source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self): if self.version and self.version in self.all_versions: metadata = self.pypi.release_data(self.project_name, self.version) else: metadata = self.pypi.release_data(self.project_name, self. all_versions[0]) if metadata: for key in metadata.keys(): if (not self.options.fields or self.options.fields and self. options.fields == key): print('%s: %s' % (key, metadata[key])) return 0
query_metadata_pypi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.version and self.version in self.all_versions:\n metadata = self.pypi.release_data(self.project_name, self.version)\n else:\n metadata = self.pypi.release_data(self.project_name, self.\n all_versions[0])\n if metadata:\n for key in metadata.keys():\n if (not self.options.fields or self.options.fields and self.\n options.fields == key):\n print('%s: %s' % (key, metadata[key]))\n return 0\n", "role": "user" }, { "content": "query_metadata_pypi", "role": "assistant" } ]
def x(self): if self.version: spec = '%s==%s' % (self.project_name, self.version) else: spec = self.project_name if self.all_versions and self.version in self.all_versions: print_pkg_versions(self.project_name, [self.version]) elif not self.version and self.all_versions: print_pkg_versions(self.project_name, self.all_versions) else: if self.version: self.logger.error('No pacakge found for version %s' % self.version) else: self.logger.error('No pacakge found for %s' % self.project_name) return 1 return 0
versions_available
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.version:\n spec = '%s==%s' % (self.project_name, self.version)\n else:\n spec = self.project_name\n if self.all_versions and self.version in self.all_versions:\n print_pkg_versions(self.project_name, [self.version])\n elif not self.version and self.all_versions:\n print_pkg_versions(self.project_name, self.all_versions)\n else:\n if self.version:\n self.logger.error('No pacakge found for version %s' % self.version)\n else:\n self.logger.error('No pacakge found for %s' % self.project_name)\n return 1\n return 0\n", "role": "user" }, { "content": "versions_available", "role": "assistant" } ]
def x(self, spec): usage = """You can search PyPI by the following: name version author author_email maintainer maintainer_email home_page license summary description keywords platform download_url e.g. yolk -S name=Cheetah yolk -S name=yolk AND license=PSF """ if not spec: self.logger.error(usage) return None, None try: spec = ' '.join(spec) operator = 'AND' first = second = '' if ' AND ' in spec: first, second = spec.split('AND') elif ' OR ' in spec: first, second = spec.split('OR') operator = 'OR' else: first = spec key1, term1 = first.split('=') key1 = key1.strip() if second: key2, term2 = second.split('=') key2 = key2.strip() spec = {} spec[key1] = term1 if second: spec[key2] = term2 except: self.logger.error(usage) spec = operator = None return spec, operator
parse_search_spec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, spec):\n usage = \"\"\"You can search PyPI by the following:\n name\n version\n author\n author_email\n maintainer\n maintainer_email\n home_page\n license\n summary\n description\n keywords\n platform\n download_url\n\n e.g. yolk -S name=Cheetah\n yolk -S name=yolk AND license=PSF\n \"\"\"\n if not spec:\n self.logger.error(usage)\n return None, None\n try:\n spec = ' '.join(spec)\n operator = 'AND'\n first = second = ''\n if ' AND ' in spec:\n first, second = spec.split('AND')\n elif ' OR ' in spec:\n first, second = spec.split('OR')\n operator = 'OR'\n else:\n first = spec\n key1, term1 = first.split('=')\n key1 = key1.strip()\n if second:\n key2, term2 = second.split('=')\n key2 = key2.strip()\n spec = {}\n spec[key1] = term1\n if second:\n spec[key2] = term2\n except:\n self.logger.error(usage)\n spec = operator = None\n return spec, operator\n", "role": "user" }, { "content": "parse_search_spec", "role": "assistant" } ]
def x(self): spec = self.pkg_spec search_arg = self.options.pypi_search spec.insert(0, search_arg.strip()) spec, operator = self.parse_search_spec(spec) if not spec: return 1 for pkg in self.pypi.search(spec, operator): if pkg['summary']: summary = pkg['summary'].encode('utf-8') else: summary = '' print("""%s (%s): %s """ % (pkg['name'].encode('utf-8'), pkg['version'], summary)) return 0
pypi_search
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n spec = self.pkg_spec\n search_arg = self.options.pypi_search\n spec.insert(0, search_arg.strip())\n spec, operator = self.parse_search_spec(spec)\n if not spec:\n return 1\n for pkg in self.pypi.search(spec, operator):\n if pkg['summary']:\n summary = pkg['summary'].encode('utf-8')\n else:\n summary = ''\n print(\"\"\"%s (%s):\n %s\n \"\"\" % (pkg['name'].encode('utf-8'),\n pkg['version'], summary))\n return 0\n", "role": "user" }, { "content": "pypi_search", "role": "assistant" } ]
def x(self): pprinter = pprint.PrettyPrinter() try: entry_map = pkg_resources.get_entry_map(self.options.show_entry_map) if entry_map: pprinter.pprint(entry_map) except pkg_resources.DistributionNotFound: self.logger.error('Distribution not found: %s' % self.options. show_entry_map) return 1 return 0
show_entry_map
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n pprinter = pprint.PrettyPrinter()\n try:\n entry_map = pkg_resources.get_entry_map(self.options.show_entry_map)\n if entry_map:\n pprinter.pprint(entry_map)\n except pkg_resources.DistributionNotFound:\n self.logger.error('Distribution not found: %s' % self.options.\n show_entry_map)\n return 1\n return 0\n", "role": "user" }, { "content": "show_entry_map", "role": "assistant" } ]
def x(self): found = False for entry_point in pkg_resources.iter_entry_points(self.options. show_entry_points): found = True try: plugin = entry_point.load() print(plugin.__module__) print(' %s' % entry_point) if plugin.__doc__: print(plugin.__doc__) print except ImportError: pass if not found: self.logger.error('No entry points found for %s' % self.options. show_entry_points) return 1 return 0
show_entry_points
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n found = False\n for entry_point in pkg_resources.iter_entry_points(self.options.\n show_entry_points):\n found = True\n try:\n plugin = entry_point.load()\n print(plugin.__module__)\n print(' %s' % entry_point)\n if plugin.__doc__:\n print(plugin.__doc__)\n print\n except ImportError:\n pass\n if not found:\n self.logger.error('No entry points found for %s' % self.options.\n show_entry_points)\n return 1\n return 0\n", "role": "user" }, { "content": "show_entry_points", "role": "assistant" } ]
def x(self, want_installed): all_versions = [] arg_str = ''.join(self.pkg_spec) if '==' not in arg_str: project_name = arg_str version = None else: project_name, version = arg_str.split('==') project_name = project_name.strip() version = version.strip() if want_installed: dists = Distributions() project_name = dists.case_sensitive_name(project_name) else: project_name, all_versions = self.pypi.query_versions_pypi(project_name ) if not len(all_versions): msg = "I'm afraid we have no '%s' at " % project_name msg += 'The Cheese Shop. A little Red Leicester, perhaps?' self.logger.error(msg) sys.exit(2) return project_name, version, all_versions
parse_pkg_ver
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, want_installed):\n all_versions = []\n arg_str = ''.join(self.pkg_spec)\n if '==' not in arg_str:\n project_name = arg_str\n version = None\n else:\n project_name, version = arg_str.split('==')\n project_name = project_name.strip()\n version = version.strip()\n if want_installed:\n dists = Distributions()\n project_name = dists.case_sensitive_name(project_name)\n else:\n project_name, all_versions = self.pypi.query_versions_pypi(project_name\n )\n if not len(all_versions):\n msg = \"I'm afraid we have no '%s' at \" % project_name\n msg += 'The Cheese Shop. A little Red Leicester, perhaps?'\n self.logger.error(msg)\n sys.exit(2)\n return project_name, version, all_versions\n", "role": "user" }, { "content": "parse_pkg_ver", "role": "assistant" } ]
def x(api): if api == USED_API: raise ValueError sys.meta_path.insert(0, ImportHookBackport(api))
install_backport_hook
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(api):\n if api == USED_API:\n raise ValueError\n sys.meta_path.insert(0, ImportHookBackport(api))\n", "role": "user" }, { "content": "install_backport_hook", "role": "assistant" } ]
def x(api): if api == USED_API: raise ValueError sys.meta_path.insert(0, ImportHookDeny(api))
install_deny_hook
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(api):\n if api == USED_API:\n raise ValueError\n sys.meta_path.insert(0, ImportHookDeny(api))\n", "role": "user" }, { "content": "install_deny_hook", "role": "assistant" } ]
def x(cmd, env=None, max_timeout=None): arglist = cmd.split() output = os.tmpfile() try: pipe = Popen(arglist, stdout=output, stderr=STDOUT, env=env) except Exception as errmsg: return 1, errmsg if max_timeout: start = time.time() while pipe.poll() is None: time.sleep(0.1) if time.time() - start > max_timeout: os.kill(pipe.pid, signal.SIGINT) pipe.wait() return 1, 'Time exceeded' pipe.wait() output.seek(0) return pipe.returncode, output.read()
run_command
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cmd, env=None, max_timeout=None):\n arglist = cmd.split()\n output = os.tmpfile()\n try:\n pipe = Popen(arglist, stdout=output, stderr=STDOUT, env=env)\n except Exception as errmsg:\n return 1, errmsg\n if max_timeout:\n start = time.time()\n while pipe.poll() is None:\n time.sleep(0.1)\n if time.time() - start > max_timeout:\n os.kill(pipe.pid, signal.SIGINT)\n pipe.wait()\n return 1, 'Time exceeded'\n pipe.wait()\n output.seek(0)\n return pipe.returncode, output.read()\n", "role": "user" }, { "content": "run_command", "role": "assistant" } ]
async def iter(self, url: Union[str, methods], data: Optional[ MutableMapping]=None, headers: Optional[MutableMapping]=None, *, limit: int=200, iterkey: Optional[str]=None, itermode: Optional[str]=None, minimum_time: Optional[int]=None, as_json: Optional[bool]=None ) ->AsyncIterator[dict]: """ Iterate over a slack API method supporting pagination When using :class:`slack.methods` the request is made `as_json` if available Args: url: :class:`slack.methods` or url string data: JSON encodable MutableMapping headers: limit: Maximum number of results to return per call. iterkey: Key in response data to iterate over (required for url string). itermode: Iteration mode (required for url string) (one of `cursor`, `page` or `timeline`) minimum_time: Minimum elapsed time (in seconds) between two calls to the Slack API (default to 0). If not reached the client will sleep for the remaining time. as_json: Post JSON to the slack API Returns: Async iterator over `response_data[key]` """ itervalue = None if not data: data = {} last_request_time = None while True: current_time = time.time() if (minimum_time and last_request_time and last_request_time + minimum_time > current_time): await self.sleep(last_request_time + minimum_time - current_time) data, iterkey, itermode = sansio.prepare_iter_request(url, data, iterkey=iterkey, itermode=itermode, limit=limit, itervalue= itervalue) last_request_time = time.time() response_data = await self.query(url, data, headers, as_json) itervalue = sansio.decode_iter_request(response_data) for item in response_data[iterkey]: yield item if not itervalue: break
iter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def iter(self, url: Union[str, methods], data: Optional[\n MutableMapping]=None, headers: Optional[MutableMapping]=None, *, limit:\n int=200, iterkey: Optional[str]=None, itermode: Optional[str]=None,\n minimum_time: Optional[int]=None, as_json: Optional[bool]=None\n ) ->AsyncIterator[dict]:\n \"\"\"\n Iterate over a slack API method supporting pagination\n\n When using :class:`slack.methods` the request is made `as_json` if available\n\n Args:\n url: :class:`slack.methods` or url string\n data: JSON encodable MutableMapping\n headers:\n limit: Maximum number of results to return per call.\n iterkey: Key in response data to iterate over (required for url string).\n itermode: Iteration mode (required for url string) (one of `cursor`, `page` or `timeline`)\n minimum_time: Minimum elapsed time (in seconds) between two calls to the Slack API (default to 0).\n If not reached the client will sleep for the remaining time.\n as_json: Post JSON to the slack API\n Returns:\n Async iterator over `response_data[key]`\n\n \"\"\"\n itervalue = None\n if not data:\n data = {}\n last_request_time = None\n while True:\n current_time = time.time()\n if (minimum_time and last_request_time and last_request_time +\n minimum_time > current_time):\n await self.sleep(last_request_time + minimum_time - current_time)\n data, iterkey, itermode = sansio.prepare_iter_request(url, data,\n iterkey=iterkey, itermode=itermode, limit=limit, itervalue=\n itervalue)\n last_request_time = time.time()\n response_data = await self.query(url, data, headers, as_json)\n itervalue = sansio.decode_iter_request(response_data)\n for item in response_data[iterkey]:\n yield item\n if not itervalue:\n break\n", "role": "user" }, { "content": "iter", "role": "assistant" } ]
async def _incoming_from_rtm(self, url: str, bot_id: str) ->AsyncIterator[ events.Event]: """ Connect and discard incoming RTM event if necessary. :param url: Websocket url :param bot_id: Bot ID :return: Incoming events """ async for data in self._rtm(url): event = events.Event.from_rtm(json.loads(data)) if sansio.need_reconnect(event): break elif sansio.discard_event(event, bot_id): continue else: yield event
incoming_from_rtm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def _incoming_from_rtm(self, url: str, bot_id: str) ->AsyncIterator[\n events.Event]:\n \"\"\"\n Connect and discard incoming RTM event if necessary.\n\n :param url: Websocket url\n :param bot_id: Bot ID\n :return: Incoming events\n \"\"\"\n async for data in self._rtm(url):\n event = events.Event.from_rtm(json.loads(data))\n if sansio.need_reconnect(event):\n break\n elif sansio.discard_event(event, bot_id):\n continue\n else:\n yield event\n", "role": "user" }, { "content": "incoming_from_rtm", "role": "assistant" } ]
