source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, code, cursor_pos, detail_level=0): self._klog.info('{%s}', code[cursor_pos:cursor_pos + 10]) token, start = token_at_cursor(code, cursor_pos) self._klog.debug('token={%s} {%d}', token, detail_level) if not is_magic(token, start, code): info = sparql_help.get(token.upper(), None) elif token == '%': info = magic_help else: info = magics.get(token, None) if info: info = '{} {}\n\n{}'.format(token, *info) return {'status': 'ok', 'data': {'text/plain': info}, 'metadata': {}, 'found': info is not None}
do_inspect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, code, cursor_pos, detail_level=0):\n self._klog.info('{%s}', code[cursor_pos:cursor_pos + 10])\n token, start = token_at_cursor(code, cursor_pos)\n self._klog.debug('token={%s} {%d}', token, detail_level)\n if not is_magic(token, start, code):\n info = sparql_help.get(token.upper(), None)\n elif token == '%':\n info = magic_help\n else:\n info = magics.get(token, None)\n if info:\n info = '{} {}\\n\\n{}'.format(token, *info)\n return {'status': 'ok', 'data': {'text/plain': info}, 'metadata': {},\n 'found': info is not None}\n", "role": "user" }, { "content": "do_inspect", "role": "assistant" } ]
def x(self, code, cursor_pos): self._klog.info('{%s}', code[cursor_pos:cursor_pos + 10]) token, start = token_at_cursor(code, cursor_pos) tkn_low = token.lower() if is_magic(token, start, code): matches = [k for k in magics.keys() if k.startswith(tkn_low)] else: matches = [sparql_names[k] for k in sparql_names if k.startswith( tkn_low)] self._klog.debug('token={%s} matches={%r}', token, matches) if matches: return {'status': 'ok', 'cursor_start': start, 'cursor_end': start + len(token), 'matches': matches}
do_complete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, code, cursor_pos):\n self._klog.info('{%s}', code[cursor_pos:cursor_pos + 10])\n token, start = token_at_cursor(code, cursor_pos)\n tkn_low = token.lower()\n if is_magic(token, start, code):\n matches = [k for k in magics.keys() if k.startswith(tkn_low)]\n else:\n matches = [sparql_names[k] for k in sparql_names if k.startswith(\n tkn_low)]\n self._klog.debug('token={%s} matches={%r}', token, matches)\n if matches:\n return {'status': 'ok', 'cursor_start': start, 'cursor_end': start +\n len(token), 'matches': matches}\n", "role": "user" }, { "content": "do_complete", "role": "assistant" } ]
def x(self): for line in iter(self._fd.readline, ''): self._queue.put(line)
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for line in iter(self._fd.readline, ''):\n self._queue.put(line)\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(x, lb=False): if lb: l = len(x) if l >= 10: l >>= 1 s1 = x.find(' ', l) s2 = x.rfind(' ', 0, l) if s2 > 0: s = s2 if s1 < 0 or l - s1 > s2 - l else s1 x = x[:s] + '\\n' + x[s + 1:] elif s1 > 0: x = x[:s1] + '\\n' + x[s1 + 1:] return x.replace('&', '&amp;').replace('<', '&lt;').replace('>', '&gt;' ).replace('"', '&quot;')
escape
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, lb=False):\n if lb:\n l = len(x)\n if l >= 10:\n l >>= 1\n s1 = x.find(' ', l)\n s2 = x.rfind(' ', 0, l)\n if s2 > 0:\n s = s2 if s1 < 0 or l - s1 > s2 - l else s1\n x = x[:s] + '\\\\n' + x[s + 1:]\n elif s1 > 0:\n x = x[:s1] + '\\\\n' + x[s1 + 1:]\n return x.replace('&', '&amp;').replace('<', '&lt;').replace('>', '&gt;'\n ).replace('\"', '&quot;')\n", "role": "user" }, { "content": "escape", "role": "assistant" } ]
def x(txt, *args, **kwargs): if args: txt = txt.format(*args) css = kwargs.get('css', HTML_DIV_CLASS) return u'<div class="{}">{!s}</div>'.format(css, txt)
div
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(txt, *args, **kwargs):\n if args:\n txt = txt.format(*args)\n css = kwargs.get('css', HTML_DIV_CLASS)\n return u'<div class=\"{}\">{!s}</div>'.format(css, txt)\n", "role": "user" }, { "content": "div", "role": "assistant" } ]
def x(msglist): txt = html = u'' for msg, css in msglist: if is_collection(msg): msg = msg[0].format(*msg[1:]) html += div(escape(msg).replace('\n', '<br/>'), css=css or 'msg') txt += msg + '\n' return {'data': {'text/html': div(html), 'text/plain': txt}, 'metadata': {} }
data_msglist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(msglist):\n txt = html = u''\n for msg, css in msglist:\n if is_collection(msg):\n msg = msg[0].format(*msg[1:])\n html += div(escape(msg).replace('\\n', '<br/>'), css=css or 'msg')\n txt += msg + '\\n'\n return {'data': {'text/html': div(html), 'text/plain': txt}, 'metadata': {}\n }\n", "role": "user" }, { "content": "data_msglist", "role": "assistant" } ]
def x(msg, mtype=None): if isinstance(msg, KrnlException): return msg() elif isinstance(msg, Exception): return KrnlException(msg)() elif mtype == 'multi': return data_msglist(msg) else: return data_msglist([(msg, mtype)])
data_msg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(msg, mtype=None):\n if isinstance(msg, KrnlException):\n return msg()\n elif isinstance(msg, Exception):\n return KrnlException(msg)()\n elif mtype == 'multi':\n return data_msglist(msg)\n else:\n return data_msglist([(msg, mtype)])\n", "role": "user" }, { "content": "data_msg", "role": "assistant" } ]
def x(resource, filename, destdir): data = pkgutil.get_data(resource, os.path.join('resources', filename)) with open(os.path.join(destdir, filename), 'wb') as fp: fp.write(data)
copyresource
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(resource, filename, destdir):\n data = pkgutil.get_data(resource, os.path.join('resources', filename))\n with open(os.path.join(destdir, filename), 'wb') as fp:\n fp.write(data)\n", "role": "user" }, { "content": "copyresource", "role": "assistant" } ]
def x(destdir, resource=PKGNAME, files=None): if files is None: files = ['logo-64x64.png', 'logo-32x32.png'] for filename in files: try: copyresource(resource, filename, destdir) except Exception as e: sys.stderr.write(str(e))
install_kernel_resources
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(destdir, resource=PKGNAME, files=None):\n if files is None:\n files = ['logo-64x64.png', 'logo-32x32.png']\n for filename in files:\n try:\n copyresource(resource, filename, destdir)\n except Exception as e:\n sys.stderr.write(str(e))\n", "role": "user" }, { "content": "install_kernel_resources", "role": "assistant" } ]
def x(destdir, cssfile, resource=PKGNAME): ensure_dir_exists(destdir) custom = os.path.join(destdir, 'custom.css') prefix = css_frame_prefix(resource) exists = False if os.path.exists(custom): with io.open(custom) as f: for line in f: if line.find(prefix) >= 0: exists = True break if exists: remove_custom_css(destdir, resource) cssfile += '.css' data = pkgutil.get_data(resource, os.path.join('resources', cssfile)) with io.open(custom + '-new', 'wt', encoding='utf-8') as fout: fout.write(u'{}START ======================== */\n'.format(prefix)) fout.write(data.decode('utf-8')) fout.write(u'{}END ======================== */\n'.format(prefix)) if os.path.exists(custom): with io.open(custom, 'rt', encoding='utf-8') as fin: for line in fin: fout.write(unicode(line)) os.rename(custom + '-new', custom)
install_custom_css
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(destdir, cssfile, resource=PKGNAME):\n ensure_dir_exists(destdir)\n custom = os.path.join(destdir, 'custom.css')\n prefix = css_frame_prefix(resource)\n exists = False\n if os.path.exists(custom):\n with io.open(custom) as f:\n for line in f:\n if line.find(prefix) >= 0:\n exists = True\n break\n if exists:\n remove_custom_css(destdir, resource)\n cssfile += '.css'\n data = pkgutil.get_data(resource, os.path.join('resources', cssfile))\n with io.open(custom + '-new', 'wt', encoding='utf-8') as fout:\n fout.write(u'{}START ======================== */\\n'.format(prefix))\n fout.write(data.decode('utf-8'))\n fout.write(u'{}END ======================== */\\n'.format(prefix))\n if os.path.exists(custom):\n with io.open(custom, 'rt', encoding='utf-8') as fin:\n for line in fin:\n fout.write(unicode(line))\n os.rename(custom + '-new', custom)\n", "role": "user" }, { "content": "install_custom_css", "role": "assistant" } ]
def x(destdir, resource=PKGNAME): if not os.path.isdir(destdir): return False custom = os.path.join(destdir, 'custom.css') copy = True found = False prefix = css_frame_prefix(resource) with io.open(custom + '-new', 'wt') as fout: with io.open(custom) as fin: for line in fin: if line.startswith(prefix + 'START'): copy = False found = True elif line.startswith(prefix + 'END'): copy = True elif copy: fout.write(line) if found: os.rename(custom + '-new', custom) else: os.unlink(custom + '-new') return found
remove_custom_css
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(destdir, resource=PKGNAME):\n if not os.path.isdir(destdir):\n return False\n custom = os.path.join(destdir, 'custom.css')\n copy = True\n found = False\n prefix = css_frame_prefix(resource)\n with io.open(custom + '-new', 'wt') as fout:\n with io.open(custom) as fin:\n for line in fin:\n if line.startswith(prefix + 'START'):\n copy = False\n found = True\n elif line.startswith(prefix + 'END'):\n copy = True\n elif copy:\n fout.write(line)\n if found:\n os.rename(custom + '-new', custom)\n else:\n os.unlink(custom + '-new')\n return found\n", "role": "user" }, { "content": "remove_custom_css", "role": "assistant" } ]
def x(e, ct, withtype=False): if ct == 'th': return '<th>{0}</th><th>{1}</th>'.format(*e ) if withtype else '<th>{}</th>'.format(e) if e[1] in ('uri', 'URIRef'): html = (u'<{0} class=val><a href="{1}" target="_other">{2}</a></{0}>' .format(ct, e[0], escape(e[0]))) else: html = u'<{0} class=val>{1}</{0}>'.format(ct, escape(e[0])) if withtype: html += u'<{0} class=typ>{1}</{0}>'.format(ct, e[1]) return html
html_elem
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(e, ct, withtype=False):\n if ct == 'th':\n return '<th>{0}</th><th>{1}</th>'.format(*e\n ) if withtype else '<th>{}</th>'.format(e)\n if e[1] in ('uri', 'URIRef'):\n html = (u'<{0} class=val><a href=\"{1}\" target=\"_other\">{2}</a></{0}>'\n .format(ct, e[0], escape(e[0])))\n else:\n html = u'<{0} class=val>{1}</{0}>'.format(ct, escape(e[0]))\n if withtype:\n html += u'<{0} class=typ>{1}</{0}>'.format(ct, e[1])\n return html\n", "role": "user" }, { "content": "html_elem", "role": "assistant" } ]
def x(data, header=True, limit=None, withtype=False): if header and limit: limit += 1 ct = 'th' if header else 'td' rc = 'hdr' if header else 'odd' html = u'<table>' rn = -1 for rn, row in enumerate(data): html += u'<tr class={}>'.format(rc) html += '\n'.join(html_elem(c, ct, withtype) for c in row) html += u'</tr>' rc = 'even' if rc == 'odd' else 'odd' ct = 'td' if limit: limit -= 1 if not limit: break return (0, '') if rn < 0 else (rn + 1 - header, html + u'</table>')
html_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, header=True, limit=None, withtype=False):\n if header and limit:\n limit += 1\n ct = 'th' if header else 'td'\n rc = 'hdr' if header else 'odd'\n html = u'<table>'\n rn = -1\n for rn, row in enumerate(data):\n html += u'<tr class={}>'.format(rc)\n html += '\\n'.join(html_elem(c, ct, withtype) for c in row)\n html += u'</tr>'\n rc = 'even' if rc == 'odd' else 'odd'\n ct = 'td'\n if limit:\n limit -= 1\n if not limit:\n break\n return (0, '') if rn < 0 else (rn + 1 - header, html + u'</table>')\n", "role": "user" }, { "content": "html_table", "role": "assistant" } ]
def x(c): ct = c['type'] return ct if ct != 'literal' else '{}, {}'.format(ct, c.get('xml:lang'))
jtype
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(c):\n ct = c['type']\n return ct if ct != 'literal' else '{}, {}'.format(ct, c.get('xml:lang'))\n", "role": "user" }, { "content": "jtype", "role": "assistant" } ]
def x(n): t = type(n).__name__ return str(t) if t != 'Literal' else 'Literal, {}'.format(n.language)
gtype
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n):\n t = type(n).__name__\n return str(t) if t != 'Literal' else 'Literal, {}'.format(n.language)\n", "role": "user" }, { "content": "gtype", "role": "assistant" } ]
def x(row, hdr, accepted_languages): if not accepted_languages: return True languages = set([row[c].get('xml:lang') for c in hdr if c in row and row[c]['type'] == 'literal']) return not languages or languages & accepted_languages
lang_match_json
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(row, hdr, accepted_languages):\n if not accepted_languages:\n return True\n languages = set([row[c].get('xml:lang') for c in hdr if c in row and \n row[c]['type'] == 'literal'])\n return not languages or languages & accepted_languages\n", "role": "user" }, { "content": "lang_match_json", "role": "assistant" } ]
def x(triple, accepted_languages): if not accepted_languages: return True languages = set([n.language for n in triple if isinstance(n, Literal)]) return not languages or languages & accepted_languages
lang_match_rdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(triple, accepted_languages):\n if not accepted_languages:\n return True\n languages = set([n.language for n in triple if isinstance(n, Literal)])\n return not languages or languages & accepted_languages\n", "role": "user" }, { "content": "lang_match_rdf", "role": "assistant" } ]
def x(row, accepted_languages): if not accepted_languages: return True column_languages = set() for elem in row: lang = elem[0].attrib.get(XML_LANG, None) if lang: column_languages.add(lang) return not column_languages or column_languages & accepted_languages
lang_match_xml
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(row, accepted_languages):\n if not accepted_languages:\n return True\n column_languages = set()\n for elem in row:\n lang = elem[0].attrib.get(XML_LANG, None)\n if lang:\n column_languages.add(lang)\n return not column_languages or column_languages & accepted_languages\n", "role": "user" }, { "content": "lang_match_xml", "role": "assistant" } ]
