source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self):
parent_table = self._parent.get_table()
self._set_join()
if self._constraints:
self._query.where('%s.%s' % (parent_table, self._first_key), '=',
self._far_parent.get_key())
|
add_constraints
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n parent_table = self._parent.get_table()\n self._set_join()\n if self._constraints:\n self._query.where('%s.%s' % (parent_table, self._first_key), '=',\n self._far_parent.get_key())\n",
"role": "user"
},
{
"content": "add_constraints",
"role": "assistant"
}
] |
def x(self, query, parent):
parent_table = self._parent.get_table()
self._set_join(query)
query.select(QueryExpression('COUNT(*)'))
key = self.wrap('%s.%s' % (parent_table, self._first_key))
return query.where(self.get_has_compare_key(), '=', QueryExpression(key))
|
get_relation_count_query
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, query, parent):\n parent_table = self._parent.get_table()\n self._set_join(query)\n query.select(QueryExpression('COUNT(*)'))\n key = self.wrap('%s.%s' % (parent_table, self._first_key))\n return query.where(self.get_has_compare_key(), '=', QueryExpression(key))\n",
"role": "user"
},
{
"content": "get_relation_count_query",
"role": "assistant"
}
] |
def x(self, query=None):
if not query:
query = self._query
foreign_key = '%s.%s' % (self._related.get_table(), self._second_key)
query.join(self._parent.get_table(), self.get_qualified_parent_key_name
(), '=', foreign_key)
|
set_join
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, query=None):\n if not query:\n query = self._query\n foreign_key = '%s.%s' % (self._related.get_table(), self._second_key)\n query.join(self._parent.get_table(), self.get_qualified_parent_key_name\n (), '=', foreign_key)\n",
"role": "user"
},
{
"content": "set_join",
"role": "assistant"
}
] |
def x(assignments_df, data, modality_col='Modality', score='$\\log_2 K$'):
ncols = 2
nrows = len(assignments_df.groupby(modality_col).groups.keys())
fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(nrows * 4,
ncols * 6))
axes_iter = axes.flat
fits = 'Highest', 'Lowest'
for modality, df in assignments_df.groupby(modality_col):
df = df.sort_values(score)
color = MODALITY_TO_COLOR[modality]
for fit in fits:
if fit == 'Highest':
ids = df['Feature ID'][-10:]
else:
ids = df['Feature ID'][:10]
fit_psi = data[ids]
tidy_fit_psi = fit_psi.stack().reset_index()
tidy_fit_psi = tidy_fit_psi.rename(columns={'level_0':
'Sample ID', 'level_1': 'Feature ID', (0): '$\\Psi$'})
if tidy_fit_psi.empty:
continue
ax = six.next(axes_iter)
violinplot(x='Feature ID', y='$\\Psi$', data=tidy_fit_psi,
color=color, ax=ax)
ax.set(title='{} {} {}'.format(fit, score, modality), xticks=[])
sns.despine()
fig.tight_layout()
|
plot_best_worst_fits
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(assignments_df, data, modality_col='Modality', score='$\\\\log_2 K$'):\n ncols = 2\n nrows = len(assignments_df.groupby(modality_col).groups.keys())\n fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(nrows * 4, \n ncols * 6))\n axes_iter = axes.flat\n fits = 'Highest', 'Lowest'\n for modality, df in assignments_df.groupby(modality_col):\n df = df.sort_values(score)\n color = MODALITY_TO_COLOR[modality]\n for fit in fits:\n if fit == 'Highest':\n ids = df['Feature ID'][-10:]\n else:\n ids = df['Feature ID'][:10]\n fit_psi = data[ids]\n tidy_fit_psi = fit_psi.stack().reset_index()\n tidy_fit_psi = tidy_fit_psi.rename(columns={'level_0':\n 'Sample ID', 'level_1': 'Feature ID', (0): '$\\\\Psi$'})\n if tidy_fit_psi.empty:\n continue\n ax = six.next(axes_iter)\n violinplot(x='Feature ID', y='$\\\\Psi$', data=tidy_fit_psi,\n color=color, ax=ax)\n ax.set(title='{} {} {}'.format(fit, score, modality), xticks=[])\n sns.despine()\n fig.tight_layout()\n",
"role": "user"
},
{
"content": "plot_best_worst_fits",
"role": "assistant"
}
] |
def x(x=None, y=None, data=None, bw=0.2, scale='width', inner=None, ax=None,
**kwargs):
if ax is None:
ax = plt.gca()
sns.violinplot(x, y, data=data, bw=bw, scale=scale, inner=inner, ax=ax,
**kwargs)
ax.set(ylim=(0, 1), yticks=(0, 0.5, 1))
return ax
|
violinplot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x=None, y=None, data=None, bw=0.2, scale='width', inner=None, ax=None,\n **kwargs):\n if ax is None:\n ax = plt.gca()\n sns.violinplot(x, y, data=data, bw=bw, scale=scale, inner=inner, ax=ax,\n **kwargs)\n ax.set(ylim=(0, 1), yticks=(0, 0.5, 1))\n return ax\n",
"role": "user"
},
{
"content": "violinplot",
"role": "assistant"
}
] |
def x(self, counts, phenotype_to_color=None, ax=None, percentages=True):
if percentages:
counts = 100 * (counts.T / counts.T.sum()).T
if ax is None:
ax = plt.gca()
full_width = 0.8
width = full_width / counts.shape[0]
for i, (group, series) in enumerate(counts.iterrows()):
left = np.arange(len(self.modality_order)) + i * width
height = [(series[i] if i in series else 0) for i in self.
modality_order]
color = phenotype_to_color[group]
ax.bar(left, height, width=width, color=color, label=group,
linewidth=0.5, edgecolor='k')
ylabel = 'Percentage of events' if percentages else 'Number of events'
ax.set_ylabel(ylabel)
ax.set_xticks(np.arange(len(self.modality_order)) + full_width / 2)
ax.set_xticklabels(self.modality_order)
ax.set_xlabel('Splicing modality')
ax.set_xlim(0, len(self.modality_order))
ax.legend(loc='best')
ax.grid(axis='y', linestyle='-', linewidth=0.5)
sns.despine()
|
bar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, counts, phenotype_to_color=None, ax=None, percentages=True):\n if percentages:\n counts = 100 * (counts.T / counts.T.sum()).T\n if ax is None:\n ax = plt.gca()\n full_width = 0.8\n width = full_width / counts.shape[0]\n for i, (group, series) in enumerate(counts.iterrows()):\n left = np.arange(len(self.modality_order)) + i * width\n height = [(series[i] if i in series else 0) for i in self.\n modality_order]\n color = phenotype_to_color[group]\n ax.bar(left, height, width=width, color=color, label=group,\n linewidth=0.5, edgecolor='k')\n ylabel = 'Percentage of events' if percentages else 'Number of events'\n ax.set_ylabel(ylabel)\n ax.set_xticks(np.arange(len(self.modality_order)) + full_width / 2)\n ax.set_xticklabels(self.modality_order)\n ax.set_xlabel('Splicing modality')\n ax.set_xlim(0, len(self.modality_order))\n ax.legend(loc='best')\n ax.grid(axis='y', linestyle='-', linewidth=0.5)\n sns.despine()\n",
"role": "user"
},
{
"content": "bar",
"role": "assistant"
}
] |
def x(self, event, logliks, logsumexps, renamed=''):
plotter = _ModelLoglikPlotter()
plotter.plot(event, logliks, logsumexps, self.modality_to_color,
renamed=renamed)
return plotter
|
event_estimation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event, logliks, logsumexps, renamed=''):\n plotter = _ModelLoglikPlotter()\n plotter.plot(event, logliks, logsumexps, self.modality_to_color,\n renamed=renamed)\n return plotter\n",
"role": "user"
},
{
"content": "event_estimation",
"role": "assistant"
}
] |
def x(self, fitted):
if fitted.shape[0] != len(self.modalities):
raise ValueError(
"This data doesn't look like it had the distance between it and the five modalities calculated"
)
return fitted.idxmin()
|
predict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fitted):\n if fitted.shape[0] != len(self.modalities):\n raise ValueError(\n \"This data doesn't look like it had the distance between it and the five modalities calculated\"\n )\n return fitted.idxmin()\n",
"role": "user"
},
{
"content": "predict",
"role": "assistant"
}
] |
def x(self, x):
x = x.copy()
x[x == 0] = VERY_SMALL_NUMBER
x[x == 1] = 1 - VERY_SMALL_NUMBER
return np.array([(np.log(prob) + rv.logpdf(x[np.isfinite(x)]).sum()) for
prob, rv in zip(self.prob_parameters, self.rvs)])
|
logliks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x):\n x = x.copy()\n x[x == 0] = VERY_SMALL_NUMBER\n x[x == 1] = 1 - VERY_SMALL_NUMBER\n return np.array([(np.log(prob) + rv.logpdf(x[np.isfinite(x)]).sum()) for\n prob, rv in zip(self.prob_parameters, self.rvs)])\n",
"role": "user"
},
{
"content": "logliks",
"role": "assistant"
}
] |
def x(number, decimal_places=2):
if number == np.round(number):
return str(int(number))
elif number < 1 and number > 0:
inverse = 1 / number
if int(inverse) == np.round(inverse):
return '\\frac{{1}}{{{}}}'.format(int(inverse))
else:
template = '{{:.{0}}}'.format(decimal_places)
return template.format(number)
|
nice_number_string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(number, decimal_places=2):\n if number == np.round(number):\n return str(int(number))\n elif number < 1 and number > 0:\n inverse = 1 / number\n if int(inverse) == np.round(inverse):\n return '\\\\frac{{1}}{{{}}}'.format(int(inverse))\n else:\n template = '{{:.{0}}}'.format(decimal_places)\n return template.format(number)\n",
"role": "user"
},
{
"content": "nice_number_string",
"role": "assistant"
}
] |
def x(self, n=1000, **kwargs):
kwargs.setdefault('palette', 'Purples')
dfs = []
for rv in self.rvs:
psi = rv.rvs(n)
df = pd.Series(psi, name=self.ylabel).to_frame()
alpha, beta = rv.args
alpha = self.nice_number_string(alpha, decimal_places=2)
beta = self.nice_number_string(beta, decimal_places=2)
df['parameters'] = '$\\alpha = {0}$\n$\\beta = {1}$'.format(alpha, beta
)
dfs.append(df)
data = pd.concat(dfs)
if 'ax' not in kwargs:
fig, ax = plt.subplots(figsize=(len(self.alphas) * 0.625, 4))
else:
ax = kwargs.pop('ax')
ax = violinplot(x='parameters', y=self.ylabel, data=data, ax=ax, **kwargs)
sns.despine(ax=ax)
return ax
|
