source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(command):
if command == Command.GW_ERROR_NTF:
return FrameErrorNotification()
if command == Command.GW_COMMAND_SEND_REQ:
return FrameCommandSendRequest()
if command == Command.GW_COMMAND_SEND_CFM:
return FrameCommandSendConfirmation()
if command == Command.GW_COMMAND_RUN_STATUS_NTF:
return FrameCommandRunStatusNotification()
if command == Command.GW_COMMAND_REMAINING_TIME_NTF:
return FrameCommandRemainingTimeNotification()
if command == Command.GW_SESSION_FINISHED_NTF:
return FrameSessionFinishedNotification()
if command == Command.GW_PASSWORD_ENTER_REQ:
return FramePasswordEnterRequest()
if command == Command.GW_PASSWORD_ENTER_CFM:
return FramePasswordEnterConfirmation()
if command == Command.GW_CS_DISCOVER_NODES_REQ:
return FrameDiscoverNodesRequest()
if command == Command.GW_CS_DISCOVER_NODES_CFM:
return FrameDiscoverNodesConfirmation()
if command == Command.GW_CS_DISCOVER_NODES_NTF:
return FrameDiscoverNodesNotification()
if command == Command.GW_GET_SCENE_LIST_REQ:
return FrameGetSceneListRequest()
if command == Command.GW_GET_SCENE_LIST_CFM:
return FrameGetSceneListConfirmation()
if command == Command.GW_GET_SCENE_LIST_NTF:
return FrameGetSceneListNotification()
if command == Command.GW_GET_NODE_INFORMATION_REQ:
return FrameGetNodeInformationRequest()
if command == Command.GW_GET_NODE_INFORMATION_CFM:
return FrameGetNodeInformationConfirmation()
if command == Command.GW_GET_NODE_INFORMATION_NTF:
return FrameGetNodeInformationNotification()
if command == Command.GW_GET_ALL_NODES_INFORMATION_REQ:
return FrameGetAllNodesInformationRequest()
if command == Command.GW_GET_ALL_NODES_INFORMATION_CFM:
return FrameGetAllNodesInformationConfirmation()
if command == Command.GW_GET_ALL_NODES_INFORMATION_NTF:
return FrameGetAllNodesInformationNotification()
if command == Command.GW_GET_ALL_NODES_INFORMATION_FINISHED_NTF:
return FrameGetAllNodesInformationFinishedNotification()
if command == Command.GW_ACTIVATE_SCENE_REQ:
return FrameActivateSceneRequest()
if command == Command.GW_ACTIVATE_SCENE_CFM:
return FrameActivateSceneConfirmation()
if command == Command.GW_GET_VERSION_REQ:
return FrameGetVersionRequest()
if command == Command.GW_GET_VERSION_CFM:
return FrameGetVersionConfirmation()
if command == Command.GW_GET_PROTOCOL_VERSION_REQ:
return FrameGetProtocolVersionRequest()
if command == Command.GW_GET_PROTOCOL_VERSION_CFM:
return FrameGetProtocolVersionConfirmation()
if command == Command.GW_SET_NODE_NAME_REQ:
return FrameSetNodeNameRequest()
if command == Command.GW_SET_NODE_NAME_CFM:
return FrameSetNodeNameConfirmation()
if command == Command.GW_NODE_INFORMATION_CHANGED_NTF:
return FrameNodeInformationChangedNotification()
if command == Command.GW_GET_STATE_REQ:
return FrameGetStateRequest()
if command == Command.GW_GET_STATE_CFM:
return FrameGetStateConfirmation()
if command == Command.GW_SET_UTC_REQ:
return FrameSetUTCRequest()
if command == Command.GW_SET_UTC_CFM:
return FrameSetUTCConfirmation()
if command == Command.GW_ACTIVATION_LOG_UPDATED_NTF:
return FrameActivationLogUpdatedNotification()
if command == Command.GW_HOUSE_STATUS_MONITOR_ENABLE_REQ:
return FrameHouseStatusMonitorEnableRequest()
if command == Command.GW_HOUSE_STATUS_MONITOR_ENABLE_CFM:
return FrameHouseStatusMonitorEnableConfirmation()
if command == Command.GW_HOUSE_STATUS_MONITOR_DISABLE_REQ:
return FrameHouseStatusMonitorDisableRequest()
if command == Command.GW_HOUSE_STATUS_MONITOR_DISABLE_CFM:
return FrameHouseStatusMonitorDisableConfirmation()
if command == Command.GW_NODE_STATE_POSITION_CHANGED_NTF:
return FrameNodeStatePositionChangedNotification()
return None
|
create_frame
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(command):\n if command == Command.GW_ERROR_NTF:\n return FrameErrorNotification()\n if command == Command.GW_COMMAND_SEND_REQ:\n return FrameCommandSendRequest()\n if command == Command.GW_COMMAND_SEND_CFM:\n return FrameCommandSendConfirmation()\n if command == Command.GW_COMMAND_RUN_STATUS_NTF:\n return FrameCommandRunStatusNotification()\n if command == Command.GW_COMMAND_REMAINING_TIME_NTF:\n return FrameCommandRemainingTimeNotification()\n if command == Command.GW_SESSION_FINISHED_NTF:\n return FrameSessionFinishedNotification()\n if command == Command.GW_PASSWORD_ENTER_REQ:\n return FramePasswordEnterRequest()\n if command == Command.GW_PASSWORD_ENTER_CFM:\n return FramePasswordEnterConfirmation()\n if command == Command.GW_CS_DISCOVER_NODES_REQ:\n return FrameDiscoverNodesRequest()\n if command == Command.GW_CS_DISCOVER_NODES_CFM:\n return FrameDiscoverNodesConfirmation()\n if command == Command.GW_CS_DISCOVER_NODES_NTF:\n return FrameDiscoverNodesNotification()\n if command == Command.GW_GET_SCENE_LIST_REQ:\n return FrameGetSceneListRequest()\n if command == Command.GW_GET_SCENE_LIST_CFM:\n return FrameGetSceneListConfirmation()\n if command == Command.GW_GET_SCENE_LIST_NTF:\n return FrameGetSceneListNotification()\n if command == Command.GW_GET_NODE_INFORMATION_REQ:\n return FrameGetNodeInformationRequest()\n if command == Command.GW_GET_NODE_INFORMATION_CFM:\n return FrameGetNodeInformationConfirmation()\n if command == Command.GW_GET_NODE_INFORMATION_NTF:\n return FrameGetNodeInformationNotification()\n if command == Command.GW_GET_ALL_NODES_INFORMATION_REQ:\n return FrameGetAllNodesInformationRequest()\n if command == Command.GW_GET_ALL_NODES_INFORMATION_CFM:\n return FrameGetAllNodesInformationConfirmation()\n if command == Command.GW_GET_ALL_NODES_INFORMATION_NTF:\n return FrameGetAllNodesInformationNotification()\n if command == Command.GW_GET_ALL_NODES_INFORMATION_FINISHED_NTF:\n return FrameGetAllNodesInformationFinishedNotification()\n if command == Command.GW_ACTIVATE_SCENE_REQ:\n return FrameActivateSceneRequest()\n if command == Command.GW_ACTIVATE_SCENE_CFM:\n return FrameActivateSceneConfirmation()\n if command == Command.GW_GET_VERSION_REQ:\n return FrameGetVersionRequest()\n if command == Command.GW_GET_VERSION_CFM:\n return FrameGetVersionConfirmation()\n if command == Command.GW_GET_PROTOCOL_VERSION_REQ:\n return FrameGetProtocolVersionRequest()\n if command == Command.GW_GET_PROTOCOL_VERSION_CFM:\n return FrameGetProtocolVersionConfirmation()\n if command == Command.GW_SET_NODE_NAME_REQ:\n return FrameSetNodeNameRequest()\n if command == Command.GW_SET_NODE_NAME_CFM:\n return FrameSetNodeNameConfirmation()\n if command == Command.GW_NODE_INFORMATION_CHANGED_NTF:\n return FrameNodeInformationChangedNotification()\n if command == Command.GW_GET_STATE_REQ:\n return FrameGetStateRequest()\n if command == Command.GW_GET_STATE_CFM:\n return FrameGetStateConfirmation()\n if command == Command.GW_SET_UTC_REQ:\n return FrameSetUTCRequest()\n if command == Command.GW_SET_UTC_CFM:\n return FrameSetUTCConfirmation()\n if command == Command.GW_ACTIVATION_LOG_UPDATED_NTF:\n return FrameActivationLogUpdatedNotification()\n if command == Command.GW_HOUSE_STATUS_MONITOR_ENABLE_REQ:\n return FrameHouseStatusMonitorEnableRequest()\n if command == Command.GW_HOUSE_STATUS_MONITOR_ENABLE_CFM:\n return FrameHouseStatusMonitorEnableConfirmation()\n if command == Command.GW_HOUSE_STATUS_MONITOR_DISABLE_REQ:\n return FrameHouseStatusMonitorDisableRequest()\n if command == Command.GW_HOUSE_STATUS_MONITOR_DISABLE_CFM:\n return FrameHouseStatusMonitorDisableConfirmation()\n if command == Command.GW_NODE_STATE_POSITION_CHANGED_NTF:\n return FrameNodeStatePositionChangedNotification()\n return None\n",
"role": "user"
},
{
"content": "create_frame",
"role": "assistant"
}
] |
async def handle_frame(self, frame):
"""Handle incoming API frame, return True if this was the expected frame."""
if not isinstance(frame, FramePasswordEnterConfirmation):
return False
if frame.status == PasswordEnterConfirmationStatus.FAILED:
PYVLXLOG.warning('Failed to authenticate with password "%s****"',
self.password[:2])
self.success = False
if frame.status == PasswordEnterConfirmationStatus.SUCCESSFUL:
self.success = True
return True
|
handle_frame
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def handle_frame(self, frame):\n \"\"\"Handle incoming API frame, return True if this was the expected frame.\"\"\"\n if not isinstance(frame, FramePasswordEnterConfirmation):\n return False\n if frame.status == PasswordEnterConfirmationStatus.FAILED:\n PYVLXLOG.warning('Failed to authenticate with password \"%s****\"',\n self.password[:2])\n self.success = False\n if frame.status == PasswordEnterConfirmationStatus.SUCCESSFUL:\n self.success = True\n return True\n",
"role": "user"
},
{
"content": "handle_frame",
"role": "assistant"
}
] |
def x(self):
return bytes([self.major_version >> 8 & 255, self.major_version & 255,
self.minor_version >> 8 & 255, self.minor_version & 255])
|
get_payload
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return bytes([self.major_version >> 8 & 255, self.major_version & 255, \n self.minor_version >> 8 & 255, self.minor_version & 255])\n",
"role": "user"
},
{
"content": "get_payload",
"role": "assistant"
}
] |
def x(self, payload):
self.major_version = payload[0] * 256 + payload[1]
self.minor_version = payload[2] * 256 + payload[3]
|
from_payload
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, payload):\n self.major_version = payload[0] * 256 + payload[1]\n self.minor_version = payload[2] * 256 + payload[3]\n",
"role": "user"
},
{
"content": "from_payload",
"role": "assistant"
}
] |
def x(self, data):
self.tokenizer.feed(data)
while self.tokenizer.has_tokens():
raw = self.tokenizer.get_next_token()
frame = frame_from_raw(raw)
if frame is not None:
self.frame_received_cb(frame)
|
data_received
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n self.tokenizer.feed(data)\n while self.tokenizer.has_tokens():\n raw = self.tokenizer.get_next_token()\n frame = frame_from_raw(raw)\n if frame is not None:\n self.frame_received_cb(frame)\n",
"role": "user"
},
{
"content": "data_received",
"role": "assistant"
}
] |
async def connect(self):
"""Connect to gateway via SSL."""
tcp_client = TCPTransport(self.frame_received_cb, self.connection_closed_cb
)
self.transport, _ = await self.loop.create_connection(lambda :
tcp_client, host=self.config.host, port=self.config.port, ssl=self.
create_ssl_context())
self.connected = True
|
connect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def connect(self):\n \"\"\"Connect to gateway via SSL.\"\"\"\n tcp_client = TCPTransport(self.frame_received_cb, self.connection_closed_cb\n )\n self.transport, _ = await self.loop.create_connection(lambda :\n tcp_client, host=self.config.host, port=self.config.port, ssl=self.\n create_ssl_context())\n self.connected = True\n",
"role": "user"
},
{
"content": "connect",
"role": "assistant"
}
] |
def x(self, frame):
if not isinstance(frame, FrameBase):
raise PyVLXException('Frame not of type FrameBase', frame_type=type
(frame))
PYVLXLOG.debug('SEND: %s', frame)
self.transport.write(slip_pack(bytes(frame)))
|
write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, frame):\n if not isinstance(frame, FrameBase):\n raise PyVLXException('Frame not of type FrameBase', frame_type=type\n (frame))\n PYVLXLOG.debug('SEND: %s', frame)\n self.transport.write(slip_pack(bytes(frame)))\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x():
ssl_context = ssl.create_default_context(ssl.Purpose.SERVER_AUTH)
ssl_context.check_hostname = False
ssl_context.verify_mode = ssl.CERT_NONE
return ssl_context
|
create_ssl_context
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n ssl_context = ssl.create_default_context(ssl.Purpose.SERVER_AUTH)\n ssl_context.check_hostname = False\n ssl_context.verify_mode = ssl.CERT_NONE\n return ssl_context\n",
"role": "user"
},
{
"content": "create_ssl_context",
"role": "assistant"
}
] |
def x(self, frame):
PYVLXLOG.debug('REC: %s', frame)
for frame_received_cb in self.frame_received_cbs:
self.loop.create_task(frame_received_cb(frame))
|
frame_received_cb
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, frame):\n PYVLXLOG.debug('REC: %s', frame)\n for frame_received_cb in self.frame_received_cbs:\n self.loop.create_task(frame_received_cb(frame))\n",
"role": "user"
},
{
"content": "frame_received_cb",
"role": "assistant"
}
] |
def x(self, path):
self.pyvlx.logger.info('Reading config file: ', path)
try:
with open(path, 'r') as filehandle:
doc = yaml.load(filehandle)
if 'config' not in doc:
raise PyVLXException('no element config found in: {0}'.
format(path))
if 'host' not in doc['config']:
raise PyVLXException('no element host found in: {0}'.format
(path))
if 'password' not in doc['config']:
raise PyVLXException('no element password found in: {0}'.
