source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self):
if self.version and self.version in self.all_versions:
metadata = self.pypi.release_data(self.project_name, self.version)
else:
metadata = self.pypi.release_data(self.project_name, self.
all_versions[0])
if metadata:
for key in metadata.keys():
if (not self.options.fields or self.options.fields and self.
options.fields == key):
print('%s: %s' % (key, metadata[key]))
return 0
|
query_metadata_pypi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.version and self.version in self.all_versions:\n metadata = self.pypi.release_data(self.project_name, self.version)\n else:\n metadata = self.pypi.release_data(self.project_name, self.\n all_versions[0])\n if metadata:\n for key in metadata.keys():\n if (not self.options.fields or self.options.fields and self.\n options.fields == key):\n print('%s: %s' % (key, metadata[key]))\n return 0\n",
"role": "user"
},
{
"content": "query_metadata_pypi",
"role": "assistant"
}
] |
def x(self):
if self.version:
spec = '%s==%s' % (self.project_name, self.version)
else:
spec = self.project_name
if self.all_versions and self.version in self.all_versions:
print_pkg_versions(self.project_name, [self.version])
elif not self.version and self.all_versions:
print_pkg_versions(self.project_name, self.all_versions)
else:
if self.version:
self.logger.error('No pacakge found for version %s' % self.version)
else:
self.logger.error('No pacakge found for %s' % self.project_name)
return 1
return 0
|
versions_available
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.version:\n spec = '%s==%s' % (self.project_name, self.version)\n else:\n spec = self.project_name\n if self.all_versions and self.version in self.all_versions:\n print_pkg_versions(self.project_name, [self.version])\n elif not self.version and self.all_versions:\n print_pkg_versions(self.project_name, self.all_versions)\n else:\n if self.version:\n self.logger.error('No pacakge found for version %s' % self.version)\n else:\n self.logger.error('No pacakge found for %s' % self.project_name)\n return 1\n return 0\n",
"role": "user"
},
{
"content": "versions_available",
"role": "assistant"
}
] |
def x(self, spec):
usage = """You can search PyPI by the following:
name
version
author
author_email
maintainer
maintainer_email
home_page
license
summary
description
keywords
platform
download_url
e.g. yolk -S name=Cheetah
yolk -S name=yolk AND license=PSF
"""
if not spec:
self.logger.error(usage)
return None, None
try:
spec = ' '.join(spec)
operator = 'AND'
first = second = ''
if ' AND ' in spec:
first, second = spec.split('AND')
elif ' OR ' in spec:
first, second = spec.split('OR')
operator = 'OR'
else:
first = spec
key1, term1 = first.split('=')
key1 = key1.strip()
if second:
key2, term2 = second.split('=')
key2 = key2.strip()
spec = {}
spec[key1] = term1
if second:
spec[key2] = term2
except:
self.logger.error(usage)
spec = operator = None
return spec, operator
|
parse_search_spec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, spec):\n usage = \"\"\"You can search PyPI by the following:\n name\n version\n author\n author_email\n maintainer\n maintainer_email\n home_page\n license\n summary\n description\n keywords\n platform\n download_url\n\n e.g. yolk -S name=Cheetah\n yolk -S name=yolk AND license=PSF\n \"\"\"\n if not spec:\n self.logger.error(usage)\n return None, None\n try:\n spec = ' '.join(spec)\n operator = 'AND'\n first = second = ''\n if ' AND ' in spec:\n first, second = spec.split('AND')\n elif ' OR ' in spec:\n first, second = spec.split('OR')\n operator = 'OR'\n else:\n first = spec\n key1, term1 = first.split('=')\n key1 = key1.strip()\n if second:\n key2, term2 = second.split('=')\n key2 = key2.strip()\n spec = {}\n spec[key1] = term1\n if second:\n spec[key2] = term2\n except:\n self.logger.error(usage)\n spec = operator = None\n return spec, operator\n",