violinplot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n=1000, **kwargs):\n kwargs.setdefault('palette', 'Purples')\n dfs = []\n for rv in self.rvs:\n psi = rv.rvs(n)\n df = pd.Series(psi, name=self.ylabel).to_frame()\n alpha, beta = rv.args\n alpha = self.nice_number_string(alpha, decimal_places=2)\n beta = self.nice_number_string(beta, decimal_places=2)\n df['parameters'] = '$\\\\alpha = {0}$\\n$\\\\beta = {1}$'.format(alpha, beta\n )\n dfs.append(df)\n data = pd.concat(dfs)\n if 'ax' not in kwargs:\n fig, ax = plt.subplots(figsize=(len(self.alphas) * 0.625, 4))\n else:\n ax = kwargs.pop('ax')\n ax = violinplot(x='parameters', y=self.ylabel, data=data, ax=ax, **kwargs)\n sns.despine(ax=ax)\n return ax\n",
"role": "user"
},
{
"content": "violinplot",
"role": "assistant"
}
] |
def x(self, feature, models):
x_non_na = feature[~feature.isnull()]
if x_non_na.empty:
return pd.DataFrame()
else:
dfs = []
for name, model in models.items():
df = model.single_feature_logliks(feature)
df['Modality'] = name
dfs.append(df)
return pd.concat(dfs, ignore_index=True)
|
single_feature_logliks_one_step
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, feature, models):\n x_non_na = feature[~feature.isnull()]\n if x_non_na.empty:\n return pd.DataFrame()\n else:\n dfs = []\n for name, model in models.items():\n df = model.single_feature_logliks(feature)\n df['Modality'] = name\n dfs.append(df)\n return pd.concat(dfs, ignore_index=True)\n",
"role": "user"
},
{
"content": "single_feature_logliks_one_step",
"role": "assistant"
}
] |
def x(self, data):
self.assert_less_than_or_equal_1(data.values.flat)
self.assert_non_negative(data.values.flat)
if isinstance(data, pd.DataFrame):
log2_bayes_factors = data.apply(self.single_feature_fit)
elif isinstance(data, pd.Series):
log2_bayes_factors = self.single_feature_fit(data)
log2_bayes_factors.name = self.score_name
return log2_bayes_factors
|
fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n self.assert_less_than_or_equal_1(data.values.flat)\n self.assert_non_negative(data.values.flat)\n if isinstance(data, pd.DataFrame):\n log2_bayes_factors = data.apply(self.single_feature_fit)\n elif isinstance(data, pd.Series):\n log2_bayes_factors = self.single_feature_fit(data)\n log2_bayes_factors.name = self.score_name\n return log2_bayes_factors\n",
"role": "user"
},
{
"content": "fit",
"role": "assistant"
}
] |
def x(self, log2_bayes_factors, reset_index=False):
if reset_index:
x = log2_bayes_factors.reset_index(level=0, drop=True)
else:
x = log2_bayes_factors
if isinstance(x, pd.DataFrame):
not_na = (x.notnull() > 0).any()
not_na_columns = not_na[not_na].index
x.ix[NULL_MODEL, not_na_columns] = self.logbf_thresh
elif isinstance(x, pd.Series):
x[NULL_MODEL] = self.logbf_thresh
return x.idxmax()
|
predict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, log2_bayes_factors, reset_index=False):\n if reset_index:\n x = log2_bayes_factors.reset_index(level=0, drop=True)\n else:\n x = log2_bayes_factors\n if isinstance(x, pd.DataFrame):\n not_na = (x.notnull() > 0).any()\n not_na_columns = not_na[not_na].index\n x.ix[NULL_MODEL, not_na_columns] = self.logbf_thresh\n elif isinstance(x, pd.Series):\n x[NULL_MODEL] = self.logbf_thresh\n return x.idxmax()\n",
"role": "user"
},
{
"content": "predict",
"role": "assistant"
}
] |
def x(self, feature):
self.assert_less_than_or_equal_1(feature.values)
self.assert_non_negative(feature.values)
logliks = self._single_feature_logliks_one_step(feature, self.
one_param_models)
logsumexps = self.logliks_to_logsumexp(logliks)
if (logsumexps <= self.logbf_thresh).all():
logliks_two_params = self._single_feature_logliks_one_step(feature,
self.two_param_models)
logliks = pd.concat([logliks, logliks_two_params])
return logliks
|
single_feature_logliks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, feature):\n self.assert_less_than_or_equal_1(feature.values)\n self.assert_non_negative(feature.values)\n logliks = self._single_feature_logliks_one_step(feature, self.\n one_param_models)\n logsumexps = self.logliks_to_logsumexp(logliks)\n if (logsumexps <= self.logbf_thresh).all():\n logliks_two_params = self._single_feature_logliks_one_step(feature,\n self.two_param_models)\n logliks = pd.concat([logliks, logliks_two_params])\n return logliks\n",
"role": "user"
},
{
"content": "single_feature_logliks",
"role": "assistant"
}
] |
def x(self, feature):
if np.isfinite(feature).sum() == 0:
series = pd.Series(index=MODALITY_ORDER)
else:
logbf_one_param = pd.Series({k: v.logsumexp_logliks(feature) for k,
v in self.one_param_models.items()})
if (logbf_one_param <= self.logbf_thresh).all():
logbf_two_param = pd.Series({k: v.logsumexp_logliks(feature) for
k, v in self.two_param_models.items()})
series = pd.concat([logbf_one_param, logbf_two_param])
series[NULL_MODEL] = self.logbf_thresh
else:
series = logbf_one_param
series.index.name = 'Modality'
series.name = self.score_name
return series
|
single_feature_fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, feature):\n if np.isfinite(feature).sum() == 0:\n series = pd.Series(index=MODALITY_ORDER)\n else:\n logbf_one_param = pd.Series({k: v.logsumexp_logliks(feature) for k,\n v in self.one_param_models.items()})\n if (logbf_one_param <= self.logbf_thresh).all():\n logbf_two_param = pd.Series({k: v.logsumexp_logliks(feature) for\n k, v in self.two_param_models.items()})\n series = pd.concat([logbf_one_param, logbf_two_param])\n series[NULL_MODEL] = self.logbf_thresh\n else:\n series = logbf_one_param\n series.index.name = 'Modality'\n series.name = self.score_name\n return series\n",
"role": "user"
},
{
"content": "single_feature_fit",
"role": "assistant"
}
] |
def x(self, n=1000, figsize=None, **kwargs):
if figsize is None:
nrows = len(self.models)
width = max(len(m.rvs) for name, m in self.models.items()) * 0.625
height = nrows * 2.5
figsize = width, height
fig, axes = plt.subplots(nrows=nrows, figsize=figsize)
for ax, model_name in zip(axes, MODALITY_ORDER):
try:
model = self.models[model_name]
cmap = MODALITY_TO_CMAP[model_name]
palette = cmap(np.linspace(0, 1, len(model.rvs)))
model.violinplot(n=n, ax=ax, palette=palette, **kwargs)
ax.set(title=model_name, xlabel='')
except KeyError:
continue
fig.tight_layout()
|
violinplot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n=1000, figsize=None, **kwargs):\n if figsize is None:\n nrows = len(self.models)\n width = max(len(m.rvs) for name, m in self.models.items()) * 0.625\n height = nrows * 2.5\n figsize = width, height\n fig, axes = plt.subplots(nrows=nrows, figsize=figsize)\n for ax, model_name in zip(axes, MODALITY_ORDER):\n try:\n model = self.models[model_name]\n cmap = MODALITY_TO_CMAP[model_name]\n palette = cmap(np.linspace(0, 1, len(model.rvs)))\n model.violinplot(n=n, ax=ax, palette=palette, **kwargs)\n ax.set(title=model_name, xlabel='')\n except KeyError:\n continue\n fig.tight_layout()\n",
"role": "user"
},
{
"content": "violinplot",
"role": "assistant"
}
] |
def x(bins, fmt=':g'):
return [('{' + fmt + '}-{' + fmt + '}').format(i, j) for i, j in zip(
bins, bins[1:])]
|
bin_range_strings
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(bins, fmt=':g'):\n return [('{' + fmt + '}-{' + fmt + '}').format(i, j) for i, j in zip(\n bins, bins[1:])]\n",
"role": "user"
},
{
"content": "bin_range_strings",
"role": "assistant"
}
] |
def x(data, bins):
if bins is None:
raise ValueError('Must specify "bins"')
if isinstance(data, pd.DataFrame):
binned = data.apply(lambda x: pd.Series(np.histogram(x, bins=bins,
range=(0, 1))[0]))
elif isinstance(data, pd.Series):
binned = pd.Series(np.histogram(data, bins=bins, range=(0, 1))[0])
else:
raise ValueError('`data` must be either a 1d vector or 2d matrix')
binned.index = bin_range_strings(bins)
binned = binned / binned.sum().astype(float)
return binned
|
binify
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, bins):\n if bins is None:\n raise ValueError('Must specify \"bins\"')\n if isinstance(data, pd.DataFrame):\n binned = data.apply(lambda x: pd.Series(np.histogram(x, bins=bins,\n range=(0, 1))[0]))\n elif isinstance(data, pd.Series):\n binned = pd.Series(np.histogram(data, bins=bins, range=(0, 1))[0])\n else:\n raise ValueError('`data` must be either a 1d vector or 2d matrix')\n binned.index = bin_range_strings(bins)\n binned = binned / binned.sum().astype(float)\n return binned\n",
"role": "user"
},
{
"content": "binify",
"role": "assistant"
}
] |
def x(p, q):
try:
_check_prob_dist(p)
_check_prob_dist(q)
except ValueError:
return np.nan
p = p.replace(0, np.nan)
q = q.replace(0, np.nan)
return (np.log2(p / q) * p).sum(axis=0)
|
kld
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(p, q):\n try:\n _check_prob_dist(p)\n _check_prob_dist(q)\n except ValueError:\n return np.nan\n p = p.replace(0, np.nan)\n q = q.replace(0, np.nan)\n return (np.log2(p / q) * p).sum(axis=0)\n",
"role": "user"
},
{
"content": "kld",
"role": "assistant"
}
] |
def x(p, q):
try:
_check_prob_dist(p)
_check_prob_dist(q)
except ValueError:
return np.nan
weight = 0.5
m = weight * (p + q)
result = weight * kld(p, m) + (1 - weight) * kld(q, m)
return result
|
jsd
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(p, q):\n try:\n _check_prob_dist(p)\n _check_prob_dist(q)\n except ValueError:\n return np.nan\n weight = 0.5\n m = weight * (p + q)\n result = weight * kld(p, m) + (1 - weight) * kld(q, m)\n return result\n",
"role": "user"
},
{
"content": "jsd",
"role": "assistant"
}
] |
def x(binned, base=2):
try:
_check_prob_dist(binned)
except ValueError:
np.nan
return -(np.log(binned) / np.log(base) * binned).sum(axis=0)
|
