source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, code, cursor_pos, detail_level=0):
self._klog.info('{%s}', code[cursor_pos:cursor_pos + 10])
token, start = token_at_cursor(code, cursor_pos)
self._klog.debug('token={%s} {%d}', token, detail_level)
if not is_magic(token, start, code):
info = sparql_help.get(token.upper(), None)
elif token == '%':
info = magic_help
else:
info = magics.get(token, None)
if info:
info = '{} {}\n\n{}'.format(token, *info)
return {'status': 'ok', 'data': {'text/plain': info}, 'metadata': {},
'found': info is not None}
|
do_inspect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, code, cursor_pos, detail_level=0):\n self._klog.info('{%s}', code[cursor_pos:cursor_pos + 10])\n token, start = token_at_cursor(code, cursor_pos)\n self._klog.debug('token={%s} {%d}', token, detail_level)\n if not is_magic(token, start, code):\n info = sparql_help.get(token.upper(), None)\n elif token == '%':\n info = magic_help\n else:\n info = magics.get(token, None)\n if info:\n info = '{} {}\\n\\n{}'.format(token, *info)\n return {'status': 'ok', 'data': {'text/plain': info}, 'metadata': {},\n 'found': info is not None}\n",
"role": "user"
},
{
"content": "do_inspect",
"role": "assistant"
}
] |
def x(self, code, cursor_pos):
self._klog.info('{%s}', code[cursor_pos:cursor_pos + 10])
token, start = token_at_cursor(code, cursor_pos)
tkn_low = token.lower()
if is_magic(token, start, code):
matches = [k for k in magics.keys() if k.startswith(tkn_low)]
else:
matches = [sparql_names[k] for k in sparql_names if k.startswith(
tkn_low)]
self._klog.debug('token={%s} matches={%r}', token, matches)
if matches:
return {'status': 'ok', 'cursor_start': start, 'cursor_end': start +
len(token), 'matches': matches}
|
do_complete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, code, cursor_pos):\n self._klog.info('{%s}', code[cursor_pos:cursor_pos + 10])\n token, start = token_at_cursor(code, cursor_pos)\n tkn_low = token.lower()\n if is_magic(token, start, code):\n matches = [k for k in magics.keys() if k.startswith(tkn_low)]\n else:\n matches = [sparql_names[k] for k in sparql_names if k.startswith(\n tkn_low)]\n self._klog.debug('token={%s} matches={%r}', token, matches)\n if matches:\n return {'status': 'ok', 'cursor_start': start, 'cursor_end': start +\n len(token), 'matches': matches}\n",
"role": "user"
},
{
"content": "do_complete",
"role": "assistant"
}
] |
def x(self):
for line in iter(self._fd.readline, ''):
self._queue.put(line)
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for line in iter(self._fd.readline, ''):\n self._queue.put(line)\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(x, lb=False):
if lb:
l = len(x)
if l >= 10:
l >>= 1
s1 = x.find(' ', l)
s2 = x.rfind(' ', 0, l)
if s2 > 0:
s = s2 if s1 < 0 or l - s1 > s2 - l else s1
x = x[:s] + '\\n' + x[s + 1:]
elif s1 > 0:
x = x[:s1] + '\\n' + x[s1 + 1:]
return x.replace('&', '&').replace('<', '<').replace('>', '>'
).replace('"', '"')
|
escape
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, lb=False):\n if lb:\n l = len(x)\n if l >= 10:\n l >>= 1\n s1 = x.find(' ', l)\n s2 = x.rfind(' ', 0, l)\n if s2 > 0:\n s = s2 if s1 < 0 or l - s1 > s2 - l else s1\n x = x[:s] + '\\\\n' + x[s + 1:]\n elif s1 > 0:\n x = x[:s1] + '\\\\n' + x[s1 + 1:]\n return x.replace('&', '&').replace('<', '<').replace('>', '>'\n ).replace('\"', '"')\n",
"role": "user"
},
{
"content": "escape",
"role": "assistant"
}
] |
def x(txt, *args, **kwargs):
if args:
txt = txt.format(*args)
css = kwargs.get('css', HTML_DIV_CLASS)
return u'<div class="{}">{!s}</div>'.format(css, txt)
|
div
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(txt, *args, **kwargs):\n if args:\n txt = txt.format(*args)\n css = kwargs.get('css', HTML_DIV_CLASS)\n return u'<div class=\"{}\">{!s}</div>'.format(css, txt)\n",
"role": "user"
},
{
"content": "div",
"role": "assistant"
}
] |
def x(msglist):
txt = html = u''
for msg, css in msglist:
if is_collection(msg):
msg = msg[0].format(*msg[1:])
html += div(escape(msg).replace('\n', '<br/>'), css=css or 'msg')
txt += msg + '\n'
return {'data': {'text/html': div(html), 'text/plain': txt}, 'metadata': {}
}
|
data_msglist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(msglist):\n txt = html = u''\n for msg, css in msglist:\n if is_collection(msg):\n msg = msg[0].format(*msg[1:])\n html += div(escape(msg).replace('\\n', '<br/>'), css=css or 'msg')\n txt += msg + '\\n'\n return {'data': {'text/html': div(html), 'text/plain': txt}, 'metadata': {}\n }\n",
"role": "user"
},
{
"content": "data_msglist",
"role": "assistant"
}
] |
def x(msg, mtype=None):
if isinstance(msg, KrnlException):
return msg()
elif isinstance(msg, Exception):
return KrnlException(msg)()
elif mtype == 'multi':
return data_msglist(msg)
else:
return data_msglist([(msg, mtype)])
|
data_msg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(msg, mtype=None):\n if isinstance(msg, KrnlException):\n return msg()\n elif isinstance(msg, Exception):\n return KrnlException(msg)()\n elif mtype == 'multi':\n return data_msglist(msg)\n else:\n return data_msglist([(msg, mtype)])\n",
"role": "user"
},
{
"content": "data_msg",
"role": "assistant"
}
] |
def x(resource, filename, destdir):
data = pkgutil.get_data(resource, os.path.join('resources', filename))
with open(os.path.join(destdir, filename), 'wb') as fp:
fp.write(data)
|
copyresource
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(resource, filename, destdir):\n data = pkgutil.get_data(resource, os.path.join('resources', filename))\n with open(os.path.join(destdir, filename), 'wb') as fp:\n fp.write(data)\n",
"role": "user"
},
{
"content": "copyresource",
"role": "assistant"
}
] |
def x(destdir, resource=PKGNAME, files=None):
if files is None:
files = ['logo-64x64.png', 'logo-32x32.png']
for filename in files:
try:
copyresource(resource, filename, destdir)
except Exception as e:
sys.stderr.write(str(e))
|
install_kernel_resources
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(destdir, resource=PKGNAME, files=None):\n if files is None:\n files = ['logo-64x64.png', 'logo-32x32.png']\n for filename in files:\n try:\n copyresource(resource, filename, destdir)\n except Exception as e:\n sys.stderr.write(str(e))\n",
"role": "user"
},
{
"content": "install_kernel_resources",
"role": "assistant"
}
] |
def x(destdir, cssfile, resource=PKGNAME):
ensure_dir_exists(destdir)
custom = os.path.join(destdir, 'custom.css')
prefix = css_frame_prefix(resource)
exists = False
if os.path.exists(custom):
with io.open(custom) as f:
for line in f:
if line.find(prefix) >= 0:
exists = True
break
if exists:
remove_custom_css(destdir, resource)
cssfile += '.css'
data = pkgutil.get_data(resource, os.path.join('resources', cssfile))
with io.open(custom + '-new', 'wt', encoding='utf-8') as fout:
fout.write(u'{}START ======================== */\n'.format(prefix))
fout.write(data.decode('utf-8'))
fout.write(u'{}END ======================== */\n'.format(prefix))
if os.path.exists(custom):
with io.open(custom, 'rt', encoding='utf-8') as fin:
for line in fin:
fout.write(unicode(line))
os.rename(custom + '-new', custom)
|
install_custom_css
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(destdir, cssfile, resource=PKGNAME):\n ensure_dir_exists(destdir)\n custom = os.path.join(destdir, 'custom.css')\n prefix = css_frame_prefix(resource)\n exists = False\n if os.path.exists(custom):\n with io.open(custom) as f:\n for line in f:\n if line.find(prefix) >= 0:\n exists = True\n break\n if exists:\n remove_custom_css(destdir, resource)\n cssfile += '.css'\n data = pkgutil.get_data(resource, os.path.join('resources', cssfile))\n with io.open(custom + '-new', 'wt', encoding='utf-8') as fout:\n fout.write(u'{}START ======================== */\\n'.format(prefix))\n fout.write(data.decode('utf-8'))\n fout.write(u'{}END ======================== */\\n'.format(prefix))\n if os.path.exists(custom):\n with io.open(custom, 'rt', encoding='utf-8') as fin:\n for line in fin:\n fout.write(unicode(line))\n os.rename(custom + '-new', custom)\n",
"role": "user"
},
{
"content": "install_custom_css",
"role": "assistant"
}
] |
def x(destdir, resource=PKGNAME):
if not os.path.isdir(destdir):
return False
custom = os.path.join(destdir, 'custom.css')
copy = True
found = False
prefix = css_frame_prefix(resource)
with io.open(custom + '-new', 'wt') as fout:
with io.open(custom) as fin:
for line in fin:
if line.startswith(prefix + 'START'):
copy = False
found = True
elif line.startswith(prefix + 'END'):
copy = True
elif copy:
fout.write(line)
if found:
os.rename(custom + '-new', custom)
else:
os.unlink(custom + '-new')
return found
|
remove_custom_css
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(destdir, resource=PKGNAME):\n if not os.path.isdir(destdir):\n return False\n custom = os.path.join(destdir, 'custom.css')\n copy = True\n found = False\n prefix = css_frame_prefix(resource)\n with io.open(custom + '-new', 'wt') as fout:\n with io.open(custom) as fin:\n for line in fin:\n if line.startswith(prefix + 'START'):\n copy = False\n found = True\n elif line.startswith(prefix + 'END'):\n copy = True\n elif copy:\n fout.write(line)\n if found:\n os.rename(custom + '-new', custom)\n else:\n os.unlink(custom + '-new')\n return found\n",
"role": "user"
},
{
"content": "remove_custom_css",
"role": "assistant"
}
] |
def x(e, ct, withtype=False):
if ct == 'th':
return '<th>{0}</th><th>{1}</th>'.format(*e
) if withtype else '<th>{}</th>'.format(e)
if e[1] in ('uri', 'URIRef'):
html = (u'<{0} class=val><a href="{1}" target="_other">{2}</a></{0}>'
.format(ct, e[0], escape(e[0])))
else:
html = u'<{0} class=val>{1}</{0}>'.format(ct, escape(e[0]))
if withtype:
html += u'<{0} class=typ>{1}</{0}>'.format(ct, e[1])
return html
|
html_elem
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(e, ct, withtype=False):\n if ct == 'th':\n return '<th>{0}</th><th>{1}</th>'.format(*e\n ) if withtype else '<th>{}</th>'.format(e)\n if e[1] in ('uri', 'URIRef'):\n html = (u'<{0} class=val><a href=\"{1}\" target=\"_other\">{2}</a></{0}>'\n .format(ct, e[0], escape(e[0])))\n else:\n html = u'<{0} class=val>{1}</{0}>'.format(ct, escape(e[0]))\n if withtype:\n html += u'<{0} class=typ>{1}</{0}>'.format(ct, e[1])\n return html\n",
"role": "user"
},
{
"content": "html_elem",
"role": "assistant"
}
] |
def x(data, header=True, limit=None, withtype=False):
if header and limit:
limit += 1
ct = 'th' if header else 'td'
rc = 'hdr' if header else 'odd'
html = u'<table>'
rn = -1
for rn, row in enumerate(data):
html += u'<tr class={}>'.format(rc)
html += '\n'.join(html_elem(c, ct, withtype) for c in row)
html += u'</tr>'
rc = 'even' if rc == 'odd' else 'odd'
ct = 'td'
if limit:
limit -= 1
if not limit:
break
return (0, '') if rn < 0 else (rn + 1 - header, html + u'</table>')
|
html_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, header=True, limit=None, withtype=False):\n if header and limit:\n limit += 1\n ct = 'th' if header else 'td'\n rc = 'hdr' if header else 'odd'\n html = u'<table>'\n rn = -1\n for rn, row in enumerate(data):\n html += u'<tr class={}>'.format(rc)\n html += '\\n'.join(html_elem(c, ct, withtype) for c in row)\n html += u'</tr>'\n rc = 'even' if rc == 'odd' else 'odd'\n ct = 'td'\n if limit:\n limit -= 1\n if not limit:\n break\n return (0, '') if rn < 0 else (rn + 1 - header, html + u'</table>')\n",
"role": "user"
},
{
"content": "html_table",
"role": "assistant"
}
] |
def x(c):
ct = c['type']
return ct if ct != 'literal' else '{}, {}'.format(ct, c.get('xml:lang'))
|
jtype
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(c):\n ct = c['type']\n return ct if ct != 'literal' else '{}, {}'.format(ct, c.get('xml:lang'))\n",
"role": "user"
},
{
"content": "jtype",
"role": "assistant"
}
] |
def x(n):
t = type(n).__name__
return str(t) if t != 'Literal' else 'Literal, {}'.format(n.language)
|
gtype
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n):\n t = type(n).__name__\n return str(t) if t != 'Literal' else 'Literal, {}'.format(n.language)\n",
"role": "user"
},
{
"content": "gtype",
"role": "assistant"
}
] |
def x(row, hdr, accepted_languages):
if not accepted_languages:
return True
languages = set([row[c].get('xml:lang') for c in hdr if c in row and
row[c]['type'] == 'literal'])
return not languages or languages & accepted_languages
|
lang_match_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(row, hdr, accepted_languages):\n if not accepted_languages:\n return True\n languages = set([row[c].get('xml:lang') for c in hdr if c in row and \n row[c]['type'] == 'literal'])\n return not languages or languages & accepted_languages\n",
"role": "user"
},
{
"content": "lang_match_json",
"role": "assistant"
}
] |
def x(triple, accepted_languages):
if not accepted_languages:
return True
languages = set([n.language for n in triple if isinstance(n, Literal)])
return not languages or languages & accepted_languages
|
lang_match_rdf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(triple, accepted_languages):\n if not accepted_languages:\n return True\n languages = set([n.language for n in triple if isinstance(n, Literal)])\n return not languages or languages & accepted_languages\n",
"role": "user"
},
{
"content": "lang_match_rdf",
"role": "assistant"
}
] |
def x(row, accepted_languages):
if not accepted_languages:
return True
column_languages = set()
for elem in row:
lang = elem[0].attrib.get(XML_LANG, None)
if lang:
column_languages.add(lang)
return not column_languages or column_languages & accepted_languages
|
lang_match_xml
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(row, accepted_languages):\n if not accepted_languages:\n return True\n column_languages = set()\n for elem in row:\n lang = elem[0].attrib.get(XML_LANG, None)\n if lang:\n column_languages.add(lang)\n return not column_languages or column_languages & accepted_languages\n",
"role": "user"
},
{
"content": "lang_match_xml",
"role": "assistant"
}
] |
def x(hdr, rowlist, lang, add_vtype=False):
yield hdr if not add_vtype else ((h, 'type') for h in hdr)
for row in rowlist:
if lang and not lang_match_json(row, hdr, lang):
continue
yield ((row[c]['value'], jtype(row[c])) if c in row else ('', '') for
c in hdr)
|
json_iterator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hdr, rowlist, lang, add_vtype=False):\n yield hdr if not add_vtype else ((h, 'type') for h in hdr)\n for row in rowlist:\n if lang and not lang_match_json(row, hdr, lang):\n continue\n yield ((row[c]['value'], jtype(row[c])) if c in row else ('', '') for\n c in hdr)\n",
"role": "user"
},
{
"content": "json_iterator",
"role": "assistant"
}
] |
def x(graph, lang, add_vtype=False):
hdr = 'subject', 'predicate', 'object'
yield hdr if not add_vtype else ((h, 'type') for h in hdr)
for row in graph:
if lang and not lang_match_rdf(row, lang):
continue
yield ((unicode(c), gtype(c)) for c in row)
|
rdf_iterator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(graph, lang, add_vtype=False):\n hdr = 'subject', 'predicate', 'object'\n yield hdr if not add_vtype else ((h, 'type') for h in hdr)\n for row in graph:\n if lang and not lang_match_rdf(row, lang):\n continue\n yield ((unicode(c), gtype(c)) for c in row)\n",
"role": "user"
},
{
"content": "rdf_iterator",
"role": "assistant"
}
] |
def x(result, cfg, **kwargs):
result = json.loads(result.decode('utf-8'))
head = result['head']
if 'results' not in result:
if 'boolean' in result:
r = u'Result: {}'.format(result['boolean'])
else:
r = u'Unsupported result: \n' + unicode(result)