"role": "user"
},
{
"content": "parse_search_spec",
"role": "assistant"
}
] |
def x(self):
spec = self.pkg_spec
search_arg = self.options.pypi_search
spec.insert(0, search_arg.strip())
spec, operator = self.parse_search_spec(spec)
if not spec:
return 1
for pkg in self.pypi.search(spec, operator):
if pkg['summary']:
summary = pkg['summary'].encode('utf-8')
else:
summary = ''
print("""%s (%s):
%s
""" % (pkg['name'].encode('utf-8'),
pkg['version'], summary))
return 0
|
pypi_search
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n spec = self.pkg_spec\n search_arg = self.options.pypi_search\n spec.insert(0, search_arg.strip())\n spec, operator = self.parse_search_spec(spec)\n if not spec:\n return 1\n for pkg in self.pypi.search(spec, operator):\n if pkg['summary']:\n summary = pkg['summary'].encode('utf-8')\n else:\n summary = ''\n print(\"\"\"%s (%s):\n %s\n \"\"\" % (pkg['name'].encode('utf-8'),\n pkg['version'], summary))\n return 0\n",
"role": "user"
},
{
"content": "pypi_search",
"role": "assistant"
}
] |
def x(self):
pprinter = pprint.PrettyPrinter()
try:
entry_map = pkg_resources.get_entry_map(self.options.show_entry_map)
if entry_map:
pprinter.pprint(entry_map)
except pkg_resources.DistributionNotFound:
self.logger.error('Distribution not found: %s' % self.options.
show_entry_map)
return 1
return 0
|
show_entry_map
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n pprinter = pprint.PrettyPrinter()\n try:\n entry_map = pkg_resources.get_entry_map(self.options.show_entry_map)\n if entry_map:\n pprinter.pprint(entry_map)\n except pkg_resources.DistributionNotFound:\n self.logger.error('Distribution not found: %s' % self.options.\n show_entry_map)\n return 1\n return 0\n",
"role": "user"
},
{
"content": "show_entry_map",
"role": "assistant"
}
] |
def x(self):
found = False
for entry_point in pkg_resources.iter_entry_points(self.options.
show_entry_points):
found = True
try:
plugin = entry_point.load()
print(plugin.__module__)
print(' %s' % entry_point)
if plugin.__doc__:
print(plugin.__doc__)
print
except ImportError:
pass
if not found:
self.logger.error('No entry points found for %s' % self.options.
show_entry_points)
return 1
return 0
|
show_entry_points
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n found = False\n for entry_point in pkg_resources.iter_entry_points(self.options.\n show_entry_points):\n found = True\n try:\n plugin = entry_point.load()\n print(plugin.__module__)\n print(' %s' % entry_point)\n if plugin.__doc__:\n print(plugin.__doc__)\n print\n except ImportError:\n pass\n if not found:\n self.logger.error('No entry points found for %s' % self.options.\n show_entry_points)\n return 1\n return 0\n",
"role": "user"
},
{
"content": "show_entry_points",
"role": "assistant"
}
] |
def x(self, want_installed):
all_versions = []
arg_str = ''.join(self.pkg_spec)
if '==' not in arg_str:
project_name = arg_str
version = None
else:
project_name, version = arg_str.split('==')
project_name = project_name.strip()
version = version.strip()
if want_installed:
dists = Distributions()
project_name = dists.case_sensitive_name(project_name)
else:
project_name, all_versions = self.pypi.query_versions_pypi(project_name
)
if not len(all_versions):
msg = "I'm afraid we have no '%s' at " % project_name
msg += 'The Cheese Shop. A little Red Leicester, perhaps?'