def x(hdr, rowlist, lang, add_vtype=False): yield hdr if not add_vtype else ((h, 'type') for h in hdr) for row in rowlist: if lang and not lang_match_json(row, hdr, lang): continue yield ((row[c]['value'], jtype(row[c])) if c in row else ('', '') for c in hdr)
json_iterator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hdr, rowlist, lang, add_vtype=False):\n yield hdr if not add_vtype else ((h, 'type') for h in hdr)\n for row in rowlist:\n if lang and not lang_match_json(row, hdr, lang):\n continue\n yield ((row[c]['value'], jtype(row[c])) if c in row else ('', '') for\n c in hdr)\n", "role": "user" }, { "content": "json_iterator", "role": "assistant" } ]
def x(graph, lang, add_vtype=False): hdr = 'subject', 'predicate', 'object' yield hdr if not add_vtype else ((h, 'type') for h in hdr) for row in graph: if lang and not lang_match_rdf(row, lang): continue yield ((unicode(c), gtype(c)) for c in row)
rdf_iterator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(graph, lang, add_vtype=False):\n hdr = 'subject', 'predicate', 'object'\n yield hdr if not add_vtype else ((h, 'type') for h in hdr)\n for row in graph:\n if lang and not lang_match_rdf(row, lang):\n continue\n yield ((unicode(c), gtype(c)) for c in row)\n", "role": "user" }, { "content": "rdf_iterator", "role": "assistant" } ]
def x(result, cfg, **kwargs): result = json.loads(result.decode('utf-8')) head = result['head'] if 'results' not in result: if 'boolean' in result: r = u'Result: {}'.format(result['boolean']) else: r = u'Unsupported result: \n' + unicode(result) return {'data': {'text/plain': r}, 'metadata': {}} vars = head['vars'] nrow = len(result['results']['bindings']) if cfg.dis == 'table': j = json_iterator(vars, result['results']['bindings'], set(cfg.lan), add_vtype=cfg.typ) n, data = html_table(j, limit=cfg.lmt, withtype=cfg.typ) data += div('Total: {}, Shown: {}', nrow, n, css='tinfo') data = {'text/html': div(data)} else: result = json.dumps(result, ensure_ascii=False, indent=2, sort_keys =True) data = {'text/plain': unicode(result)} return {'data': data, 'metadata': {}}
render_json
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(result, cfg, **kwargs):\n result = json.loads(result.decode('utf-8'))\n head = result['head']\n if 'results' not in result:\n if 'boolean' in result:\n r = u'Result: {}'.format(result['boolean'])\n else:\n r = u'Unsupported result: \\n' + unicode(result)\n return {'data': {'text/plain': r}, 'metadata': {}}\n vars = head['vars']\n nrow = len(result['results']['bindings'])\n if cfg.dis == 'table':\n j = json_iterator(vars, result['results']['bindings'], set(cfg.lan),\n add_vtype=cfg.typ)\n n, data = html_table(j, limit=cfg.lmt, withtype=cfg.typ)\n data += div('Total: {}, Shown: {}', nrow, n, css='tinfo')\n data = {'text/html': div(data)}\n else:\n result = json.dumps(result, ensure_ascii=False, indent=2, sort_keys\n =True)\n data = {'text/plain': unicode(result)}\n return {'data': data, 'metadata': {}}\n", "role": "user" }, { "content": "render_json", "role": "assistant" } ]
def x(row, lang): for elem in row: name = elem.get('name') child = elem[0] ftype = re.sub('\\{[^}]+\\}', '', child.tag) if ftype == 'literal': ftype = '{}, {}'.format(ftype, child.attrib.get(XML_LANG, 'none')) yield name, (child.text, ftype)
xml_row
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(row, lang):\n for elem in row:\n name = elem.get('name')\n child = elem[0]\n ftype = re.sub('\\\\{[^}]+\\\\}', '', child.tag)\n if ftype == 'literal':\n ftype = '{}, {}'.format(ftype, child.attrib.get(XML_LANG, 'none'))\n yield name, (child.text, ftype)\n", "role": "user" }, { "content": "xml_row", "role": "assistant" } ]
def x(columns, rowlist, lang, add_vtype=False): yield columns if not add_vtype else ((h, 'type') for h in columns) for row in rowlist: if not lang_match_xml(row, lang): continue rowdata = {nam: val for nam, val in xml_row(row, lang)} yield (rowdata.get(field, ('', '')) for field in columns)
xml_iterator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(columns, rowlist, lang, add_vtype=False):\n yield columns if not add_vtype else ((h, 'type') for h in columns)\n for row in rowlist:\n if not lang_match_xml(row, lang):\n continue\n rowdata = {nam: val for nam, val in xml_row(row, lang)}\n yield (rowdata.get(field, ('', '')) for field in columns)\n", "role": "user" }, { "content": "xml_iterator", "role": "assistant" } ]
def x(result, cfg, **kwargs): if cfg.dis == 'raw': return {'data': {'text/plain': result.decode('utf-8')}, 'metadata': {}} try: import xml.etree.cElementTree as ET except ImportError: import xml.etree.ElementTree as ET root = ET.fromstring(result) try: ns = {'ns': re.match('\\{([^}]+)\\}', root.tag).group(1)} except Exception: raise KrnlException('Invalid XML data: cannot get namespace') columns = [c.attrib['name'] for c in root.find('ns:head', ns)] results = root.find('ns:results', ns) nrow = len(results) j = xml_iterator(columns, results, set(cfg.lan), add_vtype=cfg.typ) n, data = html_table(j, limit=cfg.lmt, withtype=cfg.typ) data += div('Total: {}, Shown: {}', nrow, n, css='tinfo') return {'data': {'text/html': div(data)}, 'metadata': {}}
render_xml
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(result, cfg, **kwargs):\n if cfg.dis == 'raw':\n return {'data': {'text/plain': result.decode('utf-8')}, 'metadata': {}}\n try:\n import xml.etree.cElementTree as ET\n except ImportError:\n import xml.etree.ElementTree as ET\n root = ET.fromstring(result)\n try:\n ns = {'ns': re.match('\\\\{([^}]+)\\\\}', root.tag).group(1)}\n except Exception:\n raise KrnlException('Invalid XML data: cannot get namespace')\n columns = [c.attrib['name'] for c in root.find('ns:head', ns)]\n results = root.find('ns:results', ns)\n nrow = len(results)\n j = xml_iterator(columns, results, set(cfg.lan), add_vtype=cfg.typ)\n n, data = html_table(j, limit=cfg.lmt, withtype=cfg.typ)\n data += div('Total: {}, Shown: {}', nrow, n, css='tinfo')\n return {'data': {'text/html': div(data)}, 'metadata': {}}\n", "role": "user" }, { "content": "render_xml", "role": "assistant" } ]
def x(result, cfg, **kwargs): rdflib_formats = {'text/rdf+n3': 'n3', 'text/turtle': 'turtle', 'application/x-turtle': 'turtle', 'text/turtle': 'turtle', 'application/rdf+xml': 'xml', 'text/rdf': 'xml', 'application/rdf+xml': 'xml'} try: got = kwargs.get('format', 'text/rdf+n3') fmt = rdflib_formats[got] except KeyError: raise KrnlException('Unsupported format for graph processing: {!s}', got) g = ConjunctiveGraph() g.load(StringInputSource(result), format=fmt) display = cfg.dis[0] if is_collection(cfg.dis) else cfg.dis if display in ('png', 'svg'): try: literal = len(cfg.dis) > 1 and cfg.dis[1].startswith('withlit') opt = {'lang': cfg.lan, 'literal': literal, 'graphviz': []} data, metadata = draw_graph(g, fmt=display, options=opt) return {'data': data, 'metadata': metadata} except Exception as e: raise KrnlException('Exception while drawing graph: {!r}', e) elif display == 'table': it = rdf_iterator(g, set(cfg.lan), add_vtype=cfg.typ) n, data = html_table(it, limit=cfg.lmt, withtype=cfg.typ) data += div('Shown: {}, Total rows: {}', n if cfg.lmt else 'all', len(g), css='tinfo') data = {'text/html': div(data)} elif len(g) == 0: data = {'text/html': div(div('empty graph', css='krn-warn'))} else: data = {'text/plain': g.serialize(format='nt').decode('utf-8')} return {'data': data, 'metadata': {}}
render_graph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(result, cfg, **kwargs):\n rdflib_formats = {'text/rdf+n3': 'n3', 'text/turtle': 'turtle',\n 'application/x-turtle': 'turtle', 'text/turtle': 'turtle',\n 'application/rdf+xml': 'xml', 'text/rdf': 'xml',\n 'application/rdf+xml': 'xml'}\n try:\n got = kwargs.get('format', 'text/rdf+n3')\n fmt = rdflib_formats[got]\n except KeyError:\n raise KrnlException('Unsupported format for graph processing: {!s}',\n got)\n g = ConjunctiveGraph()\n g.load(StringInputSource(result), format=fmt)\n display = cfg.dis[0] if is_collection(cfg.dis) else cfg.dis\n if display in ('png', 'svg'):\n try:\n literal = len(cfg.dis) > 1 and cfg.dis[1].startswith('withlit')\n opt = {'lang': cfg.lan, 'literal': literal, 'graphviz': []}\n data, metadata = draw_graph(g, fmt=display, options=opt)\n return {'data': data, 'metadata': metadata}\n except Exception as e:\n raise KrnlException('Exception while drawing graph: {!r}', e)\n elif display == 'table':\n it = rdf_iterator(g, set(cfg.lan), add_vtype=cfg.typ)\n n, data = html_table(it, limit=cfg.lmt, withtype=cfg.typ)\n data += div('Shown: {}, Total rows: {}', n if cfg.lmt else 'all',\n len(g), css='tinfo')\n data = {'text/html': div(data)}\n elif len(g) == 0:\n data = {'text/html': div(div('empty graph', css='krn-warn'))}\n else:\n data = {'text/plain': g.serialize(format='nt').decode('utf-8')}\n return {'data': data, 'metadata': {}}\n", "role": "user" }, { "content": "render_graph", "role": "assistant" } ]
def x(self, line): if line.startswith('%lsmagic'): return magic_help, 'magic-help' try: cmd, param = line.split(None, 1) except ValueError: raise KrnlException('invalid magic: {}', line) cmd = cmd[1:].lower() if cmd == 'endpoint': self.srv = SPARQLWrapper.SPARQLWrapper(param) return ['Endpoint set to: {}', param], 'magic' elif cmd == 'auth': auth_data = param.split(None, 2) if auth_data[0].lower() == 'none': self.cfg.aut = None return ['HTTP authentication: None'], 'magic' if auth_data and len(auth_data) != 3: raise KrnlException('invalid %auth magic') self.cfg.aut = auth_data return ['HTTP authentication: {}', auth_data], 'magic' elif cmd == 'qparam': v = param.split(None, 1) if len(v) == 0: raise KrnlException('missing %qparam name') elif len(v) == 1: self.cfg.par.pop(v[0], None) return ['Param deleted: {}', v[0]] else: self.cfg.par[v[0]] = v[1] return ['Param set: {} = {}'] + v, 'magic' elif cmd == 'prefix': v = param.split(None, 1) if len(v) == 0: raise KrnlException('missing %prefix value') elif len(v) == 1: self.cfg.pfx.pop(v[0], None) return ['Prefix deleted: {}', v[0]], 'magic' else: self.cfg.pfx[v[0]] = v[1] return ['Prefix set: {} = {}'] + v, 'magic' elif cmd == 'show': if param == 'all': self.cfg.lmt = None else: try: self.cfg.lmt = int(param) except ValueError as e: raise KrnlException('invalid result limit: {}', e) sz = self.cfg.lmt if self.cfg.lmt is not None else 'unlimited' return ['Result maximum size: {}', sz], 'magic' elif cmd == 'format': fmt_list = {'JSON': SPARQLWrapper.JSON, 'N3': SPARQLWrapper.N3, 'XML': SPARQLWrapper.XML, 'DEFAULT': None, 'ANY': False} try: fmt = param.upper() self.cfg.fmt = fmt_list[fmt] except KeyError: raise KrnlException( 'unsupported format: {}\nSupported formats are: {!s}', param, list(fmt_list.keys())) return ['Return format: {}', fmt], 'magic' elif cmd == 'lang': self.cfg.lan = DEFAULT_TEXT_LANG if param == 'default' else [ ] if param == 'all' else param.split() return ['Label preferred languages: {}', self.cfg.lan], 'magic' elif cmd in 'graph': self.cfg.grh = param if param else None return ['Default graph: {}', param if param else 'None'], 'magic' elif cmd == 'display': v = param.lower().split(None, 2) if len(v) == 0 or v[0] not in ('table', 'raw', 'graph', 'diagram'): raise KrnlException('invalid %display command: {}', param) msg_extra = '' if v[0] not in ('diagram', 'graph'): self.cfg.dis = v[0] self.cfg.typ = len(v) > 1 and v[1].startswith('withtype') if self.cfg.typ and self.cfg.dis == 'table': msg_extra = '\nShow Types: on' elif len(v) == 1: self.cfg.dis = ['svg'] else: if v[1] not in ('png', 'svg'): raise KrnlException('invalid graph format: {}', param) if len(v) > 2: if not v[2].startswith('withlit'): raise KrnlException('invalid graph option: {}', param) msg_extra = '\nShow literals: on' self.cfg.dis = v[1:3] display = self.cfg.dis[0] if is_collection(self.cfg.dis ) else self.cfg.dis return ['Display: {}{}', display, msg_extra], 'magic' elif cmd == 'outfile': if param == 'NONE': self.cfg.out = None return ['no output file'], 'magic' else: self.cfg.out = param return ['Output file: {}', os.path.abspath(param)], 'magic' elif cmd == 'log': if not param: raise KrnlException('missing log level') try: lev = param.upper() parent_logger = logging.getLogger(__name__.rsplit('.', 1)[0]) parent_logger.setLevel(lev) return ('Logging set to {}', lev), 'magic' except ValueError: raise KrnlException('unknown log level: {}', param) elif cmd == 'header': if param.upper() == 'OFF': num = len(self.cfg.hdr) self.cfg.hdr = [] return ['All headers deleted ({})', num], 'magic' else: if param in self.cfg.hdr: return ['Header skipped (repeated)'], 'magic' self.cfg.hdr.append(param) return ['Header added: {}', param], 'magic' else: raise KrnlException('magic not found: {}', cmd)
magic