return {'data': {'text/plain': r}, 'metadata': {}}
vars = head['vars']
nrow = len(result['results']['bindings'])
if cfg.dis == 'table':
j = json_iterator(vars, result['results']['bindings'], set(cfg.lan),
add_vtype=cfg.typ)
n, data = html_table(j, limit=cfg.lmt, withtype=cfg.typ)
data += div('Total: {}, Shown: {}', nrow, n, css='tinfo')
data = {'text/html': div(data)}
else:
result = json.dumps(result, ensure_ascii=False, indent=2, sort_keys
=True)
data = {'text/plain': unicode(result)}
return {'data': data, 'metadata': {}}
|
render_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(result, cfg, **kwargs):\n result = json.loads(result.decode('utf-8'))\n head = result['head']\n if 'results' not in result:\n if 'boolean' in result:\n r = u'Result: {}'.format(result['boolean'])\n else:\n r = u'Unsupported result: \\n' + unicode(result)\n return {'data': {'text/plain': r}, 'metadata': {}}\n vars = head['vars']\n nrow = len(result['results']['bindings'])\n if cfg.dis == 'table':\n j = json_iterator(vars, result['results']['bindings'], set(cfg.lan),\n add_vtype=cfg.typ)\n n, data = html_table(j, limit=cfg.lmt, withtype=cfg.typ)\n data += div('Total: {}, Shown: {}', nrow, n, css='tinfo')\n data = {'text/html': div(data)}\n else:\n result = json.dumps(result, ensure_ascii=False, indent=2, sort_keys\n =True)\n data = {'text/plain': unicode(result)}\n return {'data': data, 'metadata': {}}\n",
"role": "user"
},
{
"content": "render_json",
"role": "assistant"
}
] |
def x(row, lang):
for elem in row:
name = elem.get('name')
child = elem[0]
ftype = re.sub('\\{[^}]+\\}', '', child.tag)
if ftype == 'literal':
ftype = '{}, {}'.format(ftype, child.attrib.get(XML_LANG, 'none'))
yield name, (child.text, ftype)
|
xml_row
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(row, lang):\n for elem in row:\n name = elem.get('name')\n child = elem[0]\n ftype = re.sub('\\\\{[^}]+\\\\}', '', child.tag)\n if ftype == 'literal':\n ftype = '{}, {}'.format(ftype, child.attrib.get(XML_LANG, 'none'))\n yield name, (child.text, ftype)\n",
"role": "user"
},
{
"content": "xml_row",
"role": "assistant"
}
] |
def x(columns, rowlist, lang, add_vtype=False):
yield columns if not add_vtype else ((h, 'type') for h in columns)
for row in rowlist:
if not lang_match_xml(row, lang):
continue
rowdata = {nam: val for nam, val in xml_row(row, lang)}
yield (rowdata.get(field, ('', '')) for field in columns)
|
xml_iterator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(columns, rowlist, lang, add_vtype=False):\n yield columns if not add_vtype else ((h, 'type') for h in columns)\n for row in rowlist:\n if not lang_match_xml(row, lang):\n continue\n rowdata = {nam: val for nam, val in xml_row(row, lang)}\n yield (rowdata.get(field, ('', '')) for field in columns)\n",
"role": "user"
},
{
"content": "xml_iterator",
"role": "assistant"
}
] |
def x(result, cfg, **kwargs):
if cfg.dis == 'raw':
return {'data': {'text/plain': result.decode('utf-8')}, 'metadata': {}}
try:
import xml.etree.cElementTree as ET
except ImportError:
import xml.etree.ElementTree as ET
root = ET.fromstring(result)
try:
ns = {'ns': re.match('\\{([^}]+)\\}', root.tag).group(1)}
except Exception:
raise KrnlException('Invalid XML data: cannot get namespace')
columns = [c.attrib['name'] for c in root.find('ns:head', ns)]
results = root.find('ns:results', ns)
nrow = len(results)
j = xml_iterator(columns, results, set(cfg.lan), add_vtype=cfg.typ)
n, data = html_table(j, limit=cfg.lmt, withtype=cfg.typ)
data += div('Total: {}, Shown: {}', nrow, n, css='tinfo')
return {'data': {'text/html': div(data)}, 'metadata': {}}
|
render_xml
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(result, cfg, **kwargs):\n if cfg.dis == 'raw':\n return {'data': {'text/plain': result.decode('utf-8')}, 'metadata': {}}\n try:\n import xml.etree.cElementTree as ET\n except ImportError:\n import xml.etree.ElementTree as ET\n root = ET.fromstring(result)\n try:\n ns = {'ns': re.match('\\\\{([^}]+)\\\\}', root.tag).group(1)}\n except Exception:\n raise KrnlException('Invalid XML data: cannot get namespace')\n columns = [c.attrib['name'] for c in root.find('ns:head', ns)]\n results = root.find('ns:results', ns)\n nrow = len(results)\n j = xml_iterator(columns, results, set(cfg.lan), add_vtype=cfg.typ)\n n, data = html_table(j, limit=cfg.lmt, withtype=cfg.typ)\n data += div('Total: {}, Shown: {}', nrow, n, css='tinfo')\n return {'data': {'text/html': div(data)}, 'metadata': {}}\n",
"role": "user"
},
{
"content": "render_xml",
"role": "assistant"
}
] |
def x(result, cfg, **kwargs):
rdflib_formats = {'text/rdf+n3': 'n3', 'text/turtle': 'turtle',
'application/x-turtle': 'turtle', 'text/turtle': 'turtle',
'application/rdf+xml': 'xml', 'text/rdf': 'xml',
'application/rdf+xml': 'xml'}
try:
got = kwargs.get('format', 'text/rdf+n3')
fmt = rdflib_formats[got]
except KeyError:
raise KrnlException('Unsupported format for graph processing: {!s}',
got)
g = ConjunctiveGraph()
g.load(StringInputSource(result), format=fmt)
display = cfg.dis[0] if is_collection(cfg.dis) else cfg.dis
if display in ('png', 'svg'):
try:
literal = len(cfg.dis) > 1 and cfg.dis[1].startswith('withlit')
opt = {'lang': cfg.lan, 'literal': literal, 'graphviz': []}
data, metadata = draw_graph(g, fmt=display, options=opt)
return {'data': data, 'metadata': metadata}
except Exception as e:
raise KrnlException('Exception while drawing graph: {!r}', e)
elif display == 'table':
it = rdf_iterator(g, set(cfg.lan), add_vtype=cfg.typ)
n, data = html_table(it, limit=cfg.lmt, withtype=cfg.typ)
data += div('Shown: {}, Total rows: {}', n if cfg.lmt else 'all',
len(g), css='tinfo')
data = {'text/html': div(data)}
elif len(g) == 0:
data = {'text/html': div(div('empty graph', css='krn-warn'))}
else:
data = {'text/plain': g.serialize(format='nt').decode('utf-8')}
return {'data': data, 'metadata': {}}
|
render_graph
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(result, cfg, **kwargs):\n rdflib_formats = {'text/rdf+n3': 'n3', 'text/turtle': 'turtle',\n 'application/x-turtle': 'turtle', 'text/turtle': 'turtle',\n 'application/rdf+xml': 'xml', 'text/rdf': 'xml',\n 'application/rdf+xml': 'xml'}\n try:\n got = kwargs.get('format', 'text/rdf+n3')\n fmt = rdflib_formats[got]\n except KeyError:\n raise KrnlException('Unsupported format for graph processing: {!s}',\n got)\n g = ConjunctiveGraph()\n g.load(StringInputSource(result), format=fmt)\n display = cfg.dis[0] if is_collection(cfg.dis) else cfg.dis\n if display in ('png', 'svg'):\n try:\n literal = len(cfg.dis) > 1 and cfg.dis[1].startswith('withlit')\n opt = {'lang': cfg.lan, 'literal': literal, 'graphviz': []}\n data, metadata = draw_graph(g, fmt=display, options=opt)\n return {'data': data, 'metadata': metadata}\n except Exception as e:\n raise KrnlException('Exception while drawing graph: {!r}', e)\n elif display == 'table':\n it = rdf_iterator(g, set(cfg.lan), add_vtype=cfg.typ)\n n, data = html_table(it, limit=cfg.lmt, withtype=cfg.typ)\n data += div('Shown: {}, Total rows: {}', n if cfg.lmt else 'all',\n len(g), css='tinfo')\n data = {'text/html': div(data)}\n elif len(g) == 0:\n data = {'text/html': div(div('empty graph', css='krn-warn'))}\n else:\n data = {'text/plain': g.serialize(format='nt').decode('utf-8')}\n return {'data': data, 'metadata': {}}\n",
"role": "user"
},
{
"content": "render_graph",
"role": "assistant"
}
] |
def x(self, line):
if line.startswith('%lsmagic'):
return magic_help, 'magic-help'
try:
cmd, param = line.split(None, 1)
except ValueError:
raise KrnlException('invalid magic: {}', line)
cmd = cmd[1:].lower()
if cmd == 'endpoint':
self.srv = SPARQLWrapper.SPARQLWrapper(param)
return ['Endpoint set to: {}', param], 'magic'
elif cmd == 'auth':
auth_data = param.split(None, 2)
if auth_data[0].lower() == 'none':
self.cfg.aut = None
return ['HTTP authentication: None'], 'magic'
if auth_data and len(auth_data) != 3:
raise KrnlException('invalid %auth magic')
self.cfg.aut = auth_data
return ['HTTP authentication: {}', auth_data], 'magic'
elif cmd == 'qparam':
v = param.split(None, 1)
if len(v) == 0:
raise KrnlException('missing %qparam name')
elif len(v) == 1:
self.cfg.par.pop(v[0], None)
return ['Param deleted: {}', v[0]]
else:
self.cfg.par[v[0]] = v[1]
return ['Param set: {} = {}'] + v, 'magic'
elif cmd == 'prefix':
v = param.split(None, 1)
if len(v) == 0:
raise KrnlException('missing %prefix value')
elif len(v) == 1:
self.cfg.pfx.pop(v[0], None)
return ['Prefix deleted: {}', v[0]], 'magic'
else:
self.cfg.pfx[v[0]] = v[1]
return ['Prefix set: {} = {}'] + v, 'magic'
elif cmd == 'show':
if param == 'all':
self.cfg.lmt = None
else:
try:
self.cfg.lmt = int(param)
except ValueError as e:
raise KrnlException('invalid result limit: {}', e)
sz = self.cfg.lmt if self.cfg.lmt is not None else 'unlimited'
return ['Result maximum size: {}', sz], 'magic'
elif cmd == 'format':
fmt_list = {'JSON': SPARQLWrapper.JSON, 'N3': SPARQLWrapper.N3,
'XML': SPARQLWrapper.XML, 'DEFAULT': None, 'ANY': False}
try:
fmt = param.upper()
self.cfg.fmt = fmt_list[fmt]
except KeyError:
raise KrnlException(
'unsupported format: {}\nSupported formats are: {!s}',
param, list(fmt_list.keys()))
return ['Return format: {}', fmt], 'magic'
elif cmd == 'lang':
self.cfg.lan = DEFAULT_TEXT_LANG if param == 'default' else [
] if param == 'all' else param.split()
return ['Label preferred languages: {}', self.cfg.lan], 'magic'
elif cmd in 'graph':
self.cfg.grh = param if param else None
return ['Default graph: {}', param if param else 'None'], 'magic'
elif cmd == 'display':
v = param.lower().split(None, 2)
if len(v) == 0 or v[0] not in ('table', 'raw', 'graph', 'diagram'):
raise KrnlException('invalid %display command: {}', param)
msg_extra = ''
if v[0] not in ('diagram', 'graph'):
self.cfg.dis = v[0]
self.cfg.typ = len(v) > 1 and v[1].startswith('withtype')
if self.cfg.typ and self.cfg.dis == 'table':
msg_extra = '\nShow Types: on'
elif len(v) == 1:
self.cfg.dis = ['svg']
else:
if v[1] not in ('png', 'svg'):
raise KrnlException('invalid graph format: {}', param)
if len(v) > 2:
if not v[2].startswith('withlit'):
raise KrnlException('invalid graph option: {}', param)
msg_extra = '\nShow literals: on'
self.cfg.dis = v[1:3]
display = self.cfg.dis[0] if is_collection(self.cfg.dis
) else self.cfg.dis
return ['Display: {}{}', display, msg_extra], 'magic'
elif cmd == 'outfile':
if param == 'NONE':
self.cfg.out = None
return ['no output file'], 'magic'
else:
self.cfg.out = param
return ['Output file: {}', os.path.abspath(param)], 'magic'
elif cmd == 'log':
if not param:
raise KrnlException('missing log level')
try:
lev = param.upper()
parent_logger = logging.getLogger(__name__.rsplit('.', 1)[0])
parent_logger.setLevel(lev)
return ('Logging set to {}', lev), 'magic'
except ValueError:
raise KrnlException('unknown log level: {}', param)
elif cmd == 'header':
if param.upper() == 'OFF':
num = len(self.cfg.hdr)
self.cfg.hdr = []
return ['All headers deleted ({})', num], 'magic'
else:
if param in self.cfg.hdr:
return ['Header skipped (repeated)'], 'magic'
self.cfg.hdr.append(param)
return ['Header added: {}', param], 'magic'
else:
raise KrnlException('magic not found: {}', cmd)
|
magic
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, line):\n if line.startswith('%lsmagic'):\n return magic_help, 'magic-help'\n try:\n cmd, param = line.split(None, 1)\n except ValueError:\n raise KrnlException('invalid magic: {}', line)\n cmd = cmd[1:].lower()\n if cmd == 'endpoint':\n self.srv = SPARQLWrapper.SPARQLWrapper(param)\n return ['Endpoint set to: {}', param], 'magic'\n elif cmd == 'auth':\n auth_data = param.split(None, 2)\n if auth_data[0].lower() == 'none':\n self.cfg.aut = None\n return ['HTTP authentication: None'], 'magic'\n if auth_data and len(auth_data) != 3:\n raise KrnlException('invalid %auth magic')\n self.cfg.aut = auth_data\n return ['HTTP authentication: {}', auth_data], 'magic'\n elif cmd == 'qparam':\n v = param.split(None, 1)\n if len(v) == 0:\n raise KrnlException('missing %qparam name')\n elif len(v) == 1:\n self.cfg.par.pop(v[0], None)\n return ['Param deleted: {}', v[0]]\n else:\n self.cfg.par[v[0]] = v[1]\n return ['Param set: {} = {}'] + v, 'magic'\n elif cmd == 'prefix':\n v = param.split(None, 1)\n if len(v) == 0:\n raise KrnlException('missing %prefix value')\n elif len(v) == 1:\n self.cfg.pfx.pop(v[0], None)\n return ['Prefix deleted: {}', v[0]], 'magic'\n else:\n self.cfg.pfx[v[0]] = v[1]\n return ['Prefix set: {} = {}'] + v, 'magic'\n elif cmd == 'show':\n if param == 'all':\n self.cfg.lmt = None\n else:\n try:\n self.cfg.lmt = int(param)\n except ValueError as e:\n raise KrnlException('invalid result limit: {}', e)\n sz = self.cfg.lmt if self.cfg.lmt is not None else 'unlimited'\n return ['Result maximum size: {}', sz], 'magic'\n elif cmd == 'format':\n fmt_list = {'JSON': SPARQLWrapper.JSON, 'N3': SPARQLWrapper.N3,\n 'XML': SPARQLWrapper.XML, 'DEFAULT': None, 'ANY': False}\n try:\n fmt = param.upper()\n self.cfg.fmt = fmt_list[fmt]\n except KeyError:\n raise KrnlException(\n 'unsupported format: {}\\nSupported formats are: {!s}',\n param, list(fmt_list.keys()))\n return ['Return format: {}', fmt], 'magic'\n elif cmd == 'lang':\n self.cfg.lan = DEFAULT_TEXT_LANG if param == 'default' else [\n ] if param == 'all' else param.split()\n return ['Label preferred languages: {}', self.cfg.lan], 'magic'\n elif cmd in 'graph':\n self.cfg.grh = param if param else None\n return ['Default graph: {}', param if param else 'None'], 'magic'\n elif cmd == 'display':\n v = param.lower().split(None, 2)\n if len(v) == 0 or v[0] not in ('table', 'raw', 'graph', 'diagram'):\n raise KrnlException('invalid %display command: {}', param)\n msg_extra = ''\n if v[0] not in ('diagram', 'graph'):\n self.cfg.dis = v[0]\n self.cfg.typ = len(v) > 1 and v[1].startswith('withtype')\n if self.cfg.typ and self.cfg.dis == 'table':\n msg_extra = '\\nShow Types: on'\n elif len(v) == 1:\n self.cfg.dis = ['svg']\n else:\n if v[1] not in ('png', 'svg'):\n raise KrnlException('invalid graph format: {}', param)\n if len(v) > 2:\n if not v[2].startswith('withlit'):\n raise KrnlException('invalid graph option: {}', param)\n msg_extra = '\\nShow literals: on'\n self.cfg.dis = v[1:3]\n display = self.cfg.dis[0] if is_collection(self.cfg.dis\n ) else self.cfg.dis\n return ['Display: {}{}', display, msg_extra], 'magic'\n elif cmd == 'outfile':\n if param == 'NONE':\n self.cfg.out = None\n return ['no output file'], 'magic'\n else:\n self.cfg.out = param\n return ['Output file: {}', os.path.abspath(param)], 'magic'\n elif cmd == 'log':\n if not param:\n raise KrnlException('missing log level')\n try:\n lev = param.upper()\n parent_logger = logging.getLogger(__name__.rsplit('.', 1)[0])\n parent_logger.setLevel(lev)\n return ('Logging set to {}', lev), 'magic'\n except ValueError:\n raise KrnlException('unknown log level: {}', param)\n elif cmd == 'header':\n if param.upper() == 'OFF':\n num = len(self.cfg.hdr)\n self.cfg.hdr = []\n return ['All headers deleted ({})', num], 'magic'\n else:\n if param in self.cfg.hdr:\n return ['Header skipped (repeated)'], 'magic'\n self.cfg.hdr.append(param)\n return ['Header added: {}', param], 'magic'\n else:\n raise KrnlException('magic not found: {}', cmd)\n",
"role": "user"
},
{
"content": "magic",
"role": "assistant"
}
] |
def x(self, query, num=0, silent=False):
if self.srv is None:
raise KrnlException('no endpoint defined')
if self.cfg.pfx:
prefix = '\n'.join('PREFIX {} {}'.format(*v) for v in self.cfg.pfx.
