source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(command): if command == Command.GW_ERROR_NTF: return FrameErrorNotification() if command == Command.GW_COMMAND_SEND_REQ: return FrameCommandSendRequest() if command == Command.GW_COMMAND_SEND_CFM: return FrameCommandSendConfirmation() if command == Command.GW_COMMAND_RUN_STATUS_NTF: return FrameCommandRunStatusNotification() if command == Command.GW_COMMAND_REMAINING_TIME_NTF: return FrameCommandRemainingTimeNotification() if command == Command.GW_SESSION_FINISHED_NTF: return FrameSessionFinishedNotification() if command == Command.GW_PASSWORD_ENTER_REQ: return FramePasswordEnterRequest() if command == Command.GW_PASSWORD_ENTER_CFM: return FramePasswordEnterConfirmation() if command == Command.GW_CS_DISCOVER_NODES_REQ: return FrameDiscoverNodesRequest() if command == Command.GW_CS_DISCOVER_NODES_CFM: return FrameDiscoverNodesConfirmation() if command == Command.GW_CS_DISCOVER_NODES_NTF: return FrameDiscoverNodesNotification() if command == Command.GW_GET_SCENE_LIST_REQ: return FrameGetSceneListRequest() if command == Command.GW_GET_SCENE_LIST_CFM: return FrameGetSceneListConfirmation() if command == Command.GW_GET_SCENE_LIST_NTF: return FrameGetSceneListNotification() if command == Command.GW_GET_NODE_INFORMATION_REQ: return FrameGetNodeInformationRequest() if command == Command.GW_GET_NODE_INFORMATION_CFM: return FrameGetNodeInformationConfirmation() if command == Command.GW_GET_NODE_INFORMATION_NTF: return FrameGetNodeInformationNotification() if command == Command.GW_GET_ALL_NODES_INFORMATION_REQ: return FrameGetAllNodesInformationRequest() if command == Command.GW_GET_ALL_NODES_INFORMATION_CFM: return FrameGetAllNodesInformationConfirmation() if command == Command.GW_GET_ALL_NODES_INFORMATION_NTF: return FrameGetAllNodesInformationNotification() if command == Command.GW_GET_ALL_NODES_INFORMATION_FINISHED_NTF: return FrameGetAllNodesInformationFinishedNotification() if command == Command.GW_ACTIVATE_SCENE_REQ: return FrameActivateSceneRequest() if command == Command.GW_ACTIVATE_SCENE_CFM: return FrameActivateSceneConfirmation() if command == Command.GW_GET_VERSION_REQ: return FrameGetVersionRequest() if command == Command.GW_GET_VERSION_CFM: return FrameGetVersionConfirmation() if command == Command.GW_GET_PROTOCOL_VERSION_REQ: return FrameGetProtocolVersionRequest() if command == Command.GW_GET_PROTOCOL_VERSION_CFM: return FrameGetProtocolVersionConfirmation() if command == Command.GW_SET_NODE_NAME_REQ: return FrameSetNodeNameRequest() if command == Command.GW_SET_NODE_NAME_CFM: return FrameSetNodeNameConfirmation() if command == Command.GW_NODE_INFORMATION_CHANGED_NTF: return FrameNodeInformationChangedNotification() if command == Command.GW_GET_STATE_REQ: return FrameGetStateRequest() if command == Command.GW_GET_STATE_CFM: return FrameGetStateConfirmation() if command == Command.GW_SET_UTC_REQ: return FrameSetUTCRequest() if command == Command.GW_SET_UTC_CFM: return FrameSetUTCConfirmation() if command == Command.GW_ACTIVATION_LOG_UPDATED_NTF: return FrameActivationLogUpdatedNotification() if command == Command.GW_HOUSE_STATUS_MONITOR_ENABLE_REQ: return FrameHouseStatusMonitorEnableRequest() if command == Command.GW_HOUSE_STATUS_MONITOR_ENABLE_CFM: return FrameHouseStatusMonitorEnableConfirmation() if command == Command.GW_HOUSE_STATUS_MONITOR_DISABLE_REQ: return FrameHouseStatusMonitorDisableRequest() if command == Command.GW_HOUSE_STATUS_MONITOR_DISABLE_CFM: return FrameHouseStatusMonitorDisableConfirmation() if command == Command.GW_NODE_STATE_POSITION_CHANGED_NTF: return FrameNodeStatePositionChangedNotification() return None
create_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(command):\n if command == Command.GW_ERROR_NTF:\n return FrameErrorNotification()\n if command == Command.GW_COMMAND_SEND_REQ:\n return FrameCommandSendRequest()\n if command == Command.GW_COMMAND_SEND_CFM:\n return FrameCommandSendConfirmation()\n if command == Command.GW_COMMAND_RUN_STATUS_NTF:\n return FrameCommandRunStatusNotification()\n if command == Command.GW_COMMAND_REMAINING_TIME_NTF:\n return FrameCommandRemainingTimeNotification()\n if command == Command.GW_SESSION_FINISHED_NTF:\n return FrameSessionFinishedNotification()\n if command == Command.GW_PASSWORD_ENTER_REQ:\n return FramePasswordEnterRequest()\n if command == Command.GW_PASSWORD_ENTER_CFM:\n return FramePasswordEnterConfirmation()\n if command == Command.GW_CS_DISCOVER_NODES_REQ:\n return FrameDiscoverNodesRequest()\n if command == Command.GW_CS_DISCOVER_NODES_CFM:\n return FrameDiscoverNodesConfirmation()\n if command == Command.GW_CS_DISCOVER_NODES_NTF:\n return FrameDiscoverNodesNotification()\n if command == Command.GW_GET_SCENE_LIST_REQ:\n return FrameGetSceneListRequest()\n if command == Command.GW_GET_SCENE_LIST_CFM:\n return FrameGetSceneListConfirmation()\n if command == Command.GW_GET_SCENE_LIST_NTF:\n return FrameGetSceneListNotification()\n if command == Command.GW_GET_NODE_INFORMATION_REQ:\n return FrameGetNodeInformationRequest()\n if command == Command.GW_GET_NODE_INFORMATION_CFM:\n return FrameGetNodeInformationConfirmation()\n if command == Command.GW_GET_NODE_INFORMATION_NTF:\n return FrameGetNodeInformationNotification()\n if command == Command.GW_GET_ALL_NODES_INFORMATION_REQ:\n return FrameGetAllNodesInformationRequest()\n if command == Command.GW_GET_ALL_NODES_INFORMATION_CFM:\n return FrameGetAllNodesInformationConfirmation()\n if command == Command.GW_GET_ALL_NODES_INFORMATION_NTF:\n return FrameGetAllNodesInformationNotification()\n if command == Command.GW_GET_ALL_NODES_INFORMATION_FINISHED_NTF:\n return FrameGetAllNodesInformationFinishedNotification()\n if command == Command.GW_ACTIVATE_SCENE_REQ:\n return FrameActivateSceneRequest()\n if command == Command.GW_ACTIVATE_SCENE_CFM:\n return FrameActivateSceneConfirmation()\n if command == Command.GW_GET_VERSION_REQ:\n return FrameGetVersionRequest()\n if command == Command.GW_GET_VERSION_CFM:\n return FrameGetVersionConfirmation()\n if command == Command.GW_GET_PROTOCOL_VERSION_REQ:\n return FrameGetProtocolVersionRequest()\n if command == Command.GW_GET_PROTOCOL_VERSION_CFM:\n return FrameGetProtocolVersionConfirmation()\n if command == Command.GW_SET_NODE_NAME_REQ:\n return FrameSetNodeNameRequest()\n if command == Command.GW_SET_NODE_NAME_CFM:\n return FrameSetNodeNameConfirmation()\n if command == Command.GW_NODE_INFORMATION_CHANGED_NTF:\n return FrameNodeInformationChangedNotification()\n if command == Command.GW_GET_STATE_REQ:\n return FrameGetStateRequest()\n if command == Command.GW_GET_STATE_CFM:\n return FrameGetStateConfirmation()\n if command == Command.GW_SET_UTC_REQ:\n return FrameSetUTCRequest()\n if command == Command.GW_SET_UTC_CFM:\n return FrameSetUTCConfirmation()\n if command == Command.GW_ACTIVATION_LOG_UPDATED_NTF:\n return FrameActivationLogUpdatedNotification()\n if command == Command.GW_HOUSE_STATUS_MONITOR_ENABLE_REQ:\n return FrameHouseStatusMonitorEnableRequest()\n if command == Command.GW_HOUSE_STATUS_MONITOR_ENABLE_CFM:\n return FrameHouseStatusMonitorEnableConfirmation()\n if command == Command.GW_HOUSE_STATUS_MONITOR_DISABLE_REQ:\n return FrameHouseStatusMonitorDisableRequest()\n if command == Command.GW_HOUSE_STATUS_MONITOR_DISABLE_CFM:\n return FrameHouseStatusMonitorDisableConfirmation()\n if command == Command.GW_NODE_STATE_POSITION_CHANGED_NTF:\n return FrameNodeStatePositionChangedNotification()\n return None\n", "role": "user" }, { "content": "create_frame", "role": "assistant" } ]
async def handle_frame(self, frame): """Handle incoming API frame, return True if this was the expected frame.""" if not isinstance(frame, FramePasswordEnterConfirmation): return False if frame.status == PasswordEnterConfirmationStatus.FAILED: PYVLXLOG.warning('Failed to authenticate with password "%s****"', self.password[:2]) self.success = False if frame.status == PasswordEnterConfirmationStatus.SUCCESSFUL: self.success = True return True
handle_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def handle_frame(self, frame):\n \"\"\"Handle incoming API frame, return True if this was the expected frame.\"\"\"\n if not isinstance(frame, FramePasswordEnterConfirmation):\n return False\n if frame.status == PasswordEnterConfirmationStatus.FAILED:\n PYVLXLOG.warning('Failed to authenticate with password \"%s****\"',\n self.password[:2])\n self.success = False\n if frame.status == PasswordEnterConfirmationStatus.SUCCESSFUL:\n self.success = True\n return True\n", "role": "user" }, { "content": "handle_frame", "role": "assistant" } ]
def x(self): return bytes([self.major_version >> 8 & 255, self.major_version & 255, self.minor_version >> 8 & 255, self.minor_version & 255])
get_payload
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return bytes([self.major_version >> 8 & 255, self.major_version & 255, \n self.minor_version >> 8 & 255, self.minor_version & 255])\n", "role": "user" }, { "content": "get_payload", "role": "assistant" } ]
def x(self, payload): self.major_version = payload[0] * 256 + payload[1] self.minor_version = payload[2] * 256 + payload[3]
from_payload
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, payload):\n self.major_version = payload[0] * 256 + payload[1]\n self.minor_version = payload[2] * 256 + payload[3]\n", "role": "user" }, { "content": "from_payload", "role": "assistant" } ]
def x(self, data): self.tokenizer.feed(data) while self.tokenizer.has_tokens(): raw = self.tokenizer.get_next_token() frame = frame_from_raw(raw) if frame is not None: self.frame_received_cb(frame)
data_received
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n self.tokenizer.feed(data)\n while self.tokenizer.has_tokens():\n raw = self.tokenizer.get_next_token()\n frame = frame_from_raw(raw)\n if frame is not None:\n self.frame_received_cb(frame)\n", "role": "user" }, { "content": "data_received", "role": "assistant" } ]
async def connect(self): """Connect to gateway via SSL.""" tcp_client = TCPTransport(self.frame_received_cb, self.connection_closed_cb ) self.transport, _ = await self.loop.create_connection(lambda : tcp_client, host=self.config.host, port=self.config.port, ssl=self. create_ssl_context()) self.connected = True
connect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def connect(self):\n \"\"\"Connect to gateway via SSL.\"\"\"\n tcp_client = TCPTransport(self.frame_received_cb, self.connection_closed_cb\n )\n self.transport, _ = await self.loop.create_connection(lambda :\n tcp_client, host=self.config.host, port=self.config.port, ssl=self.\n create_ssl_context())\n self.connected = True\n", "role": "user" }, { "content": "connect", "role": "assistant" } ]
def x(self, frame): if not isinstance(frame, FrameBase): raise PyVLXException('Frame not of type FrameBase', frame_type=type (frame)) PYVLXLOG.debug('SEND: %s', frame) self.transport.write(slip_pack(bytes(frame)))
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, frame):\n if not isinstance(frame, FrameBase):\n raise PyVLXException('Frame not of type FrameBase', frame_type=type\n (frame))\n PYVLXLOG.debug('SEND: %s', frame)\n self.transport.write(slip_pack(bytes(frame)))\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(): ssl_context = ssl.create_default_context(ssl.Purpose.SERVER_AUTH) ssl_context.check_hostname = False ssl_context.verify_mode = ssl.CERT_NONE return ssl_context
create_ssl_context
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n ssl_context = ssl.create_default_context(ssl.Purpose.SERVER_AUTH)\n ssl_context.check_hostname = False\n ssl_context.verify_mode = ssl.CERT_NONE\n return ssl_context\n", "role": "user" }, { "content": "create_ssl_context", "role": "assistant" } ]
def x(self, frame): PYVLXLOG.debug('REC: %s', frame) for frame_received_cb in self.frame_received_cbs: self.loop.create_task(frame_received_cb(frame))
frame_received_cb
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, frame):\n PYVLXLOG.debug('REC: %s', frame)\n for frame_received_cb in self.frame_received_cbs:\n self.loop.create_task(frame_received_cb(frame))\n", "role": "user" }, { "content": "frame_received_cb", "role": "assistant" } ]
def x(self, path): self.pyvlx.logger.info('Reading config file: ', path) try: with open(path, 'r') as filehandle: doc = yaml.load(filehandle) if 'config' not in doc: raise PyVLXException('no element config found in: {0}'. format(path)) if 'host' not in doc['config']: raise PyVLXException('no element host found in: {0}'.format (path)) if 'password' not in doc['config']: raise PyVLXException('no element password found in: {0}'. format(path)) self.host = doc['config']['host'] self.password = doc['config']['password'] except FileNotFoundError as ex: raise PyVLXException('file does not exist: {0}'.format(ex))
read_config
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, path):\n self.pyvlx.logger.info('Reading config file: ', path)\n try:\n with open(path, 'r') as filehandle:\n doc = yaml.load(filehandle)\n if 'config' not in doc:\n raise PyVLXException('no element config found in: {0}'.\n format(path))\n if 'host' not in doc['config']:\n raise PyVLXException('no element host found in: {0}'.format\n (path))\n if 'password' not in doc['config']:\n raise PyVLXException('no element password found in: {0}'.\n format(path))\n self.host = doc['config']['host']\n self.password = doc['config']['password']\n except FileNotFoundError as ex:\n raise PyVLXException('file does not exist: {0}'.format(ex))\n", "role": "user" }, { "content": "read_config", "role": "assistant" } ]
