source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self): parent_table = self._parent.get_table() self._set_join() if self._constraints: self._query.where('%s.%s' % (parent_table, self._first_key), '=', self._far_parent.get_key())
add_constraints
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n parent_table = self._parent.get_table()\n self._set_join()\n if self._constraints:\n self._query.where('%s.%s' % (parent_table, self._first_key), '=',\n self._far_parent.get_key())\n", "role": "user" }, { "content": "add_constraints", "role": "assistant" } ]
def x(self, query, parent): parent_table = self._parent.get_table() self._set_join(query) query.select(QueryExpression('COUNT(*)')) key = self.wrap('%s.%s' % (parent_table, self._first_key)) return query.where(self.get_has_compare_key(), '=', QueryExpression(key))
get_relation_count_query
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, query, parent):\n parent_table = self._parent.get_table()\n self._set_join(query)\n query.select(QueryExpression('COUNT(*)'))\n key = self.wrap('%s.%s' % (parent_table, self._first_key))\n return query.where(self.get_has_compare_key(), '=', QueryExpression(key))\n", "role": "user" }, { "content": "get_relation_count_query", "role": "assistant" } ]
def x(self, query=None): if not query: query = self._query foreign_key = '%s.%s' % (self._related.get_table(), self._second_key) query.join(self._parent.get_table(), self.get_qualified_parent_key_name (), '=', foreign_key)
set_join
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, query=None):\n if not query:\n query = self._query\n foreign_key = '%s.%s' % (self._related.get_table(), self._second_key)\n query.join(self._parent.get_table(), self.get_qualified_parent_key_name\n (), '=', foreign_key)\n", "role": "user" }, { "content": "set_join", "role": "assistant" } ]
def x(assignments_df, data, modality_col='Modality', score='$\\log_2 K$'): ncols = 2 nrows = len(assignments_df.groupby(modality_col).groups.keys()) fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(nrows * 4, ncols * 6)) axes_iter = axes.flat fits = 'Highest', 'Lowest' for modality, df in assignments_df.groupby(modality_col): df = df.sort_values(score) color = MODALITY_TO_COLOR[modality] for fit in fits: if fit == 'Highest': ids = df['Feature ID'][-10:] else: ids = df['Feature ID'][:10] fit_psi = data[ids] tidy_fit_psi = fit_psi.stack().reset_index() tidy_fit_psi = tidy_fit_psi.rename(columns={'level_0': 'Sample ID', 'level_1': 'Feature ID', (0): '$\\Psi$'}) if tidy_fit_psi.empty: continue ax = six.next(axes_iter) violinplot(x='Feature ID', y='$\\Psi$', data=tidy_fit_psi, color=color, ax=ax) ax.set(title='{} {} {}'.format(fit, score, modality), xticks=[]) sns.despine() fig.tight_layout()
plot_best_worst_fits
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(assignments_df, data, modality_col='Modality', score='$\\\\log_2 K$'):\n ncols = 2\n nrows = len(assignments_df.groupby(modality_col).groups.keys())\n fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(nrows * 4, \n ncols * 6))\n axes_iter = axes.flat\n fits = 'Highest', 'Lowest'\n for modality, df in assignments_df.groupby(modality_col):\n df = df.sort_values(score)\n color = MODALITY_TO_COLOR[modality]\n for fit in fits:\n if fit == 'Highest':\n ids = df['Feature ID'][-10:]\n else:\n ids = df['Feature ID'][:10]\n fit_psi = data[ids]\n tidy_fit_psi = fit_psi.stack().reset_index()\n tidy_fit_psi = tidy_fit_psi.rename(columns={'level_0':\n 'Sample ID', 'level_1': 'Feature ID', (0): '$\\\\Psi$'})\n if tidy_fit_psi.empty:\n continue\n ax = six.next(axes_iter)\n violinplot(x='Feature ID', y='$\\\\Psi$', data=tidy_fit_psi,\n color=color, ax=ax)\n ax.set(title='{} {} {}'.format(fit, score, modality), xticks=[])\n sns.despine()\n fig.tight_layout()\n", "role": "user" }, { "content": "plot_best_worst_fits", "role": "assistant" } ]
def x(x=None, y=None, data=None, bw=0.2, scale='width', inner=None, ax=None, **kwargs): if ax is None: ax = plt.gca() sns.violinplot(x, y, data=data, bw=bw, scale=scale, inner=inner, ax=ax, **kwargs) ax.set(ylim=(0, 1), yticks=(0, 0.5, 1)) return ax
violinplot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x=None, y=None, data=None, bw=0.2, scale='width', inner=None, ax=None,\n **kwargs):\n if ax is None:\n ax = plt.gca()\n sns.violinplot(x, y, data=data, bw=bw, scale=scale, inner=inner, ax=ax,\n **kwargs)\n ax.set(ylim=(0, 1), yticks=(0, 0.5, 1))\n return ax\n", "role": "user" }, { "content": "violinplot", "role": "assistant" } ]
def x(self, counts, phenotype_to_color=None, ax=None, percentages=True): if percentages: counts = 100 * (counts.T / counts.T.sum()).T if ax is None: ax = plt.gca() full_width = 0.8 width = full_width / counts.shape[0] for i, (group, series) in enumerate(counts.iterrows()): left = np.arange(len(self.modality_order)) + i * width height = [(series[i] if i in series else 0) for i in self. modality_order] color = phenotype_to_color[group] ax.bar(left, height, width=width, color=color, label=group, linewidth=0.5, edgecolor='k') ylabel = 'Percentage of events' if percentages else 'Number of events' ax.set_ylabel(ylabel) ax.set_xticks(np.arange(len(self.modality_order)) + full_width / 2) ax.set_xticklabels(self.modality_order) ax.set_xlabel('Splicing modality') ax.set_xlim(0, len(self.modality_order)) ax.legend(loc='best') ax.grid(axis='y', linestyle='-', linewidth=0.5) sns.despine()
bar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, counts, phenotype_to_color=None, ax=None, percentages=True):\n if percentages:\n counts = 100 * (counts.T / counts.T.sum()).T\n if ax is None:\n ax = plt.gca()\n full_width = 0.8\n width = full_width / counts.shape[0]\n for i, (group, series) in enumerate(counts.iterrows()):\n left = np.arange(len(self.modality_order)) + i * width\n height = [(series[i] if i in series else 0) for i in self.\n modality_order]\n color = phenotype_to_color[group]\n ax.bar(left, height, width=width, color=color, label=group,\n linewidth=0.5, edgecolor='k')\n ylabel = 'Percentage of events' if percentages else 'Number of events'\n ax.set_ylabel(ylabel)\n ax.set_xticks(np.arange(len(self.modality_order)) + full_width / 2)\n ax.set_xticklabels(self.modality_order)\n ax.set_xlabel('Splicing modality')\n ax.set_xlim(0, len(self.modality_order))\n ax.legend(loc='best')\n ax.grid(axis='y', linestyle='-', linewidth=0.5)\n sns.despine()\n", "role": "user" }, { "content": "bar", "role": "assistant" } ]
def x(self, event, logliks, logsumexps, renamed=''): plotter = _ModelLoglikPlotter() plotter.plot(event, logliks, logsumexps, self.modality_to_color, renamed=renamed) return plotter
event_estimation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event, logliks, logsumexps, renamed=''):\n plotter = _ModelLoglikPlotter()\n plotter.plot(event, logliks, logsumexps, self.modality_to_color,\n renamed=renamed)\n return plotter\n", "role": "user" }, { "content": "event_estimation", "role": "assistant" } ]
def x(self, fitted): if fitted.shape[0] != len(self.modalities): raise ValueError( "This data doesn't look like it had the distance between it and the five modalities calculated" ) return fitted.idxmin()
predict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fitted):\n if fitted.shape[0] != len(self.modalities):\n raise ValueError(\n \"This data doesn't look like it had the distance between it and the five modalities calculated\"\n )\n return fitted.idxmin()\n", "role": "user" }, { "content": "predict", "role": "assistant" } ]
def x(self, x): x = x.copy() x[x == 0] = VERY_SMALL_NUMBER x[x == 1] = 1 - VERY_SMALL_NUMBER return np.array([(np.log(prob) + rv.logpdf(x[np.isfinite(x)]).sum()) for prob, rv in zip(self.prob_parameters, self.rvs)])
logliks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x):\n x = x.copy()\n x[x == 0] = VERY_SMALL_NUMBER\n x[x == 1] = 1 - VERY_SMALL_NUMBER\n return np.array([(np.log(prob) + rv.logpdf(x[np.isfinite(x)]).sum()) for\n prob, rv in zip(self.prob_parameters, self.rvs)])\n", "role": "user" }, { "content": "logliks", "role": "assistant" } ]
def x(number, decimal_places=2): if number == np.round(number): return str(int(number)) elif number < 1 and number > 0: inverse = 1 / number if int(inverse) == np.round(inverse): return '\\frac{{1}}{{{}}}'.format(int(inverse)) else: template = '{{:.{0}}}'.format(decimal_places) return template.format(number)
nice_number_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(number, decimal_places=2):\n if number == np.round(number):\n return str(int(number))\n elif number < 1 and number > 0:\n inverse = 1 / number\n if int(inverse) == np.round(inverse):\n return '\\\\frac{{1}}{{{}}}'.format(int(inverse))\n else:\n template = '{{:.{0}}}'.format(decimal_places)\n return template.format(number)\n", "role": "user" }, { "content": "nice_number_string", "role": "assistant" } ]
def x(self, n=1000, **kwargs): kwargs.setdefault('palette', 'Purples') dfs = [] for rv in self.rvs: psi = rv.rvs(n) df = pd.Series(psi, name=self.ylabel).to_frame() alpha, beta = rv.args alpha = self.nice_number_string(alpha, decimal_places=2) beta = self.nice_number_string(beta, decimal_places=2) df['parameters'] = '$\\alpha = {0}$\n$\\beta = {1}$'.format(alpha, beta ) dfs.append(df) data = pd.concat(dfs) if 'ax' not in kwargs: fig, ax = plt.subplots(figsize=(len(self.alphas) * 0.625, 4)) else: ax = kwargs.pop('ax') ax = violinplot(x='parameters', y=self.ylabel, data=data, ax=ax, **kwargs) sns.despine(ax=ax) return ax