items())
query = prefix + '\n' + query
if self.cfg.hdr:
query = '\n'.join(self.cfg.hdr) + '\n' + query
if self.log.isEnabledFor(logging.DEBUG):
self.log.debug('\n%50s%s', query, '...' if len(query) > 50 else '')
if self.cfg.fmt is not None:
fmt_req = self.cfg.fmt
elif re.search('\\bselect\\b', query, re.I):
fmt_req = SPARQLWrapper.JSON
elif re.search('\\b(?:describe|construct)\\b', query, re.I):
fmt_req = SPARQLWrapper.N3
else:
fmt_req = False
self.srv.resetQuery()
if self.cfg.aut:
self.srv.setHTTPAuth(self.cfg.aut[0])
self.srv.setCredentials(*self.cfg.aut[1:])
else:
self.srv.setCredentials(None, None)
self.log.debug(u'request-format: %s display: %s', fmt_req, self.cfg.dis)
if fmt_req:
self.srv.setReturnFormat(fmt_req)
if self.cfg.grh:
self.srv.addParameter('default-graph-uri', self.cfg.grh)
for p in self.cfg.par.items():
self.srv.addParameter(*p)
self.srv.setQuery(query)
if not silent or self.cfg.out:
try:
start = datetime.datetime.utcnow()
res = self.srv.query()
now = datetime.datetime.utcnow()
self.log.debug(u'response elapsed=%s', now - start)
start = now
info = res.info()
self.log.debug(u'response info: %s', info)
fmt_got = info['content-type'].split(';')[0
] if 'content-type' in info else None
if fmt_req and fmt_got not in mime_type[fmt_req]:
raise KrnlException(
u'Unexpected response format: {} (requested: {})',
fmt_got, fmt_req)
data = b''.join(line for line in res)
except KrnlException:
raise
except SPARQLWrapperException as e:
raise KrnlException(u'SPARQL error: {}', touc(e))
except Exception as e:
raise KrnlException(u'Query processing error: {!s}', e)
if self.cfg.out:
try:
outname = self.cfg.out % num
except TypeError:
outname = self.cfg.out
with io.open(outname, 'wb') as f:
f.write(data)
try:
fmt = (fmt_req if fmt_req else SPARQLWrapper.JSON if fmt_got in
mime_type[SPARQLWrapper.JSON] else SPARQLWrapper.N3 if
fmt_got in mime_type[SPARQLWrapper.N3] else SPARQLWrapper.
XML if fmt_got in mime_type[SPARQLWrapper.XML] else
'text/plain' if self.cfg.dis == 'raw' else fmt_got if
fmt_got in ('text/plain', 'text/html') else 'text/plain')
if fmt in ('text/plain', 'text/html'):
out = data.decode('utf-8') if isinstance(data, bytes) else data
r = {'data': {fmt: out}, 'metadata': {}}
else:
f = (render_json if fmt == SPARQLWrapper.JSON else
render_xml if fmt == SPARQLWrapper.XML else render_graph)
r = f(data, self.cfg, format=fmt_got)
now = datetime.datetime.utcnow()
self.log.debug(u'response formatted=%s', now - start)
if not silent:
return r
except Exception as e:
raise KrnlException(u'Response processing error: {}', touc(e))
|
query
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, query, num=0, silent=False):\n if self.srv is None:\n raise KrnlException('no endpoint defined')\n if self.cfg.pfx:\n prefix = '\\n'.join('PREFIX {} {}'.format(*v) for v in self.cfg.pfx.\n items())\n query = prefix + '\\n' + query\n if self.cfg.hdr:\n query = '\\n'.join(self.cfg.hdr) + '\\n' + query\n if self.log.isEnabledFor(logging.DEBUG):\n self.log.debug('\\n%50s%s', query, '...' if len(query) > 50 else '')\n if self.cfg.fmt is not None:\n fmt_req = self.cfg.fmt\n elif re.search('\\\\bselect\\\\b', query, re.I):\n fmt_req = SPARQLWrapper.JSON\n elif re.search('\\\\b(?:describe|construct)\\\\b', query, re.I):\n fmt_req = SPARQLWrapper.N3\n else:\n fmt_req = False\n self.srv.resetQuery()\n if self.cfg.aut:\n self.srv.setHTTPAuth(self.cfg.aut[0])\n self.srv.setCredentials(*self.cfg.aut[1:])\n else:\n self.srv.setCredentials(None, None)\n self.log.debug(u'request-format: %s display: %s', fmt_req, self.cfg.dis)\n if fmt_req:\n self.srv.setReturnFormat(fmt_req)\n if self.cfg.grh:\n self.srv.addParameter('default-graph-uri', self.cfg.grh)\n for p in self.cfg.par.items():\n self.srv.addParameter(*p)\n self.srv.setQuery(query)\n if not silent or self.cfg.out:\n try:\n start = datetime.datetime.utcnow()\n res = self.srv.query()\n now = datetime.datetime.utcnow()\n self.log.debug(u'response elapsed=%s', now - start)\n start = now\n info = res.info()\n self.log.debug(u'response info: %s', info)\n fmt_got = info['content-type'].split(';')[0\n ] if 'content-type' in info else None\n if fmt_req and fmt_got not in mime_type[fmt_req]:\n raise KrnlException(\n u'Unexpected response format: {} (requested: {})',\n fmt_got, fmt_req)\n data = b''.join(line for line in res)\n except KrnlException:\n raise\n except SPARQLWrapperException as e:\n raise KrnlException(u'SPARQL error: {}', touc(e))\n except Exception as e:\n raise KrnlException(u'Query processing error: {!s}', e)\n if self.cfg.out:\n try:\n outname = self.cfg.out % num\n except TypeError:\n outname = self.cfg.out\n with io.open(outname, 'wb') as f:\n f.write(data)\n try:\n fmt = (fmt_req if fmt_req else SPARQLWrapper.JSON if fmt_got in\n mime_type[SPARQLWrapper.JSON] else SPARQLWrapper.N3 if \n fmt_got in mime_type[SPARQLWrapper.N3] else SPARQLWrapper.\n XML if fmt_got in mime_type[SPARQLWrapper.XML] else \n 'text/plain' if self.cfg.dis == 'raw' else fmt_got if \n fmt_got in ('text/plain', 'text/html') else 'text/plain')\n if fmt in ('text/plain', 'text/html'):\n out = data.decode('utf-8') if isinstance(data, bytes) else data\n r = {'data': {fmt: out}, 'metadata': {}}\n else:\n f = (render_json if fmt == SPARQLWrapper.JSON else \n render_xml if fmt == SPARQLWrapper.XML else render_graph)\n r = f(data, self.cfg, format=fmt_got)\n now = datetime.datetime.utcnow()\n self.log.debug(u'response formatted=%s', now - start)\n if not silent:\n return r\n except Exception as e:\n raise KrnlException(u'Response processing error: {}', touc(e))\n",
"role": "user"
},
{
"content": "query",
"role": "assistant"
}
] |
def x(logfilename=None, level=None):
if logfilename is None:
logdir = os.environ.get('LOGDIR')
if logdir is None:
logdir = os.environ.get('LOGDIR_DEFAULT', tempfile.gettempdir())
basename = __name__.split('.')[-2]
logfilename = os.path.join(logdir, basename + '.log')
LOGCONFIG['handlers']['default']['filename'] = logfilename
if level is not None:
LOGCONFIG['loggers']['sparqlkernel']['level'] = level
dictConfig(LOGCONFIG)
|
set_logging
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(logfilename=None, level=None):\n if logfilename is None:\n logdir = os.environ.get('LOGDIR')\n if logdir is None:\n logdir = os.environ.get('LOGDIR_DEFAULT', tempfile.gettempdir())\n basename = __name__.split('.')[-2]\n logfilename = os.path.join(logdir, basename + '.log')\n LOGCONFIG['handlers']['default']['filename'] = logfilename\n if level is not None:\n LOGCONFIG['loggers']['sparqlkernel']['level'] = level\n dictConfig(LOGCONFIG)\n",
"role": "user"
},
{
"content": "set_logging",
"role": "assistant"
}
] |
def x(self, field_name):
manager = self._smartfields_managers.get(field_name, None)
if manager is not None:
return manager.get_status(self)
return {'state': 'ready'}
|
smartfields_get_field_status
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, field_name):\n manager = self._smartfields_managers.get(field_name, None)\n if manager is not None:\n return manager.get_status(self)\n return {'state': 'ready'}\n",
"role": "user"
},
{
"content": "smartfields_get_field_status",
"role": "assistant"
}
] |
def x(self, format=None, **kwargs):
try:
format = format or self.default_params['format']
return '.%s' % format.lower()
except KeyError:
pass
|
get_ext
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, format=None, **kwargs):\n try:\n format = format or self.default_params['format']\n return '.%s' % format.lower()\n except KeyError:\n pass\n",
"role": "user"
},
{
"content": "get_ext",
"role": "assistant"
}
] |
def x(self, in_file, instance, field, **kwargs):
return NamedTemporaryFile(mode='rb', suffix='_%s_%s%s' % (
get_model_name(instance), field.name, self.get_ext()), delete=False)
|
get_output_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, in_file, instance, field, **kwargs):\n return NamedTemporaryFile(mode='rb', suffix='_%s_%s%s' % (\n get_model_name(instance), field.name, self.get_ext()), delete=False)\n",
"role": "user"
},
{
"content": "get_output_file",
"role": "assistant"
}
] |
def x(x, gr, preferred_languages=None):
labels = {l.language: l for labelProp in LABEL_PROPERTIES for l in gr.
objects(x, labelProp)}
if labels:
if preferred_languages is not None:
for l in preferred_languages:
if l in labels:
return labels[l]
return labels.itervalues().next()
try:
return gr.namespace_manager.compute_qname(x)[2].replace('_', ' ')
except:
m = re.search('([^/]+)$', x)
return m.group(1).replace('_', ' ') if m else x
|
label
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, gr, preferred_languages=None):\n labels = {l.language: l for labelProp in LABEL_PROPERTIES for l in gr.\n objects(x, labelProp)}\n if labels:\n if preferred_languages is not None:\n for l in preferred_languages:\n if l in labels:\n return labels[l]\n return labels.itervalues().next()\n try:\n return gr.namespace_manager.compute_qname(x)[2].replace('_', ' ')\n except:\n m = re.search('([^/]+)$', x)\n return m.group(1).replace('_', ' ') if m else x\n",
"role": "user"
},
{
"content": "label",
"role": "assistant"
}
] |
def x(g, stream, opts={}):
accept_lang = set(opts.get('lang', []))
do_literal = opts.get('literal')
nodes = {}
links = []
def x(x):
if x not in nodes:
nodes[x] = 'node%d' % len(nodes)
return nodes[x]
def x(x, g):
try:
q = g.compute_qname(x)
return q[0] + ':' + q[2]
except:
return x
def x(node):
if isinstance(node, (rdflib.URIRef, rdflib.BNode)):
return True
if not do_literal:
return False
return not accept_lang or node.language in accept_lang
stream.write(
u'digraph { \n node [ fontname="DejaVu Sans,Tahoma,Geneva,sans-serif" ] ; \n'
)
for s, p, o in g:
if p == rdflib.RDFS.label:
continue
if not (accept(s) and accept(o)):
continue
sn = node_id(s)
on = node_id(o)
q = qname(p, g)
if isinstance(p, rdflib.URIRef):
opstr = (
u""" %s -> %s [ arrowhead="open", color="#9FC9E560", fontsize=9, fontcolor="#204080", label="%s", href="%s", target="_other" ] ;
"""
% (sn, on, q, p))
else:
opstr = (
u""" %s -> %s [ arrowhead="open", color="#9FC9E560", fontsize=9, fontcolor="#204080", label="%s" ] ;
"""
% (sn, on, q))
stream.write(opstr)
for u, n in nodes.items():
lbl = escape(label(u, g, accept_lang), True)
if isinstance(u, rdflib.URIRef):
opstr = (
u"""%s [ shape=none, fontsize=10, fontcolor=%s, label="%s", href="%s", target=_other ]
"""
% (n, 'blue', lbl, u))
else:
opstr = (
u'%s [ shape=none, fontsize=10, fontcolor=%s, label="%s" ] \n'
% (n, 'black', lbl))
stream.write(u'# %s %s\n' % (u, n))
stream.write(opstr)
stream.write(u'}\n')
|
rdf2dot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(g, stream, opts={}):\n accept_lang = set(opts.get('lang', []))\n do_literal = opts.get('literal')\n nodes = {}\n links = []\n\n def x(x):\n if x not in nodes:\n nodes[x] = 'node%d' % len(nodes)\n return nodes[x]\n\n def x(x, g):\n try:\n q = g.compute_qname(x)\n return q[0] + ':' + q[2]\n except:\n return x\n\n def x(node):\n if isinstance(node, (rdflib.URIRef, rdflib.BNode)):\n return True\n if not do_literal:\n return False\n return not accept_lang or node.language in accept_lang\n stream.write(\n u'digraph { \\n node [ fontname=\"DejaVu Sans,Tahoma,Geneva,sans-serif\" ] ; \\n'\n )\n for s, p, o in g:\n if p == rdflib.RDFS.label:\n continue\n if not (accept(s) and accept(o)):\n continue\n sn = node_id(s)\n on = node_id(o)\n q = qname(p, g)\n if isinstance(p, rdflib.URIRef):\n opstr = (\n u\"\"\"\t%s -> %s [ arrowhead=\"open\", color=\"#9FC9E560\", fontsize=9, fontcolor=\"#204080\", label=\"%s\", href=\"%s\", target=\"_other\" ] ;\n\"\"\"\n % (sn, on, q, p))\n else:\n opstr = (\n u\"\"\"\t%s -> %s [ arrowhead=\"open\", color=\"#9FC9E560\", fontsize=9, fontcolor=\"#204080\", label=\"%s\" ] ;\n\"\"\"\n % (sn, on, q))\n stream.write(opstr)\n for u, n in nodes.items():\n lbl = escape(label(u, g, accept_lang), True)\n if isinstance(u, rdflib.URIRef):\n opstr = (\n u\"\"\"%s [ shape=none, fontsize=10, fontcolor=%s, label=\"%s\", href=\"%s\", target=_other ] \n\"\"\"\n % (n, 'blue', lbl, u))\n else:\n opstr = (\n u'%s [ shape=none, fontsize=10, fontcolor=%s, label=\"%s\" ] \\n'\n % (n, 'black', lbl))\n stream.write(u'# %s %s\\n' % (u, n))\n stream.write(opstr)\n stream.write(u'}\\n')\n",
"role": "user"
},
{
"content": "rdf2dot",
"role": "assistant"
}
] |
def x(g, fmt='svg', prg='dot', options={}):
buf = StringIO()
rdf2dot(g, buf, options)
gv_options = options.get('graphviz', [])
if fmt == 'png':
gv_options += ['-Gdpi=220', '-Gsize=25,10!']