async def process_frame(self, frame): """Update nodes via frame, usually received by house monitor.""" if isinstance(frame, FrameNodeStatePositionChangedNotification): if frame.node_id not in self.pyvlx.nodes: return node = self.pyvlx.nodes[frame.node_id] if isinstance(node, OpeningDevice): node.position = Position(frame.current_position) await node.after_update() elif isinstance(frame, FrameGetAllNodesInformationNotification): if frame.node_id not in self.pyvlx.nodes: return node = self.pyvlx.nodes[frame.node_id] if isinstance(node, OpeningDevice): node.position = Position(frame.current_position) await node.after_update()
process_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def process_frame(self, frame):\n \"\"\"Update nodes via frame, usually received by house monitor.\"\"\"\n if isinstance(frame, FrameNodeStatePositionChangedNotification):\n if frame.node_id not in self.pyvlx.nodes:\n return\n node = self.pyvlx.nodes[frame.node_id]\n if isinstance(node, OpeningDevice):\n node.position = Position(frame.current_position)\n await node.after_update()\n elif isinstance(frame, FrameGetAllNodesInformationNotification):\n if frame.node_id not in self.pyvlx.nodes:\n return\n node = self.pyvlx.nodes[frame.node_id]\n if isinstance(node, OpeningDevice):\n node.position = Position(frame.current_position)\n await node.after_update()\n", "role": "user" }, { "content": "process_frame", "role": "assistant" } ]
def x(self, scene): if not isinstance(scene, Scene): raise TypeError() for i, j in enumerate(self.__scenes): if j.scene_id == scene.scene_id: self.__scenes[i] = scene return self.__scenes.append(scene)
add
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, scene):\n if not isinstance(scene, Scene):\n raise TypeError()\n for i, j in enumerate(self.__scenes):\n if j.scene_id == scene.scene_id:\n self.__scenes[i] = scene\n return\n self.__scenes.append(scene)\n", "role": "user" }, { "content": "add", "role": "assistant" } ]
async def load(self): """Load scenes from KLF 200.""" get_scene_list = GetSceneList(pyvlx=self.pyvlx) await get_scene_list.do_api_call() if not get_scene_list.success: raise PyVLXException('Unable to retrieve scene information') for scene in get_scene_list.scenes: self.add(Scene(pyvlx=self.pyvlx, scene_id=scene[0], name=scene[1]))
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def load(self):\n \"\"\"Load scenes from KLF 200.\"\"\"\n get_scene_list = GetSceneList(pyvlx=self.pyvlx)\n await get_scene_list.do_api_call()\n if not get_scene_list.success:\n raise PyVLXException('Unable to retrieve scene information')\n for scene in get_scene_list.scenes:\n self.add(Scene(pyvlx=self.pyvlx, scene_id=scene[0], name=scene[1]))\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(bytes, system=NIST): if isinstance(bytes, Bitmath): value = bytes.bytes else: value = bytes return Byte(value).best_prefix(system=system)
best_prefix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(bytes, system=NIST):\n if isinstance(bytes, Bitmath):\n value = bytes.bytes\n else:\n value = bytes\n return Byte(value).best_prefix(system=system)\n", "role": "user" }, { "content": "best_prefix", "role": "assistant" } ]
def x(device_fd): if os_name() != 'posix': raise NotImplementedError( "'bitmath.query_device_capacity' is not supported on this platform: %s" % os_name()) s = os.stat(device_fd.name).st_mode if not stat.S_ISBLK(s): raise ValueError('The file descriptor provided is not of a device type' ) ioctl_map = {'Linux': {'request_params': [('BLKGETSIZE64', 'L', 2148012658)], 'func': lambda x: x['BLKGETSIZE64']}, 'Darwin': { 'request_params': [('DKIOCGETBLOCKCOUNT', 'L', 1074291737), ( 'DKIOCGETBLOCKSIZE', 'I', 1074029592)], 'func': lambda x: x[ 'DKIOCGETBLOCKCOUNT'] * x['DKIOCGETBLOCKSIZE']}} platform_params = ioctl_map[platform.system()] results = {} for req_name, fmt, request_code in platform_params['request_params']: buffer_size = struct.calcsize(fmt) buffer = ' ' * buffer_size buffer = fcntl.ioctl(device_fd.fileno(), request_code, buffer) result = struct.unpack(fmt, buffer)[0] results[req_name] = result return Byte(platform_params['func'](results))
query_device_capacity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(device_fd):\n if os_name() != 'posix':\n raise NotImplementedError(\n \"'bitmath.query_device_capacity' is not supported on this platform: %s\"\n % os_name())\n s = os.stat(device_fd.name).st_mode\n if not stat.S_ISBLK(s):\n raise ValueError('The file descriptor provided is not of a device type'\n )\n ioctl_map = {'Linux': {'request_params': [('BLKGETSIZE64', 'L', \n 2148012658)], 'func': lambda x: x['BLKGETSIZE64']}, 'Darwin': {\n 'request_params': [('DKIOCGETBLOCKCOUNT', 'L', 1074291737), (\n 'DKIOCGETBLOCKSIZE', 'I', 1074029592)], 'func': lambda x: x[\n 'DKIOCGETBLOCKCOUNT'] * x['DKIOCGETBLOCKSIZE']}}\n platform_params = ioctl_map[platform.system()]\n results = {}\n for req_name, fmt, request_code in platform_params['request_params']:\n buffer_size = struct.calcsize(fmt)\n buffer = ' ' * buffer_size\n buffer = fcntl.ioctl(device_fd.fileno(), request_code, buffer)\n result = struct.unpack(fmt, buffer)[0]\n results[req_name] = result\n return Byte(platform_params['func'](results))\n", "role": "user" }, { "content": "query_device_capacity", "role": "assistant" } ]
def x(path, bestprefix=True, system=NIST): _path = os.path.realpath(path) size_bytes = os.path.getsize(_path) if bestprefix: return Byte(size_bytes).best_prefix(system=system) else: return Byte(size_bytes)
getsize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path, bestprefix=True, system=NIST):\n _path = os.path.realpath(path)\n size_bytes = os.path.getsize(_path)\n if bestprefix:\n return Byte(size_bytes).best_prefix(system=system)\n else:\n return Byte(size_bytes)\n", "role": "user" }, { "content": "getsize", "role": "assistant" } ]
def x(search_base, followlinks=False, filter='*', relpath=False, bestprefix =False, system=NIST): for root, dirs, files in os.walk(search_base, followlinks=followlinks): for name in fnmatch.filter(files, filter): _path = os.path.join(root, name) if relpath: _return_path = os.path.relpath(_path, '.') else: _return_path = os.path.realpath(_path) if followlinks: yield _return_path, getsize(_path, bestprefix=bestprefix, system=system) elif os.path.isdir(_path) or os.path.islink(_path): pass else: yield _return_path, getsize(_path, bestprefix=bestprefix, system=system)
listdir
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(search_base, followlinks=False, filter='*', relpath=False, bestprefix\n =False, system=NIST):\n for root, dirs, files in os.walk(search_base, followlinks=followlinks):\n for name in fnmatch.filter(files, filter):\n _path = os.path.join(root, name)\n if relpath:\n _return_path = os.path.relpath(_path, '.')\n else:\n _return_path = os.path.realpath(_path)\n if followlinks:\n yield _return_path, getsize(_path, bestprefix=bestprefix,\n system=system)\n elif os.path.isdir(_path) or os.path.islink(_path):\n pass\n else:\n yield _return_path, getsize(_path, bestprefix=bestprefix,\n system=system)\n", "role": "user" }, { "content": "listdir", "role": "assistant" } ]
def x(s): if not isinstance(s, (str, unicode)): raise ValueError( 'parse_string only accepts string inputs but a %s was given' % type(s)) try: index = list([i.isalpha() for i in s]).index(True) except ValueError: raise ValueError( "No unit detected, can not parse string '%s' into a bitmath object" % s) val, unit = s[:index], s[index:] if unit == 'b': unit_class = Bit elif unit == 'B': unit_class = Byte else: if not (hasattr(sys.modules[__name__], unit) and isinstance(getattr (sys.modules[__name__], unit), type)): raise ValueError('The unit %s is not a valid bitmath unit' % unit) unit_class = globals()[unit] try: val = float(val) except ValueError: raise try: return unit_class(val) except: raise ValueError("Can't parse string %s into a bitmath object" % s)
parse_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s):\n if not isinstance(s, (str, unicode)):\n raise ValueError(\n 'parse_string only accepts string inputs but a %s was given' %\n type(s))\n try:\n index = list([i.isalpha() for i in s]).index(True)\n except ValueError:\n raise ValueError(\n \"No unit detected, can not parse string '%s' into a bitmath object\"\n % s)\n val, unit = s[:index], s[index:]\n if unit == 'b':\n unit_class = Bit\n elif unit == 'B':\n unit_class = Byte\n else:\n if not (hasattr(sys.modules[__name__], unit) and isinstance(getattr\n (sys.modules[__name__], unit), type)):\n raise ValueError('The unit %s is not a valid bitmath unit' % unit)\n unit_class = globals()[unit]\n try:\n val = float(val)\n except ValueError:\n raise\n try:\n return unit_class(val)\n except:\n raise ValueError(\"Can't parse string %s into a bitmath object\" % s)\n", "role": "user" }, { "content": "parse_string", "role": "assistant" } ]
def x(s, system=SI): if not isinstance(s, (str, unicode)) and not isinstance(s, numbers.Number): raise ValueError( 'parse_string_unsafe only accepts string/number inputs but a %s was given' % type(s)) if isinstance(s, numbers.Number): return Byte(s) if isinstance(s, (str, unicode)): try: return Byte(float(s)) except ValueError: pass try: index = list([i.isalpha() for i in s]).index(True) except ValueError: raise ValueError( "No unit detected, can not parse string '%s' into a bitmath object" % s) val, unit = s[:index], s[index:] unit = unit.rstrip('Bb') unit += 'B' if len(unit) == 2: if system == NIST: unit = capitalize_first(unit) _unit = list(unit) _unit.insert(1, 'i') unit = ''.join(_unit) unit_class = globals()[unit] else: if unit.startswith('K'): unit = unit.replace('K', 'k') elif not unit.startswith('k'): unit = capitalize_first(unit) if unit[0] in SI_PREFIXES: unit_class = globals()[unit] elif len(unit) == 3: unit = capitalize_first(unit) if unit[:2] in NIST_PREFIXES: unit_class = globals()[unit] else: raise ValueError('The unit %s is not a valid bitmath unit' % unit) try: unit_class except UnboundLocalError: raise ValueError('The unit %s is not a valid bitmath unit' % unit) return unit_class(float(val))
parse_string_unsafe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s, system=SI):\n if not isinstance(s, (str, unicode)) and not isinstance(s, numbers.Number):\n raise ValueError(\n 'parse_string_unsafe only accepts string/number inputs but a %s was given'\n % type(s))\n if isinstance(s, numbers.Number):\n return Byte(s)\n if isinstance(s, (str, unicode)):\n try:\n return Byte(float(s))\n except ValueError:\n pass\n try:\n index = list([i.isalpha() for i in s]).index(True)\n except ValueError:\n raise ValueError(\n \"No unit detected, can not parse string '%s' into a bitmath object\"\n % s)\n val, unit = s[:index], s[index:]\n unit = unit.rstrip('Bb')\n unit += 'B'\n if len(unit) == 2:\n if system == NIST:\n unit = capitalize_first(unit)\n _unit = list(unit)\n _unit.insert(1, 'i')\n unit = ''.join(_unit)\n unit_class = globals()[unit]\n else:\n if unit.startswith('K'):\n unit = unit.replace('K', 'k')\n elif not unit.startswith('k'):\n unit = capitalize_first(unit)\n if unit[0] in SI_PREFIXES:\n unit_class = globals()[unit]\n elif len(unit) == 3:\n unit = capitalize_first(unit)\n if unit[:2] in NIST_PREFIXES:\n unit_class = globals()[unit]\n else:\n raise ValueError('The unit %s is not a valid bitmath unit' % unit)\n try:\n unit_class\n except UnboundLocalError:\n raise ValueError('The unit %s is not a valid bitmath unit' % unit)\n return unit_class(float(val))\n", "role": "user" }, { "content": "parse_string_unsafe", "role": "assistant" } ]
def x(fmt_str=None, plural=False, bestprefix=False): if 'bitmath' not in globals(): import bitmath if plural: orig_fmt_plural = bitmath.format_plural bitmath.format_plural = True if fmt_str: orig_fmt_str = bitmath.format_string bitmath.format_string = fmt_str yield if plural: bitmath.format_plural = orig_fmt_plural if fmt_str: bitmath.format_string = orig_fmt_str
format
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fmt_str=None, plural=False, bestprefix=False):\n if 'bitmath' not in globals():\n import bitmath\n if plural:\n orig_fmt_plural = bitmath.format_plural\n bitmath.format_plural = True\n if fmt_str:\n orig_fmt_str = bitmath.format_string\n bitmath.format_string = fmt_str\n yield\n if plural:\n bitmath.format_plural = orig_fmt_plural\n if fmt_str:\n bitmath.format_string = orig_fmt_str\n", "role": "user" }, { "content": "format", "role": "assistant" } ]
def x(cli_args): choices = ALL_UNIT_TYPES parser = argparse.ArgumentParser(description= 'Converts from one type of size to another.') parser.add_argument('--from-stdin', default=False, action='store_true', help='Reads number from stdin rather than the cli') parser.add_argument('-f', '--from', choices=choices, nargs=1, type=str, dest='fromunit', default=['Byte'], help= 'Input type you are converting from. Defaultes to Byte.') parser.add_argument('-t', '--to', choices=choices, required=False, nargs=1, type=str, help= 'Input type you are converting to. Attempts to detect best result if omitted.' , dest='tounit') parser.add_argument('size', nargs='*', type=float, help= 'The number to convert.') args = parser.parse_args(cli_args) if args.from_stdin: args.size = [float(sys.stdin.readline()[:-1])] results = [] for size in args.size: instance = getattr(__import__('bitmath', fromlist=['True']), args. fromunit[0])(size) if args.tounit: result = getattr(instance, args.tounit[0]) else: result = instance.best_prefix() results.append(result) return results