violinplot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n=1000, **kwargs):\n kwargs.setdefault('palette', 'Purples')\n dfs = []\n for rv in self.rvs:\n psi = rv.rvs(n)\n df = pd.Series(psi, name=self.ylabel).to_frame()\n alpha, beta = rv.args\n alpha = self.nice_number_string(alpha, decimal_places=2)\n beta = self.nice_number_string(beta, decimal_places=2)\n df['parameters'] = '$\\\\alpha = {0}$\\n$\\\\beta = {1}$'.format(alpha, beta\n )\n dfs.append(df)\n data = pd.concat(dfs)\n if 'ax' not in kwargs:\n fig, ax = plt.subplots(figsize=(len(self.alphas) * 0.625, 4))\n else:\n ax = kwargs.pop('ax')\n ax = violinplot(x='parameters', y=self.ylabel, data=data, ax=ax, **kwargs)\n sns.despine(ax=ax)\n return ax\n", "role": "user" }, { "content": "violinplot", "role": "assistant" } ]
def x(self, feature, models): x_non_na = feature[~feature.isnull()] if x_non_na.empty: return pd.DataFrame() else: dfs = [] for name, model in models.items(): df = model.single_feature_logliks(feature) df['Modality'] = name dfs.append(df) return pd.concat(dfs, ignore_index=True)
single_feature_logliks_one_step
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, feature, models):\n x_non_na = feature[~feature.isnull()]\n if x_non_na.empty:\n return pd.DataFrame()\n else:\n dfs = []\n for name, model in models.items():\n df = model.single_feature_logliks(feature)\n df['Modality'] = name\n dfs.append(df)\n return pd.concat(dfs, ignore_index=True)\n", "role": "user" }, { "content": "single_feature_logliks_one_step", "role": "assistant" } ]
def x(self, data): self.assert_less_than_or_equal_1(data.values.flat) self.assert_non_negative(data.values.flat) if isinstance(data, pd.DataFrame): log2_bayes_factors = data.apply(self.single_feature_fit) elif isinstance(data, pd.Series): log2_bayes_factors = self.single_feature_fit(data) log2_bayes_factors.name = self.score_name return log2_bayes_factors
fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n self.assert_less_than_or_equal_1(data.values.flat)\n self.assert_non_negative(data.values.flat)\n if isinstance(data, pd.DataFrame):\n log2_bayes_factors = data.apply(self.single_feature_fit)\n elif isinstance(data, pd.Series):\n log2_bayes_factors = self.single_feature_fit(data)\n log2_bayes_factors.name = self.score_name\n return log2_bayes_factors\n", "role": "user" }, { "content": "fit", "role": "assistant" } ]
def x(self, log2_bayes_factors, reset_index=False): if reset_index: x = log2_bayes_factors.reset_index(level=0, drop=True) else: x = log2_bayes_factors if isinstance(x, pd.DataFrame): not_na = (x.notnull() > 0).any() not_na_columns = not_na[not_na].index x.ix[NULL_MODEL, not_na_columns] = self.logbf_thresh elif isinstance(x, pd.Series): x[NULL_MODEL] = self.logbf_thresh return x.idxmax()
predict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, log2_bayes_factors, reset_index=False):\n if reset_index:\n x = log2_bayes_factors.reset_index(level=0, drop=True)\n else:\n x = log2_bayes_factors\n if isinstance(x, pd.DataFrame):\n not_na = (x.notnull() > 0).any()\n not_na_columns = not_na[not_na].index\n x.ix[NULL_MODEL, not_na_columns] = self.logbf_thresh\n elif isinstance(x, pd.Series):\n x[NULL_MODEL] = self.logbf_thresh\n return x.idxmax()\n", "role": "user" }, { "content": "predict", "role": "assistant" } ]
def x(self, feature): self.assert_less_than_or_equal_1(feature.values) self.assert_non_negative(feature.values) logliks = self._single_feature_logliks_one_step(feature, self. one_param_models) logsumexps = self.logliks_to_logsumexp(logliks) if (logsumexps <= self.logbf_thresh).all(): logliks_two_params = self._single_feature_logliks_one_step(feature, self.two_param_models) logliks = pd.concat([logliks, logliks_two_params]) return logliks
single_feature_logliks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, feature):\n self.assert_less_than_or_equal_1(feature.values)\n self.assert_non_negative(feature.values)\n logliks = self._single_feature_logliks_one_step(feature, self.\n one_param_models)\n logsumexps = self.logliks_to_logsumexp(logliks)\n if (logsumexps <= self.logbf_thresh).all():\n logliks_two_params = self._single_feature_logliks_one_step(feature,\n self.two_param_models)\n logliks = pd.concat([logliks, logliks_two_params])\n return logliks\n", "role": "user" }, { "content": "single_feature_logliks", "role": "assistant" } ]
def x(self, feature): if np.isfinite(feature).sum() == 0: series = pd.Series(index=MODALITY_ORDER) else: logbf_one_param = pd.Series({k: v.logsumexp_logliks(feature) for k, v in self.one_param_models.items()}) if (logbf_one_param <= self.logbf_thresh).all(): logbf_two_param = pd.Series({k: v.logsumexp_logliks(feature) for k, v in self.two_param_models.items()}) series = pd.concat([logbf_one_param, logbf_two_param]) series[NULL_MODEL] = self.logbf_thresh else: series = logbf_one_param series.index.name = 'Modality' series.name = self.score_name return series
single_feature_fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, feature):\n if np.isfinite(feature).sum() == 0:\n series = pd.Series(index=MODALITY_ORDER)\n else:\n logbf_one_param = pd.Series({k: v.logsumexp_logliks(feature) for k,\n v in self.one_param_models.items()})\n if (logbf_one_param <= self.logbf_thresh).all():\n logbf_two_param = pd.Series({k: v.logsumexp_logliks(feature) for\n k, v in self.two_param_models.items()})\n series = pd.concat([logbf_one_param, logbf_two_param])\n series[NULL_MODEL] = self.logbf_thresh\n else:\n series = logbf_one_param\n series.index.name = 'Modality'\n series.name = self.score_name\n return series\n", "role": "user" }, { "content": "single_feature_fit", "role": "assistant" } ]
def x(self, n=1000, figsize=None, **kwargs): if figsize is None: nrows = len(self.models) width = max(len(m.rvs) for name, m in self.models.items()) * 0.625 height = nrows * 2.5 figsize = width, height fig, axes = plt.subplots(nrows=nrows, figsize=figsize) for ax, model_name in zip(axes, MODALITY_ORDER): try: model = self.models[model_name] cmap = MODALITY_TO_CMAP[model_name] palette = cmap(np.linspace(0, 1, len(model.rvs))) model.violinplot(n=n, ax=ax, palette=palette, **kwargs) ax.set(title=model_name, xlabel='') except KeyError: continue fig.tight_layout()
violinplot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n=1000, figsize=None, **kwargs):\n if figsize is None:\n nrows = len(self.models)\n width = max(len(m.rvs) for name, m in self.models.items()) * 0.625\n height = nrows * 2.5\n figsize = width, height\n fig, axes = plt.subplots(nrows=nrows, figsize=figsize)\n for ax, model_name in zip(axes, MODALITY_ORDER):\n try:\n model = self.models[model_name]\n cmap = MODALITY_TO_CMAP[model_name]\n palette = cmap(np.linspace(0, 1, len(model.rvs)))\n model.violinplot(n=n, ax=ax, palette=palette, **kwargs)\n ax.set(title=model_name, xlabel='')\n except KeyError:\n continue\n fig.tight_layout()\n", "role": "user" }, { "content": "violinplot", "role": "assistant" } ]
def x(bins, fmt=':g'): return [('{' + fmt + '}-{' + fmt + '}').format(i, j) for i, j in zip( bins, bins[1:])]
bin_range_strings
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(bins, fmt=':g'):\n return [('{' + fmt + '}-{' + fmt + '}').format(i, j) for i, j in zip(\n bins, bins[1:])]\n", "role": "user" }, { "content": "bin_range_strings", "role": "assistant" } ]
def x(data, bins): if bins is None: raise ValueError('Must specify "bins"') if isinstance(data, pd.DataFrame): binned = data.apply(lambda x: pd.Series(np.histogram(x, bins=bins, range=(0, 1))[0])) elif isinstance(data, pd.Series): binned = pd.Series(np.histogram(data, bins=bins, range=(0, 1))[0]) else: raise ValueError('`data` must be either a 1d vector or 2d matrix') binned.index = bin_range_strings(bins) binned = binned / binned.sum().astype(float) return binned
binify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, bins):\n if bins is None:\n raise ValueError('Must specify \"bins\"')\n if isinstance(data, pd.DataFrame):\n binned = data.apply(lambda x: pd.Series(np.histogram(x, bins=bins,\n range=(0, 1))[0]))\n elif isinstance(data, pd.Series):\n binned = pd.Series(np.histogram(data, bins=bins, range=(0, 1))[0])\n else:\n raise ValueError('`data` must be either a 1d vector or 2d matrix')\n binned.index = bin_range_strings(bins)\n binned = binned / binned.sum().astype(float)\n return binned\n", "role": "user" }, { "content": "binify", "role": "assistant" } ]
def x(p, q): try: _check_prob_dist(p) _check_prob_dist(q) except ValueError: return np.nan p = p.replace(0, np.nan) q = q.replace(0, np.nan) return (np.log2(p / q) * p).sum(axis=0)
kld
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(p, q):\n try:\n _check_prob_dist(p)\n _check_prob_dist(q)\n except ValueError:\n return np.nan\n p = p.replace(0, np.nan)\n q = q.replace(0, np.nan)\n return (np.log2(p / q) * p).sum(axis=0)\n", "role": "user" }, { "content": "kld", "role": "assistant" } ]