format(path))
self.host = doc['config']['host']
self.password = doc['config']['password']
except FileNotFoundError as ex:
raise PyVLXException('file does not exist: {0}'.format(ex))
|
read_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, path):\n self.pyvlx.logger.info('Reading config file: ', path)\n try:\n with open(path, 'r') as filehandle:\n doc = yaml.load(filehandle)\n if 'config' not in doc:\n raise PyVLXException('no element config found in: {0}'.\n format(path))\n if 'host' not in doc['config']:\n raise PyVLXException('no element host found in: {0}'.format\n (path))\n if 'password' not in doc['config']:\n raise PyVLXException('no element password found in: {0}'.\n format(path))\n self.host = doc['config']['host']\n self.password = doc['config']['password']\n except FileNotFoundError as ex:\n raise PyVLXException('file does not exist: {0}'.format(ex))\n",
"role": "user"
},
{
"content": "read_config",
"role": "assistant"
}
] |
async def process_frame(self, frame):
"""Update nodes via frame, usually received by house monitor."""
if isinstance(frame, FrameNodeStatePositionChangedNotification):
if frame.node_id not in self.pyvlx.nodes:
return
node = self.pyvlx.nodes[frame.node_id]
if isinstance(node, OpeningDevice):
node.position = Position(frame.current_position)
await node.after_update()
elif isinstance(frame, FrameGetAllNodesInformationNotification):
if frame.node_id not in self.pyvlx.nodes:
return
node = self.pyvlx.nodes[frame.node_id]
if isinstance(node, OpeningDevice):
node.position = Position(frame.current_position)
await node.after_update()
|
process_frame
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def process_frame(self, frame):\n \"\"\"Update nodes via frame, usually received by house monitor.\"\"\"\n if isinstance(frame, FrameNodeStatePositionChangedNotification):\n if frame.node_id not in self.pyvlx.nodes:\n return\n node = self.pyvlx.nodes[frame.node_id]\n if isinstance(node, OpeningDevice):\n node.position = Position(frame.current_position)\n await node.after_update()\n elif isinstance(frame, FrameGetAllNodesInformationNotification):\n if frame.node_id not in self.pyvlx.nodes:\n return\n node = self.pyvlx.nodes[frame.node_id]\n if isinstance(node, OpeningDevice):\n node.position = Position(frame.current_position)\n await node.after_update()\n",
"role": "user"
},
{
"content": "process_frame",
"role": "assistant"
}
] |
def x(self, scene):
if not isinstance(scene, Scene):
raise TypeError()
for i, j in enumerate(self.__scenes):
if j.scene_id == scene.scene_id:
self.__scenes[i] = scene
return
self.__scenes.append(scene)
|
add
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, scene):\n if not isinstance(scene, Scene):\n raise TypeError()\n for i, j in enumerate(self.__scenes):\n if j.scene_id == scene.scene_id:\n self.__scenes[i] = scene\n return\n self.__scenes.append(scene)\n",
"role": "user"
},
{
"content": "add",
"role": "assistant"
}
] |
async def load(self):
"""Load scenes from KLF 200."""
get_scene_list = GetSceneList(pyvlx=self.pyvlx)
await get_scene_list.do_api_call()
if not get_scene_list.success:
raise PyVLXException('Unable to retrieve scene information')
for scene in get_scene_list.scenes:
self.add(Scene(pyvlx=self.pyvlx, scene_id=scene[0], name=scene[1]))
|
load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def load(self):\n \"\"\"Load scenes from KLF 200.\"\"\"\n get_scene_list = GetSceneList(pyvlx=self.pyvlx)\n await get_scene_list.do_api_call()\n if not get_scene_list.success:\n raise PyVLXException('Unable to retrieve scene information')\n for scene in get_scene_list.scenes:\n self.add(Scene(pyvlx=self.pyvlx, scene_id=scene[0], name=scene[1]))\n",
"role": "user"
},
{
"content": "load",
"role": "assistant"
}
] |
def x(bytes, system=NIST):
if isinstance(bytes, Bitmath):
value = bytes.bytes
else:
value = bytes
return Byte(value).best_prefix(system=system)
|
best_prefix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(bytes, system=NIST):\n if isinstance(bytes, Bitmath):\n value = bytes.bytes\n else:\n value = bytes\n return Byte(value).best_prefix(system=system)\n",
"role": "user"
},
{
"content": "best_prefix",
"role": "assistant"
}
] |
def x(device_fd):
if os_name() != 'posix':
raise NotImplementedError(
"'bitmath.query_device_capacity' is not supported on this platform: %s"
% os_name())
s = os.stat(device_fd.name).st_mode
if not stat.S_ISBLK(s):
raise ValueError('The file descriptor provided is not of a device type'
)
ioctl_map = {'Linux': {'request_params': [('BLKGETSIZE64', 'L',
2148012658)], 'func': lambda x: x['BLKGETSIZE64']}, 'Darwin': {
'request_params': [('DKIOCGETBLOCKCOUNT', 'L', 1074291737), (
'DKIOCGETBLOCKSIZE', 'I', 1074029592)], 'func': lambda x: x[
'DKIOCGETBLOCKCOUNT'] * x['DKIOCGETBLOCKSIZE']}}
platform_params = ioctl_map[platform.system()]
results = {}
for req_name, fmt, request_code in platform_params['request_params']:
buffer_size = struct.calcsize(fmt)
buffer = ' ' * buffer_size
buffer = fcntl.ioctl(device_fd.fileno(), request_code, buffer)
result = struct.unpack(fmt, buffer)[0]
results[req_name] = result
return Byte(platform_params['func'](results))
|
query_device_capacity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(device_fd):\n if os_name() != 'posix':\n raise NotImplementedError(\n \"'bitmath.query_device_capacity' is not supported on this platform: %s\"\n % os_name())\n s = os.stat(device_fd.name).st_mode\n if not stat.S_ISBLK(s):\n raise ValueError('The file descriptor provided is not of a device type'\n )\n ioctl_map = {'Linux': {'request_params': [('BLKGETSIZE64', 'L', \n 2148012658)], 'func': lambda x: x['BLKGETSIZE64']}, 'Darwin': {\n 'request_params': [('DKIOCGETBLOCKCOUNT', 'L', 1074291737), (\n 'DKIOCGETBLOCKSIZE', 'I', 1074029592)], 'func': lambda x: x[\n 'DKIOCGETBLOCKCOUNT'] * x['DKIOCGETBLOCKSIZE']}}\n platform_params = ioctl_map[platform.system()]\n results = {}\n for req_name, fmt, request_code in platform_params['request_params']:\n buffer_size = struct.calcsize(fmt)\n buffer = ' ' * buffer_size\n buffer = fcntl.ioctl(device_fd.fileno(), request_code, buffer)\n result = struct.unpack(fmt, buffer)[0]\n results[req_name] = result\n return Byte(platform_params['func'](results))\n",
"role": "user"
},
{
"content": "query_device_capacity",
"role": "assistant"
}
] |
def x(path, bestprefix=True, system=NIST):
_path = os.path.realpath(path)
size_bytes = os.path.getsize(_path)
if bestprefix:
return Byte(size_bytes).best_prefix(system=system)
else:
return Byte(size_bytes)
|
getsize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path, bestprefix=True, system=NIST):\n _path = os.path.realpath(path)\n size_bytes = os.path.getsize(_path)\n if bestprefix:\n return Byte(size_bytes).best_prefix(system=system)\n else:\n return Byte(size_bytes)\n",
"role": "user"
},
{
"content": "getsize",
"role": "assistant"
}
] |
def x(search_base, followlinks=False, filter='*', relpath=False, bestprefix
=False, system=NIST):
for root, dirs, files in os.walk(search_base, followlinks=followlinks):
for name in fnmatch.filter(files, filter):
_path = os.path.join(root, name)
if relpath:
_return_path = os.path.relpath(_path, '.')
else:
_return_path = os.path.realpath(_path)
if followlinks:
yield _return_path, getsize(_path, bestprefix=bestprefix,
system=system)
elif os.path.isdir(_path) or os.path.islink(_path):
pass
else:
yield _return_path, getsize(_path, bestprefix=bestprefix,
system=system)
|
listdir
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(search_base, followlinks=False, filter='*', relpath=False, bestprefix\n =False, system=NIST):\n for root, dirs, files in os.walk(search_base, followlinks=followlinks):\n for name in fnmatch.filter(files, filter):\n _path = os.path.join(root, name)\n if relpath:\n _return_path = os.path.relpath(_path, '.')\n else:\n _return_path = os.path.realpath(_path)\n if followlinks:\n yield _return_path, getsize(_path, bestprefix=bestprefix,\n system=system)\n elif os.path.isdir(_path) or os.path.islink(_path):\n pass\n else:\n yield _return_path, getsize(_path, bestprefix=bestprefix,\n system=system)\n",
"role": "user"
},
{
"content": "listdir",
"role": "assistant"
}
] |
def x(s):
if not isinstance(s, (str, unicode)):
raise ValueError(
'parse_string only accepts string inputs but a %s was given' %
type(s))
try:
index = list([i.isalpha() for i in s]).index(True)
except ValueError:
raise ValueError(
"No unit detected, can not parse string '%s' into a bitmath object"
% s)
val, unit = s[:index], s[index:]
if unit == 'b':
unit_class = Bit
elif unit == 'B':
unit_class = Byte
else:
if not (hasattr(sys.modules[__name__], unit) and isinstance(getattr
(sys.modules[__name__], unit), type)):
raise ValueError('The unit %s is not a valid bitmath unit' % unit)
unit_class = globals()[unit]
try:
val = float(val)
except ValueError:
raise
try:
return unit_class(val)
except:
raise ValueError("Can't parse string %s into a bitmath object" % s)
|
parse_string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s):\n if not isinstance(s, (str, unicode)):\n raise ValueError(\n 'parse_string only accepts string inputs but a %s was given' %\n type(s))\n try:\n index = list([i.isalpha() for i in s]).index(True)\n except ValueError:\n raise ValueError(\n \"No unit detected, can not parse string '%s' into a bitmath object\"\n % s)\n val, unit = s[:index], s[index:]\n if unit == 'b':\n unit_class = Bit\n elif unit == 'B':\n unit_class = Byte\n else:\n if not (hasattr(sys.modules[__name__], unit) and isinstance(getattr\n (sys.modules[__name__], unit), type)):\n raise ValueError('The unit %s is not a valid bitmath unit' % unit)\n unit_class = globals()[unit]\n try:\n val = float(val)\n except ValueError:\n raise\n try:\n return unit_class(val)\n except:\n raise ValueError(\"Can't parse string %s into a bitmath object\" % s)\n",
"role": "user"
},
{
"content": "parse_string",
"role": "assistant"
}
] |
def x(s, system=SI):
if not isinstance(s, (str, unicode)) and not isinstance(s, numbers.Number):
raise ValueError(
'parse_string_unsafe only accepts string/number inputs but a %s was given'
% type(s))
if isinstance(s, numbers.Number):
return Byte(s)
if isinstance(s, (str, unicode)):
try:
return Byte(float(s))
except ValueError:
pass
try:
index = list([i.isalpha() for i in s]).index(True)
except ValueError:
raise ValueError(
"No unit detected, can not parse string '%s' into a bitmath object"
% s)
val, unit = s[:index], s[index:]
unit = unit.rstrip('Bb')
unit += 'B'
if len(unit) == 2:
if system == NIST:
unit = capitalize_first(unit)
_unit = list(unit)
_unit.insert(1, 'i')
unit = ''.join(_unit)
unit_class = globals()[unit]
else:
if unit.startswith('K'):
unit = unit.replace('K', 'k')
elif not unit.startswith('k'):
unit = capitalize_first(unit)
if unit[0] in SI_PREFIXES:
unit_class = globals()[unit]
elif len(unit) == 3:
unit = capitalize_first(unit)
if unit[:2] in NIST_PREFIXES:
unit_class = globals()[unit]
else:
raise ValueError('The unit %s is not a valid bitmath unit' % unit)
try:
unit_class
except UnboundLocalError:
raise ValueError('The unit %s is not a valid bitmath unit' % unit)
return unit_class(float(val))
|
parse_string_unsafe
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s, system=SI):\n if not isinstance(s, (str, unicode)) and not isinstance(s, numbers.Number):\n raise ValueError(\n 'parse_string_unsafe only accepts string/number inputs but a %s was given'\n % type(s))\n if isinstance(s, numbers.Number):\n return Byte(s)\n if isinstance(s, (str, unicode)):\n try:\n return Byte(float(s))\n except ValueError:\n pass\n try:\n index = list([i.isalpha() for i in s]).index(True)\n except ValueError:\n raise ValueError(\n \"No unit detected, can not parse string '%s' into a bitmath object\"\n % s)\n val, unit = s[:index], s[index:]\n unit = unit.rstrip('Bb')\n unit += 'B'\n if len(unit) == 2:\n if system == NIST:\n unit = capitalize_first(unit)\n _unit = list(unit)\n _unit.insert(1, 'i')\n unit = ''.join(_unit)\n unit_class = globals()[unit]\n else:\n if unit.startswith('K'):\n unit = unit.replace('K', 'k')\n elif not unit.startswith('k'):\n unit = capitalize_first(unit)\n if unit[0] in SI_PREFIXES:\n unit_class = globals()[unit]\n elif len(unit) == 3:\n unit = capitalize_first(unit)\n if unit[:2] in NIST_PREFIXES:\n unit_class = globals()[unit]\n else:\n raise ValueError('The unit %s is not a valid bitmath unit' % unit)\n try:\n unit_class\n except UnboundLocalError:\n raise ValueError('The unit %s is not a valid bitmath unit' % unit)\n return unit_class(float(val))\n",
"role": "user"
},
{
"content": "parse_string_unsafe",
"role": "assistant"
}
] |
def x(fmt_str=None, plural=False, bestprefix=False):
if 'bitmath' not in globals():
import bitmath
if plural:
orig_fmt_plural = bitmath.format_plural
bitmath.format_plural = True
if fmt_str:
orig_fmt_str = bitmath.format_string
bitmath.format_string = fmt_str
yield
if plural:
bitmath.format_plural = orig_fmt_plural
if fmt_str:
bitmath.format_string = orig_fmt_str
|
format
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fmt_str=None, plural=False, bestprefix=False):\n if 'bitmath' not in globals():\n import bitmath\n if plural:\n orig_fmt_plural = bitmath.format_plural\n bitmath.format_plural = True\n if fmt_str:\n orig_fmt_str = bitmath.format_string\n bitmath.format_string = fmt_str\n yield\n if plural:\n bitmath.format_plural = orig_fmt_plural\n if fmt_str:\n bitmath.format_string = orig_fmt_str\n",
"role": "user"
},
{
"content": "format",
"role": "assistant"
}
] |
def x(cli_args):
choices = ALL_UNIT_TYPES
parser = argparse.ArgumentParser(description=
'Converts from one type of size to another.')
parser.add_argument('--from-stdin', default=False, action='store_true',
help='Reads number from stdin rather than the cli')
parser.add_argument('-f', '--from', choices=choices, nargs=1, type=str,
dest='fromunit', default=['Byte'], help=
'Input type you are converting from. Defaultes to Byte.')
parser.add_argument('-t', '--to', choices=choices, required=False,
nargs=1, type=str, help=
'Input type you are converting to. Attempts to detect best result if omitted.'