cli_script_main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cli_args):\n choices = ALL_UNIT_TYPES\n parser = argparse.ArgumentParser(description=\n 'Converts from one type of size to another.')\n parser.add_argument('--from-stdin', default=False, action='store_true',\n help='Reads number from stdin rather than the cli')\n parser.add_argument('-f', '--from', choices=choices, nargs=1, type=str,\n dest='fromunit', default=['Byte'], help=\n 'Input type you are converting from. Defaultes to Byte.')\n parser.add_argument('-t', '--to', choices=choices, required=False,\n nargs=1, type=str, help=\n 'Input type you are converting to. Attempts to detect best result if omitted.'\n , dest='tounit')\n parser.add_argument('size', nargs='*', type=float, help=\n 'The number to convert.')\n args = parser.parse_args(cli_args)\n if args.from_stdin:\n args.size = [float(sys.stdin.readline()[:-1])]\n results = []\n for size in args.size:\n instance = getattr(__import__('bitmath', fromlist=['True']), args.\n fromunit[0])(size)\n if args.tounit:\n result = getattr(instance, args.tounit[0])\n else:\n result = instance.best_prefix()\n results.append(result)\n return results\n", "role": "user" }, { "content": "cli_script_main", "role": "assistant" } ]
def x(self): self._base, self._power, self._name_singular, self._name_plural = (self ._setup()) self._unit_value = self._base ** self._power
do_setup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._base, self._power, self._name_singular, self._name_plural = (self\n ._setup())\n self._unit_value = self._base ** self._power\n", "role": "user" }, { "content": "do_setup", "role": "assistant" } ]
def x(self, value): if isinstance(value, self.valid_types): self._byte_value = value * self._unit_value self._bit_value = self._byte_value * 8.0 else: raise ValueError( "Initialization value '%s' is of an invalid type: %s. Must be one of %s" % (value, type(value), ', '.join(str(x) for x in self. valid_types)))
norm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if isinstance(value, self.valid_types):\n self._byte_value = value * self._unit_value\n self._bit_value = self._byte_value * 8.0\n else:\n raise ValueError(\n \"Initialization value '%s' is of an invalid type: %s. Must be one of %s\"\n % (value, type(value), ', '.join(str(x) for x in self.\n valid_types)))\n", "role": "user" }, { "content": "norm", "role": "assistant" } ]
def x(self): if self._base == 2: return 'NIST' elif self._base == 10: return 'SI' else: raise ValueError( 'Instances mathematical base is an unsupported value: %s' % str (self._base))
system
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._base == 2:\n return 'NIST'\n elif self._base == 10:\n return 'SI'\n else:\n raise ValueError(\n 'Instances mathematical base is an unsupported value: %s' % str\n (self._base))\n", "role": "user" }, { "content": "system", "role": "assistant" } ]
def x(self): global format_plural if self.prefix_value == 1: return self._name_singular elif format_plural: return self._name_plural else: return self._name_singular
unit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n global format_plural\n if self.prefix_value == 1:\n return self._name_singular\n elif format_plural:\n return self._name_plural\n else:\n return self._name_singular\n", "role": "user" }, { "content": "unit", "role": "assistant" } ]
def x(cls, item): if isinstance(item, Bitmath): return cls(bits=item.bits) else: raise ValueError( 'The provided items must be a valid bitmath class: %s' % str( item.__class__))
from_other
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, item):\n if isinstance(item, Bitmath):\n return cls(bits=item.bits)\n else:\n raise ValueError(\n 'The provided items must be a valid bitmath class: %s' % str(\n item.__class__))\n", "role": "user" }, { "content": "from_other", "role": "assistant" } ]
def x(self, fmt): _fmt_params = {'base': self.base, 'bin': self.bin, 'binary': self. binary, 'bits': self.bits, 'bytes': self.bytes, 'power': self.power, 'system': self.system, 'unit': self.unit, 'unit_plural': self. unit_plural, 'unit_singular': self.unit_singular, 'value': self.value} return fmt.format(**_fmt_params)
format
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fmt):\n _fmt_params = {'base': self.base, 'bin': self.bin, 'binary': self.\n binary, 'bits': self.bits, 'bytes': self.bytes, 'power': self.power,\n 'system': self.system, 'unit': self.unit, 'unit_plural': self.\n unit_plural, 'unit_singular': self.unit_singular, 'value': self.value}\n return fmt.format(**_fmt_params)\n", "role": "user" }, { "content": "format", "role": "assistant" } ]
def x(self, system=None): if abs(self) < Byte(1): return Bit.from_other(self) elif type(self) is Byte: _inst = self else: _inst = Byte.from_other(self) if system is None: if self.system == 'NIST': _STEPS = NIST_PREFIXES _BASE = 1024 elif self.system == 'SI': _STEPS = SI_PREFIXES _BASE = 1000 elif system == NIST: _STEPS = NIST_PREFIXES _BASE = 1024 elif system == SI: _STEPS = SI_PREFIXES _BASE = 1000 else: raise ValueError( "Invalid value given for 'system' parameter. Must be one of NIST or SI" ) _index = int(math.log(abs(_inst.bytes), _BASE)) if _index == 0: return _inst elif _index >= len(_STEPS): _best_prefix = _STEPS[-1] elif 0 < _index < len(_STEPS): _best_prefix = _STEPS[_index - 1] _conversion_method = getattr(self, 'to_%sB' % _best_prefix) return _conversion_method()
best_prefix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, system=None):\n if abs(self) < Byte(1):\n return Bit.from_other(self)\n elif type(self) is Byte:\n _inst = self\n else:\n _inst = Byte.from_other(self)\n if system is None:\n if self.system == 'NIST':\n _STEPS = NIST_PREFIXES\n _BASE = 1024\n elif self.system == 'SI':\n _STEPS = SI_PREFIXES\n _BASE = 1000\n elif system == NIST:\n _STEPS = NIST_PREFIXES\n _BASE = 1024\n elif system == SI:\n _STEPS = SI_PREFIXES\n _BASE = 1000\n else:\n raise ValueError(\n \"Invalid value given for 'system' parameter. Must be one of NIST or SI\"\n )\n _index = int(math.log(abs(_inst.bytes), _BASE))\n if _index == 0:\n return _inst\n elif _index >= len(_STEPS):\n _best_prefix = _STEPS[-1]\n elif 0 < _index < len(_STEPS):\n _best_prefix = _STEPS[_index - 1]\n _conversion_method = getattr(self, 'to_%sB' % _best_prefix)\n return _conversion_method()\n", "role": "user" }, { "content": "best_prefix", "role": "assistant" } ]
def x(self, value): self._bit_value = value * self._unit_value self._byte_value = self._bit_value / 8.0
norm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n self._bit_value = value * self._unit_value\n self._byte_value = self._bit_value / 8.0\n", "role": "user" }, { "content": "norm", "role": "assistant" } ]
def x(raw): crc = 0 for sym in raw: crc = crc ^ int(sym) return crc
calc_crc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(raw):\n crc = 0\n for sym in raw:\n crc = crc ^ int(sym)\n return crc\n", "role": "user" }, { "content": "calc_crc", "role": "assistant" } ]
def x(data): if len(data) <= 4: raise PyVLXException('could_not_extract_from_frame_too_short', data =data) length = data[0] * 256 + data[1] - 1 if len(data) != length + 3: raise PyVLXException('could_not_extract_from_frame_invalid_length', data=data, current_length=len(data), expected_length=length + 3) if calc_crc(data[:-1]) != data[-1]: raise PyVLXException('could_not_extract_from_frame_invalid_crc', data=data, expected_crc=calc_crc(data[:-1]), current_crc=data[-1]) payload = data[4:-1] try: command = Command(data[2] * 256 + data[3]) except ValueError: raise PyVLXException('could_not_extract_from_frame_command', data=data) return command, payload
extract_from_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n if len(data) <= 4:\n raise PyVLXException('could_not_extract_from_frame_too_short', data\n =data)\n length = data[0] * 256 + data[1] - 1\n if len(data) != length + 3:\n raise PyVLXException('could_not_extract_from_frame_invalid_length',\n data=data, current_length=len(data), expected_length=length + 3)\n if calc_crc(data[:-1]) != data[-1]:\n raise PyVLXException('could_not_extract_from_frame_invalid_crc',\n data=data, expected_crc=calc_crc(data[:-1]), current_crc=data[-1])\n payload = data[4:-1]\n try:\n command = Command(data[2] * 256 + data[3])\n except ValueError:\n raise PyVLXException('could_not_extract_from_frame_command', data=data)\n return command, payload\n", "role": "user" }, { "content": "extract_from_frame", "role": "assistant" } ]
def x(self): payload = bytes([self.node_id]) payload += string_to_bytes(self.name, 64) payload += bytes([self.order >> 8 & 255, self.order & 255]) payload += bytes([self.placement]) payload += bytes([self.node_variation.value]) return payload
get_payload
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n payload = bytes([self.node_id])\n payload += string_to_bytes(self.name, 64)\n payload += bytes([self.order >> 8 & 255, self.order & 255])\n payload += bytes([self.placement])\n payload += bytes([self.node_variation.value])\n return payload\n", "role": "user" }, { "content": "get_payload", "role": "assistant" } ]
def x(self, payload): self.node_id = payload[0] self.name = bytes_to_string(payload[1:65]) self.order = payload[65] * 256 + payload[66] self.placement = payload[67] self.node_variation = NodeVariation(payload[68])
from_payload
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, payload):\n self.node_id = payload[0]\n self.name = bytes_to_string(payload[1:65])\n self.order = payload[65] * 256 + payload[66]\n self.placement = payload[67]\n self.node_variation = NodeVariation(payload[68])\n", "role": "user" }, { "content": "from_payload", "role": "assistant" } ]
def x(self, payload): self.status = NodeInformationStatus(payload[0]) self.node_id = payload[1]
from_payload
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, payload):\n self.status = NodeInformationStatus(payload[0])\n self.node_id = payload[1]\n", "role": "user" }, { "content": "from_payload", "role": "assistant" } ]
def x(obj): if hasattr(obj, 'meta'): meta = deepcopy(obj.meta) elif isinstance(obj, dict): meta = deepcopy(obj) else: meta = {} return meta
get_meta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(obj):\n if hasattr(obj, 'meta'):\n meta = deepcopy(obj.meta)\n elif isinstance(obj, dict):\n meta = deepcopy(obj)\n else:\n meta = {}\n return meta\n", "role": "user" }, { "content": "get_meta", "role": "assistant" } ]
def x(left, right, result, clean=True): left = BaseSpectrum._get_meta(left) right = BaseSpectrum._get_meta(right) if clean: for key in ('header', 'expr'): for d in (left, right): if key in d: del d[key] mid = metadata.merge(left, right, metadata_conflicts='silent') result.meta = metadata.merge(result.meta, mid, metadata_conflicts='silent')
merge_meta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(left, right, result, clean=True):\n left = BaseSpectrum._get_meta(left)\n right = BaseSpectrum._get_meta(right)\n if clean:\n for key in ('header', 'expr'):\n for d in (left, right):\n if key in d:\n del d[key]\n mid = metadata.merge(left, right, metadata_conflicts='silent')\n result.meta = metadata.merge(result.meta, mid, metadata_conflicts='silent')\n", "role": "user" }, { "content": "merge_meta", "role": "assistant" } ]
def x(pval, def_unit, equivalencies=[]): if isinstance(pval, u.Quantity): outval = pval.to(def_unit, equivalencies).value else: outval = pval return outval
process_generic_param
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pval, def_unit, equivalencies=[]):\n if isinstance(pval, u.Quantity):\n outval = pval.to(def_unit, equivalencies).value\n else:\n outval = pval\n return outval\n", "role": "user" }, { "content": "process_generic_param", "role": "assistant" } ]
def x(self, pval): return self._process_generic_param(pval, self._internal_wave_unit, equivalencies=u.spectral())
process_wave_param
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pval):\n return self._process_generic_param(pval, self._internal_wave_unit,\n equivalencies=u.spectral())\n", "role": "user" }, { "content": "process_wave_param", "role": "assistant" } ]
def x(self): w = get_waveset(self.model) if w is not None: utils.validate_wavelengths(w) w = w * self._internal_wave_unit return w
waveset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n w = get_waveset(self.model)\n if w is not None:\n utils.validate_wavelengths(w)\n w = w * self._internal_wave_unit\n return w\n", "role": "user" }, { "content": "waveset", "role": "assistant" } ]
def x(self): if self.waveset is None: x = [None, None] else: x = u.Quantity([self.waveset.min(), self.waveset.max()]) return x
waverange
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.waveset is None:\n x = [None, None]\n else:\n x = u.Quantity([self.waveset.min(), self.waveset.max()])\n return x\n", "role": "user" }, { "content": "waverange", "role": "assistant" } ]