def x(p, q): try: _check_prob_dist(p) _check_prob_dist(q) except ValueError: return np.nan weight = 0.5 m = weight * (p + q) result = weight * kld(p, m) + (1 - weight) * kld(q, m) return result
jsd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(p, q):\n try:\n _check_prob_dist(p)\n _check_prob_dist(q)\n except ValueError:\n return np.nan\n weight = 0.5\n m = weight * (p + q)\n result = weight * kld(p, m) + (1 - weight) * kld(q, m)\n return result\n", "role": "user" }, { "content": "jsd", "role": "assistant" } ]
def x(binned, base=2): try: _check_prob_dist(binned) except ValueError: np.nan return -(np.log(binned) / np.log(base) * binned).sum(axis=0)
entropy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(binned, base=2):\n try:\n _check_prob_dist(binned)\n except ValueError:\n np.nan\n return -(np.log(binned) / np.log(base) * binned).sum(axis=0)\n", "role": "user" }, { "content": "entropy", "role": "assistant" } ]
def x(df1, df2, bins, pair=None): binned1 = binify(df1, bins=bins).dropna(how='all', axis=1) binned2 = binify(df2, bins=bins).dropna(how='all', axis=1) binned1, binned2 = binned1.align(binned2, axis=1, join='inner') series = np.sqrt(jsd(binned1, binned2)) series.name = pair return series
binify_and_jsd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df1, df2, bins, pair=None):\n binned1 = binify(df1, bins=bins).dropna(how='all', axis=1)\n binned2 = binify(df2, bins=bins).dropna(how='all', axis=1)\n binned1, binned2 = binned1.align(binned2, axis=1, join='inner')\n series = np.sqrt(jsd(binned1, binned2))\n series.name = pair\n return series\n", "role": "user" }, { "content": "binify_and_jsd", "role": "assistant" } ]
def x(data, groupby, bins, n_iter=100): grouped = data.groupby(groupby) jsds = [] seen = set([]) for phenotype1, df1 in grouped: for phenotype2, df2 in grouped: pair = tuple(sorted([phenotype1, phenotype2])) if pair in seen: continue seen.add(pair) if phenotype1 == phenotype2: seriess = [] bs = cross_validation.Bootstrap(df1.shape[0], n_iter=n_iter, train_size=0.5) for i, (ind1, ind2) in enumerate(bs): df1_subset = df1.iloc[ind1, :] df2_subset = df2.iloc[ind2, :] seriess.append(binify_and_jsd(df1_subset, df2_subset, None, bins)) series = pd.concat(seriess, axis=1, names=None).mean(axis=1) series.name = pair jsds.append(series) else: series = binify_and_jsd(df1, df2, pair, bins) jsds.append(series) return pd.concat(jsds, axis=1)
cross_phenotype_jsd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, groupby, bins, n_iter=100):\n grouped = data.groupby(groupby)\n jsds = []\n seen = set([])\n for phenotype1, df1 in grouped:\n for phenotype2, df2 in grouped:\n pair = tuple(sorted([phenotype1, phenotype2]))\n if pair in seen:\n continue\n seen.add(pair)\n if phenotype1 == phenotype2:\n seriess = []\n bs = cross_validation.Bootstrap(df1.shape[0], n_iter=n_iter,\n train_size=0.5)\n for i, (ind1, ind2) in enumerate(bs):\n df1_subset = df1.iloc[ind1, :]\n df2_subset = df2.iloc[ind2, :]\n seriess.append(binify_and_jsd(df1_subset, df2_subset,\n None, bins))\n series = pd.concat(seriess, axis=1, names=None).mean(axis=1)\n series.name = pair\n jsds.append(series)\n else:\n series = binify_and_jsd(df1, df2, pair, bins)\n jsds.append(series)\n return pd.concat(jsds, axis=1)\n", "role": "user" }, { "content": "cross_phenotype_jsd", "role": "assistant" } ]
def x(jsd_df): jsd_2d = jsd_df.mean().reset_index() jsd_2d = jsd_2d.rename(columns={'level_0': 'phenotype1', 'level_1': 'phenotype2', (0): 'jsd'}) jsd_2d = jsd_2d.pivot(index='phenotype1', columns='phenotype2', values= 'jsd') return jsd_2d + np.tril(jsd_2d.T, -1)
jsd_df_to_2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(jsd_df):\n jsd_2d = jsd_df.mean().reset_index()\n jsd_2d = jsd_2d.rename(columns={'level_0': 'phenotype1', 'level_1':\n 'phenotype2', (0): 'jsd'})\n jsd_2d = jsd_2d.pivot(index='phenotype1', columns='phenotype2', values=\n 'jsd')\n return jsd_2d + np.tril(jsd_2d.T, -1)\n", "role": "user" }, { "content": "jsd_df_to_2d", "role": "assistant" } ]
def x(self, callback=None, limit=0): if self._handle is None: raise self.DeviceIsNotOpen() self._callback = callback wtypes.pcap_loop(self._handle, limit, self._callback_wrapper, None)
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, callback=None, limit=0):\n if self._handle is None:\n raise self.DeviceIsNotOpen()\n self._callback = callback\n wtypes.pcap_loop(self._handle, limit, self._callback_wrapper, None)\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self, packet_buffer): if self._handle is None: raise self.DeviceIsNotOpen() buffer_length = len(packet_buffer) buf_send = ctypes.cast(ctypes.create_string_buffer(packet_buffer, buffer_length), ctypes.POINTER(ctypes.c_ubyte)) wtypes.pcap_sendpacket(self._handle, buf_send, buffer_length)
send
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, packet_buffer):\n if self._handle is None:\n raise self.DeviceIsNotOpen()\n buffer_length = len(packet_buffer)\n buf_send = ctypes.cast(ctypes.create_string_buffer(packet_buffer,\n buffer_length), ctypes.POINTER(ctypes.c_ubyte))\n wtypes.pcap_sendpacket(self._handle, buf_send, buffer_length)\n", "role": "user" }, { "content": "send", "role": "assistant" } ]
def x(pattern, callback): device_name, desc = WinPcapDevices.get_matching_device(pattern) if device_name is not None: with WinPcap(device_name) as capture: capture.run(callback=callback)
capture_on
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pattern, callback):\n device_name, desc = WinPcapDevices.get_matching_device(pattern)\n if device_name is not None:\n with WinPcap(device_name) as capture:\n capture.run(callback=callback)\n", "role": "user" }, { "content": "capture_on", "role": "assistant" } ]
def x(device_name, callback): with WinPcap(device_name) as capture: capture.run(callback=callback)
capture_on_device_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(device_name, callback):\n with WinPcap(device_name) as capture:\n capture.run(callback=callback)\n", "role": "user" }, { "content": "capture_on_device_name", "role": "assistant" } ]
def x(self, pattern, packet_buffer, callback=None, limit=10): device_name, desc = WinPcapDevices.get_matching_device(pattern) if device_name is not None: with WinPcap(device_name) as capture: capture.send(packet_buffer) if callback is not None: capture.run(callback=callback, limit=limit)
send_packet
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pattern, packet_buffer, callback=None, limit=10):\n device_name, desc = WinPcapDevices.get_matching_device(pattern)\n if device_name is not None:\n with WinPcap(device_name) as capture:\n capture.send(packet_buffer)\n if callback is not None:\n capture.run(callback=callback, limit=limit)\n", "role": "user" }, { "content": "send_packet", "role": "assistant" } ]
def x(sequence_name='default', initial_value=1, reset_value=None, *, nowait =False, using=None): from .models import Sequence if reset_value is not None: assert initial_value < reset_value if using is None: using = router.db_for_write(Sequence) connection = connections[using] if getattr(connection, 'pg_version', 0 ) >= 90500 and reset_value is None and not nowait: with connection.cursor() as cursor: cursor.execute(UPSERT_QUERY, [sequence_name, initial_value]) last, = cursor.fetchone() return last else: with transaction.atomic(using=using, savepoint=False): sequence, created = Sequence.objects.select_for_update(nowait= nowait).get_or_create(name=sequence_name, defaults={'last': initial_value}) if not created: sequence.last += 1 if reset_value is not None and sequence.last >= reset_value: sequence.last = initial_value sequence.save() return sequence.last
get_next_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sequence_name='default', initial_value=1, reset_value=None, *, nowait\n =False, using=None):\n from .models import Sequence\n if reset_value is not None:\n assert initial_value < reset_value\n if using is None:\n using = router.db_for_write(Sequence)\n connection = connections[using]\n if getattr(connection, 'pg_version', 0\n ) >= 90500 and reset_value is None and not nowait:\n with connection.cursor() as cursor:\n cursor.execute(UPSERT_QUERY, [sequence_name, initial_value])\n last, = cursor.fetchone()\n return last\n else:\n with transaction.atomic(using=using, savepoint=False):\n sequence, created = Sequence.objects.select_for_update(nowait=\n nowait).get_or_create(name=sequence_name, defaults={'last':\n initial_value})\n if not created:\n sequence.last += 1\n if reset_value is not None and sequence.last >= reset_value:\n sequence.last = initial_value\n sequence.save()\n return sequence.last\n", "role": "user" }, { "content": "get_next_value", "role": "assistant" } ]
def x(self, final_line_count): if self._lines_seen['version']: self._process_version_lines() self._process_plan_lines(final_line_count)
check
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, final_line_count):\n if self._lines_seen['version']:\n self._process_version_lines()\n self._process_plan_lines(final_line_count)\n", "role": "user" }, { "content": "check", "role": "assistant" } ]
def x(self): if len(self._lines_seen['version']) > 1: self._add_error(_('Multiple version lines appeared.')) elif self._lines_seen['version'][0] != 1: self._add_error(_('The version must be on the first line.'))