def x(request, template_name='registration/login.html', redirect_field_name =REDIRECT_FIELD_NAME, authentication_form=AuthenticationForm, current_app=None, extra_context=None): redirect_to = request.POST.get(redirect_field_name, request.GET.get( redirect_field_name, '')) if request.method == 'POST': form = authentication_form(data=request.POST, request=request) if form.is_valid(): netloc = urlparse(redirect_to)[1] if not redirect_to: redirect_to = settings.LOGIN_REDIRECT_URL elif netloc and netloc != request.get_host(): redirect_to = settings.LOGIN_REDIRECT_URL auth_login(request, form.get_user()) return redirect(redirect_to) else: form = authentication_form(request) current_site = get_current_site(request) context = {'form': form, redirect_field_name: redirect_to, 'site': current_site, 'site_name': current_site.name} if extra_context is not None: context.update(extra_context) request.current_app = current_app return TemplateResponse(request, template_name, context)
login
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request, template_name='registration/login.html', redirect_field_name\n =REDIRECT_FIELD_NAME, authentication_form=AuthenticationForm,\n current_app=None, extra_context=None):\n redirect_to = request.POST.get(redirect_field_name, request.GET.get(\n redirect_field_name, ''))\n if request.method == 'POST':\n form = authentication_form(data=request.POST, request=request)\n if form.is_valid():\n netloc = urlparse(redirect_to)[1]\n if not redirect_to:\n redirect_to = settings.LOGIN_REDIRECT_URL\n elif netloc and netloc != request.get_host():\n redirect_to = settings.LOGIN_REDIRECT_URL\n auth_login(request, form.get_user())\n return redirect(redirect_to)\n else:\n form = authentication_form(request)\n current_site = get_current_site(request)\n context = {'form': form, redirect_field_name: redirect_to, 'site':\n current_site, 'site_name': current_site.name}\n if extra_context is not None:\n context.update(extra_context)\n request.current_app = current_app\n return TemplateResponse(request, template_name, context)\n", "role": "user" }, { "content": "login", "role": "assistant" } ]
def x(self, dist): if dist.location.lower() == get_python_lib().lower(): filename = os.path.join(dist.location, dist.egg_name() + '.egg-info') else: filename = dist.location status, output = getstatusoutput('/usr/bin/acmefile -q %s' % filename) if status == 0: return self.name else: return ''
package_manager_owns
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dist):\n if dist.location.lower() == get_python_lib().lower():\n filename = os.path.join(dist.location, dist.egg_name() + '.egg-info')\n else:\n filename = dist.location\n status, output = getstatusoutput('/usr/bin/acmefile -q %s' % filename)\n if status == 0:\n return self.name\n else:\n return ''\n", "role": "user" }, { "content": "package_manager_owns", "role": "assistant" } ]
def x(): try: http_proxy = os.environ['HTTP_PROXY'] except KeyError: return if not http_proxy.startswith('http://'): match = re.match('(http://)?([-_\\.A-Za-z]+):(\\d+)', http_proxy) os.environ['HTTP_PROXY'] = 'http://%s:%s' % (match.group(2), match. group(3)) return
check_proxy_setting
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n try:\n http_proxy = os.environ['HTTP_PROXY']\n except KeyError:\n return\n if not http_proxy.startswith('http://'):\n match = re.match('(http://)?([-_\\\\.A-Za-z]+):(\\\\d+)', http_proxy)\n os.environ['HTTP_PROXY'] = 'http://%s:%s' % (match.group(2), match.\n group(3))\n return\n", "role": "user" }, { "content": "check_proxy_setting", "role": "assistant" } ]
def x(pkg_type, url): bad_stuff = ['?modtime', '#md5='] for junk in bad_stuff: if junk in url: url = url.split(junk)[0] break if url.endswith('-dev'): url = url.split('#egg=')[0] if pkg_type == 'all': return url elif pkg_type == 'source': valid_source_types = ['.tgz', '.tar.gz', '.zip', '.tbz2', '.tar.bz2'] for extension in valid_source_types: if url.lower().endswith(extension): return url elif pkg_type == 'egg': if url.lower().endswith('.egg'): return url
filter_url
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pkg_type, url):\n bad_stuff = ['?modtime', '#md5=']\n for junk in bad_stuff:\n if junk in url:\n url = url.split(junk)[0]\n break\n if url.endswith('-dev'):\n url = url.split('#egg=')[0]\n if pkg_type == 'all':\n return url\n elif pkg_type == 'source':\n valid_source_types = ['.tgz', '.tar.gz', '.zip', '.tbz2', '.tar.bz2']\n for extension in valid_source_types:\n if url.lower().endswith(extension):\n return url\n elif pkg_type == 'egg':\n if url.lower().endswith('.egg'):\n return url\n", "role": "user" }, { "content": "filter_url", "role": "assistant" } ]
def x(self, host, handler, request_body, verbose): self.verbose = verbose url = 'http://' + host + handler request = urllib2.Request(url) request.add_data(request_body) request.add_header('User-Agent', self.user_agent) request.add_header('Content-Type', 'text/xml') proxy_handler = urllib2.ProxyHandler() opener = urllib2.build_opener(proxy_handler) fhandle = opener.open(request) return self.parse_response(fhandle)
request
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, host, handler, request_body, verbose):\n self.verbose = verbose\n url = 'http://' + host + handler\n request = urllib2.Request(url)\n request.add_data(request_body)\n request.add_header('User-Agent', self.user_agent)\n request.add_header('Content-Type', 'text/xml')\n proxy_handler = urllib2.ProxyHandler()\n opener = urllib2.build_opener(proxy_handler)\n fhandle = opener.open(request)\n return self.parse_response(fhandle)\n", "role": "user" }, { "content": "request", "role": "assistant" } ]
def x(self): if self.no_cache: self.pkg_list = self.list_packages() return if not os.path.exists(self.yolk_dir): os.mkdir(self.yolk_dir) if os.path.exists(self.pkg_cache_file): self.pkg_list = self.query_cached_package_list() else: self.logger.debug('DEBUG: Fetching package list cache from PyPi...') self.fetch_pkg_list()
get_cache
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.no_cache:\n self.pkg_list = self.list_packages()\n return\n if not os.path.exists(self.yolk_dir):\n os.mkdir(self.yolk_dir)\n if os.path.exists(self.pkg_cache_file):\n self.pkg_list = self.query_cached_package_list()\n else:\n self.logger.debug('DEBUG: Fetching package list cache from PyPi...')\n self.fetch_pkg_list()\n", "role": "user" }, { "content": "get_cache", "role": "assistant" } ]
def x(self): check_proxy_setting() if os.environ.has_key('XMLRPC_DEBUG'): debug = 1 else: debug = 0 try: return xmlrpclib.Server(XML_RPC_SERVER, transport=ProxyTransport(), verbose=debug) except IOError: self.logger("ERROR: Can't connect to XML-RPC server: %s" % XML_RPC_SERVER)
get_xmlrpc_server
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n check_proxy_setting()\n if os.environ.has_key('XMLRPC_DEBUG'):\n debug = 1\n else:\n debug = 0\n try:\n return xmlrpclib.Server(XML_RPC_SERVER, transport=ProxyTransport(),\n verbose=debug)\n except IOError:\n self.logger(\"ERROR: Can't connect to XML-RPC server: %s\" %\n XML_RPC_SERVER)\n", "role": "user" }, { "content": "get_xmlrpc_server", "role": "assistant" } ]
def x(self, package_name): if not package_name in self.pkg_list: self.logger.debug('Package %s not in cache, querying PyPI...' % package_name) self.fetch_pkg_list() versions = [] for pypi_pkg in self.pkg_list: if pypi_pkg.lower() == package_name.lower(): if self.debug: self.logger.debug('DEBUG: %s' % package_name) versions = self.package_releases(pypi_pkg) package_name = pypi_pkg break return package_name, versions
query_versions_pypi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, package_name):\n if not package_name in self.pkg_list:\n self.logger.debug('Package %s not in cache, querying PyPI...' %\n package_name)\n self.fetch_pkg_list()\n versions = []\n for pypi_pkg in self.pkg_list:\n if pypi_pkg.lower() == package_name.lower():\n if self.debug:\n self.logger.debug('DEBUG: %s' % package_name)\n versions = self.package_releases(pypi_pkg)\n package_name = pypi_pkg\n break\n return package_name, versions\n", "role": "user" }, { "content": "query_versions_pypi", "role": "assistant" } ]
def x(self): if self.debug: self.logger.debug('DEBUG: reading pickled cache file') return cPickle.load(open(self.pkg_cache_file, 'r'))
query_cached_package_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.debug:\n self.logger.debug('DEBUG: reading pickled cache file')\n return cPickle.load(open(self.pkg_cache_file, 'r'))\n", "role": "user" }, { "content": "query_cached_package_list", "role": "assistant" } ]
def x(self): self.logger.debug('DEBUG: Fetching package name list from PyPI') package_list = self.list_packages() cPickle.dump(package_list, open(self.pkg_cache_file, 'w')) self.pkg_list = package_list
fetch_pkg_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.logger.debug('DEBUG: Fetching package name list from PyPI')\n package_list = self.list_packages()\n cPickle.dump(package_list, open(self.pkg_cache_file, 'w'))\n self.pkg_list = package_list\n", "role": "user" }, { "content": "fetch_pkg_list", "role": "assistant" } ]
def x(self, spec, operator): return self.xmlrpc.search(spec, operator.lower())
search
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, spec, operator):\n return self.xmlrpc.search(spec, operator.lower())\n", "role": "user" }, { "content": "search", "role": "assistant" } ]
def x(self, package_name, version): try: return self.xmlrpc.release_data(package_name, version) except xmlrpclib.Fault: return
release_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, package_name, version):\n try:\n return self.xmlrpc.release_data(package_name, version)\n except xmlrpclib.Fault:\n return\n", "role": "user" }, { "content": "release_data", "role": "assistant" } ]
def x(self, package_name): if self.debug: self.logger.debug('DEBUG: querying PyPI for versions of ' + package_name) return self.xmlrpc.package_releases(package_name)
package_releases
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, package_name):\n if self.debug:\n self.logger.debug('DEBUG: querying PyPI for versions of ' +\n package_name)\n return self.xmlrpc.package_releases(package_name)\n", "role": "user" }, { "content": "package_releases", "role": "assistant" } ]
def x(self, package_name, version='', pkg_type='all'): if version: versions = [version] else: package_name, versions = self.query_versions_pypi(package_name) all_urls = [] for ver in versions: metadata = self.release_data(package_name, ver) for urls in self.release_urls(package_name, ver): if pkg_type == 'source' and urls['packagetype'] == 'sdist': all_urls.append(urls['url']) elif pkg_type == 'egg' and urls['packagetype'].startswith('bdist'): all_urls.append(urls['url']) elif pkg_type == 'all': all_urls.append(urls['url']) if metadata and metadata.has_key('download_url') and metadata[ 'download_url'] != 'UNKNOWN' and metadata['download_url'] != None: if metadata['download_url'] not in all_urls: if pkg_type != 'all': url = filter_url(pkg_type, metadata['download_url']) if url: all_urls.append(url) return all_urls
get_download_urls
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, package_name, version='', pkg_type='all'):\n if version:\n versions = [version]\n else:\n package_name, versions = self.query_versions_pypi(package_name)\n all_urls = []\n for ver in versions:\n metadata = self.release_data(package_name, ver)\n for urls in self.release_urls(package_name, ver):\n if pkg_type == 'source' and urls['packagetype'] == 'sdist':\n all_urls.append(urls['url'])\n elif pkg_type == 'egg' and urls['packagetype'].startswith('bdist'):\n all_urls.append(urls['url'])\n elif pkg_type == 'all':\n all_urls.append(urls['url'])\n if metadata and metadata.has_key('download_url') and metadata[\n 'download_url'] != 'UNKNOWN' and metadata['download_url'] != None:\n if metadata['download_url'] not in all_urls:\n if pkg_type != 'all':\n url = filter_url(pkg_type, metadata['download_url'])\n if url:\n all_urls.append(url)\n return all_urls\n", "role": "user" }, { "content": "get_download_urls", "role": "assistant" } ]
def x(self) ->'Event': return self.__class__(copy.deepcopy(self.event), copy.deepcopy(self. metadata))
clone
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->'Event':\n return self.__class__(copy.deepcopy(self.event), copy.deepcopy(self.\n metadata))\n", "role": "user" }, { "content": "clone", "role": "assistant" } ]
def x(cls, raw_event: MutableMapping) ->'Event': if raw_event['type'].startswith('message'): return Message(raw_event) else: return Event(raw_event)
from_rtm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, raw_event: MutableMapping) ->'Event':\n if raw_event['type'].startswith('message'):\n return Message(raw_event)\n else:\n return Event(raw_event)\n", "role": "user" }, { "content": "from_rtm", "role": "assistant" } ]
def x(cls, raw_body: MutableMapping, verification_token: Optional[str]=None, team_id: Optional[str]=None) ->'Event': if verification_token and raw_body['token'] != verification_token: raise exceptions.FailedVerification(raw_body['token'], raw_body[ 'team_id']) if team_id and raw_body['team_id'] != team_id: raise exceptions.FailedVerification(raw_body['token'], raw_body[ 'team_id']) if raw_body['event']['type'].startswith('message'): return Message(raw_body['event'], metadata=raw_body) else: return Event(raw_body['event'], metadata=raw_body)
from_http
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, raw_body: MutableMapping, verification_token: Optional[str]=None,\n team_id: Optional[str]=None) ->'Event':\n if verification_token and raw_body['token'] != verification_token:\n raise exceptions.FailedVerification(raw_body['token'], raw_body[\n 'team_id'])\n if team_id and raw_body['team_id'] != team_id:\n raise exceptions.FailedVerification(raw_body['token'], raw_body[\n 'team_id'])\n if raw_body['event']['type'].startswith('message'):\n return Message(raw_body['event'], metadata=raw_body)\n else:\n return Event(raw_body['event'], metadata=raw_body)\n", "role": "user" }, { "content": "from_http", "role": "assistant" } ]