entropy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(binned, base=2):\n try:\n _check_prob_dist(binned)\n except ValueError:\n np.nan\n return -(np.log(binned) / np.log(base) * binned).sum(axis=0)\n",
"role": "user"
},
{
"content": "entropy",
"role": "assistant"
}
] |
def x(df1, df2, bins, pair=None):
binned1 = binify(df1, bins=bins).dropna(how='all', axis=1)
binned2 = binify(df2, bins=bins).dropna(how='all', axis=1)
binned1, binned2 = binned1.align(binned2, axis=1, join='inner')
series = np.sqrt(jsd(binned1, binned2))
series.name = pair
return series
|
binify_and_jsd
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df1, df2, bins, pair=None):\n binned1 = binify(df1, bins=bins).dropna(how='all', axis=1)\n binned2 = binify(df2, bins=bins).dropna(how='all', axis=1)\n binned1, binned2 = binned1.align(binned2, axis=1, join='inner')\n series = np.sqrt(jsd(binned1, binned2))\n series.name = pair\n return series\n",
"role": "user"
},
{
"content": "binify_and_jsd",
"role": "assistant"
}
] |
def x(data, groupby, bins, n_iter=100):
grouped = data.groupby(groupby)
jsds = []
seen = set([])
for phenotype1, df1 in grouped:
for phenotype2, df2 in grouped:
pair = tuple(sorted([phenotype1, phenotype2]))
if pair in seen:
continue
seen.add(pair)
if phenotype1 == phenotype2:
seriess = []
bs = cross_validation.Bootstrap(df1.shape[0], n_iter=n_iter,
train_size=0.5)
for i, (ind1, ind2) in enumerate(bs):
df1_subset = df1.iloc[ind1, :]
df2_subset = df2.iloc[ind2, :]
seriess.append(binify_and_jsd(df1_subset, df2_subset,
None, bins))
series = pd.concat(seriess, axis=1, names=None).mean(axis=1)
series.name = pair
jsds.append(series)
else:
series = binify_and_jsd(df1, df2, pair, bins)
jsds.append(series)
return pd.concat(jsds, axis=1)
|
cross_phenotype_jsd
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, groupby, bins, n_iter=100):\n grouped = data.groupby(groupby)\n jsds = []\n seen = set([])\n for phenotype1, df1 in grouped:\n for phenotype2, df2 in grouped:\n pair = tuple(sorted([phenotype1, phenotype2]))\n if pair in seen:\n continue\n seen.add(pair)\n if phenotype1 == phenotype2:\n seriess = []\n bs = cross_validation.Bootstrap(df1.shape[0], n_iter=n_iter,\n train_size=0.5)\n for i, (ind1, ind2) in enumerate(bs):\n df1_subset = df1.iloc[ind1, :]\n df2_subset = df2.iloc[ind2, :]\n seriess.append(binify_and_jsd(df1_subset, df2_subset,\n None, bins))\n series = pd.concat(seriess, axis=1, names=None).mean(axis=1)\n series.name = pair\n jsds.append(series)\n else:\n series = binify_and_jsd(df1, df2, pair, bins)\n jsds.append(series)\n return pd.concat(jsds, axis=1)\n",
"role": "user"
},
{
"content": "cross_phenotype_jsd",
"role": "assistant"
}
] |
def x(jsd_df):
jsd_2d = jsd_df.mean().reset_index()
jsd_2d = jsd_2d.rename(columns={'level_0': 'phenotype1', 'level_1':
'phenotype2', (0): 'jsd'})
jsd_2d = jsd_2d.pivot(index='phenotype1', columns='phenotype2', values=
'jsd')
return jsd_2d + np.tril(jsd_2d.T, -1)
|
jsd_df_to_2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(jsd_df):\n jsd_2d = jsd_df.mean().reset_index()\n jsd_2d = jsd_2d.rename(columns={'level_0': 'phenotype1', 'level_1':\n 'phenotype2', (0): 'jsd'})\n jsd_2d = jsd_2d.pivot(index='phenotype1', columns='phenotype2', values=\n 'jsd')\n return jsd_2d + np.tril(jsd_2d.T, -1)\n",
"role": "user"
},
{
"content": "jsd_df_to_2d",
"role": "assistant"
}
] |
def x(self, callback=None, limit=0):
if self._handle is None:
raise self.DeviceIsNotOpen()
self._callback = callback
wtypes.pcap_loop(self._handle, limit, self._callback_wrapper, None)
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, callback=None, limit=0):\n if self._handle is None:\n raise self.DeviceIsNotOpen()\n self._callback = callback\n wtypes.pcap_loop(self._handle, limit, self._callback_wrapper, None)\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self, packet_buffer):
if self._handle is None:
raise self.DeviceIsNotOpen()
buffer_length = len(packet_buffer)
buf_send = ctypes.cast(ctypes.create_string_buffer(packet_buffer,
buffer_length), ctypes.POINTER(ctypes.c_ubyte))
wtypes.pcap_sendpacket(self._handle, buf_send, buffer_length)
|
send
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, packet_buffer):\n if self._handle is None:\n raise self.DeviceIsNotOpen()\n buffer_length = len(packet_buffer)\n buf_send = ctypes.cast(ctypes.create_string_buffer(packet_buffer,\n buffer_length), ctypes.POINTER(ctypes.c_ubyte))\n wtypes.pcap_sendpacket(self._handle, buf_send, buffer_length)\n",
"role": "user"
},
{
"content": "send",
"role": "assistant"
}
] |
def x(pattern, callback):
device_name, desc = WinPcapDevices.get_matching_device(pattern)
if device_name is not None:
with WinPcap(device_name) as capture:
capture.run(callback=callback)
|
capture_on
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pattern, callback):\n device_name, desc = WinPcapDevices.get_matching_device(pattern)\n if device_name is not None:\n with WinPcap(device_name) as capture:\n capture.run(callback=callback)\n",
"role": "user"
},
{
"content": "capture_on",
"role": "assistant"
}
] |
def x(device_name, callback):
with WinPcap(device_name) as capture:
capture.run(callback=callback)
|
capture_on_device_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(device_name, callback):\n with WinPcap(device_name) as capture:\n capture.run(callback=callback)\n",
"role": "user"
},
{
"content": "capture_on_device_name",
"role": "assistant"
}
] |
def x(self, pattern, packet_buffer, callback=None, limit=10):
device_name, desc = WinPcapDevices.get_matching_device(pattern)
if device_name is not None:
with WinPcap(device_name) as capture:
capture.send(packet_buffer)
if callback is not None:
capture.run(callback=callback, limit=limit)
|
send_packet
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pattern, packet_buffer, callback=None, limit=10):\n device_name, desc = WinPcapDevices.get_matching_device(pattern)\n if device_name is not None:\n with WinPcap(device_name) as capture:\n capture.send(packet_buffer)\n if callback is not None:\n capture.run(callback=callback, limit=limit)\n",
"role": "user"
},
{
"content": "send_packet",
"role": "assistant"
}
] |
def x(sequence_name='default', initial_value=1, reset_value=None, *, nowait
=False, using=None):
from .models import Sequence
if reset_value is not None:
assert initial_value < reset_value
if using is None:
using = router.db_for_write(Sequence)
connection = connections[using]
if getattr(connection, 'pg_version', 0
) >= 90500 and reset_value is None and not nowait:
with connection.cursor() as cursor:
cursor.execute(UPSERT_QUERY, [sequence_name, initial_value])
last, = cursor.fetchone()
return last
else:
with transaction.atomic(using=using, savepoint=False):
sequence, created = Sequence.objects.select_for_update(nowait=
nowait).get_or_create(name=sequence_name, defaults={'last':
initial_value})
if not created:
sequence.last += 1
if reset_value is not None and sequence.last >= reset_value:
sequence.last = initial_value
sequence.save()
return sequence.last
|
get_next_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sequence_name='default', initial_value=1, reset_value=None, *, nowait\n =False, using=None):\n from .models import Sequence\n if reset_value is not None:\n assert initial_value < reset_value\n if using is None:\n using = router.db_for_write(Sequence)\n connection = connections[using]\n if getattr(connection, 'pg_version', 0\n ) >= 90500 and reset_value is None and not nowait:\n with connection.cursor() as cursor:\n cursor.execute(UPSERT_QUERY, [sequence_name, initial_value])\n last, = cursor.fetchone()\n return last\n else:\n with transaction.atomic(using=using, savepoint=False):\n sequence, created = Sequence.objects.select_for_update(nowait=\n nowait).get_or_create(name=sequence_name, defaults={'last':\n initial_value})\n if not created:\n sequence.last += 1\n if reset_value is not None and sequence.last >= reset_value:\n sequence.last = initial_value\n sequence.save()\n return sequence.last\n",
"role": "user"
},
{
"content": "get_next_value",
"role": "assistant"
}
] |
def x(self, final_line_count):
if self._lines_seen['version']:
self._process_version_lines()
self._process_plan_lines(final_line_count)
|
check
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, final_line_count):\n if self._lines_seen['version']:\n self._process_version_lines()\n self._process_plan_lines(final_line_count)\n",
"role": "user"
},
{
"content": "check",
"role": "assistant"
}
] |
def x(self):
if len(self._lines_seen['version']) > 1:
self._add_error(_('Multiple version lines appeared.'))
elif self._lines_seen['version'][0] != 1:
self._add_error(_('The version must be on the first line.'))
|
process_version_lines
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if len(self._lines_seen['version']) > 1:\n self._add_error(_('Multiple version lines appeared.'))\n elif self._lines_seen['version'][0] != 1:\n self._add_error(_('The version must be on the first line.'))\n",
"role": "user"
},
{
"content": "process_version_lines",
"role": "assistant"
}
] |
def x(self, final_line_count):
if not self._lines_seen['plan']:
self._add_error(_('Missing a plan.'))
return
if len(self._lines_seen['plan']) > 1:
self._add_error(_('Only one plan line is permitted per file.'))
return
plan, at_line = self._lines_seen['plan'][0]
if not self._plan_on_valid_line(at_line, final_line_count):
self._add_error(_(
'A plan must appear at the beginning or end of the file.'))
return
if plan.expected_tests != self._lines_seen['test']:
self._add_error(_(
'Expected {expected_count} tests but only {seen_count} ran.').
format(expected_count=plan.expected_tests, seen_count=self.