, dest='tounit')
parser.add_argument('size', nargs='*', type=float, help=
'The number to convert.')
args = parser.parse_args(cli_args)
if args.from_stdin:
args.size = [float(sys.stdin.readline()[:-1])]
results = []
for size in args.size:
instance = getattr(__import__('bitmath', fromlist=['True']), args.
fromunit[0])(size)
if args.tounit:
result = getattr(instance, args.tounit[0])
else:
result = instance.best_prefix()
results.append(result)
return results
|
cli_script_main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cli_args):\n choices = ALL_UNIT_TYPES\n parser = argparse.ArgumentParser(description=\n 'Converts from one type of size to another.')\n parser.add_argument('--from-stdin', default=False, action='store_true',\n help='Reads number from stdin rather than the cli')\n parser.add_argument('-f', '--from', choices=choices, nargs=1, type=str,\n dest='fromunit', default=['Byte'], help=\n 'Input type you are converting from. Defaultes to Byte.')\n parser.add_argument('-t', '--to', choices=choices, required=False,\n nargs=1, type=str, help=\n 'Input type you are converting to. Attempts to detect best result if omitted.'\n , dest='tounit')\n parser.add_argument('size', nargs='*', type=float, help=\n 'The number to convert.')\n args = parser.parse_args(cli_args)\n if args.from_stdin:\n args.size = [float(sys.stdin.readline()[:-1])]\n results = []\n for size in args.size:\n instance = getattr(__import__('bitmath', fromlist=['True']), args.\n fromunit[0])(size)\n if args.tounit:\n result = getattr(instance, args.tounit[0])\n else:\n result = instance.best_prefix()\n results.append(result)\n return results\n",
"role": "user"
},
{
"content": "cli_script_main",
"role": "assistant"
}
] |
def x(self):
self._base, self._power, self._name_singular, self._name_plural = (self
._setup())
self._unit_value = self._base ** self._power
|
do_setup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._base, self._power, self._name_singular, self._name_plural = (self\n ._setup())\n self._unit_value = self._base ** self._power\n",
"role": "user"
},
{
"content": "do_setup",
"role": "assistant"
}
] |
def x(self, value):
if isinstance(value, self.valid_types):
self._byte_value = value * self._unit_value
self._bit_value = self._byte_value * 8.0
else:
raise ValueError(
"Initialization value '%s' is of an invalid type: %s. Must be one of %s"
% (value, type(value), ', '.join(str(x) for x in self.
valid_types)))
|
norm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if isinstance(value, self.valid_types):\n self._byte_value = value * self._unit_value\n self._bit_value = self._byte_value * 8.0\n else:\n raise ValueError(\n \"Initialization value '%s' is of an invalid type: %s. Must be one of %s\"\n % (value, type(value), ', '.join(str(x) for x in self.\n valid_types)))\n",
"role": "user"
},
{
"content": "norm",
"role": "assistant"
}
] |
def x(self):
if self._base == 2:
return 'NIST'
elif self._base == 10:
return 'SI'
else:
raise ValueError(
'Instances mathematical base is an unsupported value: %s' % str
(self._base))
|
system
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._base == 2:\n return 'NIST'\n elif self._base == 10:\n return 'SI'\n else:\n raise ValueError(\n 'Instances mathematical base is an unsupported value: %s' % str\n (self._base))\n",
"role": "user"
},
{
"content": "system",
"role": "assistant"
}
] |
def x(self):
global format_plural
if self.prefix_value == 1:
return self._name_singular
elif format_plural:
return self._name_plural
else:
return self._name_singular
|
unit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n global format_plural\n if self.prefix_value == 1:\n return self._name_singular\n elif format_plural:\n return self._name_plural\n else:\n return self._name_singular\n",
"role": "user"
},
{
"content": "unit",
"role": "assistant"
}
] |
def x(cls, item):
if isinstance(item, Bitmath):
return cls(bits=item.bits)
else:
raise ValueError(
'The provided items must be a valid bitmath class: %s' % str(
item.__class__))
|
from_other
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, item):\n if isinstance(item, Bitmath):\n return cls(bits=item.bits)\n else:\n raise ValueError(\n 'The provided items must be a valid bitmath class: %s' % str(\n item.__class__))\n",
"role": "user"
},
{
"content": "from_other",
"role": "assistant"
}
] |
def x(self, fmt):
_fmt_params = {'base': self.base, 'bin': self.bin, 'binary': self.
binary, 'bits': self.bits, 'bytes': self.bytes, 'power': self.power,
'system': self.system, 'unit': self.unit, 'unit_plural': self.
unit_plural, 'unit_singular': self.unit_singular, 'value': self.value}
return fmt.format(**_fmt_params)
|
format
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fmt):\n _fmt_params = {'base': self.base, 'bin': self.bin, 'binary': self.\n binary, 'bits': self.bits, 'bytes': self.bytes, 'power': self.power,\n 'system': self.system, 'unit': self.unit, 'unit_plural': self.\n unit_plural, 'unit_singular': self.unit_singular, 'value': self.value}\n return fmt.format(**_fmt_params)\n",
"role": "user"
},
{
"content": "format",
"role": "assistant"
}
] |
def x(self, system=None):
if abs(self) < Byte(1):
return Bit.from_other(self)
elif type(self) is Byte:
_inst = self
else:
_inst = Byte.from_other(self)
if system is None:
if self.system == 'NIST':
_STEPS = NIST_PREFIXES
_BASE = 1024
elif self.system == 'SI':
_STEPS = SI_PREFIXES
_BASE = 1000
elif system == NIST:
_STEPS = NIST_PREFIXES
_BASE = 1024
elif system == SI:
_STEPS = SI_PREFIXES
_BASE = 1000
else:
raise ValueError(
"Invalid value given for 'system' parameter. Must be one of NIST or SI"
)
_index = int(math.log(abs(_inst.bytes), _BASE))
if _index == 0:
return _inst
elif _index >= len(_STEPS):
_best_prefix = _STEPS[-1]
elif 0 < _index < len(_STEPS):
_best_prefix = _STEPS[_index - 1]
_conversion_method = getattr(self, 'to_%sB' % _best_prefix)
return _conversion_method()
|
best_prefix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, system=None):\n if abs(self) < Byte(1):\n return Bit.from_other(self)\n elif type(self) is Byte:\n _inst = self\n else:\n _inst = Byte.from_other(self)\n if system is None:\n if self.system == 'NIST':\n _STEPS = NIST_PREFIXES\n _BASE = 1024\n elif self.system == 'SI':\n _STEPS = SI_PREFIXES\n _BASE = 1000\n elif system == NIST:\n _STEPS = NIST_PREFIXES\n _BASE = 1024\n elif system == SI:\n _STEPS = SI_PREFIXES\n _BASE = 1000\n else:\n raise ValueError(\n \"Invalid value given for 'system' parameter. Must be one of NIST or SI\"\n )\n _index = int(math.log(abs(_inst.bytes), _BASE))\n if _index == 0:\n return _inst\n elif _index >= len(_STEPS):\n _best_prefix = _STEPS[-1]\n elif 0 < _index < len(_STEPS):\n _best_prefix = _STEPS[_index - 1]\n _conversion_method = getattr(self, 'to_%sB' % _best_prefix)\n return _conversion_method()\n",
"role": "user"
},
{
"content": "best_prefix",
"role": "assistant"
}
] |
def x(self, value):
self._bit_value = value * self._unit_value
self._byte_value = self._bit_value / 8.0
|
norm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n self._bit_value = value * self._unit_value\n self._byte_value = self._bit_value / 8.0\n",
"role": "user"
},
{
"content": "norm",
"role": "assistant"
}
] |
def x(raw):
crc = 0
for sym in raw:
crc = crc ^ int(sym)
return crc
|
calc_crc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(raw):\n crc = 0\n for sym in raw:\n crc = crc ^ int(sym)\n return crc\n",
"role": "user"
},
{
"content": "calc_crc",
"role": "assistant"
}
] |
def x(data):
if len(data) <= 4:
raise PyVLXException('could_not_extract_from_frame_too_short', data
=data)
length = data[0] * 256 + data[1] - 1
if len(data) != length + 3:
raise PyVLXException('could_not_extract_from_frame_invalid_length',
data=data, current_length=len(data), expected_length=length + 3)
if calc_crc(data[:-1]) != data[-1]:
raise PyVLXException('could_not_extract_from_frame_invalid_crc',
data=data, expected_crc=calc_crc(data[:-1]), current_crc=data[-1])
payload = data[4:-1]
try:
command = Command(data[2] * 256 + data[3])
except ValueError:
raise PyVLXException('could_not_extract_from_frame_command', data=data)
return command, payload
|
extract_from_frame
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n if len(data) <= 4:\n raise PyVLXException('could_not_extract_from_frame_too_short', data\n =data)\n length = data[0] * 256 + data[1] - 1\n if len(data) != length + 3:\n raise PyVLXException('could_not_extract_from_frame_invalid_length',\n data=data, current_length=len(data), expected_length=length + 3)\n if calc_crc(data[:-1]) != data[-1]:\n raise PyVLXException('could_not_extract_from_frame_invalid_crc',\n data=data, expected_crc=calc_crc(data[:-1]), current_crc=data[-1])\n payload = data[4:-1]\n try:\n command = Command(data[2] * 256 + data[3])\n except ValueError:\n raise PyVLXException('could_not_extract_from_frame_command', data=data)\n return command, payload\n",
"role": "user"
},
{
"content": "extract_from_frame",
"role": "assistant"
}
] |
def x(self):
payload = bytes([self.node_id])
payload += string_to_bytes(self.name, 64)
payload += bytes([self.order >> 8 & 255, self.order & 255])
payload += bytes([self.placement])
payload += bytes([self.node_variation.value])
return payload
|
get_payload
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n payload = bytes([self.node_id])\n payload += string_to_bytes(self.name, 64)\n payload += bytes([self.order >> 8 & 255, self.order & 255])\n payload += bytes([self.placement])\n payload += bytes([self.node_variation.value])\n return payload\n",
"role": "user"
},
{
"content": "get_payload",
"role": "assistant"
}
] |
def x(self, payload):
self.node_id = payload[0]
self.name = bytes_to_string(payload[1:65])
self.order = payload[65] * 256 + payload[66]
self.placement = payload[67]
self.node_variation = NodeVariation(payload[68])
|
from_payload
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, payload):\n self.node_id = payload[0]\n self.name = bytes_to_string(payload[1:65])\n self.order = payload[65] * 256 + payload[66]\n self.placement = payload[67]\n self.node_variation = NodeVariation(payload[68])\n",
"role": "user"
},
{
"content": "from_payload",
"role": "assistant"
}
] |
def x(self, payload):
self.status = NodeInformationStatus(payload[0])
self.node_id = payload[1]
|
from_payload
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, payload):\n self.status = NodeInformationStatus(payload[0])\n self.node_id = payload[1]\n",
"role": "user"
},
{
"content": "from_payload",
"role": "assistant"
}
] |
def x(obj):
if hasattr(obj, 'meta'):
meta = deepcopy(obj.meta)
elif isinstance(obj, dict):
meta = deepcopy(obj)
else:
meta = {}
return meta
|
get_meta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj):\n if hasattr(obj, 'meta'):\n meta = deepcopy(obj.meta)\n elif isinstance(obj, dict):\n meta = deepcopy(obj)\n else:\n meta = {}\n return meta\n",
"role": "user"
},
{
"content": "get_meta",
"role": "assistant"
}
] |
def x(left, right, result, clean=True):
left = BaseSpectrum._get_meta(left)
right = BaseSpectrum._get_meta(right)
if clean:
for key in ('header', 'expr'):
for d in (left, right):
if key in d:
del d[key]
mid = metadata.merge(left, right, metadata_conflicts='silent')
result.meta = metadata.merge(result.meta, mid, metadata_conflicts='silent')
|
merge_meta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(left, right, result, clean=True):\n left = BaseSpectrum._get_meta(left)\n right = BaseSpectrum._get_meta(right)\n if clean:\n for key in ('header', 'expr'):\n for d in (left, right):\n if key in d:\n del d[key]\n mid = metadata.merge(left, right, metadata_conflicts='silent')\n result.meta = metadata.merge(result.meta, mid, metadata_conflicts='silent')\n",
"role": "user"
},
{
"content": "merge_meta",
"role": "assistant"
}
] |
def x(pval, def_unit, equivalencies=[]):
if isinstance(pval, u.Quantity):
outval = pval.to(def_unit, equivalencies).value
else:
outval = pval
return outval
|
process_generic_param
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pval, def_unit, equivalencies=[]):\n if isinstance(pval, u.Quantity):\n outval = pval.to(def_unit, equivalencies).value\n else:\n outval = pval\n return outval\n",
"role": "user"
},
{
"content": "process_generic_param",
"role": "assistant"
}
] |
def x(self, pval):
return self._process_generic_param(pval, self._internal_wave_unit,
equivalencies=u.spectral())
|
process_wave_param
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pval):\n return self._process_generic_param(pval, self._internal_wave_unit,\n equivalencies=u.spectral())\n",
"role": "user"
},
{
"content": "process_wave_param",
"role": "assistant"
}
] |
def x(self):
w = get_waveset(self.model)
if w is not None:
utils.validate_wavelengths(w)
w = w * self._internal_wave_unit
return w
|
waveset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n w = get_waveset(self.model)\n if w is not None:\n utils.validate_wavelengths(w)\n w = w * self._internal_wave_unit\n return w\n",
"role": "user"
},
{
"content": "waveset",
"role": "assistant"
}
] |
def x(self):
if self.waveset is None:
x = [None, None]
else:
x = u.Quantity([self.waveset.min(), self.waveset.max()])
return x
|
waverange
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.waveset is None:\n x = [None, None]\n else:\n x = u.Quantity([self.waveset.min(), self.waveset.max()])\n return x\n",
"role": "user"
},
{
"content": "waverange",
"role": "assistant"
}
] |
def x(self, wave):
if wave is None:
if self.waveset is None:
raise exceptions.SynphotError(
'self.waveset is undefined; Provide wavelengths for sampling.')
wavelengths = self.waveset
else:
w = self._process_wave_param(wave)
utils.validate_wavelengths(w)
wavelengths = w * self._internal_wave_unit
return wavelengths
|
validate_wavelengths
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, wave):\n if wave is None:\n if self.waveset is None:\n raise exceptions.SynphotError(\n 'self.waveset is undefined; Provide wavelengths for sampling.')\n wavelengths = self.waveset\n else:\n w = self._process_wave_param(wave)\n utils.validate_wavelengths(w)\n wavelengths = w * self._internal_wave_unit\n return wavelengths\n",
"role": "user"
},
{
"content": "validate_wavelengths",
"role": "assistant"
}
] |
def x(other):
if not isinstance(other, (u.Quantity, numbers.Number,
BaseUnitlessSpectrum, SourceSpectrum)):
raise exceptions.IncompatibleSources(
'Can only operate on scalar number/Quantity or spectrum')
elif isinstance(other, u.Quantity) and (other.unit.decompose() != u.