self.logger.error(msg)
sys.exit(2)
return project_name, version, all_versions
|
parse_pkg_ver
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, want_installed):\n all_versions = []\n arg_str = ''.join(self.pkg_spec)\n if '==' not in arg_str:\n project_name = arg_str\n version = None\n else:\n project_name, version = arg_str.split('==')\n project_name = project_name.strip()\n version = version.strip()\n if want_installed:\n dists = Distributions()\n project_name = dists.case_sensitive_name(project_name)\n else:\n project_name, all_versions = self.pypi.query_versions_pypi(project_name\n )\n if not len(all_versions):\n msg = \"I'm afraid we have no '%s' at \" % project_name\n msg += 'The Cheese Shop. A little Red Leicester, perhaps?'\n self.logger.error(msg)\n sys.exit(2)\n return project_name, version, all_versions\n",
"role": "user"
},
{
"content": "parse_pkg_ver",
"role": "assistant"
}
] |
def x(api):
if api == USED_API:
raise ValueError
sys.meta_path.insert(0, ImportHookBackport(api))
|
install_backport_hook
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(api):\n if api == USED_API:\n raise ValueError\n sys.meta_path.insert(0, ImportHookBackport(api))\n",
"role": "user"
},
{
"content": "install_backport_hook",
"role": "assistant"
}
] |
def x(api):
if api == USED_API:
raise ValueError
sys.meta_path.insert(0, ImportHookDeny(api))
|
install_deny_hook
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(api):\n if api == USED_API:\n raise ValueError\n sys.meta_path.insert(0, ImportHookDeny(api))\n",
"role": "user"
},
{
"content": "install_deny_hook",
"role": "assistant"
}
] |
def x(cmd, env=None, max_timeout=None):
arglist = cmd.split()
output = os.tmpfile()
try:
pipe = Popen(arglist, stdout=output, stderr=STDOUT, env=env)
except Exception as errmsg:
return 1, errmsg
if max_timeout:
start = time.time()
while pipe.poll() is None:
time.sleep(0.1)
if time.time() - start > max_timeout:
os.kill(pipe.pid, signal.SIGINT)
pipe.wait()
return 1, 'Time exceeded'
pipe.wait()
output.seek(0)
return pipe.returncode, output.read()
|
run_command
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cmd, env=None, max_timeout=None):\n arglist = cmd.split()\n output = os.tmpfile()\n try:\n pipe = Popen(arglist, stdout=output, stderr=STDOUT, env=env)\n except Exception as errmsg:\n return 1, errmsg\n if max_timeout:\n start = time.time()\n while pipe.poll() is None:\n time.sleep(0.1)\n if time.time() - start > max_timeout:\n os.kill(pipe.pid, signal.SIGINT)\n pipe.wait()\n return 1, 'Time exceeded'\n pipe.wait()\n output.seek(0)\n return pipe.returncode, output.read()\n",
"role": "user"
},
{
"content": "run_command",
"role": "assistant"
}
] |
async def iter(self, url: Union[str, methods], data: Optional[
MutableMapping]=None, headers: Optional[MutableMapping]=None, *, limit:
int=200, iterkey: Optional[str]=None, itermode: Optional[str]=None,
minimum_time: Optional[int]=None, as_json: Optional[bool]=None
) ->AsyncIterator[dict]:
"""
Iterate over a slack API method supporting pagination
When using :class:`slack.methods` the request is made `as_json` if available
Args:
url: :class:`slack.methods` or url string
data: JSON encodable MutableMapping
headers:
limit: Maximum number of results to return per call.
iterkey: Key in response data to iterate over (required for url string).
itermode: Iteration mode (required for url string) (one of `cursor`, `page` or `timeline`)
minimum_time: Minimum elapsed time (in seconds) between two calls to the Slack API (default to 0).
If not reached the client will sleep for the remaining time.