def x(self, in_thread: Optional[bool]=None) ->'Message': data = {'channel': self['channel']} if in_thread: if 'message' in self: data['thread_ts'] = self['message'].get('thread_ts') or self[ 'message']['ts'] else: data['thread_ts'] = self.get('thread_ts') or self['ts'] elif in_thread is None: if 'message' in self and 'thread_ts' in self['message']: data['thread_ts'] = self['message']['thread_ts'] elif 'thread_ts' in self: data['thread_ts'] = self['thread_ts'] return Message(data)
response
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, in_thread: Optional[bool]=None) ->'Message':\n data = {'channel': self['channel']}\n if in_thread:\n if 'message' in self:\n data['thread_ts'] = self['message'].get('thread_ts') or self[\n 'message']['ts']\n else:\n data['thread_ts'] = self.get('thread_ts') or self['ts']\n elif in_thread is None:\n if 'message' in self and 'thread_ts' in self['message']:\n data['thread_ts'] = self['message']['thread_ts']\n elif 'thread_ts' in self:\n data['thread_ts'] = self['thread_ts']\n return Message(data)\n", "role": "user" }, { "content": "response", "role": "assistant" } ]
def x(self) ->dict: data = {**self} if 'attachments' in self: data['attachments'] = json.dumps(self['attachments']) return data
serialize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->dict:\n data = {**self}\n if 'attachments' in self:\n data['attachments'] = json.dumps(self['attachments'])\n return data\n", "role": "user" }, { "content": "serialize", "role": "assistant" } ]
def x(self, event_type: str, handler: Any, **detail: Any) ->None: LOG.info('Registering %s, %s to %s', event_type, detail, handler) if len(detail) > 1: raise ValueError( 'Only one detail can be provided for additional routing') elif not detail: detail_key, detail_value = '*', '*' else: detail_key, detail_value = detail.popitem() if detail_key not in self._routes[event_type]: self._routes[event_type][detail_key] = {} if detail_value not in self._routes[event_type][detail_key]: self._routes[event_type][detail_key][detail_value] = [] self._routes[event_type][detail_key][detail_value].append(handler)
register
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event_type: str, handler: Any, **detail: Any) ->None:\n LOG.info('Registering %s, %s to %s', event_type, detail, handler)\n if len(detail) > 1:\n raise ValueError(\n 'Only one detail can be provided for additional routing')\n elif not detail:\n detail_key, detail_value = '*', '*'\n else:\n detail_key, detail_value = detail.popitem()\n if detail_key not in self._routes[event_type]:\n self._routes[event_type][detail_key] = {}\n if detail_value not in self._routes[event_type][detail_key]:\n self._routes[event_type][detail_key][detail_value] = []\n self._routes[event_type][detail_key][detail_value].append(handler)\n", "role": "user" }, { "content": "register", "role": "assistant" } ]
def x(self, event: Event) ->Iterator[Any]: LOG.debug('Dispatching event "%s"', event.get('type')) if event['type'] in self._routes: for detail_key, detail_values in self._routes.get(event['type'], {} ).items(): event_value = event.get(detail_key, '*') yield from detail_values.get(event_value, []) else: return
dispatch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event: Event) ->Iterator[Any]:\n LOG.debug('Dispatching event \"%s\"', event.get('type'))\n if event['type'] in self._routes:\n for detail_key, detail_values in self._routes.get(event['type'], {}\n ).items():\n event_value = event.get(detail_key, '*')\n yield from detail_values.get(event_value, [])\n else:\n return\n", "role": "user" }, { "content": "dispatch", "role": "assistant" } ]
def x(self, pattern: str, handler: Any, flags: int=0, channel: str='*', subtype: Optional[str]=None) ->None: LOG.debug('Registering message endpoint "%s: %s"', pattern, handler) match = re.compile(pattern, flags) if subtype not in self._routes[channel]: self._routes[channel][subtype] = dict() if match in self._routes[channel][subtype]: self._routes[channel][subtype][match].append(handler) else: self._routes[channel][subtype][match] = [handler]
register
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pattern: str, handler: Any, flags: int=0, channel: str='*',\n subtype: Optional[str]=None) ->None:\n LOG.debug('Registering message endpoint \"%s: %s\"', pattern, handler)\n match = re.compile(pattern, flags)\n if subtype not in self._routes[channel]:\n self._routes[channel][subtype] = dict()\n if match in self._routes[channel][subtype]:\n self._routes[channel][subtype][match].append(handler)\n else:\n self._routes[channel][subtype][match] = [handler]\n", "role": "user" }, { "content": "register", "role": "assistant" } ]
def x(self, message: Message) ->Iterator[Any]: if 'text' in message: text = message['text'] or '' elif 'message' in message: text = message['message'].get('text', '') else: text = '' msg_subtype = message.get('subtype') for subtype, matchs in itertools.chain(self._routes[message['channel']] .items(), self._routes['*'].items()): if msg_subtype == subtype or subtype is None: for match, endpoints in matchs.items(): if match.search(text): yield from endpoints
dispatch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, message: Message) ->Iterator[Any]:\n if 'text' in message:\n text = message['text'] or ''\n elif 'message' in message:\n text = message['message'].get('text', '')\n else:\n text = ''\n msg_subtype = message.get('subtype')\n for subtype, matchs in itertools.chain(self._routes[message['channel']]\n .items(), self._routes['*'].items()):\n if msg_subtype == subtype or subtype is None:\n for match, endpoints in matchs.items():\n if match.search(text):\n yield from endpoints\n", "role": "user" }, { "content": "dispatch", "role": "assistant" } ]
def x(self, url: Union[str, methods], data: Optional[MutableMapping]=None, headers: Optional[MutableMapping]=None, as_json: Optional[bool]=None ) ->dict: url, body, headers = sansio.prepare_request(url=url, data=data, headers =headers, global_headers=self._headers, token=self._token) return self._make_query(url, body, headers)
query
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, url: Union[str, methods], data: Optional[MutableMapping]=None,\n headers: Optional[MutableMapping]=None, as_json: Optional[bool]=None\n ) ->dict:\n url, body, headers = sansio.prepare_request(url=url, data=data, headers\n =headers, global_headers=self._headers, token=self._token)\n return self._make_query(url, body, headers)\n", "role": "user" }, { "content": "query", "role": "assistant" } ]
def x(self, url: Optional[str]=None, bot_id: Optional[str]=None) ->Iterator[ events.Event]: while True: bot_id = bot_id or self._find_bot_id() url = url or self._find_rtm_url() for event in self._incoming_from_rtm(url, bot_id): yield event url = None
rtm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, url: Optional[str]=None, bot_id: Optional[str]=None) ->Iterator[\n events.Event]:\n while True:\n bot_id = bot_id or self._find_bot_id()\n url = url or self._find_rtm_url()\n for event in self._incoming_from_rtm(url, bot_id):\n yield event\n url = None\n", "role": "user" }, { "content": "rtm", "role": "assistant" } ]
def x(self, request, extra_context=None): context = {'title': _('Log in'), 'app_path': request.get_full_path()} if (REDIRECT_FIELD_NAME not in request.GET and REDIRECT_FIELD_NAME not in request.POST): context[REDIRECT_FIELD_NAME] = request.get_full_path() context.update(extra_context or {}) defaults = {'extra_context': context, 'current_app': self.name, 'authentication_form': self.login_form or AdminAuthenticationForm, 'template_name': self.login_template or 'admin/login.html'} return login(request, **defaults)
login
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request, extra_context=None):\n context = {'title': _('Log in'), 'app_path': request.get_full_path()}\n if (REDIRECT_FIELD_NAME not in request.GET and REDIRECT_FIELD_NAME not in\n request.POST):\n context[REDIRECT_FIELD_NAME] = request.get_full_path()\n context.update(extra_context or {})\n defaults = {'extra_context': context, 'current_app': self.name,\n 'authentication_form': self.login_form or AdminAuthenticationForm,\n 'template_name': self.login_template or 'admin/login.html'}\n return login(request, **defaults)\n", "role": "user" }, { "content": "login", "role": "assistant" } ]
def x(config_file): def x(fp): try: return yaml.safe_load(fp) except yaml.YAMLError as e: sys.stderr.write(text_type(e)) sys.exit(1) if config_file == '-': return load(sys.stdin) if not os.path.exists(config_file): sys.stderr.write( 'ERROR: Must either run next to config.yaml or specify a config file.\n' + __doc__) sys.exit(2) with open(config_file) as fp: return load(fp)
get_config
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(config_file):\n\n def x(fp):\n try:\n return yaml.safe_load(fp)\n except yaml.YAMLError as e:\n sys.stderr.write(text_type(e))\n sys.exit(1)\n if config_file == '-':\n return load(sys.stdin)\n if not os.path.exists(config_file):\n sys.stderr.write(\n 'ERROR: Must either run next to config.yaml or specify a config file.\\n'\n + __doc__)\n sys.exit(2)\n with open(config_file) as fp:\n return load(fp)\n", "role": "user" }, { "content": "get_config", "role": "assistant" } ]
def x(config_options, local_options, cli_options): options = DEFAULT_OPTIONS.copy() if config_options is not None: options.update(config_options) if local_options is not None: options.update(local_options) if cli_options is not None: options.update(cli_options) return options
get_options
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(config_options, local_options, cli_options):\n options = DEFAULT_OPTIONS.copy()\n if config_options is not None:\n options.update(config_options)\n if local_options is not None:\n options.update(local_options)\n if cli_options is not None:\n options.update(cli_options)\n return options\n", "role": "user" }, { "content": "get_options", "role": "assistant" } ]
def x(results, metric, options): formatter = options['Formatter'] context = metric.copy() try: context['dimension'] = list(metric['Dimensions'].values())[0] except AttributeError: context['dimension'] = '' for result in results: stat_keys = metric['Statistics'] if not isinstance(stat_keys, list): stat_keys = [stat_keys] for statistic in stat_keys: context['statistic'] = statistic context['Unit'] = result['Unit'] metric_name = (formatter % context).replace('/', '.').lower() line = '{0} {1} {2}\n'.format(metric_name, result[statistic], timegm(result['Timestamp'].timetuple())) sys.stdout.write(line)
output_results
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(results, metric, options):\n formatter = options['Formatter']\n context = metric.copy()\n try:\n context['dimension'] = list(metric['Dimensions'].values())[0]\n except AttributeError:\n context['dimension'] = ''\n for result in results:\n stat_keys = metric['Statistics']\n if not isinstance(stat_keys, list):\n stat_keys = [stat_keys]\n for statistic in stat_keys:\n context['statistic'] = statistic\n context['Unit'] = result['Unit']\n metric_name = (formatter % context).replace('/', '.').lower()\n line = '{0} {1} {2}\\n'.format(metric_name, result[statistic],\n timegm(result['Timestamp'].timetuple()))\n sys.stdout.write(line)\n", "role": "user" }, { "content": "output_results", "role": "assistant" } ]
def x(self, gsuri, localpath, binary_mode=False, tmpdir=None): bucket_name, gs_rel_path = self.parse_uri(gsuri) bucket = self._client.get_bucket(bucket_name) ablob = bucket.get_blob(gs_rel_path) if not ablob: raise GoogleStorageIOError("No such file on Google Storage: '{}'". format(gs_rel_path)) tmp_fid, tmp_file_path = tempfile.mkstemp(text=not binary_mode, dir=tmpdir) ablob.chunk_size = 1 << 30 ablob.download_to_filename(client=self._client, filename=tmp_file_path) return os.rename(tmp_file_path, localpath)
download_to_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, gsuri, localpath, binary_mode=False, tmpdir=None):\n bucket_name, gs_rel_path = self.parse_uri(gsuri)\n bucket = self._client.get_bucket(bucket_name)\n ablob = bucket.get_blob(gs_rel_path)\n if not ablob:\n raise GoogleStorageIOError(\"No such file on Google Storage: '{}'\".\n format(gs_rel_path))\n tmp_fid, tmp_file_path = tempfile.mkstemp(text=not binary_mode, dir=tmpdir)\n ablob.chunk_size = 1 << 30\n ablob.download_to_filename(client=self._client, filename=tmp_file_path)\n return os.rename(tmp_file_path, localpath)\n", "role": "user" }, { "content": "download_to_path", "role": "assistant" } ]
def x(f, digits, rounding=ROUND_HALF_UP): return Decimal(str(f)).quantize(Decimal(10) ** (-1 * digits), rounding= rounding)
round_float
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f, digits, rounding=ROUND_HALF_UP):\n return Decimal(str(f)).quantize(Decimal(10) ** (-1 * digits), rounding=\n rounding)\n", "role": "user" }, { "content": "round_float", "role": "assistant" } ]
def x(f, min_digits=2, max_digits=6): if f >= 1 or f <= 0: return str(round_float(f, min_digits)) start_str = str(round_float(f, max_digits)) digits = start_str.split('.')[1] non_zero_indices = [] for i, digit in enumerate(digits): if digit != '0': non_zero_indices.append(i + 1) if len(non_zero_indices) == 0: num_digits = min_digits else: min_non_zero_indices = range(non_zero_indices[0], non_zero_indices[ -1] + 1)[:min_digits] num_digits = min_non_zero_indices[-1] return str(round_float(f, num_digits))
float_str