dimensionless_unscaled or not np.isscalar(other.value) or not
isinstance(other.value, numbers.Real)):
raise exceptions.IncompatibleSources(
'Can only operate on real scalar dimensionless Quantity')
elif isinstance(other, numbers.Number) and not (np.isscalar(other) and
isinstance(other, numbers.Real)):
raise exceptions.IncompatibleSources(
'Can only operate on real scalar number')
|
validate_other_mul_div
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(other):\n if not isinstance(other, (u.Quantity, numbers.Number,\n BaseUnitlessSpectrum, SourceSpectrum)):\n raise exceptions.IncompatibleSources(\n 'Can only operate on scalar number/Quantity or spectrum')\n elif isinstance(other, u.Quantity) and (other.unit.decompose() != u.\n dimensionless_unscaled or not np.isscalar(other.value) or not\n isinstance(other.value, numbers.Real)):\n raise exceptions.IncompatibleSources(\n 'Can only operate on real scalar dimensionless Quantity')\n elif isinstance(other, numbers.Number) and not (np.isscalar(other) and\n isinstance(other, numbers.Real)):\n raise exceptions.IncompatibleSources(\n 'Can only operate on real scalar number')\n",
"role": "user"
},
{
"content": "validate_other_mul_div",
"role": "assistant"
}
] |
def x(self, wavelengths=None, **kwargs):
if 'flux_unit' in kwargs:
self._validate_flux_unit(kwargs['flux_unit'], wav_only=True)
x = self._validate_wavelengths(wavelengths)
try:
m = self.model.integral
except (AttributeError, NotImplementedError):
if conf.default_integrator == 'trapezoid':
y = self(x, **kwargs)
result = abs(np.trapz(y.value, x=x.value))
result_unit = y.unit
else:
raise NotImplementedError(
'Analytic integral not available and default integrator {0} is not supported'
.format(conf.default_integrator))
else:
start = x[0].value
stop = x[-1].value
result = m(stop) - m(start)
result_unit = self._internal_flux_unit
if result_unit != units.THROUGHPUT:
if result_unit == units.PHOTLAM:
result_unit = u.photon / (u.cm ** 2 * u.s)
elif result_unit == units.FLAM:
result_unit = u.erg / (u.cm ** 2 * u.s)
else:
raise NotImplementedError('Integration of {0} is not supported'
.format(result_unit))
else:
result_unit *= self._internal_wave_unit
return result * result_unit
|
integrate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, wavelengths=None, **kwargs):\n if 'flux_unit' in kwargs:\n self._validate_flux_unit(kwargs['flux_unit'], wav_only=True)\n x = self._validate_wavelengths(wavelengths)\n try:\n m = self.model.integral\n except (AttributeError, NotImplementedError):\n if conf.default_integrator == 'trapezoid':\n y = self(x, **kwargs)\n result = abs(np.trapz(y.value, x=x.value))\n result_unit = y.unit\n else:\n raise NotImplementedError(\n 'Analytic integral not available and default integrator {0} is not supported'\n .format(conf.default_integrator))\n else:\n start = x[0].value\n stop = x[-1].value\n result = m(stop) - m(start)\n result_unit = self._internal_flux_unit\n if result_unit != units.THROUGHPUT:\n if result_unit == units.PHOTLAM:\n result_unit = u.photon / (u.cm ** 2 * u.s)\n elif result_unit == units.FLAM:\n result_unit = u.erg / (u.cm ** 2 * u.s)\n else:\n raise NotImplementedError('Integration of {0} is not supported'\n .format(result_unit))\n else:\n result_unit *= self._internal_wave_unit\n return result * result_unit\n",
"role": "user"
},
{
"content": "integrate",
"role": "assistant"
}
] |
def x(self, wavelengths=None):
x = self._validate_wavelengths(wavelengths).value
y = self(x).value
num = np.trapz(y * x, x=x)
den = np.trapz(y, x=x)
if den == 0:
avg_wave = 0.0
else:
avg_wave = abs(num / den)
return avg_wave * self._internal_wave_unit
|
avgwave
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, wavelengths=None):\n x = self._validate_wavelengths(wavelengths).value\n y = self(x).value\n num = np.trapz(y * x, x=x)\n den = np.trapz(y, x=x)\n if den == 0:\n avg_wave = 0.0\n else:\n avg_wave = abs(num / den)\n return avg_wave * self._internal_wave_unit\n",
"role": "user"
},
{
"content": "avgwave",
"role": "assistant"
}
] |
def x(self, wavelengths=None):
x = self._validate_wavelengths(wavelengths).value
y = self(x).value
num = np.trapz(y * np.log(x) / x, x=x)
den = np.trapz(y / x, x=x)
if num == 0 or den == 0:
bar_lam = 0.0
else:
bar_lam = np.exp(abs(num / den))
return bar_lam * self._internal_wave_unit
|
barlam
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, wavelengths=None):\n x = self._validate_wavelengths(wavelengths).value\n y = self(x).value\n num = np.trapz(y * np.log(x) / x, x=x)\n den = np.trapz(y / x, x=x)\n if num == 0 or den == 0:\n bar_lam = 0.0\n else:\n bar_lam = np.exp(abs(num / den))\n return bar_lam * self._internal_wave_unit\n",
"role": "user"
},
{
"content": "barlam",
"role": "assistant"
}
] |
def x(self, wavelengths=None):
x = self._validate_wavelengths(wavelengths).value
y = self(x).value
num = np.trapz(y * x, x=x)
den = np.trapz(y / x, x=x)
if den == 0:
pivwv = 0.0
else:
pivwv = np.sqrt(abs(num / den))
return pivwv * self._internal_wave_unit
|
pivot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, wavelengths=None):\n x = self._validate_wavelengths(wavelengths).value\n y = self(x).value\n num = np.trapz(y * x, x=x)\n den = np.trapz(y / x, x=x)\n if den == 0:\n pivwv = 0.0\n else:\n pivwv = np.sqrt(abs(num / den))\n return pivwv * self._internal_wave_unit\n",
"role": "user"
},
{
"content": "pivot",
"role": "assistant"
}
] |
def x(self):
if isinstance(self._model, Empirical1D):
self._model.fill_value = np.nan
is_forced = True
else:
is_forced = False
return is_forced
|
force_extrapolation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if isinstance(self._model, Empirical1D):\n self._model.fill_value = np.nan\n is_forced = True\n else:\n is_forced = False\n return is_forced\n",
"role": "user"
},
{
"content": "force_extrapolation",
"role": "assistant"
}
] |
def x(self, wavelengths=None):
x = self._validate_wavelengths(wavelengths)
w1 = x[0] ** 2 / x[1]
w2 = x[-1] ** 2 / x[-2]
if isinstance(self._model, Empirical1D):
y1 = self._model.lookup_table[0]
y2 = self._model.lookup_table[-1]
else:
y1 = self(w1)
y2 = self(w2)
if y1 == 0 and y2 == 0:
return self
y = self(x)
if y1 != 0:
x = np.insert(x, 0, w1)
y = np.insert(y, 0, 0.0)
if y2 != 0:
x = np.insert(x, x.size, w2)
y = np.insert(y, y.size, 0.0)
return self.__class__(Empirical1D, points=x, lookup_table=y)
|
taper
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, wavelengths=None):\n x = self._validate_wavelengths(wavelengths)\n w1 = x[0] ** 2 / x[1]\n w2 = x[-1] ** 2 / x[-2]\n if isinstance(self._model, Empirical1D):\n y1 = self._model.lookup_table[0]\n y2 = self._model.lookup_table[-1]\n else:\n y1 = self(w1)\n y2 = self(w2)\n if y1 == 0 and y2 == 0:\n return self\n y = self(x)\n if y1 != 0:\n x = np.insert(x, 0, w1)\n y = np.insert(y, 0, 0.0)\n if y2 != 0:\n x = np.insert(x, x.size, w2)\n y = np.insert(y, y.size, 0.0)\n return self.__class__(Empirical1D, points=x, lookup_table=y)\n",
"role": "user"
},
{
"content": "taper",
"role": "assistant"
}
] |
def x(self, wavelengths, **kwargs):
x = self._validate_wavelengths(wavelengths)
y = self(x, **kwargs)
if isinstance(wavelengths, u.Quantity):
w = x.to(wavelengths.unit, u.spectral())
else:
w = x
return w, y
|
get_arrays
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, wavelengths, **kwargs):\n x = self._validate_wavelengths(wavelengths)\n y = self(x, **kwargs)\n if isinstance(wavelengths, u.Quantity):\n w = x.to(wavelengths.unit, u.spectral())\n else:\n w = x\n return w, y\n",
"role": "user"
},
{
"content": "get_arrays",
"role": "assistant"
}
] |
def x(x, y, title='', xlog=False, ylog=False, left=None, right=None, bottom
=None, top=None, save_as=''):
try:
import matplotlib.pyplot as plt
except ImportError:
log.error(
'No matplotlib installation found; plotting disabled as a result.')
return
fig, ax = plt.subplots()
ax.plot(x, y)
if left is not None:
ax.set_xlim(left=left)
if right is not None:
ax.set_xlim(right=right)
if bottom is not None:
ax.set_ylim(bottom=bottom)
if top is not None:
ax.set_ylim(top=top)
xu = x.unit
if xu.physical_type == 'frequency':
ax.set_xlabel('Frequency ({0})'.format(xu))
else:
ax.set_xlabel('Wavelength ({0})'.format(xu))
yu = y.unit
if yu is u.dimensionless_unscaled:
ax.set_ylabel('Unitless')
else:
ax.set_ylabel('Flux ({0})'.format(yu))
if title:
ax.set_title(title)
if xlog:
ax.set_xscale('log')
if ylog:
ax.set_yscale('log')
plt.draw()
if save_as:
plt.savefig(save_as)
log.info('Plot saved as {0}'.format(save_as))
|
do_plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, title='', xlog=False, ylog=False, left=None, right=None, bottom\n =None, top=None, save_as=''):\n try:\n import matplotlib.pyplot as plt\n except ImportError:\n log.error(\n 'No matplotlib installation found; plotting disabled as a result.')\n return\n fig, ax = plt.subplots()\n ax.plot(x, y)\n if left is not None:\n ax.set_xlim(left=left)\n if right is not None:\n ax.set_xlim(right=right)\n if bottom is not None:\n ax.set_ylim(bottom=bottom)\n if top is not None:\n ax.set_ylim(top=top)\n xu = x.unit\n if xu.physical_type == 'frequency':\n ax.set_xlabel('Frequency ({0})'.format(xu))\n else:\n ax.set_xlabel('Wavelength ({0})'.format(xu))\n yu = y.unit\n if yu is u.dimensionless_unscaled:\n ax.set_ylabel('Unitless')\n else:\n ax.set_ylabel('Flux ({0})'.format(yu))\n if title:\n ax.set_title(title)\n if xlog:\n ax.set_xscale('log')\n if ylog:\n ax.set_yscale('log')\n plt.draw()\n if save_as:\n plt.savefig(save_as)\n log.info('Plot saved as {0}'.format(save_as))\n",
"role": "user"
},
{
"content": "do_plot",
"role": "assistant"
}
] |
def x(self, wavelengths=None, **kwargs):
w, y = self._get_arrays(wavelengths)
self._do_plot(w, y, **kwargs)
|
plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, wavelengths=None, **kwargs):\n w, y = self._get_arrays(wavelengths)\n self._do_plot(w, y, **kwargs)\n",
"role": "user"
},
{
"content": "plot",
"role": "assistant"
}
] |
def x(new_unit, wav_only=False):
new_unit = units.validate_unit(new_unit)
acceptable_types = ['spectral flux density wav', 'photon flux density wav']
acceptable_names = ['PHOTLAM', 'FLAM']
if not wav_only:
acceptable_types += ['spectral flux density', 'photon flux density']
acceptable_names += ['PHOTNU', 'FNU', 'Jy']
if new_unit.physical_type not in acceptable_types:
raise exceptions.SynphotError(
'Source spectrum cannot operate in {0}. Acceptable units: {1}'.
format(new_unit, ','.join(acceptable_names)))
return new_unit
|
validate_flux_unit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(new_unit, wav_only=False):\n new_unit = units.validate_unit(new_unit)\n acceptable_types = ['spectral flux density wav', 'photon flux density wav']\n acceptable_names = ['PHOTLAM', 'FLAM']\n if not wav_only:\n acceptable_types += ['spectral flux density', 'photon flux density']\n acceptable_names += ['PHOTNU', 'FNU', 'Jy']\n if new_unit.physical_type not in acceptable_types:\n raise exceptions.SynphotError(\n 'Source spectrum cannot operate in {0}. Acceptable units: {1}'.\n format(new_unit, ','.join(acceptable_names)))\n return new_unit\n",
"role": "user"
},
{
"content": "validate_flux_unit",
"role": "assistant"
}
] |
def x(self, renorm_val, band=None, wavelengths=None, force=False, area=None,
vegaspec=None):
warndict = {}
if band is None:
sp = self
else:
if not isinstance(band, SpectralElement):
raise exceptions.SynphotError('Invalid bandpass.')
stat = band.check_overlap(self, wavelengths=wavelengths)
if stat == 'none':
raise exceptions.DisjointError(
'Spectrum and renormalization band are disjoint.')
elif 'partial' in stat:
if stat == 'partial_most':
warn_str = 'At least'
elif stat == 'partial_notmost' and force:
warn_str = 'Less than'
else:
raise exceptions.PartialOverlap(
'Spectrum and renormalization band do not fully overlap. You may use force=True to force the renormalization to proceed.'