process_version_lines
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if len(self._lines_seen['version']) > 1:\n self._add_error(_('Multiple version lines appeared.'))\n elif self._lines_seen['version'][0] != 1:\n self._add_error(_('The version must be on the first line.'))\n", "role": "user" }, { "content": "process_version_lines", "role": "assistant" } ]
def x(self, final_line_count): if not self._lines_seen['plan']: self._add_error(_('Missing a plan.')) return if len(self._lines_seen['plan']) > 1: self._add_error(_('Only one plan line is permitted per file.')) return plan, at_line = self._lines_seen['plan'][0] if not self._plan_on_valid_line(at_line, final_line_count): self._add_error(_( 'A plan must appear at the beginning or end of the file.')) return if plan.expected_tests != self._lines_seen['test']: self._add_error(_( 'Expected {expected_count} tests but only {seen_count} ran.'). format(expected_count=plan.expected_tests, seen_count=self. _lines_seen['test']))
process_plan_lines
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, final_line_count):\n if not self._lines_seen['plan']:\n self._add_error(_('Missing a plan.'))\n return\n if len(self._lines_seen['plan']) > 1:\n self._add_error(_('Only one plan line is permitted per file.'))\n return\n plan, at_line = self._lines_seen['plan'][0]\n if not self._plan_on_valid_line(at_line, final_line_count):\n self._add_error(_(\n 'A plan must appear at the beginning or end of the file.'))\n return\n if plan.expected_tests != self._lines_seen['test']:\n self._add_error(_(\n 'Expected {expected_count} tests but only {seen_count} ran.').\n format(expected_count=plan.expected_tests, seen_count=self.\n _lines_seen['test']))\n", "role": "user" }, { "content": "process_plan_lines", "role": "assistant" } ]
def x(self, at_line, final_line_count): if at_line == 1 or at_line == final_line_count: return True after_version = self._lines_seen['version'] and self._lines_seen['version' ][0] == 1 and at_line == 2 if after_version: return True return False
plan_on_valid_line
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, at_line, final_line_count):\n if at_line == 1 or at_line == final_line_count:\n return True\n after_version = self._lines_seen['version'] and self._lines_seen['version'\n ][0] == 1 and at_line == 2\n if after_version:\n return True\n return False\n", "role": "user" }, { "content": "plan_on_valid_line", "role": "assistant" } ]
def x(self, bail): self._add_error(_('Bailed: {reason}').format(reason=bail.reason))
handle_bail
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bail):\n self._add_error(_('Bailed: {reason}').format(reason=bail.reason))\n", "role": "user" }, { "content": "handle_bail", "role": "assistant" } ]
def x(self, skip_plan): skip_line = Result(True, None, skip_plan.directive.text, Directive('SKIP')) self._suite.addTest(Adapter(self._filename, skip_line))
handle_skipping_plan
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, skip_plan):\n skip_line = Result(True, None, skip_plan.directive.text, Directive('SKIP'))\n self._suite.addTest(Adapter(self._filename, skip_line))\n", "role": "user" }, { "content": "handle_skipping_plan", "role": "assistant" } ]
def x(self, message): error_line = Result(False, None, message, Directive('')) self._suite.addTest(Adapter(self._filename, error_line))
add_error
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, message):\n error_line = Result(False, None, message, Directive(''))\n self._suite.addTest(Adapter(self._filename, error_line))\n", "role": "user" }, { "content": "add_error", "role": "assistant" } ]
def x(exception): exception_lines = traceback.format_exception(*exception) lines = ''.join(exception_lines).splitlines(True) return format_as_diagnostics(lines)
format_exception
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(exception):\n exception_lines = traceback.format_exception(*exception)\n lines = ''.join(exception_lines).splitlines(True)\n return format_as_diagnostics(lines)\n", "role": "user" }, { "content": "format_exception", "role": "assistant" } ]
def x(self, fh): with fh: try: first_line = next(fh) except StopIteration: return first_parsed = self.parse_line(first_line.rstrip()) fh_new = itertools.chain([first_line], fh) if first_parsed.category == 'version' and first_parsed.version >= 13: if ENABLE_VERSION_13: fh_new = peekable(itertools.chain([first_line], fh)) self._try_peeking = True else: print( """ WARNING: Optional imports not found, TAP 13 output will be ignored. To parse yaml, see requirements in docs: https://tappy.readthedocs.io/en/latest/consumers.html#tap-version-13""" ) for line in fh_new: yield self.parse_line(line.rstrip(), fh_new)
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fh):\n with fh:\n try:\n first_line = next(fh)\n except StopIteration:\n return\n first_parsed = self.parse_line(first_line.rstrip())\n fh_new = itertools.chain([first_line], fh)\n if first_parsed.category == 'version' and first_parsed.version >= 13:\n if ENABLE_VERSION_13:\n fh_new = peekable(itertools.chain([first_line], fh))\n self._try_peeking = True\n else:\n print(\n \"\"\"\nWARNING: Optional imports not found, TAP 13 output will be\n ignored. To parse yaml, see requirements in docs:\n https://tappy.readthedocs.io/en/latest/consumers.html#tap-version-13\"\"\"\n )\n for line in fh_new:\n yield self.parse_line(line.rstrip(), fh_new)\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]
def x(self, text, fh=None): match = self.ok.match(text) if match: return self._parse_result(True, match, fh) match = self.not_ok.match(text) if match: return self._parse_result(False, match, fh) if self.diagnostic.match(text): return Diagnostic(text) match = self.plan.match(text) if match: return self._parse_plan(match) match = self.bail.match(text) if match: return Bail(match.group('reason')) match = self.version.match(text) if match: return self._parse_version(match) return Unknown()
parse_line
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text, fh=None):\n match = self.ok.match(text)\n if match:\n return self._parse_result(True, match, fh)\n match = self.not_ok.match(text)\n if match:\n return self._parse_result(False, match, fh)\n if self.diagnostic.match(text):\n return Diagnostic(text)\n match = self.plan.match(text)\n if match:\n return self._parse_plan(match)\n match = self.bail.match(text)\n if match:\n return Bail(match.group('reason'))\n match = self.version.match(text)\n if match:\n return self._parse_version(match)\n return Unknown()\n", "role": "user" }, { "content": "parse_line", "role": "assistant" } ]
def x(self, match): expected_tests = int(match.group('expected')) directive = Directive(match.group('directive')) if directive.text and not directive.skip: return Unknown() return Plan(expected_tests, directive)
parse_plan
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, match):\n expected_tests = int(match.group('expected'))\n directive = Directive(match.group('directive'))\n if directive.text and not directive.skip:\n return Unknown()\n return Plan(expected_tests, directive)\n", "role": "user" }, { "content": "parse_plan", "role": "assistant" } ]
def x(self, ok, match, fh=None): peek_match = None try: if fh is not None and self._try_peeking: peek_match = self.yaml_block_start.match(fh.peek()) except StopIteration: pass if peek_match is None: return Result(ok, number=match.group('number'), description=match. group('description').strip(), directive=Directive(match.group( 'directive'))) indent = peek_match.group('indent') concat_yaml = self._extract_yaml_block(indent, fh) return Result(ok, number=match.group('number'), description=match.group ('description').strip(), directive=Directive(match.group( 'directive')), raw_yaml_block=concat_yaml)
parse_result
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ok, match, fh=None):\n peek_match = None\n try:\n if fh is not None and self._try_peeking:\n peek_match = self.yaml_block_start.match(fh.peek())\n except StopIteration:\n pass\n if peek_match is None:\n return Result(ok, number=match.group('number'), description=match.\n group('description').strip(), directive=Directive(match.group(\n 'directive')))\n indent = peek_match.group('indent')\n concat_yaml = self._extract_yaml_block(indent, fh)\n return Result(ok, number=match.group('number'), description=match.group\n ('description').strip(), directive=Directive(match.group(\n 'directive')), raw_yaml_block=concat_yaml)\n", "role": "user" }, { "content": "parse_result", "role": "assistant" } ]
def x(self, indent, fh): raw_yaml = [] indent_match = re.compile('^{}'.format(indent)) try: fh.next() while indent_match.match(fh.peek()): raw_yaml.append(fh.next().replace(indent, '', 1)) if self.yaml_block_end.match(fh.peek()): fh.next() break except StopIteration: pass return '\n'.join(raw_yaml)
extract_yaml_block
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, indent, fh):\n raw_yaml = []\n indent_match = re.compile('^{}'.format(indent))\n try:\n fh.next()\n while indent_match.match(fh.peek()):\n raw_yaml.append(fh.next().replace(indent, '', 1))\n if self.yaml_block_end.match(fh.peek()):\n fh.next()\n break\n except StopIteration:\n pass\n return '\\n'.join(raw_yaml)\n", "role": "user" }, { "content": "extract_yaml_block", "role": "assistant" } ]
def x(self): if LOAD_YAML and self._yaml_block is not None: try: yaml_dict = yaml.load(self._yaml_block) return yaml_dict except yaml.error.YAMLError: print('Error parsing yaml block. Check formatting.') return None
yaml_block