def x(self, wave): if wave is None: if self.waveset is None: raise exceptions.SynphotError( 'self.waveset is undefined; Provide wavelengths for sampling.') wavelengths = self.waveset else: w = self._process_wave_param(wave) utils.validate_wavelengths(w) wavelengths = w * self._internal_wave_unit return wavelengths
validate_wavelengths
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, wave):\n if wave is None:\n if self.waveset is None:\n raise exceptions.SynphotError(\n 'self.waveset is undefined; Provide wavelengths for sampling.')\n wavelengths = self.waveset\n else:\n w = self._process_wave_param(wave)\n utils.validate_wavelengths(w)\n wavelengths = w * self._internal_wave_unit\n return wavelengths\n", "role": "user" }, { "content": "validate_wavelengths", "role": "assistant" } ]
def x(other): if not isinstance(other, (u.Quantity, numbers.Number, BaseUnitlessSpectrum, SourceSpectrum)): raise exceptions.IncompatibleSources( 'Can only operate on scalar number/Quantity or spectrum') elif isinstance(other, u.Quantity) and (other.unit.decompose() != u. dimensionless_unscaled or not np.isscalar(other.value) or not isinstance(other.value, numbers.Real)): raise exceptions.IncompatibleSources( 'Can only operate on real scalar dimensionless Quantity') elif isinstance(other, numbers.Number) and not (np.isscalar(other) and isinstance(other, numbers.Real)): raise exceptions.IncompatibleSources( 'Can only operate on real scalar number')
validate_other_mul_div
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(other):\n if not isinstance(other, (u.Quantity, numbers.Number,\n BaseUnitlessSpectrum, SourceSpectrum)):\n raise exceptions.IncompatibleSources(\n 'Can only operate on scalar number/Quantity or spectrum')\n elif isinstance(other, u.Quantity) and (other.unit.decompose() != u.\n dimensionless_unscaled or not np.isscalar(other.value) or not\n isinstance(other.value, numbers.Real)):\n raise exceptions.IncompatibleSources(\n 'Can only operate on real scalar dimensionless Quantity')\n elif isinstance(other, numbers.Number) and not (np.isscalar(other) and\n isinstance(other, numbers.Real)):\n raise exceptions.IncompatibleSources(\n 'Can only operate on real scalar number')\n", "role": "user" }, { "content": "validate_other_mul_div", "role": "assistant" } ]
def x(self, wavelengths=None, **kwargs): if 'flux_unit' in kwargs: self._validate_flux_unit(kwargs['flux_unit'], wav_only=True) x = self._validate_wavelengths(wavelengths) try: m = self.model.integral except (AttributeError, NotImplementedError): if conf.default_integrator == 'trapezoid': y = self(x, **kwargs) result = abs(np.trapz(y.value, x=x.value)) result_unit = y.unit else: raise NotImplementedError( 'Analytic integral not available and default integrator {0} is not supported' .format(conf.default_integrator)) else: start = x[0].value stop = x[-1].value result = m(stop) - m(start) result_unit = self._internal_flux_unit if result_unit != units.THROUGHPUT: if result_unit == units.PHOTLAM: result_unit = u.photon / (u.cm ** 2 * u.s) elif result_unit == units.FLAM: result_unit = u.erg / (u.cm ** 2 * u.s) else: raise NotImplementedError('Integration of {0} is not supported' .format(result_unit)) else: result_unit *= self._internal_wave_unit return result * result_unit
integrate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, wavelengths=None, **kwargs):\n if 'flux_unit' in kwargs:\n self._validate_flux_unit(kwargs['flux_unit'], wav_only=True)\n x = self._validate_wavelengths(wavelengths)\n try:\n m = self.model.integral\n except (AttributeError, NotImplementedError):\n if conf.default_integrator == 'trapezoid':\n y = self(x, **kwargs)\n result = abs(np.trapz(y.value, x=x.value))\n result_unit = y.unit\n else:\n raise NotImplementedError(\n 'Analytic integral not available and default integrator {0} is not supported'\n .format(conf.default_integrator))\n else:\n start = x[0].value\n stop = x[-1].value\n result = m(stop) - m(start)\n result_unit = self._internal_flux_unit\n if result_unit != units.THROUGHPUT:\n if result_unit == units.PHOTLAM:\n result_unit = u.photon / (u.cm ** 2 * u.s)\n elif result_unit == units.FLAM:\n result_unit = u.erg / (u.cm ** 2 * u.s)\n else:\n raise NotImplementedError('Integration of {0} is not supported'\n .format(result_unit))\n else:\n result_unit *= self._internal_wave_unit\n return result * result_unit\n", "role": "user" }, { "content": "integrate", "role": "assistant" } ]
def x(self, wavelengths=None): x = self._validate_wavelengths(wavelengths).value y = self(x).value num = np.trapz(y * x, x=x) den = np.trapz(y, x=x) if den == 0: avg_wave = 0.0 else: avg_wave = abs(num / den) return avg_wave * self._internal_wave_unit
avgwave
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, wavelengths=None):\n x = self._validate_wavelengths(wavelengths).value\n y = self(x).value\n num = np.trapz(y * x, x=x)\n den = np.trapz(y, x=x)\n if den == 0:\n avg_wave = 0.0\n else:\n avg_wave = abs(num / den)\n return avg_wave * self._internal_wave_unit\n", "role": "user" }, { "content": "avgwave", "role": "assistant" } ]
def x(self, wavelengths=None): x = self._validate_wavelengths(wavelengths).value y = self(x).value num = np.trapz(y * np.log(x) / x, x=x) den = np.trapz(y / x, x=x) if num == 0 or den == 0: bar_lam = 0.0 else: bar_lam = np.exp(abs(num / den)) return bar_lam * self._internal_wave_unit
barlam
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, wavelengths=None):\n x = self._validate_wavelengths(wavelengths).value\n y = self(x).value\n num = np.trapz(y * np.log(x) / x, x=x)\n den = np.trapz(y / x, x=x)\n if num == 0 or den == 0:\n bar_lam = 0.0\n else:\n bar_lam = np.exp(abs(num / den))\n return bar_lam * self._internal_wave_unit\n", "role": "user" }, { "content": "barlam", "role": "assistant" } ]
def x(self, wavelengths=None): x = self._validate_wavelengths(wavelengths).value y = self(x).value num = np.trapz(y * x, x=x) den = np.trapz(y / x, x=x) if den == 0: pivwv = 0.0 else: pivwv = np.sqrt(abs(num / den)) return pivwv * self._internal_wave_unit
pivot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, wavelengths=None):\n x = self._validate_wavelengths(wavelengths).value\n y = self(x).value\n num = np.trapz(y * x, x=x)\n den = np.trapz(y / x, x=x)\n if den == 0:\n pivwv = 0.0\n else:\n pivwv = np.sqrt(abs(num / den))\n return pivwv * self._internal_wave_unit\n", "role": "user" }, { "content": "pivot", "role": "assistant" } ]
def x(self): if isinstance(self._model, Empirical1D): self._model.fill_value = np.nan is_forced = True else: is_forced = False return is_forced
force_extrapolation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if isinstance(self._model, Empirical1D):\n self._model.fill_value = np.nan\n is_forced = True\n else:\n is_forced = False\n return is_forced\n", "role": "user" }, { "content": "force_extrapolation", "role": "assistant" } ]
def x(self, wavelengths=None): x = self._validate_wavelengths(wavelengths) w1 = x[0] ** 2 / x[1] w2 = x[-1] ** 2 / x[-2] if isinstance(self._model, Empirical1D): y1 = self._model.lookup_table[0] y2 = self._model.lookup_table[-1] else: y1 = self(w1) y2 = self(w2) if y1 == 0 and y2 == 0: return self y = self(x) if y1 != 0: x = np.insert(x, 0, w1) y = np.insert(y, 0, 0.0) if y2 != 0: x = np.insert(x, x.size, w2) y = np.insert(y, y.size, 0.0) return self.__class__(Empirical1D, points=x, lookup_table=y)
taper
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, wavelengths=None):\n x = self._validate_wavelengths(wavelengths)\n w1 = x[0] ** 2 / x[1]\n w2 = x[-1] ** 2 / x[-2]\n if isinstance(self._model, Empirical1D):\n y1 = self._model.lookup_table[0]\n y2 = self._model.lookup_table[-1]\n else:\n y1 = self(w1)\n y2 = self(w2)\n if y1 == 0 and y2 == 0:\n return self\n y = self(x)\n if y1 != 0:\n x = np.insert(x, 0, w1)\n y = np.insert(y, 0, 0.0)\n if y2 != 0:\n x = np.insert(x, x.size, w2)\n y = np.insert(y, y.size, 0.0)\n return self.__class__(Empirical1D, points=x, lookup_table=y)\n", "role": "user" }, { "content": "taper", "role": "assistant" } ]
def x(self, wavelengths, **kwargs): x = self._validate_wavelengths(wavelengths) y = self(x, **kwargs) if isinstance(wavelengths, u.Quantity): w = x.to(wavelengths.unit, u.spectral()) else: w = x return w, y
get_arrays
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, wavelengths, **kwargs):\n x = self._validate_wavelengths(wavelengths)\n y = self(x, **kwargs)\n if isinstance(wavelengths, u.Quantity):\n w = x.to(wavelengths.unit, u.spectral())\n else:\n w = x\n return w, y\n", "role": "user" }, { "content": "get_arrays", "role": "assistant" } ]
def x(x, y, title='', xlog=False, ylog=False, left=None, right=None, bottom =None, top=None, save_as=''): try: import matplotlib.pyplot as plt except ImportError: log.error( 'No matplotlib installation found; plotting disabled as a result.') return fig, ax = plt.subplots() ax.plot(x, y) if left is not None: ax.set_xlim(left=left) if right is not None: ax.set_xlim(right=right) if bottom is not None: ax.set_ylim(bottom=bottom) if top is not None: ax.set_ylim(top=top) xu = x.unit if xu.physical_type == 'frequency': ax.set_xlabel('Frequency ({0})'.format(xu)) else: ax.set_xlabel('Wavelength ({0})'.format(xu)) yu = y.unit if yu is u.dimensionless_unscaled: ax.set_ylabel('Unitless') else: ax.set_ylabel('Flux ({0})'.format(yu)) if title: ax.set_title(title) if xlog: ax.set_xscale('log') if ylog: ax.set_yscale('log') plt.draw() if save_as: plt.savefig(save_as) log.info('Plot saved as {0}'.format(save_as))
do_plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, title='', xlog=False, ylog=False, left=None, right=None, bottom\n =None, top=None, save_as=''):\n try:\n import matplotlib.pyplot as plt\n except ImportError:\n log.error(\n 'No matplotlib installation found; plotting disabled as a result.')\n return\n fig, ax = plt.subplots()\n ax.plot(x, y)\n if left is not None:\n ax.set_xlim(left=left)\n if right is not None:\n ax.set_xlim(right=right)\n if bottom is not None:\n ax.set_ylim(bottom=bottom)\n if top is not None:\n ax.set_ylim(top=top)\n xu = x.unit\n if xu.physical_type == 'frequency':\n ax.set_xlabel('Frequency ({0})'.format(xu))\n else:\n ax.set_xlabel('Wavelength ({0})'.format(xu))\n yu = y.unit\n if yu is u.dimensionless_unscaled:\n ax.set_ylabel('Unitless')\n else:\n ax.set_ylabel('Flux ({0})'.format(yu))\n if title:\n ax.set_title(title)\n if xlog:\n ax.set_xscale('log')\n if ylog:\n ax.set_yscale('log')\n plt.draw()\n if save_as:\n plt.savefig(save_as)\n log.info('Plot saved as {0}'.format(save_as))\n", "role": "user" }, { "content": "do_plot", "role": "assistant" } ]
def x(self, wavelengths=None, **kwargs): w, y = self._get_arrays(wavelengths) self._do_plot(w, y, **kwargs)
plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, wavelengths=None, **kwargs):\n w, y = self._get_arrays(wavelengths)\n self._do_plot(w, y, **kwargs)\n", "role": "user" }, { "content": "plot", "role": "assistant" } ]
def x(new_unit, wav_only=False): new_unit = units.validate_unit(new_unit) acceptable_types = ['spectral flux density wav', 'photon flux density wav'] acceptable_names = ['PHOTLAM', 'FLAM'] if not wav_only: acceptable_types += ['spectral flux density', 'photon flux density'] acceptable_names += ['PHOTNU', 'FNU', 'Jy'] if new_unit.physical_type not in acceptable_types: raise exceptions.SynphotError( 'Source spectrum cannot operate in {0}. Acceptable units: {1}'. format(new_unit, ','.join(acceptable_names))) return new_unit
validate_flux_unit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(new_unit, wav_only=False):\n new_unit = units.validate_unit(new_unit)\n acceptable_types = ['spectral flux density wav', 'photon flux density wav']\n acceptable_names = ['PHOTLAM', 'FLAM']\n if not wav_only:\n acceptable_types += ['spectral flux density', 'photon flux density']\n acceptable_names += ['PHOTNU', 'FNU', 'Jy']\n if new_unit.physical_type not in acceptable_types:\n raise exceptions.SynphotError(\n 'Source spectrum cannot operate in {0}. Acceptable units: {1}'.\n format(new_unit, ','.join(acceptable_names)))\n return new_unit\n", "role": "user" }, { "content": "validate_flux_unit", "role": "assistant" } ]