)
warn_str = (
'Spectrum is not defined everywhere in renormalization bandpass. {0} 99% of the band throughput has data. Spectrum will be'
.format(warn_str))
if self.force_extrapolation():
warn_str = '{0} extrapolated at constant value.'.format(
warn_str)
else:
warn_str = '{0} evaluated outside pre-defined waveset.'.format(
warn_str)
warnings.warn(warn_str, AstropyUserWarning)
warndict['PartialRenorm'] = warn_str
elif stat != 'full':
raise exceptions.SynphotError(
'Overlap result of {0} is unexpected.'.format(stat))
sp = self.__mul__(band)
if not isinstance(renorm_val, u.Quantity):
renorm_val = renorm_val * self._internal_flux_unit
renorm_unit_name = renorm_val.unit.to_string()
w = sp._validate_wavelengths(wavelengths)
if renorm_val.unit == u.count or renorm_unit_name == units.OBMAG.to_string(
):
flux_tmp = sp(w, flux_unit=u.count, area=area)
totalflux = flux_tmp.sum().value
stdflux = 1.0
else:
totalflux = sp.integrate(wavelengths=wavelengths).value
if renorm_unit_name == units.VEGAMAG.to_string():
if not isinstance(vegaspec, SourceSpectrum):
raise exceptions.SynphotError('Vega spectrum is missing.')
stdspec = vegaspec
elif renorm_val.unit in (u.STmag, u.ABmag):
stdspec = SourceSpectrum(ConstFlux1D, amplitude=0 * renorm_val.unit
)
else:
stdspec = SourceSpectrum(ConstFlux1D, amplitude=1 * renorm_val.unit
)
if band is None:
raise NotImplementedError('Must provide a bandpass')
else:
up = stdspec * band
stdflux = up.integrate(wavelengths=wavelengths).value
utils.validate_totalflux(totalflux)
if renorm_val.unit.decompose() == u.mag or isinstance(renorm_val.unit,
u.LogUnit):
const = renorm_val.value + 2.5 * np.log10(totalflux / stdflux)
newsp = self.__mul__(10 ** (-0.4 * const))
else:
const = renorm_val.value * (stdflux / totalflux)
newsp = self.__mul__(const)
newsp.warnings = warndict
return newsp
|
normalize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, renorm_val, band=None, wavelengths=None, force=False, area=None,\n vegaspec=None):\n warndict = {}\n if band is None:\n sp = self\n else:\n if not isinstance(band, SpectralElement):\n raise exceptions.SynphotError('Invalid bandpass.')\n stat = band.check_overlap(self, wavelengths=wavelengths)\n if stat == 'none':\n raise exceptions.DisjointError(\n 'Spectrum and renormalization band are disjoint.')\n elif 'partial' in stat:\n if stat == 'partial_most':\n warn_str = 'At least'\n elif stat == 'partial_notmost' and force:\n warn_str = 'Less than'\n else:\n raise exceptions.PartialOverlap(\n 'Spectrum and renormalization band do not fully overlap. You may use force=True to force the renormalization to proceed.'\n )\n warn_str = (\n 'Spectrum is not defined everywhere in renormalization bandpass. {0} 99% of the band throughput has data. Spectrum will be'\n .format(warn_str))\n if self.force_extrapolation():\n warn_str = '{0} extrapolated at constant value.'.format(\n warn_str)\n else:\n warn_str = '{0} evaluated outside pre-defined waveset.'.format(\n warn_str)\n warnings.warn(warn_str, AstropyUserWarning)\n warndict['PartialRenorm'] = warn_str\n elif stat != 'full':\n raise exceptions.SynphotError(\n 'Overlap result of {0} is unexpected.'.format(stat))\n sp = self.__mul__(band)\n if not isinstance(renorm_val, u.Quantity):\n renorm_val = renorm_val * self._internal_flux_unit\n renorm_unit_name = renorm_val.unit.to_string()\n w = sp._validate_wavelengths(wavelengths)\n if renorm_val.unit == u.count or renorm_unit_name == units.OBMAG.to_string(\n ):\n flux_tmp = sp(w, flux_unit=u.count, area=area)\n totalflux = flux_tmp.sum().value\n stdflux = 1.0\n else:\n totalflux = sp.integrate(wavelengths=wavelengths).value\n if renorm_unit_name == units.VEGAMAG.to_string():\n if not isinstance(vegaspec, SourceSpectrum):\n raise exceptions.SynphotError('Vega spectrum is missing.')\n stdspec = vegaspec\n elif renorm_val.unit in (u.STmag, u.ABmag):\n stdspec = SourceSpectrum(ConstFlux1D, amplitude=0 * renorm_val.unit\n )\n else:\n stdspec = SourceSpectrum(ConstFlux1D, amplitude=1 * renorm_val.unit\n )\n if band is None:\n raise NotImplementedError('Must provide a bandpass')\n else:\n up = stdspec * band\n stdflux = up.integrate(wavelengths=wavelengths).value\n utils.validate_totalflux(totalflux)\n if renorm_val.unit.decompose() == u.mag or isinstance(renorm_val.unit,\n u.LogUnit):\n const = renorm_val.value + 2.5 * np.log10(totalflux / stdflux)\n newsp = self.__mul__(10 ** (-0.4 * const))\n else:\n const = renorm_val.value * (stdflux / totalflux)\n newsp = self.__mul__(const)\n newsp.warnings = warndict\n return newsp\n",
"role": "user"
},
{
"content": "normalize",
"role": "assistant"
}
] |
def x(self, pval, wave):
if isinstance(pval, u.Quantity):
self._validate_flux_unit(pval.unit)
outval = units.convert_flux(self._redshift_model(wave), pval, self.
_internal_flux_unit).value
else:
outval = pval
return outval
|
process_flux_param
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pval, wave):\n if isinstance(pval, u.Quantity):\n self._validate_flux_unit(pval.unit)\n outval = units.convert_flux(self._redshift_model(wave), pval, self.\n _internal_flux_unit).value\n else:\n outval = pval\n return outval\n",
"role": "user"
},
{
"content": "process_flux_param",
"role": "assistant"
}
] |
def x(self):
if self.z == 0:
m = self._model
else:
if self._internal_wave_unit.physical_type == 'length':
rs = self._redshift_model.inverse
else:
rs = self._redshift_model
if self.z_type == 'wavelength_only':
m = rs | self._model
else:
m = rs | self._model | self._redshift_flux_model
return m
|
model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.z == 0:\n m = self._model\n else:\n if self._internal_wave_unit.physical_type == 'length':\n rs = self._redshift_model.inverse\n else:\n rs = self._redshift_model\n if self.z_type == 'wavelength_only':\n m = rs | self._model\n else:\n m = rs | self._model | self._redshift_flux_model\n return m\n",
"role": "user"
},
{
"content": "model",
"role": "assistant"
}
] |
def x(self, what):
if not isinstance(what, numbers.Real):
raise exceptions.SynphotError('Redshift must be a real scalar number.')
self._z = float(what)
self._redshift_model = RedshiftScaleFactor(self._z)
if self.z_type == 'wavelength_only':
self._redshift_flux_model = None
else:
self._redshift_flux_model = Scale(1 / (1 + self._z))
|
z
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, what):\n if not isinstance(what, numbers.Real):\n raise exceptions.SynphotError('Redshift must be a real scalar number.')\n self._z = float(what)\n self._redshift_model = RedshiftScaleFactor(self._z)\n if self.z_type == 'wavelength_only':\n self._redshift_flux_model = None\n else:\n self._redshift_flux_model = Scale(1 / (1 + self._z))\n",
"role": "user"
},
{
"content": "z",
"role": "assistant"
}
] |
def x(self, other):
if not isinstance(other, self.__class__):
raise exceptions.IncompatibleSources('Can only operate on {0}.'.
format(self.__class__.__name__))
|
validate_other_add_sub
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, other):\n if not isinstance(other, self.__class__):\n raise exceptions.IncompatibleSources('Can only operate on {0}.'.\n format(self.__class__.__name__))\n",
"role": "user"
},
{
"content": "validate_other_add_sub",
"role": "assistant"
}
] |
def x(self, wavelengths=None, flux_unit=None, area=None, vegaspec=None, **
kwargs):
w, y = self._get_arrays(wavelengths, flux_unit=flux_unit, area=area,
vegaspec=vegaspec)
self._do_plot(w, y, **kwargs)
|
plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, wavelengths=None, flux_unit=None, area=None, vegaspec=None, **\n kwargs):\n w, y = self._get_arrays(wavelengths, flux_unit=flux_unit, area=area,\n vegaspec=vegaspec)\n self._do_plot(w, y, **kwargs)\n",
"role": "user"
},
{
"content": "plot",
"role": "assistant"
}
] |
def x(self, filename, wavelengths=None, flux_unit=None, area=None, vegaspec
=None, **kwargs):
w, y = self._get_arrays(wavelengths, flux_unit=flux_unit, area=area,
vegaspec=vegaspec)
bkeys = {'tdisp1': 'G15.7', 'tdisp2': 'G15.7'}
if 'expr' in self.meta:
bkeys['expr'] = self.meta['expr'], 'synphot expression'
if 'ext_header' in kwargs:
kwargs['ext_header'].update(bkeys)
else:
kwargs['ext_header'] = bkeys
specio.write_fits_spec(filename, w, y, **kwargs)
|
to_fits
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, wavelengths=None, flux_unit=None, area=None, vegaspec\n =None, **kwargs):\n w, y = self._get_arrays(wavelengths, flux_unit=flux_unit, area=area,\n vegaspec=vegaspec)\n bkeys = {'tdisp1': 'G15.7', 'tdisp2': 'G15.7'}\n if 'expr' in self.meta:\n bkeys['expr'] = self.meta['expr'], 'synphot expression'\n if 'ext_header' in kwargs:\n kwargs['ext_header'].update(bkeys)\n else:\n kwargs['ext_header'] = bkeys\n specio.write_fits_spec(filename, w, y, **kwargs)\n",
"role": "user"
},
{
"content": "to_fits",
"role": "assistant"
}
] |
def x(cls, filename, keep_neg=False, **kwargs):
header, wavelengths, fluxes = specio.read_spec(filename, **kwargs)
return cls(Empirical1D, points=wavelengths, lookup_table=fluxes,
keep_neg=keep_neg, meta={'header': header})
|
from_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, filename, keep_neg=False, **kwargs):\n header, wavelengths, fluxes = specio.read_spec(filename, **kwargs)\n return cls(Empirical1D, points=wavelengths, lookup_table=fluxes,\n keep_neg=keep_neg, meta={'header': header})\n",
"role": "user"
},
{
"content": "from_file",
"role": "assistant"
}
] |
def x(cls, **kwargs):
filename = conf.vega_file
header, wavelengths, fluxes = specio.read_remote_spec(filename, **kwargs)
header['filename'] = filename
meta = {'header': header, 'expr': 'Vega from {0}'.format(os.path.
basename(filename))}
return cls(Empirical1D, points=wavelengths, lookup_table=fluxes, meta=meta)
|
from_vega
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, **kwargs):\n filename = conf.vega_file\n header, wavelengths, fluxes = specio.read_remote_spec(filename, **kwargs)\n header['filename'] = filename\n meta = {'header': header, 'expr': 'Vega from {0}'.format(os.path.\n basename(filename))}\n return cls(Empirical1D, points=wavelengths, lookup_table=fluxes, meta=meta)\n",
"role": "user"
},
{
"content": "from_vega",
"role": "assistant"
}
] |
def x(new_unit):
new_unit = units.validate_unit(new_unit)
if new_unit.decompose() != u.dimensionless_unscaled:
raise exceptions.SynphotError('Unit {0} is not dimensionless'.
format(new_unit))
return new_unit
|
validate_flux_unit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(new_unit):\n new_unit = units.validate_unit(new_unit)\n if new_unit.decompose() != u.dimensionless_unscaled:\n raise exceptions.SynphotError('Unit {0} is not dimensionless'.\n format(new_unit))\n return new_unit\n",
"role": "user"
},
{
"content": "validate_flux_unit",
"role": "assistant"
}
] |
def x(self, other, wavelengths=None, threshold=0.01):
if not isinstance(other, BaseSpectrum):
raise exceptions.SynphotError('other must be spectrum or bandpass.')
if wavelengths is None:
if other.waveset is None:
return 'full'
if self.waveset is None:
return 'partial_notmost'
x1 = self._validate_wavelengths(wavelengths)
y1 = self(x1)
a = x1[y1 > 0].value
b = other._validate_wavelengths(wavelengths).value
result = utils.overlap_status(a, b)
if result == 'partial':
if (isinstance(other.model, Empirical1D) and other.model.is_tapered
() or not isinstance(other.model, (Empirical1D, _CompoundModel))
) and np.allclose(other(x1[::x1.size - 1]).value, 0):
result = 'full'
else:
totalflux = self.integrate(wavelengths=wavelengths).value
utils.validate_totalflux(totalflux)
a_min, a_max = a.min(), a.max()
b_min, b_max = b.min(), b.max()
excluded = 0.0
if a_min < b_min:
excluded += self.integrate(wavelengths=np.array([a_min, b_min])
).value
if a_max > b_max:
excluded += self.integrate(wavelengths=np.array([b_max, a_max])
).value
if excluded / totalflux < threshold:
result = 'partial_most'
else:
result = 'partial_notmost'
return result
|
check_overlap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, other, wavelengths=None, threshold=0.01):\n if not isinstance(other, BaseSpectrum):\n raise exceptions.SynphotError('other must be spectrum or bandpass.')\n if wavelengths is None:\n if other.waveset is None:\n return 'full'\n if self.waveset is None:\n return 'partial_notmost'\n x1 = self._validate_wavelengths(wavelengths)\n y1 = self(x1)\n a = x1[y1 > 0].value\n b = other._validate_wavelengths(wavelengths).value\n result = utils.overlap_status(a, b)\n if result == 'partial':\n if (isinstance(other.model, Empirical1D) and other.model.is_tapered\n () or not isinstance(other.model, (Empirical1D, _CompoundModel))\n ) and np.allclose(other(x1[::x1.size - 1]).value, 0):\n result = 'full'\n else:\n totalflux = self.integrate(wavelengths=wavelengths).value\n utils.validate_totalflux(totalflux)\n a_min, a_max = a.min(), a.max()\n b_min, b_max = b.min(), b.max()\n excluded = 0.0\n if a_min < b_min:\n excluded += self.integrate(wavelengths=np.array([a_min, b_min])\n ).value\n if a_max > b_max:\n excluded += self.integrate(wavelengths=np.array([b_max, a_max])\n ).value\n if excluded / totalflux < threshold:\n result = 'partial_most'\n else:\n result = 'partial_notmost'\n return result\n",
"role": "user"
},
{
"content": "check_overlap",
"role": "assistant"
}
] |
def x(self, area, wavelengths=None):
a = units.validate_quantity(area, units.AREA)
x = self._validate_wavelengths(wavelengths).value
y = self(x).value * x
int_val = abs(np.trapz(y, x=x))
uresp = units.HC / (a.cgs * int_val)
return uresp.value * units.FLAM
|
unit_response
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, area, wavelengths=None):\n a = units.validate_quantity(area, units.AREA)\n x = self._validate_wavelengths(wavelengths).value\n y = self(x).value * x\n int_val = abs(np.trapz(y, x=x))\n uresp = units.HC / (a.cgs * int_val)\n return uresp.value * units.FLAM\n",
"role": "user"
},
{
"content": "unit_response",
"role": "assistant"
}
] |
def x(self, wavelengths=None, threshold=None):
x = self._validate_wavelengths(wavelengths).value
y = self(x).value
if threshold is None:
wave = x
thru = y
else:
if isinstance(threshold, numbers.Real) or isinstance(threshold, u.