as_json: Post JSON to the slack API
Returns:
Async iterator over `response_data[key]`
"""
itervalue = None
if not data:
data = {}
last_request_time = None
while True:
current_time = time.time()
if (minimum_time and last_request_time and last_request_time +
minimum_time > current_time):
await self.sleep(last_request_time + minimum_time - current_time)
data, iterkey, itermode = sansio.prepare_iter_request(url, data,
iterkey=iterkey, itermode=itermode, limit=limit, itervalue=
itervalue)
last_request_time = time.time()
response_data = await self.query(url, data, headers, as_json)
itervalue = sansio.decode_iter_request(response_data)
for item in response_data[iterkey]:
yield item
if not itervalue:
break
|
iter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def iter(self, url: Union[str, methods], data: Optional[\n MutableMapping]=None, headers: Optional[MutableMapping]=None, *, limit:\n int=200, iterkey: Optional[str]=None, itermode: Optional[str]=None,\n minimum_time: Optional[int]=None, as_json: Optional[bool]=None\n ) ->AsyncIterator[dict]:\n \"\"\"\n Iterate over a slack API method supporting pagination\n\n When using :class:`slack.methods` the request is made `as_json` if available\n\n Args:\n url: :class:`slack.methods` or url string\n data: JSON encodable MutableMapping\n headers:\n limit: Maximum number of results to return per call.\n iterkey: Key in response data to iterate over (required for url string).\n itermode: Iteration mode (required for url string) (one of `cursor`, `page` or `timeline`)\n minimum_time: Minimum elapsed time (in seconds) between two calls to the Slack API (default to 0).\n If not reached the client will sleep for the remaining time.\n as_json: Post JSON to the slack API\n Returns:\n Async iterator over `response_data[key]`\n\n \"\"\"\n itervalue = None\n if not data:\n data = {}\n last_request_time = None\n while True:\n current_time = time.time()\n if (minimum_time and last_request_time and last_request_time +\n minimum_time > current_time):\n await self.sleep(last_request_time + minimum_time - current_time)\n data, iterkey, itermode = sansio.prepare_iter_request(url, data,\n iterkey=iterkey, itermode=itermode, limit=limit, itervalue=\n itervalue)\n last_request_time = time.time()\n response_data = await self.query(url, data, headers, as_json)\n itervalue = sansio.decode_iter_request(response_data)\n for item in response_data[iterkey]:\n yield item\n if not itervalue:\n break\n",
"role": "user"
},
{
"content": "iter",
"role": "assistant"
}
] |
async def _incoming_from_rtm(self, url: str, bot_id: str) ->AsyncIterator[
events.Event]:
"""
Connect and discard incoming RTM event if necessary.
:param url: Websocket url
:param bot_id: Bot ID
:return: Incoming events
"""
async for data in self._rtm(url):
event = events.Event.from_rtm(json.loads(data))
if sansio.need_reconnect(event):
break
elif sansio.discard_event(event, bot_id):
continue
else:
yield event
|
incoming_from_rtm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def _incoming_from_rtm(self, url: str, bot_id: str) ->AsyncIterator[\n events.Event]:\n \"\"\"\n Connect and discard incoming RTM event if necessary.\n\n :param url: Websocket url\n :param bot_id: Bot ID\n :return: Incoming events\n \"\"\"\n async for data in self._rtm(url):\n event = events.Event.from_rtm(json.loads(data))\n if sansio.need_reconnect(event):\n break\n elif sansio.discard_event(event, bot_id):\n continue\n else:\n yield event\n",
"role": "user"
},
{
"content": "incoming_from_rtm",
"role": "assistant"
}
] |
def x(request, template_name='registration/login.html', redirect_field_name
=REDIRECT_FIELD_NAME, authentication_form=AuthenticationForm,
current_app=None, extra_context=None):
redirect_to = request.POST.get(redirect_field_name, request.GET.get(
redirect_field_name, ''))
if request.method == 'POST':
form = authentication_form(data=request.POST, request=request)
if form.is_valid():
netloc = urlparse(redirect_to)[1]
if not redirect_to:
redirect_to = settings.LOGIN_REDIRECT_URL
elif netloc and netloc != request.get_host():
redirect_to = settings.LOGIN_REDIRECT_URL
auth_login(request, form.get_user())
return redirect(redirect_to)
else:
form = authentication_form(request)
current_site = get_current_site(request)
context = {'form': form, redirect_field_name: redirect_to, 'site':
current_site, 'site_name': current_site.name}
if extra_context is not None:
context.update(extra_context)
request.current_app = current_app
return TemplateResponse(request, template_name, context)
|
login