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if LOAD_YAML and self._yaml_block is not None:\n try:\n yaml_dict = yaml.load(self._yaml_block)\n return yaml_dict\n except yaml.error.YAMLError:\n print('Error parsing yaml block. Check formatting.')\n return None\n", "role": "user" }, { "content": "yaml_block", "role": "assistant" } ]
def x(self, files): suite = unittest.TestSuite() for filepath in files: if os.path.isdir(filepath): self._find_tests_in_directory(filepath, suite) else: suite.addTest(self.load_suite_from_file(filepath)) return suite
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, files):\n suite = unittest.TestSuite()\n for filepath in files:\n if os.path.isdir(filepath):\n self._find_tests_in_directory(filepath, suite)\n else:\n suite.addTest(self.load_suite_from_file(filepath))\n return suite\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(self, filename): suite = unittest.TestSuite() rules = Rules(filename, suite) if not os.path.exists(filename): rules.handle_file_does_not_exist() return suite line_generator = self._parser.parse_file(filename) return self._load_lines(filename, line_generator, suite, rules)
load_suite_from_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename):\n suite = unittest.TestSuite()\n rules = Rules(filename, suite)\n if not os.path.exists(filename):\n rules.handle_file_does_not_exist()\n return suite\n line_generator = self._parser.parse_file(filename)\n return self._load_lines(filename, line_generator, suite, rules)\n", "role": "user" }, { "content": "load_suite_from_file", "role": "assistant" } ]
def x(self): suite = unittest.TestSuite() rules = Rules('stream', suite) line_generator = self._parser.parse_stdin() return self._load_lines('stream', line_generator, suite, rules)
load_suite_from_stdin
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n suite = unittest.TestSuite()\n rules = Rules('stream', suite)\n line_generator = self._parser.parse_stdin()\n return self._load_lines('stream', line_generator, suite, rules)\n", "role": "user" }, { "content": "load_suite_from_stdin", "role": "assistant" } ]
def x(self, filename, line_generator, suite, rules): line_counter = 0 for line in line_generator: line_counter += 1 if line.category in self.ignored_lines: continue if line.category == 'test': suite.addTest(Adapter(filename, line)) rules.saw_test() elif line.category == 'plan': if line.skip: rules.handle_skipping_plan(line) return suite rules.saw_plan(line, line_counter) elif line.category == 'bail': rules.handle_bail(line) return suite elif line.category == 'version': rules.saw_version_at(line_counter) rules.check(line_counter) return suite
load_lines
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, line_generator, suite, rules):\n line_counter = 0\n for line in line_generator:\n line_counter += 1\n if line.category in self.ignored_lines:\n continue\n if line.category == 'test':\n suite.addTest(Adapter(filename, line))\n rules.saw_test()\n elif line.category == 'plan':\n if line.skip:\n rules.handle_skipping_plan(line)\n return suite\n rules.saw_plan(line, line_counter)\n elif line.category == 'bail':\n rules.handle_bail(line)\n return suite\n elif line.category == 'version':\n rules.saw_version_at(line_counter)\n rules.check(line_counter)\n return suite\n", "role": "user" }, { "content": "load_lines", "role": "assistant" } ]
def x(self, class_name): if self._test_cases.get(class_name) is None: if self.streaming and self.header: self._write_test_case_header(class_name, self.stream) self._test_cases[class_name] = [] if self.combined: self.combined_test_cases_seen.append(class_name)
track
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, class_name):\n if self._test_cases.get(class_name) is None:\n if self.streaming and self.header:\n self._write_test_case_header(class_name, self.stream)\n self._test_cases[class_name] = []\n if self.combined:\n self.combined_test_cases_seen.append(class_name)\n", "role": "user" }, { "content": "track", "role": "assistant" } ]
def x(self, total): self.plan = total if self.streaming: if not self.combined_test_cases_seen: self._write_plan(self.stream) elif not self.combined: raise ValueError( 'set_plan can only be used with combined or streaming output')
set_plan
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, total):\n self.plan = total\n if self.streaming:\n if not self.combined_test_cases_seen:\n self._write_plan(self.stream)\n elif not self.combined:\n raise ValueError(\n 'set_plan can only be used with combined or streaming output')\n", "role": "user" }, { "content": "set_plan", "role": "assistant" } ]
def x(self): if self.streaming and not self._plan_written: print('1..{0}'.format(self.combined_line_number), file=self.stream) self._plan_written = True return if self.combined: combined_file = 'testresults.tap' if self.outdir: combined_file = os.path.join(self.outdir, combined_file) with open(combined_file, 'w') as out_file: self._write_tap_version(out_file) if self.plan is not None: print('1..{0}'.format(self.plan), file=out_file) for test_case in self.combined_test_cases_seen: self.generate_tap_report(test_case, self._test_cases[ test_case], out_file) if self.plan is None: print('1..{0}'.format(self.combined_line_number), file=out_file ) else: for test_case, tap_lines in self._test_cases.items(): with open(self._get_tap_file_path(test_case), 'w') as out_file: self._write_tap_version(out_file) self.generate_tap_report(test_case, tap_lines, out_file)
generate_tap_reports
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.streaming and not self._plan_written:\n print('1..{0}'.format(self.combined_line_number), file=self.stream)\n self._plan_written = True\n return\n if self.combined:\n combined_file = 'testresults.tap'\n if self.outdir:\n combined_file = os.path.join(self.outdir, combined_file)\n with open(combined_file, 'w') as out_file:\n self._write_tap_version(out_file)\n if self.plan is not None:\n print('1..{0}'.format(self.plan), file=out_file)\n for test_case in self.combined_test_cases_seen:\n self.generate_tap_report(test_case, self._test_cases[\n test_case], out_file)\n if self.plan is None:\n print('1..{0}'.format(self.combined_line_number), file=out_file\n )\n else:\n for test_case, tap_lines in self._test_cases.items():\n with open(self._get_tap_file_path(test_case), 'w') as out_file:\n self._write_tap_version(out_file)\n self.generate_tap_report(test_case, tap_lines, out_file)\n", "role": "user" }, { "content": "generate_tap_reports", "role": "assistant" } ]
def x(self, stream): if self.plan is not None: if not self._plan_written: print('1..{0}'.format(self.plan), file=stream) self._plan_written = True
write_plan
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, stream):\n if self.plan is not None:\n if not self._plan_written:\n print('1..{0}'.format(self.plan), file=stream)\n self._plan_written = True\n", "role": "user" }, { "content": "write_plan", "role": "assistant" } ]
def x(self, test_case): sanitized_test_case = test_case.translate(self._sanitized_table) tap_file = sanitized_test_case + '.tap' if self.outdir: return os.path.join(self.outdir, tap_file) return tap_file
get_tap_file_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, test_case):\n sanitized_test_case = test_case.translate(self._sanitized_table)\n tap_file = sanitized_test_case + '.tap'\n if self.outdir:\n return os.path.join(self.outdir, tap_file)\n return tap_file\n", "role": "user" }, { "content": "get_tap_file_path", "role": "assistant" } ]
def x(argv=sys.argv, stream=sys.stderr): args = parse_args(argv) suite = build_suite(args) runner = unittest.TextTestRunner(verbosity=args.verbose, stream=stream) result = runner.run(suite) return get_status(result)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(argv=sys.argv, stream=sys.stderr):\n args = parse_args(argv)\n suite = build_suite(args)\n runner = unittest.TextTestRunner(verbosity=args.verbose, stream=stream)\n result = runner.run(suite)\n return get_status(result)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(args): loader = Loader() if len(args.files) == 0 or args.files[0] == '-': suite = loader.load_suite_from_stdin() else: suite = loader.load(args.files) return suite
build_suite
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args):\n loader = Loader()\n if len(args.files) == 0 or args.files[0] == '-':\n suite = loader.load_suite_from_stdin()\n else:\n suite = loader.load(args.files)\n return suite\n", "role": "user" }, { "content": "build_suite", "role": "assistant" } ]
def x(self, result): result.addFailure(self, (Exception, Exception(), None)) test, err = result.failures[-1] result.failures[-1] = test, ''
addFailure
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, result):\n result.addFailure(self, (Exception, Exception(), None))\n test, err = result.failures[-1]\n result.failures[-1] = test, ''\n", "role": "user" }, { "content": "addFailure", "role": "assistant" } ]
def x(mapper, connection, instance): table = _get_tree_table(mapper) db_pk = instance.get_pk_column() table_pk = getattr(table.c, db_pk.name) if instance.parent_id is None: instance.left = 1 instance.right = 2 instance.level = instance.get_default_level() tree_id = connection.scalar(select([func.max(table.c.tree_id) + 1]) ) or 1 instance.tree_id = tree_id else: parent_pos_left, parent_pos_right, parent_tree_id, parent_level = ( connection.execute(select([table.c.lft, table.c.rgt, table.c. tree_id, table.c.level]).where(table_pk == instance.parent_id)) .fetchone()) connection.execute(table.update(and_(table.c.rgt >= parent_pos_right, table.c.tree_id == parent_tree_id)).values( lft=case([(table.c.lft > parent_pos_right, table.c.lft + 2)], else_=table.c.lft), rgt=case([(table.c.rgt >= parent_pos_right, table.c.rgt + 2)], else_=table.c.rgt))) instance.level = parent_level + 1 instance.tree_id = parent_tree_id instance.left = parent_pos_right instance.right = parent_pos_right + 1