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, line):\n if line.startswith('%lsmagic'):\n return magic_help, 'magic-help'\n try:\n cmd, param = line.split(None, 1)\n except ValueError:\n raise KrnlException('invalid magic: {}', line)\n cmd = cmd[1:].lower()\n if cmd == 'endpoint':\n self.srv = SPARQLWrapper.SPARQLWrapper(param)\n return ['Endpoint set to: {}', param], 'magic'\n elif cmd == 'auth':\n auth_data = param.split(None, 2)\n if auth_data[0].lower() == 'none':\n self.cfg.aut = None\n return ['HTTP authentication: None'], 'magic'\n if auth_data and len(auth_data) != 3:\n raise KrnlException('invalid %auth magic')\n self.cfg.aut = auth_data\n return ['HTTP authentication: {}', auth_data], 'magic'\n elif cmd == 'qparam':\n v = param.split(None, 1)\n if len(v) == 0:\n raise KrnlException('missing %qparam name')\n elif len(v) == 1:\n self.cfg.par.pop(v[0], None)\n return ['Param deleted: {}', v[0]]\n else:\n self.cfg.par[v[0]] = v[1]\n return ['Param set: {} = {}'] + v, 'magic'\n elif cmd == 'prefix':\n v = param.split(None, 1)\n if len(v) == 0:\n raise KrnlException('missing %prefix value')\n elif len(v) == 1:\n self.cfg.pfx.pop(v[0], None)\n return ['Prefix deleted: {}', v[0]], 'magic'\n else:\n self.cfg.pfx[v[0]] = v[1]\n return ['Prefix set: {} = {}'] + v, 'magic'\n elif cmd == 'show':\n if param == 'all':\n self.cfg.lmt = None\n else:\n try:\n self.cfg.lmt = int(param)\n except ValueError as e:\n raise KrnlException('invalid result limit: {}', e)\n sz = self.cfg.lmt if self.cfg.lmt is not None else 'unlimited'\n return ['Result maximum size: {}', sz], 'magic'\n elif cmd == 'format':\n fmt_list = {'JSON': SPARQLWrapper.JSON, 'N3': SPARQLWrapper.N3,\n 'XML': SPARQLWrapper.XML, 'DEFAULT': None, 'ANY': False}\n try:\n fmt = param.upper()\n self.cfg.fmt = fmt_list[fmt]\n except KeyError:\n raise KrnlException(\n 'unsupported format: {}\\nSupported formats are: {!s}',\n param, list(fmt_list.keys()))\n return ['Return format: {}', fmt], 'magic'\n elif cmd == 'lang':\n self.cfg.lan = DEFAULT_TEXT_LANG if param == 'default' else [\n ] if param == 'all' else param.split()\n return ['Label preferred languages: {}', self.cfg.lan], 'magic'\n elif cmd in 'graph':\n self.cfg.grh = param if param else None\n return ['Default graph: {}', param if param else 'None'], 'magic'\n elif cmd == 'display':\n v = param.lower().split(None, 2)\n if len(v) == 0 or v[0] not in ('table', 'raw', 'graph', 'diagram'):\n raise KrnlException('invalid %display command: {}', param)\n msg_extra = ''\n if v[0] not in ('diagram', 'graph'):\n self.cfg.dis = v[0]\n self.cfg.typ = len(v) > 1 and v[1].startswith('withtype')\n if self.cfg.typ and self.cfg.dis == 'table':\n msg_extra = '\\nShow Types: on'\n elif len(v) == 1:\n self.cfg.dis = ['svg']\n else:\n if v[1] not in ('png', 'svg'):\n raise KrnlException('invalid graph format: {}', param)\n if len(v) > 2:\n if not v[2].startswith('withlit'):\n raise KrnlException('invalid graph option: {}', param)\n msg_extra = '\\nShow literals: on'\n self.cfg.dis = v[1:3]\n display = self.cfg.dis[0] if is_collection(self.cfg.dis\n ) else self.cfg.dis\n return ['Display: {}{}', display, msg_extra], 'magic'\n elif cmd == 'outfile':\n if param == 'NONE':\n self.cfg.out = None\n return ['no output file'], 'magic'\n else:\n self.cfg.out = param\n return ['Output file: {}', os.path.abspath(param)], 'magic'\n elif cmd == 'log':\n if not param:\n raise KrnlException('missing log level')\n try:\n lev = param.upper()\n parent_logger = logging.getLogger(__name__.rsplit('.', 1)[0])\n parent_logger.setLevel(lev)\n return ('Logging set to {}', lev), 'magic'\n except ValueError:\n raise KrnlException('unknown log level: {}', param)\n elif cmd == 'header':\n if param.upper() == 'OFF':\n num = len(self.cfg.hdr)\n self.cfg.hdr = []\n return ['All headers deleted ({})', num], 'magic'\n else:\n if param in self.cfg.hdr:\n return ['Header skipped (repeated)'], 'magic'\n self.cfg.hdr.append(param)\n return ['Header added: {}', param], 'magic'\n else:\n raise KrnlException('magic not found: {}', cmd)\n", "role": "user" }, { "content": "magic", "role": "assistant" } ]
def x(self, query, num=0, silent=False): if self.srv is None: raise KrnlException('no endpoint defined') if self.cfg.pfx: prefix = '\n'.join('PREFIX {} {}'.format(*v) for v in self.cfg.pfx. items()) query = prefix + '\n' + query if self.cfg.hdr: query = '\n'.join(self.cfg.hdr) + '\n' + query if self.log.isEnabledFor(logging.DEBUG): self.log.debug('\n%50s%s', query, '...' if len(query) > 50 else '') if self.cfg.fmt is not None: fmt_req = self.cfg.fmt elif re.search('\\bselect\\b', query, re.I): fmt_req = SPARQLWrapper.JSON elif re.search('\\b(?:describe|construct)\\b', query, re.I): fmt_req = SPARQLWrapper.N3 else: fmt_req = False self.srv.resetQuery() if self.cfg.aut: self.srv.setHTTPAuth(self.cfg.aut[0]) self.srv.setCredentials(*self.cfg.aut[1:]) else: self.srv.setCredentials(None, None) self.log.debug(u'request-format: %s display: %s', fmt_req, self.cfg.dis) if fmt_req: self.srv.setReturnFormat(fmt_req) if self.cfg.grh: self.srv.addParameter('default-graph-uri', self.cfg.grh) for p in self.cfg.par.items(): self.srv.addParameter(*p) self.srv.setQuery(query) if not silent or self.cfg.out: try: start = datetime.datetime.utcnow() res = self.srv.query() now = datetime.datetime.utcnow() self.log.debug(u'response elapsed=%s', now - start) start = now info = res.info() self.log.debug(u'response info: %s', info) fmt_got = info['content-type'].split(';')[0 ] if 'content-type' in info else None if fmt_req and fmt_got not in mime_type[fmt_req]: raise KrnlException( u'Unexpected response format: {} (requested: {})', fmt_got, fmt_req) data = b''.join(line for line in res) except KrnlException: raise except SPARQLWrapperException as e: raise KrnlException(u'SPARQL error: {}', touc(e)) except Exception as e: raise KrnlException(u'Query processing error: {!s}', e) if self.cfg.out: try: outname = self.cfg.out % num except TypeError: outname = self.cfg.out with io.open(outname, 'wb') as f: f.write(data) try: fmt = (fmt_req if fmt_req else SPARQLWrapper.JSON if fmt_got in mime_type[SPARQLWrapper.JSON] else SPARQLWrapper.N3 if fmt_got in mime_type[SPARQLWrapper.N3] else SPARQLWrapper. XML if fmt_got in mime_type[SPARQLWrapper.XML] else 'text/plain' if self.cfg.dis == 'raw' else fmt_got if fmt_got in ('text/plain', 'text/html') else 'text/plain') if fmt in ('text/plain', 'text/html'): out = data.decode('utf-8') if isinstance(data, bytes) else data r = {'data': {fmt: out}, 'metadata': {}} else: f = (render_json if fmt == SPARQLWrapper.JSON else render_xml if fmt == SPARQLWrapper.XML else render_graph) r = f(data, self.cfg, format=fmt_got) now = datetime.datetime.utcnow() self.log.debug(u'response formatted=%s', now - start) if not silent: return r except Exception as e: raise KrnlException(u'Response processing error: {}', touc(e))
query
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, query, num=0, silent=False):\n if self.srv is None:\n raise KrnlException('no endpoint defined')\n if self.cfg.pfx:\n prefix = '\\n'.join('PREFIX {} {}'.format(*v) for v in self.cfg.pfx.\n items())\n query = prefix + '\\n' + query\n if self.cfg.hdr:\n query = '\\n'.join(self.cfg.hdr) + '\\n' + query\n if self.log.isEnabledFor(logging.DEBUG):\n self.log.debug('\\n%50s%s', query, '...' if len(query) > 50 else '')\n if self.cfg.fmt is not None:\n fmt_req = self.cfg.fmt\n elif re.search('\\\\bselect\\\\b', query, re.I):\n fmt_req = SPARQLWrapper.JSON\n elif re.search('\\\\b(?:describe|construct)\\\\b', query, re.I):\n fmt_req = SPARQLWrapper.N3\n else:\n fmt_req = False\n self.srv.resetQuery()\n if self.cfg.aut:\n self.srv.setHTTPAuth(self.cfg.aut[0])\n self.srv.setCredentials(*self.cfg.aut[1:])\n else:\n self.srv.setCredentials(None, None)\n self.log.debug(u'request-format: %s display: %s', fmt_req, self.cfg.dis)\n if fmt_req:\n self.srv.setReturnFormat(fmt_req)\n if self.cfg.grh:\n self.srv.addParameter('default-graph-uri', self.cfg.grh)\n for p in self.cfg.par.items():\n self.srv.addParameter(*p)\n self.srv.setQuery(query)\n if not silent or self.cfg.out:\n try:\n start = datetime.datetime.utcnow()\n res = self.srv.query()\n now = datetime.datetime.utcnow()\n self.log.debug(u'response elapsed=%s', now - start)\n start = now\n info = res.info()\n self.log.debug(u'response info: %s', info)\n fmt_got = info['content-type'].split(';')[0\n ] if 'content-type' in info else None\n if fmt_req and fmt_got not in mime_type[fmt_req]:\n raise KrnlException(\n u'Unexpected response format: {} (requested: {})',\n fmt_got, fmt_req)\n data = b''.join(line for line in res)\n except KrnlException:\n raise\n except SPARQLWrapperException as e:\n raise KrnlException(u'SPARQL error: {}', touc(e))\n except Exception as e:\n raise KrnlException(u'Query processing error: {!s}', e)\n if self.cfg.out:\n try:\n outname = self.cfg.out % num\n except TypeError:\n outname = self.cfg.out\n with io.open(outname, 'wb') as f:\n f.write(data)\n try:\n fmt = (fmt_req if fmt_req else SPARQLWrapper.JSON if fmt_got in\n mime_type[SPARQLWrapper.JSON] else SPARQLWrapper.N3 if \n fmt_got in mime_type[SPARQLWrapper.N3] else SPARQLWrapper.\n XML if fmt_got in mime_type[SPARQLWrapper.XML] else \n 'text/plain' if self.cfg.dis == 'raw' else fmt_got if \n fmt_got in ('text/plain', 'text/html') else 'text/plain')\n if fmt in ('text/plain', 'text/html'):\n out = data.decode('utf-8') if isinstance(data, bytes) else data\n r = {'data': {fmt: out}, 'metadata': {}}\n else:\n f = (render_json if fmt == SPARQLWrapper.JSON else \n render_xml if fmt == SPARQLWrapper.XML else render_graph)\n r = f(data, self.cfg, format=fmt_got)\n now = datetime.datetime.utcnow()\n self.log.debug(u'response formatted=%s', now - start)\n if not silent:\n return r\n except Exception as e:\n raise KrnlException(u'Response processing error: {}', touc(e))\n", "role": "user" }, { "content": "query", "role": "assistant" } ]
def x(logfilename=None, level=None): if logfilename is None: logdir = os.environ.get('LOGDIR') if logdir is None: logdir = os.environ.get('LOGDIR_DEFAULT', tempfile.gettempdir()) basename = __name__.split('.')[-2] logfilename = os.path.join(logdir, basename + '.log') LOGCONFIG['handlers']['default']['filename'] = logfilename if level is not None: LOGCONFIG['loggers']['sparqlkernel']['level'] = level dictConfig(LOGCONFIG)
set_logging
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(logfilename=None, level=None):\n if logfilename is None:\n logdir = os.environ.get('LOGDIR')\n if logdir is None:\n logdir = os.environ.get('LOGDIR_DEFAULT', tempfile.gettempdir())\n basename = __name__.split('.')[-2]\n logfilename = os.path.join(logdir, basename + '.log')\n LOGCONFIG['handlers']['default']['filename'] = logfilename\n if level is not None:\n LOGCONFIG['loggers']['sparqlkernel']['level'] = level\n dictConfig(LOGCONFIG)\n", "role": "user" }, { "content": "set_logging", "role": "assistant" } ]
def x(self, field_name): manager = self._smartfields_managers.get(field_name, None) if manager is not None: return manager.get_status(self) return {'state': 'ready'}
smartfields_get_field_status
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, field_name):\n manager = self._smartfields_managers.get(field_name, None)\n if manager is not None:\n return manager.get_status(self)\n return {'state': 'ready'}\n", "role": "user" }, { "content": "smartfields_get_field_status", "role": "assistant" } ]
def x(self, format=None, **kwargs): try: format = format or self.default_params['format'] return '.%s' % format.lower() except KeyError: pass
get_ext
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, format=None, **kwargs):\n try:\n format = format or self.default_params['format']\n return '.%s' % format.lower()\n except KeyError:\n pass\n", "role": "user" }, { "content": "get_ext", "role": "assistant" } ]
def x(self, in_file, instance, field, **kwargs): return NamedTemporaryFile(mode='rb', suffix='_%s_%s%s' % ( get_model_name(instance), field.name, self.get_ext()), delete=False)
get_output_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, in_file, instance, field, **kwargs):\n return NamedTemporaryFile(mode='rb', suffix='_%s_%s%s' % (\n get_model_name(instance), field.name, self.get_ext()), delete=False)\n", "role": "user" }, { "content": "get_output_file", "role": "assistant" } ]
def x(x, gr, preferred_languages=None): labels = {l.language: l for labelProp in LABEL_PROPERTIES for l in gr. objects(x, labelProp)} if labels: if preferred_languages is not None: for l in preferred_languages: if l in labels: return labels[l] return labels.itervalues().next() try: return gr.namespace_manager.compute_qname(x)[2].replace('_', ' ') except: m = re.search('([^/]+)$', x) return m.group(1).replace('_', ' ') if m else x
label
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, gr, preferred_languages=None):\n labels = {l.language: l for labelProp in LABEL_PROPERTIES for l in gr.\n objects(x, labelProp)}\n if labels:\n if preferred_languages is not None:\n for l in preferred_languages:\n if l in labels:\n return labels[l]\n return labels.itervalues().next()\n try:\n return gr.namespace_manager.compute_qname(x)[2].replace('_', ' ')\n except:\n m = re.search('([^/]+)$', x)\n return m.group(1).replace('_', ' ') if m else x\n", "role": "user" }, { "content": "label", "role": "assistant" } ]
def x(g, stream, opts={}): accept_lang = set(opts.get('lang', [])) do_literal = opts.get('literal') nodes = {} links = [] def x(x): if x not in nodes: nodes[x] = 'node%d' % len(nodes) return nodes[x] def x(x, g): try: q = g.compute_qname(x) return q[0] + ':' + q[2] except: return x def x(node): if isinstance(node, (rdflib.URIRef, rdflib.BNode)): return True if not do_literal: return False return not accept_lang or node.language in accept_lang stream.write( u'digraph { \n node [ fontname="DejaVu Sans,Tahoma,Geneva,sans-serif" ] ; \n' ) for s, p, o in g: if p == rdflib.RDFS.label: continue if not (accept(s) and accept(o)): continue sn = node_id(s) on = node_id(o) q = qname(p, g) if isinstance(p, rdflib.URIRef): opstr = ( u""" %s -> %s [ arrowhead="open", color="#9FC9E560", fontsize=9, fontcolor="#204080", label="%s", href="%s", target="_other" ] ; """ % (sn, on, q, p)) else: opstr = ( u""" %s -> %s [ arrowhead="open", color="#9FC9E560", fontsize=9, fontcolor="#204080", label="%s" ] ; """ % (sn, on, q)) stream.write(opstr) for u, n in nodes.items(): lbl = escape(label(u, g, accept_lang), True) if isinstance(u, rdflib.URIRef): opstr = ( u"""%s [ shape=none, fontsize=10, fontcolor=%s, label="%s", href="%s", target=_other ] """ % (n, 'blue', lbl, u)) else: opstr = ( u'%s [ shape=none, fontsize=10, fontcolor=%s, label="%s" ] \n' % (n, 'black', lbl)) stream.write(u'# %s %s\n' % (u, n)) stream.write(opstr) stream.write(u'}\n')
