2\n",
"role": "user"
},
{
"content": "zoom",
"role": "assistant"
}
] |
def x(self, w, h):
self.plane_w = w
self.plane_h = h
self.plane_ratio = self.char_ratio * w / h
if self.crosshairs:
self.crosshairs_coord = (w + 2) // 2, (h + 2) // 2
|
resize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, w, h):\n self.plane_w = w\n self.plane_h = h\n self.plane_ratio = self.char_ratio * w / h\n if self.crosshairs:\n self.crosshairs_coord = (w + 2) // 2, (h + 2) // 2\n",
"role": "user"
},
{
"content": "resize",
"role": "assistant"
}
] |
def x(sender_handle, entity_handle):
if sender_handle != entity_handle:
logger.warning(
"sender_handle and entity_handle don't match, aborting! sender_handle: %s, entity_handle: %s"
, sender_handle, entity_handle)
return False
return True
|
check_sender_and_entity_handle_match
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sender_handle, entity_handle):\n if sender_handle != entity_handle:\n logger.warning(\n \"sender_handle and entity_handle don't match, aborting! sender_handle: %s, entity_handle: %s\"\n , sender_handle, entity_handle)\n return False\n return True\n",
"role": "user"
},
{
"content": "check_sender_and_entity_handle_match",
"role": "assistant"
}
] |
def x(element: etree.ElementTree, sender: str, sender_key_fetcher: Callable
[[str], str]=None, user: UserType=None) ->List:
entities = []
cls = MAPPINGS.get(element.tag)
if not cls:
return []
attrs = xml_children_as_dict(element)
transformed = transform_attributes(attrs, cls)
if hasattr(cls, 'fill_extra_attributes'):
transformed = cls.fill_extra_attributes(transformed)
entity = cls(**transformed)
entity._source_protocol = 'diaspora'
entity._source_object = etree.tostring(element)
if user:
entity._receiving_actor_id = user.id
if issubclass(cls, DiasporaRelayableMixin):
entity._xml_tags = get_element_child_info(element, 'tag')
if sender_key_fetcher:
entity._sender_key = sender_key_fetcher(entity.actor_id)
else:
profile = retrieve_and_parse_profile(entity.handle)
if profile:
entity._sender_key = profile.public_key
elif not check_sender_and_entity_handle_match(sender, entity.handle):
return []
try:
entity.validate()
except ValueError as ex:
logger.error('Failed to validate entity %s: %s', entity, ex, extra=
{'attrs': attrs, 'transformed': transformed})
return []
entity._mentions = entity.extract_mentions()
for child in element:
entity._children.extend(element_to_objects(child, sender, user=user))
entities.append(entity)
return entities
|
element_to_objects
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(element: etree.ElementTree, sender: str, sender_key_fetcher: Callable\n [[str], str]=None, user: UserType=None) ->List:\n entities = []\n cls = MAPPINGS.get(element.tag)\n if not cls:\n return []\n attrs = xml_children_as_dict(element)\n transformed = transform_attributes(attrs, cls)\n if hasattr(cls, 'fill_extra_attributes'):\n transformed = cls.fill_extra_attributes(transformed)\n entity = cls(**transformed)\n entity._source_protocol = 'diaspora'\n entity._source_object = etree.tostring(element)\n if user:\n entity._receiving_actor_id = user.id\n if issubclass(cls, DiasporaRelayableMixin):\n entity._xml_tags = get_element_child_info(element, 'tag')\n if sender_key_fetcher:\n entity._sender_key = sender_key_fetcher(entity.actor_id)\n else:\n profile = retrieve_and_parse_profile(entity.handle)\n if profile:\n entity._sender_key = profile.public_key\n elif not check_sender_and_entity_handle_match(sender, entity.handle):\n return []\n try:\n entity.validate()\n except ValueError as ex:\n logger.error('Failed to validate entity %s: %s', entity, ex, extra=\n {'attrs': attrs, 'transformed': transformed})\n return []\n entity._mentions = entity.extract_mentions()\n for child in element:\n entity._children.extend(element_to_objects(child, sender, user=user))\n entities.append(entity)\n return entities\n",