def x(self, renorm_val, band=None, wavelengths=None, force=False, area=None, vegaspec=None): warndict = {} if band is None: sp = self else: if not isinstance(band, SpectralElement): raise exceptions.SynphotError('Invalid bandpass.') stat = band.check_overlap(self, wavelengths=wavelengths) if stat == 'none': raise exceptions.DisjointError( 'Spectrum and renormalization band are disjoint.') elif 'partial' in stat: if stat == 'partial_most': warn_str = 'At least' elif stat == 'partial_notmost' and force: warn_str = 'Less than' else: raise exceptions.PartialOverlap( 'Spectrum and renormalization band do not fully overlap. You may use force=True to force the renormalization to proceed.' ) warn_str = ( 'Spectrum is not defined everywhere in renormalization bandpass. {0} 99% of the band throughput has data. Spectrum will be' .format(warn_str)) if self.force_extrapolation(): warn_str = '{0} extrapolated at constant value.'.format( warn_str) else: warn_str = '{0} evaluated outside pre-defined waveset.'.format( warn_str) warnings.warn(warn_str, AstropyUserWarning) warndict['PartialRenorm'] = warn_str elif stat != 'full': raise exceptions.SynphotError( 'Overlap result of {0} is unexpected.'.format(stat)) sp = self.__mul__(band) if not isinstance(renorm_val, u.Quantity): renorm_val = renorm_val * self._internal_flux_unit renorm_unit_name = renorm_val.unit.to_string() w = sp._validate_wavelengths(wavelengths) if renorm_val.unit == u.count or renorm_unit_name == units.OBMAG.to_string( ): flux_tmp = sp(w, flux_unit=u.count, area=area) totalflux = flux_tmp.sum().value stdflux = 1.0 else: totalflux = sp.integrate(wavelengths=wavelengths).value if renorm_unit_name == units.VEGAMAG.to_string(): if not isinstance(vegaspec, SourceSpectrum): raise exceptions.SynphotError('Vega spectrum is missing.') stdspec = vegaspec elif renorm_val.unit in (u.STmag, u.ABmag): stdspec = SourceSpectrum(ConstFlux1D, amplitude=0 * renorm_val.unit ) else: stdspec = SourceSpectrum(ConstFlux1D, amplitude=1 * renorm_val.unit ) if band is None: raise NotImplementedError('Must provide a bandpass') else: up = stdspec * band stdflux = up.integrate(wavelengths=wavelengths).value utils.validate_totalflux(totalflux) if renorm_val.unit.decompose() == u.mag or isinstance(renorm_val.unit, u.LogUnit): const = renorm_val.value + 2.5 * np.log10(totalflux / stdflux) newsp = self.__mul__(10 ** (-0.4 * const)) else: const = renorm_val.value * (stdflux / totalflux) newsp = self.__mul__(const) newsp.warnings = warndict return newsp
normalize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, renorm_val, band=None, wavelengths=None, force=False, area=None,\n vegaspec=None):\n warndict = {}\n if band is None:\n sp = self\n else:\n if not isinstance(band, SpectralElement):\n raise exceptions.SynphotError('Invalid bandpass.')\n stat = band.check_overlap(self, wavelengths=wavelengths)\n if stat == 'none':\n raise exceptions.DisjointError(\n 'Spectrum and renormalization band are disjoint.')\n elif 'partial' in stat:\n if stat == 'partial_most':\n warn_str = 'At least'\n elif stat == 'partial_notmost' and force:\n warn_str = 'Less than'\n else:\n raise exceptions.PartialOverlap(\n 'Spectrum and renormalization band do not fully overlap. You may use force=True to force the renormalization to proceed.'\n )\n warn_str = (\n 'Spectrum is not defined everywhere in renormalization bandpass. {0} 99% of the band throughput has data. Spectrum will be'\n .format(warn_str))\n if self.force_extrapolation():\n warn_str = '{0} extrapolated at constant value.'.format(\n warn_str)\n else:\n warn_str = '{0} evaluated outside pre-defined waveset.'.format(\n warn_str)\n warnings.warn(warn_str, AstropyUserWarning)\n warndict['PartialRenorm'] = warn_str\n elif stat != 'full':\n raise exceptions.SynphotError(\n 'Overlap result of {0} is unexpected.'.format(stat))\n sp = self.__mul__(band)\n if not isinstance(renorm_val, u.Quantity):\n renorm_val = renorm_val * self._internal_flux_unit\n renorm_unit_name = renorm_val.unit.to_string()\n w = sp._validate_wavelengths(wavelengths)\n if renorm_val.unit == u.count or renorm_unit_name == units.OBMAG.to_string(\n ):\n flux_tmp = sp(w, flux_unit=u.count, area=area)\n totalflux = flux_tmp.sum().value\n stdflux = 1.0\n else:\n totalflux = sp.integrate(wavelengths=wavelengths).value\n if renorm_unit_name == units.VEGAMAG.to_string():\n if not isinstance(vegaspec, SourceSpectrum):\n raise exceptions.SynphotError('Vega spectrum is missing.')\n stdspec = vegaspec\n elif renorm_val.unit in (u.STmag, u.ABmag):\n stdspec = SourceSpectrum(ConstFlux1D, amplitude=0 * renorm_val.unit\n )\n else:\n stdspec = SourceSpectrum(ConstFlux1D, amplitude=1 * renorm_val.unit\n )\n if band is None:\n raise NotImplementedError('Must provide a bandpass')\n else:\n up = stdspec * band\n stdflux = up.integrate(wavelengths=wavelengths).value\n utils.validate_totalflux(totalflux)\n if renorm_val.unit.decompose() == u.mag or isinstance(renorm_val.unit,\n u.LogUnit):\n const = renorm_val.value + 2.5 * np.log10(totalflux / stdflux)\n newsp = self.__mul__(10 ** (-0.4 * const))\n else:\n const = renorm_val.value * (stdflux / totalflux)\n newsp = self.__mul__(const)\n newsp.warnings = warndict\n return newsp\n", "role": "user" }, { "content": "normalize", "role": "assistant" } ]
def x(self, pval, wave): if isinstance(pval, u.Quantity): self._validate_flux_unit(pval.unit) outval = units.convert_flux(self._redshift_model(wave), pval, self. _internal_flux_unit).value else: outval = pval return outval
process_flux_param
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pval, wave):\n if isinstance(pval, u.Quantity):\n self._validate_flux_unit(pval.unit)\n outval = units.convert_flux(self._redshift_model(wave), pval, self.\n _internal_flux_unit).value\n else:\n outval = pval\n return outval\n", "role": "user" }, { "content": "process_flux_param", "role": "assistant" } ]
def x(self): if self.z == 0: m = self._model else: if self._internal_wave_unit.physical_type == 'length': rs = self._redshift_model.inverse else: rs = self._redshift_model if self.z_type == 'wavelength_only': m = rs | self._model else: m = rs | self._model | self._redshift_flux_model return m
model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.z == 0:\n m = self._model\n else:\n if self._internal_wave_unit.physical_type == 'length':\n rs = self._redshift_model.inverse\n else:\n rs = self._redshift_model\n if self.z_type == 'wavelength_only':\n m = rs | self._model\n else:\n m = rs | self._model | self._redshift_flux_model\n return m\n", "role": "user" }, { "content": "model", "role": "assistant" } ]
def x(self, what): if not isinstance(what, numbers.Real): raise exceptions.SynphotError('Redshift must be a real scalar number.') self._z = float(what) self._redshift_model = RedshiftScaleFactor(self._z) if self.z_type == 'wavelength_only': self._redshift_flux_model = None else: self._redshift_flux_model = Scale(1 / (1 + self._z))
z
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, what):\n if not isinstance(what, numbers.Real):\n raise exceptions.SynphotError('Redshift must be a real scalar number.')\n self._z = float(what)\n self._redshift_model = RedshiftScaleFactor(self._z)\n if self.z_type == 'wavelength_only':\n self._redshift_flux_model = None\n else:\n self._redshift_flux_model = Scale(1 / (1 + self._z))\n", "role": "user" }, { "content": "z", "role": "assistant" } ]
def x(self, other): if not isinstance(other, self.__class__): raise exceptions.IncompatibleSources('Can only operate on {0}.'. format(self.__class__.__name__))
validate_other_add_sub
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other):\n if not isinstance(other, self.__class__):\n raise exceptions.IncompatibleSources('Can only operate on {0}.'.\n format(self.__class__.__name__))\n", "role": "user" }, { "content": "validate_other_add_sub", "role": "assistant" } ]
def x(self, wavelengths=None, flux_unit=None, area=None, vegaspec=None, ** kwargs): w, y = self._get_arrays(wavelengths, flux_unit=flux_unit, area=area, vegaspec=vegaspec) self._do_plot(w, y, **kwargs)
plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, wavelengths=None, flux_unit=None, area=None, vegaspec=None, **\n kwargs):\n w, y = self._get_arrays(wavelengths, flux_unit=flux_unit, area=area,\n vegaspec=vegaspec)\n self._do_plot(w, y, **kwargs)\n", "role": "user" }, { "content": "plot", "role": "assistant" } ]
def x(self, filename, wavelengths=None, flux_unit=None, area=None, vegaspec =None, **kwargs): w, y = self._get_arrays(wavelengths, flux_unit=flux_unit, area=area, vegaspec=vegaspec) bkeys = {'tdisp1': 'G15.7', 'tdisp2': 'G15.7'} if 'expr' in self.meta: bkeys['expr'] = self.meta['expr'], 'synphot expression' if 'ext_header' in kwargs: kwargs['ext_header'].update(bkeys) else: kwargs['ext_header'] = bkeys specio.write_fits_spec(filename, w, y, **kwargs)
to_fits
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, wavelengths=None, flux_unit=None, area=None, vegaspec\n =None, **kwargs):\n w, y = self._get_arrays(wavelengths, flux_unit=flux_unit, area=area,\n vegaspec=vegaspec)\n bkeys = {'tdisp1': 'G15.7', 'tdisp2': 'G15.7'}\n if 'expr' in self.meta:\n bkeys['expr'] = self.meta['expr'], 'synphot expression'\n if 'ext_header' in kwargs:\n kwargs['ext_header'].update(bkeys)\n else:\n kwargs['ext_header'] = bkeys\n specio.write_fits_spec(filename, w, y, **kwargs)\n", "role": "user" }, { "content": "to_fits", "role": "assistant" } ]
def x(cls, filename, keep_neg=False, **kwargs): header, wavelengths, fluxes = specio.read_spec(filename, **kwargs) return cls(Empirical1D, points=wavelengths, lookup_table=fluxes, keep_neg=keep_neg, meta={'header': header})
from_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, filename, keep_neg=False, **kwargs):\n header, wavelengths, fluxes = specio.read_spec(filename, **kwargs)\n return cls(Empirical1D, points=wavelengths, lookup_table=fluxes,\n keep_neg=keep_neg, meta={'header': header})\n", "role": "user" }, { "content": "from_file", "role": "assistant" } ]
def x(cls, **kwargs): filename = conf.vega_file header, wavelengths, fluxes = specio.read_remote_spec(filename, **kwargs) header['filename'] = filename meta = {'header': header, 'expr': 'Vega from {0}'.format(os.path. basename(filename))} return cls(Empirical1D, points=wavelengths, lookup_table=fluxes, meta=meta)
from_vega
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, **kwargs):\n filename = conf.vega_file\n header, wavelengths, fluxes = specio.read_remote_spec(filename, **kwargs)\n header['filename'] = filename\n meta = {'header': header, 'expr': 'Vega from {0}'.format(os.path.\n basename(filename))}\n return cls(Empirical1D, points=wavelengths, lookup_table=fluxes, meta=meta)\n", "role": "user" }, { "content": "from_vega", "role": "assistant" } ]
def x(new_unit): new_unit = units.validate_unit(new_unit) if new_unit.decompose() != u.dimensionless_unscaled: raise exceptions.SynphotError('Unit {0} is not dimensionless'. format(new_unit)) return new_unit
validate_flux_unit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(new_unit):\n new_unit = units.validate_unit(new_unit)\n if new_unit.decompose() != u.dimensionless_unscaled:\n raise exceptions.SynphotError('Unit {0} is not dimensionless'.\n format(new_unit))\n return new_unit\n", "role": "user" }, { "content": "validate_flux_unit", "role": "assistant" } ]
def x(self, other, wavelengths=None, threshold=0.01): if not isinstance(other, BaseSpectrum): raise exceptions.SynphotError('other must be spectrum or bandpass.') if wavelengths is None: if other.waveset is None: return 'full' if self.waveset is None: return 'partial_notmost' x1 = self._validate_wavelengths(wavelengths) y1 = self(x1) a = x1[y1 > 0].value b = other._validate_wavelengths(wavelengths).value result = utils.overlap_status(a, b) if result == 'partial': if (isinstance(other.model, Empirical1D) and other.model.is_tapered () or not isinstance(other.model, (Empirical1D, _CompoundModel)) ) and np.allclose(other(x1[::x1.size - 1]).value, 0): result = 'full' else: totalflux = self.integrate(wavelengths=wavelengths).value utils.validate_totalflux(totalflux) a_min, a_max = a.min(), a.max() b_min, b_max = b.min(), b.max() excluded = 0.0 if a_min < b_min: excluded += self.integrate(wavelengths=np.array([a_min, b_min]) ).value if a_max > b_max: excluded += self.integrate(wavelengths=np.array([b_max, a_max]) ).value if excluded / totalflux < threshold: result = 'partial_most' else: result = 'partial_notmost' return result
check_overlap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other, wavelengths=None, threshold=0.01):\n if not isinstance(other, BaseSpectrum):\n raise exceptions.SynphotError('other must be spectrum or bandpass.')\n if wavelengths is None:\n if other.waveset is None:\n return 'full'\n if self.waveset is None:\n return 'partial_notmost'\n x1 = self._validate_wavelengths(wavelengths)\n y1 = self(x1)\n a = x1[y1 > 0].value\n b = other._validate_wavelengths(wavelengths).value\n result = utils.overlap_status(a, b)\n if result == 'partial':\n if (isinstance(other.model, Empirical1D) and other.model.is_tapered\n () or not isinstance(other.model, (Empirical1D, _CompoundModel))\n ) and np.allclose(other(x1[::x1.size - 1]).value, 0):\n result = 'full'\n else:\n totalflux = self.integrate(wavelengths=wavelengths).value\n utils.validate_totalflux(totalflux)\n a_min, a_max = a.min(), a.max()\n b_min, b_max = b.min(), b.max()\n excluded = 0.0\n if a_min < b_min:\n excluded += self.integrate(wavelengths=np.array([a_min, b_min])\n ).value\n if a_max > b_max:\n excluded += self.integrate(wavelengths=np.array([b_max, a_max])\n ).value\n if excluded / totalflux < threshold:\n result = 'partial_most'\n else:\n result = 'partial_notmost'\n return result\n", "role": "user" }, { "content": "check_overlap", "role": "assistant" } ]
def x(self, area, wavelengths=None): a = units.validate_quantity(area, units.AREA) x = self._validate_wavelengths(wavelengths).value y = self(x).value * x int_val = abs(np.trapz(y, x=x)) uresp = units.HC / (a.cgs * int_val) return uresp.value * units.FLAM
unit_response
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, area, wavelengths=None):\n a = units.validate_quantity(area, units.AREA)\n x = self._validate_wavelengths(wavelengths).value\n y = self(x).value * x\n int_val = abs(np.trapz(y, x=x))\n uresp = units.HC / (a.cgs * int_val)\n return uresp.value * units.FLAM\n", "role": "user" }, { "content": "unit_response", "role": "assistant" } ]