rdf2dot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(g, stream, opts={}):\n accept_lang = set(opts.get('lang', []))\n do_literal = opts.get('literal')\n nodes = {}\n links = []\n\n def x(x):\n if x not in nodes:\n nodes[x] = 'node%d' % len(nodes)\n return nodes[x]\n\n def x(x, g):\n try:\n q = g.compute_qname(x)\n return q[0] + ':' + q[2]\n except:\n return x\n\n def x(node):\n if isinstance(node, (rdflib.URIRef, rdflib.BNode)):\n return True\n if not do_literal:\n return False\n return not accept_lang or node.language in accept_lang\n stream.write(\n u'digraph { \\n node [ fontname=\"DejaVu Sans,Tahoma,Geneva,sans-serif\" ] ; \\n'\n )\n for s, p, o in g:\n if p == rdflib.RDFS.label:\n continue\n if not (accept(s) and accept(o)):\n continue\n sn = node_id(s)\n on = node_id(o)\n q = qname(p, g)\n if isinstance(p, rdflib.URIRef):\n opstr = (\n u\"\"\"\t%s -> %s [ arrowhead=\"open\", color=\"#9FC9E560\", fontsize=9, fontcolor=\"#204080\", label=\"%s\", href=\"%s\", target=\"_other\" ] ;\n\"\"\"\n % (sn, on, q, p))\n else:\n opstr = (\n u\"\"\"\t%s -> %s [ arrowhead=\"open\", color=\"#9FC9E560\", fontsize=9, fontcolor=\"#204080\", label=\"%s\" ] ;\n\"\"\"\n % (sn, on, q))\n stream.write(opstr)\n for u, n in nodes.items():\n lbl = escape(label(u, g, accept_lang), True)\n if isinstance(u, rdflib.URIRef):\n opstr = (\n u\"\"\"%s [ shape=none, fontsize=10, fontcolor=%s, label=\"%s\", href=\"%s\", target=_other ] \n\"\"\"\n % (n, 'blue', lbl, u))\n else:\n opstr = (\n u'%s [ shape=none, fontsize=10, fontcolor=%s, label=\"%s\" ] \\n'\n % (n, 'black', lbl))\n stream.write(u'# %s %s\\n' % (u, n))\n stream.write(opstr)\n stream.write(u'}\\n')\n", "role": "user" }, { "content": "rdf2dot", "role": "assistant" } ]
def x(g, fmt='svg', prg='dot', options={}): buf = StringIO() rdf2dot(g, buf, options) gv_options = options.get('graphviz', []) if fmt == 'png': gv_options += ['-Gdpi=220', '-Gsize=25,10!'] metadata = {'width': 5500, 'height': 2200, 'unconfined': True} image = run_dot(buf.getvalue(), fmt=fmt, options=gv_options, prg=prg) if fmt == 'png': return {'image/png': base64.b64encode(image).decode('ascii')}, { 'image/png': metadata} elif fmt == 'svg': return {'image/svg+xml': image.decode('utf-8').replace('<svg', '<svg class="unconfined"', 1)}, {'unconfined': True}
draw_graph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(g, fmt='svg', prg='dot', options={}):\n buf = StringIO()\n rdf2dot(g, buf, options)\n gv_options = options.get('graphviz', [])\n if fmt == 'png':\n gv_options += ['-Gdpi=220', '-Gsize=25,10!']\n metadata = {'width': 5500, 'height': 2200, 'unconfined': True}\n image = run_dot(buf.getvalue(), fmt=fmt, options=gv_options, prg=prg)\n if fmt == 'png':\n return {'image/png': base64.b64encode(image).decode('ascii')}, {\n 'image/png': metadata}\n elif fmt == 'svg':\n return {'image/svg+xml': image.decode('utf-8').replace('<svg',\n '<svg class=\"unconfined\"', 1)}, {'unconfined': True}\n", "role": "user" }, { "content": "draw_graph", "role": "assistant" } ]
def x(self, psd, geometry): if self._S_table is None or self._Z_table is None: raise AttributeError('Initialize or load the scattering table first.') if not isinstance(psd, PSD) or self._previous_psd != psd: self._S_dict = {} self._Z_dict = {} psd_w = psd(self._psd_D) for geom in self.geometries: self._S_dict[geom] = trapz(self._S_table[geom] * psd_w, self._psd_D ) self._Z_dict[geom] = trapz(self._Z_table[geom] * psd_w, self._psd_D ) self._previous_psd = psd return self._S_dict[geometry], self._Z_dict[geometry]
get_SZ
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, psd, geometry):\n if self._S_table is None or self._Z_table is None:\n raise AttributeError('Initialize or load the scattering table first.')\n if not isinstance(psd, PSD) or self._previous_psd != psd:\n self._S_dict = {}\n self._Z_dict = {}\n psd_w = psd(self._psd_D)\n for geom in self.geometries:\n self._S_dict[geom] = trapz(self._S_table[geom] * psd_w, self._psd_D\n )\n self._Z_dict[geom] = trapz(self._Z_table[geom] * psd_w, self._psd_D\n )\n self._previous_psd = psd\n return self._S_dict[geometry], self._Z_dict[geometry]\n", "role": "user" }, { "content": "get_SZ", "role": "assistant" } ]
def x(self, tm, angular_integration=False, verbose=False): self._psd_D = np.linspace(self.D_max / self.num_points, self.D_max, self.num_points) self._S_table = {} self._Z_table = {} self._previous_psd = None self._m_table = np.empty(self.num_points, dtype=complex) if angular_integration: self._angular_table = {'sca_xsect': {}, 'ext_xsect': {}, 'asym': {}} else: self._angular_table = None old_m, old_axis_ratio, old_radius, old_geom, old_psd_integrator = (tm.m, tm.axis_ratio, tm.radius, tm.get_geometry(), tm.psd_integrator) try: tm.psd_integrator = None for geom in self.geometries: self._S_table[geom] = np.empty((2, 2, self.num_points), dtype= complex) self._Z_table[geom] = np.empty((4, 4, self.num_points)) if angular_integration: for int_var in ['sca_xsect', 'ext_xsect', 'asym']: self._angular_table[int_var][geom] = np.empty(self. num_points) for i, D in enumerate(self._psd_D): if verbose: print('Computing point {i} at D={D}...'.format(i=i, D=D)) if self.m_func != None: tm.m = self.m_func(D) if self.axis_ratio_func != None: tm.axis_ratio = self.axis_ratio_func(D) self._m_table[i] = tm.m tm.radius = D / 2.0 for geom in self.geometries: tm.set_geometry(geom) S, Z = tm.get_SZ_orient() self._S_table[geom][:, :, i] = S self._Z_table[geom][:, :, i] = Z if angular_integration: self._angular_table['sca_xsect'][geom][i ] = scatter.sca_xsect(tm) self._angular_table['ext_xsect'][geom][i ] = scatter.ext_xsect(tm) self._angular_table['asym'][geom][i] = scatter.asym(tm) finally: tm.m, tm.axis_ratio, tm.radius, tm.psd_integrator = (old_m, old_axis_ratio, old_radius, old_psd_integrator) tm.set_geometry(old_geom)
init_scatter_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tm, angular_integration=False, verbose=False):\n self._psd_D = np.linspace(self.D_max / self.num_points, self.D_max,\n self.num_points)\n self._S_table = {}\n self._Z_table = {}\n self._previous_psd = None\n self._m_table = np.empty(self.num_points, dtype=complex)\n if angular_integration:\n self._angular_table = {'sca_xsect': {}, 'ext_xsect': {}, 'asym': {}}\n else:\n self._angular_table = None\n old_m, old_axis_ratio, old_radius, old_geom, old_psd_integrator = (tm.m,\n tm.axis_ratio, tm.radius, tm.get_geometry(), tm.psd_integrator)\n try:\n tm.psd_integrator = None\n for geom in self.geometries:\n self._S_table[geom] = np.empty((2, 2, self.num_points), dtype=\n complex)\n self._Z_table[geom] = np.empty((4, 4, self.num_points))\n if angular_integration:\n for int_var in ['sca_xsect', 'ext_xsect', 'asym']:\n self._angular_table[int_var][geom] = np.empty(self.\n num_points)\n for i, D in enumerate(self._psd_D):\n if verbose:\n print('Computing point {i} at D={D}...'.format(i=i, D=D))\n if self.m_func != None:\n tm.m = self.m_func(D)\n if self.axis_ratio_func != None:\n tm.axis_ratio = self.axis_ratio_func(D)\n self._m_table[i] = tm.m\n tm.radius = D / 2.0\n for geom in self.geometries:\n tm.set_geometry(geom)\n S, Z = tm.get_SZ_orient()\n self._S_table[geom][:, :, i] = S\n self._Z_table[geom][:, :, i] = Z\n if angular_integration:\n self._angular_table['sca_xsect'][geom][i\n ] = scatter.sca_xsect(tm)\n self._angular_table['ext_xsect'][geom][i\n ] = scatter.ext_xsect(tm)\n self._angular_table['asym'][geom][i] = scatter.asym(tm)\n finally:\n tm.m, tm.axis_ratio, tm.radius, tm.psd_integrator = (old_m,\n old_axis_ratio, old_radius, old_psd_integrator)\n tm.set_geometry(old_geom)\n", "role": "user" }, { "content": "init_scatter_table", "role": "assistant" } ]
def x(self, fn, description=''): data = {'description': description, 'time': datetime.now(), 'psd_scatter': (self.num_points, self.D_max, self._psd_D, self. _S_table, self._Z_table, self._angular_table, self._m_table, self. geometries), 'version': tmatrix_aux.VERSION} pickle.dump(data, file(fn, 'w'), pickle.HIGHEST_PROTOCOL)
save_scatter_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fn, description=''):\n data = {'description': description, 'time': datetime.now(),\n 'psd_scatter': (self.num_points, self.D_max, self._psd_D, self.\n _S_table, self._Z_table, self._angular_table, self._m_table, self.\n geometries), 'version': tmatrix_aux.VERSION}\n pickle.dump(data, file(fn, 'w'), pickle.HIGHEST_PROTOCOL)\n", "role": "user" }, { "content": "save_scatter_table", "role": "assistant" } ]
def x(self, fn): data = pickle.load(file(fn)) if 'version' not in data or data['version'] != tmatrix_aux.VERSION: warnings.warn('Loading data saved with another version.', Warning) (self.num_points, self.D_max, self._psd_D, self._S_table, self._Z_table, self._angular_table, self._m_table, self.geometries) = data[ 'psd_scatter'] return data['time'], data['description']
load_scatter_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fn):\n data = pickle.load(file(fn))\n if 'version' not in data or data['version'] != tmatrix_aux.VERSION:\n warnings.warn('Loading data saved with another version.', Warning)\n (self.num_points, self.D_max, self._psd_D, self._S_table, self._Z_table,\n self._angular_table, self._m_table, self.geometries) = data[\n 'psd_scatter']\n return data['time'], data['description']\n", "role": "user" }, { "content": "load_scatter_table", "role": "assistant" } ]
def x(std=10.0, mean=0.0): norm_const = 1.0 def x(x): return norm_const * np.exp(-0.5 * ((x - mean) / std) ** 2) * np.sin( np.pi / 180.0 * x) norm_dev = quad(pdf, 0.0, 180.0)[0] norm_const /= norm_dev return pdf
gaussian_pdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(std=10.0, mean=0.0):\n norm_const = 1.0\n\n def x(x):\n return norm_const * np.exp(-0.5 * ((x - mean) / std) ** 2) * np.sin(\n np.pi / 180.0 * x)\n norm_dev = quad(pdf, 0.0, 180.0)[0]\n norm_const /= norm_dev\n return pdf\n", "role": "user" }, { "content": "gaussian_pdf", "role": "assistant" } ]
def x(): norm_const = 1.0 def x(x): return norm_const * np.sin(np.pi / 180.0 * x) norm_dev = quad(pdf, 0.0, 180.0)[0] norm_const /= norm_dev return pdf
uniform_pdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n norm_const = 1.0\n\n def x(x):\n return norm_const * np.sin(np.pi / 180.0 * x)\n norm_dev = quad(pdf, 0.0, 180.0)[0]\n norm_const /= norm_dev\n return pdf\n", "role": "user" }, { "content": "uniform_pdf", "role": "assistant" } ]
def x(tm): S = np.zeros((2, 2), dtype=complex) Z = np.zeros((4, 4)) def x(beta, alpha, i, j, real): S_ang, Z_ang = tm.get_SZ_single(alpha=alpha, beta=beta) s = S_ang[i, j].real if real else S_ang[i, j].imag return s * tm.or_pdf(beta) ind = range(2) for i in ind: for j in ind: S.real[i, j] = dblquad(Sfunc, 0.0, 360.0, lambda x: 0.0, lambda x: 180.0, (i, j, True))[0] / 360.0 S.imag[i, j] = dblquad(Sfunc, 0.0, 360.0, lambda x: 0.0, lambda x: 180.0, (i, j, False))[0] / 360.0 def x(beta, alpha, i, j): S_and, Z_ang = tm.get_SZ_single(alpha=alpha, beta=beta) return Z_ang[i, j] * tm.or_pdf(beta) ind = range(4) for i in ind: for j in ind: Z[i, j] = dblquad(Zfunc, 0.0, 360.0, lambda x: 0.0, lambda x: 180.0, (i, j))[0] / 360.0 return S, Z
orient_averaged_adaptive
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tm):\n S = np.zeros((2, 2), dtype=complex)\n Z = np.zeros((4, 4))\n\n def x(beta, alpha, i, j, real):\n S_ang, Z_ang = tm.get_SZ_single(alpha=alpha, beta=beta)\n s = S_ang[i, j].real if real else S_ang[i, j].imag\n return s * tm.or_pdf(beta)\n ind = range(2)\n for i in ind:\n for j in ind:\n S.real[i, j] = dblquad(Sfunc, 0.0, 360.0, lambda x: 0.0, lambda\n x: 180.0, (i, j, True))[0] / 360.0\n S.imag[i, j] = dblquad(Sfunc, 0.0, 360.0, lambda x: 0.0, lambda\n x: 180.0, (i, j, False))[0] / 360.0\n\n def x(beta, alpha, i, j):\n S_and, Z_ang = tm.get_SZ_single(alpha=alpha, beta=beta)\n return Z_ang[i, j] * tm.or_pdf(beta)\n ind = range(4)\n for i in ind:\n for j in ind:\n Z[i, j] = dblquad(Zfunc, 0.0, 360.0, lambda x: 0.0, lambda x: \n 180.0, (i, j))[0] / 360.0\n return S, Z\n", "role": "user" }, { "content": "orient_averaged_adaptive", "role": "assistant" } ]
def x(tm): S = np.zeros((2, 2), dtype=complex) Z = np.zeros((4, 4)) ap = np.linspace(0, 360, tm.n_alpha + 1)[:-1] aw = 1.0 / tm.n_alpha for alpha in ap: for beta, w in zip(tm.beta_p, tm.beta_w): S_ang, Z_ang = tm.get_SZ_single(alpha=alpha, beta=beta) S += w * S_ang Z += w * Z_ang sw = tm.beta_w.sum() S *= aw / sw Z *= aw / sw return S, Z
orient_averaged_fixed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tm):\n S = np.zeros((2, 2), dtype=complex)\n Z = np.zeros((4, 4))\n ap = np.linspace(0, 360, tm.n_alpha + 1)[:-1]\n aw = 1.0 / tm.n_alpha\n for alpha in ap:\n for beta, w in zip(tm.beta_p, tm.beta_w):\n S_ang, Z_ang = tm.get_SZ_single(alpha=alpha, beta=beta)\n S += w * S_ang\n Z += w * Z_ang\n sw = tm.beta_w.sum()\n S *= aw / sw\n Z *= aw / sw\n return S, Z\n", "role": "user" }, { "content": "orient_averaged_fixed", "role": "assistant" } ]
def x(self, geom): self.thet0, self.thet, self.phi0, self.phi, self.alpha, self.beta = geom
set_geometry
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, geom):\n self.thet0, self.thet, self.phi0, self.phi, self.alpha, self.beta = geom\n", "role": "user" }, { "content": "set_geometry", "role": "assistant" } ]
def x(self): return self.thet0, self.thet, self.phi0, self.phi, self.alpha, self.beta
get_geometry
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return self.thet0, self.thet, self.phi0, self.phi, self.alpha, self.beta\n", "role": "user" }, { "content": "get_geometry", "role": "assistant" } ]
def x(self): if self.radius_type == Scatterer.RADIUS_MAXIMUM: radius_type = Scatterer.RADIUS_EQUAL_VOLUME radius = self.equal_volume_from_maximum() else: radius_type = self.radius_type radius = self.radius self.nmax = pytmatrix.calctmat(radius, radius_type, self.wavelength, self.m.real, self.m.imag, self.axis_ratio, self.shape, self.ddelt, self.ndgs) self._tm_signature = (self.radius, self.radius_type, self.wavelength, self.m, self.axis_ratio, self.shape, self.ddelt, self.ndgs)
init_tmatrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.radius_type == Scatterer.RADIUS_MAXIMUM:\n radius_type = Scatterer.RADIUS_EQUAL_VOLUME\n radius = self.equal_volume_from_maximum()\n else:\n radius_type = self.radius_type\n radius = self.radius\n self.nmax = pytmatrix.calctmat(radius, radius_type, self.wavelength,\n self.m.real, self.m.imag, self.axis_ratio, self.shape, self.ddelt,\n self.ndgs)\n self._tm_signature = (self.radius, self.radius_type, self.wavelength,\n self.m, self.axis_ratio, self.shape, self.ddelt, self.ndgs)\n", "role": "user" }, { "content": "init_tmatrix", "role": "assistant" } ]