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f, min_digits=2, max_digits=6):\n if f >= 1 or f <= 0:\n return str(round_float(f, min_digits))\n start_str = str(round_float(f, max_digits))\n digits = start_str.split('.')[1]\n non_zero_indices = []\n for i, digit in enumerate(digits):\n if digit != '0':\n non_zero_indices.append(i + 1)\n if len(non_zero_indices) == 0:\n num_digits = min_digits\n else:\n min_non_zero_indices = range(non_zero_indices[0], non_zero_indices[\n -1] + 1)[:min_digits]\n num_digits = min_non_zero_indices[-1]\n return str(round_float(f, num_digits))\n", "role": "user" }, { "content": "float_str", "role": "assistant" } ]
def x(self): user = self.user if user.first_name is not None: return self.full_name elif user.username is not None: return user.username else: return str(user.id)
default_format
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n user = self.user\n if user.first_name is not None:\n return self.full_name\n elif user.username is not None:\n return user.username\n else:\n return str(user.id)\n", "role": "user" }, { "content": "default_format", "role": "assistant" } ]
def x(self): formatted_user = [] if self.user.first_name is not None: formatted_user.append(self.user.first_name) if self.user.last_name is not None: formatted_user.append(self.user.last_name) return ' '.join(formatted_user)
full_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n formatted_user = []\n if self.user.first_name is not None:\n formatted_user.append(self.user.first_name)\n if self.user.last_name is not None:\n formatted_user.append(self.user.last_name)\n return ' '.join(formatted_user)\n", "role": "user" }, { "content": "full_name", "role": "assistant" } ]
def x(self): formatted_user = self.full_name if self.user.username is not None: formatted_user += ' [' + self.user.username + ']' if not formatted_user: formatted_user = self._id() return formatted_user
full_format
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n formatted_user = self.full_name\n if self.user.username is not None:\n formatted_user += ' [' + self.user.username + ']'\n if not formatted_user:\n formatted_user = self._id()\n return formatted_user\n", "role": "user" }, { "content": "full_format", "role": "assistant" } ]
def x(self): data = [self.full_name, self._username(), self._id(), self. _language_code(), self._is_bot()] return ' '.join(filter(None, data))
full_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n data = [self.full_name, self._username(), self._id(), self.\n _language_code(), self._is_bot()]\n return ' '.join(filter(None, data))\n", "role": "user" }, { "content": "full_data", "role": "assistant" } ]
def x(self): data = [self.chat.title, self._username(), self._type(), self._id()] return ' '.join(filter(None, data))
full_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n data = [self.chat.title, self._username(), self._type(), self._id()]\n return ' '.join(filter(None, data))\n", "role": "user" }, { "content": "full_data", "role": "assistant" } ]
def x(func): @wraps(func) def x(row, cohort, filter_fn=None, normalized_per_mb=None, **kwargs): filter_fn = first_not_none_param([filter_fn, cohort.filter_fn], no_filter) normalized_per_mb = first_not_none_param([normalized_per_mb, cohort .normalized_per_mb], False) return func(row=row, cohort=cohort, filter_fn=filter_fn, normalized_per_mb=normalized_per_mb, **kwargs) return wrapper
use_defaults
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func):\n\n @wraps(func)\n def x(row, cohort, filter_fn=None, normalized_per_mb=None, **kwargs):\n filter_fn = first_not_none_param([filter_fn, cohort.filter_fn],\n no_filter)\n normalized_per_mb = first_not_none_param([normalized_per_mb, cohort\n .normalized_per_mb], False)\n return func(row=row, cohort=cohort, filter_fn=filter_fn,\n normalized_per_mb=normalized_per_mb, **kwargs)\n return wrapper\n", "role": "user" }, { "content": "use_defaults", "role": "assistant" } ]
def x(func): @use_defaults @wraps(func) def x(row, cohort, filter_fn=None, normalized_per_mb=None, **kwargs): per_patient_data = func(row=row, cohort=cohort, filter_fn=filter_fn, normalized_per_mb=normalized_per_mb, **kwargs) patient_id = row['patient_id'] if patient_id in per_patient_data: count = len(per_patient_data[patient_id]) if normalized_per_mb: count /= float(get_patient_to_mb(cohort)[patient_id]) return count return np.nan return wrapper
count_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func):\n\n @use_defaults\n @wraps(func)\n def x(row, cohort, filter_fn=None, normalized_per_mb=None, **kwargs):\n per_patient_data = func(row=row, cohort=cohort, filter_fn=filter_fn,\n normalized_per_mb=normalized_per_mb, **kwargs)\n patient_id = row['patient_id']\n if patient_id in per_patient_data:\n count = len(per_patient_data[patient_id])\n if normalized_per_mb:\n count /= float(get_patient_to_mb(cohort)[patient_id])\n return count\n return np.nan\n return wrapper\n", "role": "user" }, { "content": "count_function", "role": "assistant" } ]
def x(function_name, filterable_variant_function=None): @count_function def x(row, cohort, filter_fn, normalized_per_mb, **kwargs): def x(filterable_variant, **kwargs): assert filter_fn is not None, 'filter_fn should never be None, but it is.' return (filterable_variant_function(filterable_variant) if filterable_variant_function is not None else True ) and filter_fn(filterable_variant, **kwargs) patient_id = row['patient_id'] return cohort.load_variants(patients=[cohort.patient_from_id( patient_id)], filter_fn=count_filter_fn, **kwargs) count.__name__ = function_name count.__doc__ = str(''.join(inspect.getsourcelines( filterable_variant_function)[0]) ) if filterable_variant_function is not None else '' return count
count_variants_function_builder
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(function_name, filterable_variant_function=None):\n\n @count_function\n def x(row, cohort, filter_fn, normalized_per_mb, **kwargs):\n\n def x(filterable_variant, **kwargs):\n assert filter_fn is not None, 'filter_fn should never be None, but it is.'\n return (filterable_variant_function(filterable_variant) if \n filterable_variant_function is not None else True\n ) and filter_fn(filterable_variant, **kwargs)\n patient_id = row['patient_id']\n return cohort.load_variants(patients=[cohort.patient_from_id(\n patient_id)], filter_fn=count_filter_fn, **kwargs)\n count.__name__ = function_name\n count.__doc__ = str(''.join(inspect.getsourcelines(\n filterable_variant_function)[0])\n ) if filterable_variant_function is not None else ''\n return count\n", "role": "user" }, { "content": "count_variants_function_builder", "role": "assistant" } ]
def x(function_name, only_nonsynonymous, filterable_effect_function=None): @count_function def x(row, cohort, filter_fn, normalized_per_mb, **kwargs): def x(filterable_effect, **kwargs): assert filter_fn is not None, 'filter_fn should never be None, but it is.' return (filterable_effect_function(filterable_effect) if filterable_effect_function is not None else True ) and filter_fn(filterable_effect, **kwargs) patient_id = row['patient_id'] return cohort.load_effects(only_nonsynonymous=only_nonsynonymous, patients=[cohort.patient_from_id(patient_id)], filter_fn= count_filter_fn, **kwargs) count.__name__ = function_name count.__doc__ = 'only_nonsynonymous=%s\n' % only_nonsynonymous + str('' .join(inspect.getsourcelines(filterable_effect_function)[0]) ) if filterable_effect_function is not None else '' count.only_nonsynonymous = only_nonsynonymous count.filterable_effect_function = filterable_effect_function return count
count_effects_function_builder
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(function_name, only_nonsynonymous, filterable_effect_function=None):\n\n @count_function\n def x(row, cohort, filter_fn, normalized_per_mb, **kwargs):\n\n def x(filterable_effect, **kwargs):\n assert filter_fn is not None, 'filter_fn should never be None, but it is.'\n return (filterable_effect_function(filterable_effect) if \n filterable_effect_function is not None else True\n ) and filter_fn(filterable_effect, **kwargs)\n patient_id = row['patient_id']\n return cohort.load_effects(only_nonsynonymous=only_nonsynonymous,\n patients=[cohort.patient_from_id(patient_id)], filter_fn=\n count_filter_fn, **kwargs)\n count.__name__ = function_name\n count.__doc__ = 'only_nonsynonymous=%s\\n' % only_nonsynonymous + str(''\n .join(inspect.getsourcelines(filterable_effect_function)[0])\n ) if filterable_effect_function is not None else ''\n count.only_nonsynonymous = only_nonsynonymous\n count.filterable_effect_function = filterable_effect_function\n return count\n", "role": "user" }, { "content": "count_effects_function_builder", "role": "assistant" } ]
def x(row, cohort, **kwargs): patient_id = row['patient_id'] patient = cohort.patient_from_id(patient_id) variants = cohort.load_variants(patients=[patient], filter_fn=no_filter) if patient_id in variants.keys(): variants = variants[patient_id] else: return np.nan def x(variant): filterable_variant = FilterableVariant(variant, variants, patient) return variant_stats_from_variant(variant, filterable_variant. variant_metadata).tumor_stats.variant_allele_frequency vafs = [grab_vaf(variant) for variant in variants] return 2 * pd.Series(vafs).median()
median_vaf_purity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(row, cohort, **kwargs):\n patient_id = row['patient_id']\n patient = cohort.patient_from_id(patient_id)\n variants = cohort.load_variants(patients=[patient], filter_fn=no_filter)\n if patient_id in variants.keys():\n variants = variants[patient_id]\n else:\n return np.nan\n\n def x(variant):\n filterable_variant = FilterableVariant(variant, variants, patient)\n return variant_stats_from_variant(variant, filterable_variant.\n variant_metadata).tumor_stats.variant_allele_frequency\n vafs = [grab_vaf(variant) for variant in variants]\n return 2 * pd.Series(vafs).median()\n", "role": "user" }, { "content": "median_vaf_purity", "role": "assistant" } ]
def x(df, col, pred_col, n_bootstrap=1000): scores = np.zeros(n_bootstrap) old_len = len(df) df.dropna(subset=[col], inplace=True) new_len = len(df) if new_len < old_len: logger.info('Dropping NaN values in %s to go from %d to %d rows' % (col, old_len, new_len)) preds = df[pred_col].astype(int) for i in range(n_bootstrap): sampled_counts, sampled_pred = resample(df[col], preds) if is_single_class(sampled_pred, col=pred_col): continue scores[i] = roc_auc_score(sampled_pred, sampled_counts) return scores
bootstrap_auc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df, col, pred_col, n_bootstrap=1000):\n scores = np.zeros(n_bootstrap)\n old_len = len(df)\n df.dropna(subset=[col], inplace=True)\n new_len = len(df)\n if new_len < old_len:\n logger.info('Dropping NaN values in %s to go from %d to %d rows' %\n (col, old_len, new_len))\n preds = df[pred_col].astype(int)\n for i in range(n_bootstrap):\n sampled_counts, sampled_pred = resample(df[col], preds)\n if is_single_class(sampled_pred, col=pred_col):\n continue\n scores[i] = roc_auc_score(sampled_pred, sampled_counts)\n return scores\n", "role": "user" }, { "content": "bootstrap_auc", "role": "assistant" } ]
def x(self, worker_start_callback: callable, worker_end_callback: callable, are_async: bool=False): scheduler = self.immediate if are_async else self.background self.worker_start_callback = lambda worker: scheduler(Work(lambda : worker_start_callback(worker), 'worker_start_callback:' + worker.name)) self.worker_end_callback = lambda worker: self.immediate(Work(lambda : worker_end_callback(worker), 'worker_end_callback:' + worker.name))
set_callbacks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, worker_start_callback: callable, worker_end_callback: callable,\n are_async: bool=False):\n scheduler = self.immediate if are_async else self.background\n self.worker_start_callback = lambda worker: scheduler(Work(lambda :\n worker_start_callback(worker), 'worker_start_callback:' + worker.name))\n self.worker_end_callback = lambda worker: self.immediate(Work(lambda :\n worker_end_callback(worker), 'worker_end_callback:' + worker.name))\n", "role": "user" }, { "content": "set_callbacks", "role": "assistant" } ]
def x(self, worker: Worker): with self.running_workers_lock: self.running_workers.append(worker) thread = SchedulerThread(worker, self._worker_ended) thread.start() self.worker_start_callback(worker)
start_worker
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, worker: Worker):\n with self.running_workers_lock:\n self.running_workers.append(worker)\n thread = SchedulerThread(worker, self._worker_ended)\n thread.start()\n self.worker_start_callback(worker)\n", "role": "user" }, { "content": "start_worker", "role": "assistant" } ]
def x(self, name: str): if not self.running: return self.immediate_worker worker = self._new_worker(name) self._start_worker(worker) return worker
new_worker
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name: str):\n if not self.running:\n return self.immediate_worker\n worker = self._new_worker(name)\n self._start_worker(worker)\n return worker\n", "role": "user" }, { "content": "new_worker", "role": "assistant" } ]
def x(self, name: str, min_workers: int=0, max_workers: int=1, max_seconds_idle: int=DEFAULT_WORKER_POOL_MAX_SECONDS_IDLE): if not self.running: return self.immediate_worker worker = self._new_worker_pool(name, min_workers, max_workers, max_seconds_idle) self._start_worker_pool(worker) return worker
new_worker_pool
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name: str, min_workers: int=0, max_workers: int=1,\n max_seconds_idle: int=DEFAULT_WORKER_POOL_MAX_SECONDS_IDLE):\n if not self.running:\n return self.immediate_worker\n worker = self._new_worker_pool(name, min_workers, max_workers,\n max_seconds_idle)\n self._start_worker_pool(worker)\n return worker\n", "role": "user" }, { "content": "new_worker_pool", "role": "assistant" } ]