metadata = {'width': 5500, 'height': 2200, 'unconfined': True}
image = run_dot(buf.getvalue(), fmt=fmt, options=gv_options, prg=prg)
if fmt == 'png':
return {'image/png': base64.b64encode(image).decode('ascii')}, {
'image/png': metadata}
elif fmt == 'svg':
return {'image/svg+xml': image.decode('utf-8').replace('<svg',
'<svg class="unconfined"', 1)}, {'unconfined': True}
|
draw_graph
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(g, fmt='svg', prg='dot', options={}):\n buf = StringIO()\n rdf2dot(g, buf, options)\n gv_options = options.get('graphviz', [])\n if fmt == 'png':\n gv_options += ['-Gdpi=220', '-Gsize=25,10!']\n metadata = {'width': 5500, 'height': 2200, 'unconfined': True}\n image = run_dot(buf.getvalue(), fmt=fmt, options=gv_options, prg=prg)\n if fmt == 'png':\n return {'image/png': base64.b64encode(image).decode('ascii')}, {\n 'image/png': metadata}\n elif fmt == 'svg':\n return {'image/svg+xml': image.decode('utf-8').replace('<svg',\n '<svg class=\"unconfined\"', 1)}, {'unconfined': True}\n",
"role": "user"
},
{
"content": "draw_graph",
"role": "assistant"
}
] |
def x(self, psd, geometry):
if self._S_table is None or self._Z_table is None:
raise AttributeError('Initialize or load the scattering table first.')
if not isinstance(psd, PSD) or self._previous_psd != psd:
self._S_dict = {}
self._Z_dict = {}
psd_w = psd(self._psd_D)
for geom in self.geometries:
self._S_dict[geom] = trapz(self._S_table[geom] * psd_w, self._psd_D
)
self._Z_dict[geom] = trapz(self._Z_table[geom] * psd_w, self._psd_D
)
self._previous_psd = psd
return self._S_dict[geometry], self._Z_dict[geometry]
|
get_SZ
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, psd, geometry):\n if self._S_table is None or self._Z_table is None:\n raise AttributeError('Initialize or load the scattering table first.')\n if not isinstance(psd, PSD) or self._previous_psd != psd:\n self._S_dict = {}\n self._Z_dict = {}\n psd_w = psd(self._psd_D)\n for geom in self.geometries:\n self._S_dict[geom] = trapz(self._S_table[geom] * psd_w, self._psd_D\n )\n self._Z_dict[geom] = trapz(self._Z_table[geom] * psd_w, self._psd_D\n )\n self._previous_psd = psd\n return self._S_dict[geometry], self._Z_dict[geometry]\n",
"role": "user"
},
{
"content": "get_SZ",
"role": "assistant"
}
] |
def x(self, tm, angular_integration=False, verbose=False):
self._psd_D = np.linspace(self.D_max / self.num_points, self.D_max,
self.num_points)
self._S_table = {}
self._Z_table = {}
self._previous_psd = None
self._m_table = np.empty(self.num_points, dtype=complex)
if angular_integration:
self._angular_table = {'sca_xsect': {}, 'ext_xsect': {}, 'asym': {}}
else:
self._angular_table = None
old_m, old_axis_ratio, old_radius, old_geom, old_psd_integrator = (tm.m,
tm.axis_ratio, tm.radius, tm.get_geometry(), tm.psd_integrator)
try:
tm.psd_integrator = None
for geom in self.geometries:
self._S_table[geom] = np.empty((2, 2, self.num_points), dtype=
complex)
self._Z_table[geom] = np.empty((4, 4, self.num_points))
if angular_integration:
for int_var in ['sca_xsect', 'ext_xsect', 'asym']:
self._angular_table[int_var][geom] = np.empty(self.
num_points)
for i, D in enumerate(self._psd_D):
if verbose:
print('Computing point {i} at D={D}...'.format(i=i, D=D))
if self.m_func != None:
tm.m = self.m_func(D)
if self.axis_ratio_func != None:
tm.axis_ratio = self.axis_ratio_func(D)
self._m_table[i] = tm.m
tm.radius = D / 2.0
for geom in self.geometries:
tm.set_geometry(geom)
S, Z = tm.get_SZ_orient()
self._S_table[geom][:, :, i] = S
self._Z_table[geom][:, :, i] = Z
if angular_integration:
self._angular_table['sca_xsect'][geom][i
] = scatter.sca_xsect(tm)
self._angular_table['ext_xsect'][geom][i
] = scatter.ext_xsect(tm)
self._angular_table['asym'][geom][i] = scatter.asym(tm)
finally:
tm.m, tm.axis_ratio, tm.radius, tm.psd_integrator = (old_m,
old_axis_ratio, old_radius, old_psd_integrator)
tm.set_geometry(old_geom)
|
init_scatter_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tm, angular_integration=False, verbose=False):\n self._psd_D = np.linspace(self.D_max / self.num_points, self.D_max,\n self.num_points)\n self._S_table = {}\n self._Z_table = {}\n self._previous_psd = None\n self._m_table = np.empty(self.num_points, dtype=complex)\n if angular_integration:\n self._angular_table = {'sca_xsect': {}, 'ext_xsect': {}, 'asym': {}}\n else:\n self._angular_table = None\n old_m, old_axis_ratio, old_radius, old_geom, old_psd_integrator = (tm.m,\n tm.axis_ratio, tm.radius, tm.get_geometry(), tm.psd_integrator)\n try:\n tm.psd_integrator = None\n for geom in self.geometries:\n self._S_table[geom] = np.empty((2, 2, self.num_points), dtype=\n complex)\n self._Z_table[geom] = np.empty((4, 4, self.num_points))\n if angular_integration:\n for int_var in ['sca_xsect', 'ext_xsect', 'asym']:\n self._angular_table[int_var][geom] = np.empty(self.\n num_points)\n for i, D in enumerate(self._psd_D):\n if verbose:\n print('Computing point {i} at D={D}...'.format(i=i, D=D))\n if self.m_func != None:\n tm.m = self.m_func(D)\n if self.axis_ratio_func != None:\n tm.axis_ratio = self.axis_ratio_func(D)\n self._m_table[i] = tm.m\n tm.radius = D / 2.0\n for geom in self.geometries:\n tm.set_geometry(geom)\n S, Z = tm.get_SZ_orient()\n self._S_table[geom][:, :, i] = S\n self._Z_table[geom][:, :, i] = Z\n if angular_integration:\n self._angular_table['sca_xsect'][geom][i\n ] = scatter.sca_xsect(tm)\n self._angular_table['ext_xsect'][geom][i\n ] = scatter.ext_xsect(tm)\n self._angular_table['asym'][geom][i] = scatter.asym(tm)\n finally:\n tm.m, tm.axis_ratio, tm.radius, tm.psd_integrator = (old_m,\n old_axis_ratio, old_radius, old_psd_integrator)\n tm.set_geometry(old_geom)\n",
"role": "user"
},
{
"content": "init_scatter_table",
"role": "assistant"
}
] |
def x(self, fn, description=''):
data = {'description': description, 'time': datetime.now(),
'psd_scatter': (self.num_points, self.D_max, self._psd_D, self.
_S_table, self._Z_table, self._angular_table, self._m_table, self.
geometries), 'version': tmatrix_aux.VERSION}
pickle.dump(data, file(fn, 'w'), pickle.HIGHEST_PROTOCOL)
|
save_scatter_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fn, description=''):\n data = {'description': description, 'time': datetime.now(),\n 'psd_scatter': (self.num_points, self.D_max, self._psd_D, self.\n _S_table, self._Z_table, self._angular_table, self._m_table, self.\n geometries), 'version': tmatrix_aux.VERSION}\n pickle.dump(data, file(fn, 'w'), pickle.HIGHEST_PROTOCOL)\n",
"role": "user"
},
{
"content": "save_scatter_table",
"role": "assistant"
}
] |
def x(self, fn):
data = pickle.load(file(fn))
if 'version' not in data or data['version'] != tmatrix_aux.VERSION:
warnings.warn('Loading data saved with another version.', Warning)
(self.num_points, self.D_max, self._psd_D, self._S_table, self._Z_table,
self._angular_table, self._m_table, self.geometries) = data[
'psd_scatter']
return data['time'], data['description']
|
load_scatter_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fn):\n data = pickle.load(file(fn))\n if 'version' not in data or data['version'] != tmatrix_aux.VERSION:\n warnings.warn('Loading data saved with another version.', Warning)\n (self.num_points, self.D_max, self._psd_D, self._S_table, self._Z_table,\n self._angular_table, self._m_table, self.geometries) = data[\n 'psd_scatter']\n return data['time'], data['description']\n",
"role": "user"
},
{
"content": "load_scatter_table",
"role": "assistant"
}
] |
def x(std=10.0, mean=0.0):
norm_const = 1.0
def x(x):
return norm_const * np.exp(-0.5 * ((x - mean) / std) ** 2) * np.sin(
np.pi / 180.0 * x)
norm_dev = quad(pdf, 0.0, 180.0)[0]
norm_const /= norm_dev
return pdf
|
gaussian_pdf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(std=10.0, mean=0.0):\n norm_const = 1.0\n\n def x(x):\n return norm_const * np.exp(-0.5 * ((x - mean) / std) ** 2) * np.sin(\n np.pi / 180.0 * x)\n norm_dev = quad(pdf, 0.0, 180.0)[0]\n norm_const /= norm_dev\n return pdf\n",
"role": "user"
},
{
"content": "gaussian_pdf",
"role": "assistant"
}
] |
def x():
norm_const = 1.0
def x(x):
return norm_const * np.sin(np.pi / 180.0 * x)
norm_dev = quad(pdf, 0.0, 180.0)[0]
norm_const /= norm_dev
return pdf
|
uniform_pdf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n norm_const = 1.0\n\n def x(x):\n return norm_const * np.sin(np.pi / 180.0 * x)\n norm_dev = quad(pdf, 0.0, 180.0)[0]\n norm_const /= norm_dev\n return pdf\n",
"role": "user"
},
{
"content": "uniform_pdf",
"role": "assistant"
}
] |
def x(tm):
S = np.zeros((2, 2), dtype=complex)
Z = np.zeros((4, 4))
def x(beta, alpha, i, j, real):
S_ang, Z_ang = tm.get_SZ_single(alpha=alpha, beta=beta)
s = S_ang[i, j].real if real else S_ang[i, j].imag
return s * tm.or_pdf(beta)
ind = range(2)
for i in ind:
for j in ind:
S.real[i, j] = dblquad(Sfunc, 0.0, 360.0, lambda x: 0.0, lambda
x: 180.0, (i, j, True))[0] / 360.0
S.imag[i, j] = dblquad(Sfunc, 0.0, 360.0, lambda x: 0.0, lambda
x: 180.0, (i, j, False))[0] / 360.0
def x(beta, alpha, i, j):
S_and, Z_ang = tm.get_SZ_single(alpha=alpha, beta=beta)
return Z_ang[i, j] * tm.or_pdf(beta)
ind = range(4)
for i in ind:
for j in ind:
Z[i, j] = dblquad(Zfunc, 0.0, 360.0, lambda x: 0.0, lambda x:
180.0, (i, j))[0] / 360.0
return S, Z
|
orient_averaged_adaptive
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tm):\n S = np.zeros((2, 2), dtype=complex)\n Z = np.zeros((4, 4))\n\n def x(beta, alpha, i, j, real):\n S_ang, Z_ang = tm.get_SZ_single(alpha=alpha, beta=beta)\n s = S_ang[i, j].real if real else S_ang[i, j].imag\n return s * tm.or_pdf(beta)\n ind = range(2)\n for i in ind:\n for j in ind:\n S.real[i, j] = dblquad(Sfunc, 0.0, 360.0, lambda x: 0.0, lambda\n x: 180.0, (i, j, True))[0] / 360.0\n S.imag[i, j] = dblquad(Sfunc, 0.0, 360.0, lambda x: 0.0, lambda\n x: 180.0, (i, j, False))[0] / 360.0\n\n def x(beta, alpha, i, j):\n S_and, Z_ang = tm.get_SZ_single(alpha=alpha, beta=beta)\n return Z_ang[i, j] * tm.or_pdf(beta)\n ind = range(4)\n for i in ind:\n for j in ind:\n Z[i, j] = dblquad(Zfunc, 0.0, 360.0, lambda x: 0.0, lambda x: \n 180.0, (i, j))[0] / 360.0\n return S, Z\n",
"role": "user"
},
{
"content": "orient_averaged_adaptive",
"role": "assistant"
}
] |
def x(tm):
S = np.zeros((2, 2), dtype=complex)
Z = np.zeros((4, 4))
ap = np.linspace(0, 360, tm.n_alpha + 1)[:-1]
aw = 1.0 / tm.n_alpha
for alpha in ap:
for beta, w in zip(tm.beta_p, tm.beta_w):
S_ang, Z_ang = tm.get_SZ_single(alpha=alpha, beta=beta)
S += w * S_ang
Z += w * Z_ang
sw = tm.beta_w.sum()
S *= aw / sw
Z *= aw / sw
return S, Z
|
orient_averaged_fixed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tm):\n S = np.zeros((2, 2), dtype=complex)\n Z = np.zeros((4, 4))\n ap = np.linspace(0, 360, tm.n_alpha + 1)[:-1]\n aw = 1.0 / tm.n_alpha\n for alpha in ap:\n for beta, w in zip(tm.beta_p, tm.beta_w):\n S_ang, Z_ang = tm.get_SZ_single(alpha=alpha, beta=beta)\n S += w * S_ang\n Z += w * Z_ang\n sw = tm.beta_w.sum()\n S *= aw / sw\n Z *= aw / sw\n return S, Z\n",
"role": "user"
},
{
"content": "orient_averaged_fixed",
"role": "assistant"
}
] |
def x(self, geom):
self.thet0, self.thet, self.phi0, self.phi, self.alpha, self.beta = geom
|
set_geometry
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, geom):\n self.thet0, self.thet, self.phi0, self.phi, self.alpha, self.beta = geom\n",
"role": "user"
},
{
"content": "set_geometry",
"role": "assistant"
}
] |
def x(self):
return self.thet0, self.thet, self.phi0, self.phi, self.alpha, self.beta
|
get_geometry
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return self.thet0, self.thet, self.phi0, self.phi, self.alpha, self.beta\n",
"role": "user"
},
{
"content": "get_geometry",
"role": "assistant"
}
] |
def x(self):
if self.radius_type == Scatterer.RADIUS_MAXIMUM:
radius_type = Scatterer.RADIUS_EQUAL_VOLUME
radius = self.equal_volume_from_maximum()
else:
radius_type = self.radius_type
radius = self.radius
self.nmax = pytmatrix.calctmat(radius, radius_type, self.wavelength,
self.m.real, self.m.imag, self.axis_ratio, self.shape, self.ddelt,
self.ndgs)
self._tm_signature = (self.radius, self.radius_type, self.wavelength,
self.m, self.axis_ratio, self.shape, self.ddelt, self.ndgs)
|
init_tmatrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.radius_type == Scatterer.RADIUS_MAXIMUM:\n radius_type = Scatterer.RADIUS_EQUAL_VOLUME\n radius = self.equal_volume_from_maximum()\n else:\n radius_type = self.radius_type\n radius = self.radius\n self.nmax = pytmatrix.calctmat(radius, radius_type, self.wavelength,\n self.m.real, self.m.imag, self.axis_ratio, self.shape, self.ddelt,\n self.ndgs)\n self._tm_signature = (self.radius, self.radius_type, self.wavelength,\n self.m, self.axis_ratio, self.shape, self.ddelt, self.ndgs)\n",
"role": "user"
},
{
"content": "init_tmatrix",
"role": "assistant"
}
] |
def x(self):
if self.orient == orientation.orient_averaged_fixed:
self.beta_p, self.beta_w = quadrature.get_points_and_weights(self.