def x(self): if self.orient == orientation.orient_averaged_fixed: self.beta_p, self.beta_w = quadrature.get_points_and_weights(self. or_pdf, 0, 180, self.n_beta) self._set_orient_signature()
init_orient
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.orient == orientation.orient_averaged_fixed:\n self.beta_p, self.beta_w = quadrature.get_points_and_weights(self.\n or_pdf, 0, 180, self.n_beta)\n self._set_orient_signature()\n", "role": "user" }, { "content": "init_orient", "role": "assistant" } ]
def x(self): self._scatter_signature = (self.thet0, self.thet, self.phi0, self.phi, self.alpha, self.beta, self.orient)
set_scatter_signature
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._scatter_signature = (self.thet0, self.thet, self.phi0, self.phi,\n self.alpha, self.beta, self.orient)\n", "role": "user" }, { "content": "set_scatter_signature", "role": "assistant" } ]
def x(self, alpha=None, beta=None): if alpha == None: alpha = self.alpha if beta == None: beta = self.beta tm_outdated = self._tm_signature != (self.radius, self.radius_type, self.wavelength, self.m, self.axis_ratio, self.shape, self.ddelt, self.ndgs) if tm_outdated: self._init_tmatrix() scatter_outdated = self._scatter_signature != (self.thet0, self.thet, self.phi0, self.phi, alpha, beta, self.orient) outdated = tm_outdated or scatter_outdated if outdated: self._S_single, self._Z_single = pytmatrix.calcampl(self.nmax, self .wavelength, self.thet0, self.thet, self.phi0, self.phi, alpha, beta) self._set_scatter_signature() return self._S_single, self._Z_single
get_SZ_single
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, alpha=None, beta=None):\n if alpha == None:\n alpha = self.alpha\n if beta == None:\n beta = self.beta\n tm_outdated = self._tm_signature != (self.radius, self.radius_type,\n self.wavelength, self.m, self.axis_ratio, self.shape, self.ddelt,\n self.ndgs)\n if tm_outdated:\n self._init_tmatrix()\n scatter_outdated = self._scatter_signature != (self.thet0, self.thet,\n self.phi0, self.phi, alpha, beta, self.orient)\n outdated = tm_outdated or scatter_outdated\n if outdated:\n self._S_single, self._Z_single = pytmatrix.calcampl(self.nmax, self\n .wavelength, self.thet0, self.thet, self.phi0, self.phi, alpha,\n beta)\n self._set_scatter_signature()\n return self._S_single, self._Z_single\n", "role": "user" }, { "content": "get_SZ_single", "role": "assistant" } ]
def x(self): tm_outdated = self._tm_signature != (self.radius, self.radius_type, self.wavelength, self.m, self.axis_ratio, self.shape, self.ddelt, self.ndgs) scatter_outdated = self._scatter_signature != (self.thet0, self.thet, self.phi0, self.phi, self.alpha, self.beta, self.orient) orient_outdated = self._orient_signature != (self.orient, self.or_pdf, self.n_alpha, self.n_beta) if orient_outdated: self._init_orient() outdated = tm_outdated or scatter_outdated or orient_outdated if outdated: self._S_orient, self._Z_orient = self.orient(self) self._set_scatter_signature() return self._S_orient, self._Z_orient
get_SZ_orient
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n tm_outdated = self._tm_signature != (self.radius, self.radius_type,\n self.wavelength, self.m, self.axis_ratio, self.shape, self.ddelt,\n self.ndgs)\n scatter_outdated = self._scatter_signature != (self.thet0, self.thet,\n self.phi0, self.phi, self.alpha, self.beta, self.orient)\n orient_outdated = self._orient_signature != (self.orient, self.or_pdf,\n self.n_alpha, self.n_beta)\n if orient_outdated:\n self._init_orient()\n outdated = tm_outdated or scatter_outdated or orient_outdated\n if outdated:\n self._S_orient, self._Z_orient = self.orient(self)\n self._set_scatter_signature()\n return self._S_orient, self._Z_orient\n", "role": "user" }, { "content": "get_SZ_orient", "role": "assistant" } ]
def x(self): if self.psd_integrator is None: self._S, self._Z = self.get_SZ_orient() else: scatter_outdated = self._scatter_signature != (self.thet0, self. thet, self.phi0, self.phi, self.alpha, self.beta, self.orient) psd_outdated = self._psd_signature != (self.psd,) outdated = scatter_outdated or psd_outdated if outdated: self._S, self._Z = self.psd_integrator(self.psd, self. get_geometry()) self._set_scatter_signature() self._set_psd_signature() return self._S, self._Z
get_SZ
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.psd_integrator is None:\n self._S, self._Z = self.get_SZ_orient()\n else:\n scatter_outdated = self._scatter_signature != (self.thet0, self.\n thet, self.phi0, self.phi, self.alpha, self.beta, self.orient)\n psd_outdated = self._psd_signature != (self.psd,)\n outdated = scatter_outdated or psd_outdated\n if outdated:\n self._S, self._Z = self.psd_integrator(self.psd, self.\n get_geometry())\n self._set_scatter_signature()\n self._set_psd_signature()\n return self._S, self._Z\n", "role": "user" }, { "content": "get_SZ", "role": "assistant" } ]
def x(w_func=lambda x: np.ones(x.shape), left=-1.0, right=1.0, num_points=5, n=4096): dx = (float(right) - left) / n z = np.hstack(np.linspace(left + 0.5 * dx, right - 0.5 * dx, n)) w = dx * w_func(z) a, b = discrete_gautschi(z, w, num_points) alpha = a beta = np.sqrt(b) J = np.diag(alpha) J += np.diag(beta, k=-1) J += np.diag(beta, k=1) points, v = np.linalg.eigh(J) ind = points.argsort() points = points[ind] weights = v[0, :] ** 2 * w.sum() weights = weights[ind] return points, weights
get_points_and_weights
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(w_func=lambda x: np.ones(x.shape), left=-1.0, right=1.0, num_points=5,\n n=4096):\n dx = (float(right) - left) / n\n z = np.hstack(np.linspace(left + 0.5 * dx, right - 0.5 * dx, n))\n w = dx * w_func(z)\n a, b = discrete_gautschi(z, w, num_points)\n alpha = a\n beta = np.sqrt(b)\n J = np.diag(alpha)\n J += np.diag(beta, k=-1)\n J += np.diag(beta, k=1)\n points, v = np.linalg.eigh(J)\n ind = points.argsort()\n points = points[ind]\n weights = v[0, :] ** 2 * w.sum()\n weights = weights[ind]\n return points, weights\n", "role": "user" }, { "content": "get_points_and_weights", "role": "assistant" } ]
def x(scatterer, h_pol=True): Z = scatterer.get_Z() return Z[0, 0] - Z[0, 1] if h_pol else Z[0, 0] + Z[0, 1]
sca_intensity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(scatterer, h_pol=True):\n Z = scatterer.get_Z()\n return Z[0, 0] - Z[0, 1] if h_pol else Z[0, 0] + Z[0, 1]\n", "role": "user" }, { "content": "sca_intensity", "role": "assistant" } ]
def x(scatterer, h_pol=True): Z = scatterer.get_Z() if h_pol: return (Z[0, 0] - Z[0, 1] + Z[1, 0] - Z[1, 1]) / (Z[0, 0] - Z[0, 1] - Z[1, 0] + Z[1, 1]) else: return (Z[0, 0] + Z[0, 1] - Z[1, 0] - Z[1, 1]) / (Z[0, 0] + Z[0, 1] + Z[1, 0] + Z[1, 1])
ldr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(scatterer, h_pol=True):\n Z = scatterer.get_Z()\n if h_pol:\n return (Z[0, 0] - Z[0, 1] + Z[1, 0] - Z[1, 1]) / (Z[0, 0] - Z[0, 1] -\n Z[1, 0] + Z[1, 1])\n else:\n return (Z[0, 0] + Z[0, 1] - Z[1, 0] - Z[1, 1]) / (Z[0, 0] + Z[0, 1] +\n Z[1, 0] + Z[1, 1])\n", "role": "user" }, { "content": "ldr", "role": "assistant" } ]
def x(scatterer, h_pol=True): if scatterer.psd_integrator is not None: return scatterer.psd_integrator.get_angular_integrated(scatterer. psd, scatterer.get_geometry(), 'sca_xsect') old_geom = scatterer.get_geometry() def x(thet, phi): scatterer.phi, scatterer.thet = phi * rad_to_deg, thet * rad_to_deg Z = scatterer.get_Z() I = sca_intensity(scatterer, h_pol) return I * np.sin(thet) try: xsect = dblquad(d_xsect, 0.0, 2 * np.pi, lambda x: 0.0, lambda x: np.pi )[0] finally: scatterer.set_geometry(old_geom) return xsect
sca_xsect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(scatterer, h_pol=True):\n if scatterer.psd_integrator is not None:\n return scatterer.psd_integrator.get_angular_integrated(scatterer.\n psd, scatterer.get_geometry(), 'sca_xsect')\n old_geom = scatterer.get_geometry()\n\n def x(thet, phi):\n scatterer.phi, scatterer.thet = phi * rad_to_deg, thet * rad_to_deg\n Z = scatterer.get_Z()\n I = sca_intensity(scatterer, h_pol)\n return I * np.sin(thet)\n try:\n xsect = dblquad(d_xsect, 0.0, 2 * np.pi, lambda x: 0.0, lambda x: np.pi\n )[0]\n finally:\n scatterer.set_geometry(old_geom)\n return xsect\n", "role": "user" }, { "content": "sca_xsect", "role": "assistant" } ]
def x(scatterer, h_pol=True): if scatterer.psd_integrator is not None: try: return scatterer.psd_integrator.get_angular_integrated(scatterer .psd, scatterer.get_geometry(), 'ext_xsect') except AttributeError: pass old_geom = scatterer.get_geometry() thet0, thet, phi0, phi, alpha, beta = old_geom try: scatterer.set_geometry((thet0, thet0, phi0, phi0, alpha, beta)) S = scatterer.get_S() finally: scatterer.set_geometry(old_geom) if h_pol: return 2 * scatterer.wavelength * S[1, 1].imag else: return 2 * scatterer.wavelength * S[0, 0].imag
ext_xsect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(scatterer, h_pol=True):\n if scatterer.psd_integrator is not None:\n try:\n return scatterer.psd_integrator.get_angular_integrated(scatterer\n .psd, scatterer.get_geometry(), 'ext_xsect')\n except AttributeError:\n pass\n old_geom = scatterer.get_geometry()\n thet0, thet, phi0, phi, alpha, beta = old_geom\n try:\n scatterer.set_geometry((thet0, thet0, phi0, phi0, alpha, beta))\n S = scatterer.get_S()\n finally:\n scatterer.set_geometry(old_geom)\n if h_pol:\n return 2 * scatterer.wavelength * S[1, 1].imag\n else:\n return 2 * scatterer.wavelength * S[0, 0].imag\n", "role": "user" }, { "content": "ext_xsect", "role": "assistant" } ]
def x(scatterer, h_pol=True): ext_xs = ext_xsect(scatterer, h_pol=h_pol) return sca_xsect(scatterer, h_pol=h_pol) / ext_xs if ext_xs > 0.0 else 0.0
ssa
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(scatterer, h_pol=True):\n ext_xs = ext_xsect(scatterer, h_pol=h_pol)\n return sca_xsect(scatterer, h_pol=h_pol) / ext_xs if ext_xs > 0.0 else 0.0\n", "role": "user" }, { "content": "ssa", "role": "assistant" } ]
def x(scatterer, h_pol=True): if scatterer.psd_integrator is not None: return scatterer.psd_integrator.get_angular_integrated(scatterer. psd, scatterer.get_geometry(), 'asym') old_geom = scatterer.get_geometry() cos_t0 = np.cos(scatterer.thet0 * deg_to_rad) sin_t0 = np.sin(scatterer.thet0 * deg_to_rad) p0 = scatterer.phi0 * deg_to_rad def x(thet, phi): scatterer.phi, scatterer.thet = phi * rad_to_deg, thet * rad_to_deg cos_T_sin_t = 0.5 * (np.sin(2 * thet) * cos_t0 + (1 - np.cos(2 * thet)) * sin_t0 * np.cos(p0 - phi)) I = sca_intensity(scatterer, h_pol) return I * cos_T_sin_t try: cos_int = dblquad(integrand, 0.0, 2 * np.pi, lambda x: 0.0, lambda x: np.pi)[0] finally: scatterer.set_geometry(old_geom) return cos_int / sca_xsect(scatterer, h_pol)
asym
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(scatterer, h_pol=True):\n if scatterer.psd_integrator is not None:\n return scatterer.psd_integrator.get_angular_integrated(scatterer.\n psd, scatterer.get_geometry(), 'asym')\n old_geom = scatterer.get_geometry()\n cos_t0 = np.cos(scatterer.thet0 * deg_to_rad)\n sin_t0 = np.sin(scatterer.thet0 * deg_to_rad)\n p0 = scatterer.phi0 * deg_to_rad\n\n def x(thet, phi):\n scatterer.phi, scatterer.thet = phi * rad_to_deg, thet * rad_to_deg\n cos_T_sin_t = 0.5 * (np.sin(2 * thet) * cos_t0 + (1 - np.cos(2 *\n thet)) * sin_t0 * np.cos(p0 - phi))\n I = sca_intensity(scatterer, h_pol)\n return I * cos_T_sin_t\n try:\n cos_int = dblquad(integrand, 0.0, 2 * np.pi, lambda x: 0.0, lambda\n x: np.pi)[0]\n finally:\n scatterer.set_geometry(old_geom)\n return cos_int / sca_xsect(scatterer, h_pol)\n", "role": "user" }, { "content": "asym", "role": "assistant" } ]
def x(scatterer, h_pol=True): Z = scatterer.get_Z() if h_pol: return 2 * np.pi * (Z[0, 0] - Z[0, 1] - Z[1, 0] + Z[1, 1]) else: return 2 * np.pi * (Z[0, 0] + Z[0, 1] + Z[1, 0] + Z[1, 1])
radar_xsect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(scatterer, h_pol=True):\n Z = scatterer.get_Z()\n if h_pol:\n return 2 * np.pi * (Z[0, 0] - Z[0, 1] - Z[1, 0] + Z[1, 1])\n else:\n return 2 * np.pi * (Z[0, 0] + Z[0, 1] + Z[1, 0] + Z[1, 1])\n", "role": "user" }, { "content": "radar_xsect", "role": "assistant" } ]
def x(scatterer, h_pol=True): return scatterer.wavelength ** 4 / (np.pi ** 5 * scatterer.Kw_sqr ) * radar_xsect(scatterer, h_pol)
refl
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(scatterer, h_pol=True):\n return scatterer.wavelength ** 4 / (np.pi ** 5 * scatterer.Kw_sqr\n ) * radar_xsect(scatterer, h_pol)\n", "role": "user" }, { "content": "refl", "role": "assistant" } ]
def x(scatterer): Z = scatterer.get_Z() return np.arctan2(Z[2, 3] - Z[3, 2], -Z[2, 2] - Z[3, 3])
delta_hv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(scatterer):\n Z = scatterer.get_Z()\n return np.arctan2(Z[2, 3] - Z[3, 2], -Z[2, 2] - Z[3, 3])\n", "role": "user" }, { "content": "delta_hv", "role": "assistant" } ]
def x(scatterer): Z = scatterer.get_Z() a = (Z[2, 2] + Z[3, 3]) ** 2 + (Z[3, 2] - Z[2, 3]) ** 2 b = Z[0, 0] - Z[0, 1] - Z[1, 0] + Z[1, 1] c = Z[0, 0] + Z[0, 1] + Z[1, 0] + Z[1, 1] return np.sqrt(a / (b * c))
rho_hv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(scatterer):\n Z = scatterer.get_Z()\n a = (Z[2, 2] + Z[3, 3]) ** 2 + (Z[3, 2] - Z[2, 3]) ** 2\n b = Z[0, 0] - Z[0, 1] - Z[1, 0] + Z[1, 1]\n c = Z[0, 0] + Z[0, 1] + Z[1, 0] + Z[1, 1]\n return np.sqrt(a / (b * c))\n", "role": "user" }, { "content": "rho_hv", "role": "assistant" } ]
def x(scatterer): if scatterer.thet0 != scatterer.thet or scatterer.phi0 != scatterer.phi: raise ValueError('A forward scattering geometry is needed to ' + 'compute the specific differential phase.') S = scatterer.get_S() return 0.001 * (180.0 / np.pi) * scatterer.wavelength * (S[1, 1] - S[0, 0] ).real
Kdp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(scatterer):\n if scatterer.thet0 != scatterer.thet or scatterer.phi0 != scatterer.phi:\n raise ValueError('A forward scattering geometry is needed to ' +\n 'compute the specific differential phase.')\n S = scatterer.get_S()\n return 0.001 * (180.0 / np.pi) * scatterer.wavelength * (S[1, 1] - S[0, 0]\n ).real\n", "role": "user" }, { "content": "Kdp", "role": "assistant" } ]