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(request, template_name='registration/login.html', redirect_field_name\n =REDIRECT_FIELD_NAME, authentication_form=AuthenticationForm,\n current_app=None, extra_context=None):\n redirect_to = request.POST.get(redirect_field_name, request.GET.get(\n redirect_field_name, ''))\n if request.method == 'POST':\n form = authentication_form(data=request.POST, request=request)\n if form.is_valid():\n netloc = urlparse(redirect_to)[1]\n if not redirect_to:\n redirect_to = settings.LOGIN_REDIRECT_URL\n elif netloc and netloc != request.get_host():\n redirect_to = settings.LOGIN_REDIRECT_URL\n auth_login(request, form.get_user())\n return redirect(redirect_to)\n else:\n form = authentication_form(request)\n current_site = get_current_site(request)\n context = {'form': form, redirect_field_name: redirect_to, 'site':\n current_site, 'site_name': current_site.name}\n if extra_context is not None:\n context.update(extra_context)\n request.current_app = current_app\n return TemplateResponse(request, template_name, context)\n",
"role": "user"
},
{
"content": "login",
"role": "assistant"
}
] |
def x(self, dist):
if dist.location.lower() == get_python_lib().lower():
filename = os.path.join(dist.location, dist.egg_name() + '.egg-info')
else:
filename = dist.location
status, output = getstatusoutput('/usr/bin/acmefile -q %s' % filename)
if status == 0:
return self.name
else:
return ''
|
package_manager_owns
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dist):\n if dist.location.lower() == get_python_lib().lower():\n filename = os.path.join(dist.location, dist.egg_name() + '.egg-info')\n else:\n filename = dist.location\n status, output = getstatusoutput('/usr/bin/acmefile -q %s' % filename)\n if status == 0:\n return self.name\n else:\n return ''\n",
"role": "user"
},
{
"content": "package_manager_owns",
"role": "assistant"
}
] |
def x():
try:
http_proxy = os.environ['HTTP_PROXY']
except KeyError:
return
if not http_proxy.startswith('http://'):
match = re.match('(http://)?([-_\\.A-Za-z]+):(\\d+)', http_proxy)
os.environ['HTTP_PROXY'] = 'http://%s:%s' % (match.group(2), match.
group(3))
return
|
check_proxy_setting
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n try:\n http_proxy = os.environ['HTTP_PROXY']\n except KeyError:\n return\n if not http_proxy.startswith('http://'):\n match = re.match('(http://)?([-_\\\\.A-Za-z]+):(\\\\d+)', http_proxy)\n os.environ['HTTP_PROXY'] = 'http://%s:%s' % (match.group(2), match.\n group(3))\n return\n",
"role": "user"
},
{
"content": "check_proxy_setting",
"role": "assistant"
}
] |
def x(pkg_type, url):
bad_stuff = ['?modtime', '#md5=']
for junk in bad_stuff:
if junk in url:
url = url.split(junk)[0]
break
if url.endswith('-dev'):
url = url.split('#egg=')[0]
if pkg_type == 'all':
return url
elif pkg_type == 'source':
valid_source_types = ['.tgz', '.tar.gz', '.zip', '.tbz2', '.tar.bz2']
for extension in valid_source_types:
if url.lower().endswith(extension):
return url
elif pkg_type == 'egg':
if url.lower().endswith('.egg'):
return url
|
filter_url
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pkg_type, url):\n bad_stuff = ['?modtime', '#md5=']\n for junk in bad_stuff:\n if junk in url:\n url = url.split(junk)[0]\n break\n if url.endswith('-dev'):\n url = url.split('#egg=')[0]\n if pkg_type == 'all':\n return url\n elif pkg_type == 'source':\n valid_source_types = ['.tgz', '.tar.gz', '.zip', '.tbz2', '.tar.bz2']\n for extension in valid_source_types:\n if url.lower().endswith(extension):\n return url\n elif pkg_type == 'egg':\n if url.lower().endswith('.egg'):\n return url\n",
"role": "user"
},
{
"content": "filter_url",
"role": "assistant"
}
] |
def x(self, host, handler, request_body, verbose):
self.verbose = verbose
url = 'http://' + host + handler
request = urllib2.Request(url)
request.add_data(request_body)
request.add_header('User-Agent', self.user_agent)
request.add_header('Content-Type', 'text/xml')
proxy_handler = urllib2.ProxyHandler()
opener = urllib2.build_opener(proxy_handler)
fhandle = opener.open(request)
return self.parse_response(fhandle)
|
request
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, host, handler, request_body, verbose):\n self.verbose = verbose\n url = 'http://' + host + handler\n request = urllib2.Request(url)\n request.add_data(request_body)\n request.add_header('User-Agent', self.user_agent)\n request.add_header('Content-Type', 'text/xml')\n proxy_handler = urllib2.ProxyHandler()\n opener = urllib2.build_opener(proxy_handler)\n fhandle = opener.open(request)\n return self.parse_response(fhandle)\n",
"role": "user"
},
{
"content": "request",
"role": "assistant"
}
] |
def x(self):
if self.no_cache:
self.pkg_list = self.list_packages()
return
if not os.path.exists(self.yolk_dir):
os.mkdir(self.yolk_dir)
if os.path.exists(self.pkg_cache_file):
self.pkg_list = self.query_cached_package_list()
else:
self.logger.debug('DEBUG: Fetching package list cache from PyPi...')