def x(self, on=None, join_with=None, join_how=None, return_cols=False, rename_cols=False, keep_paren_contents=True, **kwargs): df = self._as_dataframe_unmodified(join_with=join_with, join_how=join_how) if on is None: return DataFrameHolder.return_obj(None, df, return_cols) if type(on) == str: return DataFrameHolder.return_obj(on, df, return_cols) def x(on, col, df): on_argnames = on.__code__.co_varnames if 'cohort' not in on_argnames: func = lambda row: on(row=row, **kwargs) else: func = lambda row: on(row=row, cohort=self, **kwargs) if self.show_progress: tqdm.pandas(desc=col) df[col] = df.progress_apply(func, axis=1) else: df[col] = df.apply(func, axis=1) return DataFrameHolder(col, df) def x(func, num=0): return func.__name__ if not is_lambda(func) else 'column_%d' % num def x(func): return func.__name__ == (lambda : None).__name__ if type(on) == FunctionType: return apply_func(on, func_name(on), df).return_self(return_cols) if len(kwargs) > 0: logger.warning( 'Note: kwargs used with multiple functions; passing them to all functions' ) if type(on) == dict: cols = [] for key, value in on.items(): if type(value) == str: df[key] = df[value] col = key elif type(value) == FunctionType: col, df = apply_func(on=value, col=key, df=df) else: raise ValueError( 'A value of `on`, %s, is not a str or function' % str( value)) cols.append(col) if type(on) == list: cols = [] for i, elem in enumerate(on): if type(elem) == str: col = elem elif type(elem) == FunctionType: col = func_name(elem, i) col, df = apply_func(on=elem, col=col, df=df) cols.append(col) if rename_cols: rename_dict = _strip_column_names(df.columns, keep_paren_contents= keep_paren_contents) df.rename(columns=rename_dict, inplace=True) cols = [rename_dict[col] for col in cols] return DataFrameHolder(cols, df).return_self(return_cols)
as_dataframe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, on=None, join_with=None, join_how=None, return_cols=False,\n rename_cols=False, keep_paren_contents=True, **kwargs):\n df = self._as_dataframe_unmodified(join_with=join_with, join_how=join_how)\n if on is None:\n return DataFrameHolder.return_obj(None, df, return_cols)\n if type(on) == str:\n return DataFrameHolder.return_obj(on, df, return_cols)\n\n def x(on, col, df):\n on_argnames = on.__code__.co_varnames\n if 'cohort' not in on_argnames:\n func = lambda row: on(row=row, **kwargs)\n else:\n func = lambda row: on(row=row, cohort=self, **kwargs)\n if self.show_progress:\n tqdm.pandas(desc=col)\n df[col] = df.progress_apply(func, axis=1)\n else:\n df[col] = df.apply(func, axis=1)\n return DataFrameHolder(col, df)\n\n def x(func, num=0):\n return func.__name__ if not is_lambda(func) else 'column_%d' % num\n\n def x(func):\n return func.__name__ == (lambda : None).__name__\n if type(on) == FunctionType:\n return apply_func(on, func_name(on), df).return_self(return_cols)\n if len(kwargs) > 0:\n logger.warning(\n 'Note: kwargs used with multiple functions; passing them to all functions'\n )\n if type(on) == dict:\n cols = []\n for key, value in on.items():\n if type(value) == str:\n df[key] = df[value]\n col = key\n elif type(value) == FunctionType:\n col, df = apply_func(on=value, col=key, df=df)\n else:\n raise ValueError(\n 'A value of `on`, %s, is not a str or function' % str(\n value))\n cols.append(col)\n if type(on) == list:\n cols = []\n for i, elem in enumerate(on):\n if type(elem) == str:\n col = elem\n elif type(elem) == FunctionType:\n col = func_name(elem, i)\n col, df = apply_func(on=elem, col=col, df=df)\n cols.append(col)\n if rename_cols:\n rename_dict = _strip_column_names(df.columns, keep_paren_contents=\n keep_paren_contents)\n df.rename(columns=rename_dict, inplace=True)\n cols = [rename_dict[col] for col in cols]\n return DataFrameHolder(cols, df).return_self(return_cols)\n", "role": "user" }, { "content": "as_dataframe", "role": "assistant" } ]
def x(self, df_loader_name): logger.debug('loading dataframe: {}'.format(df_loader_name)) df_loaders = [df_loader for df_loader in self.df_loaders if df_loader. name == df_loader_name] if len(df_loaders) == 0: raise ValueError('No DataFrameLoader with name %s' % df_loader_name) if len(df_loaders) > 1: raise ValueError('Multiple DataFrameLoaders with name %s' % df_loader_name) return df_loaders[0].load_dataframe()
load_dataframe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, df_loader_name):\n logger.debug('loading dataframe: {}'.format(df_loader_name))\n df_loaders = [df_loader for df_loader in self.df_loaders if df_loader.\n name == df_loader_name]\n if len(df_loaders) == 0:\n raise ValueError('No DataFrameLoader with name %s' % df_loader_name)\n if len(df_loaders) > 1:\n raise ValueError('Multiple DataFrameLoaders with name %s' %\n df_loader_name)\n return df_loaders[0].load_dataframe()\n", "role": "user" }, { "content": "load_dataframe", "role": "assistant" } ]
def x(self, fn, default='None'): if fn is None: fn_name = default else: fn_name = fn.__name__ return fn_name
get_function_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fn, default='None'):\n if fn is None:\n fn_name = default\n else:\n fn_name = fn.__name__\n return fn_name\n", "role": "user" }, { "content": "get_function_name", "role": "assistant" } ]
def x(self, patients=None, filter_fn=None, **kwargs): filter_fn = first_not_none_param([filter_fn, self.filter_fn], no_filter) filter_fn_name = self._get_function_name(filter_fn) logger.debug('loading variants with filter_fn: {}'.format(filter_fn_name)) patient_variants = {} for patient in self.iter_patients(patients): variants = self._load_single_patient_variants(patient, filter_fn, **kwargs) if variants is not None: patient_variants[patient.id] = variants return patient_variants
load_variants
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, patients=None, filter_fn=None, **kwargs):\n filter_fn = first_not_none_param([filter_fn, self.filter_fn], no_filter)\n filter_fn_name = self._get_function_name(filter_fn)\n logger.debug('loading variants with filter_fn: {}'.format(filter_fn_name))\n patient_variants = {}\n for patient in self.iter_patients(patients):\n variants = self._load_single_patient_variants(patient, filter_fn,\n **kwargs)\n if variants is not None:\n patient_variants[patient.id] = variants\n return patient_variants\n", "role": "user" }, { "content": "load_variants", "role": "assistant" } ]
def x(self, filter_fn, **kwargs): filter_fn_name = self._get_function_name(filter_fn, default='filter-none') logger.debug('Computing hash for filter_fn: {} with kwargs {}'.format( filter_fn_name, str(dict(**kwargs)))) fn_source = str(dill.source.getsource(filter_fn)) pickled_fn_source = pickle.dumps(fn_source) hashed_fn_source = int(hashlib.sha1(pickled_fn_source).hexdigest(), 16 ) % 10 ** 11 kw_dict = dict(**kwargs) kw_hash = list() if not kw_dict: kw_hash = ['default'] else: [kw_hash.append('{}-{}'.format(key, h)) for key, h in sorted( kw_dict.items())] closure = [] nonlocals = inspect.getclosurevars(filter_fn).nonlocals for key, val in nonlocals.items(): if inspect.isfunction(val): closure.append(self._hash_filter_fn(val)) closure.sort() closure_str = 'null' if len(closure) == 0 else '-'.join(closure) hashed_fn = '.'.join(['-'.join([filter_fn_name, str(hashed_fn_source)]), '.'.join(kw_hash), closure_str]) return hashed_fn
hash_filter_fn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filter_fn, **kwargs):\n filter_fn_name = self._get_function_name(filter_fn, default='filter-none')\n logger.debug('Computing hash for filter_fn: {} with kwargs {}'.format(\n filter_fn_name, str(dict(**kwargs))))\n fn_source = str(dill.source.getsource(filter_fn))\n pickled_fn_source = pickle.dumps(fn_source)\n hashed_fn_source = int(hashlib.sha1(pickled_fn_source).hexdigest(), 16\n ) % 10 ** 11\n kw_dict = dict(**kwargs)\n kw_hash = list()\n if not kw_dict:\n kw_hash = ['default']\n else:\n [kw_hash.append('{}-{}'.format(key, h)) for key, h in sorted(\n kw_dict.items())]\n closure = []\n nonlocals = inspect.getclosurevars(filter_fn).nonlocals\n for key, val in nonlocals.items():\n if inspect.isfunction(val):\n closure.append(self._hash_filter_fn(val))\n closure.sort()\n closure_str = 'null' if len(closure) == 0 else '-'.join(closure)\n hashed_fn = '.'.join(['-'.join([filter_fn_name, str(hashed_fn_source)]),\n '.'.join(kw_hash), closure_str])\n return hashed_fn\n", "role": "user" }, { "content": "hash_filter_fn", "role": "assistant" } ]
def x(self, patient, filter_fn, use_cache=True, **kwargs): if filter_fn is None: use_filtered_cache = False else: filter_fn_name = self._get_function_name(filter_fn) logger.debug('loading variants for patient {} with filter_fn {}'. format(patient.id, filter_fn_name)) use_filtered_cache = use_cache if use_filtered_cache: logger.debug('... identifying filtered-cache file name') try: filtered_cache_file_name = '%s-variants.%s.pkl' % (self. merge_type, self._hash_filter_fn(filter_fn, **kwargs)) except: logger.warning( '... error identifying filtered-cache file name for patient {}: {}' .format(patient.id, filter_fn_name)) use_filtered_cache = False else: logger.debug('... trying to load filtered variants from cache: {}' .format(filtered_cache_file_name)) try: cached = self.load_from_cache(self.cache_names['variant'], patient.id, filtered_cache_file_name) if cached is not None: return cached except: logger.warning( 'Error loading variants from cache for patient: {}'. format(patient.id)) pass logger.debug('... getting merged variants for: {}'.format(patient.id)) merged_variants = self._load_single_patient_merged_variants(patient, use_cache=use_cache) if merged_variants is None: logger.info('Variants did not exist for patient %s' % patient.id) return None logger.debug('... applying filters to variants for: {}'.format(patient.id)) filtered_variants = filter_variants(variant_collection=merged_variants, patient=patient, filter_fn=filter_fn, **kwargs) if use_filtered_cache: logger.debug('... saving filtered variants to cache: {}'.format( filtered_cache_file_name)) self.save_to_cache(filtered_variants, self.cache_names['variant'], patient.id, filtered_cache_file_name) return filtered_variants
load_single_patient_variants
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, patient, filter_fn, use_cache=True, **kwargs):\n if filter_fn is None:\n use_filtered_cache = False\n else:\n filter_fn_name = self._get_function_name(filter_fn)\n logger.debug('loading variants for patient {} with filter_fn {}'.\n format(patient.id, filter_fn_name))\n use_filtered_cache = use_cache\n if use_filtered_cache:\n logger.debug('... identifying filtered-cache file name')\n try:\n filtered_cache_file_name = '%s-variants.%s.pkl' % (self.\n merge_type, self._hash_filter_fn(filter_fn, **kwargs))\n except:\n logger.warning(\n '... error identifying filtered-cache file name for patient {}: {}'\n .format(patient.id, filter_fn_name))\n use_filtered_cache = False\n else:\n logger.debug('... trying to load filtered variants from cache: {}'\n .format(filtered_cache_file_name))\n try:\n cached = self.load_from_cache(self.cache_names['variant'],\n patient.id, filtered_cache_file_name)\n if cached is not None:\n return cached\n except:\n logger.warning(\n 'Error loading variants from cache for patient: {}'.\n format(patient.id))\n pass\n logger.debug('... getting merged variants for: {}'.format(patient.id))\n merged_variants = self._load_single_patient_merged_variants(patient,\n use_cache=use_cache)\n if merged_variants is None:\n logger.info('Variants did not exist for patient %s' % patient.id)\n return None\n logger.debug('... applying filters to variants for: {}'.format(patient.id))\n filtered_variants = filter_variants(variant_collection=merged_variants,\n patient=patient, filter_fn=filter_fn, **kwargs)\n if use_filtered_cache:\n logger.debug('... saving filtered variants to cache: {}'.format(\n filtered_cache_file_name))\n self.save_to_cache(filtered_variants, self.cache_names['variant'],\n patient.id, filtered_cache_file_name)\n return filtered_variants\n", "role": "user" }, { "content": "load_single_patient_variants", "role": "assistant" } ]
def x(self, patient, use_cache=True): logger.debug('loading merged variants for patient {}'.format(patient.id)) no_variants = False try: if use_cache: variant_cache_file_name = '%s-variants.pkl' % self.merge_type merged_variants = self.load_from_cache(self.cache_names[ 'variant'], patient.id, variant_cache_file_name) if merged_variants is not None: return merged_variants variant_collections = [] optional_maf_cols = ['t_ref_count', 't_alt_count', 'n_ref_count', 'n_alt_count'] if self.additional_maf_cols is not None: optional_maf_cols.extend(self.additional_maf_cols) for patient_variants in patient.variants_list: if type(patient_variants) == str: if '.vcf' in patient_variants: try: variant_collections.append(varcode.load_vcf_fast( patient_variants)) except StopIteration as e: logger.warning( 'Empty VCF (or possibly a VCF error) for patient {}: {}' .format(patient.id, str(e))) elif '.maf' in patient_variants: variant_collections.append(varcode.load_maf( patient_variants, optional_cols=optional_maf_cols, encoding='latin-1')) else: raise ValueError("Don't know how to read %s" % patient_variants) elif type(patient_variants) == VariantCollection: variant_collections.append(patient_variants) else: raise ValueError("Don't know how to read %s" % patient_variants ) if len(variant_collections) == 0: no_variants = True elif len(variant_collections) == 1: variants = variant_collections[0] merged_variants = variants else: merged_variants = self._merge_variant_collections( variant_collections, self.merge_type) except IOError: no_variants = True if no_variants: print('Variants did not exist for patient %s' % patient.id) merged_variants = None if use_cache: self.save_to_cache(merged_variants, self.cache_names['variant'], patient.id, variant_cache_file_name) return merged_variants
load_single_patient_merged_variants