def x(m, mix): if len(m) == 2: cF = float(mix[1]) / (mix[0] + mix[1]) * (m[1] ** 2 - m[0] ** 2) / ( m[1] ** 2 + 2 * m[0] ** 2) er = m[0] ** 2 * (1.0 + 2.0 * cF) / (1.0 - cF) m = np.sqrt(er) else: m_last = mg_refractive(m[-2:], mix[-2:]) mix_last = mix[-2] + mix[-1] m = mg_refractive(m[:-2] + (m_last,), mix[:-2] + (mix_last,)) return m
mg_refractive
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(m, mix):\n if len(m) == 2:\n cF = float(mix[1]) / (mix[0] + mix[1]) * (m[1] ** 2 - m[0] ** 2) / (\n m[1] ** 2 + 2 * m[0] ** 2)\n er = m[0] ** 2 * (1.0 + 2.0 * cF) / (1.0 - cF)\n m = np.sqrt(er)\n else:\n m_last = mg_refractive(m[-2:], mix[-2:])\n mix_last = mix[-2] + mix[-1]\n m = mg_refractive(m[:-2] + (m_last,), mix[:-2] + (mix_last,))\n return m\n", "role": "user" }, { "content": "mg_refractive", "role": "assistant" } ]
def x(m, mix): f1 = mix[0] / sum(mix) f2 = mix[1] / sum(mix) e1 = m[0] ** 2 e2 = m[1] ** 2 a = -2 * (f1 + f2) b = 2 * f1 * e1 - f1 * e2 + 2 * f2 * e2 - f2 * e1 c = (f1 + f2) * e1 * e2 e_eff = (-b - np.sqrt(b ** 2 - 4 * a * c)) / (2 * a) return np.sqrt(e_eff)
bruggeman_refractive
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(m, mix):\n f1 = mix[0] / sum(mix)\n f2 = mix[1] / sum(mix)\n e1 = m[0] ** 2\n e2 = m[1] ** 2\n a = -2 * (f1 + f2)\n b = 2 * f1 * e1 - f1 * e2 + 2 * f2 * e2 - f2 * e1\n c = (f1 + f2) * e1 * e2\n e_eff = (-b - np.sqrt(b ** 2 - 4 * a * c)) / (2 * a)\n return np.sqrt(e_eff)\n", "role": "user" }, { "content": "bruggeman_refractive", "role": "assistant" } ]
def x(file): D = np.loadtxt(file) log_wl = np.log10(D[:, 0] / 1000) re = D[:, 1] log_im = np.log10(D[:, 2]) iobj_re = interpolate.interp1d(log_wl, re) iobj_log_im = interpolate.interp1d(log_wl, log_im) def x(wl, snow_density): lwl = np.log10(wl) try: len(lwl) except TypeError: mi_sqr = complex(iobj_re(lwl), 10 ** iobj_log_im(lwl)) ** 2 else: mi_sqr = np.array([complex(a, b) for a, b in zip(iobj_re(lwl), 10 ** iobj_log_im(lwl))]) ** 2 c = (mi_sqr - 1) / (mi_sqr + 2) * snow_density / ice_density return np.sqrt((1 + 2 * c) / (1 - c)) return ref
ice_refractive
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file):\n D = np.loadtxt(file)\n log_wl = np.log10(D[:, 0] / 1000)\n re = D[:, 1]\n log_im = np.log10(D[:, 2])\n iobj_re = interpolate.interp1d(log_wl, re)\n iobj_log_im = interpolate.interp1d(log_wl, log_im)\n\n def x(wl, snow_density):\n lwl = np.log10(wl)\n try:\n len(lwl)\n except TypeError:\n mi_sqr = complex(iobj_re(lwl), 10 ** iobj_log_im(lwl)) ** 2\n else:\n mi_sqr = np.array([complex(a, b) for a, b in zip(iobj_re(lwl), \n 10 ** iobj_log_im(lwl))]) ** 2\n c = (mi_sqr - 1) / (mi_sqr + 2) * snow_density / ice_density\n return np.sqrt((1 + 2 * c) / (1 - c))\n return ref\n", "role": "user" }, { "content": "ice_refractive", "role": "assistant" } ]
def x(D_eq): if D_eq < 0.7: return 1.0 elif D_eq < 1.5: return (1.173 - 0.5165 * D_eq + 0.4698 * D_eq ** 2 - 0.1317 * D_eq ** 3 - 0.0085 * D_eq ** 4) else: return (1.065 - 0.0625 * D_eq - 0.00399 * D_eq ** 2 + 0.000766 * D_eq ** 3 - 4.095e-05 * D_eq ** 4)
dsr_thurai_2007
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(D_eq):\n if D_eq < 0.7:\n return 1.0\n elif D_eq < 1.5:\n return (1.173 - 0.5165 * D_eq + 0.4698 * D_eq ** 2 - 0.1317 * D_eq **\n 3 - 0.0085 * D_eq ** 4)\n else:\n return (1.065 - 0.0625 * D_eq - 0.00399 * D_eq ** 2 + 0.000766 * \n D_eq ** 3 - 4.095e-05 * D_eq ** 4)\n", "role": "user" }, { "content": "dsr_thurai_2007", "role": "assistant" } ]
def x(data, top_n=None, feature_names=None): try: imp = data.feature_importances_ except: imp = np.array(data) try: sub_imp = np.array([e.feature_importances_ for e in data.estimators_]) std = np.std(sub_imp, axis=0) except: std = None n_features = len(imp) if top_n and top_n > n_features: raise ValueError( 'top_n ({}) cannot be greater than the number of features ({})' .format(top_n, n_features)) if top_n and top_n < 1: raise ValueError('top_n cannot be less than 1') if feature_names and len(feature_names) != n_features: raise ValueError( 'feature_names ({}) must match the number of features ({})'. format(len(feature_names), n_features)) if feature_names is None: feature_names = ['Feature {}'.format(n) for n in range(1, n_features + 1)] feature_names = np.array(feature_names) else: feature_names = np.array(feature_names) idx = np.argsort(imp)[::-1] imp = imp[idx] feature_names = feature_names[idx] if std is not None: std = std[idx] if std is not None: names = 'feature_name,importance,std_' res = np.core.records.fromarrays([feature_names, imp, std], names=names ) else: names = 'feature_name,importance' res = np.core.records.fromarrays([feature_names, imp], names=names) if top_n: res = res[:top_n] return res
feature_importances
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, top_n=None, feature_names=None):\n try:\n imp = data.feature_importances_\n except:\n imp = np.array(data)\n try:\n sub_imp = np.array([e.feature_importances_ for e in data.estimators_])\n std = np.std(sub_imp, axis=0)\n except:\n std = None\n n_features = len(imp)\n if top_n and top_n > n_features:\n raise ValueError(\n 'top_n ({}) cannot be greater than the number of features ({})'\n .format(top_n, n_features))\n if top_n and top_n < 1:\n raise ValueError('top_n cannot be less than 1')\n if feature_names and len(feature_names) != n_features:\n raise ValueError(\n 'feature_names ({}) must match the number of features ({})'.\n format(len(feature_names), n_features))\n if feature_names is None:\n feature_names = ['Feature {}'.format(n) for n in range(1, \n n_features + 1)]\n feature_names = np.array(feature_names)\n else:\n feature_names = np.array(feature_names)\n idx = np.argsort(imp)[::-1]\n imp = imp[idx]\n feature_names = feature_names[idx]\n if std is not None:\n std = std[idx]\n if std is not None:\n names = 'feature_name,importance,std_'\n res = np.core.records.fromarrays([feature_names, imp, std], names=names\n )\n else:\n names = 'feature_name,importance'\n res = np.core.records.fromarrays([feature_names, imp], names=names)\n if top_n:\n res = res[:top_n]\n return res\n", "role": "user" }, { "content": "feature_importances", "role": "assistant" } ]
def x(data, criteria): if isinstance(criteria, str): criteria_str = criteria def x(x): return x[criteria_str] res = defaultdict(list) for element in data: key = criteria(element) res[key].append(element) return res
group_by
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, criteria):\n if isinstance(criteria, str):\n criteria_str = criteria\n\n def x(x):\n return x[criteria_str]\n res = defaultdict(list)\n for element in data:\n key = criteria(element)\n res[key].append(element)\n return res\n", "role": "user" }, { "content": "group_by", "role": "assistant" } ]
def x(params): ord_params = sorted(params) def x(obj): l = [] for p in ord_params: try: l.append((p, obj.parameters[p])) except: raise ValueError('{} is not a valid parameter'.format(p)) return tuple(l) return fn
get_params_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(params):\n ord_params = sorted(params)\n\n def x(obj):\n l = []\n for p in ord_params:\n try:\n l.append((p, obj.parameters[p]))\n except:\n raise ValueError('{} is not a valid parameter'.format(p))\n return tuple(l)\n return fn\n", "role": "user" }, { "content": "get_params_value", "role": "assistant" } ]
def x(k, v): if not _can_iterate(k): k = [k] if not _can_iterate(v): v = [v] return list(product(k, v))
product
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(k, v):\n if not _can_iterate(k):\n k = [k]\n if not _can_iterate(v):\n v = [v]\n return list(product(k, v))\n", "role": "user" }, { "content": "product", "role": "assistant" } ]
def x(d): t = [] ord_keys = sorted(d.keys()) for k in ord_keys: t.append(_product(k, d[k])) return tuple(product(*t))
mapping_to_tuple_pairs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(d):\n t = []\n ord_keys = sorted(d.keys())\n for k in ord_keys:\n t.append(_product(k, d[k]))\n return tuple(product(*t))\n", "role": "user" }, { "content": "mapping_to_tuple_pairs", "role": "assistant" } ]
def x(train_scores, test_scores, train_sizes, ax=None): if ax is None: ax = plt.gca() ax.grid() ax.set_title('Learning Curve') ax.set_xlabel('Training examples') ax.set_ylabel('Score mean') train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) ax.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color='r') ax.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color='g') ax.plot(train_sizes, train_scores_mean, 'o-', color='r', label= 'Training score') ax.plot(train_sizes, test_scores_mean, 'o-', color='g', label= 'Cross-validation score') ax.legend(loc='best') ax.margins(0.05) return ax
learning_curve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(train_scores, test_scores, train_sizes, ax=None):\n if ax is None:\n ax = plt.gca()\n ax.grid()\n ax.set_title('Learning Curve')\n ax.set_xlabel('Training examples')\n ax.set_ylabel('Score mean')\n train_scores_mean = np.mean(train_scores, axis=1)\n train_scores_std = np.std(train_scores, axis=1)\n test_scores_mean = np.mean(test_scores, axis=1)\n test_scores_std = np.std(test_scores, axis=1)\n ax.fill_between(train_sizes, train_scores_mean - train_scores_std, \n train_scores_mean + train_scores_std, alpha=0.1, color='r')\n ax.fill_between(train_sizes, test_scores_mean - test_scores_std, \n test_scores_mean + test_scores_std, alpha=0.1, color='g')\n ax.plot(train_sizes, train_scores_mean, 'o-', color='r', label=\n 'Training score')\n ax.plot(train_sizes, test_scores_mean, 'o-', color='g', label=\n 'Cross-validation score')\n ax.legend(loc='best')\n ax.margins(0.05)\n return ax\n", "role": "user" }, { "content": "learning_curve", "role": "assistant" } ]
def x(y_true, y_score, ax=None): if any(val is None for val in (y_true, y_score)): raise ValueError( 'y_true and y_score are needed to plot Precision-Recall') if ax is None: ax = plt.gca() y_score_is_vector = is_column_vector(y_score) or is_row_vector(y_score) if y_score_is_vector: n_classes = 2 else: _, n_classes = y_score.shape if n_classes > 2: y_true_bin = label_binarize(y_true, classes=np.unique(y_true)) _precision_recall_multi(y_true_bin, y_score, ax=ax) for i in range(n_classes): _precision_recall(y_true_bin[:, i], y_score[:, i], ax=ax) elif y_score_is_vector: _precision_recall(y_true, y_score, ax) else: _precision_recall(y_true, y_score[:, 1], ax) return ax
precision_recall
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_score, ax=None):\n if any(val is None for val in (y_true, y_score)):\n raise ValueError(\n 'y_true and y_score are needed to plot Precision-Recall')\n if ax is None:\n ax = plt.gca()\n y_score_is_vector = is_column_vector(y_score) or is_row_vector(y_score)\n if y_score_is_vector:\n n_classes = 2\n else:\n _, n_classes = y_score.shape\n if n_classes > 2:\n y_true_bin = label_binarize(y_true, classes=np.unique(y_true))\n _precision_recall_multi(y_true_bin, y_score, ax=ax)\n for i in range(n_classes):\n _precision_recall(y_true_bin[:, i], y_score[:, i], ax=ax)\n elif y_score_is_vector:\n _precision_recall(y_true, y_score, ax)\n else:\n _precision_recall(y_true, y_score[:, 1], ax)\n return ax\n", "role": "user" }, { "content": "precision_recall", "role": "assistant" } ]
def x(y_true, y_score, ax=None): precision, recall, _ = precision_recall_curve(y_true, y_score) average_precision = average_precision_score(y_true, y_score) if ax is None: ax = plt.gca() ax.plot(recall, precision, label='Precision-Recall curve: AUC={0:0.2f}' .format(average_precision)) _set_ax_settings(ax) return ax
precision_recall
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_score, ax=None):\n precision, recall, _ = precision_recall_curve(y_true, y_score)\n average_precision = average_precision_score(y_true, y_score)\n if ax is None:\n ax = plt.gca()\n ax.plot(recall, precision, label='Precision-Recall curve: AUC={0:0.2f}'\n .format(average_precision))\n _set_ax_settings(ax)\n return ax\n", "role": "user" }, { "content": "precision_recall", "role": "assistant" } ]
def x(y_true, y_score, ax=None): precision, recall, _ = precision_recall_curve(y_true.ravel(), y_score. ravel()) avg_prec = average_precision_score(y_true, y_score, average='micro') if ax is None: ax = plt.gca() ax.plot(recall, precision, label= 'micro-average Precision-recall curve (area = {0:0.2f})'.format( avg_prec)) _set_ax_settings(ax) return ax
precision_recall_multi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_score, ax=None):\n precision, recall, _ = precision_recall_curve(y_true.ravel(), y_score.\n ravel())\n avg_prec = average_precision_score(y_true, y_score, average='micro')\n if ax is None:\n ax = plt.gca()\n ax.plot(recall, precision, label=\n 'micro-average Precision-recall curve (area = {0:0.2f})'.format(\n avg_prec))\n _set_ax_settings(ax)\n return ax\n", "role": "user" }, { "content": "precision_recall_multi", "role": "assistant" } ]
def x(y_true, y_score, proportion, ignore_nas=False): scores_sorted = np.sort(y_score)[::-1] cutoff_index = max(int(len(y_true) * proportion) - 1, 0) cutoff_value = scores_sorted[cutoff_index] scores_binary = np.array([int(y >= cutoff_value) for y in y_score]) if ignore_nas: precision = __precision(y_true, scores_binary) else: precision = precision_score(y_true, scores_binary) return precision, cutoff_value
precision_at
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_score, proportion, ignore_nas=False):\n scores_sorted = np.sort(y_score)[::-1]\n cutoff_index = max(int(len(y_true) * proportion) - 1, 0)\n cutoff_value = scores_sorted[cutoff_index]\n scores_binary = np.array([int(y >= cutoff_value) for y in y_score])\n if ignore_nas:\n precision = __precision(y_true, scores_binary)\n else:\n precision = precision_score(y_true, scores_binary)\n return precision, cutoff_value\n", "role": "user" }, { "content": "precision_at", "role": "assistant" } ]
def x(y_true, y_pred): y_true = np.copy(y_true) y_pred = np.copy(y_pred) is_nan = np.isnan(y_true) y_true[is_nan] = 0 y_pred[is_nan] = 0 precision = precision_score(y_true, y_pred) return precision