"role": "user"
},
{
"content": "element_to_objects",
"role": "assistant"
}
] |
def x(message: str, sender: str, sender_key_fetcher: Callable[[str], str]=
None, user: UserType=None) ->List:
doc = etree.fromstring(message)
if doc.tag in TAGS:
return element_to_objects(doc, sender, sender_key_fetcher, user)
return []
|
message_to_objects
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(message: str, sender: str, sender_key_fetcher: Callable[[str], str]=\n None, user: UserType=None) ->List:\n doc = etree.fromstring(message)\n if doc.tag in TAGS:\n return element_to_objects(doc, sender, sender_key_fetcher, user)\n return []\n",
"role": "user"
},
{
"content": "message_to_objects",
"role": "assistant"
}
] |
def x(attrs, cls):
transformed = {}
for key, value in attrs.items():
if value is None:
value = ''
if key == 'text':
transformed['raw_content'] = value
elif key == 'author':
if cls == DiasporaProfile:
profile = retrieve_and_parse_profile(value)
transformed['id'] = value
transformed['guid'] = profile.guid
else:
transformed['actor_id'] = value
transformed['handle'] = value
elif key == 'guid':
if cls != DiasporaProfile:
transformed['id'] = value
transformed['guid'] = value
elif key in ('root_author', 'recipient'):
transformed['target_id'] = value
transformed['target_handle'] = value
elif key in ('target_guid', 'root_guid', 'parent_guid'):
transformed['target_id'] = value
transformed['target_guid'] = value
elif key in ('first_name', 'last_name'):
values = [attrs.get('first_name'), attrs.get('last_name')]
values = [v for v in values if v]
transformed['name'] = ' '.join(values)
elif key == 'image_url':
if 'image_urls' not in transformed:
transformed['image_urls'] = {}
transformed['image_urls']['large'] = value
elif key == 'image_url_small':
if 'image_urls' not in transformed:
transformed['image_urls'] = {}
transformed['image_urls']['small'] = value
elif key == 'image_url_medium':
if 'image_urls' not in transformed:
transformed['image_urls'] = {}
transformed['image_urls']['medium'] = value
elif key == 'tag_string':
if value:
transformed['tag_list'] = value.replace('#', '').split(' ')
elif key == 'bio':
transformed['raw_content'] = value
elif key == 'searchable':
transformed['public'] = True if value == 'true' else False
elif key in ['target_type'] and cls == DiasporaRetraction:
transformed['entity_type'
] = DiasporaRetraction.entity_type_from_remote(value)
elif key == 'remote_photo_path':
transformed['remote_path'] = value
elif key == 'remote_photo_name':
transformed['remote_name'] = value
elif key == 'status_message_guid':
transformed['linked_guid'] = value
transformed['linked_type'] = 'Post'
elif key == 'author_signature':
transformed['signature'] = value
elif key in BOOLEAN_KEYS:
transformed[key] = True if value == 'true' else False
elif key in DATETIME_KEYS:
transformed[key] = datetime.strptime(value, '%Y-%m-%dT%H:%M:%SZ')
elif key in INTEGER_KEYS:
transformed[key] = int(value)
else:
transformed[key] = value
return transformed
|