_lines_seen['test']))
|
process_plan_lines
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, final_line_count):\n if not self._lines_seen['plan']:\n self._add_error(_('Missing a plan.'))\n return\n if len(self._lines_seen['plan']) > 1:\n self._add_error(_('Only one plan line is permitted per file.'))\n return\n plan, at_line = self._lines_seen['plan'][0]\n if not self._plan_on_valid_line(at_line, final_line_count):\n self._add_error(_(\n 'A plan must appear at the beginning or end of the file.'))\n return\n if plan.expected_tests != self._lines_seen['test']:\n self._add_error(_(\n 'Expected {expected_count} tests but only {seen_count} ran.').\n format(expected_count=plan.expected_tests, seen_count=self.\n _lines_seen['test']))\n",
"role": "user"
},
{
"content": "process_plan_lines",
"role": "assistant"
}
] |
def x(self, at_line, final_line_count):
if at_line == 1 or at_line == final_line_count:
return True
after_version = self._lines_seen['version'] and self._lines_seen['version'
][0] == 1 and at_line == 2
if after_version:
return True
return False
|
plan_on_valid_line
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, at_line, final_line_count):\n if at_line == 1 or at_line == final_line_count:\n return True\n after_version = self._lines_seen['version'] and self._lines_seen['version'\n ][0] == 1 and at_line == 2\n if after_version:\n return True\n return False\n",
"role": "user"
},
{
"content": "plan_on_valid_line",
"role": "assistant"
}
] |
def x(self, bail):
self._add_error(_('Bailed: {reason}').format(reason=bail.reason))
|
handle_bail
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bail):\n self._add_error(_('Bailed: {reason}').format(reason=bail.reason))\n",
"role": "user"
},
{
"content": "handle_bail",
"role": "assistant"
}
] |
def x(self, skip_plan):
skip_line = Result(True, None, skip_plan.directive.text, Directive('SKIP'))
self._suite.addTest(Adapter(self._filename, skip_line))
|
handle_skipping_plan
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, skip_plan):\n skip_line = Result(True, None, skip_plan.directive.text, Directive('SKIP'))\n self._suite.addTest(Adapter(self._filename, skip_line))\n",
"role": "user"
},
{
"content": "handle_skipping_plan",
"role": "assistant"
}
] |
def x(self, message):
error_line = Result(False, None, message, Directive(''))
self._suite.addTest(Adapter(self._filename, error_line))
|
add_error
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, message):\n error_line = Result(False, None, message, Directive(''))\n self._suite.addTest(Adapter(self._filename, error_line))\n",
"role": "user"
},
{
"content": "add_error",
"role": "assistant"
}
] |
def x(exception):
exception_lines = traceback.format_exception(*exception)
lines = ''.join(exception_lines).splitlines(True)
return format_as_diagnostics(lines)
|
format_exception
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(exception):\n exception_lines = traceback.format_exception(*exception)\n lines = ''.join(exception_lines).splitlines(True)\n return format_as_diagnostics(lines)\n",
"role": "user"
},
{
"content": "format_exception",
"role": "assistant"
}
] |
def x(self, fh):
with fh:
try:
first_line = next(fh)
except StopIteration:
return
first_parsed = self.parse_line(first_line.rstrip())
fh_new = itertools.chain([first_line], fh)
if first_parsed.category == 'version' and first_parsed.version >= 13:
if ENABLE_VERSION_13:
fh_new = peekable(itertools.chain([first_line], fh))
self._try_peeking = True
else:
print(
"""
WARNING: Optional imports not found, TAP 13 output will be
ignored. To parse yaml, see requirements in docs:
https://tappy.readthedocs.io/en/latest/consumers.html#tap-version-13"""
)
for line in fh_new:
yield self.parse_line(line.rstrip(), fh_new)
|
parse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fh):\n with fh:\n try:\n first_line = next(fh)\n except StopIteration:\n return\n first_parsed = self.parse_line(first_line.rstrip())\n fh_new = itertools.chain([first_line], fh)\n if first_parsed.category == 'version' and first_parsed.version >= 13:\n if ENABLE_VERSION_13:\n fh_new = peekable(itertools.chain([first_line], fh))\n self._try_peeking = True\n else:\n print(\n \"\"\"\nWARNING: Optional imports not found, TAP 13 output will be\n ignored. To parse yaml, see requirements in docs:\n https://tappy.readthedocs.io/en/latest/consumers.html#tap-version-13\"\"\"\n )\n for line in fh_new:\n yield self.parse_line(line.rstrip(), fh_new)\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
] |
def x(self, text, fh=None):
match = self.ok.match(text)
if match:
return self._parse_result(True, match, fh)
match = self.not_ok.match(text)
if match:
return self._parse_result(False, match, fh)
if self.diagnostic.match(text):
return Diagnostic(text)
match = self.plan.match(text)
if match:
return self._parse_plan(match)
match = self.bail.match(text)
if match:
return Bail(match.group('reason'))
match = self.version.match(text)
if match:
return self._parse_version(match)
return Unknown()
|
parse_line
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text, fh=None):\n match = self.ok.match(text)\n if match:\n return self._parse_result(True, match, fh)\n match = self.not_ok.match(text)\n if match:\n return self._parse_result(False, match, fh)\n if self.diagnostic.match(text):\n return Diagnostic(text)\n match = self.plan.match(text)\n if match:\n return self._parse_plan(match)\n match = self.bail.match(text)\n if match:\n return Bail(match.group('reason'))\n match = self.version.match(text)\n if match:\n return self._parse_version(match)\n return Unknown()\n",
"role": "user"
},
{
"content": "parse_line",
"role": "assistant"
}
] |
def x(self, match):
expected_tests = int(match.group('expected'))
directive = Directive(match.group('directive'))
if directive.text and not directive.skip:
return Unknown()
return Plan(expected_tests, directive)
|
parse_plan
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, match):\n expected_tests = int(match.group('expected'))\n directive = Directive(match.group('directive'))\n if directive.text and not directive.skip:\n return Unknown()\n return Plan(expected_tests, directive)\n",
"role": "user"
},
{
"content": "parse_plan",
"role": "assistant"
}
] |
def x(self, ok, match, fh=None):
peek_match = None
try:
if fh is not None and self._try_peeking:
peek_match = self.yaml_block_start.match(fh.peek())
except StopIteration:
pass
if peek_match is None:
return Result(ok, number=match.group('number'), description=match.
group('description').strip(), directive=Directive(match.group(
'directive')))
indent = peek_match.group('indent')
concat_yaml = self._extract_yaml_block(indent, fh)
return Result(ok, number=match.group('number'), description=match.group
('description').strip(), directive=Directive(match.group(
'directive')), raw_yaml_block=concat_yaml)
|
parse_result
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ok, match, fh=None):\n peek_match = None\n try:\n if fh is not None and self._try_peeking:\n peek_match = self.yaml_block_start.match(fh.peek())\n except StopIteration:\n pass\n if peek_match is None:\n return Result(ok, number=match.group('number'), description=match.\n group('description').strip(), directive=Directive(match.group(\n 'directive')))\n indent = peek_match.group('indent')\n concat_yaml = self._extract_yaml_block(indent, fh)\n return Result(ok, number=match.group('number'), description=match.group\n ('description').strip(), directive=Directive(match.group(\n 'directive')), raw_yaml_block=concat_yaml)\n",
"role": "user"
},
{
"content": "parse_result",
"role": "assistant"
}
] |
def x(self, indent, fh):
raw_yaml = []
indent_match = re.compile('^{}'.format(indent))
try:
fh.next()
while indent_match.match(fh.peek()):
raw_yaml.append(fh.next().replace(indent, '', 1))
if self.yaml_block_end.match(fh.peek()):
fh.next()
break
except StopIteration:
pass
return '\n'.join(raw_yaml)
|
extract_yaml_block
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, indent, fh):\n raw_yaml = []\n indent_match = re.compile('^{}'.format(indent))\n try:\n fh.next()\n while indent_match.match(fh.peek()):\n raw_yaml.append(fh.next().replace(indent, '', 1))\n if self.yaml_block_end.match(fh.peek()):\n fh.next()\n break\n except StopIteration:\n pass\n return '\\n'.join(raw_yaml)\n",
"role": "user"
},
{
"content": "extract_yaml_block",
"role": "assistant"
}
] |
def x(self):
if LOAD_YAML and self._yaml_block is not None:
try:
yaml_dict = yaml.load(self._yaml_block)
return yaml_dict
except yaml.error.YAMLError:
print('Error parsing yaml block. Check formatting.')