precision
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_pred):\n y_true = np.copy(y_true)\n y_pred = np.copy(y_pred)\n is_nan = np.isnan(y_true)\n y_true[is_nan] = 0\n y_pred[is_nan] = 0\n precision = precision_score(y_true, y_pred)\n return precision\n", "role": "user" }, { "content": "precision", "role": "assistant" } ]
def x(y_true, y_score, proportion, normalize=False): indexes = np.argsort(y_score)[::-1] y_true_sorted = y_true[indexes] cutoff_index = max(int(len(y_true_sorted) * proportion) - 1, 0) y_true_top = y_true_sorted[:cutoff_index + 1] values = int((~np.isnan(y_true_top)).sum()) if normalize: values = float(values) / (~np.isnan(y_true)).sum() return values
labels_at
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_score, proportion, normalize=False):\n indexes = np.argsort(y_score)[::-1]\n y_true_sorted = y_true[indexes]\n cutoff_index = max(int(len(y_true_sorted) * proportion) - 1, 0)\n y_true_top = y_true_sorted[:cutoff_index + 1]\n values = int((~np.isnan(y_true_top)).sum())\n if normalize:\n values = float(values) / (~np.isnan(y_true)).sum()\n return values\n", "role": "user" }, { "content": "labels_at", "role": "assistant" } ]
def x(train_scores, test_scores, param_range, param_name=None, semilogx= False, ax=None): if ax is None: ax = plt.gca() if semilogx: ax.set_xscale('log') train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) ax.set_title('Validation Curve') ax.set_ylabel('Score mean') if param_name: ax.set_xlabel(param_name) ax.plot(param_range, train_scores_mean, label='Training score', color='r') ax.plot(param_range, test_scores_mean, label='Cross-validation score', color='g') ax.fill_between(param_range, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color='r') ax.fill_between(param_range, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.2, color='g') ax.legend(loc='best') ax.margins(0.05) return ax
validation_curve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(train_scores, test_scores, param_range, param_name=None, semilogx=\n False, ax=None):\n if ax is None:\n ax = plt.gca()\n if semilogx:\n ax.set_xscale('log')\n train_scores_mean = np.mean(train_scores, axis=1)\n train_scores_std = np.std(train_scores, axis=1)\n test_scores_mean = np.mean(test_scores, axis=1)\n test_scores_std = np.std(test_scores, axis=1)\n ax.set_title('Validation Curve')\n ax.set_ylabel('Score mean')\n if param_name:\n ax.set_xlabel(param_name)\n ax.plot(param_range, train_scores_mean, label='Training score', color='r')\n ax.plot(param_range, test_scores_mean, label='Cross-validation score',\n color='g')\n ax.fill_between(param_range, train_scores_mean - train_scores_std, \n train_scores_mean + train_scores_std, alpha=0.2, color='r')\n ax.fill_between(param_range, test_scores_mean - test_scores_std, \n test_scores_mean + test_scores_std, alpha=0.2, color='g')\n ax.legend(loc='best')\n ax.margins(0.05)\n return ax\n", "role": "user" }, { "content": "validation_curve", "role": "assistant" } ]
def x(y_true, y_pred, target_names=None, normalize=False, cmap=None, ax=None): if any(val is None for val in (y_true, y_pred)): raise ValueError( 'y_true and y_pred are needed to plot confusion matrix') values = set(y_true).union(set(y_pred)) expected_len = len(values) if target_names and expected_len != len(target_names): raise ValueError( 'Data cointains {} different values, but target names contains {} values.' .format(expected_len, len(target_names))) if not target_names: values = list(values) values.sort() target_names = ['Class {}'.format(v) for v in values] cm = sk_confusion_matrix(y_true, y_pred) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] np.set_printoptions(precision=2) if ax is None: ax = plt.gca() for (y, x), v in np.ndenumerate(cm): try: label = '{:.2}'.format(v) except: label = v ax.text(x, y, label, horizontalalignment='center', verticalalignment='center') if cmap is None: cmap = default_heatmap() im = ax.imshow(cm, interpolation='nearest', cmap=cmap) plt.colorbar(im, ax=ax) tick_marks = np.arange(len(target_names)) ax.set_xticks(tick_marks) ax.set_xticklabels(target_names) ax.set_yticks(tick_marks) ax.set_yticklabels(target_names) title = 'Confusion matrix' if normalize: title += ' (normalized)' ax.set_title(title) ax.set_ylabel('True label') ax.set_xlabel('Predicted label') return ax
confusion_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_pred, target_names=None, normalize=False, cmap=None, ax=None):\n if any(val is None for val in (y_true, y_pred)):\n raise ValueError(\n 'y_true and y_pred are needed to plot confusion matrix')\n values = set(y_true).union(set(y_pred))\n expected_len = len(values)\n if target_names and expected_len != len(target_names):\n raise ValueError(\n 'Data cointains {} different values, but target names contains {} values.'\n .format(expected_len, len(target_names)))\n if not target_names:\n values = list(values)\n values.sort()\n target_names = ['Class {}'.format(v) for v in values]\n cm = sk_confusion_matrix(y_true, y_pred)\n if normalize:\n cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n np.set_printoptions(precision=2)\n if ax is None:\n ax = plt.gca()\n for (y, x), v in np.ndenumerate(cm):\n try:\n label = '{:.2}'.format(v)\n except:\n label = v\n ax.text(x, y, label, horizontalalignment='center',\n verticalalignment='center')\n if cmap is None:\n cmap = default_heatmap()\n im = ax.imshow(cm, interpolation='nearest', cmap=cmap)\n plt.colorbar(im, ax=ax)\n tick_marks = np.arange(len(target_names))\n ax.set_xticks(tick_marks)\n ax.set_xticklabels(target_names)\n ax.set_yticks(tick_marks)\n ax.set_yticklabels(target_names)\n title = 'Confusion matrix'\n if normalize:\n title += ' (normalized)'\n ax.set_title(title)\n ax.set_ylabel('True label')\n ax.set_xlabel('Predicted label')\n return ax\n", "role": "user" }, { "content": "confusion_matrix", "role": "assistant" } ]
def x(data, top_n=None, feature_names=None, ax=None): if data is None: raise ValueError( 'data is needed to plot feature importances. When plotting using the evaluator you need to pass an estimator ' ) res = compute.feature_importances(data, top_n, feature_names) n_feats = len(res) if ax is None: ax = plt.gca() ax.set_title('Feature importances') try: ax.bar(range(n_feats), res.importance, yerr=res.std_, color='red', align='center') except: ax.bar(range(n_feats), res.importance, color='red', align='center') ax.set_xticks(range(n_feats)) ax.set_xticklabels(res.feature_name) ax.set_xlim([-1, n_feats]) return ax
feature_importances
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, top_n=None, feature_names=None, ax=None):\n if data is None:\n raise ValueError(\n 'data is needed to plot feature importances. When plotting using the evaluator you need to pass an estimator '\n )\n res = compute.feature_importances(data, top_n, feature_names)\n n_feats = len(res)\n if ax is None:\n ax = plt.gca()\n ax.set_title('Feature importances')\n try:\n ax.bar(range(n_feats), res.importance, yerr=res.std_, color='red',\n align='center')\n except:\n ax.bar(range(n_feats), res.importance, color='red', align='center')\n ax.set_xticks(range(n_feats))\n ax.set_xticklabels(res.feature_name)\n ax.set_xlim([-1, n_feats])\n return ax\n", "role": "user" }, { "content": "feature_importances", "role": "assistant" } ]
def x(y_true, y_score, ax=None): if any(val is None for val in (y_true, y_score)): raise ValueError( 'y_true and y_score are needed to plot precision at proportions') if ax is None: ax = plt.gca() y_score_is_vector = is_column_vector(y_score) or is_row_vector(y_score) if not y_score_is_vector: y_score = y_score[:, 1] proportions = [(0.01 * i) for i in range(1, 101)] precs_and_cutoffs = [precision_at(y_true, y_score, p) for p in proportions] precs, cutoffs = zip(*precs_and_cutoffs) ax.plot(proportions, precs) ax.set_title('Precision at various proportions') ax.set_ylabel('Precision') ax.set_xlabel('Proportion') ticks = [(0.1 * i) for i in range(1, 11)] ax.set_xticks(ticks) ax.set_xticklabels(ticks) ax.set_yticks(ticks) ax.set_yticklabels(ticks) ax.set_ylim([0, 1.0]) ax.set_xlim([0, 1.0]) return ax
precision_at_proportions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_score, ax=None):\n if any(val is None for val in (y_true, y_score)):\n raise ValueError(\n 'y_true and y_score are needed to plot precision at proportions')\n if ax is None:\n ax = plt.gca()\n y_score_is_vector = is_column_vector(y_score) or is_row_vector(y_score)\n if not y_score_is_vector:\n y_score = y_score[:, 1]\n proportions = [(0.01 * i) for i in range(1, 101)]\n precs_and_cutoffs = [precision_at(y_true, y_score, p) for p in proportions]\n precs, cutoffs = zip(*precs_and_cutoffs)\n ax.plot(proportions, precs)\n ax.set_title('Precision at various proportions')\n ax.set_ylabel('Precision')\n ax.set_xlabel('Proportion')\n ticks = [(0.1 * i) for i in range(1, 11)]\n ax.set_xticks(ticks)\n ax.set_xticklabels(ticks)\n ax.set_yticks(ticks)\n ax.set_yticklabels(ticks)\n ax.set_ylim([0, 1.0])\n ax.set_xlim([0, 1.0])\n return ax\n", "role": "user" }, { "content": "precision_at_proportions", "role": "assistant" } ]
def x(data, top_n=None, feature_names=None): if data is None: raise ValueError( 'data is needed to tabulate feature importances. When plotting using the evaluator you need to pass an estimator ' ) res = compute.feature_importances(data, top_n, feature_names) return Table(res, res.dtype.names)
feature_importances
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, top_n=None, feature_names=None):\n if data is None:\n raise ValueError(\n 'data is needed to tabulate feature importances. When plotting using the evaluator you need to pass an estimator '\n )\n res = compute.feature_importances(data, top_n, feature_names)\n return Table(res, res.dtype.names)\n", "role": "user" }, { "content": "feature_importances", "role": "assistant" } ]
def x(part, rgxin, rgxout, fmtin, fmtout): block = [] lines = part.split('\n') N = len(lines) i = 0 decorator = None while 1: if i == N: break line = lines[i] i += 1 line_stripped = line.strip() if line_stripped.startswith('#'): block.append((COMMENT, line)) continue if line_stripped.startswith('@'): decorator = line_stripped continue matchin = rgxin.match(line) if matchin: lineno, inputline = int(matchin.group(1)), matchin.group(2) continuation = ' %s:' % ''.join(['.'] * (len(str(lineno)) + 2)) Nc = len(continuation) rest = [] while i < N: nextline = lines[i] matchout = rgxout.match(nextline) if matchout or nextline.startswith('#'): break elif nextline.startswith(continuation): nextline = nextline[Nc:] if nextline and nextline[0] == ' ': nextline = nextline[1:] inputline += '\n' + nextline else: rest.append(nextline) i += 1 block.append((INPUT, (decorator, inputline, '\n'.join(rest)))) continue matchout = rgxout.match(line) if matchout: lineno, output = int(matchout.group(1)), matchout.group(2) if i < N - 1: output = '\n'.join([output] + lines[i:]) block.append((OUTPUT, output)) break return block
block_parser
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(part, rgxin, rgxout, fmtin, fmtout):\n block = []\n lines = part.split('\\n')\n N = len(lines)\n i = 0\n decorator = None\n while 1:\n if i == N:\n break\n line = lines[i]\n i += 1\n line_stripped = line.strip()\n if line_stripped.startswith('#'):\n block.append((COMMENT, line))\n continue\n if line_stripped.startswith('@'):\n decorator = line_stripped\n continue\n matchin = rgxin.match(line)\n if matchin:\n lineno, inputline = int(matchin.group(1)), matchin.group(2)\n continuation = ' %s:' % ''.join(['.'] * (len(str(lineno)) + 2))\n Nc = len(continuation)\n rest = []\n while i < N:\n nextline = lines[i]\n matchout = rgxout.match(nextline)\n if matchout or nextline.startswith('#'):\n break\n elif nextline.startswith(continuation):\n nextline = nextline[Nc:]\n if nextline and nextline[0] == ' ':\n nextline = nextline[1:]\n inputline += '\\n' + nextline\n else:\n rest.append(nextline)\n i += 1\n block.append((INPUT, (decorator, inputline, '\\n'.join(rest))))\n continue\n matchout = rgxout.match(line)\n if matchout:\n lineno, output = int(matchout.group(1)), matchout.group(2)\n if i < N - 1:\n output = '\\n'.join([output] + lines[i:])\n block.append((OUTPUT, output))\n break\n return block\n", "role": "user" }, { "content": "block_parser", "role": "assistant" } ]
def x(self, block): ret = [] output = None input_lines = None lineno = self.IP.execution_count input_prompt = self.promptin % lineno output_prompt = self.promptout % lineno image_file = None image_directive = None found_input = False for token, data in block: if token == COMMENT: out_data = self.process_comment(data) elif token == INPUT: found_input = True (out_data, input_lines, output, is_doctest, decorator, image_file, image_directive) = self.process_input(data, input_prompt, lineno) elif token == OUTPUT: if not found_input: TAB = ' ' * 4 linenumber = 0 source = 'Unavailable' content = 'Unavailable' if self.directive: linenumber = self.directive.state.document.current_line source = self.directive.state.document.current_source content = self.directive.content content = '\n'.join([(TAB + line) for line in content]) e = """ Invalid block: Block contains an output prompt without an input prompt. Document source: {0} Content begins at line {1}: {2} Problematic block within content: {TAB}{3} """ e = e.format(source, linenumber, content, block, TAB=TAB) sys.stdout.write(e) raise RuntimeError('An invalid block was detected.') out_data = self.process_output(data, output_prompt, input_lines, output, is_doctest, decorator, image_file) if out_data: assert ret[-1] == '' del ret[-1] if out_data: ret.extend(out_data) if image_file is not None: self.save_image(image_file) return ret, image_directive
process_block