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, patient, use_cache=True):\n logger.debug('loading merged variants for patient {}'.format(patient.id))\n no_variants = False\n try:\n if use_cache:\n variant_cache_file_name = '%s-variants.pkl' % self.merge_type\n merged_variants = self.load_from_cache(self.cache_names[\n 'variant'], patient.id, variant_cache_file_name)\n if merged_variants is not None:\n return merged_variants\n variant_collections = []\n optional_maf_cols = ['t_ref_count', 't_alt_count', 'n_ref_count',\n 'n_alt_count']\n if self.additional_maf_cols is not None:\n optional_maf_cols.extend(self.additional_maf_cols)\n for patient_variants in patient.variants_list:\n if type(patient_variants) == str:\n if '.vcf' in patient_variants:\n try:\n variant_collections.append(varcode.load_vcf_fast(\n patient_variants))\n except StopIteration as e:\n logger.warning(\n 'Empty VCF (or possibly a VCF error) for patient {}: {}'\n .format(patient.id, str(e)))\n elif '.maf' in patient_variants:\n variant_collections.append(varcode.load_maf(\n patient_variants, optional_cols=optional_maf_cols,\n encoding='latin-1'))\n else:\n raise ValueError(\"Don't know how to read %s\" %\n patient_variants)\n elif type(patient_variants) == VariantCollection:\n variant_collections.append(patient_variants)\n else:\n raise ValueError(\"Don't know how to read %s\" % patient_variants\n )\n if len(variant_collections) == 0:\n no_variants = True\n elif len(variant_collections) == 1:\n variants = variant_collections[0]\n merged_variants = variants\n else:\n merged_variants = self._merge_variant_collections(\n variant_collections, self.merge_type)\n except IOError:\n no_variants = True\n if no_variants:\n print('Variants did not exist for patient %s' % patient.id)\n merged_variants = None\n if use_cache:\n self.save_to_cache(merged_variants, self.cache_names['variant'],\n patient.id, variant_cache_file_name)\n return merged_variants\n", "role": "user" }, { "content": "load_single_patient_merged_variants", "role": "assistant" } ]
def x(self, as_dataframe=False, filter_fn=None): filter_fn = first_not_none_param([filter_fn, self.filter_fn], no_filter) patient_annotations = {} for patient in self: annotations = self._load_single_patient_polyphen(patient, filter_fn =filter_fn) if annotations is not None: annotations['patient_id'] = patient.id patient_annotations[patient.id] = annotations if as_dataframe: return pd.concat(patient_annotations.values()) return patient_annotations
load_polyphen_annotations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, as_dataframe=False, filter_fn=None):\n filter_fn = first_not_none_param([filter_fn, self.filter_fn], no_filter)\n patient_annotations = {}\n for patient in self:\n annotations = self._load_single_patient_polyphen(patient, filter_fn\n =filter_fn)\n if annotations is not None:\n annotations['patient_id'] = patient.id\n patient_annotations[patient.id] = annotations\n if as_dataframe:\n return pd.concat(patient_annotations.values())\n return patient_annotations\n", "role": "user" }, { "content": "load_polyphen_annotations", "role": "assistant" } ]
def x(self, patients=None, only_nonsynonymous=False, all_effects=False, filter_fn=None, **kwargs): filter_fn = first_not_none_param([filter_fn, self.filter_fn], no_filter) filter_fn_name = self._get_function_name(filter_fn) logger.debug('loading effects with filter_fn {}'.format(filter_fn_name)) patient_effects = {} for patient in self.iter_patients(patients): effects = self._load_single_patient_effects(patient, only_nonsynonymous, all_effects, filter_fn, **kwargs) if effects is not None: patient_effects[patient.id] = effects return patient_effects
load_effects
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, patients=None, only_nonsynonymous=False, all_effects=False,\n filter_fn=None, **kwargs):\n filter_fn = first_not_none_param([filter_fn, self.filter_fn], no_filter)\n filter_fn_name = self._get_function_name(filter_fn)\n logger.debug('loading effects with filter_fn {}'.format(filter_fn_name))\n patient_effects = {}\n for patient in self.iter_patients(patients):\n effects = self._load_single_patient_effects(patient,\n only_nonsynonymous, all_effects, filter_fn, **kwargs)\n if effects is not None:\n patient_effects[patient.id] = effects\n return patient_effects\n", "role": "user" }, { "content": "load_effects", "role": "assistant" } ]
def x(self): kallisto_data = pd.concat([self._load_single_patient_kallisto(patient) for patient in self], copy=False) if self.kallisto_ensembl_version is None: raise ValueError( 'Required a kallisto_ensembl_version but none was specified') ensembl_release = cached_release(self.kallisto_ensembl_version) kallisto_data['gene_name'] = kallisto_data['target_id'].map(lambda t: ensembl_release.gene_name_of_transcript_id(t)) kallisto_data = kallisto_data.groupby(['patient_id', 'gene_name'])[[ 'est_counts']].sum().reset_index() return kallisto_data
load_kallisto
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n kallisto_data = pd.concat([self._load_single_patient_kallisto(patient) for\n patient in self], copy=False)\n if self.kallisto_ensembl_version is None:\n raise ValueError(\n 'Required a kallisto_ensembl_version but none was specified')\n ensembl_release = cached_release(self.kallisto_ensembl_version)\n kallisto_data['gene_name'] = kallisto_data['target_id'].map(lambda t:\n ensembl_release.gene_name_of_transcript_id(t))\n kallisto_data = kallisto_data.groupby(['patient_id', 'gene_name'])[[\n 'est_counts']].sum().reset_index()\n return kallisto_data\n", "role": "user" }, { "content": "load_kallisto", "role": "assistant" } ]
def x(self, patient): data = pd.read_csv(patient.tumor_sample.kallisto_path, sep='\t') data['patient_id'] = patient.id return data
load_single_patient_kallisto
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, patient):\n data = pd.read_csv(patient.tumor_sample.kallisto_path, sep='\\t')\n data['patient_id'] = patient.id\n return data\n", "role": "user" }, { "content": "load_single_patient_kallisto", "role": "assistant" } ]
def x(self, filter_ok=True): return pd.concat([self._load_single_patient_cufflinks(patient, filter_ok) for patient in self], copy=False)
load_cufflinks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filter_ok=True):\n return pd.concat([self._load_single_patient_cufflinks(patient,\n filter_ok) for patient in self], copy=False)\n", "role": "user" }, { "content": "load_cufflinks", "role": "assistant" } ]
def x(self, patient, filter_ok): data = pd.read_csv(patient.tumor_sample.cufflinks_path, sep='\t') data['patient_id'] = patient.id if filter_ok: data = data[data['FPKM_status'] == 'OK'] return data
load_single_patient_cufflinks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, patient, filter_ok):\n data = pd.read_csv(patient.tumor_sample.cufflinks_path, sep='\\t')\n data['patient_id'] = patient.id\n if filter_ok:\n data = data[data['FPKM_status'] == 'OK']\n return data\n", "role": "user" }, { "content": "load_single_patient_cufflinks", "role": "assistant" } ]
def x(self, epitopes, ic50_cutoff): mutant_binding_predictions = [] for binding_prediction in epitopes: peptide = binding_prediction.peptide peptide_offset = binding_prediction.offset isovar_row = dict(binding_prediction.source_sequence_key) is_mutant = contains_mutant_residues(peptide_start_in_protein= peptide_offset, peptide_length=len(peptide), mutation_start_in_protein=isovar_row[ 'variant_aa_interval_start'], mutation_end_in_protein= isovar_row['variant_aa_interval_end']) if is_mutant and binding_prediction.value <= ic50_cutoff: mutant_binding_predictions.append(binding_prediction) return EpitopeCollection(mutant_binding_predictions)
get_filtered_isovar_epitopes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, epitopes, ic50_cutoff):\n mutant_binding_predictions = []\n for binding_prediction in epitopes:\n peptide = binding_prediction.peptide\n peptide_offset = binding_prediction.offset\n isovar_row = dict(binding_prediction.source_sequence_key)\n is_mutant = contains_mutant_residues(peptide_start_in_protein=\n peptide_offset, peptide_length=len(peptide),\n mutation_start_in_protein=isovar_row[\n 'variant_aa_interval_start'], mutation_end_in_protein=\n isovar_row['variant_aa_interval_end'])\n if is_mutant and binding_prediction.value <= ic50_cutoff:\n mutant_binding_predictions.append(binding_prediction)\n return EpitopeCollection(mutant_binding_predictions)\n", "role": "user" }, { "content": "get_filtered_isovar_epitopes", "role": "assistant" } ]
def x(self, on, bootstrap_samples=100, ax=None, **kwargs): plot_col, df = self.as_dataframe(on, return_cols=True, **kwargs) df = filter_not_null(df, 'benefit') df = filter_not_null(df, plot_col) df.benefit = df.benefit.astype(bool) return roc_curve_plot(df, plot_col, 'benefit', bootstrap_samples, ax=ax)
plot_roc_curve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, on, bootstrap_samples=100, ax=None, **kwargs):\n plot_col, df = self.as_dataframe(on, return_cols=True, **kwargs)\n df = filter_not_null(df, 'benefit')\n df = filter_not_null(df, plot_col)\n df.benefit = df.benefit.astype(bool)\n return roc_curve_plot(df, plot_col, 'benefit', bootstrap_samples, ax=ax)\n", "role": "user" }, { "content": "plot_roc_curve", "role": "assistant" } ]
def x(self, on, benefit_col='benefit', label='Response', ax=None, alternative='two-sided', boolean_value_map={}, order=None, **kwargs): no_benefit_plot_name = 'No %s' % self.benefit_plot_name boolean_value_map = boolean_value_map or {(True): self. benefit_plot_name, (False): no_benefit_plot_name} order = order or [no_benefit_plot_name, self.benefit_plot_name] return self.plot_boolean(on=on, boolean_col=benefit_col, alternative= alternative, boolean_label=label, boolean_value_map= boolean_value_map, order=order, ax=ax, **kwargs)
plot_benefit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, on, benefit_col='benefit', label='Response', ax=None,\n alternative='two-sided', boolean_value_map={}, order=None, **kwargs):\n no_benefit_plot_name = 'No %s' % self.benefit_plot_name\n boolean_value_map = boolean_value_map or {(True): self.\n benefit_plot_name, (False): no_benefit_plot_name}\n order = order or [no_benefit_plot_name, self.benefit_plot_name]\n return self.plot_boolean(on=on, boolean_col=benefit_col, alternative=\n alternative, boolean_label=label, boolean_value_map=\n boolean_value_map, order=order, ax=ax, **kwargs)\n", "role": "user" }, { "content": "plot_benefit", "role": "assistant" } ]
def x(self, on, boolean_col, plot_col=None, boolean_label=None, boolean_value_map={}, order=None, ax=None, alternative='two-sided', ** kwargs): cols, df = self.as_dataframe(on, return_cols=True, **kwargs) plot_col = self.plot_col_from_cols(cols=cols, plot_col=plot_col) df = filter_not_null(df, boolean_col) df = filter_not_null(df, plot_col) if boolean_label: df[boolean_label] = df[boolean_col] boolean_col = boolean_label condition_value = None if boolean_value_map: assert set(boolean_value_map.keys()) == set([True, False] ), 'Improper mapping of boolean column provided' df[boolean_col] = df[boolean_col].map(lambda v: boolean_value_map[v]) condition_value = boolean_value_map[True] if df[plot_col].dtype == 'bool': results = fishers_exact_plot(data=df, condition1=boolean_col, condition2=plot_col, condition1_value=condition_value, alternative=alternative, order=order, ax=ax) else: results = mann_whitney_plot(data=df, condition=boolean_col, distribution=plot_col, condition_value=condition_value, alternative=alternative, order=order, ax=ax) return results
plot_boolean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, on, boolean_col, plot_col=None, boolean_label=None,\n boolean_value_map={}, order=None, ax=None, alternative='two-sided', **\n kwargs):\n cols, df = self.as_dataframe(on, return_cols=True, **kwargs)\n plot_col = self.plot_col_from_cols(cols=cols, plot_col=plot_col)\n df = filter_not_null(df, boolean_col)\n df = filter_not_null(df, plot_col)\n if boolean_label:\n df[boolean_label] = df[boolean_col]\n boolean_col = boolean_label\n condition_value = None\n if boolean_value_map:\n assert set(boolean_value_map.keys()) == set([True, False]\n ), 'Improper mapping of boolean column provided'\n df[boolean_col] = df[boolean_col].map(lambda v: boolean_value_map[v])\n condition_value = boolean_value_map[True]\n if df[plot_col].dtype == 'bool':\n results = fishers_exact_plot(data=df, condition1=boolean_col,\n condition2=plot_col, condition1_value=condition_value,\n alternative=alternative, order=order, ax=ax)\n else:\n results = mann_whitney_plot(data=df, condition=boolean_col,\n distribution=plot_col, condition_value=condition_value,\n alternative=alternative, order=order, ax=ax)\n return results\n", "role": "user" }, { "content": "plot_boolean", "role": "assistant" } ]
def x(self, on, how='os', survival_units='Days', strata=None, ax=None, ci_show=False, with_condition_color='#B38600', no_condition_color= '#A941AC', with_condition_label=None, no_condition_label=None, color_map=None, label_map=None, color_palette='Set2', threshold=None, **kwargs): assert how in ['os', 'pfs' ], 'Invalid choice of survival plot type %s' % how cols, df = self.as_dataframe(on, return_cols=True, **kwargs) plot_col = self.plot_col_from_cols(cols=cols, only_allow_one=True) df = filter_not_null(df, plot_col) results = plot_kmf(df=df, condition_col=plot_col, xlabel=survival_units, ylabel='Overall Survival (%)' if how == 'os' else 'Progression-Free Survival (%)', censor_col='deceased' if how == 'os' else 'progressed_or_deceased', survival_col=how, strata_col= strata, threshold=threshold, ax=ax, ci_show=ci_show, with_condition_color=with_condition_color, no_condition_color= no_condition_color, with_condition_label=with_condition_label, no_condition_label=no_condition_label, color_palette=color_palette, label_map=label_map, color_map=color_map) return results
plot_survival