return None
|
yaml_block
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if LOAD_YAML and self._yaml_block is not None:\n try:\n yaml_dict = yaml.load(self._yaml_block)\n return yaml_dict\n except yaml.error.YAMLError:\n print('Error parsing yaml block. Check formatting.')\n return None\n",
"role": "user"
},
{
"content": "yaml_block",
"role": "assistant"
}
] |
def x(self, files):
suite = unittest.TestSuite()
for filepath in files:
if os.path.isdir(filepath):
self._find_tests_in_directory(filepath, suite)
else:
suite.addTest(self.load_suite_from_file(filepath))
return suite
|
load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, files):\n suite = unittest.TestSuite()\n for filepath in files:\n if os.path.isdir(filepath):\n self._find_tests_in_directory(filepath, suite)\n else:\n suite.addTest(self.load_suite_from_file(filepath))\n return suite\n",
"role": "user"
},
{
"content": "load",
"role": "assistant"
}
] |
def x(self, filename):
suite = unittest.TestSuite()
rules = Rules(filename, suite)
if not os.path.exists(filename):
rules.handle_file_does_not_exist()
return suite
line_generator = self._parser.parse_file(filename)
return self._load_lines(filename, line_generator, suite, rules)
|
load_suite_from_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename):\n suite = unittest.TestSuite()\n rules = Rules(filename, suite)\n if not os.path.exists(filename):\n rules.handle_file_does_not_exist()\n return suite\n line_generator = self._parser.parse_file(filename)\n return self._load_lines(filename, line_generator, suite, rules)\n",
"role": "user"
},
{
"content": "load_suite_from_file",
"role": "assistant"
}
] |
def x(self):
suite = unittest.TestSuite()
rules = Rules('stream', suite)
line_generator = self._parser.parse_stdin()
return self._load_lines('stream', line_generator, suite, rules)
|
load_suite_from_stdin
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n suite = unittest.TestSuite()\n rules = Rules('stream', suite)\n line_generator = self._parser.parse_stdin()\n return self._load_lines('stream', line_generator, suite, rules)\n",
"role": "user"
},
{
"content": "load_suite_from_stdin",
"role": "assistant"
}
] |
def x(self, filename, line_generator, suite, rules):
line_counter = 0
for line in line_generator:
line_counter += 1
if line.category in self.ignored_lines:
continue
if line.category == 'test':
suite.addTest(Adapter(filename, line))
rules.saw_test()
elif line.category == 'plan':
if line.skip:
rules.handle_skipping_plan(line)
return suite
rules.saw_plan(line, line_counter)
elif line.category == 'bail':
rules.handle_bail(line)
return suite
elif line.category == 'version':
rules.saw_version_at(line_counter)
rules.check(line_counter)
return suite
|
load_lines
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, line_generator, suite, rules):\n line_counter = 0\n for line in line_generator:\n line_counter += 1\n if line.category in self.ignored_lines:\n continue\n if line.category == 'test':\n suite.addTest(Adapter(filename, line))\n rules.saw_test()\n elif line.category == 'plan':\n if line.skip:\n rules.handle_skipping_plan(line)\n return suite\n rules.saw_plan(line, line_counter)\n elif line.category == 'bail':\n rules.handle_bail(line)\n return suite\n elif line.category == 'version':\n rules.saw_version_at(line_counter)\n rules.check(line_counter)\n return suite\n",
"role": "user"
},
{
"content": "load_lines",
"role": "assistant"
}
] |
def x(self, class_name):
if self._test_cases.get(class_name) is None:
if self.streaming and self.header:
self._write_test_case_header(class_name, self.stream)
self._test_cases[class_name] = []
if self.combined:
self.combined_test_cases_seen.append(class_name)
|
track
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, class_name):\n if self._test_cases.get(class_name) is None:\n if self.streaming and self.header:\n self._write_test_case_header(class_name, self.stream)\n self._test_cases[class_name] = []\n if self.combined:\n self.combined_test_cases_seen.append(class_name)\n",
"role": "user"
},
{
"content": "track",
"role": "assistant"
}
] |
def x(self, total):
self.plan = total
if self.streaming:
if not self.combined_test_cases_seen:
self._write_plan(self.stream)
elif not self.combined:
raise ValueError(
'set_plan can only be used with combined or streaming output')
|
set_plan
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, total):\n self.plan = total\n if self.streaming:\n if not self.combined_test_cases_seen:\n self._write_plan(self.stream)\n elif not self.combined:\n raise ValueError(\n 'set_plan can only be used with combined or streaming output')\n",
"role": "user"
},
{
"content": "set_plan",
"role": "assistant"
}
] |
def x(self):
if self.streaming and not self._plan_written:
print('1..{0}'.format(self.combined_line_number), file=self.stream)
self._plan_written = True
return
if self.combined:
combined_file = 'testresults.tap'
if self.outdir:
combined_file = os.path.join(self.outdir, combined_file)
with open(combined_file, 'w') as out_file:
self._write_tap_version(out_file)
if self.plan is not None:
print('1..{0}'.format(self.plan), file=out_file)
for test_case in self.combined_test_cases_seen:
self.generate_tap_report(test_case, self._test_cases[
test_case], out_file)
if self.plan is None:
print('1..{0}'.format(self.combined_line_number), file=out_file
)
else:
for test_case, tap_lines in self._test_cases.items():
with open(self._get_tap_file_path(test_case), 'w') as out_file:
self._write_tap_version(out_file)
self.generate_tap_report(test_case, tap_lines, out_file)
|
generate_tap_reports
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.streaming and not self._plan_written:\n print('1..{0}'.format(self.combined_line_number), file=self.stream)\n self._plan_written = True\n return\n if self.combined:\n combined_file = 'testresults.tap'\n if self.outdir:\n combined_file = os.path.join(self.outdir, combined_file)\n with open(combined_file, 'w') as out_file:\n self._write_tap_version(out_file)\n if self.plan is not None:\n print('1..{0}'.format(self.plan), file=out_file)\n for test_case in self.combined_test_cases_seen:\n self.generate_tap_report(test_case, self._test_cases[\n test_case], out_file)\n if self.plan is None:\n print('1..{0}'.format(self.combined_line_number), file=out_file\n )\n else:\n for test_case, tap_lines in self._test_cases.items():\n with open(self._get_tap_file_path(test_case), 'w') as out_file:\n self._write_tap_version(out_file)\n self.generate_tap_report(test_case, tap_lines, out_file)\n",
"role": "user"
},
{
"content": "generate_tap_reports",
"role": "assistant"
}
] |
def x(self, stream):
if self.plan is not None:
if not self._plan_written:
print('1..{0}'.format(self.plan), file=stream)
self._plan_written = True
|
write_plan
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, stream):\n if self.plan is not None:\n if not self._plan_written:\n print('1..{0}'.format(self.plan), file=stream)\n self._plan_written = True\n",
"role": "user"
},
{
"content": "write_plan",
"role": "assistant"
}
] |
def x(self, test_case):
sanitized_test_case = test_case.translate(self._sanitized_table)
tap_file = sanitized_test_case + '.tap'
if self.outdir:
return os.path.join(self.outdir, tap_file)
return tap_file
|
get_tap_file_path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, test_case):\n sanitized_test_case = test_case.translate(self._sanitized_table)\n tap_file = sanitized_test_case + '.tap'\n if self.outdir:\n return os.path.join(self.outdir, tap_file)\n return tap_file\n",
"role": "user"
},
{
"content": "get_tap_file_path",
"role": "assistant"
}
] |
def x(argv=sys.argv, stream=sys.stderr):
args = parse_args(argv)
suite = build_suite(args)
runner = unittest.TextTestRunner(verbosity=args.verbose, stream=stream)
result = runner.run(suite)
return get_status(result)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(argv=sys.argv, stream=sys.stderr):\n args = parse_args(argv)\n suite = build_suite(args)\n runner = unittest.TextTestRunner(verbosity=args.verbose, stream=stream)\n result = runner.run(suite)\n return get_status(result)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(args):
loader = Loader()
if len(args.files) == 0 or args.files[0] == '-':
suite = loader.load_suite_from_stdin()
else:
suite = loader.load(args.files)
return suite
|
build_suite
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n loader = Loader()\n if len(args.files) == 0 or args.files[0] == '-':\n suite = loader.load_suite_from_stdin()\n else:\n suite = loader.load(args.files)\n return suite\n",
"role": "user"
},
{
"content": "build_suite",
"role": "assistant"
}
] |
def x(self, result):
result.addFailure(self, (Exception, Exception(), None))
test, err = result.failures[-1]
result.failures[-1] = test, ''
|
addFailure
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, result):\n result.addFailure(self, (Exception, Exception(), None))\n test, err = result.failures[-1]\n result.failures[-1] = test, ''\n",
"role": "user"
},
{
"content": "addFailure",
"role": "assistant"
}
] |
def x(mapper, connection, instance):
table = _get_tree_table(mapper)
db_pk = instance.get_pk_column()
table_pk = getattr(table.c, db_pk.name)
if instance.parent_id is None:
instance.left = 1
instance.right = 2
instance.level = instance.get_default_level()
tree_id = connection.scalar(select([func.max(table.c.tree_id) + 1])
) or 1
instance.tree_id = tree_id
else:
parent_pos_left, parent_pos_right, parent_tree_id, parent_level = (
connection.execute(select([table.c.lft, table.c.rgt, table.c.
tree_id, table.c.level]).where(table_pk == instance.parent_id))
.fetchone())
connection.execute(table.update(and_(table.c.rgt >=
parent_pos_right, table.c.tree_id == parent_tree_id)).values(
lft=case([(table.c.lft > parent_pos_right, table.c.lft + 2)],
else_=table.c.lft), rgt=case([(table.c.rgt >= parent_pos_right,
table.c.rgt + 2)], else_=table.c.rgt)))
instance.level = parent_level + 1
instance.tree_id = parent_tree_id
instance.left = parent_pos_right
instance.right = parent_pos_right + 1
|
mptt_before_insert
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mapper, connection, instance):\n table = _get_tree_table(mapper)\n db_pk = instance.get_pk_column()\n table_pk = getattr(table.c, db_pk.name)\n if instance.parent_id is None:\n instance.left = 1\n instance.right = 2\n instance.level = instance.get_default_level()\n tree_id = connection.scalar(select([func.max(table.c.tree_id) + 1])\n ) or 1\n instance.tree_id = tree_id\n else:\n parent_pos_left, parent_pos_right, parent_tree_id, parent_level = (\n connection.execute(select([table.c.lft, table.c.rgt, table.c.\n tree_id, table.c.level]).where(table_pk == instance.parent_id))\n .fetchone())\n connection.execute(table.update(and_(table.c.rgt >=\n parent_pos_right, table.c.tree_id == parent_tree_id)).values(\n lft=case([(table.c.lft > parent_pos_right, table.c.lft + 2)],\n else_=table.c.lft), rgt=case([(table.c.rgt >= parent_pos_right,\n table.c.rgt + 2)], else_=table.c.rgt)))\n instance.level = parent_level + 1\n instance.tree_id = parent_tree_id\n instance.left = parent_pos_right\n instance.right = parent_pos_right + 1\n",
"role": "user"
},
{
"content": "mptt_before_insert",
"role": "assistant"
}
] |
def x(mapper, connection, instance):
node_id = getattr(instance, instance.get_pk_name())
table = _get_tree_table(mapper)
db_pk = instance.get_pk_column()
default_level = instance.get_default_level()
table_pk = getattr(table.c, db_pk.name)
mptt_move_inside = None
left_sibling = None
left_sibling_tree_id = None
if hasattr(instance, 'mptt_move_inside'):
mptt_move_inside = instance.mptt_move_inside
if hasattr(instance, 'mptt_move_before'):
(right_sibling_left, right_sibling_right, right_sibling_parent,
right_sibling_level, right_sibling_tree_id) = (connection.