or_pdf, 0, 180, self.n_beta)
self._set_orient_signature()
|
init_orient
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.orient == orientation.orient_averaged_fixed:\n self.beta_p, self.beta_w = quadrature.get_points_and_weights(self.\n or_pdf, 0, 180, self.n_beta)\n self._set_orient_signature()\n",
"role": "user"
},
{
"content": "init_orient",
"role": "assistant"
}
] |
def x(self):
self._scatter_signature = (self.thet0, self.thet, self.phi0, self.phi,
self.alpha, self.beta, self.orient)
|
set_scatter_signature
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._scatter_signature = (self.thet0, self.thet, self.phi0, self.phi,\n self.alpha, self.beta, self.orient)\n",
"role": "user"
},
{
"content": "set_scatter_signature",
"role": "assistant"
}
] |
def x(self, alpha=None, beta=None):
if alpha == None:
alpha = self.alpha
if beta == None:
beta = self.beta
tm_outdated = self._tm_signature != (self.radius, self.radius_type,
self.wavelength, self.m, self.axis_ratio, self.shape, self.ddelt,
self.ndgs)
if tm_outdated:
self._init_tmatrix()
scatter_outdated = self._scatter_signature != (self.thet0, self.thet,
self.phi0, self.phi, alpha, beta, self.orient)
outdated = tm_outdated or scatter_outdated
if outdated:
self._S_single, self._Z_single = pytmatrix.calcampl(self.nmax, self
.wavelength, self.thet0, self.thet, self.phi0, self.phi, alpha,
beta)
self._set_scatter_signature()
return self._S_single, self._Z_single
|
get_SZ_single
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, alpha=None, beta=None):\n if alpha == None:\n alpha = self.alpha\n if beta == None:\n beta = self.beta\n tm_outdated = self._tm_signature != (self.radius, self.radius_type,\n self.wavelength, self.m, self.axis_ratio, self.shape, self.ddelt,\n self.ndgs)\n if tm_outdated:\n self._init_tmatrix()\n scatter_outdated = self._scatter_signature != (self.thet0, self.thet,\n self.phi0, self.phi, alpha, beta, self.orient)\n outdated = tm_outdated or scatter_outdated\n if outdated:\n self._S_single, self._Z_single = pytmatrix.calcampl(self.nmax, self\n .wavelength, self.thet0, self.thet, self.phi0, self.phi, alpha,\n beta)\n self._set_scatter_signature()\n return self._S_single, self._Z_single\n",
"role": "user"
},
{
"content": "get_SZ_single",
"role": "assistant"
}
] |
def x(self):
tm_outdated = self._tm_signature != (self.radius, self.radius_type,
self.wavelength, self.m, self.axis_ratio, self.shape, self.ddelt,
self.ndgs)
scatter_outdated = self._scatter_signature != (self.thet0, self.thet,
self.phi0, self.phi, self.alpha, self.beta, self.orient)
orient_outdated = self._orient_signature != (self.orient, self.or_pdf,
self.n_alpha, self.n_beta)
if orient_outdated:
self._init_orient()
outdated = tm_outdated or scatter_outdated or orient_outdated
if outdated:
self._S_orient, self._Z_orient = self.orient(self)
self._set_scatter_signature()
return self._S_orient, self._Z_orient
|
get_SZ_orient
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n tm_outdated = self._tm_signature != (self.radius, self.radius_type,\n self.wavelength, self.m, self.axis_ratio, self.shape, self.ddelt,\n self.ndgs)\n scatter_outdated = self._scatter_signature != (self.thet0, self.thet,\n self.phi0, self.phi, self.alpha, self.beta, self.orient)\n orient_outdated = self._orient_signature != (self.orient, self.or_pdf,\n self.n_alpha, self.n_beta)\n if orient_outdated:\n self._init_orient()\n outdated = tm_outdated or scatter_outdated or orient_outdated\n if outdated:\n self._S_orient, self._Z_orient = self.orient(self)\n self._set_scatter_signature()\n return self._S_orient, self._Z_orient\n",
"role": "user"
},
{
"content": "get_SZ_orient",
"role": "assistant"
}
] |
def x(self):
if self.psd_integrator is None:
self._S, self._Z = self.get_SZ_orient()
else:
scatter_outdated = self._scatter_signature != (self.thet0, self.
thet, self.phi0, self.phi, self.alpha, self.beta, self.orient)
psd_outdated = self._psd_signature != (self.psd,)
outdated = scatter_outdated or psd_outdated
if outdated:
self._S, self._Z = self.psd_integrator(self.psd, self.
get_geometry())
self._set_scatter_signature()
self._set_psd_signature()
return self._S, self._Z
|
get_SZ
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.psd_integrator is None:\n self._S, self._Z = self.get_SZ_orient()\n else:\n scatter_outdated = self._scatter_signature != (self.thet0, self.\n thet, self.phi0, self.phi, self.alpha, self.beta, self.orient)\n psd_outdated = self._psd_signature != (self.psd,)\n outdated = scatter_outdated or psd_outdated\n if outdated:\n self._S, self._Z = self.psd_integrator(self.psd, self.\n get_geometry())\n self._set_scatter_signature()\n self._set_psd_signature()\n return self._S, self._Z\n",
"role": "user"
},
{
"content": "get_SZ",
"role": "assistant"
}
] |
def x(w_func=lambda x: np.ones(x.shape), left=-1.0, right=1.0, num_points=5,
n=4096):
dx = (float(right) - left) / n
z = np.hstack(np.linspace(left + 0.5 * dx, right - 0.5 * dx, n))
w = dx * w_func(z)
a, b = discrete_gautschi(z, w, num_points)
alpha = a
beta = np.sqrt(b)
J = np.diag(alpha)
J += np.diag(beta, k=-1)
J += np.diag(beta, k=1)
points, v = np.linalg.eigh(J)
ind = points.argsort()
points = points[ind]
weights = v[0, :] ** 2 * w.sum()
weights = weights[ind]
return points, weights
|
get_points_and_weights
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(w_func=lambda x: np.ones(x.shape), left=-1.0, right=1.0, num_points=5,\n n=4096):\n dx = (float(right) - left) / n\n z = np.hstack(np.linspace(left + 0.5 * dx, right - 0.5 * dx, n))\n w = dx * w_func(z)\n a, b = discrete_gautschi(z, w, num_points)\n alpha = a\n beta = np.sqrt(b)\n J = np.diag(alpha)\n J += np.diag(beta, k=-1)\n J += np.diag(beta, k=1)\n points, v = np.linalg.eigh(J)\n ind = points.argsort()\n points = points[ind]\n weights = v[0, :] ** 2 * w.sum()\n weights = weights[ind]\n return points, weights\n",
"role": "user"
},
{
"content": "get_points_and_weights",
"role": "assistant"
}
] |
def x(scatterer, h_pol=True):
Z = scatterer.get_Z()
return Z[0, 0] - Z[0, 1] if h_pol else Z[0, 0] + Z[0, 1]
|
sca_intensity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(scatterer, h_pol=True):\n Z = scatterer.get_Z()\n return Z[0, 0] - Z[0, 1] if h_pol else Z[0, 0] + Z[0, 1]\n",
"role": "user"
},
{
"content": "sca_intensity",
"role": "assistant"
}
] |
def x(scatterer, h_pol=True):
Z = scatterer.get_Z()
if h_pol:
return (Z[0, 0] - Z[0, 1] + Z[1, 0] - Z[1, 1]) / (Z[0, 0] - Z[0, 1] -
Z[1, 0] + Z[1, 1])
else:
return (Z[0, 0] + Z[0, 1] - Z[1, 0] - Z[1, 1]) / (Z[0, 0] + Z[0, 1] +
Z[1, 0] + Z[1, 1])
|
ldr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(scatterer, h_pol=True):\n Z = scatterer.get_Z()\n if h_pol:\n return (Z[0, 0] - Z[0, 1] + Z[1, 0] - Z[1, 1]) / (Z[0, 0] - Z[0, 1] -\n Z[1, 0] + Z[1, 1])\n else:\n return (Z[0, 0] + Z[0, 1] - Z[1, 0] - Z[1, 1]) / (Z[0, 0] + Z[0, 1] +\n Z[1, 0] + Z[1, 1])\n",
"role": "user"
},
{
"content": "ldr",
"role": "assistant"
}
] |
def x(scatterer, h_pol=True):
if scatterer.psd_integrator is not None:
return scatterer.psd_integrator.get_angular_integrated(scatterer.
psd, scatterer.get_geometry(), 'sca_xsect')
old_geom = scatterer.get_geometry()
def x(thet, phi):
scatterer.phi, scatterer.thet = phi * rad_to_deg, thet * rad_to_deg
Z = scatterer.get_Z()
I = sca_intensity(scatterer, h_pol)
return I * np.sin(thet)
try:
xsect = dblquad(d_xsect, 0.0, 2 * np.pi, lambda x: 0.0, lambda x: np.pi
)[0]
finally:
scatterer.set_geometry(old_geom)
return xsect
|
sca_xsect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(scatterer, h_pol=True):\n if scatterer.psd_integrator is not None:\n return scatterer.psd_integrator.get_angular_integrated(scatterer.\n psd, scatterer.get_geometry(), 'sca_xsect')\n old_geom = scatterer.get_geometry()\n\n def x(thet, phi):\n scatterer.phi, scatterer.thet = phi * rad_to_deg, thet * rad_to_deg\n Z = scatterer.get_Z()\n I = sca_intensity(scatterer, h_pol)\n return I * np.sin(thet)\n try:\n xsect = dblquad(d_xsect, 0.0, 2 * np.pi, lambda x: 0.0, lambda x: np.pi\n )[0]\n finally:\n scatterer.set_geometry(old_geom)\n return xsect\n",
"role": "user"
},
{
"content": "sca_xsect",
"role": "assistant"
}
] |
def x(scatterer, h_pol=True):
if scatterer.psd_integrator is not None:
try:
return scatterer.psd_integrator.get_angular_integrated(scatterer
.psd, scatterer.get_geometry(), 'ext_xsect')
except AttributeError:
pass
old_geom = scatterer.get_geometry()
thet0, thet, phi0, phi, alpha, beta = old_geom
try:
scatterer.set_geometry((thet0, thet0, phi0, phi0, alpha, beta))
S = scatterer.get_S()
finally:
scatterer.set_geometry(old_geom)
if h_pol:
return 2 * scatterer.wavelength * S[1, 1].imag
else:
return 2 * scatterer.wavelength * S[0, 0].imag
|
ext_xsect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(scatterer, h_pol=True):\n if scatterer.psd_integrator is not None:\n try:\n return scatterer.psd_integrator.get_angular_integrated(scatterer\n .psd, scatterer.get_geometry(), 'ext_xsect')\n except AttributeError:\n pass\n old_geom = scatterer.get_geometry()\n thet0, thet, phi0, phi, alpha, beta = old_geom\n try:\n scatterer.set_geometry((thet0, thet0, phi0, phi0, alpha, beta))\n S = scatterer.get_S()\n finally:\n scatterer.set_geometry(old_geom)\n if h_pol:\n return 2 * scatterer.wavelength * S[1, 1].imag\n else:\n return 2 * scatterer.wavelength * S[0, 0].imag\n",
"role": "user"
},
{
"content": "ext_xsect",
"role": "assistant"
}
] |
def x(scatterer, h_pol=True):
ext_xs = ext_xsect(scatterer, h_pol=h_pol)
return sca_xsect(scatterer, h_pol=h_pol) / ext_xs if ext_xs > 0.0 else 0.0
|
ssa
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(scatterer, h_pol=True):\n ext_xs = ext_xsect(scatterer, h_pol=h_pol)\n return sca_xsect(scatterer, h_pol=h_pol) / ext_xs if ext_xs > 0.0 else 0.0\n",
"role": "user"
},
{
"content": "ssa",
"role": "assistant"
}
] |
def x(scatterer, h_pol=True):
if scatterer.psd_integrator is not None:
return scatterer.psd_integrator.get_angular_integrated(scatterer.
psd, scatterer.get_geometry(), 'asym')
old_geom = scatterer.get_geometry()
cos_t0 = np.cos(scatterer.thet0 * deg_to_rad)
sin_t0 = np.sin(scatterer.thet0 * deg_to_rad)
p0 = scatterer.phi0 * deg_to_rad
def x(thet, phi):
scatterer.phi, scatterer.thet = phi * rad_to_deg, thet * rad_to_deg
cos_T_sin_t = 0.5 * (np.sin(2 * thet) * cos_t0 + (1 - np.cos(2 *
thet)) * sin_t0 * np.cos(p0 - phi))
I = sca_intensity(scatterer, h_pol)
return I * cos_T_sin_t
try:
cos_int = dblquad(integrand, 0.0, 2 * np.pi, lambda x: 0.0, lambda
x: np.pi)[0]
finally:
scatterer.set_geometry(old_geom)
return cos_int / sca_xsect(scatterer, h_pol)
|
asym
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(scatterer, h_pol=True):\n if scatterer.psd_integrator is not None:\n return scatterer.psd_integrator.get_angular_integrated(scatterer.\n psd, scatterer.get_geometry(), 'asym')\n old_geom = scatterer.get_geometry()\n cos_t0 = np.cos(scatterer.thet0 * deg_to_rad)\n sin_t0 = np.sin(scatterer.thet0 * deg_to_rad)\n p0 = scatterer.phi0 * deg_to_rad\n\n def x(thet, phi):\n scatterer.phi, scatterer.thet = phi * rad_to_deg, thet * rad_to_deg\n cos_T_sin_t = 0.5 * (np.sin(2 * thet) * cos_t0 + (1 - np.cos(2 *\n thet)) * sin_t0 * np.cos(p0 - phi))\n I = sca_intensity(scatterer, h_pol)\n return I * cos_T_sin_t\n try:\n cos_int = dblquad(integrand, 0.0, 2 * np.pi, lambda x: 0.0, lambda\n x: np.pi)[0]\n finally:\n scatterer.set_geometry(old_geom)\n return cos_int / sca_xsect(scatterer, h_pol)\n",
"role": "user"
},
{
"content": "asym",
"role": "assistant"
}
] |
def x(scatterer, h_pol=True):
Z = scatterer.get_Z()
if h_pol:
return 2 * np.pi * (Z[0, 0] - Z[0, 1] - Z[1, 0] + Z[1, 1])
else:
return 2 * np.pi * (Z[0, 0] + Z[0, 1] + Z[1, 0] + Z[1, 1])
|
radar_xsect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(scatterer, h_pol=True):\n Z = scatterer.get_Z()\n if h_pol:\n return 2 * np.pi * (Z[0, 0] - Z[0, 1] - Z[1, 0] + Z[1, 1])\n else:\n return 2 * np.pi * (Z[0, 0] + Z[0, 1] + Z[1, 0] + Z[1, 1])\n",
"role": "user"
},
{
"content": "radar_xsect",
"role": "assistant"
}
] |
def x(scatterer, h_pol=True):
return scatterer.wavelength ** 4 / (np.pi ** 5 * scatterer.Kw_sqr
) * radar_xsect(scatterer, h_pol)
|
refl
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(scatterer, h_pol=True):\n return scatterer.wavelength ** 4 / (np.pi ** 5 * scatterer.Kw_sqr\n ) * radar_xsect(scatterer, h_pol)\n",
"role": "user"
},
{
"content": "refl",
"role": "assistant"
}
] |
def x(scatterer):
Z = scatterer.get_Z()
return np.arctan2(Z[2, 3] - Z[3, 2], -Z[2, 2] - Z[3, 3])
|
delta_hv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(scatterer):\n Z = scatterer.get_Z()\n return np.arctan2(Z[2, 3] - Z[3, 2], -Z[2, 2] - Z[3, 3])\n",
"role": "user"
},
{
"content": "delta_hv",
"role": "assistant"
}
] |
def x(scatterer):
Z = scatterer.get_Z()
a = (Z[2, 2] + Z[3, 3]) ** 2 + (Z[3, 2] - Z[2, 3]) ** 2
b = Z[0, 0] - Z[0, 1] - Z[1, 0] + Z[1, 1]
c = Z[0, 0] + Z[0, 1] + Z[1, 0] + Z[1, 1]
return np.sqrt(a / (b * c))
|
rho_hv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(scatterer):\n Z = scatterer.get_Z()\n a = (Z[2, 2] + Z[3, 3]) ** 2 + (Z[3, 2] - Z[2, 3]) ** 2\n b = Z[0, 0] - Z[0, 1] - Z[1, 0] + Z[1, 1]\n c = Z[0, 0] + Z[0, 1] + Z[1, 0] + Z[1, 1]\n return np.sqrt(a / (b * c))\n",
"role": "user"
},
{
"content": "rho_hv",
"role": "assistant"
}
] |
def x(scatterer):
if scatterer.thet0 != scatterer.thet or scatterer.phi0 != scatterer.phi:
raise ValueError('A forward scattering geometry is needed to ' +
'compute the specific differential phase.')