self.fetch_pkg_list()
|
get_cache
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.no_cache:\n self.pkg_list = self.list_packages()\n return\n if not os.path.exists(self.yolk_dir):\n os.mkdir(self.yolk_dir)\n if os.path.exists(self.pkg_cache_file):\n self.pkg_list = self.query_cached_package_list()\n else:\n self.logger.debug('DEBUG: Fetching package list cache from PyPi...')\n self.fetch_pkg_list()\n",
"role": "user"
},
{
"content": "get_cache",
"role": "assistant"
}
] |
def x(self):
check_proxy_setting()
if os.environ.has_key('XMLRPC_DEBUG'):
debug = 1
else:
debug = 0
try:
return xmlrpclib.Server(XML_RPC_SERVER, transport=ProxyTransport(),
verbose=debug)
except IOError:
self.logger("ERROR: Can't connect to XML-RPC server: %s" %
XML_RPC_SERVER)
|
get_xmlrpc_server
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n check_proxy_setting()\n if os.environ.has_key('XMLRPC_DEBUG'):\n debug = 1\n else:\n debug = 0\n try:\n return xmlrpclib.Server(XML_RPC_SERVER, transport=ProxyTransport(),\n verbose=debug)\n except IOError:\n self.logger(\"ERROR: Can't connect to XML-RPC server: %s\" %\n XML_RPC_SERVER)\n",
"role": "user"
},
{
"content": "get_xmlrpc_server",
"role": "assistant"
}
] |
def x(self, package_name):
if not package_name in self.pkg_list:
self.logger.debug('Package %s not in cache, querying PyPI...' %
package_name)
self.fetch_pkg_list()
versions = []
for pypi_pkg in self.pkg_list:
if pypi_pkg.lower() == package_name.lower():
if self.debug:
self.logger.debug('DEBUG: %s' % package_name)
versions = self.package_releases(pypi_pkg)
package_name = pypi_pkg
break
return package_name, versions
|
query_versions_pypi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, package_name):\n if not package_name in self.pkg_list:\n self.logger.debug('Package %s not in cache, querying PyPI...' %\n package_name)\n self.fetch_pkg_list()\n versions = []\n for pypi_pkg in self.pkg_list:\n if pypi_pkg.lower() == package_name.lower():\n if self.debug:\n self.logger.debug('DEBUG: %s' % package_name)\n versions = self.package_releases(pypi_pkg)\n package_name = pypi_pkg\n break\n return package_name, versions\n",
"role": "user"
},
{
"content": "query_versions_pypi",
"role": "assistant"
}
] |
def x(self):
if self.debug:
self.logger.debug('DEBUG: reading pickled cache file')
return cPickle.load(open(self.pkg_cache_file, 'r'))
|
query_cached_package_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.debug:\n self.logger.debug('DEBUG: reading pickled cache file')\n return cPickle.load(open(self.pkg_cache_file, 'r'))\n",
"role": "user"
},
{
"content": "query_cached_package_list",
"role": "assistant"
}
] |
def x(self):
self.logger.debug('DEBUG: Fetching package name list from PyPI')
package_list = self.list_packages()
cPickle.dump(package_list, open(self.pkg_cache_file, 'w'))
self.pkg_list = package_list
|
fetch_pkg_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.logger.debug('DEBUG: Fetching package name list from PyPI')\n package_list = self.list_packages()\n cPickle.dump(package_list, open(self.pkg_cache_file, 'w'))\n self.pkg_list = package_list\n",
"role": "user"
},
{