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, block):\n ret = []\n output = None\n input_lines = None\n lineno = self.IP.execution_count\n input_prompt = self.promptin % lineno\n output_prompt = self.promptout % lineno\n image_file = None\n image_directive = None\n found_input = False\n for token, data in block:\n if token == COMMENT:\n out_data = self.process_comment(data)\n elif token == INPUT:\n found_input = True\n (out_data, input_lines, output, is_doctest, decorator,\n image_file, image_directive) = self.process_input(data,\n input_prompt, lineno)\n elif token == OUTPUT:\n if not found_input:\n TAB = ' ' * 4\n linenumber = 0\n source = 'Unavailable'\n content = 'Unavailable'\n if self.directive:\n linenumber = self.directive.state.document.current_line\n source = self.directive.state.document.current_source\n content = self.directive.content\n content = '\\n'.join([(TAB + line) for line in content])\n e = \"\"\"\n\nInvalid block: Block contains an output prompt without an input prompt.\n\nDocument source: {0}\n\nContent begins at line {1}: \n\n{2}\n\nProblematic block within content: \n\n{TAB}{3}\n\n\"\"\"\n e = e.format(source, linenumber, content, block, TAB=TAB)\n sys.stdout.write(e)\n raise RuntimeError('An invalid block was detected.')\n out_data = self.process_output(data, output_prompt, input_lines,\n output, is_doctest, decorator, image_file)\n if out_data:\n assert ret[-1] == ''\n del ret[-1]\n if out_data:\n ret.extend(out_data)\n if image_file is not None:\n self.save_image(image_file)\n return ret, image_directive\n", "role": "user" }, { "content": "process_block", "role": "assistant" } ]
def x(grid_scores, change, subset=None, kind='line', cmap=None, ax=None): if change is None: raise ValueError( "change can't be None, you need to select at least one value to make the plot." ) if ax is None: ax = plt.gca() if cmap is None: cmap = default_heatmap() if isinstance(change, string_types) or len(change) == 1: return _grid_search_single(grid_scores, change, subset, kind, ax) elif len(change) == 2: return _grid_search_double(grid_scores, change, subset, cmap, ax) else: raise ValueError('change must have length 1 or 2 or be a string')
grid_search
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(grid_scores, change, subset=None, kind='line', cmap=None, ax=None):\n if change is None:\n raise ValueError(\n \"change can't be None, you need to select at least one value to make the plot.\"\n )\n if ax is None:\n ax = plt.gca()\n if cmap is None:\n cmap = default_heatmap()\n if isinstance(change, string_types) or len(change) == 1:\n return _grid_search_single(grid_scores, change, subset, kind, ax)\n elif len(change) == 2:\n return _grid_search_double(grid_scores, change, subset, cmap, ax)\n else:\n raise ValueError('change must have length 1 or 2 or be a string')\n", "role": "user" }, { "content": "grid_search", "role": "assistant" } ]
def x(self): return plot.confusion_matrix(self.y_true, self.y_pred, self. target_names, ax=_gen_ax())
confusion_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return plot.confusion_matrix(self.y_true, self.y_pred, self.\n target_names, ax=_gen_ax())\n", "role": "user" }, { "content": "confusion_matrix", "role": "assistant" } ]
def x(self): return plot.roc(self.y_true, self.y_score, ax=_gen_ax())
roc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return plot.roc(self.y_true, self.y_score, ax=_gen_ax())\n", "role": "user" }, { "content": "roc", "role": "assistant" } ]
def x(self): return plot.precision_recall(self.y_true, self.y_score, ax=_gen_ax())
precision_recall
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return plot.precision_recall(self.y_true, self.y_score, ax=_gen_ax())\n", "role": "user" }, { "content": "precision_recall", "role": "assistant" } ]
def x(self): return plot.feature_importances(self.estimator, feature_names=self. feature_names, ax=_gen_ax())
feature_importances
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return plot.feature_importances(self.estimator, feature_names=self.\n feature_names, ax=_gen_ax())\n", "role": "user" }, { "content": "feature_importances", "role": "assistant" } ]
def x(self): from . import table return table.feature_importances(self.estimator, feature_names=self. feature_names)
feature_importances_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n from . import table\n return table.feature_importances(self.estimator, feature_names=self.\n feature_names)\n", "role": "user" }, { "content": "feature_importances_table", "role": "assistant" } ]
def x(self): return plot.precision_at_proportions(self.y_true, self.y_score, ax= _gen_ax())
precision_at_proportions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return plot.precision_at_proportions(self.y_true, self.y_score, ax=\n _gen_ax())\n", "role": "user" }, { "content": "precision_at_proportions", "role": "assistant" } ]
def x(self, template, path=None, style=None): from .report import generate return generate(self, template, path, style)
generate_report
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, template, path=None, style=None):\n from .report import generate\n return generate(self, template, path, style)\n", "role": "user" }, { "content": "generate_report", "role": "assistant" } ]
def x(y_true, y_score, ax=None): if any(val is None for val in (y_true, y_score)): raise ValueError('y_true and y_score are needed to plot ROC') if ax is None: ax = plt.gca() y_score_is_vector = is_column_vector(y_score) or is_row_vector(y_score) if y_score_is_vector: n_classes = 2 else: _, n_classes = y_score.shape if n_classes > 2: y_true_bin = label_binarize(y_true, classes=np.unique(y_true)) _roc_multi(y_true_bin, y_score, ax=ax) for i in range(n_classes): _roc(y_true_bin[:, i], y_score[:, i], ax=ax) elif y_score_is_vector: _roc(y_true, y_score, ax) else: _roc(y_true, y_score[:, 1], ax) return ax
roc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_score, ax=None):\n if any(val is None for val in (y_true, y_score)):\n raise ValueError('y_true and y_score are needed to plot ROC')\n if ax is None:\n ax = plt.gca()\n y_score_is_vector = is_column_vector(y_score) or is_row_vector(y_score)\n if y_score_is_vector:\n n_classes = 2\n else:\n _, n_classes = y_score.shape\n if n_classes > 2:\n y_true_bin = label_binarize(y_true, classes=np.unique(y_true))\n _roc_multi(y_true_bin, y_score, ax=ax)\n for i in range(n_classes):\n _roc(y_true_bin[:, i], y_score[:, i], ax=ax)\n elif y_score_is_vector:\n _roc(y_true, y_score, ax)\n else:\n _roc(y_true, y_score[:, 1], ax)\n return ax\n", "role": "user" }, { "content": "roc", "role": "assistant" } ]
def x(y_true, y_score, ax=None): fpr, tpr, _ = roc_curve(y_true, y_score) roc_auc = auc(fpr, tpr) ax.plot(fpr, tpr, label='ROC curve (area = {0:0.2f})'.format(roc_auc)) _set_ax_settings(ax) return ax
roc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_score, ax=None):\n fpr, tpr, _ = roc_curve(y_true, y_score)\n roc_auc = auc(fpr, tpr)\n ax.plot(fpr, tpr, label='ROC curve (area = {0:0.2f})'.format(roc_auc))\n _set_ax_settings(ax)\n return ax\n", "role": "user" }, { "content": "roc", "role": "assistant" } ]
def x(y_true, y_score, ax=None): fpr, tpr, _ = roc_curve(y_true.ravel(), y_score.ravel()) roc_auc = auc(fpr, tpr) if ax is None: ax = plt.gca() ax.plot(fpr, tpr, label='micro-average ROC curve (area = {0:0.2f})'. format(roc_auc)) _set_ax_settings(ax) return ax
roc_multi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_true, y_score, ax=None):\n fpr, tpr, _ = roc_curve(y_true.ravel(), y_score.ravel())\n roc_auc = auc(fpr, tpr)\n if ax is None:\n ax = plt.gca()\n ax.plot(fpr, tpr, label='micro-average ROC curve (area = {0:0.2f})'.\n format(roc_auc))\n _set_ax_settings(ax)\n return ax\n", "role": "user" }, { "content": "roc_multi", "role": "assistant" } ]
async def get_connection(self, container): """ Get an exclusive connection, useful for blocked commands and transactions. You must call release or shutdown (not recommanded) to return the connection after use. :param container: routine container :returns: RedisClientBase object, with some commands same as RedisClient like execute_command, batch_execute, register_script etc. """ if self._connpool: conn = self._connpool.pop() return RedisClientBase(conn, self) else: conn = self._create_client(container) await RedisClientBase._get_connection(self, container, conn) await self._protocol.send_command(conn, container, 'SELECT', str( self.db)) return RedisClientBase(conn, self)
get_connection
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def get_connection(self, container):\n \"\"\"\n Get an exclusive connection, useful for blocked commands and transactions.\n \n You must call release or shutdown (not recommanded) to return the connection after use.\n \n :param container: routine container\n \n :returns: RedisClientBase object, with some commands same as RedisClient like execute_command,\n batch_execute, register_script etc.\n \"\"\"\n if self._connpool:\n conn = self._connpool.pop()\n return RedisClientBase(conn, self)\n else:\n conn = self._create_client(container)\n await RedisClientBase._get_connection(self, container, conn)\n await self._protocol.send_command(conn, container, 'SELECT', str(\n self.db))\n return RedisClientBase(conn, self)\n", "role": "user" }, { "content": "get_connection", "role": "assistant" } ]
async def execute_command(self, container, *args): """ Execute command on Redis server: - For (P)SUBSCRIBE/(P)UNSUBSCRIBE, the command is sent to the subscribe connection. It is recommended to use (p)subscribe/(p)unsubscribe method instead of directly call the command - For BLPOP, BRPOP, BRPOPLPUSH, the command is sent to a separated connection. The connection is recycled after command returns. - For other commands, the command is sent to the default connection. """ if args: cmd = _str(args[0]).upper() if cmd in ('SUBSCRIBE', 'UNSUBSCRIBE', 'PSUBSCRIBE', 'PUNSUBSCRIBE'): await self._get_subscribe_connection(container) return await self._protocol.execute_command(self._subscribeconn, container, *args) elif cmd in ('BLPOP', 'BRPOP', 'BRPOPLPUSH'): c = await self.get_connection(container) with c.context(container): return await c.execute_command(container, *args) return await RedisClientBase.execute_command(self, container, *args)
execute_command
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def execute_command(self, container, *args):\n \"\"\"\n Execute command on Redis server:\n - For (P)SUBSCRIBE/(P)UNSUBSCRIBE, the command is sent to the subscribe connection.\n It is recommended to use (p)subscribe/(p)unsubscribe method instead of directly call the command\n - For BLPOP, BRPOP, BRPOPLPUSH, the command is sent to a separated connection. The connection is\n recycled after command returns.\n - For other commands, the command is sent to the default connection.\n \"\"\"\n if args:\n cmd = _str(args[0]).upper()\n if cmd in ('SUBSCRIBE', 'UNSUBSCRIBE', 'PSUBSCRIBE', 'PUNSUBSCRIBE'):\n await self._get_subscribe_connection(container)\n return await self._protocol.execute_command(self._subscribeconn,\n container, *args)\n elif cmd in ('BLPOP', 'BRPOP', 'BRPOPLPUSH'):\n c = await self.get_connection(container)\n with c.context(container):\n return await c.execute_command(container, *args)\n return await RedisClientBase.execute_command(self, container, *args)\n", "role": "user" }, { "content": "execute_command", "role": "assistant" } ]
async def subscribe(self, container, *keys): """ Subscribe to specified channels :param container: routine container :param *keys: subscribed channels :returns: list of event matchers for the specified channels """ await self._get_subscribe_connection(container) realkeys = [] for k in keys: count = self._subscribecounter.get(k, 0) if count == 0: realkeys.append(k) self._subscribecounter[k] = count + 1 if realkeys: await self._protocol.execute_command(self._subscribeconn, container, 'SUBSCRIBE', *realkeys) return [self._protocol.subscribematcher(self._subscribeconn, k, None, RedisSubscribeMessageEvent.MESSAGE) for k in keys]
subscribe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def subscribe(self, container, *keys):\n \"\"\"\n Subscribe to specified channels\n \n :param container: routine container\n \n :param *keys: subscribed channels\n \n :returns: list of event matchers for the specified channels\n \"\"\"\n await self._get_subscribe_connection(container)\n realkeys = []\n for k in keys:\n count = self._subscribecounter.get(k, 0)\n if count == 0:\n realkeys.append(k)\n self._subscribecounter[k] = count + 1\n if realkeys:\n await self._protocol.execute_command(self._subscribeconn, container,\n 'SUBSCRIBE', *realkeys)\n return [self._protocol.subscribematcher(self._subscribeconn, k, None,\n RedisSubscribeMessageEvent.MESSAGE) for k in keys]\n", "role": "user" }, { "content": "subscribe", "role": "assistant" } ]
async def unsubscribe(self, container, *keys): """ Unsubscribe specified channels. Every subscribed key should be unsubscribed exactly once, even if duplicated subscribed. :param container: routine container :param \\*keys: subscribed channels """ await self._get_subscribe_connection(container) realkeys = [] for k in keys: count = self._subscribecounter.get(k, 0) if count <= 1: realkeys.append(k) try: del self._subscribecounter[k] except KeyError: pass else: self._subscribecounter[k] = count - 1 if realkeys: await self._protocol.execute_command(self._subscribeconn, container, 'UNSUBSCRIBE', *realkeys)
unsubscribe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def unsubscribe(self, container, *keys):\n \"\"\"\n Unsubscribe specified channels. Every subscribed key should be unsubscribed exactly once, even if duplicated subscribed.\n \n :param container: routine container\n \n :param \\\\*keys: subscribed channels\n \"\"\"\n await self._get_subscribe_connection(container)\n realkeys = []\n for k in keys:\n count = self._subscribecounter.get(k, 0)\n if count <= 1:\n realkeys.append(k)\n try:\n del self._subscribecounter[k]\n except KeyError:\n pass\n else:\n self._subscribecounter[k] = count - 1\n if realkeys:\n await self._protocol.execute_command(self._subscribeconn, container,\n 'UNSUBSCRIBE', *realkeys)\n", "role": "user" }, { "content": "unsubscribe", "role": "assistant" } ]