mptt_before_insert
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mapper, connection, instance):\n table = _get_tree_table(mapper)\n db_pk = instance.get_pk_column()\n table_pk = getattr(table.c, db_pk.name)\n if instance.parent_id is None:\n instance.left = 1\n instance.right = 2\n instance.level = instance.get_default_level()\n tree_id = connection.scalar(select([func.max(table.c.tree_id) + 1])\n ) or 1\n instance.tree_id = tree_id\n else:\n parent_pos_left, parent_pos_right, parent_tree_id, parent_level = (\n connection.execute(select([table.c.lft, table.c.rgt, table.c.\n tree_id, table.c.level]).where(table_pk == instance.parent_id))\n .fetchone())\n connection.execute(table.update(and_(table.c.rgt >=\n parent_pos_right, table.c.tree_id == parent_tree_id)).values(\n lft=case([(table.c.lft > parent_pos_right, table.c.lft + 2)],\n else_=table.c.lft), rgt=case([(table.c.rgt >= parent_pos_right,\n table.c.rgt + 2)], else_=table.c.rgt)))\n instance.level = parent_level + 1\n instance.tree_id = parent_tree_id\n instance.left = parent_pos_right\n instance.right = parent_pos_right + 1\n", "role": "user" }, { "content": "mptt_before_insert", "role": "assistant" } ]
def x(mapper, connection, instance): node_id = getattr(instance, instance.get_pk_name()) table = _get_tree_table(mapper) db_pk = instance.get_pk_column() default_level = instance.get_default_level() table_pk = getattr(table.c, db_pk.name) mptt_move_inside = None left_sibling = None left_sibling_tree_id = None if hasattr(instance, 'mptt_move_inside'): mptt_move_inside = instance.mptt_move_inside if hasattr(instance, 'mptt_move_before'): (right_sibling_left, right_sibling_right, right_sibling_parent, right_sibling_level, right_sibling_tree_id) = (connection. execute(select([table.c.lft, table.c.rgt, table.c.parent_id, table.c.level, table.c.tree_id]).where(table_pk == instance. mptt_move_before)).fetchone()) current_lvl_nodes = connection.execute(select([table.c.lft, table.c .rgt, table.c.parent_id, table.c.tree_id]).where(and_(table.c. level == right_sibling_level, table.c.tree_id == right_sibling_tree_id, table.c.lft < right_sibling_left)) ).fetchall() if current_lvl_nodes: (left_sibling_left, left_sibling_right, left_sibling_parent, left_sibling_tree_id) = current_lvl_nodes[-1] instance.parent_id = left_sibling_parent left_sibling = {'lft': left_sibling_left, 'rgt': left_sibling_right, 'is_parent': False} elif not right_sibling_parent: left_sibling_tree_id = right_sibling_tree_id - 1 if hasattr(instance, 'mptt_move_after'): (left_sibling_left, left_sibling_right, left_sibling_parent, left_sibling_tree_id) = (connection.execute(select([table.c.lft, table.c.rgt, table.c.parent_id, table.c.tree_id]).where( table_pk == instance.mptt_move_after)).fetchone()) instance.parent_id = left_sibling_parent left_sibling = {'lft': left_sibling_left, 'rgt': left_sibling_right, 'is_parent': False} """ Get subtree from node SELECT id, name, level FROM my_tree WHERE left_key >= $left_key AND right_key <= $right_key ORDER BY left_key """ subtree = connection.execute(select([table_pk]).where(and_(table.c.lft >= instance.left, table.c.rgt <= instance.right, table.c.tree_id == instance.tree_id)).order_by(table.c.lft)).fetchall() subtree = [x[0] for x in subtree] """ step 0: Initialize parameters. Put there left and right position of moving node """ (node_pos_left, node_pos_right, node_tree_id, node_parent_id, node_level ) = (connection.execute(select([table.c.lft, table.c.rgt, table.c. tree_id, table.c.parent_id, table.c.level]).where(table_pk == node_id)).fetchone()) if not left_sibling and str(node_parent_id) == str(instance.parent_id ) and not mptt_move_inside: if left_sibling_tree_id is None: return if instance.parent_id is not None: (parent_id, parent_pos_right, parent_pos_left, parent_tree_id, parent_level) = (connection.execute(select([table_pk, table.c. rgt, table.c.lft, table.c.tree_id, table.c.level]).where( table_pk == instance.parent_id)).fetchone()) if node_parent_id is None and node_tree_id == parent_tree_id: instance.parent_id = None return mptt_before_delete(mapper, connection, instance, False) if instance.parent_id is not None: """ Put there right position of new parent node (there moving node should be moved) """ (parent_id, parent_pos_right, parent_pos_left, parent_tree_id, parent_level) = (connection.execute(select([table_pk, table.c. rgt, table.c.lft, table.c.tree_id, table.c.level]).where( table_pk == instance.parent_id)).fetchone()) node_size = node_pos_right - node_pos_left + 1 if not left_sibling: left_sibling = {'lft': parent_pos_left, 'rgt': parent_pos_right, 'is_parent': True} instance.tree_id = parent_tree_id _insert_subtree(table, connection, node_size, node_pos_left, node_pos_right, parent_pos_left, parent_pos_right, subtree, parent_tree_id, parent_level, node_level, left_sibling, table_pk) else: if left_sibling_tree_id or left_sibling_tree_id == 0: tree_id = left_sibling_tree_id + 1 connection.execute(table.update(table.c.tree_id > left_sibling_tree_id).values(tree_id=table.c.tree_id + 1)) else: tree_id = connection.scalar(select([func.max(table.c.tree_id) + 1]) ) connection.execute(table.update(table_pk.in_(subtree)).values(lft= table.c.lft - node_pos_left + 1, rgt=table.c.rgt - node_pos_left + 1, level=table.c.level - node_level + default_level, tree_id=tree_id))
mptt_before_update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mapper, connection, instance):\n node_id = getattr(instance, instance.get_pk_name())\n table = _get_tree_table(mapper)\n db_pk = instance.get_pk_column()\n default_level = instance.get_default_level()\n table_pk = getattr(table.c, db_pk.name)\n mptt_move_inside = None\n left_sibling = None\n left_sibling_tree_id = None\n if hasattr(instance, 'mptt_move_inside'):\n mptt_move_inside = instance.mptt_move_inside\n if hasattr(instance, 'mptt_move_before'):\n (right_sibling_left, right_sibling_right, right_sibling_parent,\n right_sibling_level, right_sibling_tree_id) = (connection.\n execute(select([table.c.lft, table.c.rgt, table.c.parent_id,\n table.c.level, table.c.tree_id]).where(table_pk == instance.\n mptt_move_before)).fetchone())\n current_lvl_nodes = connection.execute(select([table.c.lft, table.c\n .rgt, table.c.parent_id, table.c.tree_id]).where(and_(table.c.\n level == right_sibling_level, table.c.tree_id ==\n right_sibling_tree_id, table.c.lft < right_sibling_left))\n ).fetchall()\n if current_lvl_nodes:\n (left_sibling_left, left_sibling_right, left_sibling_parent,\n left_sibling_tree_id) = current_lvl_nodes[-1]\n instance.parent_id = left_sibling_parent\n left_sibling = {'lft': left_sibling_left, 'rgt':\n left_sibling_right, 'is_parent': False}\n elif not right_sibling_parent:\n left_sibling_tree_id = right_sibling_tree_id - 1\n if hasattr(instance, 'mptt_move_after'):\n (left_sibling_left, left_sibling_right, left_sibling_parent,\n left_sibling_tree_id) = (connection.execute(select([table.c.lft,\n table.c.rgt, table.c.parent_id, table.c.tree_id]).where(\n table_pk == instance.mptt_move_after)).fetchone())\n instance.parent_id = left_sibling_parent\n left_sibling = {'lft': left_sibling_left, 'rgt': left_sibling_right,\n 'is_parent': False}\n \"\"\" Get subtree from node\n\n SELECT id, name, level FROM my_tree\n WHERE left_key >= $left_key AND right_key <= $right_key\n ORDER BY left_key\n \"\"\"\n subtree = connection.execute(select([table_pk]).where(and_(table.c.lft >=\n instance.left, table.c.rgt <= instance.right, table.c.tree_id ==\n instance.tree_id)).order_by(table.c.lft)).fetchall()\n subtree = [x[0] for x in subtree]\n \"\"\" step 0: Initialize parameters.\n\n Put there left and right position of moving node\n \"\"\"\n (node_pos_left, node_pos_right, node_tree_id, node_parent_id, node_level\n ) = (connection.execute(select([table.c.lft, table.c.rgt, table.c.\n tree_id, table.c.parent_id, table.c.level]).where(table_pk ==\n node_id)).fetchone())\n if not left_sibling and str(node_parent_id) == str(instance.parent_id\n ) and not mptt_move_inside:\n if left_sibling_tree_id is None:\n return\n if instance.parent_id is not None:\n (parent_id, parent_pos_right, parent_pos_left, parent_tree_id,\n parent_level) = (connection.execute(select([table_pk, table.c.\n rgt, table.c.lft, table.c.tree_id, table.c.level]).where(\n table_pk == instance.parent_id)).fetchone())\n if node_parent_id is None and node_tree_id == parent_tree_id:\n instance.parent_id = None\n return\n mptt_before_delete(mapper, connection, instance, False)\n if instance.parent_id is not None:\n \"\"\" Put there right position of new parent node (there moving node\n should be moved)\n \"\"\"\n (parent_id, parent_pos_right, parent_pos_left, parent_tree_id,\n parent_level) = (connection.execute(select([table_pk, table.c.\n rgt, table.c.lft, table.c.tree_id, table.c.level]).where(\n table_pk == instance.parent_id)).fetchone())\n node_size = node_pos_right - node_pos_left + 1\n if not left_sibling:\n left_sibling = {'lft': parent_pos_left, 'rgt': parent_pos_right,\n 'is_parent': True}\n instance.tree_id = parent_tree_id\n _insert_subtree(table, connection, node_size, node_pos_left,\n node_pos_right, parent_pos_left, parent_pos_right, subtree,\n parent_tree_id, parent_level, node_level, left_sibling, table_pk)\n else:\n if left_sibling_tree_id or left_sibling_tree_id == 0:\n tree_id = left_sibling_tree_id + 1\n connection.execute(table.update(table.c.tree_id >\n left_sibling_tree_id).values(tree_id=table.c.tree_id + 1))\n else:\n tree_id = connection.scalar(select([func.max(table.c.tree_id) + 1])\n )\n connection.execute(table.update(table_pk.in_(subtree)).values(lft=\n table.c.lft - node_pos_left + 1, rgt=table.c.rgt -\n node_pos_left + 1, level=table.c.level - node_level +\n default_level, tree_id=tree_id))\n", "role": "user" }, { "content": "mptt_before_update", "role": "assistant" } ]