execute(select([table.c.lft, table.c.rgt, table.c.parent_id,
table.c.level, table.c.tree_id]).where(table_pk == instance.
mptt_move_before)).fetchone())
current_lvl_nodes = connection.execute(select([table.c.lft, table.c
.rgt, table.c.parent_id, table.c.tree_id]).where(and_(table.c.
level == right_sibling_level, table.c.tree_id ==
right_sibling_tree_id, table.c.lft < right_sibling_left))
).fetchall()
if current_lvl_nodes:
(left_sibling_left, left_sibling_right, left_sibling_parent,
left_sibling_tree_id) = current_lvl_nodes[-1]
instance.parent_id = left_sibling_parent
left_sibling = {'lft': left_sibling_left, 'rgt':
left_sibling_right, 'is_parent': False}
elif not right_sibling_parent:
left_sibling_tree_id = right_sibling_tree_id - 1
if hasattr(instance, 'mptt_move_after'):
(left_sibling_left, left_sibling_right, left_sibling_parent,
left_sibling_tree_id) = (connection.execute(select([table.c.lft,
table.c.rgt, table.c.parent_id, table.c.tree_id]).where(
table_pk == instance.mptt_move_after)).fetchone())
instance.parent_id = left_sibling_parent
left_sibling = {'lft': left_sibling_left, 'rgt': left_sibling_right,
'is_parent': False}
""" Get subtree from node
SELECT id, name, level FROM my_tree
WHERE left_key >= $left_key AND right_key <= $right_key
ORDER BY left_key
"""
subtree = connection.execute(select([table_pk]).where(and_(table.c.lft >=
instance.left, table.c.rgt <= instance.right, table.c.tree_id ==
instance.tree_id)).order_by(table.c.lft)).fetchall()
subtree = [x[0] for x in subtree]
""" step 0: Initialize parameters.
Put there left and right position of moving node
"""
(node_pos_left, node_pos_right, node_tree_id, node_parent_id, node_level
) = (connection.execute(select([table.c.lft, table.c.rgt, table.c.
tree_id, table.c.parent_id, table.c.level]).where(table_pk ==
node_id)).fetchone())
if not left_sibling and str(node_parent_id) == str(instance.parent_id
) and not mptt_move_inside:
if left_sibling_tree_id is None:
return
if instance.parent_id is not None:
(parent_id, parent_pos_right, parent_pos_left, parent_tree_id,
parent_level) = (connection.execute(select([table_pk, table.c.
rgt, table.c.lft, table.c.tree_id, table.c.level]).where(
table_pk == instance.parent_id)).fetchone())
if node_parent_id is None and node_tree_id == parent_tree_id:
instance.parent_id = None
return
mptt_before_delete(mapper, connection, instance, False)
if instance.parent_id is not None:
""" Put there right position of new parent node (there moving node
should be moved)
"""
(parent_id, parent_pos_right, parent_pos_left, parent_tree_id,
parent_level) = (connection.execute(select([table_pk, table.c.
rgt, table.c.lft, table.c.tree_id, table.c.level]).where(
table_pk == instance.parent_id)).fetchone())
node_size = node_pos_right - node_pos_left + 1
if not left_sibling:
left_sibling = {'lft': parent_pos_left, 'rgt': parent_pos_right,
'is_parent': True}
instance.tree_id = parent_tree_id
_insert_subtree(table, connection, node_size, node_pos_left,
node_pos_right, parent_pos_left, parent_pos_right, subtree,
parent_tree_id, parent_level, node_level, left_sibling, table_pk)
else:
if left_sibling_tree_id or left_sibling_tree_id == 0:
tree_id = left_sibling_tree_id + 1
connection.execute(table.update(table.c.tree_id >
left_sibling_tree_id).values(tree_id=table.c.tree_id + 1))
else:
tree_id = connection.scalar(select([func.max(table.c.tree_id) + 1])
)
connection.execute(table.update(table_pk.in_(subtree)).values(lft=
table.c.lft - node_pos_left + 1, rgt=table.c.rgt -
node_pos_left + 1, level=table.c.level - node_level +
default_level, tree_id=tree_id))
|
mptt_before_update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mapper, connection, instance):\n node_id = getattr(instance, instance.get_pk_name())\n table = _get_tree_table(mapper)\n db_pk = instance.get_pk_column()\n default_level = instance.get_default_level()\n table_pk = getattr(table.c, db_pk.name)\n mptt_move_inside = None\n left_sibling = None\n left_sibling_tree_id = None\n if hasattr(instance, 'mptt_move_inside'):\n mptt_move_inside = instance.mptt_move_inside\n if hasattr(instance, 'mptt_move_before'):\n (right_sibling_left, right_sibling_right, right_sibling_parent,\n right_sibling_level, right_sibling_tree_id) = (connection.\n execute(select([table.c.lft, table.c.rgt, table.c.parent_id,\n table.c.level, table.c.tree_id]).where(table_pk == instance.\n mptt_move_before)).fetchone())\n current_lvl_nodes = connection.execute(select([table.c.lft, table.c\n .rgt, table.c.parent_id, table.c.tree_id]).where(and_(table.c.\n level == right_sibling_level, table.c.tree_id ==\n right_sibling_tree_id, table.c.lft < right_sibling_left))\n ).fetchall()\n if current_lvl_nodes:\n (left_sibling_left, left_sibling_right, left_sibling_parent,\n left_sibling_tree_id) = current_lvl_nodes[-1]\n instance.parent_id = left_sibling_parent\n left_sibling = {'lft': left_sibling_left, 'rgt':\n left_sibling_right, 'is_parent': False}\n elif not right_sibling_parent:\n left_sibling_tree_id = right_sibling_tree_id - 1\n if hasattr(instance, 'mptt_move_after'):\n (left_sibling_left, left_sibling_right, left_sibling_parent,\n left_sibling_tree_id) = (connection.execute(select([table.c.lft,\n table.c.rgt, table.c.parent_id, table.c.tree_id]).where(\n table_pk == instance.mptt_move_after)).fetchone())\n instance.parent_id = left_sibling_parent\n left_sibling = {'lft': left_sibling_left, 'rgt': left_sibling_right,\n 'is_parent': False}\n \"\"\" Get subtree from node\n\n SELECT id, name, level FROM my_tree\n WHERE left_key >= $left_key AND right_key <= $right_key\n ORDER BY left_key\n \"\"\"\n subtree = connection.execute(select([table_pk]).where(and_(table.c.lft >=\n instance.left, table.c.rgt <= instance.right, table.c.tree_id ==\n instance.tree_id)).order_by(table.c.lft)).fetchall()\n subtree = [x[0] for x in subtree]\n \"\"\" step 0: Initialize parameters.\n\n Put there left and right position of moving node\n \"\"\"\n (node_pos_left, node_pos_right, node_tree_id, node_parent_id, node_level\n ) = (connection.execute(select([table.c.lft, table.c.rgt, table.c.\n tree_id, table.c.parent_id, table.c.level]).where(table_pk ==\n node_id)).fetchone())\n if not left_sibling and str(node_parent_id) == str(instance.parent_id\n ) and not mptt_move_inside:\n if left_sibling_tree_id is None:\n return\n if instance.parent_id is not None:\n (parent_id, parent_pos_right, parent_pos_left, parent_tree_id,\n parent_level) = (connection.execute(select([table_pk, table.c.\n rgt, table.c.lft, table.c.tree_id, table.c.level]).where(\n table_pk == instance.parent_id)).fetchone())\n if node_parent_id is None and node_tree_id == parent_tree_id:\n instance.parent_id = None\n return\n mptt_before_delete(mapper, connection, instance, False)\n if instance.parent_id is not None:\n \"\"\" Put there right position of new parent node (there moving node\n should be moved)\n \"\"\"\n (parent_id, parent_pos_right, parent_pos_left, parent_tree_id,\n parent_level) = (connection.execute(select([table_pk, table.c.\n rgt, table.c.lft, table.c.tree_id, table.c.level]).where(\n table_pk == instance.parent_id)).fetchone())\n node_size = node_pos_right - node_pos_left + 1\n if not left_sibling:\n left_sibling = {'lft': parent_pos_left, 'rgt': parent_pos_right,\n 'is_parent': True}\n instance.tree_id = parent_tree_id\n _insert_subtree(table, connection, node_size, node_pos_left,\n node_pos_right, parent_pos_left, parent_pos_right, subtree,\n parent_tree_id, parent_level, node_level, left_sibling, table_pk)\n else:\n if left_sibling_tree_id or left_sibling_tree_id == 0:\n tree_id = left_sibling_tree_id + 1\n connection.execute(table.update(table.c.tree_id >\n left_sibling_tree_id).values(tree_id=table.c.tree_id + 1))\n else:\n tree_id = connection.scalar(select([func.max(table.c.tree_id) + 1])\n )\n connection.execute(table.update(table_pk.in_(subtree)).values(lft=\n table.c.lft - node_pos_left + 1, rgt=table.c.rgt -\n node_pos_left + 1, level=table.c.level - node_level +\n default_level, tree_id=tree_id))\n",
"role": "user"
},
{
"content": "mptt_before_update",
"role": "assistant"
}
] |
def x(self, session, context):
instances = self.instances[session]
while instances:
instance = instances.pop()
if instance not in session:
continue
parent = self.get_parent_value(instance)
while parent != NO_VALUE and parent is not None:
instances.discard(parent)
session.expire(parent, ['left', 'right', 'tree_id', 'level'])
parent = self.get_parent_value(parent)
else:
session.expire(instance, ['left', 'right', 'tree_id', 'level'])
self.expire_session_for_children(session, instance)
|