def x(self, wavelengths=None, threshold=None): x = self._validate_wavelengths(wavelengths).value y = self(x).value if threshold is None: wave = x thru = y else: if isinstance(threshold, numbers.Real) or isinstance(threshold, u. Quantity) and threshold.unit == self._internal_flux_unit: mask = y >= threshold else: raise exceptions.SynphotError('{0} is not a valid threshold'. format(threshold)) wave = x[mask] thru = y[mask] a = self.avgwave(wavelengths=wavelengths).value num = np.trapz((wave - a) ** 2 * thru, x=wave) den = np.trapz(thru, x=wave) if den == 0: rms_width = 0.0 else: rms_width = np.sqrt(abs(num / den)) return rms_width * self._internal_wave_unit
rmswidth
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, wavelengths=None, threshold=None):\n x = self._validate_wavelengths(wavelengths).value\n y = self(x).value\n if threshold is None:\n wave = x\n thru = y\n else:\n if isinstance(threshold, numbers.Real) or isinstance(threshold, u.\n Quantity) and threshold.unit == self._internal_flux_unit:\n mask = y >= threshold\n else:\n raise exceptions.SynphotError('{0} is not a valid threshold'.\n format(threshold))\n wave = x[mask]\n thru = y[mask]\n a = self.avgwave(wavelengths=wavelengths).value\n num = np.trapz((wave - a) ** 2 * thru, x=wave)\n den = np.trapz(thru, x=wave)\n if den == 0:\n rms_width = 0.0\n else:\n rms_width = np.sqrt(abs(num / den))\n return rms_width * self._internal_wave_unit\n", "role": "user" }, { "content": "rmswidth", "role": "assistant" } ]
def x(self, **kwargs): return np.sqrt(8 * np.log(2)) * self.photbw(**kwargs)
fwhm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n return np.sqrt(8 * np.log(2)) * self.photbw(**kwargs)\n", "role": "user" }, { "content": "fwhm", "role": "assistant" } ]
def x(self, wavelengths=None): x = self._validate_wavelengths(wavelengths).value return self(x).max()
tpeak
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, wavelengths=None):\n x = self._validate_wavelengths(wavelengths).value\n return self(x).max()\n", "role": "user" }, { "content": "tpeak", "role": "assistant" } ]
def x(self, wavelengths=None): x = self._validate_wavelengths(wavelengths) return x[self(x) == self.tpeak(wavelengths=wavelengths)][0]
wpeak
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, wavelengths=None):\n x = self._validate_wavelengths(wavelengths)\n return x[self(x) == self.tpeak(wavelengths=wavelengths)][0]\n", "role": "user" }, { "content": "wpeak", "role": "assistant" } ]
def x(self, wavelengths=None): equvw = self.equivwidth(wavelengths=wavelengths) tpeak = self.tpeak(wavelengths=wavelengths) if tpeak.value == 0: rectw = 0.0 * self._internal_wave_unit else: rectw = equvw / tpeak return rectw
rectwidth
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, wavelengths=None):\n equvw = self.equivwidth(wavelengths=wavelengths)\n tpeak = self.tpeak(wavelengths=wavelengths)\n if tpeak.value == 0:\n rectw = 0.0 * self._internal_wave_unit\n else:\n rectw = equvw / tpeak\n return rectw\n", "role": "user" }, { "content": "rectwidth", "role": "assistant" } ]
def x(self, wavelengths=None): x = self._validate_wavelengths(wavelengths).value y = self(x).value qtlam = abs(np.trapz(y / x, x=x)) return qtlam * u.dimensionless_unscaled
efficiency
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, wavelengths=None):\n x = self._validate_wavelengths(wavelengths).value\n y = self(x).value\n qtlam = abs(np.trapz(y / x, x=x))\n return qtlam * u.dimensionless_unscaled\n", "role": "user" }, { "content": "efficiency", "role": "assistant" } ]
def x(self, area, wavelengths=None): t_lambda = self.tlambda(wavelengths=wavelengths) if t_lambda == 0: em_flux = 0.0 * units.FLAM else: uresp = self.unit_response(area, wavelengths=wavelengths) equvw = self.equivwidth(wavelengths=wavelengths).value em_flux = uresp * equvw / t_lambda return em_flux
emflx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, area, wavelengths=None):\n t_lambda = self.tlambda(wavelengths=wavelengths)\n if t_lambda == 0:\n em_flux = 0.0 * units.FLAM\n else:\n uresp = self.unit_response(area, wavelengths=wavelengths)\n equvw = self.equivwidth(wavelengths=wavelengths).value\n em_flux = uresp * equvw / t_lambda\n return em_flux\n", "role": "user" }, { "content": "emflx", "role": "assistant" } ]
def x(cls, filename, **kwargs): if 'flux_unit' not in kwargs: kwargs['flux_unit'] = cls._internal_flux_unit if (filename.endswith('fits') or filename.endswith('fit') ) and 'flux_col' not in kwargs: kwargs['flux_col'] = 'THROUGHPUT' header, wavelengths, throughput = specio.read_spec(filename, **kwargs) return cls(Empirical1D, points=wavelengths, lookup_table=throughput, keep_neg=True, meta={'header': header})
from_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, filename, **kwargs):\n if 'flux_unit' not in kwargs:\n kwargs['flux_unit'] = cls._internal_flux_unit\n if (filename.endswith('fits') or filename.endswith('fit')\n ) and 'flux_col' not in kwargs:\n kwargs['flux_col'] = 'THROUGHPUT'\n header, wavelengths, throughput = specio.read_spec(filename, **kwargs)\n return cls(Empirical1D, points=wavelengths, lookup_table=throughput,\n keep_neg=True, meta={'header': header})\n", "role": "user" }, { "content": "from_file", "role": "assistant" } ]
def x(cls, filtername, **kwargs): filtername = filtername.lower() if filtername == 'bessel_j': cfgitem = Conf.bessel_j_file elif filtername == 'bessel_h': cfgitem = Conf.bessel_h_file elif filtername == 'bessel_k': cfgitem = Conf.bessel_k_file elif filtername == 'cousins_r': cfgitem = Conf.cousins_r_file elif filtername == 'cousins_i': cfgitem = Conf.cousins_i_file elif filtername == 'johnson_u': cfgitem = Conf.johnson_u_file elif filtername == 'johnson_b': cfgitem = Conf.johnson_b_file elif filtername == 'johnson_v': cfgitem = Conf.johnson_v_file elif filtername == 'johnson_r': cfgitem = Conf.johnson_r_file elif filtername == 'johnson_i': cfgitem = Conf.johnson_i_file elif filtername == 'johnson_j': cfgitem = Conf.johnson_j_file elif filtername == 'johnson_k': cfgitem = Conf.johnson_k_file else: raise exceptions.SynphotError('Filter name {0} is invalid.'.format( filtername)) filename = cfgitem() if 'flux_unit' not in kwargs: kwargs['flux_unit'] = cls._internal_flux_unit if (filename.endswith('fits') or filename.endswith('fit') ) and 'flux_col' not in kwargs: kwargs['flux_col'] = 'THROUGHPUT' header, wavelengths, throughput = specio.read_remote_spec(filename, ** kwargs) header['filename'] = filename header['descrip'] = cfgitem.description meta = {'header': header, 'expr': filtername} return cls(Empirical1D, points=wavelengths, lookup_table=throughput, meta=meta)
from_filter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, filtername, **kwargs):\n filtername = filtername.lower()\n if filtername == 'bessel_j':\n cfgitem = Conf.bessel_j_file\n elif filtername == 'bessel_h':\n cfgitem = Conf.bessel_h_file\n elif filtername == 'bessel_k':\n cfgitem = Conf.bessel_k_file\n elif filtername == 'cousins_r':\n cfgitem = Conf.cousins_r_file\n elif filtername == 'cousins_i':\n cfgitem = Conf.cousins_i_file\n elif filtername == 'johnson_u':\n cfgitem = Conf.johnson_u_file\n elif filtername == 'johnson_b':\n cfgitem = Conf.johnson_b_file\n elif filtername == 'johnson_v':\n cfgitem = Conf.johnson_v_file\n elif filtername == 'johnson_r':\n cfgitem = Conf.johnson_r_file\n elif filtername == 'johnson_i':\n cfgitem = Conf.johnson_i_file\n elif filtername == 'johnson_j':\n cfgitem = Conf.johnson_j_file\n elif filtername == 'johnson_k':\n cfgitem = Conf.johnson_k_file\n else:\n raise exceptions.SynphotError('Filter name {0} is invalid.'.format(\n filtername))\n filename = cfgitem()\n if 'flux_unit' not in kwargs:\n kwargs['flux_unit'] = cls._internal_flux_unit\n if (filename.endswith('fits') or filename.endswith('fit')\n ) and 'flux_col' not in kwargs:\n kwargs['flux_col'] = 'THROUGHPUT'\n header, wavelengths, throughput = specio.read_remote_spec(filename, **\n kwargs)\n header['filename'] = filename\n header['descrip'] = cfgitem.description\n meta = {'header': header, 'expr': filtername}\n return cls(Empirical1D, points=wavelengths, lookup_table=throughput,\n meta=meta)\n", "role": "user" }, { "content": "from_filter", "role": "assistant" } ]
async def handle_frame(self, frame): """Handle incoming API frame, return True if this was the expected frame.""" if isinstance(frame, FrameActivateSceneConfirmation ) and frame.session_id == self.session_id: if frame.status == ActivateSceneConfirmationStatus.ACCEPTED: self.success = True return not self.wait_for_completion if isinstance(frame, FrameCommandRemainingTimeNotification ) and frame.session_id == self.session_id: return False if isinstance(frame, FrameCommandRunStatusNotification ) and frame.session_id == self.session_id: return False if isinstance(frame, FrameSessionFinishedNotification ) and frame.session_id == self.session_id: return True return False
handle_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def handle_frame(self, frame):\n \"\"\"Handle incoming API frame, return True if this was the expected frame.\"\"\"\n if isinstance(frame, FrameActivateSceneConfirmation\n ) and frame.session_id == self.session_id:\n if frame.status == ActivateSceneConfirmationStatus.ACCEPTED:\n self.success = True\n return not self.wait_for_completion\n if isinstance(frame, FrameCommandRemainingTimeNotification\n ) and frame.session_id == self.session_id:\n return False\n if isinstance(frame, FrameCommandRunStatusNotification\n ) and frame.session_id == self.session_id:\n return False\n if isinstance(frame, FrameSessionFinishedNotification\n ) and frame.session_id == self.session_id:\n return True\n return False\n", "role": "user" }, { "content": "handle_frame", "role": "assistant" } ]
def x(self): self.session_id = get_new_session_id() return FrameActivateSceneRequest(scene_id=self.scene_id, session_id= self.session_id)
request_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.session_id = get_new_session_id()\n return FrameActivateSceneRequest(scene_id=self.scene_id, session_id=\n self.session_id)\n", "role": "user" }, { "content": "request_frame", "role": "assistant" } ]
def x(self, binset): if binset is None: if self.bandpass.waveset is not None: self._binset = self.bandpass.waveset elif self.spectrum.waveset is not None: self._binset = self.spectrum.waveset log.info( 'Bandpass waveset is undefined; Using source spectrum waveset instead.' ) else: raise exceptions.UndefinedBinset( 'Both source spectrum and bandpass have undefined waveset; Provide binset manually.' ) else: self._binset = self._validate_wavelengths(binset) if self._binset[0] > self._binset[-1]: self._binset = self._binset[::-1] self._bin_edges = binning.calculate_bin_edges(self._binset) spwave = utils.merge_wavelengths(self._bin_edges.value, self._binset.value) if self.waveset is not None: spwave = utils.merge_wavelengths(spwave, self.waveset.value) spwave = spwave[spwave > 0] indices = np.searchsorted(spwave, self._bin_edges.value) i_beg = indices[:-1] i_end = indices[1:] flux = self(spwave) avflux = (flux.value[1:] + flux.value[:-1]) * 0.5 deltaw = spwave[1:] - spwave[:-1] binflux, intwave = binning.calcbinflux(self._binset.size, i_beg, i_end, avflux, deltaw) self._binflux = binflux * flux.unit
init_bins
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, binset):\n if binset is None:\n if self.bandpass.waveset is not None:\n self._binset = self.bandpass.waveset\n elif self.spectrum.waveset is not None:\n self._binset = self.spectrum.waveset\n log.info(\n 'Bandpass waveset is undefined; Using source spectrum waveset instead.'\n )\n else:\n raise exceptions.UndefinedBinset(\n 'Both source spectrum and bandpass have undefined waveset; Provide binset manually.'\n )\n else:\n self._binset = self._validate_wavelengths(binset)\n if self._binset[0] > self._binset[-1]:\n self._binset = self._binset[::-1]\n self._bin_edges = binning.calculate_bin_edges(self._binset)\n spwave = utils.merge_wavelengths(self._bin_edges.value, self._binset.value)\n if self.waveset is not None:\n spwave = utils.merge_wavelengths(spwave, self.waveset.value)\n spwave = spwave[spwave > 0]\n indices = np.searchsorted(spwave, self._bin_edges.value)\n i_beg = indices[:-1]\n i_end = indices[1:]\n flux = self(spwave)\n avflux = (flux.value[1:] + flux.value[:-1]) * 0.5\n deltaw = spwave[1:] - spwave[:-1]\n binflux, intwave = binning.calcbinflux(self._binset.size, i_beg, i_end,\n avflux, deltaw)\n self._binflux = binflux * flux.unit\n", "role": "user" }, { "content": "init_bins", "role": "assistant" } ]
def x(self, wavelengths=None, flux_unit=None, **kwargs): x = self._validate_binned_wavelengths(wavelengths) i = np.searchsorted(self.binset, x) if not np.allclose(self.binset[i].value, x.value): raise exceptions.InterpolationNotAllowed( 'Some or all wavelength values are not in binset.') y = self.binflux[i] if flux_unit is None: flux = y else: flux = units.convert_flux(x, y, flux_unit, **kwargs) return flux
sample_binned