S = scatterer.get_S()
return 0.001 * (180.0 / np.pi) * scatterer.wavelength * (S[1, 1] - S[0, 0]
).real
|
Kdp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(scatterer):\n if scatterer.thet0 != scatterer.thet or scatterer.phi0 != scatterer.phi:\n raise ValueError('A forward scattering geometry is needed to ' +\n 'compute the specific differential phase.')\n S = scatterer.get_S()\n return 0.001 * (180.0 / np.pi) * scatterer.wavelength * (S[1, 1] - S[0, 0]\n ).real\n",
"role": "user"
},
{
"content": "Kdp",
"role": "assistant"
}
] |
def x(m, mix):
if len(m) == 2:
cF = float(mix[1]) / (mix[0] + mix[1]) * (m[1] ** 2 - m[0] ** 2) / (
m[1] ** 2 + 2 * m[0] ** 2)
er = m[0] ** 2 * (1.0 + 2.0 * cF) / (1.0 - cF)
m = np.sqrt(er)
else:
m_last = mg_refractive(m[-2:], mix[-2:])
mix_last = mix[-2] + mix[-1]
m = mg_refractive(m[:-2] + (m_last,), mix[:-2] + (mix_last,))
return m
|
mg_refractive
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(m, mix):\n if len(m) == 2:\n cF = float(mix[1]) / (mix[0] + mix[1]) * (m[1] ** 2 - m[0] ** 2) / (\n m[1] ** 2 + 2 * m[0] ** 2)\n er = m[0] ** 2 * (1.0 + 2.0 * cF) / (1.0 - cF)\n m = np.sqrt(er)\n else:\n m_last = mg_refractive(m[-2:], mix[-2:])\n mix_last = mix[-2] + mix[-1]\n m = mg_refractive(m[:-2] + (m_last,), mix[:-2] + (mix_last,))\n return m\n",
"role": "user"
},
{
"content": "mg_refractive",
"role": "assistant"
}
] |
def x(m, mix):
f1 = mix[0] / sum(mix)
f2 = mix[1] / sum(mix)
e1 = m[0] ** 2
e2 = m[1] ** 2
a = -2 * (f1 + f2)
b = 2 * f1 * e1 - f1 * e2 + 2 * f2 * e2 - f2 * e1
c = (f1 + f2) * e1 * e2
e_eff = (-b - np.sqrt(b ** 2 - 4 * a * c)) / (2 * a)
return np.sqrt(e_eff)
|
bruggeman_refractive
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(m, mix):\n f1 = mix[0] / sum(mix)\n f2 = mix[1] / sum(mix)\n e1 = m[0] ** 2\n e2 = m[1] ** 2\n a = -2 * (f1 + f2)\n b = 2 * f1 * e1 - f1 * e2 + 2 * f2 * e2 - f2 * e1\n c = (f1 + f2) * e1 * e2\n e_eff = (-b - np.sqrt(b ** 2 - 4 * a * c)) / (2 * a)\n return np.sqrt(e_eff)\n",
"role": "user"
},
{
"content": "bruggeman_refractive",
"role": "assistant"
}
] |
def x(file):
D = np.loadtxt(file)
log_wl = np.log10(D[:, 0] / 1000)
re = D[:, 1]
log_im = np.log10(D[:, 2])
iobj_re = interpolate.interp1d(log_wl, re)
iobj_log_im = interpolate.interp1d(log_wl, log_im)
def x(wl, snow_density):
lwl = np.log10(wl)
try:
len(lwl)
except TypeError:
mi_sqr = complex(iobj_re(lwl), 10 ** iobj_log_im(lwl)) ** 2
else:
mi_sqr = np.array([complex(a, b) for a, b in zip(iobj_re(lwl),
10 ** iobj_log_im(lwl))]) ** 2
c = (mi_sqr - 1) / (mi_sqr + 2) * snow_density / ice_density
return np.sqrt((1 + 2 * c) / (1 - c))
return ref
|
ice_refractive
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file):\n D = np.loadtxt(file)\n log_wl = np.log10(D[:, 0] / 1000)\n re = D[:, 1]\n log_im = np.log10(D[:, 2])\n iobj_re = interpolate.interp1d(log_wl, re)\n iobj_log_im = interpolate.interp1d(log_wl, log_im)\n\n def x(wl, snow_density):\n lwl = np.log10(wl)\n try:\n len(lwl)\n except TypeError:\n mi_sqr = complex(iobj_re(lwl), 10 ** iobj_log_im(lwl)) ** 2\n else:\n mi_sqr = np.array([complex(a, b) for a, b in zip(iobj_re(lwl), \n 10 ** iobj_log_im(lwl))]) ** 2\n c = (mi_sqr - 1) / (mi_sqr + 2) * snow_density / ice_density\n return np.sqrt((1 + 2 * c) / (1 - c))\n return ref\n",
"role": "user"
},
{
"content": "ice_refractive",
"role": "assistant"
}
] |
def x(D_eq):
if D_eq < 0.7:
return 1.0
elif D_eq < 1.5:
return (1.173 - 0.5165 * D_eq + 0.4698 * D_eq ** 2 - 0.1317 * D_eq **
3 - 0.0085 * D_eq ** 4)
else:
return (1.065 - 0.0625 * D_eq - 0.00399 * D_eq ** 2 + 0.000766 *
D_eq ** 3 - 4.095e-05 * D_eq ** 4)
|
dsr_thurai_2007
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(D_eq):\n if D_eq < 0.7:\n return 1.0\n elif D_eq < 1.5:\n return (1.173 - 0.5165 * D_eq + 0.4698 * D_eq ** 2 - 0.1317 * D_eq **\n 3 - 0.0085 * D_eq ** 4)\n else:\n return (1.065 - 0.0625 * D_eq - 0.00399 * D_eq ** 2 + 0.000766 * \n D_eq ** 3 - 4.095e-05 * D_eq ** 4)\n",
"role": "user"
},
{
"content": "dsr_thurai_2007",
"role": "assistant"
}
] |
def x(data, top_n=None, feature_names=None):
try:
imp = data.feature_importances_
except:
imp = np.array(data)
try:
sub_imp = np.array([e.feature_importances_ for e in data.estimators_])
std = np.std(sub_imp, axis=0)
except:
std = None
n_features = len(imp)
if top_n and top_n > n_features:
raise ValueError(
'top_n ({}) cannot be greater than the number of features ({})'
.format(top_n, n_features))
if top_n and top_n < 1:
raise ValueError('top_n cannot be less than 1')
if feature_names and len(feature_names) != n_features:
raise ValueError(
'feature_names ({}) must match the number of features ({})'.
format(len(feature_names), n_features))
if feature_names is None:
feature_names = ['Feature {}'.format(n) for n in range(1,
n_features + 1)]
feature_names = np.array(feature_names)
else:
feature_names = np.array(feature_names)
idx = np.argsort(imp)[::-1]
imp = imp[idx]
feature_names = feature_names[idx]
if std is not None:
std = std[idx]
if std is not None:
names = 'feature_name,importance,std_'
res = np.core.records.fromarrays([feature_names, imp, std], names=names
)
else:
names = 'feature_name,importance'
res = np.core.records.fromarrays([feature_names, imp], names=names)
if top_n:
res = res[:top_n]
return res
|
feature_importances
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, top_n=None, feature_names=None):\n try:\n imp = data.feature_importances_\n except:\n imp = np.array(data)\n try:\n sub_imp = np.array([e.feature_importances_ for e in data.estimators_])\n std = np.std(sub_imp, axis=0)\n except:\n std = None\n n_features = len(imp)\n if top_n and top_n > n_features:\n raise ValueError(\n 'top_n ({}) cannot be greater than the number of features ({})'\n .format(top_n, n_features))\n if top_n and top_n < 1:\n raise ValueError('top_n cannot be less than 1')\n if feature_names and len(feature_names) != n_features:\n raise ValueError(\n 'feature_names ({}) must match the number of features ({})'.\n format(len(feature_names), n_features))\n if feature_names is None:\n feature_names = ['Feature {}'.format(n) for n in range(1, \n n_features + 1)]\n feature_names = np.array(feature_names)\n else:\n feature_names = np.array(feature_names)\n idx = np.argsort(imp)[::-1]\n imp = imp[idx]\n feature_names = feature_names[idx]\n if std is not None:\n std = std[idx]\n if std is not None:\n names = 'feature_name,importance,std_'\n res = np.core.records.fromarrays([feature_names, imp, std], names=names\n )\n else:\n names = 'feature_name,importance'\n res = np.core.records.fromarrays([feature_names, imp], names=names)\n if top_n:\n res = res[:top_n]\n return res\n",
"role": "user"
},
{
"content": "feature_importances",
"role": "assistant"
}
] |
def x(data, criteria):
if isinstance(criteria, str):
criteria_str = criteria
def x(x):
return x[criteria_str]
res = defaultdict(list)
for element in data:
key = criteria(element)
res[key].append(element)
return res
|
group_by
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, criteria):\n if isinstance(criteria, str):\n criteria_str = criteria\n\n def x(x):\n return x[criteria_str]\n res = defaultdict(list)\n for element in data:\n key = criteria(element)\n res[key].append(element)\n return res\n",
"role": "user"
},
{
"content": "group_by",
"role": "assistant"
}
] |
def x(params):
ord_params = sorted(params)
def x(obj):
l = []
for p in ord_params:
try:
l.append((p, obj.parameters[p]))
except:
raise ValueError('{} is not a valid parameter'.format(p))
return tuple(l)
return fn
|
get_params_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(params):\n ord_params = sorted(params)\n\n def x(obj):\n l = []\n for p in ord_params:\n try:\n l.append((p, obj.parameters[p]))\n except:\n raise ValueError('{} is not a valid parameter'.format(p))\n return tuple(l)\n return fn\n",
"role": "user"
},
{
"content": "get_params_value",
"role": "assistant"
}
] |
def x(k, v):
if not _can_iterate(k):
k = [k]
if not _can_iterate(v):
v = [v]
return list(product(k, v))
|
product
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(k, v):\n if not _can_iterate(k):\n k = [k]\n if not _can_iterate(v):\n v = [v]\n return list(product(k, v))\n",
"role": "user"
},
{
"content": "product",
"role": "assistant"
}
] |
def x(d):
t = []
ord_keys = sorted(d.keys())
for k in ord_keys:
t.append(_product(k, d[k]))
return tuple(product(*t))
|
mapping_to_tuple_pairs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(d):\n t = []\n ord_keys = sorted(d.keys())\n for k in ord_keys:\n t.append(_product(k, d[k]))\n return tuple(product(*t))\n",
"role": "user"
},
{
"content": "mapping_to_tuple_pairs",
"role": "assistant"
}
] |
def x(train_scores, test_scores, train_sizes, ax=None):
if ax is None:
ax = plt.gca()
ax.grid()
ax.set_title('Learning Curve')
ax.set_xlabel('Training examples')
ax.set_ylabel('Score mean')
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
ax.fill_between(train_sizes, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1, color='r')
ax.fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1, color='g')
ax.plot(train_sizes, train_scores_mean, 'o-', color='r', label=
'Training score')
ax.plot(train_sizes, test_scores_mean, 'o-', color='g', label=
'Cross-validation score')
ax.legend(loc='best')
ax.margins(0.05)
return ax
|
learning_curve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(train_scores, test_scores, train_sizes, ax=None):\n if ax is None:\n ax = plt.gca()\n ax.grid()\n ax.set_title('Learning Curve')\n ax.set_xlabel('Training examples')\n ax.set_ylabel('Score mean')\n train_scores_mean = np.mean(train_scores, axis=1)\n train_scores_std = np.std(train_scores, axis=1)\n test_scores_mean = np.mean(test_scores, axis=1)\n test_scores_std = np.std(test_scores, axis=1)\n ax.fill_between(train_sizes, train_scores_mean - train_scores_std, \n train_scores_mean + train_scores_std, alpha=0.1, color='r')\n ax.fill_between(train_sizes, test_scores_mean - test_scores_std, \n test_scores_mean + test_scores_std, alpha=0.1, color='g')\n ax.plot(train_sizes, train_scores_mean, 'o-', color='r', label=\n 'Training score')\n ax.plot(train_sizes, test_scores_mean, 'o-', color='g', label=\n 'Cross-validation score')\n ax.legend(loc='best')\n ax.margins(0.05)\n return ax\n",
"role": "user"
},
{
"content": "learning_curve",
"role": "assistant"
}
] |
def x(y_true, y_score, ax=None):
if any(val is None for val in (y_true, y_score)):
raise ValueError(
'y_true and y_score are needed to plot Precision-Recall')
if ax is None:
ax = plt.gca()
y_score_is_vector = is_column_vector(y_score) or is_row_vector(y_score)
if y_score_is_vector:
n_classes = 2
else:
_, n_classes = y_score.shape
if n_classes > 2:
y_true_bin = label_binarize(y_true, classes=np.unique(y_true))
_precision_recall_multi(y_true_bin, y_score, ax=ax)
for i in range(n_classes):
_precision_recall(y_true_bin[:, i], y_score[:, i], ax=ax)
elif y_score_is_vector:
_precision_recall(y_true, y_score, ax)
else:
_precision_recall(y_true, y_score[:, 1], ax)
return ax
|
precision_recall
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_score, ax=None):\n if any(val is None for val in (y_true, y_score)):\n raise ValueError(\n 'y_true and y_score are needed to plot Precision-Recall')\n if ax is None:\n ax = plt.gca()\n y_score_is_vector = is_column_vector(y_score) or is_row_vector(y_score)\n if y_score_is_vector:\n n_classes = 2\n else:\n _, n_classes = y_score.shape\n if n_classes > 2:\n y_true_bin = label_binarize(y_true, classes=np.unique(y_true))\n _precision_recall_multi(y_true_bin, y_score, ax=ax)\n for i in range(n_classes):\n _precision_recall(y_true_bin[:, i], y_score[:, i], ax=ax)\n elif y_score_is_vector:\n _precision_recall(y_true, y_score, ax)\n else:\n _precision_recall(y_true, y_score[:, 1], ax)\n return ax\n",
"role": "user"
},
{
"content": "precision_recall",
"role": "assistant"
}
] |
def x(y_true, y_score, ax=None):
precision, recall, _ = precision_recall_curve(y_true, y_score)
average_precision = average_precision_score(y_true, y_score)
if ax is None:
ax = plt.gca()
ax.plot(recall, precision, label='Precision-Recall curve: AUC={0:0.2f}'
.format(average_precision))
_set_ax_settings(ax)
return ax
|
precision_recall
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_score, ax=None):\n precision, recall, _ = precision_recall_curve(y_true, y_score)\n average_precision = average_precision_score(y_true, y_score)\n if ax is None:\n ax = plt.gca()\n ax.plot(recall, precision, label='Precision-Recall curve: AUC={0:0.2f}'\n .format(average_precision))\n _set_ax_settings(ax)\n return ax\n",
"role": "user"
},
{
"content": "precision_recall",
"role": "assistant"
}
] |
def x(y_true, y_score, ax=None):
precision, recall, _ = precision_recall_curve(y_true.ravel(), y_score.