def x(self, session, context): instances = self.instances[session] while instances: instance = instances.pop() if instance not in session: continue parent = self.get_parent_value(instance) while parent != NO_VALUE and parent is not None: instances.discard(parent) session.expire(parent, ['left', 'right', 'tree_id', 'level']) parent = self.get_parent_value(parent) else: session.expire(instance, ['left', 'right', 'tree_id', 'level']) self.expire_session_for_children(session, instance)
after_flush_postexec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, session, context):\n instances = self.instances[session]\n while instances:\n instance = instances.pop()\n if instance not in session:\n continue\n parent = self.get_parent_value(instance)\n while parent != NO_VALUE and parent is not None:\n instances.discard(parent)\n session.expire(parent, ['left', 'right', 'tree_id', 'level'])\n parent = self.get_parent_value(parent)\n else:\n session.expire(instance, ['left', 'right', 'tree_id', 'level'])\n self.expire_session_for_children(session, instance)\n", "role": "user" }, { "content": "after_flush_postexec", "role": "assistant" } ]
def x(self, other, inclusive=False): if inclusive: return (self.tree_id == other.tree_id) & (self.left <= other.left) & ( other.right <= self.right) return (self.tree_id == other.tree_id) & (self.left < other.left) & (other .right < self.right)
is_ancestor_of
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other, inclusive=False):\n if inclusive:\n return (self.tree_id == other.tree_id) & (self.left <= other.left) & (\n other.right <= self.right)\n return (self.tree_id == other.tree_id) & (self.left < other.left) & (other\n .right < self.right)\n", "role": "user" }, { "content": "is_ancestor_of", "role": "assistant" } ]
def x(self, parent_id): session = Session.object_session(self) self.parent_id = parent_id self.mptt_move_inside = parent_id session.add(self)
move_inside
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parent_id):\n session = Session.object_session(self)\n self.parent_id = parent_id\n self.mptt_move_inside = parent_id\n session.add(self)\n", "role": "user" }, { "content": "move_inside", "role": "assistant" } ]
def x(self, node_id): session = Session.object_session(self) self.parent_id = self.parent_id self.mptt_move_after = node_id session.add(self)
move_after
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, node_id):\n session = Session.object_session(self)\n self.parent_id = self.parent_id\n self.mptt_move_after = node_id\n session.add(self)\n", "role": "user" }, { "content": "move_after", "role": "assistant" } ]
def x(self, node_id): session = Session.object_session(self) table = _get_tree_table(self.__mapper__) pk = getattr(table.c, self.get_pk_column().name) node = session.query(table).filter(pk == node_id).one() self.parent_id = node.parent_id self.mptt_move_before = node_id session.add(self)
move_before
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, node_id):\n session = Session.object_session(self)\n table = _get_tree_table(self.__mapper__)\n pk = getattr(table.c, self.get_pk_column().name)\n node = session.query(table).filter(pk == node_id).one()\n self.parent_id = node.parent_id\n self.mptt_move_before = node_id\n session.add(self)\n", "role": "user" }, { "content": "move_before", "role": "assistant" } ]
def x(self): table = _get_tree_table(self.__mapper__) session = Session.object_session(self) current_lvl_nodes = session.query(table).filter_by(level=self.level ).filter_by(tree_id=self.tree_id).filter(table.c.lft < self.left ).order_by(table.c.lft).all() if current_lvl_nodes: return current_lvl_nodes[-1] return None
leftsibling_in_level
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n table = _get_tree_table(self.__mapper__)\n session = Session.object_session(self)\n current_lvl_nodes = session.query(table).filter_by(level=self.level\n ).filter_by(tree_id=self.tree_id).filter(table.c.lft < self.left\n ).order_by(table.c.lft).all()\n if current_lvl_nodes:\n return current_lvl_nodes[-1]\n return None\n", "role": "user" }, { "content": "leftsibling_in_level", "role": "assistant" } ]
def x(cls, node, json, json_fields): if json: pk_name = node.get_pk_name() result = {'id': getattr(node, pk_name), 'label': node.__repr__()} if json_fields: result.update(json_fields(node)) else: result = {'node': node} return result
node_to_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, node, json, json_fields):\n if json:\n pk_name = node.get_pk_name()\n result = {'id': getattr(node, pk_name), 'label': node.__repr__()}\n if json_fields:\n result.update(json_fields(node))\n else:\n result = {'node': node}\n return result\n", "role": "user" }, { "content": "node_to_dict", "role": "assistant" } ]
def x(cls, session=None, json=False, json_fields=None, query=None): tree = [] nodes_of_level = {} nodes = cls._base_query(session) if query: nodes = query(nodes) nodes = cls._base_order(nodes).all() min_level = min([node.level for node in nodes] or [None]) def x(node): return getattr(node, node.get_pk_name()) for node in nodes: result = cls._node_to_dict(node, json, json_fields) parent_id = node.parent_id if node.level != min_level: if parent_id not in nodes_of_level.keys(): continue if 'children' not in nodes_of_level[parent_id]: nodes_of_level[parent_id]['children'] = [] nl = nodes_of_level[parent_id]['children'] nl.append(result) nodes_of_level[get_node_id(node)] = nl[-1] else: tree.append(result) nodes_of_level[get_node_id(node)] = tree[-1] return tree
get_tree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, session=None, json=False, json_fields=None, query=None):\n tree = []\n nodes_of_level = {}\n nodes = cls._base_query(session)\n if query:\n nodes = query(nodes)\n nodes = cls._base_order(nodes).all()\n min_level = min([node.level for node in nodes] or [None])\n\n def x(node):\n return getattr(node, node.get_pk_name())\n for node in nodes:\n result = cls._node_to_dict(node, json, json_fields)\n parent_id = node.parent_id\n if node.level != min_level:\n if parent_id not in nodes_of_level.keys():\n continue\n if 'children' not in nodes_of_level[parent_id]:\n nodes_of_level[parent_id]['children'] = []\n nl = nodes_of_level[parent_id]['children']\n nl.append(result)\n nodes_of_level[get_node_id(node)] = nl[-1]\n else:\n tree.append(result)\n nodes_of_level[get_node_id(node)] = tree[-1]\n return tree\n", "role": "user" }, { "content": "get_tree", "role": "assistant" } ]
def x(self, session=None, json=False, json_fields=None): if not session: session = object_session(self) return self.get_tree(session, json=json, json_fields=json_fields, query =self._drilldown_query)
drilldown_tree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, session=None, json=False, json_fields=None):\n if not session:\n session = object_session(self)\n return self.get_tree(session, json=json, json_fields=json_fields, query\n =self._drilldown_query)\n", "role": "user" }, { "content": "drilldown_tree", "role": "assistant" } ]
def x(self, session=None, order=desc): table = self.__class__ query = self._base_query_obj(session=session) query = query.filter(table.is_ancestor_of(self, inclusive=True)) return self._base_order(query, order=order)
path_to_root
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, session=None, order=desc):\n table = self.__class__\n query = self._base_query_obj(session=session)\n query = query.filter(table.is_ancestor_of(self, inclusive=True))\n return self._base_order(query, order=order)\n", "role": "user" }, { "content": "path_to_root", "role": "assistant" } ]
def x(cls, session, tree_id): session.query(cls).filter_by(tree_id=tree_id).update({cls.left: 0, cls. right: 0, cls.level: 0}) top = session.query(cls).filter_by(parent_id=None).filter_by(tree_id= tree_id).one() top.left = left = 1 top.right = right = 2 top.level = level = cls.get_default_level() def x(children, left, right, level): level = level + 1 for i, node in enumerate(children): same_level_right = children[i - 1].right left = left + 1 if i > 0: left = left + 1 if same_level_right: left = same_level_right + 1 right = left + 1 node.left = left node.right = right parent = node.parent j = 0 while parent: parent.right = right + 1 + j parent = parent.parent j += 1 node.level = level recursive(node.children, left, right, level) recursive(top.children, left, right, level)