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, wavelengths=None, flux_unit=None, **kwargs):\n x = self._validate_binned_wavelengths(wavelengths)\n i = np.searchsorted(self.binset, x)\n if not np.allclose(self.binset[i].value, x.value):\n raise exceptions.InterpolationNotAllowed(\n 'Some or all wavelength values are not in binset.')\n y = self.binflux[i]\n if flux_unit is None:\n flux = y\n else:\n flux = units.convert_flux(x, y, flux_unit, **kwargs)\n return flux\n", "role": "user" }, { "content": "sample_binned", "role": "assistant" } ]
def x(self, wavelengths, flux_unit, area=None, vegaspec=None): x = self._validate_binned_wavelengths(wavelengths) y = self.sample_binned(wavelengths=x, flux_unit=flux_unit, area=area, vegaspec=vegaspec) if isinstance(wavelengths, u.Quantity): w = x.to(wavelengths.unit, u.spectral()) else: w = x return w, y
get_binned_arrays
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, wavelengths, flux_unit, area=None, vegaspec=None):\n x = self._validate_binned_wavelengths(wavelengths)\n y = self.sample_binned(wavelengths=x, flux_unit=flux_unit, area=area,\n vegaspec=vegaspec)\n if isinstance(wavelengths, u.Quantity):\n w = x.to(wavelengths.unit, u.spectral())\n else:\n w = x\n return w, y\n", "role": "user" }, { "content": "get_binned_arrays", "role": "assistant" } ]
def x(self, cenwave, npix, **kwargs): if not isinstance(cenwave, u.Quantity): cenwave = cenwave * self._internal_wave_unit bin_wave = units.validate_quantity(self.binset, cenwave.unit, equivalencies=u.spectral()) return binning.wave_range(bin_wave.value, cenwave.value, npix, **kwargs ) * cenwave.unit
binned_waverange
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cenwave, npix, **kwargs):\n if not isinstance(cenwave, u.Quantity):\n cenwave = cenwave * self._internal_wave_unit\n bin_wave = units.validate_quantity(self.binset, cenwave.unit,\n equivalencies=u.spectral())\n return binning.wave_range(bin_wave.value, cenwave.value, npix, **kwargs\n ) * cenwave.unit\n", "role": "user" }, { "content": "binned_waverange", "role": "assistant" } ]
def x(self, waverange, **kwargs): x = units.validate_quantity(waverange, self._internal_wave_unit, equivalencies=u.spectral()) return binning.pixel_range(self.binset.value, x.value, **kwargs)
binned_pixelrange
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, waverange, **kwargs):\n x = units.validate_quantity(waverange, self._internal_wave_unit,\n equivalencies=u.spectral())\n return binning.pixel_range(self.binset.value, x.value, **kwargs)\n", "role": "user" }, { "content": "binned_pixelrange", "role": "assistant" } ]
def x(self, binned=True, wavelengths=None, mode='efflerg'): mode = mode.lower() if mode == 'efflerg': flux_unit = units.FLAM elif mode == 'efflphot': warnings.warn('Usage of EFFLPHOT is deprecated.', AstropyDeprecationWarning) flux_unit = units.PHOTLAM else: raise exceptions.SynphotError('mode must be "efflerg" or "efflphot"') if binned: x = self._validate_binned_wavelengths(wavelengths).value y = self.sample_binned(wavelengths=x, flux_unit=flux_unit).value else: x = self._validate_wavelengths(wavelengths).value y = units.convert_flux(x, self(x), flux_unit).value num = np.trapz(y * x ** 2, x=x) den = np.trapz(y * x, x=x) if den == 0.0: eff_lam = 0.0 else: eff_lam = abs(num / den) return eff_lam * self._internal_wave_unit
effective_wavelength
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, binned=True, wavelengths=None, mode='efflerg'):\n mode = mode.lower()\n if mode == 'efflerg':\n flux_unit = units.FLAM\n elif mode == 'efflphot':\n warnings.warn('Usage of EFFLPHOT is deprecated.',\n AstropyDeprecationWarning)\n flux_unit = units.PHOTLAM\n else:\n raise exceptions.SynphotError('mode must be \"efflerg\" or \"efflphot\"')\n if binned:\n x = self._validate_binned_wavelengths(wavelengths).value\n y = self.sample_binned(wavelengths=x, flux_unit=flux_unit).value\n else:\n x = self._validate_wavelengths(wavelengths).value\n y = units.convert_flux(x, self(x), flux_unit).value\n num = np.trapz(y * x ** 2, x=x)\n den = np.trapz(y * x, x=x)\n if den == 0.0:\n eff_lam = 0.0\n else:\n eff_lam = abs(num / den)\n return eff_lam * self._internal_wave_unit\n", "role": "user" }, { "content": "effective_wavelength", "role": "assistant" } ]
def x(self, flux_unit=None, wavelengths=None, area=None, vegaspec=None): if flux_unit is None: flux_unit = self._internal_flux_unit flux_unit = units.validate_unit(flux_unit) flux_unit_name = flux_unit.to_string() if flux_unit == u.count or flux_unit_name == units.OBMAG.to_string(): val = self.countrate(area, binned=False, wavelengths=wavelengths) if flux_unit.decompose() == u.mag: eff_stim = -2.5 * np.log10(val.value) * flux_unit else: eff_stim = val return eff_stim if flux_unit_name == units.VEGAMAG.to_string(): num = self.integrate(wavelengths=wavelengths) den = (vegaspec * self.bandpass).integrate() utils.validate_totalflux(num) utils.validate_totalflux(den) return 2.5 * (math.log10(den.value) - math.log10(num.value) ) * units.VEGAMAG x_band = self.bandpass._validate_wavelengths(wavelengths).value y_band = self.bandpass(x_band).value inwave = self._validate_wavelengths(wavelengths).value influx = units.convert_flux(inwave, self(inwave), units.FLAM).value num = abs(np.trapz(inwave * influx, x=inwave)) den = abs(np.trapz(x_band * y_band, x=x_band)) utils.validate_totalflux(num) utils.validate_totalflux(den) val = num / den * units.FLAM if flux_unit.physical_type == 'spectral flux density wav': if flux_unit == u.STmag: eff_stim = val.to(flux_unit) else: eff_stim = val elif flux_unit.physical_type in ('spectral flux density', 'photon flux density', 'photon flux density wav'): w_pivot = self.bandpass.pivot() eff_stim = units.convert_flux(w_pivot, val, flux_unit) else: raise exceptions.SynphotError('Flux unit {0} is invalid'.format( flux_unit)) return eff_stim
effstim
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, flux_unit=None, wavelengths=None, area=None, vegaspec=None):\n if flux_unit is None:\n flux_unit = self._internal_flux_unit\n flux_unit = units.validate_unit(flux_unit)\n flux_unit_name = flux_unit.to_string()\n if flux_unit == u.count or flux_unit_name == units.OBMAG.to_string():\n val = self.countrate(area, binned=False, wavelengths=wavelengths)\n if flux_unit.decompose() == u.mag:\n eff_stim = -2.5 * np.log10(val.value) * flux_unit\n else:\n eff_stim = val\n return eff_stim\n if flux_unit_name == units.VEGAMAG.to_string():\n num = self.integrate(wavelengths=wavelengths)\n den = (vegaspec * self.bandpass).integrate()\n utils.validate_totalflux(num)\n utils.validate_totalflux(den)\n return 2.5 * (math.log10(den.value) - math.log10(num.value)\n ) * units.VEGAMAG\n x_band = self.bandpass._validate_wavelengths(wavelengths).value\n y_band = self.bandpass(x_band).value\n inwave = self._validate_wavelengths(wavelengths).value\n influx = units.convert_flux(inwave, self(inwave), units.FLAM).value\n num = abs(np.trapz(inwave * influx, x=inwave))\n den = abs(np.trapz(x_band * y_band, x=x_band))\n utils.validate_totalflux(num)\n utils.validate_totalflux(den)\n val = num / den * units.FLAM\n if flux_unit.physical_type == 'spectral flux density wav':\n if flux_unit == u.STmag:\n eff_stim = val.to(flux_unit)\n else:\n eff_stim = val\n elif flux_unit.physical_type in ('spectral flux density',\n 'photon flux density', 'photon flux density wav'):\n w_pivot = self.bandpass.pivot()\n eff_stim = units.convert_flux(w_pivot, val, flux_unit)\n else:\n raise exceptions.SynphotError('Flux unit {0} is invalid'.format(\n flux_unit))\n return eff_stim\n", "role": "user" }, { "content": "effstim", "role": "assistant" } ]
def x(self, area, binned=True, wavelengths=None, waverange=None, force=False): if binned: x = self._validate_binned_wavelengths(wavelengths).value y = self.sample_binned(wavelengths=x, flux_unit=u.count, area=area ).value else: x = self._validate_wavelengths(wavelengths).value y = units.convert_flux(x, self(x), u.count, area=area).value if waverange is None: influx = y else: w = units.validate_quantity(waverange, self._internal_wave_unit, equivalencies=u.spectral()).value stat = utils.overlap_status(w, x) w1 = w.min() w2 = w.max() if stat == 'none': raise exceptions.DisjointError( 'Observation and wavelength range are disjoint.') elif 'partial' in stat: if force: warnings.warn( 'Count rate calculated only for wavelengths in the overlap between observation and given range.' , AstropyUserWarning) w1 = max(w1, x.min()) w2 = min(w2, x.max()) else: raise exceptions.PartialOverlap( 'Observation and wavelength range do not fully overlap. You may use force=True to force this calculation anyway.' ) elif stat != 'full': raise exceptions.SynphotError('Overlap result of {0} is unexpected' .format(stat)) if binned: if wavelengths is None: bin_edges = self.bin_edges.value else: bin_edges = binning.calculate_bin_edges(x).value i1 = np.searchsorted(bin_edges, w1) - 1 i2 = np.searchsorted(bin_edges, w2) influx = y[i1:i2] else: mask = (x >= w1) & (x <= w2) influx = y[mask] val = math.fsum(influx) utils.validate_totalflux(val) return val * (u.count / u.s)
countrate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, area, binned=True, wavelengths=None, waverange=None, force=False):\n if binned:\n x = self._validate_binned_wavelengths(wavelengths).value\n y = self.sample_binned(wavelengths=x, flux_unit=u.count, area=area\n ).value\n else:\n x = self._validate_wavelengths(wavelengths).value\n y = units.convert_flux(x, self(x), u.count, area=area).value\n if waverange is None:\n influx = y\n else:\n w = units.validate_quantity(waverange, self._internal_wave_unit,\n equivalencies=u.spectral()).value\n stat = utils.overlap_status(w, x)\n w1 = w.min()\n w2 = w.max()\n if stat == 'none':\n raise exceptions.DisjointError(\n 'Observation and wavelength range are disjoint.')\n elif 'partial' in stat:\n if force:\n warnings.warn(\n 'Count rate calculated only for wavelengths in the overlap between observation and given range.'\n , AstropyUserWarning)\n w1 = max(w1, x.min())\n w2 = min(w2, x.max())\n else:\n raise exceptions.PartialOverlap(\n 'Observation and wavelength range do not fully overlap. You may use force=True to force this calculation anyway.'\n )\n elif stat != 'full':\n raise exceptions.SynphotError('Overlap result of {0} is unexpected'\n .format(stat))\n if binned:\n if wavelengths is None:\n bin_edges = self.bin_edges.value\n else:\n bin_edges = binning.calculate_bin_edges(x).value\n i1 = np.searchsorted(bin_edges, w1) - 1\n i2 = np.searchsorted(bin_edges, w2)\n influx = y[i1:i2]\n else:\n mask = (x >= w1) & (x <= w2)\n influx = y[mask]\n val = math.fsum(influx)\n utils.validate_totalflux(val)\n return val * (u.count / u.s)\n", "role": "user" }, { "content": "countrate", "role": "assistant" } ]
def x(self, binned=True, wavelengths=None, flux_unit=None, area=None, vegaspec=None, **kwargs): if binned: w, y = self._get_binned_arrays(wavelengths, flux_unit, area=area, vegaspec=vegaspec) else: w, y = self._get_arrays(wavelengths, flux_unit=flux_unit, area=area, vegaspec=vegaspec) self._do_plot(w, y, **kwargs)
plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, binned=True, wavelengths=None, flux_unit=None, area=None,\n vegaspec=None, **kwargs):\n if binned:\n w, y = self._get_binned_arrays(wavelengths, flux_unit, area=area,\n vegaspec=vegaspec)\n else:\n w, y = self._get_arrays(wavelengths, flux_unit=flux_unit, area=area,\n vegaspec=vegaspec)\n self._do_plot(w, y, **kwargs)\n", "role": "user" }, { "content": "plot", "role": "assistant" } ]
def x(self, binned=True, wavelengths=None): if binned: w, y = self._get_binned_arrays(wavelengths, self._internal_flux_unit) else: w, y = self._get_arrays(wavelengths, flux_unit=self._internal_flux_unit ) header = {'observation': str(self), 'binned': binned} return SourceSpectrum(Empirical1D, points=w, lookup_table=y, meta={ 'header': header})
as_spectrum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, binned=True, wavelengths=None):\n if binned:\n w, y = self._get_binned_arrays(wavelengths, self._internal_flux_unit)\n else:\n w, y = self._get_arrays(wavelengths, flux_unit=self._internal_flux_unit\n )\n header = {'observation': str(self), 'binned': binned}\n return SourceSpectrum(Empirical1D, points=w, lookup_table=y, meta={\n 'header': header})\n", "role": "user" }, { "content": "as_spectrum", "role": "assistant" } ]
async def handle_frame(self, frame): """Handle incoming API frame, return True if this was the expected frame.""" if not isinstance(frame, FrameSetNodeNameConfirmation): return False self.success = frame.status == SetNodeNameConfirmationStatus.OK return True
handle_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def handle_frame(self, frame):\n \"\"\"Handle incoming API frame, return True if this was the expected frame.\"\"\"\n if not isinstance(frame, FrameSetNodeNameConfirmation):\n return False\n self.success = frame.status == SetNodeNameConfirmationStatus.OK\n return True\n", "role": "user" }, { "content": "handle_frame", "role": "assistant" } ]
async def do_api_call(self): """Start. Sending and waiting for answer.""" self.pyvlx.connection.register_frame_received_cb(self.response_rec_callback ) await self.send_frame() await self.start_timeout() await self.response_received_or_timeout.wait() await self.stop_timeout() self.pyvlx.connection.unregister_frame_received_cb(self. response_rec_callback)
do_api_call