ravel())
avg_prec = average_precision_score(y_true, y_score, average='micro')
if ax is None:
ax = plt.gca()
ax.plot(recall, precision, label=
'micro-average Precision-recall curve (area = {0:0.2f})'.format(
avg_prec))
_set_ax_settings(ax)
return ax
|
precision_recall_multi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_score, ax=None):\n precision, recall, _ = precision_recall_curve(y_true.ravel(), y_score.\n ravel())\n avg_prec = average_precision_score(y_true, y_score, average='micro')\n if ax is None:\n ax = plt.gca()\n ax.plot(recall, precision, label=\n 'micro-average Precision-recall curve (area = {0:0.2f})'.format(\n avg_prec))\n _set_ax_settings(ax)\n return ax\n",
"role": "user"
},
{
"content": "precision_recall_multi",
"role": "assistant"
}
] |
def x(y_true, y_score, proportion, ignore_nas=False):
scores_sorted = np.sort(y_score)[::-1]
cutoff_index = max(int(len(y_true) * proportion) - 1, 0)
cutoff_value = scores_sorted[cutoff_index]
scores_binary = np.array([int(y >= cutoff_value) for y in y_score])
if ignore_nas:
precision = __precision(y_true, scores_binary)
else:
precision = precision_score(y_true, scores_binary)
return precision, cutoff_value
|
precision_at
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_score, proportion, ignore_nas=False):\n scores_sorted = np.sort(y_score)[::-1]\n cutoff_index = max(int(len(y_true) * proportion) - 1, 0)\n cutoff_value = scores_sorted[cutoff_index]\n scores_binary = np.array([int(y >= cutoff_value) for y in y_score])\n if ignore_nas:\n precision = __precision(y_true, scores_binary)\n else:\n precision = precision_score(y_true, scores_binary)\n return precision, cutoff_value\n",
"role": "user"
},
{
"content": "precision_at",
"role": "assistant"
}
] |
def x(y_true, y_pred):
y_true = np.copy(y_true)
y_pred = np.copy(y_pred)
is_nan = np.isnan(y_true)
y_true[is_nan] = 0
y_pred[is_nan] = 0
precision = precision_score(y_true, y_pred)
return precision
|
precision
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_pred):\n y_true = np.copy(y_true)\n y_pred = np.copy(y_pred)\n is_nan = np.isnan(y_true)\n y_true[is_nan] = 0\n y_pred[is_nan] = 0\n precision = precision_score(y_true, y_pred)\n return precision\n",
"role": "user"
},
{
"content": "precision",
"role": "assistant"
}
] |
def x(y_true, y_score, proportion, normalize=False):
indexes = np.argsort(y_score)[::-1]
y_true_sorted = y_true[indexes]
cutoff_index = max(int(len(y_true_sorted) * proportion) - 1, 0)
y_true_top = y_true_sorted[:cutoff_index + 1]
values = int((~np.isnan(y_true_top)).sum())
if normalize:
values = float(values) / (~np.isnan(y_true)).sum()
return values
|
labels_at
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_score, proportion, normalize=False):\n indexes = np.argsort(y_score)[::-1]\n y_true_sorted = y_true[indexes]\n cutoff_index = max(int(len(y_true_sorted) * proportion) - 1, 0)\n y_true_top = y_true_sorted[:cutoff_index + 1]\n values = int((~np.isnan(y_true_top)).sum())\n if normalize:\n values = float(values) / (~np.isnan(y_true)).sum()\n return values\n",
"role": "user"
},
{
"content": "labels_at",
"role": "assistant"
}
] |
def x(train_scores, test_scores, param_range, param_name=None, semilogx=
False, ax=None):
if ax is None:
ax = plt.gca()
if semilogx:
ax.set_xscale('log')
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
ax.set_title('Validation Curve')
ax.set_ylabel('Score mean')
if param_name:
ax.set_xlabel(param_name)
ax.plot(param_range, train_scores_mean, label='Training score', color='r')
ax.plot(param_range, test_scores_mean, label='Cross-validation score',
color='g')
ax.fill_between(param_range, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.2, color='r')
ax.fill_between(param_range, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.2, color='g')
ax.legend(loc='best')
ax.margins(0.05)
return ax
|
validation_curve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(train_scores, test_scores, param_range, param_name=None, semilogx=\n False, ax=None):\n if ax is None:\n ax = plt.gca()\n if semilogx:\n ax.set_xscale('log')\n train_scores_mean = np.mean(train_scores, axis=1)\n train_scores_std = np.std(train_scores, axis=1)\n test_scores_mean = np.mean(test_scores, axis=1)\n test_scores_std = np.std(test_scores, axis=1)\n ax.set_title('Validation Curve')\n ax.set_ylabel('Score mean')\n if param_name:\n ax.set_xlabel(param_name)\n ax.plot(param_range, train_scores_mean, label='Training score', color='r')\n ax.plot(param_range, test_scores_mean, label='Cross-validation score',\n color='g')\n ax.fill_between(param_range, train_scores_mean - train_scores_std, \n train_scores_mean + train_scores_std, alpha=0.2, color='r')\n ax.fill_between(param_range, test_scores_mean - test_scores_std, \n test_scores_mean + test_scores_std, alpha=0.2, color='g')\n ax.legend(loc='best')\n ax.margins(0.05)\n return ax\n",
"role": "user"
},
{
"content": "validation_curve",
"role": "assistant"
}
] |
def x(y_true, y_pred, target_names=None, normalize=False, cmap=None, ax=None):
if any(val is None for val in (y_true, y_pred)):
raise ValueError(
'y_true and y_pred are needed to plot confusion matrix')
values = set(y_true).union(set(y_pred))
expected_len = len(values)
if target_names and expected_len != len(target_names):
raise ValueError(
'Data cointains {} different values, but target names contains {} values.'
.format(expected_len, len(target_names)))
if not target_names:
values = list(values)
values.sort()
target_names = ['Class {}'.format(v) for v in values]
cm = sk_confusion_matrix(y_true, y_pred)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
np.set_printoptions(precision=2)
if ax is None:
ax = plt.gca()
for (y, x), v in np.ndenumerate(cm):
try:
label = '{:.2}'.format(v)
except:
label = v
ax.text(x, y, label, horizontalalignment='center',
verticalalignment='center')
if cmap is None:
cmap = default_heatmap()
im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
plt.colorbar(im, ax=ax)
tick_marks = np.arange(len(target_names))
ax.set_xticks(tick_marks)
ax.set_xticklabels(target_names)
ax.set_yticks(tick_marks)
ax.set_yticklabels(target_names)
title = 'Confusion matrix'
if normalize:
title += ' (normalized)'
ax.set_title(title)
ax.set_ylabel('True label')
ax.set_xlabel('Predicted label')
return ax
|
confusion_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_pred, target_names=None, normalize=False, cmap=None, ax=None):\n if any(val is None for val in (y_true, y_pred)):\n raise ValueError(\n 'y_true and y_pred are needed to plot confusion matrix')\n values = set(y_true).union(set(y_pred))\n expected_len = len(values)\n if target_names and expected_len != len(target_names):\n raise ValueError(\n 'Data cointains {} different values, but target names contains {} values.'\n .format(expected_len, len(target_names)))\n if not target_names:\n values = list(values)\n values.sort()\n target_names = ['Class {}'.format(v) for v in values]\n cm = sk_confusion_matrix(y_true, y_pred)\n if normalize:\n cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n np.set_printoptions(precision=2)\n if ax is None:\n ax = plt.gca()\n for (y, x), v in np.ndenumerate(cm):\n try:\n label = '{:.2}'.format(v)\n except:\n label = v\n ax.text(x, y, label, horizontalalignment='center',\n verticalalignment='center')\n if cmap is None:\n cmap = default_heatmap()\n im = ax.imshow(cm, interpolation='nearest', cmap=cmap)\n plt.colorbar(im, ax=ax)\n tick_marks = np.arange(len(target_names))\n ax.set_xticks(tick_marks)\n ax.set_xticklabels(target_names)\n ax.set_yticks(tick_marks)\n ax.set_yticklabels(target_names)\n title = 'Confusion matrix'\n if normalize:\n title += ' (normalized)'\n ax.set_title(title)\n ax.set_ylabel('True label')\n ax.set_xlabel('Predicted label')\n return ax\n",
"role": "user"
},
{
"content": "confusion_matrix",
"role": "assistant"
}
] |
def x(data, top_n=None, feature_names=None, ax=None):
if data is None:
raise ValueError(
'data is needed to plot feature importances. When plotting using the evaluator you need to pass an estimator '
)
res = compute.feature_importances(data, top_n, feature_names)
n_feats = len(res)
if ax is None:
ax = plt.gca()
ax.set_title('Feature importances')
try:
ax.bar(range(n_feats), res.importance, yerr=res.std_, color='red',
align='center')
except:
ax.bar(range(n_feats), res.importance, color='red', align='center')
ax.set_xticks(range(n_feats))
ax.set_xticklabels(res.feature_name)
ax.set_xlim([-1, n_feats])
return ax
|
feature_importances
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, top_n=None, feature_names=None, ax=None):\n if data is None:\n raise ValueError(\n 'data is needed to plot feature importances. When plotting using the evaluator you need to pass an estimator '\n )\n res = compute.feature_importances(data, top_n, feature_names)\n n_feats = len(res)\n if ax is None:\n ax = plt.gca()\n ax.set_title('Feature importances')\n try:\n ax.bar(range(n_feats), res.importance, yerr=res.std_, color='red',\n align='center')\n except:\n ax.bar(range(n_feats), res.importance, color='red', align='center')\n ax.set_xticks(range(n_feats))\n ax.set_xticklabels(res.feature_name)\n ax.set_xlim([-1, n_feats])\n return ax\n",
"role": "user"
},
{
"content": "feature_importances",
"role": "assistant"
}
] |
def x(y_true, y_score, ax=None):
if any(val is None for val in (y_true, y_score)):
raise ValueError(
'y_true and y_score are needed to plot precision at proportions')
if ax is None:
ax = plt.gca()
y_score_is_vector = is_column_vector(y_score) or is_row_vector(y_score)
if not y_score_is_vector:
y_score = y_score[:, 1]
proportions = [(0.01 * i) for i in range(1, 101)]
precs_and_cutoffs = [precision_at(y_true, y_score, p) for p in proportions]
precs, cutoffs = zip(*precs_and_cutoffs)
ax.plot(proportions, precs)
ax.set_title('Precision at various proportions')
ax.set_ylabel('Precision')
ax.set_xlabel('Proportion')
ticks = [(0.1 * i) for i in range(1, 11)]
ax.set_xticks(ticks)
ax.set_xticklabels(ticks)
ax.set_yticks(ticks)
ax.set_yticklabels(ticks)
ax.set_ylim([0, 1.0])
ax.set_xlim([0, 1.0])
return ax
|
precision_at_proportions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_score, ax=None):\n if any(val is None for val in (y_true, y_score)):\n raise ValueError(\n 'y_true and y_score are needed to plot precision at proportions')\n if ax is None:\n ax = plt.gca()\n y_score_is_vector = is_column_vector(y_score) or is_row_vector(y_score)\n if not y_score_is_vector:\n y_score = y_score[:, 1]\n proportions = [(0.01 * i) for i in range(1, 101)]\n precs_and_cutoffs = [precision_at(y_true, y_score, p) for p in proportions]\n precs, cutoffs = zip(*precs_and_cutoffs)\n ax.plot(proportions, precs)\n ax.set_title('Precision at various proportions')\n ax.set_ylabel('Precision')\n ax.set_xlabel('Proportion')\n ticks = [(0.1 * i) for i in range(1, 11)]\n ax.set_xticks(ticks)\n ax.set_xticklabels(ticks)\n ax.set_yticks(ticks)\n ax.set_yticklabels(ticks)\n ax.set_ylim([0, 1.0])\n ax.set_xlim([0, 1.0])\n return ax\n",
"role": "user"
},
{
"content": "precision_at_proportions",
"role": "assistant"
}
] |
def x(data, top_n=None, feature_names=None):
if data is None:
raise ValueError(
'data is needed to tabulate feature importances. When plotting using the evaluator you need to pass an estimator '
)
res = compute.feature_importances(data, top_n, feature_names)
return Table(res, res.dtype.names)
|
feature_importances
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, top_n=None, feature_names=None):\n if data is None:\n raise ValueError(\n 'data is needed to tabulate feature importances. When plotting using the evaluator you need to pass an estimator '\n )\n res = compute.feature_importances(data, top_n, feature_names)\n return Table(res, res.dtype.names)\n",
"role": "user"
},
{
"content": "feature_importances",
"role": "assistant"
}
] |
def x(part, rgxin, rgxout, fmtin, fmtout):
block = []
lines = part.split('\n')
N = len(lines)
i = 0
decorator = None
while 1:
if i == N:
break
line = lines[i]
i += 1
line_stripped = line.strip()
if line_stripped.startswith('#'):
block.append((COMMENT, line))
continue
if line_stripped.startswith('@'):
decorator = line_stripped
continue
matchin = rgxin.match(line)
if matchin:
lineno, inputline = int(matchin.group(1)), matchin.group(2)
continuation = ' %s:' % ''.join(['.'] * (len(str(lineno)) + 2))
Nc = len(continuation)
rest = []
while i < N:
nextline = lines[i]
matchout = rgxout.match(nextline)
if matchout or nextline.startswith('#'):
break
elif nextline.startswith(continuation):
nextline = nextline[Nc:]
if nextline and nextline[0] == ' ':
nextline = nextline[1:]
inputline += '\n' + nextline
else:
rest.append(nextline)
i += 1
block.append((INPUT, (decorator, inputline, '\n'.join(rest))))
continue
matchout = rgxout.match(line)
if matchout:
lineno, output = int(matchout.group(1)), matchout.group(2)
if i < N - 1:
output = '\n'.join([output] + lines[i:])
block.append((OUTPUT, output))
break
return block
|
block_parser
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(part, rgxin, rgxout, fmtin, fmtout):\n block = []\n lines = part.split('\\n')\n N = len(lines)\n i = 0\n decorator = None\n while 1:\n if i == N:\n break\n line = lines[i]\n i += 1\n line_stripped = line.strip()\n if line_stripped.startswith('#'):\n block.append((COMMENT, line))\n continue\n if line_stripped.startswith('@'):\n decorator = line_stripped\n continue\n matchin = rgxin.match(line)\n if matchin:\n lineno, inputline = int(matchin.group(1)), matchin.group(2)\n continuation = ' %s:' % ''.join(['.'] * (len(str(lineno)) + 2))\n Nc = len(continuation)\n rest = []\n while i < N:\n nextline = lines[i]\n matchout = rgxout.match(nextline)\n if matchout or nextline.startswith('#'):\n break\n elif nextline.startswith(continuation):\n nextline = nextline[Nc:]\n if nextline and nextline[0] == ' ':\n nextline = nextline[1:]\n inputline += '\\n' + nextline\n else:\n rest.append(nextline)\n i += 1\n block.append((INPUT, (decorator, inputline, '\\n'.join(rest))))\n continue\n matchout = rgxout.match(line)\n if matchout:\n lineno, output = int(matchout.group(1)), matchout.group(2)\n if i < N - 1:\n output = '\\n'.join([output] + lines[i:])\n block.append((OUTPUT, output))\n break\n return block\n",
"role": "user"
},
{
"content": "block_parser",
"role": "assistant"
}
] |
def x(self, block):
ret = []
output = None
input_lines = None
lineno = self.IP.execution_count
input_prompt = self.promptin % lineno
output_prompt = self.promptout % lineno
image_file = None
image_directive = None
found_input = False
for token, data in block:
if token == COMMENT:
out_data = self.process_comment(data)
elif token == INPUT:
found_input = True
(out_data, input_lines, output, is_doctest, decorator,
image_file, image_directive) = self.process_input(data,
input_prompt, lineno)
elif token == OUTPUT:
if not found_input:
TAB = ' ' * 4
linenumber = 0
source = 'Unavailable'
content = 'Unavailable'
if self.directive:
linenumber = self.directive.state.document.current_line
source = self.directive.state.document.current_source
content = self.directive.content
content = '\n'.join([(TAB + line) for line in content])
e = """
Invalid block: Block contains an output prompt without an input prompt.