Quantity) and threshold.unit == self._internal_flux_unit:
mask = y >= threshold
else:
raise exceptions.SynphotError('{0} is not a valid threshold'.
format(threshold))
wave = x[mask]
thru = y[mask]
a = self.avgwave(wavelengths=wavelengths).value
num = np.trapz((wave - a) ** 2 * thru, x=wave)
den = np.trapz(thru, x=wave)
if den == 0:
rms_width = 0.0
else:
rms_width = np.sqrt(abs(num / den))
return rms_width * self._internal_wave_unit
|
rmswidth
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, wavelengths=None, threshold=None):\n x = self._validate_wavelengths(wavelengths).value\n y = self(x).value\n if threshold is None:\n wave = x\n thru = y\n else:\n if isinstance(threshold, numbers.Real) or isinstance(threshold, u.\n Quantity) and threshold.unit == self._internal_flux_unit:\n mask = y >= threshold\n else:\n raise exceptions.SynphotError('{0} is not a valid threshold'.\n format(threshold))\n wave = x[mask]\n thru = y[mask]\n a = self.avgwave(wavelengths=wavelengths).value\n num = np.trapz((wave - a) ** 2 * thru, x=wave)\n den = np.trapz(thru, x=wave)\n if den == 0:\n rms_width = 0.0\n else:\n rms_width = np.sqrt(abs(num / den))\n return rms_width * self._internal_wave_unit\n",
"role": "user"
},
{
"content": "rmswidth",
"role": "assistant"
}
] |
def x(self, **kwargs):
return np.sqrt(8 * np.log(2)) * self.photbw(**kwargs)
|
fwhm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n return np.sqrt(8 * np.log(2)) * self.photbw(**kwargs)\n",
"role": "user"
},
{
"content": "fwhm",
"role": "assistant"
}
] |
def x(self, wavelengths=None):
x = self._validate_wavelengths(wavelengths).value
return self(x).max()
|
tpeak
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, wavelengths=None):\n x = self._validate_wavelengths(wavelengths).value\n return self(x).max()\n",
"role": "user"
},
{
"content": "tpeak",
"role": "assistant"
}
] |
def x(self, wavelengths=None):
x = self._validate_wavelengths(wavelengths)
return x[self(x) == self.tpeak(wavelengths=wavelengths)][0]
|
wpeak
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, wavelengths=None):\n x = self._validate_wavelengths(wavelengths)\n return x[self(x) == self.tpeak(wavelengths=wavelengths)][0]\n",
"role": "user"
},
{
"content": "wpeak",
"role": "assistant"
}
] |
def x(self, wavelengths=None):
equvw = self.equivwidth(wavelengths=wavelengths)
tpeak = self.tpeak(wavelengths=wavelengths)
if tpeak.value == 0:
rectw = 0.0 * self._internal_wave_unit
else:
rectw = equvw / tpeak
return rectw
|
rectwidth
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, wavelengths=None):\n equvw = self.equivwidth(wavelengths=wavelengths)\n tpeak = self.tpeak(wavelengths=wavelengths)\n if tpeak.value == 0:\n rectw = 0.0 * self._internal_wave_unit\n else:\n rectw = equvw / tpeak\n return rectw\n",
"role": "user"
},
{
"content": "rectwidth",
"role": "assistant"
}
] |
def x(self, wavelengths=None):
x = self._validate_wavelengths(wavelengths).value
y = self(x).value
qtlam = abs(np.trapz(y / x, x=x))
return qtlam * u.dimensionless_unscaled
|
efficiency
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, wavelengths=None):\n x = self._validate_wavelengths(wavelengths).value\n y = self(x).value\n qtlam = abs(np.trapz(y / x, x=x))\n return qtlam * u.dimensionless_unscaled\n",
"role": "user"
},
{
"content": "efficiency",
"role": "assistant"
}
] |
def x(self, area, wavelengths=None):
t_lambda = self.tlambda(wavelengths=wavelengths)
if t_lambda == 0:
em_flux = 0.0 * units.FLAM
else:
uresp = self.unit_response(area, wavelengths=wavelengths)
equvw = self.equivwidth(wavelengths=wavelengths).value
em_flux = uresp * equvw / t_lambda
return em_flux
|
emflx
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, area, wavelengths=None):\n t_lambda = self.tlambda(wavelengths=wavelengths)\n if t_lambda == 0:\n em_flux = 0.0 * units.FLAM\n else:\n uresp = self.unit_response(area, wavelengths=wavelengths)\n equvw = self.equivwidth(wavelengths=wavelengths).value\n em_flux = uresp * equvw / t_lambda\n return em_flux\n",
"role": "user"
},
{
"content": "emflx",
"role": "assistant"
}
] |
def x(cls, filename, **kwargs):
if 'flux_unit' not in kwargs:
kwargs['flux_unit'] = cls._internal_flux_unit
if (filename.endswith('fits') or filename.endswith('fit')
) and 'flux_col' not in kwargs:
kwargs['flux_col'] = 'THROUGHPUT'
header, wavelengths, throughput = specio.read_spec(filename, **kwargs)
return cls(Empirical1D, points=wavelengths, lookup_table=throughput,
keep_neg=True, meta={'header': header})
|
from_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, filename, **kwargs):\n if 'flux_unit' not in kwargs:\n kwargs['flux_unit'] = cls._internal_flux_unit\n if (filename.endswith('fits') or filename.endswith('fit')\n ) and 'flux_col' not in kwargs:\n kwargs['flux_col'] = 'THROUGHPUT'\n header, wavelengths, throughput = specio.read_spec(filename, **kwargs)\n return cls(Empirical1D, points=wavelengths, lookup_table=throughput,\n keep_neg=True, meta={'header': header})\n",
"role": "user"
},
{
"content": "from_file",
"role": "assistant"
}
] |
def x(cls, filtername, **kwargs):
filtername = filtername.lower()
if filtername == 'bessel_j':
cfgitem = Conf.bessel_j_file
elif filtername == 'bessel_h':
cfgitem = Conf.bessel_h_file
elif filtername == 'bessel_k':
cfgitem = Conf.bessel_k_file
elif filtername == 'cousins_r':
cfgitem = Conf.cousins_r_file
elif filtername == 'cousins_i':
cfgitem = Conf.cousins_i_file
elif filtername == 'johnson_u':
cfgitem = Conf.johnson_u_file
elif filtername == 'johnson_b':
cfgitem = Conf.johnson_b_file
elif filtername == 'johnson_v':
cfgitem = Conf.johnson_v_file
elif filtername == 'johnson_r':
cfgitem = Conf.johnson_r_file
elif filtername == 'johnson_i':
cfgitem = Conf.johnson_i_file
elif filtername == 'johnson_j':
cfgitem = Conf.johnson_j_file
elif filtername == 'johnson_k':
cfgitem = Conf.johnson_k_file
else:
raise exceptions.SynphotError('Filter name {0} is invalid.'.format(
filtername))
filename = cfgitem()
if 'flux_unit' not in kwargs:
kwargs['flux_unit'] = cls._internal_flux_unit
if (filename.endswith('fits') or filename.endswith('fit')
) and 'flux_col' not in kwargs:
kwargs['flux_col'] = 'THROUGHPUT'
header, wavelengths, throughput = specio.read_remote_spec(filename, **
kwargs)
header['filename'] = filename
header['descrip'] = cfgitem.description
meta = {'header': header, 'expr': filtername}
return cls(Empirical1D, points=wavelengths, lookup_table=throughput,
meta=meta)
|
from_filter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, filtername, **kwargs):\n filtername = filtername.lower()\n if filtername == 'bessel_j':\n cfgitem = Conf.bessel_j_file\n elif filtername == 'bessel_h':\n cfgitem = Conf.bessel_h_file\n elif filtername == 'bessel_k':\n cfgitem = Conf.bessel_k_file\n elif filtername == 'cousins_r':\n cfgitem = Conf.cousins_r_file\n elif filtername == 'cousins_i':\n cfgitem = Conf.cousins_i_file\n elif filtername == 'johnson_u':\n cfgitem = Conf.johnson_u_file\n elif filtername == 'johnson_b':\n cfgitem = Conf.johnson_b_file\n elif filtername == 'johnson_v':\n cfgitem = Conf.johnson_v_file\n elif filtername == 'johnson_r':\n cfgitem = Conf.johnson_r_file\n elif filtername == 'johnson_i':\n cfgitem = Conf.johnson_i_file\n elif filtername == 'johnson_j':\n cfgitem = Conf.johnson_j_file\n elif filtername == 'johnson_k':\n cfgitem = Conf.johnson_k_file\n else:\n raise exceptions.SynphotError('Filter name {0} is invalid.'.format(\n filtername))\n filename = cfgitem()\n if 'flux_unit' not in kwargs:\n kwargs['flux_unit'] = cls._internal_flux_unit\n if (filename.endswith('fits') or filename.endswith('fit')\n ) and 'flux_col' not in kwargs:\n kwargs['flux_col'] = 'THROUGHPUT'\n header, wavelengths, throughput = specio.read_remote_spec(filename, **\n kwargs)\n header['filename'] = filename\n header['descrip'] = cfgitem.description\n meta = {'header': header, 'expr': filtername}\n return cls(Empirical1D, points=wavelengths, lookup_table=throughput,\n meta=meta)\n",
"role": "user"
},
{
"content": "from_filter",
"role": "assistant"
}
] |
async def handle_frame(self, frame):
"""Handle incoming API frame, return True if this was the expected frame."""
if isinstance(frame, FrameActivateSceneConfirmation
) and frame.session_id == self.session_id:
if frame.status == ActivateSceneConfirmationStatus.ACCEPTED:
self.success = True
return not self.wait_for_completion
if isinstance(frame, FrameCommandRemainingTimeNotification
) and frame.session_id == self.session_id:
return False
if isinstance(frame, FrameCommandRunStatusNotification
) and frame.session_id == self.session_id:
return False
if isinstance(frame, FrameSessionFinishedNotification
) and frame.session_id == self.session_id:
return True
return False
|
handle_frame
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def handle_frame(self, frame):\n \"\"\"Handle incoming API frame, return True if this was the expected frame.\"\"\"\n if isinstance(frame, FrameActivateSceneConfirmation\n ) and frame.session_id == self.session_id:\n if frame.status == ActivateSceneConfirmationStatus.ACCEPTED:\n self.success = True\n return not self.wait_for_completion\n if isinstance(frame, FrameCommandRemainingTimeNotification\n ) and frame.session_id == self.session_id:\n return False\n if isinstance(frame, FrameCommandRunStatusNotification\n ) and frame.session_id == self.session_id:\n return False\n if isinstance(frame, FrameSessionFinishedNotification\n ) and frame.session_id == self.session_id:\n return True\n return False\n",
"role": "user"
},
{
"content": "handle_frame",
"role": "assistant"
}
] |
def x(self):
self.session_id = get_new_session_id()
return FrameActivateSceneRequest(scene_id=self.scene_id, session_id=
self.session_id)
|
request_frame
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.session_id = get_new_session_id()\n return FrameActivateSceneRequest(scene_id=self.scene_id, session_id=\n self.session_id)\n",
"role": "user"
},
{
"content": "request_frame",
"role": "assistant"
}
] |
def x(self, binset):
if binset is None:
if self.bandpass.waveset is not None:
self._binset = self.bandpass.waveset
elif self.spectrum.waveset is not None:
self._binset = self.spectrum.waveset
log.info(
'Bandpass waveset is undefined; Using source spectrum waveset instead.'
)
else:
raise exceptions.UndefinedBinset(
'Both source spectrum and bandpass have undefined waveset; Provide binset manually.'
)
else:
self._binset = self._validate_wavelengths(binset)
if self._binset[0] > self._binset[-1]:
self._binset = self._binset[::-1]
self._bin_edges = binning.calculate_bin_edges(self._binset)
spwave = utils.merge_wavelengths(self._bin_edges.value, self._binset.value)
if self.waveset is not None:
spwave = utils.merge_wavelengths(spwave, self.waveset.value)
spwave = spwave[spwave > 0]
indices = np.searchsorted(spwave, self._bin_edges.value)
i_beg = indices[:-1]
i_end = indices[1:]
flux = self(spwave)
avflux = (flux.value[1:] + flux.value[:-1]) * 0.5
deltaw = spwave[1:] - spwave[:-1]
binflux, intwave = binning.calcbinflux(self._binset.size, i_beg, i_end,
avflux, deltaw)
self._binflux = binflux * flux.unit
|
init_bins
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, binset):\n if binset is None:\n if self.bandpass.waveset is not None:\n self._binset = self.bandpass.waveset\n elif self.spectrum.waveset is not None:\n self._binset = self.spectrum.waveset\n log.info(\n 'Bandpass waveset is undefined; Using source spectrum waveset instead.'\n )\n else:\n raise exceptions.UndefinedBinset(\n 'Both source spectrum and bandpass have undefined waveset; Provide binset manually.'\n )\n else:\n self._binset = self._validate_wavelengths(binset)\n if self._binset[0] > self._binset[-1]:\n self._binset = self._binset[::-1]\n self._bin_edges = binning.calculate_bin_edges(self._binset)\n spwave = utils.merge_wavelengths(self._bin_edges.value, self._binset.value)\n if self.waveset is not None:\n spwave = utils.merge_wavelengths(spwave, self.waveset.value)\n spwave = spwave[spwave > 0]\n indices = np.searchsorted(spwave, self._bin_edges.value)\n i_beg = indices[:-1]\n i_end = indices[1:]\n flux = self(spwave)\n avflux = (flux.value[1:] + flux.value[:-1]) * 0.5\n deltaw = spwave[1:] - spwave[:-1]\n binflux, intwave = binning.calcbinflux(self._binset.size, i_beg, i_end,\n avflux, deltaw)\n self._binflux = binflux * flux.unit\n",
"role": "user"
},
{
"content": "init_bins",
"role": "assistant"
}
] |
def x(self, wavelengths=None, flux_unit=None, **kwargs):
x = self._validate_binned_wavelengths(wavelengths)
i = np.searchsorted(self.binset, x)
if not np.allclose(self.binset[i].value, x.value):
raise exceptions.InterpolationNotAllowed(
'Some or all wavelength values are not in binset.')