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, on, how='os', survival_units='Days', strata=None, ax=None,\n ci_show=False, with_condition_color='#B38600', no_condition_color=\n '#A941AC', with_condition_label=None, no_condition_label=None,\n color_map=None, label_map=None, color_palette='Set2', threshold=None,\n **kwargs):\n assert how in ['os', 'pfs'\n ], 'Invalid choice of survival plot type %s' % how\n cols, df = self.as_dataframe(on, return_cols=True, **kwargs)\n plot_col = self.plot_col_from_cols(cols=cols, only_allow_one=True)\n df = filter_not_null(df, plot_col)\n results = plot_kmf(df=df, condition_col=plot_col, xlabel=survival_units,\n ylabel='Overall Survival (%)' if how == 'os' else\n 'Progression-Free Survival (%)', censor_col='deceased' if how ==\n 'os' else 'progressed_or_deceased', survival_col=how, strata_col=\n strata, threshold=threshold, ax=ax, ci_show=ci_show,\n with_condition_color=with_condition_color, no_condition_color=\n no_condition_color, with_condition_label=with_condition_label,\n no_condition_label=no_condition_label, color_palette=color_palette,\n label_map=label_map, color_map=color_map)\n return results\n", "role": "user" }, { "content": "plot_survival", "role": "assistant" } ]
def x(self, on, x_col=None, plot_type='jointplot', stat_func=pearsonr, show_stat_func=True, plot_kwargs={}, **kwargs): if plot_type not in ['boxplot', 'barplot', 'jointplot', 'regplot']: raise ValueError('Invalid plot_type %s' % plot_type) plot_cols, df = self.as_dataframe(on, return_cols=True, **kwargs) if len(plot_cols) != 2: raise ValueError( 'Must be comparing two columns, but there are %d columns' % len (plot_cols)) for plot_col in plot_cols: df = filter_not_null(df, plot_col) if x_col is None: x_col = plot_cols[0] y_col = plot_cols[1] elif x_col == plot_cols[0]: y_col = plot_cols[1] else: y_col = plot_cols[0] series_x = df[x_col] series_y = df[y_col] coeff, p_value = stat_func(series_x, series_y) if plot_type == 'jointplot': plot = sb.jointplot(data=df, x=x_col, y=y_col, stat_func=stat_func if show_stat_func else None, **plot_kwargs) elif plot_type == 'regplot': plot = sb.regplot(data=df, x=x_col, y=y_col, **plot_kwargs) elif plot_type == 'boxplot': plot = stripboxplot(data=df, x=x_col, y=y_col, **plot_kwargs) else: plot = sb.barplot(data=df, x=x_col, y=y_col, **plot_kwargs) return CorrelationResults(coeff=coeff, p_value=p_value, stat_func= stat_func, series_x=series_x, series_y=series_y, plot=plot)
plot_correlation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, on, x_col=None, plot_type='jointplot', stat_func=pearsonr,\n show_stat_func=True, plot_kwargs={}, **kwargs):\n if plot_type not in ['boxplot', 'barplot', 'jointplot', 'regplot']:\n raise ValueError('Invalid plot_type %s' % plot_type)\n plot_cols, df = self.as_dataframe(on, return_cols=True, **kwargs)\n if len(plot_cols) != 2:\n raise ValueError(\n 'Must be comparing two columns, but there are %d columns' % len\n (plot_cols))\n for plot_col in plot_cols:\n df = filter_not_null(df, plot_col)\n if x_col is None:\n x_col = plot_cols[0]\n y_col = plot_cols[1]\n elif x_col == plot_cols[0]:\n y_col = plot_cols[1]\n else:\n y_col = plot_cols[0]\n series_x = df[x_col]\n series_y = df[y_col]\n coeff, p_value = stat_func(series_x, series_y)\n if plot_type == 'jointplot':\n plot = sb.jointplot(data=df, x=x_col, y=y_col, stat_func=stat_func if\n show_stat_func else None, **plot_kwargs)\n elif plot_type == 'regplot':\n plot = sb.regplot(data=df, x=x_col, y=y_col, **plot_kwargs)\n elif plot_type == 'boxplot':\n plot = stripboxplot(data=df, x=x_col, y=y_col, **plot_kwargs)\n else:\n plot = sb.barplot(data=df, x=x_col, y=y_col, **plot_kwargs)\n return CorrelationResults(coeff=coeff, p_value=p_value, stat_func=\n stat_func, series_x=series_x, series_y=series_y, plot=plot)\n", "role": "user" }, { "content": "plot_correlation", "role": "assistant" } ]
def x(self): results = [] for patient in self: results.append(patient.id) return results
list_patient_ids
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n results = []\n for patient in self:\n results.append(patient.id)\n return results\n", "role": "user" }, { "content": "list_patient_ids", "role": "assistant" } ]
def x(self): provenance_summary = {} df = self.as_dataframe() for cache in self.cache_names: cache_name = self.cache_names[cache] cache_provenance = None num_discrepant = 0 this_cache_dir = path.join(self.cache_dir, cache_name) if path.exists(this_cache_dir): for patient_id in self._list_patient_ids(): patient_cache_dir = path.join(this_cache_dir, patient_id) try: this_provenance = self.load_provenance(patient_cache_dir =patient_cache_dir) except: this_provenance = None if this_provenance: if not cache_provenance: cache_provenance = this_provenance else: num_discrepant += compare_provenance(this_provenance, cache_provenance) if num_discrepant == 0: provenance_summary[cache_name] = cache_provenance else: provenance_summary[cache_name] = None return provenance_summary
summarize_provenance_per_cache
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n provenance_summary = {}\n df = self.as_dataframe()\n for cache in self.cache_names:\n cache_name = self.cache_names[cache]\n cache_provenance = None\n num_discrepant = 0\n this_cache_dir = path.join(self.cache_dir, cache_name)\n if path.exists(this_cache_dir):\n for patient_id in self._list_patient_ids():\n patient_cache_dir = path.join(this_cache_dir, patient_id)\n try:\n this_provenance = self.load_provenance(patient_cache_dir\n =patient_cache_dir)\n except:\n this_provenance = None\n if this_provenance:\n if not cache_provenance:\n cache_provenance = this_provenance\n else:\n num_discrepant += compare_provenance(this_provenance,\n cache_provenance)\n if num_discrepant == 0:\n provenance_summary[cache_name] = cache_provenance\n else:\n provenance_summary[cache_name] = None\n return provenance_summary\n", "role": "user" }, { "content": "summarize_provenance_per_cache", "role": "assistant" } ]
def x(self): if self.dataframe_hash: return self.dataframe_hash else: df = self._as_dataframe_unmodified() return self.dataframe_hash
summarize_dataframe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.dataframe_hash:\n return self.dataframe_hash\n else:\n df = self._as_dataframe_unmodified()\n return self.dataframe_hash\n", "role": "user" }, { "content": "summarize_dataframe", "role": "assistant" } ]
def x(self): provenance_per_cache = self.summarize_provenance_per_cache() summary_provenance = None num_discrepant = 0 for cache in provenance_per_cache: if not summary_provenance: summary_provenance = provenance_per_cache[cache] summary_provenance_name = cache num_discrepant += compare_provenance(provenance_per_cache[cache], summary_provenance, left_outer_diff='In %s but not in %s' % ( cache, summary_provenance_name), right_outer_diff= 'In %s but not in %s' % (summary_provenance_name, cache)) if num_discrepant == 0: prov = summary_provenance else: prov = provenance_per_cache return prov
summarize_provenance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n provenance_per_cache = self.summarize_provenance_per_cache()\n summary_provenance = None\n num_discrepant = 0\n for cache in provenance_per_cache:\n if not summary_provenance:\n summary_provenance = provenance_per_cache[cache]\n summary_provenance_name = cache\n num_discrepant += compare_provenance(provenance_per_cache[cache],\n summary_provenance, left_outer_diff='In %s but not in %s' % (\n cache, summary_provenance_name), right_outer_diff=\n 'In %s but not in %s' % (summary_provenance_name, cache))\n if num_discrepant == 0:\n prov = summary_provenance\n else:\n prov = provenance_per_cache\n return prov\n", "role": "user" }, { "content": "summarize_provenance", "role": "assistant" } ]
def x(self): provenance_file_summary = self.summarize_provenance() dataframe_hash = self.summarize_dataframe() results = {'provenance_file_summary': provenance_file_summary, 'dataframe_hash': dataframe_hash} return results
summarize_data_sources
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n provenance_file_summary = self.summarize_provenance()\n dataframe_hash = self.summarize_dataframe()\n results = {'provenance_file_summary': provenance_file_summary,\n 'dataframe_hash': dataframe_hash}\n return results\n", "role": "user" }, { "content": "summarize_data_sources", "role": "assistant" } ]
def x(variant, variant_metadata): sample_info = variant_metadata['sample_info'] assert len(sample_info ) == 2, 'More than two samples found in the somatic VCF' tumor_stats = _strelka_variant_stats(variant, sample_info['TUMOR']) normal_stats = _strelka_variant_stats(variant, sample_info['NORMAL']) return SomaticVariantStats(tumor_stats=tumor_stats, normal_stats= normal_stats)
strelka_somatic_variant_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(variant, variant_metadata):\n sample_info = variant_metadata['sample_info']\n assert len(sample_info\n ) == 2, 'More than two samples found in the somatic VCF'\n tumor_stats = _strelka_variant_stats(variant, sample_info['TUMOR'])\n normal_stats = _strelka_variant_stats(variant, sample_info['NORMAL'])\n return SomaticVariantStats(tumor_stats=tumor_stats, normal_stats=\n normal_stats)\n", "role": "user" }, { "content": "strelka_somatic_variant_stats", "role": "assistant" } ]
def x(variant, sample_info): if variant.is_deletion or variant.is_insertion: ref_depth = int(sample_info['TAR'][0]) alt_depth = int(sample_info['TIR'][0]) depth = ref_depth + alt_depth else: ref_depth = int(sample_info[variant.ref + 'U'][0]) alt_depth = int(sample_info[variant.alt + 'U'][0]) depth = alt_depth + ref_depth if depth > 0: vaf = float(alt_depth) / depth else: vaf = None return VariantStats(depth=depth, alt_depth=alt_depth, variant_allele_frequency=vaf)
strelka_variant_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(variant, sample_info):\n if variant.is_deletion or variant.is_insertion:\n ref_depth = int(sample_info['TAR'][0])\n alt_depth = int(sample_info['TIR'][0])\n depth = ref_depth + alt_depth\n else:\n ref_depth = int(sample_info[variant.ref + 'U'][0])\n alt_depth = int(sample_info[variant.alt + 'U'][0])\n depth = alt_depth + ref_depth\n if depth > 0:\n vaf = float(alt_depth) / depth\n else:\n vaf = None\n return VariantStats(depth=depth, alt_depth=alt_depth,\n variant_allele_frequency=vaf)\n", "role": "user" }, { "content": "strelka_variant_stats", "role": "assistant" } ]
def x(variant, variant_metadata): sample_info = variant_metadata['sample_info'] assert len(sample_info ) == 2, 'More than two samples found in the somatic VCF' tumor_sample_infos = [info for info in sample_info.values() if info[ 'GT'] == '0/1'] assert len(tumor_sample_infos ) == 1, 'More than one tumor sample found in the VCF file' tumor_sample_info = tumor_sample_infos[0] normal_sample_info = [info for info in sample_info.values() if info[ 'GT'] != '0/1'][0] tumor_stats = _mutect_variant_stats(variant, tumor_sample_info) normal_stats = _mutect_variant_stats(variant, normal_sample_info) return SomaticVariantStats(tumor_stats=tumor_stats, normal_stats= normal_stats)
mutect_somatic_variant_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(variant, variant_metadata):\n sample_info = variant_metadata['sample_info']\n assert len(sample_info\n ) == 2, 'More than two samples found in the somatic VCF'\n tumor_sample_infos = [info for info in sample_info.values() if info[\n 'GT'] == '0/1']\n assert len(tumor_sample_infos\n ) == 1, 'More than one tumor sample found in the VCF file'\n tumor_sample_info = tumor_sample_infos[0]\n normal_sample_info = [info for info in sample_info.values() if info[\n 'GT'] != '0/1'][0]\n tumor_stats = _mutect_variant_stats(variant, tumor_sample_info)\n normal_stats = _mutect_variant_stats(variant, normal_sample_info)\n return SomaticVariantStats(tumor_stats=tumor_stats, normal_stats=\n normal_stats)\n", "role": "user" }, { "content": "mutect_somatic_variant_stats", "role": "assistant" } ]
def x(variant, sample_info): ref_depth, alt_depth = sample_info['AD'] depth = int(ref_depth) + int(alt_depth) vaf = float(alt_depth) / depth return VariantStats(depth=depth, alt_depth=alt_depth, variant_allele_frequency=vaf)
mutect_variant_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(variant, sample_info):\n ref_depth, alt_depth = sample_info['AD']\n depth = int(ref_depth) + int(alt_depth)\n vaf = float(alt_depth) / depth\n return VariantStats(depth=depth, alt_depth=alt_depth,\n variant_allele_frequency=vaf)\n", "role": "user" }, { "content": "mutect_variant_stats", "role": "assistant" } ]
def x(variant, variant_metadata): tumor_stats = None normal_stats = None if 't_ref_count' in variant_metadata: tumor_stats = _maf_variant_stats(variant, variant_metadata, prefix='t') if 'n_ref_count' in variant_metadata: normal_stats = _maf_variant_stats(variant, variant_metadata, prefix='n' ) return SomaticVariantStats(tumor_stats=tumor_stats, normal_stats= normal_stats)
maf_somatic_variant_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(variant, variant_metadata):\n tumor_stats = None\n normal_stats = None\n if 't_ref_count' in variant_metadata:\n tumor_stats = _maf_variant_stats(variant, variant_metadata, prefix='t')\n if 'n_ref_count' in variant_metadata:\n normal_stats = _maf_variant_stats(variant, variant_metadata, prefix='n'\n )\n return SomaticVariantStats(tumor_stats=tumor_stats, normal_stats=\n normal_stats)\n", "role": "user" }, { "content": "maf_somatic_variant_stats", "role": "assistant" } ]
def x(variant_file, variant_metadata): if 'strelka' in variant_file.lower(): return True elif 'NORMAL' in variant_metadata['sample_info'].keys(): return True else: vcf_reader = vcf.Reader(open(variant_file, 'r')) try: vcf_type = vcf_reader.metadata['content'] except KeyError: vcf_type = '' if 'strelka' in vcf_type.lower(): return True return False
vcf_is_strelka
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(variant_file, variant_metadata):\n if 'strelka' in variant_file.lower():\n return True\n elif 'NORMAL' in variant_metadata['sample_info'].keys():\n return True\n else:\n vcf_reader = vcf.Reader(open(variant_file, 'r'))\n try:\n vcf_type = vcf_reader.metadata['content']\n except KeyError:\n vcf_type = ''\n if 'strelka' in vcf_type.lower():\n return True\n return False\n", "role": "user" }, { "content": "vcf_is_strelka", "role": "assistant" } ]