transform_attributes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(attrs, cls):\n transformed = {}\n for key, value in attrs.items():\n if value is None:\n value = ''\n if key == 'text':\n transformed['raw_content'] = value\n elif key == 'author':\n if cls == DiasporaProfile:\n profile = retrieve_and_parse_profile(value)\n transformed['id'] = value\n transformed['guid'] = profile.guid\n else:\n transformed['actor_id'] = value\n transformed['handle'] = value\n elif key == 'guid':\n if cls != DiasporaProfile:\n transformed['id'] = value\n transformed['guid'] = value\n elif key in ('root_author', 'recipient'):\n transformed['target_id'] = value\n transformed['target_handle'] = value\n elif key in ('target_guid', 'root_guid', 'parent_guid'):\n transformed['target_id'] = value\n transformed['target_guid'] = value\n elif key in ('first_name', 'last_name'):\n values = [attrs.get('first_name'), attrs.get('last_name')]\n values = [v for v in values if v]\n transformed['name'] = ' '.join(values)\n elif key == 'image_url':\n if 'image_urls' not in transformed:\n transformed['image_urls'] = {}\n transformed['image_urls']['large'] = value\n elif key == 'image_url_small':\n if 'image_urls' not in transformed:\n transformed['image_urls'] = {}\n transformed['image_urls']['small'] = value\n elif key == 'image_url_medium':\n if 'image_urls' not in transformed:\n transformed['image_urls'] = {}\n transformed['image_urls']['medium'] = value\n elif key == 'tag_string':\n if value:\n transformed['tag_list'] = value.replace('#', '').split(' ')\n elif key == 'bio':\n transformed['raw_content'] = value\n elif key == 'searchable':\n transformed['public'] = True if value == 'true' else False\n elif key in ['target_type'] and cls == DiasporaRetraction:\n transformed['entity_type'\n ] = DiasporaRetraction.entity_type_from_remote(value)\n elif key == 'remote_photo_path':\n transformed['remote_path'] = value\n elif key == 'remote_photo_name':\n transformed['remote_name'] = value\n elif key == 'status_message_guid':\n transformed['linked_guid'] = value\n transformed['linked_type'] = 'Post'\n elif key == 'author_signature':\n transformed['signature'] = value\n elif key in BOOLEAN_KEYS:\n transformed[key] = True if value == 'true' else False\n elif key in DATETIME_KEYS:\n transformed[key] = datetime.strptime(value, '%Y-%m-%dT%H:%M:%SZ')\n elif key in INTEGER_KEYS:\n transformed[key] = int(value)\n else:\n transformed[key] = value\n return transformed\n",
"role": "user"
},
{
"content": "transform_attributes",
"role": "assistant"
}
] |
def x(entity: BaseEntity, private_key: RsaKey):
if getattr(entity, 'outbound_doc', None):
return entity
outbound = None
cls = entity.__class__
if cls in [DiasporaPost, DiasporaImage, DiasporaComment, DiasporaLike,
DiasporaProfile, DiasporaRetraction, DiasporaContact, DiasporaReshare]:
outbound = entity
elif cls == Post:
outbound = DiasporaPost.from_base(entity)
elif cls == Comment:
outbound = DiasporaComment.from_base(entity)
elif cls == Reaction:
if entity.reaction == 'like':
outbound = DiasporaLike.from_base(entity)
elif cls == Follow:
outbound = DiasporaContact.from_base(entity)
elif cls == Profile:
outbound = DiasporaProfile.from_base(entity)
elif cls == Retraction:
outbound = DiasporaRetraction.from_base(entity)
elif cls == Share:
outbound = DiasporaReshare.from_base(entity)
if not outbound:
raise ValueError(
"Don't know how to convert this base entity to Diaspora protocol entities."