"content": "fetch_pkg_list",
"role": "assistant"
}
] |
def x(self, spec, operator):
return self.xmlrpc.search(spec, operator.lower())
|
search
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, spec, operator):\n return self.xmlrpc.search(spec, operator.lower())\n",
"role": "user"
},
{
"content": "search",
"role": "assistant"
}
] |
def x(self, package_name, version):
try:
return self.xmlrpc.release_data(package_name, version)
except xmlrpclib.Fault:
return
|
release_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, package_name, version):\n try:\n return self.xmlrpc.release_data(package_name, version)\n except xmlrpclib.Fault:\n return\n",
"role": "user"
},
{
"content": "release_data",
"role": "assistant"
}
] |
def x(self, package_name):
if self.debug:
self.logger.debug('DEBUG: querying PyPI for versions of ' +
package_name)
return self.xmlrpc.package_releases(package_name)
|
package_releases
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, package_name):\n if self.debug:\n self.logger.debug('DEBUG: querying PyPI for versions of ' +\n package_name)\n return self.xmlrpc.package_releases(package_name)\n",
"role": "user"
},
{
"content": "package_releases",
"role": "assistant"
}
] |
def x(self, package_name, version='', pkg_type='all'):
if version:
versions = [version]
else:
package_name, versions = self.query_versions_pypi(package_name)
all_urls = []
for ver in versions:
metadata = self.release_data(package_name, ver)
for urls in self.release_urls(package_name, ver):
if pkg_type == 'source' and urls['packagetype'] == 'sdist':
all_urls.append(urls['url'])
elif pkg_type == 'egg' and urls['packagetype'].startswith('bdist'):
all_urls.append(urls['url'])
elif pkg_type == 'all':
all_urls.append(urls['url'])
if metadata and metadata.has_key('download_url') and metadata[
'download_url'] != 'UNKNOWN' and metadata['download_url'] != None:
if metadata['download_url'] not in all_urls:
if pkg_type != 'all':
url = filter_url(pkg_type, metadata['download_url'])
if url:
all_urls.append(url)
return all_urls
|
get_download_urls
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, package_name, version='', pkg_type='all'):\n if version:\n versions = [version]\n else:\n package_name, versions = self.query_versions_pypi(package_name)\n all_urls = []\n for ver in versions:\n metadata = self.release_data(package_name, ver)\n for urls in self.release_urls(package_name, ver):\n if pkg_type == 'source' and urls['packagetype'] == 'sdist':\n all_urls.append(urls['url'])\n elif pkg_type == 'egg' and urls['packagetype'].startswith('bdist'):\n all_urls.append(urls['url'])\n elif pkg_type == 'all':\n all_urls.append(urls['url'])\n if metadata and metadata.has_key('download_url') and metadata[\n 'download_url'] != 'UNKNOWN' and metadata['download_url'] != None:\n if metadata['download_url'] not in all_urls:\n if pkg_type != 'all':\n url = filter_url(pkg_type, metadata['download_url'])\n if url:\n all_urls.append(url)\n return all_urls\n",
"role": "user"
},
{
"content": "get_download_urls",
"role": "assistant"
}
] |
def x(self) ->'Event':
return self.__class__(copy.deepcopy(self.event), copy.deepcopy(self.