def x(variant, metadata, merge_fn=lambda all_stats: max(all_stats, key=lambda stats: stats.tumor_stats.depth)): all_stats = [] for variant_file, variant_metadata in metadata.items(): if _vcf_is_maf(variant_file=variant_file): stats = maf_somatic_variant_stats(variant, variant_metadata) elif _vcf_is_strelka(variant_file=variant_file, variant_metadata= variant_metadata): stats = strelka_somatic_variant_stats(variant, variant_metadata) elif _vcf_is_mutect(variant_file=variant_file, variant_metadata= variant_metadata): stats = mutect_somatic_variant_stats(variant, variant_metadata) else: raise ValueError( 'Cannot parse sample fields, variant file {} is from an unsupported caller.' .format(variant_file)) all_stats.append(stats) return merge_fn(all_stats)
variant_stats_from_variant
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(variant, metadata, merge_fn=lambda all_stats: max(all_stats, key=lambda\n stats: stats.tumor_stats.depth)):\n all_stats = []\n for variant_file, variant_metadata in metadata.items():\n if _vcf_is_maf(variant_file=variant_file):\n stats = maf_somatic_variant_stats(variant, variant_metadata)\n elif _vcf_is_strelka(variant_file=variant_file, variant_metadata=\n variant_metadata):\n stats = strelka_somatic_variant_stats(variant, variant_metadata)\n elif _vcf_is_mutect(variant_file=variant_file, variant_metadata=\n variant_metadata):\n stats = mutect_somatic_variant_stats(variant, variant_metadata)\n else:\n raise ValueError(\n 'Cannot parse sample fields, variant file {} is from an unsupported caller.'\n .format(variant_file))\n all_stats.append(stats)\n return merge_fn(all_stats)\n", "role": "user" }, { "content": "variant_stats_from_variant", "role": "assistant" } ]
def x(self): try: work = self.queue.get(timeout=self.max_seconds_idle) except queue.Empty: self.end_notify() return False else: self._work(work) self.queue.task_done() return True
get_and_execute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n work = self.queue.get(timeout=self.max_seconds_idle)\n except queue.Empty:\n self.end_notify()\n return False\n else:\n self._work(work)\n self.queue.task_done()\n return True\n", "role": "user" }, { "content": "get_and_execute", "role": "assistant" } ]
def x(self, full_info: bool=False): chat = self.api_object if full_info: self.__format_full(chat) else: self.__format_simple(chat)
format
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, full_info: bool=False):\n chat = self.api_object\n if full_info:\n self.__format_full(chat)\n else:\n self.__format_simple(chat)\n", "role": "user" }, { "content": "format", "role": "assistant" } ]
def x(self): settings = [] for setting in _SETTINGS: value = self.get(setting) is_set = self.is_set(setting) default_value = self.get_default_value(setting) is_supported = True settings.append((setting, value, default_value, is_set, is_supported)) for setting in sorted(self.settings_state.list_keys()): if not self.is_supported(setting): value = self.get(setting) default_value = None is_set = True is_supported = False settings.append((setting, value, default_value, is_set, is_supported)) return settings
list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n settings = []\n for setting in _SETTINGS:\n value = self.get(setting)\n is_set = self.is_set(setting)\n default_value = self.get_default_value(setting)\n is_supported = True\n settings.append((setting, value, default_value, is_set, is_supported))\n for setting in sorted(self.settings_state.list_keys()):\n if not self.is_supported(setting):\n value = self.get(setting)\n default_value = None\n is_set = True\n is_supported = False\n settings.append((setting, value, default_value, is_set,\n is_supported))\n return settings\n", "role": "user" }, { "content": "list", "role": "assistant" } ]
def x(cohort, coverage_path, min_tumor_depth, min_normal_depth=0, pageant_dir_fn=None): if pageant_dir_fn is None: pageant_dir_fn = lambda patient: patient.id columns_both = ['depth1', 'depth2', 'onBP1', 'onBP2', 'numOnLoci', 'fracBPOn1', 'fracBPOn2', 'fracLociOn', 'offBP1', 'offBP2', 'numOffLoci', 'fracBPOff1', 'fracBPOff2', 'fracLociOff'] columns_single = ['depth', 'onBP', 'numOnLoci', 'fracBPOn', 'fracLociOn', 'offBP', 'numOffLoci', 'fracBPOff', 'fracLociOff'] if min_normal_depth < 0: raise ValueError('min_normal_depth must be >= 0') use_tumor_only = min_normal_depth == 0 columns = columns_single if use_tumor_only else columns_both ensembl_loci_dfs = [] for patient in cohort: patient_ensembl_loci_df = pd.read_csv(path.join(coverage_path, pageant_dir_fn(patient), 'cdf.csv'), names=columns, header=1) if use_tumor_only: depth_mask = patient_ensembl_loci_df.depth == min_tumor_depth else: depth_mask = (patient_ensembl_loci_df.depth1 == min_normal_depth ) & (patient_ensembl_loci_df.depth2 == min_tumor_depth) patient_ensembl_loci_df = patient_ensembl_loci_df[depth_mask] assert len(patient_ensembl_loci_df ) == 1, 'Incorrect number of tumor={}, normal={} depth loci results: {} for patient {}'.format( min_tumor_depth, min_normal_depth, len(patient_ensembl_loci_df), patient) patient_ensembl_loci_df['patient_id'] = patient.id ensembl_loci_dfs.append(patient_ensembl_loci_df) ensembl_loci_df = pd.concat(ensembl_loci_dfs) ensembl_loci_df['MB'] = ensembl_loci_df.numOnLoci / 1000000.0 return ensembl_loci_df[['patient_id', 'numOnLoci', 'MB']]
load_ensembl_coverage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cohort, coverage_path, min_tumor_depth, min_normal_depth=0,\n pageant_dir_fn=None):\n if pageant_dir_fn is None:\n pageant_dir_fn = lambda patient: patient.id\n columns_both = ['depth1', 'depth2', 'onBP1', 'onBP2', 'numOnLoci',\n 'fracBPOn1', 'fracBPOn2', 'fracLociOn', 'offBP1', 'offBP2',\n 'numOffLoci', 'fracBPOff1', 'fracBPOff2', 'fracLociOff']\n columns_single = ['depth', 'onBP', 'numOnLoci', 'fracBPOn',\n 'fracLociOn', 'offBP', 'numOffLoci', 'fracBPOff', 'fracLociOff']\n if min_normal_depth < 0:\n raise ValueError('min_normal_depth must be >= 0')\n use_tumor_only = min_normal_depth == 0\n columns = columns_single if use_tumor_only else columns_both\n ensembl_loci_dfs = []\n for patient in cohort:\n patient_ensembl_loci_df = pd.read_csv(path.join(coverage_path,\n pageant_dir_fn(patient), 'cdf.csv'), names=columns, header=1)\n if use_tumor_only:\n depth_mask = patient_ensembl_loci_df.depth == min_tumor_depth\n else:\n depth_mask = (patient_ensembl_loci_df.depth1 == min_normal_depth\n ) & (patient_ensembl_loci_df.depth2 == min_tumor_depth)\n patient_ensembl_loci_df = patient_ensembl_loci_df[depth_mask]\n assert len(patient_ensembl_loci_df\n ) == 1, 'Incorrect number of tumor={}, normal={} depth loci results: {} for patient {}'.format(\n min_tumor_depth, min_normal_depth, len(patient_ensembl_loci_df),\n patient)\n patient_ensembl_loci_df['patient_id'] = patient.id\n ensembl_loci_dfs.append(patient_ensembl_loci_df)\n ensembl_loci_df = pd.concat(ensembl_loci_dfs)\n ensembl_loci_df['MB'] = ensembl_loci_df.numOnLoci / 1000000.0\n return ensembl_loci_df[['patient_id', 'numOnLoci', 'MB']]\n", "role": "user" }, { "content": "load_ensembl_coverage", "role": "assistant" } ]
def x(plot, percent=0.1): plot_bottom, plot_top = plot.get_ylim() return percent * (plot_top - plot_bottom)
vertical_percent
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(plot, percent=0.1):\n plot_bottom, plot_top = plot.get_ylim()\n return percent * (plot_top - plot_bottom)\n", "role": "user" }, { "content": "vertical_percent", "role": "assistant" } ]
def x(plot, min_tick_value=None, max_tick_value=None): for tick, tick_value in zip(plot.get_yticklabels(), plot.get_yticks()): tick_label = as_numeric(tick_value) if tick_label: if (min_tick_value is not None and tick_label < min_tick_value or max_tick_value is not None and tick_label > max_tick_value): tick.set_visible(False)
hide_ticks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(plot, min_tick_value=None, max_tick_value=None):\n for tick, tick_value in zip(plot.get_yticklabels(), plot.get_yticks()):\n tick_label = as_numeric(tick_value)\n if tick_label:\n if (min_tick_value is not None and tick_label < min_tick_value or\n max_tick_value is not None and tick_label > max_tick_value):\n tick.set_visible(False)\n", "role": "user" }, { "content": "hide_ticks", "role": "assistant" } ]
def x(plot, col_a=0, col_b=1, significant=False): plot_bottom, plot_top = plot.get_ylim() line_height = vertical_percent(plot, 0.1) plot_top = plot_top + line_height plot.set_ylim(top=plot_top + line_height * 2) color = 'black' line_top = plot_top + line_height plot.plot([col_a, col_a, col_b, col_b], [plot_top, line_top, line_top, plot_top], lw=1.5, color=color) indicator = '*' if significant else 'ns' plot.text((col_a + col_b) * 0.5, line_top, indicator, ha='center', va= 'bottom', color=color)
add_significance_indicator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(plot, col_a=0, col_b=1, significant=False):\n plot_bottom, plot_top = plot.get_ylim()\n line_height = vertical_percent(plot, 0.1)\n plot_top = plot_top + line_height\n plot.set_ylim(top=plot_top + line_height * 2)\n color = 'black'\n line_top = plot_top + line_height\n plot.plot([col_a, col_a, col_b, col_b], [plot_top, line_top, line_top,\n plot_top], lw=1.5, color=color)\n indicator = '*' if significant else 'ns'\n plot.text((col_a + col_b) * 0.5, line_top, indicator, ha='center', va=\n 'bottom', color=color)\n", "role": "user" }, { "content": "add_significance_indicator", "role": "assistant" } ]
def x(x, y, data, ax=None, significant=None, **kwargs): ax = sb.boxplot(x=x, y=y, data=data, ax=ax, fliersize=0, **kwargs) plot = sb.stripplot(x=x, y=y, data=data, ax=ax, jitter=kwargs.pop( 'jitter', 0.05), color=kwargs.pop('color', '0.3'), **kwargs) if data[y].min() >= 0: hide_negative_y_ticks(plot) if significant is not None: add_significance_indicator(plot=plot, significant=significant) return plot
stripboxplot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, data, ax=None, significant=None, **kwargs):\n ax = sb.boxplot(x=x, y=y, data=data, ax=ax, fliersize=0, **kwargs)\n plot = sb.stripplot(x=x, y=y, data=data, ax=ax, jitter=kwargs.pop(\n 'jitter', 0.05), color=kwargs.pop('color', '0.3'), **kwargs)\n if data[y].min() >= 0:\n hide_negative_y_ticks(plot)\n if significant is not None:\n add_significance_indicator(plot=plot, significant=significant)\n return plot\n", "role": "user" }, { "content": "stripboxplot", "role": "assistant" } ]
def x(data, condition1, condition2, ax=None, condition1_value=None, alternative='two-sided', **kwargs): plot = sb.barplot(x=condition1, y=condition2, ax=ax, data=data, **kwargs) plot.set_ylabel('Percent %s' % condition2) condition1_mask = get_condition_mask(data, condition1, condition1_value) count_table = pd.crosstab(data[condition1], data[condition2]) print(count_table) oddsratio, p_value = fisher_exact(count_table, alternative=alternative) add_significance_indicator(plot=plot, significant=p_value <= 0.05) only_percentage_ticks(plot) if alternative != 'two-sided': raise ValueError( "We need to better understand the one-sided Fisher's Exact test") sided_str = 'two-sided' print("Fisher's Exact Test: OR: {}, p-value={} ({})".format(oddsratio, p_value, sided_str)) return FishersExactResults(oddsratio=oddsratio, p_value=p_value, sided_str=sided_str, with_condition1_series=data[condition1_mask][ condition2], without_condition1_series=data[~condition1_mask][ condition2], plot=plot)
fishers_exact_plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, condition1, condition2, ax=None, condition1_value=None,\n alternative='two-sided', **kwargs):\n plot = sb.barplot(x=condition1, y=condition2, ax=ax, data=data, **kwargs)\n plot.set_ylabel('Percent %s' % condition2)\n condition1_mask = get_condition_mask(data, condition1, condition1_value)\n count_table = pd.crosstab(data[condition1], data[condition2])\n print(count_table)\n oddsratio, p_value = fisher_exact(count_table, alternative=alternative)\n add_significance_indicator(plot=plot, significant=p_value <= 0.05)\n only_percentage_ticks(plot)\n if alternative != 'two-sided':\n raise ValueError(\n \"We need to better understand the one-sided Fisher's Exact test\")\n sided_str = 'two-sided'\n print(\"Fisher's Exact Test: OR: {}, p-value={} ({})\".format(oddsratio,\n p_value, sided_str))\n return FishersExactResults(oddsratio=oddsratio, p_value=p_value,\n sided_str=sided_str, with_condition1_series=data[condition1_mask][\n condition2], without_condition1_series=data[~condition1_mask][\n condition2], plot=plot)\n", "role": "user" }, { "content": "fishers_exact_plot", "role": "assistant" } ]
def x(data, condition, distribution, ax=None, condition_value=None, alternative='two-sided', skip_plot=False, **kwargs): condition_mask = get_condition_mask(data, condition, condition_value) U, p_value = mannwhitneyu(data[condition_mask][distribution], data[~ condition_mask][distribution], alternative=alternative) plot = None if not skip_plot: plot = stripboxplot(x=condition, y=distribution, data=data, ax=ax, significant=p_value <= 0.05, **kwargs) sided_str = sided_str_from_alternative(alternative, condition) print('Mann-Whitney test: U={}, p-value={} ({})'.format(U, p_value, sided_str)) return MannWhitneyResults(U=U, p_value=p_value, sided_str=sided_str, with_condition_series=data[condition_mask][distribution], without_condition_series=data[~condition_mask][distribution], plot=plot )
mann_whitney_plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, condition, distribution, ax=None, condition_value=None,\n alternative='two-sided', skip_plot=False, **kwargs):\n condition_mask = get_condition_mask(data, condition, condition_value)\n U, p_value = mannwhitneyu(data[condition_mask][distribution], data[~\n condition_mask][distribution], alternative=alternative)\n plot = None\n if not skip_plot:\n plot = stripboxplot(x=condition, y=distribution, data=data, ax=ax,\n significant=p_value <= 0.05, **kwargs)\n sided_str = sided_str_from_alternative(alternative, condition)\n print('Mann-Whitney test: U={}, p-value={} ({})'.format(U, p_value,\n sided_str))\n return MannWhitneyResults(U=U, p_value=p_value, sided_str=sided_str,\n with_condition_series=data[condition_mask][distribution],\n without_condition_series=data[~condition_mask][distribution], plot=plot\n )\n", "role": "user" }, { "content": "mann_whitney_plot", "role": "assistant" } ]