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def do_api_call(self):\n \"\"\"Start. Sending and waiting for answer.\"\"\"\n self.pyvlx.connection.register_frame_received_cb(self.response_rec_callback\n )\n await self.send_frame()\n await self.start_timeout()\n await self.response_received_or_timeout.wait()\n await self.stop_timeout()\n self.pyvlx.connection.unregister_frame_received_cb(self.\n response_rec_callback)\n", "role": "user" }, { "content": "do_api_call", "role": "assistant" } ]
async def start_timeout(self): """Start timeout.""" self.timeout_handle = self.pyvlx.connection.loop.call_later(self. timeout_in_seconds, self.timeout)
start_timeout
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def start_timeout(self):\n \"\"\"Start timeout.\"\"\"\n self.timeout_handle = self.pyvlx.connection.loop.call_later(self.\n timeout_in_seconds, self.timeout)\n", "role": "user" }, { "content": "start_timeout", "role": "assistant" } ]
async def main(): """Load devices and scenes, run first scene.""" pyvlx = PyVLX('pyvlx.yaml') await pyvlx.load_devices() print(pyvlx.devices[1]) print(pyvlx.devices['Fenster 4']) await pyvlx.load_scenes() print(pyvlx.scenes[0]) print(pyvlx.scenes['Bath Closed']) await pyvlx.scenes[1].run() await pyvlx.disconnect()
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def main():\n \"\"\"Load devices and scenes, run first scene.\"\"\"\n pyvlx = PyVLX('pyvlx.yaml')\n await pyvlx.load_devices()\n print(pyvlx.devices[1])\n print(pyvlx.devices['Fenster 4'])\n await pyvlx.load_scenes()\n print(pyvlx.scenes[0])\n print(pyvlx.scenes['Bath Closed'])\n await pyvlx.scenes[1].run()\n await pyvlx.disconnect()\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
async def set_state(self, parameter): """Set switch to desired state.""" command_send = CommandSend(pyvlx=self.pyvlx, node_id=self.node_id, parameter=parameter) await command_send.do_api_call() if not command_send.success: raise PyVLXException('Unable to send command') self.parameter = parameter await self.after_update()
set_state
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def set_state(self, parameter):\n \"\"\"Set switch to desired state.\"\"\"\n command_send = CommandSend(pyvlx=self.pyvlx, node_id=self.node_id,\n parameter=parameter)\n await command_send.do_api_call()\n if not command_send.success:\n raise PyVLXException('Unable to send command')\n self.parameter = parameter\n await self.after_update()\n", "role": "user" }, { "content": "set_state", "role": "assistant" } ]
def x(wave, z, **kwargs): if not isinstance(z, numbers.Real): raise exceptions.SynphotError('Redshift must be a real scalar number.') if np.isscalar(wave) or len(wave) <= 1: raise exceptions.SynphotError('Wavelength has too few data points') wave = units.validate_quantity(wave, u.AA, **kwargs).value ll = 912.0 c = np.array([0.0036, 0.0017, 0.0012, 0.00093]) el = np.array([1216, 1026, 973, 950], dtype=np.float) tau = np.zeros_like(wave, dtype=np.float) xe = 1.0 + z for i in range(len(el)): tau = np.where(wave <= el[i] * xe, tau + c[i] * (wave / el[i]) ** 3.46, tau) xc = wave / ll xc3 = xc ** 3 tau = np.where(wave <= ll * xe, tau + 0.25 * xc3 * (xe ** 0.46 - xc ** 0.46) + 9.4 * xc ** 1.5 * (xe ** 0.18 - xc ** 0.18) - 0.7 * xc3 * ( xc ** -1.32 - xe ** -1.32) - 0.023 * (xe ** 1.68 - xc ** 1.68), tau) thru = np.where(tau > 700.0, 0.0, np.exp(-tau)) meta = {'descrip': 'Madau 1995 extinction for z={0}'.format(z)} return ExtinctionCurve(ExtinctionModel1D, points=wave, lookup_table= thru, meta=meta)
etau_madau
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(wave, z, **kwargs):\n if not isinstance(z, numbers.Real):\n raise exceptions.SynphotError('Redshift must be a real scalar number.')\n if np.isscalar(wave) or len(wave) <= 1:\n raise exceptions.SynphotError('Wavelength has too few data points')\n wave = units.validate_quantity(wave, u.AA, **kwargs).value\n ll = 912.0\n c = np.array([0.0036, 0.0017, 0.0012, 0.00093])\n el = np.array([1216, 1026, 973, 950], dtype=np.float)\n tau = np.zeros_like(wave, dtype=np.float)\n xe = 1.0 + z\n for i in range(len(el)):\n tau = np.where(wave <= el[i] * xe, tau + c[i] * (wave / el[i]) ** \n 3.46, tau)\n xc = wave / ll\n xc3 = xc ** 3\n tau = np.where(wave <= ll * xe, tau + 0.25 * xc3 * (xe ** 0.46 - xc ** \n 0.46) + 9.4 * xc ** 1.5 * (xe ** 0.18 - xc ** 0.18) - 0.7 * xc3 * (\n xc ** -1.32 - xe ** -1.32) - 0.023 * (xe ** 1.68 - xc ** 1.68), tau)\n thru = np.where(tau > 700.0, 0.0, np.exp(-tau))\n meta = {'descrip': 'Madau 1995 extinction for z={0}'.format(z)}\n return ExtinctionCurve(ExtinctionModel1D, points=wave, lookup_table=\n thru, meta=meta)\n", "role": "user" }, { "content": "etau_madau", "role": "assistant" } ]
def x(self, ebv, wavelengths=None): if isinstance(ebv, u.Quantity) and ebv.unit.decompose() == u.mag: ebv = ebv.value elif not isinstance(ebv, numbers.Real): raise exceptions.SynphotError('E(B-V)={0} is invalid.'.format(ebv)) x = self._validate_wavelengths(wavelengths).value y = 10 ** (-0.4 * self(x).value * ebv) header = {'E(B-V)': ebv, 'ReddeningLaw': self.meta.get('expr', 'unknown')} return ExtinctionCurve(ExtinctionModel1D, points=x, lookup_table=y, meta={'header': header})
extinction_curve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ebv, wavelengths=None):\n if isinstance(ebv, u.Quantity) and ebv.unit.decompose() == u.mag:\n ebv = ebv.value\n elif not isinstance(ebv, numbers.Real):\n raise exceptions.SynphotError('E(B-V)={0} is invalid.'.format(ebv))\n x = self._validate_wavelengths(wavelengths).value\n y = 10 ** (-0.4 * self(x).value * ebv)\n header = {'E(B-V)': ebv, 'ReddeningLaw': self.meta.get('expr', 'unknown')}\n return ExtinctionCurve(ExtinctionModel1D, points=x, lookup_table=y,\n meta={'header': header})\n", "role": "user" }, { "content": "extinction_curve", "role": "assistant" } ]
def x(self, filename, wavelengths=None, **kwargs): w, y = self._get_arrays(wavelengths) kwargs['flux_col'] = 'Av/E(B-V)' kwargs['flux_unit'] = self._internal_flux_unit if 'pad_zero_ends' not in kwargs: kwargs['pad_zero_ends'] = False if 'trim_zero' not in kwargs: kwargs['trim_zero'] = False bkeys = {'tdisp1': 'G15.7', 'tdisp2': 'G15.7'} if 'expr' in self.meta: bkeys['expr'] = self.meta['expr'], 'synphot expression' if 'ext_header' in kwargs: kwargs['ext_header'].update(bkeys) else: kwargs['ext_header'] = bkeys specio.write_fits_spec(filename, w, y, **kwargs)
to_fits
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, wavelengths=None, **kwargs):\n w, y = self._get_arrays(wavelengths)\n kwargs['flux_col'] = 'Av/E(B-V)'\n kwargs['flux_unit'] = self._internal_flux_unit\n if 'pad_zero_ends' not in kwargs:\n kwargs['pad_zero_ends'] = False\n if 'trim_zero' not in kwargs:\n kwargs['trim_zero'] = False\n bkeys = {'tdisp1': 'G15.7', 'tdisp2': 'G15.7'}\n if 'expr' in self.meta:\n bkeys['expr'] = self.meta['expr'], 'synphot expression'\n if 'ext_header' in kwargs:\n kwargs['ext_header'].update(bkeys)\n else:\n kwargs['ext_header'] = bkeys\n specio.write_fits_spec(filename, w, y, **kwargs)\n", "role": "user" }, { "content": "to_fits", "role": "assistant" } ]
def x(cls, filename, **kwargs): if 'flux_unit' not in kwargs: kwargs['flux_unit'] = cls._internal_flux_unit if (filename.endswith('fits') or filename.endswith('fit') ) and 'flux_col' not in kwargs: kwargs['flux_col'] = 'Av/E(B-V)' header, wavelengths, rvs = specio.read_spec(filename, **kwargs) return cls(Empirical1D, points=wavelengths, lookup_table=rvs, meta={ 'header': header})
from_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, filename, **kwargs):\n if 'flux_unit' not in kwargs:\n kwargs['flux_unit'] = cls._internal_flux_unit\n if (filename.endswith('fits') or filename.endswith('fit')\n ) and 'flux_col' not in kwargs:\n kwargs['flux_col'] = 'Av/E(B-V)'\n header, wavelengths, rvs = specio.read_spec(filename, **kwargs)\n return cls(Empirical1D, points=wavelengths, lookup_table=rvs, meta={\n 'header': header})\n", "role": "user" }, { "content": "from_file", "role": "assistant" } ]
def x(cls, modelname, **kwargs): modelname = modelname.lower() if modelname == 'lmc30dor': cfgitem = Conf.lmc30dor_file elif modelname == 'lmcavg': cfgitem = Conf.lmcavg_file elif modelname == 'mwavg': cfgitem = Conf.mwavg_file elif modelname == 'mwdense': cfgitem = Conf.mwdense_file elif modelname == 'mwrv21': cfgitem = Conf.mwrv21_file elif modelname == 'mwrv40': cfgitem = Conf.mwrv40_file elif modelname == 'smcbar': cfgitem = Conf.smcbar_file elif modelname == 'xgalsb': cfgitem = Conf.xgal_file else: raise exceptions.SynphotError('Extinction model {0} is invalid.'. format(modelname)) filename = cfgitem() if 'flux_unit' not in kwargs: kwargs['flux_unit'] = cls._internal_flux_unit if (filename.endswith('fits') or filename.endswith('fit') ) and 'flux_col' not in kwargs: kwargs['flux_col'] = 'Av/E(B-V)' header, wavelengths, rvs = specio.read_remote_spec(filename, **kwargs) header['filename'] = filename header['descrip'] = cfgitem.description meta = {'header': header, 'expr': modelname} return cls(Empirical1D, points=wavelengths, lookup_table=rvs, meta=meta)
from_extinction_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, modelname, **kwargs):\n modelname = modelname.lower()\n if modelname == 'lmc30dor':\n cfgitem = Conf.lmc30dor_file\n elif modelname == 'lmcavg':\n cfgitem = Conf.lmcavg_file\n elif modelname == 'mwavg':\n cfgitem = Conf.mwavg_file\n elif modelname == 'mwdense':\n cfgitem = Conf.mwdense_file\n elif modelname == 'mwrv21':\n cfgitem = Conf.mwrv21_file\n elif modelname == 'mwrv40':\n cfgitem = Conf.mwrv40_file\n elif modelname == 'smcbar':\n cfgitem = Conf.smcbar_file\n elif modelname == 'xgalsb':\n cfgitem = Conf.xgal_file\n else:\n raise exceptions.SynphotError('Extinction model {0} is invalid.'.\n format(modelname))\n filename = cfgitem()\n if 'flux_unit' not in kwargs:\n kwargs['flux_unit'] = cls._internal_flux_unit\n if (filename.endswith('fits') or filename.endswith('fit')\n ) and 'flux_col' not in kwargs:\n kwargs['flux_col'] = 'Av/E(B-V)'\n header, wavelengths, rvs = specio.read_remote_spec(filename, **kwargs)\n header['filename'] = filename\n header['descrip'] = cfgitem.description\n meta = {'header': header, 'expr': modelname}\n return cls(Empirical1D, points=wavelengths, lookup_table=rvs, meta=meta)\n", "role": "user" }, { "content": "from_extinction_model", "role": "assistant" } ]
async def handle_frame(self, frame): """Handle incoming API frame, return True if this was the expected frame.""" if not isinstance(frame, FrameGetVersionConfirmation): return False self.version = frame.version self.success = True return True
handle_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def handle_frame(self, frame):\n \"\"\"Handle incoming API frame, return True if this was the expected frame.\"\"\"\n if not isinstance(frame, FrameGetVersionConfirmation):\n return False\n self.version = frame.version\n self.success = True\n return True\n", "role": "user" }, { "content": "handle_frame", "role": "assistant" } ]
def x(self, payload): if not hasattr(self, 'PAYLOAD_LEN'): return if len(payload) != self.PAYLOAD_LEN: raise PyVLXException('Invalid payload len', expected_len=self. PAYLOAD_LEN, current_len=len(payload), frame_type=type(self). __name__)
validate_payload_len
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, payload):\n if not hasattr(self, 'PAYLOAD_LEN'):\n return\n if len(payload) != self.PAYLOAD_LEN:\n raise PyVLXException('Invalid payload len', expected_len=self.\n PAYLOAD_LEN, current_len=len(payload), frame_type=type(self).\n __name__)\n", "role": "user" }, { "content": "validate_payload_len", "role": "assistant" } ]
def x(command, payload): packet_length = 2 + len(payload) + 1 ret = struct.pack('BB', 0, packet_length) ret += struct.pack('>H', command.value) ret += payload ret += struct.pack('B', calc_crc(ret)) return ret
build_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(command, payload):\n packet_length = 2 + len(payload) + 1\n ret = struct.pack('BB', 0, packet_length)\n ret += struct.pack('>H', command.value)\n ret += payload\n ret += struct.pack('B', calc_crc(ret))\n return ret\n", "role": "user" }, { "content": "build_frame", "role": "assistant" } ]
async def run(self, wait_for_completion=True): """Run scene. Parameters: * wait_for_completion: If set, function will return after device has reached target position. """ activate_scene = ActivateScene(pyvlx=self.pyvlx, wait_for_completion= wait_for_completion, scene_id=self.scene_id) await activate_scene.do_api_call() if not activate_scene.success: raise PyVLXException('Unable to activate scene')
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def run(self, wait_for_completion=True):\n \"\"\"Run scene.\n\n Parameters:\n * wait_for_completion: If set, function will return\n after device has reached target position.\n\n \"\"\"\n activate_scene = ActivateScene(pyvlx=self.pyvlx, wait_for_completion=\n wait_for_completion, scene_id=self.scene_id)\n await activate_scene.do_api_call()\n if not activate_scene.success:\n raise PyVLXException('Unable to activate scene')\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self, scene): if not isinstance(scene, Scene): raise TypeError() self.__scenes.append(scene)
add
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, scene):\n if not isinstance(scene, Scene):\n raise TypeError()\n self.__scenes.append(scene)\n", "role": "user" }, { "content": "add", "role": "assistant" } ]