rebuild_tree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, session, tree_id):\n session.query(cls).filter_by(tree_id=tree_id).update({cls.left: 0, cls.\n right: 0, cls.level: 0})\n top = session.query(cls).filter_by(parent_id=None).filter_by(tree_id=\n tree_id).one()\n top.left = left = 1\n top.right = right = 2\n top.level = level = cls.get_default_level()\n\n def x(children, left, right, level):\n level = level + 1\n for i, node in enumerate(children):\n same_level_right = children[i - 1].right\n left = left + 1\n if i > 0:\n left = left + 1\n if same_level_right:\n left = same_level_right + 1\n right = left + 1\n node.left = left\n node.right = right\n parent = node.parent\n j = 0\n while parent:\n parent.right = right + 1 + j\n parent = parent.parent\n j += 1\n node.level = level\n recursive(node.children, left, right, level)\n recursive(top.children, left, right, level)\n", "role": "user" }, { "content": "rebuild_tree", "role": "assistant" } ]
def x(cls, session, tree_id=None): trees = session.query(cls).filter_by(parent_id=None) if tree_id: trees = trees.filter_by(tree_id=tree_id) for tree in trees: cls.rebuild_tree(session, tree.tree_id)
rebuild
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, session, tree_id=None):\n trees = session.query(cls).filter_by(parent_id=None)\n if tree_id:\n trees = trees.filter_by(tree_id=tree_id)\n for tree in trees:\n cls.rebuild_tree(session, tree.tree_id)\n", "role": "user" }, { "content": "rebuild", "role": "assistant" } ]
def x(mt, x): if x < len(mt.qx): return mt.qx[x] else: return 0
qx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x):\n if x < len(mt.qx):\n return mt.qx[x]\n else:\n return 0\n", "role": "user" }, { "content": "qx", "role": "assistant" } ]
def x(mt, x): if x < len(mt.lx): return mt.lx[x] else: return 0
lx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x):\n if x < len(mt.lx):\n return mt.lx[x]\n else:\n return 0\n", "role": "user" }, { "content": "lx", "role": "assistant" } ]
def x(mt, x): end_x_val = mt.lx.index(0) if x < end_x_val: return mt.lx[x] - mt.lx[x + 1] else: return 0.0
dx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x):\n end_x_val = mt.lx.index(0)\n if x < end_x_val:\n return mt.lx[x] - mt.lx[x + 1]\n else:\n return 0.0\n", "role": "user" }, { "content": "dx", "role": "assistant" } ]
def x(mt, x, t): """ npx : Returns n years survival probability at age x """ return mt.lx[x + t] / mt.lx[x]
tpx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, t):\n \"\"\" npx : Returns n years survival probability at age x \"\"\"\n return mt.lx[x + t] / mt.lx[x]\n", "role": "user" }, { "content": "tpx", "role": "assistant" } ]
def x(mt, x, t): return (mt.lx[x] - mt.lx[x + t]) / mt.lx[x]
tqx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, t):\n return (mt.lx[x] - mt.lx[x + t]) / mt.lx[x]\n", "role": "user" }, { "content": "tqx", "role": "assistant" } ]
def x(mt, x, n, t): return tpx(mt, x, t) * qx(mt, x + n)
tqxn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, n, t):\n return tpx(mt, x, t) * qx(mt, x + n)\n", "role": "user" }, { "content": "tqxn", "role": "assistant" } ]
def x(mt, x): sum1 = 0 for j in mt.lx[x + 1:-1]: sum1 += j try: return sum1 / mt.lx[x] + 0.5 except: return 0
ex
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x):\n sum1 = 0\n for j in mt.lx[x + 1:-1]:\n sum1 += j\n try:\n return sum1 / mt.lx[x] + 0.5\n except:\n return 0\n", "role": "user" }, { "content": "ex", "role": "assistant" } ]
def x(mt, x): n = len(mt.Nx) sum1 = 0 for j in range(x, n): k = mt.Nx[j] sum1 += k return sum1
Sx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x):\n n = len(mt.Nx)\n sum1 = 0\n for j in range(x, n):\n k = mt.Nx[j]\n sum1 += k\n return sum1\n", "role": "user" }, { "content": "Sx", "role": "assistant" } ]
def x(mt, x): return (1 / (1 + mt.i)) ** (x + 1) * mt.dx[x] * (1 + mt.i) ** 0.5
Cx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x):\n return (1 / (1 + mt.i)) ** (x + 1) * mt.dx[x] * (1 + mt.i) ** 0.5\n", "role": "user" }, { "content": "Cx", "role": "assistant" } ]
def x(mt, x): n = len(mt.Cx) sum1 = 0 for j in range(x, n): k = mt.Cx[j] sum1 += k return sum1
Mx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x):\n n = len(mt.Cx)\n sum1 = 0\n for j in range(x, n):\n k = mt.Cx[j]\n sum1 += k\n return sum1\n", "role": "user" }, { "content": "Mx", "role": "assistant" } ]
def x(mt, x, n): return mt.Dx[x + n] / mt.Dx[x]
nEx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, n):\n return mt.Dx[x + n] / mt.Dx[x]\n", "role": "user" }, { "content": "nEx", "role": "assistant" } ]
def x(mt, x, n): return (mt.Mx[x] - mt.Mx[x + n]) / mt.Dx[x]
Axn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, n):\n return (mt.Mx[x] - mt.Mx[x + n]) / mt.Dx[x]\n", "role": "user" }, { "content": "Axn", "role": "assistant" } ]
def x(mt, x, n): return (mt.Mx[x] - mt.Mx[x + n]) / mt.Dx[x] + mt.Dx[x + n] / mt.Dx[x]
AExn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, n):\n return (mt.Mx[x] - mt.Mx[x + n]) / mt.Dx[x] + mt.Dx[x + n] / mt.Dx[x]\n", "role": "user" }, { "content": "AExn", "role": "assistant" } ]
def x(mt, x, t): return mt.Mx[x + t] / mt.Dx[x]
tAx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, t):\n return mt.Mx[x + t] / mt.Dx[x]\n", "role": "user" }, { "content": "tAx", "role": "assistant" } ]
def x(mt, x, q): q = float(q) j = (mt.i - q) / (1 + q) mtj = Actuarial(nt=mt.nt, i=j) return Ax(mtj, x)
qAx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, q):\n q = float(q)\n j = (mt.i - q) / (1 + q)\n mtj = Actuarial(nt=mt.nt, i=j)\n return Ax(mtj, x)\n", "role": "user" }, { "content": "qAx", "role": "assistant" } ]
def x(mt, x, n, m=1): if m == 1: return (mt.Nx[x] - mt.Nx[x + n]) / mt.Dx[x] else: return (mt.Nx[x] - mt.Nx[x + n]) / mt.Dx[x] - float(m - 1) / float( m * 2) * (1 - nEx(mt, x, n))
aaxn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, n, m=1):\n if m == 1:\n return (mt.Nx[x] - mt.Nx[x + n]) / mt.Dx[x]\n else:\n return (mt.Nx[x] - mt.Nx[x + n]) / mt.Dx[x] - float(m - 1) / float(\n m * 2) * (1 - nEx(mt, x, n))\n", "role": "user" }, { "content": "aaxn", "role": "assistant" } ]
def x(mt, x, m=1): return mt.Nx[x] / mt.Dx[x] - float(m - 1) / float(m * 2)
aax
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, m=1):\n return mt.Nx[x] / mt.Dx[x] - float(m - 1) / float(m * 2)\n", "role": "user" }, { "content": "aax", "role": "assistant" } ]
def x(mt, x, m=1): return mt.Nx[x] / mt.Dx[x] - 1 + float(m - 1) / float(m * 2)
ax
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, m=1):\n return mt.Nx[x] / mt.Dx[x] - 1 + float(m - 1) / float(m * 2)\n", "role": "user" }, { "content": "ax", "role": "assistant" } ]
def x(mt, x, t, m=1): return mt.Nx[x + t] / mt.Dx[x] - float(m - 1) / float(m * 2) * (1 - nEx (mt, x, t))
taax
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, t, m=1):\n return mt.Nx[x + t] / mt.Dx[x] - float(m - 1) / float(m * 2) * (1 - nEx\n (mt, x, t))\n", "role": "user" }, { "content": "taax", "role": "assistant" } ]
def x(mt, x, n, *args): return (Sx(mt, x) - Sx(nt, x + n) - n * Nx(nt, x + n)) / Dx(nt, x)
Iaaxn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, n, *args):\n return (Sx(mt, x) - Sx(nt, x + n) - n * Nx(nt, x + n)) / Dx(nt, x)\n", "role": "user" }, { "content": "Iaaxn", "role": "assistant" } ]
def x(mt, x, n, *args): return (Sx(mt, x + 1) - Sx(mt, x + n + 1) - n * Nx(mt, x + n + 1)) / Dx(mt, x)
Iaxn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, n, *args):\n return (Sx(mt, x + 1) - Sx(mt, x + n + 1) - n * Nx(mt, x + n + 1)) / Dx(mt,\n x)\n", "role": "user" }, { "content": "Iaxn", "role": "assistant" } ]
def x(mt, x, *args): return Sx(mt, x) / Dx(mt, x)
Iaax
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, *args):\n return Sx(mt, x) / Dx(mt, x)\n", "role": "user" }, { "content": "Iaax", "role": "assistant" } ]
def x(mt, x, *args): return Sx(mt, x + 1) / Dx(mt, x)
Iax
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, *args):\n return Sx(mt, x + 1) / Dx(mt, x)\n", "role": "user" }, { "content": "Iax", "role": "assistant" } ]
def x(mt, x, t): return (Sx(mt, x) - Sx(mt, x + t)) / Dx(mt, x)
Itaax
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, t):\n return (Sx(mt, x) - Sx(mt, x + t)) / Dx(mt, x)\n", "role": "user" }, { "content": "Itaax", "role": "assistant" } ]
def x(mt, x, t): return (Sx(mt, x + 1) - Sx(mt, x + t + 1)) / Dx(mt, x)
Itax
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, t):\n return (Sx(mt, x + 1) - Sx(mt, x + t + 1)) / Dx(mt, x)\n", "role": "user" }, { "content": "Itax", "role": "assistant" } ]
def x(mt, x, q, m=1): q = float(q) j = (mt.i - q) / (1 + q) mtj = Actuarial(nt=mt.nt, i=j) return ax(mtj, x, m)
qax
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, q, m=1):\n q = float(q)\n j = (mt.i - q) / (1 + q)\n mtj = Actuarial(nt=mt.nt, i=j)\n return ax(mtj, x, m)\n", "role": "user" }, { "content": "qax", "role": "assistant" } ]
def x(mt, x, q, m=1): q = float(q) j = (mt.i - q) / (1 + q) mtj = Actuarial(nt=mt.nt, i=j) return aax(mtj, x, m)
qaax
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, q, m=1):\n q = float(q)\n j = (mt.i - q) / (1 + q)\n mtj = Actuarial(nt=mt.nt, i=j)\n return aax(mtj, x, m)\n", "role": "user" }, { "content": "qaax", "role": "assistant" } ]
def x(mt, x, n, q, m=1): q = float(q) j = (mt.i - q) / (1 + q) mtj = Actuarial(nt=mt.nt, i=j) return axn(mtj, x, n, m)
qaxn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, n, q, m=1):\n q = float(q)\n j = (mt.i - q) / (1 + q)\n mtj = Actuarial(nt=mt.nt, i=j)\n return axn(mtj, x, n, m)\n", "role": "user" }, { "content": "qaxn", "role": "assistant" } ]
def x(mt, x, n, q, m=1): q = float(q) j = (mt.i - q) / (1 + q) mtj = Actuarial(nt=mt.nt, i=j) return aaxn(mtj, x, n, m)
qaaxn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mt, x, n, q, m=1):\n q = float(q)\n j = (mt.i - q) / (1 + q)\n mtj = Actuarial(nt=mt.nt, i=j)\n return aaxn(mtj, x, n, m)\n", "role": "user" }, { "content": "qaaxn", "role": "assistant" } ]