after_flush_postexec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session, context):\n instances = self.instances[session]\n while instances:\n instance = instances.pop()\n if instance not in session:\n continue\n parent = self.get_parent_value(instance)\n while parent != NO_VALUE and parent is not None:\n instances.discard(parent)\n session.expire(parent, ['left', 'right', 'tree_id', 'level'])\n parent = self.get_parent_value(parent)\n else:\n session.expire(instance, ['left', 'right', 'tree_id', 'level'])\n self.expire_session_for_children(session, instance)\n",
"role": "user"
},
{
"content": "after_flush_postexec",
"role": "assistant"
}
] |
def x(self, other, inclusive=False):
if inclusive:
return (self.tree_id == other.tree_id) & (self.left <= other.left) & (
other.right <= self.right)
return (self.tree_id == other.tree_id) & (self.left < other.left) & (other
.right < self.right)
|
is_ancestor_of
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, other, inclusive=False):\n if inclusive:\n return (self.tree_id == other.tree_id) & (self.left <= other.left) & (\n other.right <= self.right)\n return (self.tree_id == other.tree_id) & (self.left < other.left) & (other\n .right < self.right)\n",
"role": "user"
},
{
"content": "is_ancestor_of",
"role": "assistant"
}
] |
def x(self, parent_id):
session = Session.object_session(self)
self.parent_id = parent_id
self.mptt_move_inside = parent_id
session.add(self)
|
move_inside
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parent_id):\n session = Session.object_session(self)\n self.parent_id = parent_id\n self.mptt_move_inside = parent_id\n session.add(self)\n",
"role": "user"
},
{
"content": "move_inside",
"role": "assistant"
}
] |
def x(self, node_id):
session = Session.object_session(self)
self.parent_id = self.parent_id
self.mptt_move_after = node_id
session.add(self)
|
move_after
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, node_id):\n session = Session.object_session(self)\n self.parent_id = self.parent_id\n self.mptt_move_after = node_id\n session.add(self)\n",
"role": "user"
},
{
"content": "move_after",
"role": "assistant"
}
] |
def x(self, node_id):
session = Session.object_session(self)
table = _get_tree_table(self.__mapper__)
pk = getattr(table.c, self.get_pk_column().name)
node = session.query(table).filter(pk == node_id).one()
self.parent_id = node.parent_id
self.mptt_move_before = node_id
session.add(self)
|
move_before
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, node_id):\n session = Session.object_session(self)\n table = _get_tree_table(self.__mapper__)\n pk = getattr(table.c, self.get_pk_column().name)\n node = session.query(table).filter(pk == node_id).one()\n self.parent_id = node.parent_id\n self.mptt_move_before = node_id\n session.add(self)\n",
"role": "user"
},
{
"content": "move_before",
"role": "assistant"
}
] |
def x(self):
table = _get_tree_table(self.__mapper__)
session = Session.object_session(self)
current_lvl_nodes = session.query(table).filter_by(level=self.level
).filter_by(tree_id=self.tree_id).filter(table.c.lft < self.left
).order_by(table.c.lft).all()
if current_lvl_nodes:
return current_lvl_nodes[-1]
return None
|
leftsibling_in_level
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n table = _get_tree_table(self.__mapper__)\n session = Session.object_session(self)\n current_lvl_nodes = session.query(table).filter_by(level=self.level\n ).filter_by(tree_id=self.tree_id).filter(table.c.lft < self.left\n ).order_by(table.c.lft).all()\n if current_lvl_nodes:\n return current_lvl_nodes[-1]\n return None\n",
"role": "user"
},
{
"content": "leftsibling_in_level",
"role": "assistant"
}
] |
def x(cls, node, json, json_fields):
if json:
pk_name = node.get_pk_name()
result = {'id': getattr(node, pk_name), 'label': node.__repr__()}
if json_fields:
result.update(json_fields(node))
else:
result = {'node': node}
return result
|
node_to_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, node, json, json_fields):\n if json:\n pk_name = node.get_pk_name()\n result = {'id': getattr(node, pk_name), 'label': node.__repr__()}\n if json_fields:\n result.update(json_fields(node))\n else:\n result = {'node': node}\n return result\n",
"role": "user"
},
{
"content": "node_to_dict",
"role": "assistant"
}
] |
def x(cls, session=None, json=False, json_fields=None, query=None):
tree = []
nodes_of_level = {}
nodes = cls._base_query(session)
if query:
nodes = query(nodes)
nodes = cls._base_order(nodes).all()
min_level = min([node.level for node in nodes] or [None])
def x(node):
return getattr(node, node.get_pk_name())
for node in nodes:
result = cls._node_to_dict(node, json, json_fields)
parent_id = node.parent_id
if node.level != min_level:
if parent_id not in nodes_of_level.keys():
continue
if 'children' not in nodes_of_level[parent_id]:
nodes_of_level[parent_id]['children'] = []
nl = nodes_of_level[parent_id]['children']
nl.append(result)
nodes_of_level[get_node_id(node)] = nl[-1]
else:
tree.append(result)
nodes_of_level[get_node_id(node)] = tree[-1]
return tree
|
get_tree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, session=None, json=False, json_fields=None, query=None):\n tree = []\n nodes_of_level = {}\n nodes = cls._base_query(session)\n if query:\n nodes = query(nodes)\n nodes = cls._base_order(nodes).all()\n min_level = min([node.level for node in nodes] or [None])\n\n def x(node):\n return getattr(node, node.get_pk_name())\n for node in nodes:\n result = cls._node_to_dict(node, json, json_fields)\n parent_id = node.parent_id\n if node.level != min_level:\n if parent_id not in nodes_of_level.keys():\n continue\n if 'children' not in nodes_of_level[parent_id]:\n nodes_of_level[parent_id]['children'] = []\n nl = nodes_of_level[parent_id]['children']\n nl.append(result)\n nodes_of_level[get_node_id(node)] = nl[-1]\n else:\n tree.append(result)\n nodes_of_level[get_node_id(node)] = tree[-1]\n return tree\n",
"role": "user"
},
{
"content": "get_tree",
"role": "assistant"
}
] |
def x(self, session=None, json=False, json_fields=None):
if not session:
session = object_session(self)
return self.get_tree(session, json=json, json_fields=json_fields, query
=self._drilldown_query)
|
drilldown_tree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session=None, json=False, json_fields=None):\n if not session:\n session = object_session(self)\n return self.get_tree(session, json=json, json_fields=json_fields, query\n =self._drilldown_query)\n",
"role": "user"
},
{
"content": "drilldown_tree",
"role": "assistant"
}
] |
def x(self, session=None, order=desc):
table = self.__class__
query = self._base_query_obj(session=session)
query = query.filter(table.is_ancestor_of(self, inclusive=True))
return self._base_order(query, order=order)
|
path_to_root
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session=None, order=desc):\n table = self.__class__\n query = self._base_query_obj(session=session)\n query = query.filter(table.is_ancestor_of(self, inclusive=True))\n return self._base_order(query, order=order)\n",
"role": "user"
},
{
"content": "path_to_root",
"role": "assistant"
}
] |
def x(cls, session, tree_id):
session.query(cls).filter_by(tree_id=tree_id).update({cls.left: 0, cls.
right: 0, cls.level: 0})
top = session.query(cls).filter_by(parent_id=None).filter_by(tree_id=
tree_id).one()
top.left = left = 1
top.right = right = 2
top.level = level = cls.get_default_level()
def x(children, left, right, level):
level = level + 1
for i, node in enumerate(children):
same_level_right = children[i - 1].right
left = left + 1
if i > 0:
left = left + 1
if same_level_right:
left = same_level_right + 1
right = left + 1
node.left = left
node.right = right
parent = node.parent
j = 0
while parent:
parent.right = right + 1 + j
parent = parent.parent
j += 1
node.level = level
recursive(node.children, left, right, level)
recursive(top.children, left, right, level)
|
rebuild_tree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, session, tree_id):\n session.query(cls).filter_by(tree_id=tree_id).update({cls.left: 0, cls.\n right: 0, cls.level: 0})\n top = session.query(cls).filter_by(parent_id=None).filter_by(tree_id=\n tree_id).one()\n top.left = left = 1\n top.right = right = 2\n top.level = level = cls.get_default_level()\n\n def x(children, left, right, level):\n level = level + 1\n for i, node in enumerate(children):\n same_level_right = children[i - 1].right\n left = left + 1\n if i > 0:\n left = left + 1\n if same_level_right:\n left = same_level_right + 1\n right = left + 1\n node.left = left\n node.right = right\n parent = node.parent\n j = 0\n while parent:\n parent.right = right + 1 + j\n parent = parent.parent\n j += 1\n node.level = level\n recursive(node.children, left, right, level)\n recursive(top.children, left, right, level)\n",
"role": "user"
},
{
"content": "rebuild_tree",
"role": "assistant"
}
] |
def x(cls, session, tree_id=None):
trees = session.query(cls).filter_by(parent_id=None)
if tree_id:
trees = trees.filter_by(tree_id=tree_id)
for tree in trees:
cls.rebuild_tree(session, tree.tree_id)
|
rebuild