y = self.binflux[i]
if flux_unit is None:
flux = y
else:
flux = units.convert_flux(x, y, flux_unit, **kwargs)
return flux
|
sample_binned
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, wavelengths=None, flux_unit=None, **kwargs):\n x = self._validate_binned_wavelengths(wavelengths)\n i = np.searchsorted(self.binset, x)\n if not np.allclose(self.binset[i].value, x.value):\n raise exceptions.InterpolationNotAllowed(\n 'Some or all wavelength values are not in binset.')\n y = self.binflux[i]\n if flux_unit is None:\n flux = y\n else:\n flux = units.convert_flux(x, y, flux_unit, **kwargs)\n return flux\n",
"role": "user"
},
{
"content": "sample_binned",
"role": "assistant"
}
] |
def x(self, wavelengths, flux_unit, area=None, vegaspec=None):
x = self._validate_binned_wavelengths(wavelengths)
y = self.sample_binned(wavelengths=x, flux_unit=flux_unit, area=area,
vegaspec=vegaspec)
if isinstance(wavelengths, u.Quantity):
w = x.to(wavelengths.unit, u.spectral())
else:
w = x
return w, y
|
get_binned_arrays
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, wavelengths, flux_unit, area=None, vegaspec=None):\n x = self._validate_binned_wavelengths(wavelengths)\n y = self.sample_binned(wavelengths=x, flux_unit=flux_unit, area=area,\n vegaspec=vegaspec)\n if isinstance(wavelengths, u.Quantity):\n w = x.to(wavelengths.unit, u.spectral())\n else:\n w = x\n return w, y\n",
"role": "user"
},
{
"content": "get_binned_arrays",
"role": "assistant"
}
] |
def x(self, cenwave, npix, **kwargs):
if not isinstance(cenwave, u.Quantity):
cenwave = cenwave * self._internal_wave_unit
bin_wave = units.validate_quantity(self.binset, cenwave.unit,
equivalencies=u.spectral())
return binning.wave_range(bin_wave.value, cenwave.value, npix, **kwargs
) * cenwave.unit
|
binned_waverange
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cenwave, npix, **kwargs):\n if not isinstance(cenwave, u.Quantity):\n cenwave = cenwave * self._internal_wave_unit\n bin_wave = units.validate_quantity(self.binset, cenwave.unit,\n equivalencies=u.spectral())\n return binning.wave_range(bin_wave.value, cenwave.value, npix, **kwargs\n ) * cenwave.unit\n",
"role": "user"
},
{
"content": "binned_waverange",
"role": "assistant"
}
] |
def x(self, waverange, **kwargs):
x = units.validate_quantity(waverange, self._internal_wave_unit,
equivalencies=u.spectral())
return binning.pixel_range(self.binset.value, x.value, **kwargs)
|
binned_pixelrange
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, waverange, **kwargs):\n x = units.validate_quantity(waverange, self._internal_wave_unit,\n equivalencies=u.spectral())\n return binning.pixel_range(self.binset.value, x.value, **kwargs)\n",
"role": "user"
},
{
"content": "binned_pixelrange",
"role": "assistant"
}
] |
def x(self, binned=True, wavelengths=None, mode='efflerg'):
mode = mode.lower()
if mode == 'efflerg':
flux_unit = units.FLAM
elif mode == 'efflphot':
warnings.warn('Usage of EFFLPHOT is deprecated.',
AstropyDeprecationWarning)
flux_unit = units.PHOTLAM
else:
raise exceptions.SynphotError('mode must be "efflerg" or "efflphot"')
if binned:
x = self._validate_binned_wavelengths(wavelengths).value
y = self.sample_binned(wavelengths=x, flux_unit=flux_unit).value
else:
x = self._validate_wavelengths(wavelengths).value
y = units.convert_flux(x, self(x), flux_unit).value
num = np.trapz(y * x ** 2, x=x)
den = np.trapz(y * x, x=x)
if den == 0.0:
eff_lam = 0.0
else:
eff_lam = abs(num / den)
return eff_lam * self._internal_wave_unit
|
effective_wavelength
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, binned=True, wavelengths=None, mode='efflerg'):\n mode = mode.lower()\n if mode == 'efflerg':\n flux_unit = units.FLAM\n elif mode == 'efflphot':\n warnings.warn('Usage of EFFLPHOT is deprecated.',\n AstropyDeprecationWarning)\n flux_unit = units.PHOTLAM\n else:\n raise exceptions.SynphotError('mode must be \"efflerg\" or \"efflphot\"')\n if binned:\n x = self._validate_binned_wavelengths(wavelengths).value\n y = self.sample_binned(wavelengths=x, flux_unit=flux_unit).value\n else:\n x = self._validate_wavelengths(wavelengths).value\n y = units.convert_flux(x, self(x), flux_unit).value\n num = np.trapz(y * x ** 2, x=x)\n den = np.trapz(y * x, x=x)\n if den == 0.0:\n eff_lam = 0.0\n else:\n eff_lam = abs(num / den)\n return eff_lam * self._internal_wave_unit\n",
"role": "user"
},
{
"content": "effective_wavelength",
"role": "assistant"
}
] |
def x(self, flux_unit=None, wavelengths=None, area=None, vegaspec=None):
if flux_unit is None:
flux_unit = self._internal_flux_unit
flux_unit = units.validate_unit(flux_unit)
flux_unit_name = flux_unit.to_string()
if flux_unit == u.count or flux_unit_name == units.OBMAG.to_string():
val = self.countrate(area, binned=False, wavelengths=wavelengths)
if flux_unit.decompose() == u.mag:
eff_stim = -2.5 * np.log10(val.value) * flux_unit
else:
eff_stim = val
return eff_stim
if flux_unit_name == units.VEGAMAG.to_string():
num = self.integrate(wavelengths=wavelengths)
den = (vegaspec * self.bandpass).integrate()
utils.validate_totalflux(num)
utils.validate_totalflux(den)
return 2.5 * (math.log10(den.value) - math.log10(num.value)
) * units.VEGAMAG
x_band = self.bandpass._validate_wavelengths(wavelengths).value
y_band = self.bandpass(x_band).value
inwave = self._validate_wavelengths(wavelengths).value
influx = units.convert_flux(inwave, self(inwave), units.FLAM).value
num = abs(np.trapz(inwave * influx, x=inwave))
den = abs(np.trapz(x_band * y_band, x=x_band))
utils.validate_totalflux(num)
utils.validate_totalflux(den)
val = num / den * units.FLAM
if flux_unit.physical_type == 'spectral flux density wav':
if flux_unit == u.STmag:
eff_stim = val.to(flux_unit)
else:
eff_stim = val
elif flux_unit.physical_type in ('spectral flux density',
'photon flux density', 'photon flux density wav'):
w_pivot = self.bandpass.pivot()
eff_stim = units.convert_flux(w_pivot, val, flux_unit)
else:
raise exceptions.SynphotError('Flux unit {0} is invalid'.format(
flux_unit))
return eff_stim
|
effstim
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, flux_unit=None, wavelengths=None, area=None, vegaspec=None):\n if flux_unit is None:\n flux_unit = self._internal_flux_unit\n flux_unit = units.validate_unit(flux_unit)\n flux_unit_name = flux_unit.to_string()\n if flux_unit == u.count or flux_unit_name == units.OBMAG.to_string():\n val = self.countrate(area, binned=False, wavelengths=wavelengths)\n if flux_unit.decompose() == u.mag:\n eff_stim = -2.5 * np.log10(val.value) * flux_unit\n else:\n eff_stim = val\n return eff_stim\n if flux_unit_name == units.VEGAMAG.to_string():\n num = self.integrate(wavelengths=wavelengths)\n den = (vegaspec * self.bandpass).integrate()\n utils.validate_totalflux(num)\n utils.validate_totalflux(den)\n return 2.5 * (math.log10(den.value) - math.log10(num.value)\n ) * units.VEGAMAG\n x_band = self.bandpass._validate_wavelengths(wavelengths).value\n y_band = self.bandpass(x_band).value\n inwave = self._validate_wavelengths(wavelengths).value\n influx = units.convert_flux(inwave, self(inwave), units.FLAM).value\n num = abs(np.trapz(inwave * influx, x=inwave))\n den = abs(np.trapz(x_band * y_band, x=x_band))\n utils.validate_totalflux(num)\n utils.validate_totalflux(den)\n val = num / den * units.FLAM\n if flux_unit.physical_type == 'spectral flux density wav':\n if flux_unit == u.STmag:\n eff_stim = val.to(flux_unit)\n else:\n eff_stim = val\n elif flux_unit.physical_type in ('spectral flux density',\n 'photon flux density', 'photon flux density wav'):\n w_pivot = self.bandpass.pivot()\n eff_stim = units.convert_flux(w_pivot, val, flux_unit)\n else:\n raise exceptions.SynphotError('Flux unit {0} is invalid'.format(\n flux_unit))\n return eff_stim\n",
"role": "user"
},
{
"content": "effstim",
"role": "assistant"
}
] |
def x(self, area, binned=True, wavelengths=None, waverange=None, force=False):
if binned:
x = self._validate_binned_wavelengths(wavelengths).value
y = self.sample_binned(wavelengths=x, flux_unit=u.count, area=area
).value
else:
x = self._validate_wavelengths(wavelengths).value
y = units.convert_flux(x, self(x), u.count, area=area).value
if waverange is None:
influx = y
else:
w = units.validate_quantity(waverange, self._internal_wave_unit,
equivalencies=u.spectral()).value
stat = utils.overlap_status(w, x)
w1 = w.min()
w2 = w.max()
if stat == 'none':
raise exceptions.DisjointError(
'Observation and wavelength range are disjoint.')
elif 'partial' in stat:
if force:
warnings.warn(
'Count rate calculated only for wavelengths in the overlap between observation and given range.'
, AstropyUserWarning)
w1 = max(w1, x.min())
w2 = min(w2, x.max())
else:
raise exceptions.PartialOverlap(
'Observation and wavelength range do not fully overlap. You may use force=True to force this calculation anyway.'
)
elif stat != 'full':
raise exceptions.SynphotError('Overlap result of {0} is unexpected'
.format(stat))
if binned:
if wavelengths is None:
bin_edges = self.bin_edges.value
else:
bin_edges = binning.calculate_bin_edges(x).value
i1 = np.searchsorted(bin_edges, w1) - 1
i2 = np.searchsorted(bin_edges, w2)
influx = y[i1:i2]
else:
mask = (x >= w1) & (x <= w2)
influx = y[mask]
val = math.fsum(influx)
utils.validate_totalflux(val)
return val * (u.count / u.s)
|
countrate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, area, binned=True, wavelengths=None, waverange=None, force=False):\n if binned:\n x = self._validate_binned_wavelengths(wavelengths).value\n y = self.sample_binned(wavelengths=x, flux_unit=u.count, area=area\n ).value\n else:\n x = self._validate_wavelengths(wavelengths).value\n y = units.convert_flux(x, self(x), u.count, area=area).value\n if waverange is None:\n influx = y\n else:\n w = units.validate_quantity(waverange, self._internal_wave_unit,\n equivalencies=u.spectral()).value\n stat = utils.overlap_status(w, x)\n w1 = w.min()\n w2 = w.max()\n if stat == 'none':\n raise exceptions.DisjointError(\n 'Observation and wavelength range are disjoint.')\n elif 'partial' in stat:\n if force:\n warnings.warn(\n 'Count rate calculated only for wavelengths in the overlap between observation and given range.'\n , AstropyUserWarning)\n w1 = max(w1, x.min())\n w2 = min(w2, x.max())\n else:\n raise exceptions.PartialOverlap(\n 'Observation and wavelength range do not fully overlap. You may use force=True to force this calculation anyway.'\n )\n elif stat != 'full':\n raise exceptions.SynphotError('Overlap result of {0} is unexpected'\n .format(stat))\n if binned:\n if wavelengths is None:\n bin_edges = self.bin_edges.value\n else:\n bin_edges = binning.calculate_bin_edges(x).value\n i1 = np.searchsorted(bin_edges, w1) - 1\n i2 = np.searchsorted(bin_edges, w2)\n influx = y[i1:i2]\n else:\n mask = (x >= w1) & (x <= w2)\n influx = y[mask]\n val = math.fsum(influx)\n utils.validate_totalflux(val)\n return val * (u.count / u.s)\n",
"role": "user"
},
{
"content": "countrate",
"role": "assistant"
}
] |
def x(self, binned=True, wavelengths=None, flux_unit=None, area=None,
vegaspec=None, **kwargs):
if binned:
w, y = self._get_binned_arrays(wavelengths, flux_unit, area=area,
vegaspec=vegaspec)
else:
w, y = self._get_arrays(wavelengths, flux_unit=flux_unit, area=area,
vegaspec=vegaspec)
self._do_plot(w, y, **kwargs)
|
plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, binned=True, wavelengths=None, flux_unit=None, area=None,\n vegaspec=None, **kwargs):\n if binned:\n w, y = self._get_binned_arrays(wavelengths, flux_unit, area=area,\n vegaspec=vegaspec)\n else:\n w, y = self._get_arrays(wavelengths, flux_unit=flux_unit, area=area,\n vegaspec=vegaspec)\n self._do_plot(w, y, **kwargs)\n",
"role": "user"
},
{
"content": "plot",
"role": "assistant"
}
] |
def x(self, binned=True, wavelengths=None):
if binned:
w, y = self._get_binned_arrays(wavelengths, self._internal_flux_unit)
else:
w, y = self._get_arrays(wavelengths, flux_unit=self._internal_flux_unit
)
header = {'observation': str(self), 'binned': binned}
return SourceSpectrum(Empirical1D, points=w, lookup_table=y, meta={
'header': header})
|
as_spectrum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, binned=True, wavelengths=None):\n if binned:\n w, y = self._get_binned_arrays(wavelengths, self._internal_flux_unit)\n else:\n w, y = self._get_arrays(wavelengths, flux_unit=self._internal_flux_unit\n )\n header = {'observation': str(self), 'binned': binned}\n return SourceSpectrum(Empirical1D, points=w, lookup_table=y, meta={\n 'header': header})\n",
"role": "user"
},
{
"content": "as_spectrum",
"role": "assistant"
}
] |
async def handle_frame(self, frame):
"""Handle incoming API frame, return True if this was the expected frame."""
if not isinstance(frame, FrameSetNodeNameConfirmation):
return False
self.success = frame.status == SetNodeNameConfirmationStatus.OK
return True
|
handle_frame
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def handle_frame(self, frame):\n \"\"\"Handle incoming API frame, return True if this was the expected frame.\"\"\"\n if not isinstance(frame, FrameSetNodeNameConfirmation):\n return False\n self.success = frame.status == SetNodeNameConfirmationStatus.OK\n return True\n",
"role": "user"
},
{
"content": "handle_frame",
"role": "assistant"
}
] |
async def do_api_call(self):
"""Start. Sending and waiting for answer."""
self.pyvlx.connection.register_frame_received_cb(self.response_rec_callback
)
await self.send_frame()
await self.start_timeout()
await self.response_received_or_timeout.wait()
await self.stop_timeout()
self.pyvlx.connection.unregister_frame_received_cb(self.
response_rec_callback)
|
do_api_call
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def do_api_call(self):\n \"\"\"Start. Sending and waiting for answer.\"\"\"\n self.pyvlx.connection.register_frame_received_cb(self.response_rec_callback\n )\n await self.send_frame()\n await self.start_timeout()\n await self.response_received_or_timeout.wait()\n await self.stop_timeout()\n self.pyvlx.connection.unregister_frame_received_cb(self.\n response_rec_callback)\n",
"role": "user"
},
{
"content": "do_api_call",
"role": "assistant"
}
] |
async def start_timeout(self):
"""Start timeout."""
self.timeout_handle = self.pyvlx.connection.loop.call_later(self.