)
if isinstance(outbound, DiasporaRelayableMixin) and not outbound.signature:
outbound.sign(private_key)
outbound.parent_signature = outbound.signature
return outbound
|
get_outbound_entity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(entity: BaseEntity, private_key: RsaKey):\n if getattr(entity, 'outbound_doc', None):\n return entity\n outbound = None\n cls = entity.__class__\n if cls in [DiasporaPost, DiasporaImage, DiasporaComment, DiasporaLike,\n DiasporaProfile, DiasporaRetraction, DiasporaContact, DiasporaReshare]:\n outbound = entity\n elif cls == Post:\n outbound = DiasporaPost.from_base(entity)\n elif cls == Comment:\n outbound = DiasporaComment.from_base(entity)\n elif cls == Reaction:\n if entity.reaction == 'like':\n outbound = DiasporaLike.from_base(entity)\n elif cls == Follow:\n outbound = DiasporaContact.from_base(entity)\n elif cls == Profile:\n outbound = DiasporaProfile.from_base(entity)\n elif cls == Retraction:\n outbound = DiasporaRetraction.from_base(entity)\n elif cls == Share:\n outbound = DiasporaReshare.from_base(entity)\n if not outbound:\n raise ValueError(\n \"Don't know how to convert this base entity to Diaspora protocol entities.\"\n )\n if isinstance(outbound, DiasporaRelayableMixin) and not outbound.signature:\n outbound.sign(private_key)\n outbound.parent_signature = outbound.signature\n return outbound\n",
"role": "user"
},
{
"content": "get_outbound_entity",
"role": "assistant"
}
] |
def x(doc, attr):
props = []
for child in doc:
if child.tag not in ['author_signature', 'parent_author_signature']:
props.append(getattr(child, attr))
return props
|
get_element_child_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(doc, attr):\n props = []\n for child in doc:\n if child.tag not in ['author_signature', 'parent_author_signature']:\n props.append(getattr(child, attr))\n return props\n",
"role": "user"
},
{
"content": "get_element_child_info",
"role": "assistant"
}
] |
def x(public_key, doc, signature):
sig_hash = _create_signature_hash(doc)
cipher = PKCS1_v1_5.new(RSA.importKey(public_key))
return cipher.verify(sig_hash, b64decode(signature))
|
verify_relayable_signature
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(public_key, doc, signature):\n sig_hash = _create_signature_hash(doc)\n cipher = PKCS1_v1_5.new(RSA.importKey(public_key))\n return cipher.verify(sig_hash, b64decode(signature))\n",
"role": "user"
},
{
"content": "verify_relayable_signature",
"role": "assistant"
}
] |
def x(request, *args, **kwargs):
resource = request.GET.get('resource')
if not resource:
return HttpResponseBadRequest('No resource found')
if not resource.startswith('acct:'):
return HttpResponseBadRequest('Invalid resource')
handle = resource.replace('acct:', '').lower()
profile_func = get_function_from_config('get_profile_function')
try:
profile = profile_func(handle=handle, request=request)
except Exception as exc:
logger.warning(
'rfc7033_webfinger_view - Failed to get profile by handle %s: %s',
handle, exc)
return HttpResponseNotFound()
config = get_configuration()
webfinger = RFC7033Webfinger(id=profile.id, handle=profile.handle, guid
=profile.guid, base_url=config.get('base_url'), profile_path=
get_path_from_url(profile.url), hcard_path=config.get('hcard_path'),
atom_path=get_path_from_url(profile.atom_url), search_path=config.
get('search_path'))
return JsonResponse(webfinger.render(), content_type='application/jrd+json'
)
|
rfc7033_webfinger_view
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(request, *args, **kwargs):\n resource = request.GET.get('resource')\n if not resource:\n return HttpResponseBadRequest('No resource found')\n if not resource.startswith('acct:'):\n return HttpResponseBadRequest('Invalid resource')\n handle = resource.replace('acct:', '').lower()\n profile_func = get_function_from_config('get_profile_function')\n try:\n profile = profile_func(handle=handle, request=request)\n except Exception as exc:\n logger.warning(\n 'rfc7033_webfinger_view - Failed to get profile by handle %s: %s',\n handle, exc)\n return HttpResponseNotFound()\n config = get_configuration()\n webfinger = RFC7033Webfinger(id=profile.id, handle=profile.handle, guid\n =profile.guid, base_url=config.get('base_url'), profile_path=\n get_path_from_url(profile.url), hcard_path=config.get('hcard_path'),\n atom_path=get_path_from_url(profile.atom_url), search_path=config.\n get('search_path'))\n return JsonResponse(webfinger.render(), content_type='application/jrd+json'\n )\n",
"role": "user"
},
{
"content": "rfc7033_webfinger_view",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.