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, session, tree_id=None):\n trees = session.query(cls).filter_by(parent_id=None)\n if tree_id:\n trees = trees.filter_by(tree_id=tree_id)\n for tree in trees:\n cls.rebuild_tree(session, tree.tree_id)\n",
"role": "user"
},
{
"content": "rebuild",
"role": "assistant"
}
] |
def x(mt, x):
if x < len(mt.qx):
return mt.qx[x]
else:
return 0
|
qx
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x):\n if x < len(mt.qx):\n return mt.qx[x]\n else:\n return 0\n",
"role": "user"
},
{
"content": "qx",
"role": "assistant"
}
] |
def x(mt, x):
if x < len(mt.lx):
return mt.lx[x]
else:
return 0
|
lx
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x):\n if x < len(mt.lx):\n return mt.lx[x]\n else:\n return 0\n",
"role": "user"
},
{
"content": "lx",
"role": "assistant"
}
] |
def x(mt, x):
end_x_val = mt.lx.index(0)
if x < end_x_val:
return mt.lx[x] - mt.lx[x + 1]
else:
return 0.0
|
dx
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x):\n end_x_val = mt.lx.index(0)\n if x < end_x_val:\n return mt.lx[x] - mt.lx[x + 1]\n else:\n return 0.0\n",
"role": "user"
},
{
"content": "dx",
"role": "assistant"
}
] |
def x(mt, x, t):
""" npx : Returns n years survival probability at age x """
return mt.lx[x + t] / mt.lx[x]
|
tpx
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, t):\n \"\"\" npx : Returns n years survival probability at age x \"\"\"\n return mt.lx[x + t] / mt.lx[x]\n",
"role": "user"
},
{
"content": "tpx",
"role": "assistant"
}
] |
def x(mt, x, t):
return (mt.lx[x] - mt.lx[x + t]) / mt.lx[x]
|
tqx
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, t):\n return (mt.lx[x] - mt.lx[x + t]) / mt.lx[x]\n",
"role": "user"
},
{
"content": "tqx",
"role": "assistant"
}
] |
def x(mt, x, n, t):
return tpx(mt, x, t) * qx(mt, x + n)
|
tqxn
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, n, t):\n return tpx(mt, x, t) * qx(mt, x + n)\n",
"role": "user"
},
{
"content": "tqxn",
"role": "assistant"
}
] |
def x(mt, x):
sum1 = 0
for j in mt.lx[x + 1:-1]:
sum1 += j
try:
return sum1 / mt.lx[x] + 0.5
except:
return 0
|
ex
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x):\n sum1 = 0\n for j in mt.lx[x + 1:-1]:\n sum1 += j\n try:\n return sum1 / mt.lx[x] + 0.5\n except:\n return 0\n",
"role": "user"
},
{
"content": "ex",
"role": "assistant"
}
] |
def x(mt, x):
n = len(mt.Nx)
sum1 = 0
for j in range(x, n):
k = mt.Nx[j]
sum1 += k
return sum1
|
Sx
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x):\n n = len(mt.Nx)\n sum1 = 0\n for j in range(x, n):\n k = mt.Nx[j]\n sum1 += k\n return sum1\n",
"role": "user"
},
{
"content": "Sx",
"role": "assistant"
}
] |
def x(mt, x):
return (1 / (1 + mt.i)) ** (x + 1) * mt.dx[x] * (1 + mt.i) ** 0.5
|
Cx
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x):\n return (1 / (1 + mt.i)) ** (x + 1) * mt.dx[x] * (1 + mt.i) ** 0.5\n",
"role": "user"
},
{
"content": "Cx",
"role": "assistant"
}
] |
def x(mt, x):
n = len(mt.Cx)
sum1 = 0
for j in range(x, n):
k = mt.Cx[j]
sum1 += k
return sum1
|
Mx
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x):\n n = len(mt.Cx)\n sum1 = 0\n for j in range(x, n):\n k = mt.Cx[j]\n sum1 += k\n return sum1\n",
"role": "user"
},
{
"content": "Mx",
"role": "assistant"
}
] |
def x(mt, x, n):
return mt.Dx[x + n] / mt.Dx[x]
|
nEx
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, n):\n return mt.Dx[x + n] / mt.Dx[x]\n",
"role": "user"
},
{
"content": "nEx",
"role": "assistant"
}
] |
def x(mt, x, n):
return (mt.Mx[x] - mt.Mx[x + n]) / mt.Dx[x]
|
Axn
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, n):\n return (mt.Mx[x] - mt.Mx[x + n]) / mt.Dx[x]\n",
"role": "user"
},
{
"content": "Axn",
"role": "assistant"
}
] |
def x(mt, x, n):
return (mt.Mx[x] - mt.Mx[x + n]) / mt.Dx[x] + mt.Dx[x + n] / mt.Dx[x]
|
AExn
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, n):\n return (mt.Mx[x] - mt.Mx[x + n]) / mt.Dx[x] + mt.Dx[x + n] / mt.Dx[x]\n",
"role": "user"
},
{
"content": "AExn",
"role": "assistant"
}
] |
def x(mt, x, t):
return mt.Mx[x + t] / mt.Dx[x]
|
tAx
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, t):\n return mt.Mx[x + t] / mt.Dx[x]\n",
"role": "user"
},
{
"content": "tAx",
"role": "assistant"
}
] |
def x(mt, x, q):
q = float(q)
j = (mt.i - q) / (1 + q)
mtj = Actuarial(nt=mt.nt, i=j)
return Ax(mtj, x)
|
qAx
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, q):\n q = float(q)\n j = (mt.i - q) / (1 + q)\n mtj = Actuarial(nt=mt.nt, i=j)\n return Ax(mtj, x)\n",
"role": "user"
},
{
"content": "qAx",
"role": "assistant"
}
] |
def x(mt, x, n, m=1):
if m == 1:
return (mt.Nx[x] - mt.Nx[x + n]) / mt.Dx[x]
else:
return (mt.Nx[x] - mt.Nx[x + n]) / mt.Dx[x] - float(m - 1) / float(
m * 2) * (1 - nEx(mt, x, n))
|
aaxn
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, n, m=1):\n if m == 1:\n return (mt.Nx[x] - mt.Nx[x + n]) / mt.Dx[x]\n else:\n return (mt.Nx[x] - mt.Nx[x + n]) / mt.Dx[x] - float(m - 1) / float(\n m * 2) * (1 - nEx(mt, x, n))\n",
"role": "user"
},
{
"content": "aaxn",
"role": "assistant"
}
] |
def x(mt, x, m=1):
return mt.Nx[x] / mt.Dx[x] - float(m - 1) / float(m * 2)
|
aax
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, m=1):\n return mt.Nx[x] / mt.Dx[x] - float(m - 1) / float(m * 2)\n",
"role": "user"
},
{
"content": "aax",
"role": "assistant"
}
] |
def x(mt, x, m=1):
return mt.Nx[x] / mt.Dx[x] - 1 + float(m - 1) / float(m * 2)
|
ax
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, m=1):\n return mt.Nx[x] / mt.Dx[x] - 1 + float(m - 1) / float(m * 2)\n",
"role": "user"
},
{
"content": "ax",
"role": "assistant"
}
] |
def x(mt, x, t, m=1):
return mt.Nx[x + t] / mt.Dx[x] - float(m - 1) / float(m * 2) * (1 - nEx
(mt, x, t))
|
taax
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, t, m=1):\n return mt.Nx[x + t] / mt.Dx[x] - float(m - 1) / float(m * 2) * (1 - nEx\n (mt, x, t))\n",
"role": "user"
},
{
"content": "taax",
"role": "assistant"
}
] |
def x(mt, x, n, *args):
return (Sx(mt, x) - Sx(nt, x + n) - n * Nx(nt, x + n)) / Dx(nt, x)
|
Iaaxn
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, n, *args):\n return (Sx(mt, x) - Sx(nt, x + n) - n * Nx(nt, x + n)) / Dx(nt, x)\n",
"role": "user"
},
{
"content": "Iaaxn",
"role": "assistant"
}
] |
def x(mt, x, n, *args):
return (Sx(mt, x + 1) - Sx(mt, x + n + 1) - n * Nx(mt, x + n + 1)) / Dx(mt,
x)
|
Iaxn
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, n, *args):\n return (Sx(mt, x + 1) - Sx(mt, x + n + 1) - n * Nx(mt, x + n + 1)) / Dx(mt,\n x)\n",
"role": "user"
},
{
"content": "Iaxn",
"role": "assistant"
}
] |
def x(mt, x, *args):
return Sx(mt, x) / Dx(mt, x)
|
Iaax
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, *args):\n return Sx(mt, x) / Dx(mt, x)\n",
"role": "user"
},
{
"content": "Iaax",
"role": "assistant"
}
] |
def x(mt, x, *args):
return Sx(mt, x + 1) / Dx(mt, x)
|
Iax
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, *args):\n return Sx(mt, x + 1) / Dx(mt, x)\n",
"role": "user"
},
{
"content": "Iax",
"role": "assistant"
}
] |
def x(mt, x, t):
return (Sx(mt, x) - Sx(mt, x + t)) / Dx(mt, x)
|
Itaax
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, t):\n return (Sx(mt, x) - Sx(mt, x + t)) / Dx(mt, x)\n",
"role": "user"
},
{
"content": "Itaax",
"role": "assistant"
}
] |
def x(mt, x, t):
return (Sx(mt, x + 1) - Sx(mt, x + t + 1)) / Dx(mt, x)
|
Itax
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, t):\n return (Sx(mt, x + 1) - Sx(mt, x + t + 1)) / Dx(mt, x)\n",
"role": "user"
},
{
"content": "Itax",
"role": "assistant"
}
] |
def x(mt, x, q, m=1):
q = float(q)
j = (mt.i - q) / (1 + q)
mtj = Actuarial(nt=mt.nt, i=j)
return ax(mtj, x, m)
|
qax
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, q, m=1):\n q = float(q)\n j = (mt.i - q) / (1 + q)\n mtj = Actuarial(nt=mt.nt, i=j)\n return ax(mtj, x, m)\n",
"role": "user"
},
{
"content": "qax",
"role": "assistant"
}
] |
def x(mt, x, q, m=1):
q = float(q)
j = (mt.i - q) / (1 + q)
mtj = Actuarial(nt=mt.nt, i=j)
return aax(mtj, x, m)
|
qaax
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, q, m=1):\n q = float(q)\n j = (mt.i - q) / (1 + q)\n mtj = Actuarial(nt=mt.nt, i=j)\n return aax(mtj, x, m)\n",
"role": "user"
},
{
"content": "qaax",
"role": "assistant"
}
] |
def x(mt, x, n, q, m=1):
q = float(q)
j = (mt.i - q) / (1 + q)
mtj = Actuarial(nt=mt.nt, i=j)
return axn(mtj, x, n, m)
|
qaxn
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, n, q, m=1):\n q = float(q)\n j = (mt.i - q) / (1 + q)\n mtj = Actuarial(nt=mt.nt, i=j)\n return axn(mtj, x, n, m)\n",
"role": "user"
},
{
"content": "qaxn",
"role": "assistant"
}
] |
def x(mt, x, n, q, m=1):
q = float(q)
j = (mt.i - q) / (1 + q)
mtj = Actuarial(nt=mt.nt, i=j)
return aaxn(mtj, x, n, m)
|
qaaxn
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mt, x, n, q, m=1):\n q = float(q)\n j = (mt.i - q) / (1 + q)\n mtj = Actuarial(nt=mt.nt, i=j)\n return aaxn(mtj, x, n, m)\n",
"role": "user"
},
{
"content": "qaaxn",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.