Document source: {0}
Content begins at line {1}:
{2}
Problematic block within content:
{TAB}{3}
"""
e = e.format(source, linenumber, content, block, TAB=TAB)
sys.stdout.write(e)
raise RuntimeError('An invalid block was detected.')
out_data = self.process_output(data, output_prompt, input_lines,
output, is_doctest, decorator, image_file)
if out_data:
assert ret[-1] == ''
del ret[-1]
if out_data:
ret.extend(out_data)
if image_file is not None:
self.save_image(image_file)
return ret, image_directive
|
process_block
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, block):\n ret = []\n output = None\n input_lines = None\n lineno = self.IP.execution_count\n input_prompt = self.promptin % lineno\n output_prompt = self.promptout % lineno\n image_file = None\n image_directive = None\n found_input = False\n for token, data in block:\n if token == COMMENT:\n out_data = self.process_comment(data)\n elif token == INPUT:\n found_input = True\n (out_data, input_lines, output, is_doctest, decorator,\n image_file, image_directive) = self.process_input(data,\n input_prompt, lineno)\n elif token == OUTPUT:\n if not found_input:\n TAB = ' ' * 4\n linenumber = 0\n source = 'Unavailable'\n content = 'Unavailable'\n if self.directive:\n linenumber = self.directive.state.document.current_line\n source = self.directive.state.document.current_source\n content = self.directive.content\n content = '\\n'.join([(TAB + line) for line in content])\n e = \"\"\"\n\nInvalid block: Block contains an output prompt without an input prompt.\n\nDocument source: {0}\n\nContent begins at line {1}: \n\n{2}\n\nProblematic block within content: \n\n{TAB}{3}\n\n\"\"\"\n e = e.format(source, linenumber, content, block, TAB=TAB)\n sys.stdout.write(e)\n raise RuntimeError('An invalid block was detected.')\n out_data = self.process_output(data, output_prompt, input_lines,\n output, is_doctest, decorator, image_file)\n if out_data:\n assert ret[-1] == ''\n del ret[-1]\n if out_data:\n ret.extend(out_data)\n if image_file is not None:\n self.save_image(image_file)\n return ret, image_directive\n",
"role": "user"
},
{
"content": "process_block",
"role": "assistant"
}
] |
def x(grid_scores, change, subset=None, kind='line', cmap=None, ax=None):
if change is None:
raise ValueError(
"change can't be None, you need to select at least one value to make the plot."
)
if ax is None:
ax = plt.gca()
if cmap is None:
cmap = default_heatmap()
if isinstance(change, string_types) or len(change) == 1:
return _grid_search_single(grid_scores, change, subset, kind, ax)
elif len(change) == 2:
return _grid_search_double(grid_scores, change, subset, cmap, ax)
else:
raise ValueError('change must have length 1 or 2 or be a string')
|
grid_search
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid_scores, change, subset=None, kind='line', cmap=None, ax=None):\n if change is None:\n raise ValueError(\n \"change can't be None, you need to select at least one value to make the plot.\"\n )\n if ax is None:\n ax = plt.gca()\n if cmap is None:\n cmap = default_heatmap()\n if isinstance(change, string_types) or len(change) == 1:\n return _grid_search_single(grid_scores, change, subset, kind, ax)\n elif len(change) == 2:\n return _grid_search_double(grid_scores, change, subset, cmap, ax)\n else:\n raise ValueError('change must have length 1 or 2 or be a string')\n",
"role": "user"
},
{
"content": "grid_search",
"role": "assistant"
}
] |
def x(self):
return plot.confusion_matrix(self.y_true, self.y_pred, self.
target_names, ax=_gen_ax())
|
confusion_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return plot.confusion_matrix(self.y_true, self.y_pred, self.\n target_names, ax=_gen_ax())\n",
"role": "user"
},
{
"content": "confusion_matrix",
"role": "assistant"
}
] |
def x(self):
return plot.roc(self.y_true, self.y_score, ax=_gen_ax())
|
roc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return plot.roc(self.y_true, self.y_score, ax=_gen_ax())\n",
"role": "user"
},
{
"content": "roc",
"role": "assistant"
}
] |
def x(self):
return plot.precision_recall(self.y_true, self.y_score, ax=_gen_ax())
|
precision_recall
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return plot.precision_recall(self.y_true, self.y_score, ax=_gen_ax())\n",
"role": "user"
},
{
"content": "precision_recall",
"role": "assistant"
}
] |
def x(self):
return plot.feature_importances(self.estimator, feature_names=self.
feature_names, ax=_gen_ax())
|
feature_importances
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return plot.feature_importances(self.estimator, feature_names=self.\n feature_names, ax=_gen_ax())\n",
"role": "user"
},
{
"content": "feature_importances",
"role": "assistant"
}
] |
def x(self):
from . import table
return table.feature_importances(self.estimator, feature_names=self.
feature_names)
|
feature_importances_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n from . import table\n return table.feature_importances(self.estimator, feature_names=self.\n feature_names)\n",
"role": "user"
},
{
"content": "feature_importances_table",
"role": "assistant"
}
] |
def x(self):
return plot.precision_at_proportions(self.y_true, self.y_score, ax=
_gen_ax())
|
precision_at_proportions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return plot.precision_at_proportions(self.y_true, self.y_score, ax=\n _gen_ax())\n",
"role": "user"
},
{
"content": "precision_at_proportions",
"role": "assistant"
}
] |
def x(self, template, path=None, style=None):
from .report import generate
return generate(self, template, path, style)
|
generate_report
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, template, path=None, style=None):\n from .report import generate\n return generate(self, template, path, style)\n",
"role": "user"
},
{
"content": "generate_report",
"role": "assistant"
}
] |
def x(y_true, y_score, ax=None):
if any(val is None for val in (y_true, y_score)):
raise ValueError('y_true and y_score are needed to plot ROC')
if ax is None:
ax = plt.gca()
y_score_is_vector = is_column_vector(y_score) or is_row_vector(y_score)
if y_score_is_vector:
n_classes = 2
else:
_, n_classes = y_score.shape
if n_classes > 2:
y_true_bin = label_binarize(y_true, classes=np.unique(y_true))
_roc_multi(y_true_bin, y_score, ax=ax)
for i in range(n_classes):
_roc(y_true_bin[:, i], y_score[:, i], ax=ax)
elif y_score_is_vector:
_roc(y_true, y_score, ax)
else:
_roc(y_true, y_score[:, 1], ax)
return ax
|
roc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_score, ax=None):\n if any(val is None for val in (y_true, y_score)):\n raise ValueError('y_true and y_score are needed to plot ROC')\n if ax is None:\n ax = plt.gca()\n y_score_is_vector = is_column_vector(y_score) or is_row_vector(y_score)\n if y_score_is_vector:\n n_classes = 2\n else:\n _, n_classes = y_score.shape\n if n_classes > 2:\n y_true_bin = label_binarize(y_true, classes=np.unique(y_true))\n _roc_multi(y_true_bin, y_score, ax=ax)\n for i in range(n_classes):\n _roc(y_true_bin[:, i], y_score[:, i], ax=ax)\n elif y_score_is_vector:\n _roc(y_true, y_score, ax)\n else:\n _roc(y_true, y_score[:, 1], ax)\n return ax\n",
"role": "user"
},
{
"content": "roc",
"role": "assistant"
}
] |
def x(y_true, y_score, ax=None):
fpr, tpr, _ = roc_curve(y_true, y_score)
roc_auc = auc(fpr, tpr)
ax.plot(fpr, tpr, label='ROC curve (area = {0:0.2f})'.format(roc_auc))
_set_ax_settings(ax)
return ax
|
roc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_score, ax=None):\n fpr, tpr, _ = roc_curve(y_true, y_score)\n roc_auc = auc(fpr, tpr)\n ax.plot(fpr, tpr, label='ROC curve (area = {0:0.2f})'.format(roc_auc))\n _set_ax_settings(ax)\n return ax\n",
"role": "user"
},
{
"content": "roc",
"role": "assistant"
}
] |
def x(y_true, y_score, ax=None):
fpr, tpr, _ = roc_curve(y_true.ravel(), y_score.ravel())
roc_auc = auc(fpr, tpr)
if ax is None:
ax = plt.gca()
ax.plot(fpr, tpr, label='micro-average ROC curve (area = {0:0.2f})'.
format(roc_auc))
_set_ax_settings(ax)
return ax
|
roc_multi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_true, y_score, ax=None):\n fpr, tpr, _ = roc_curve(y_true.ravel(), y_score.ravel())\n roc_auc = auc(fpr, tpr)\n if ax is None:\n ax = plt.gca()\n ax.plot(fpr, tpr, label='micro-average ROC curve (area = {0:0.2f})'.\n format(roc_auc))\n _set_ax_settings(ax)\n return ax\n",
"role": "user"
},
{
"content": "roc_multi",
"role": "assistant"
}
] |
async def get_connection(self, container):
"""
Get an exclusive connection, useful for blocked commands and transactions.
You must call release or shutdown (not recommanded) to return the connection after use.
:param container: routine container
:returns: RedisClientBase object, with some commands same as RedisClient like execute_command,
batch_execute, register_script etc.
"""
if self._connpool:
conn = self._connpool.pop()
return RedisClientBase(conn, self)
else:
conn = self._create_client(container)
await RedisClientBase._get_connection(self, container, conn)
await self._protocol.send_command(conn, container, 'SELECT', str(
self.db))
return RedisClientBase(conn, self)
|
get_connection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def get_connection(self, container):\n \"\"\"\n Get an exclusive connection, useful for blocked commands and transactions.\n \n You must call release or shutdown (not recommanded) to return the connection after use.\n \n :param container: routine container\n \n :returns: RedisClientBase object, with some commands same as RedisClient like execute_command,\n batch_execute, register_script etc.\n \"\"\"\n if self._connpool:\n conn = self._connpool.pop()\n return RedisClientBase(conn, self)\n else:\n conn = self._create_client(container)\n await RedisClientBase._get_connection(self, container, conn)\n await self._protocol.send_command(conn, container, 'SELECT', str(\n self.db))\n return RedisClientBase(conn, self)\n",
"role": "user"
},
{
"content": "get_connection",
"role": "assistant"
}
] |
async def execute_command(self, container, *args):
"""
Execute command on Redis server:
- For (P)SUBSCRIBE/(P)UNSUBSCRIBE, the command is sent to the subscribe connection.
It is recommended to use (p)subscribe/(p)unsubscribe method instead of directly call the command
- For BLPOP, BRPOP, BRPOPLPUSH, the command is sent to a separated connection. The connection is
recycled after command returns.
- For other commands, the command is sent to the default connection.
"""
if args:
cmd = _str(args[0]).upper()
if cmd in ('SUBSCRIBE', 'UNSUBSCRIBE', 'PSUBSCRIBE', 'PUNSUBSCRIBE'):
await self._get_subscribe_connection(container)
return await self._protocol.execute_command(self._subscribeconn,
container, *args)
elif cmd in ('BLPOP', 'BRPOP', 'BRPOPLPUSH'):
c = await self.get_connection(container)
with c.context(container):
return await c.execute_command(container, *args)
return await RedisClientBase.execute_command(self, container, *args)
|
execute_command
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def execute_command(self, container, *args):\n \"\"\"\n Execute command on Redis server:\n - For (P)SUBSCRIBE/(P)UNSUBSCRIBE, the command is sent to the subscribe connection.\n It is recommended to use (p)subscribe/(p)unsubscribe method instead of directly call the command\n - For BLPOP, BRPOP, BRPOPLPUSH, the command is sent to a separated connection. The connection is\n recycled after command returns.\n - For other commands, the command is sent to the default connection.\n \"\"\"\n if args:\n cmd = _str(args[0]).upper()\n if cmd in ('SUBSCRIBE', 'UNSUBSCRIBE', 'PSUBSCRIBE', 'PUNSUBSCRIBE'):\n await self._get_subscribe_connection(container)\n return await self._protocol.execute_command(self._subscribeconn,\n container, *args)\n elif cmd in ('BLPOP', 'BRPOP', 'BRPOPLPUSH'):\n c = await self.get_connection(container)\n with c.context(container):\n return await c.execute_command(container, *args)\n return await RedisClientBase.execute_command(self, container, *args)\n",
"role": "user"
},
{
"content": "execute_command",
"role": "assistant"
}
] |
async def subscribe(self, container, *keys):
"""
Subscribe to specified channels
:param container: routine container
:param *keys: subscribed channels
:returns: list of event matchers for the specified channels
"""
await self._get_subscribe_connection(container)
realkeys = []
for k in keys:
count = self._subscribecounter.get(k, 0)
if count == 0:
realkeys.append(k)
self._subscribecounter[k] = count + 1
if realkeys:
await self._protocol.execute_command(self._subscribeconn, container,
'SUBSCRIBE', *realkeys)
return [self._protocol.subscribematcher(self._subscribeconn, k, None,
RedisSubscribeMessageEvent.MESSAGE) for k in keys]
|
subscribe
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def subscribe(self, container, *keys):\n \"\"\"\n Subscribe to specified channels\n \n :param container: routine container\n \n :param *keys: subscribed channels\n \n :returns: list of event matchers for the specified channels\n \"\"\"\n await self._get_subscribe_connection(container)\n realkeys = []\n for k in keys:\n count = self._subscribecounter.get(k, 0)\n if count == 0:\n realkeys.append(k)\n self._subscribecounter[k] = count + 1\n if realkeys:\n await self._protocol.execute_command(self._subscribeconn, container,\n 'SUBSCRIBE', *realkeys)\n return [self._protocol.subscribematcher(self._subscribeconn, k, None,\n RedisSubscribeMessageEvent.MESSAGE) for k in keys]\n",
"role": "user"
},
{
"content": "subscribe",
"role": "assistant"
}
] |
async def unsubscribe(self, container, *keys):
"""
Unsubscribe specified channels. Every subscribed key should be unsubscribed exactly once, even if duplicated subscribed.
:param container: routine container
:param \\*keys: subscribed channels
"""
await self._get_subscribe_connection(container)
realkeys = []
for k in keys:
count = self._subscribecounter.get(k, 0)
if count <= 1:
realkeys.append(k)
try:
del self._subscribecounter[k]
except KeyError:
pass
else:
self._subscribecounter[k] = count - 1
if realkeys:
await self._protocol.execute_command(self._subscribeconn, container,
'UNSUBSCRIBE', *realkeys)
|
unsubscribe
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def unsubscribe(self, container, *keys):\n \"\"\"\n Unsubscribe specified channels. Every subscribed key should be unsubscribed exactly once, even if duplicated subscribed.\n \n :param container: routine container\n \n :param \\\\*keys: subscribed channels\n \"\"\"\n await self._get_subscribe_connection(container)\n realkeys = []\n for k in keys:\n count = self._subscribecounter.get(k, 0)\n if count <= 1:\n realkeys.append(k)\n try:\n del self._subscribecounter[k]\n except KeyError:\n pass\n else:\n self._subscribecounter[k] = count - 1\n if realkeys:\n await self._protocol.execute_command(self._subscribeconn, container,\n 'UNSUBSCRIBE', *realkeys)\n",
"role": "user"
},
{
"content": "unsubscribe",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.