timeout_in_seconds, self.timeout)
|
start_timeout
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def start_timeout(self):\n \"\"\"Start timeout.\"\"\"\n self.timeout_handle = self.pyvlx.connection.loop.call_later(self.\n timeout_in_seconds, self.timeout)\n",
"role": "user"
},
{
"content": "start_timeout",
"role": "assistant"
}
] |
async def main():
"""Load devices and scenes, run first scene."""
pyvlx = PyVLX('pyvlx.yaml')
await pyvlx.load_devices()
print(pyvlx.devices[1])
print(pyvlx.devices['Fenster 4'])
await pyvlx.load_scenes()
print(pyvlx.scenes[0])
print(pyvlx.scenes['Bath Closed'])
await pyvlx.scenes[1].run()
await pyvlx.disconnect()
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def main():\n \"\"\"Load devices and scenes, run first scene.\"\"\"\n pyvlx = PyVLX('pyvlx.yaml')\n await pyvlx.load_devices()\n print(pyvlx.devices[1])\n print(pyvlx.devices['Fenster 4'])\n await pyvlx.load_scenes()\n print(pyvlx.scenes[0])\n print(pyvlx.scenes['Bath Closed'])\n await pyvlx.scenes[1].run()\n await pyvlx.disconnect()\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
async def set_state(self, parameter):
"""Set switch to desired state."""
command_send = CommandSend(pyvlx=self.pyvlx, node_id=self.node_id,
parameter=parameter)
await command_send.do_api_call()
if not command_send.success:
raise PyVLXException('Unable to send command')
self.parameter = parameter
await self.after_update()
|
set_state
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def set_state(self, parameter):\n \"\"\"Set switch to desired state.\"\"\"\n command_send = CommandSend(pyvlx=self.pyvlx, node_id=self.node_id,\n parameter=parameter)\n await command_send.do_api_call()\n if not command_send.success:\n raise PyVLXException('Unable to send command')\n self.parameter = parameter\n await self.after_update()\n",
"role": "user"
},
{
"content": "set_state",
"role": "assistant"
}
] |
def x(wave, z, **kwargs):
if not isinstance(z, numbers.Real):
raise exceptions.SynphotError('Redshift must be a real scalar number.')
if np.isscalar(wave) or len(wave) <= 1:
raise exceptions.SynphotError('Wavelength has too few data points')
wave = units.validate_quantity(wave, u.AA, **kwargs).value
ll = 912.0
c = np.array([0.0036, 0.0017, 0.0012, 0.00093])
el = np.array([1216, 1026, 973, 950], dtype=np.float)
tau = np.zeros_like(wave, dtype=np.float)
xe = 1.0 + z
for i in range(len(el)):
tau = np.where(wave <= el[i] * xe, tau + c[i] * (wave / el[i]) **
3.46, tau)
xc = wave / ll
xc3 = xc ** 3
tau = np.where(wave <= ll * xe, tau + 0.25 * xc3 * (xe ** 0.46 - xc **
0.46) + 9.4 * xc ** 1.5 * (xe ** 0.18 - xc ** 0.18) - 0.7 * xc3 * (
xc ** -1.32 - xe ** -1.32) - 0.023 * (xe ** 1.68 - xc ** 1.68), tau)
thru = np.where(tau > 700.0, 0.0, np.exp(-tau))
meta = {'descrip': 'Madau 1995 extinction for z={0}'.format(z)}
return ExtinctionCurve(ExtinctionModel1D, points=wave, lookup_table=
thru, meta=meta)
|
etau_madau
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(wave, z, **kwargs):\n if not isinstance(z, numbers.Real):\n raise exceptions.SynphotError('Redshift must be a real scalar number.')\n if np.isscalar(wave) or len(wave) <= 1:\n raise exceptions.SynphotError('Wavelength has too few data points')\n wave = units.validate_quantity(wave, u.AA, **kwargs).value\n ll = 912.0\n c = np.array([0.0036, 0.0017, 0.0012, 0.00093])\n el = np.array([1216, 1026, 973, 950], dtype=np.float)\n tau = np.zeros_like(wave, dtype=np.float)\n xe = 1.0 + z\n for i in range(len(el)):\n tau = np.where(wave <= el[i] * xe, tau + c[i] * (wave / el[i]) ** \n 3.46, tau)\n xc = wave / ll\n xc3 = xc ** 3\n tau = np.where(wave <= ll * xe, tau + 0.25 * xc3 * (xe ** 0.46 - xc ** \n 0.46) + 9.4 * xc ** 1.5 * (xe ** 0.18 - xc ** 0.18) - 0.7 * xc3 * (\n xc ** -1.32 - xe ** -1.32) - 0.023 * (xe ** 1.68 - xc ** 1.68), tau)\n thru = np.where(tau > 700.0, 0.0, np.exp(-tau))\n meta = {'descrip': 'Madau 1995 extinction for z={0}'.format(z)}\n return ExtinctionCurve(ExtinctionModel1D, points=wave, lookup_table=\n thru, meta=meta)\n",
"role": "user"
},
{
"content": "etau_madau",
"role": "assistant"
}
] |
def x(self, ebv, wavelengths=None):
if isinstance(ebv, u.Quantity) and ebv.unit.decompose() == u.mag:
ebv = ebv.value
elif not isinstance(ebv, numbers.Real):
raise exceptions.SynphotError('E(B-V)={0} is invalid.'.format(ebv))
x = self._validate_wavelengths(wavelengths).value
y = 10 ** (-0.4 * self(x).value * ebv)
header = {'E(B-V)': ebv, 'ReddeningLaw': self.meta.get('expr', 'unknown')}
return ExtinctionCurve(ExtinctionModel1D, points=x, lookup_table=y,
meta={'header': header})
|
extinction_curve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ebv, wavelengths=None):\n if isinstance(ebv, u.Quantity) and ebv.unit.decompose() == u.mag:\n ebv = ebv.value\n elif not isinstance(ebv, numbers.Real):\n raise exceptions.SynphotError('E(B-V)={0} is invalid.'.format(ebv))\n x = self._validate_wavelengths(wavelengths).value\n y = 10 ** (-0.4 * self(x).value * ebv)\n header = {'E(B-V)': ebv, 'ReddeningLaw': self.meta.get('expr', 'unknown')}\n return ExtinctionCurve(ExtinctionModel1D, points=x, lookup_table=y,\n meta={'header': header})\n",
"role": "user"
},
{
"content": "extinction_curve",
"role": "assistant"
}
] |
def x(self, filename, wavelengths=None, **kwargs):
w, y = self._get_arrays(wavelengths)
kwargs['flux_col'] = 'Av/E(B-V)'
kwargs['flux_unit'] = self._internal_flux_unit
if 'pad_zero_ends' not in kwargs:
kwargs['pad_zero_ends'] = False
if 'trim_zero' not in kwargs:
kwargs['trim_zero'] = False
bkeys = {'tdisp1': 'G15.7', 'tdisp2': 'G15.7'}
if 'expr' in self.meta:
bkeys['expr'] = self.meta['expr'], 'synphot expression'
if 'ext_header' in kwargs:
kwargs['ext_header'].update(bkeys)
else:
kwargs['ext_header'] = bkeys
specio.write_fits_spec(filename, w, y, **kwargs)
|
to_fits
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, wavelengths=None, **kwargs):\n w, y = self._get_arrays(wavelengths)\n kwargs['flux_col'] = 'Av/E(B-V)'\n kwargs['flux_unit'] = self._internal_flux_unit\n if 'pad_zero_ends' not in kwargs:\n kwargs['pad_zero_ends'] = False\n if 'trim_zero' not in kwargs:\n kwargs['trim_zero'] = False\n bkeys = {'tdisp1': 'G15.7', 'tdisp2': 'G15.7'}\n if 'expr' in self.meta:\n bkeys['expr'] = self.meta['expr'], 'synphot expression'\n if 'ext_header' in kwargs:\n kwargs['ext_header'].update(bkeys)\n else:\n kwargs['ext_header'] = bkeys\n specio.write_fits_spec(filename, w, y, **kwargs)\n",
"role": "user"
},
{
"content": "to_fits",
"role": "assistant"
}
] |
def x(cls, filename, **kwargs):
if 'flux_unit' not in kwargs:
kwargs['flux_unit'] = cls._internal_flux_unit
if (filename.endswith('fits') or filename.endswith('fit')
) and 'flux_col' not in kwargs:
kwargs['flux_col'] = 'Av/E(B-V)'
header, wavelengths, rvs = specio.read_spec(filename, **kwargs)
return cls(Empirical1D, points=wavelengths, lookup_table=rvs, meta={
'header': header})
|
from_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, filename, **kwargs):\n if 'flux_unit' not in kwargs:\n kwargs['flux_unit'] = cls._internal_flux_unit\n if (filename.endswith('fits') or filename.endswith('fit')\n ) and 'flux_col' not in kwargs:\n kwargs['flux_col'] = 'Av/E(B-V)'\n header, wavelengths, rvs = specio.read_spec(filename, **kwargs)\n return cls(Empirical1D, points=wavelengths, lookup_table=rvs, meta={\n 'header': header})\n",
"role": "user"
},
{
"content": "from_file",
"role": "assistant"
}
] |
def x(cls, modelname, **kwargs):
modelname = modelname.lower()
if modelname == 'lmc30dor':
cfgitem = Conf.lmc30dor_file
elif modelname == 'lmcavg':
cfgitem = Conf.lmcavg_file
elif modelname == 'mwavg':
cfgitem = Conf.mwavg_file
elif modelname == 'mwdense':
cfgitem = Conf.mwdense_file
elif modelname == 'mwrv21':
cfgitem = Conf.mwrv21_file
elif modelname == 'mwrv40':
cfgitem = Conf.mwrv40_file
elif modelname == 'smcbar':
cfgitem = Conf.smcbar_file
elif modelname == 'xgalsb':
cfgitem = Conf.xgal_file
else:
raise exceptions.SynphotError('Extinction model {0} is invalid.'.
format(modelname))
filename = cfgitem()
if 'flux_unit' not in kwargs:
kwargs['flux_unit'] = cls._internal_flux_unit
if (filename.endswith('fits') or filename.endswith('fit')
) and 'flux_col' not in kwargs:
kwargs['flux_col'] = 'Av/E(B-V)'
header, wavelengths, rvs = specio.read_remote_spec(filename, **kwargs)
header['filename'] = filename
header['descrip'] = cfgitem.description
meta = {'header': header, 'expr': modelname}
return cls(Empirical1D, points=wavelengths, lookup_table=rvs, meta=meta)
|
from_extinction_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, modelname, **kwargs):\n modelname = modelname.lower()\n if modelname == 'lmc30dor':\n cfgitem = Conf.lmc30dor_file\n elif modelname == 'lmcavg':\n cfgitem = Conf.lmcavg_file\n elif modelname == 'mwavg':\n cfgitem = Conf.mwavg_file\n elif modelname == 'mwdense':\n cfgitem = Conf.mwdense_file\n elif modelname == 'mwrv21':\n cfgitem = Conf.mwrv21_file\n elif modelname == 'mwrv40':\n cfgitem = Conf.mwrv40_file\n elif modelname == 'smcbar':\n cfgitem = Conf.smcbar_file\n elif modelname == 'xgalsb':\n cfgitem = Conf.xgal_file\n else:\n raise exceptions.SynphotError('Extinction model {0} is invalid.'.\n format(modelname))\n filename = cfgitem()\n if 'flux_unit' not in kwargs:\n kwargs['flux_unit'] = cls._internal_flux_unit\n if (filename.endswith('fits') or filename.endswith('fit')\n ) and 'flux_col' not in kwargs:\n kwargs['flux_col'] = 'Av/E(B-V)'\n header, wavelengths, rvs = specio.read_remote_spec(filename, **kwargs)\n header['filename'] = filename\n header['descrip'] = cfgitem.description\n meta = {'header': header, 'expr': modelname}\n return cls(Empirical1D, points=wavelengths, lookup_table=rvs, meta=meta)\n",
"role": "user"
},
{
"content": "from_extinction_model",
"role": "assistant"
}
] |
async def handle_frame(self, frame):
"""Handle incoming API frame, return True if this was the expected frame."""
if not isinstance(frame, FrameGetVersionConfirmation):
return False
self.version = frame.version
self.success = True
return True
|
handle_frame
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def handle_frame(self, frame):\n \"\"\"Handle incoming API frame, return True if this was the expected frame.\"\"\"\n if not isinstance(frame, FrameGetVersionConfirmation):\n return False\n self.version = frame.version\n self.success = True\n return True\n",
"role": "user"
},
{
"content": "handle_frame",
"role": "assistant"
}
] |
def x(self, payload):
if not hasattr(self, 'PAYLOAD_LEN'):
return
if len(payload) != self.PAYLOAD_LEN:
raise PyVLXException('Invalid payload len', expected_len=self.
PAYLOAD_LEN, current_len=len(payload), frame_type=type(self).
__name__)
|
validate_payload_len
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, payload):\n if not hasattr(self, 'PAYLOAD_LEN'):\n return\n if len(payload) != self.PAYLOAD_LEN:\n raise PyVLXException('Invalid payload len', expected_len=self.\n PAYLOAD_LEN, current_len=len(payload), frame_type=type(self).\n __name__)\n",
"role": "user"
},
{
"content": "validate_payload_len",
"role": "assistant"
}
] |
def x(command, payload):
packet_length = 2 + len(payload) + 1
ret = struct.pack('BB', 0, packet_length)
ret += struct.pack('>H', command.value)
ret += payload
ret += struct.pack('B', calc_crc(ret))
return ret
|
build_frame
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(command, payload):\n packet_length = 2 + len(payload) + 1\n ret = struct.pack('BB', 0, packet_length)\n ret += struct.pack('>H', command.value)\n ret += payload\n ret += struct.pack('B', calc_crc(ret))\n return ret\n",
"role": "user"
},
{
"content": "build_frame",
"role": "assistant"
}
] |
async def run(self, wait_for_completion=True):
"""Run scene.
Parameters:
* wait_for_completion: If set, function will return
after device has reached target position.
"""
activate_scene = ActivateScene(pyvlx=self.pyvlx, wait_for_completion=
wait_for_completion, scene_id=self.scene_id)
await activate_scene.do_api_call()
if not activate_scene.success:
raise PyVLXException('Unable to activate scene')
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def run(self, wait_for_completion=True):\n \"\"\"Run scene.\n\n Parameters:\n * wait_for_completion: If set, function will return\n after device has reached target position.\n\n \"\"\"\n activate_scene = ActivateScene(pyvlx=self.pyvlx, wait_for_completion=\n wait_for_completion, scene_id=self.scene_id)\n await activate_scene.do_api_call()\n if not activate_scene.success:\n raise PyVLXException('Unable to activate scene')\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self, scene):
if not isinstance(scene, Scene):
raise TypeError()
self.__scenes.append(scene)
|
add
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, scene):\n if not isinstance(scene, Scene):\n raise TypeError()\n self.__scenes.append(scene)\n",
"role": "user"
},
{
"content": "add",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.