metadata))
|
clone
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->'Event':\n return self.__class__(copy.deepcopy(self.event), copy.deepcopy(self.\n metadata))\n",
"role": "user"
},
{
"content": "clone",
"role": "assistant"
}
] |
def x(cls, raw_event: MutableMapping) ->'Event':
if raw_event['type'].startswith('message'):
return Message(raw_event)
else:
return Event(raw_event)
|
from_rtm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, raw_event: MutableMapping) ->'Event':\n if raw_event['type'].startswith('message'):\n return Message(raw_event)\n else:\n return Event(raw_event)\n",
"role": "user"
},
{
"content": "from_rtm",
"role": "assistant"
}
] |
def x(cls, raw_body: MutableMapping, verification_token: Optional[str]=None,
team_id: Optional[str]=None) ->'Event':
if verification_token and raw_body['token'] != verification_token:
raise exceptions.FailedVerification(raw_body['token'], raw_body[
'team_id'])
if team_id and raw_body['team_id'] != team_id:
raise exceptions.FailedVerification(raw_body['token'], raw_body[
'team_id'])
if raw_body['event']['type'].startswith('message'):
return Message(raw_body['event'], metadata=raw_body)
else:
return Event(raw_body['event'], metadata=raw_body)
|
from_http
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, raw_body: MutableMapping, verification_token: Optional[str]=None,\n team_id: Optional[str]=None) ->'Event':\n if verification_token and raw_body['token'] != verification_token:\n raise exceptions.FailedVerification(raw_body['token'], raw_body[\n 'team_id'])\n if team_id and raw_body['team_id'] != team_id:\n raise exceptions.FailedVerification(raw_body['token'], raw_body[\n 'team_id'])\n if raw_body['event']['type'].startswith('message'):\n return Message(raw_body['event'], metadata=raw_body)\n else:\n return Event(raw_body['event'], metadata=raw_body)\n",
"role": "user"
},
{
"content": "from_http",
"role": "assistant"
}
] |
def x(self, in_thread: Optional[bool]=None) ->'Message':
data = {'channel': self['channel']}
if in_thread:
if 'message' in self:
data['thread_ts'] = self['message'].get('thread_ts') or self[
'message']['ts']
else:
data['thread_ts'] = self.get('thread_ts') or self['ts']
elif in_thread is None:
if 'message' in self and 'thread_ts' in self['message']:
data['thread_ts'] = self['message']['thread_ts']
elif 'thread_ts' in self:
data['thread_ts'] = self['thread_ts']
return Message(data)
|
response
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, in_thread: Optional[bool]=None) ->'Message':\n data = {'channel': self['channel']}\n if in_thread:\n if 'message' in self:\n data['thread_ts'] = self['message'].get('thread_ts') or self[\n 'message']['ts']\n else:\n data['thread_ts'] = self.get('thread_ts') or self['ts']\n elif in_thread is None:\n if 'message' in self and 'thread_ts' in self['message']:\n data['thread_ts'] = self['message']['thread_ts']\n elif 'thread_ts' in self:\n data['thread_ts'] = self['thread_ts']\n return Message(data)\n",
"role": "user"
},
{
"content": "response",
"role": "assistant"
}
] |
def x(self) ->dict:
data = {**self}
if 'attachments' in self:
data['attachments'] = json.dumps(self['attachments'])
return data
|
serialize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->dict:\n data = {**self}\n if 'attachments' in self:\n data['attachments'] = json.dumps(self['attachments'])\n return data\n",
"role": "user"
},
{
"content": "serialize",
"role": "assistant"
}
] |
def x(self, event_type: str, handler: Any, **detail: Any) ->None:
LOG.info('Registering %s, %s to %s', event_type, detail, handler)
if len(detail) > 1:
raise ValueError(
'Only one detail can be provided for additional routing')
elif not detail:
detail_key, detail_value = '*', '*'
else:
detail_key, detail_value = detail.popitem()
if detail_key not in self._routes[event_type]:
self._routes[event_type][detail_key] = {}
if detail_value not in self._routes[event_type][detail_key]:
self._routes[event_type][detail_key][detail_value] = []
self._routes[event_type][detail_key][detail_value].append(handler)
|
register
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event_type: str, handler: Any, **detail: Any) ->None:\n LOG.info('Registering %s, %s to %s', event_type, detail, handler)\n if len(detail) > 1:\n raise ValueError(\n 'Only one detail can be provided for additional routing')\n elif not detail:\n detail_key, detail_value = '*', '*'\n else:\n detail_key, detail_value = detail.popitem()\n if detail_key not in self._routes[event_type]:\n self._routes[event_type][detail_key] = {}\n if detail_value not in self._routes[event_type][detail_key]:\n self._routes[event_type][detail_key][detail_value] = []\n self._routes[event_type][detail_key][detail_value].append(handler)\n",
"role": "user"
},
{
"content": "register",
"role": "assistant"
}
] |
def x(self, event: Event) ->Iterator[Any]:
LOG.debug('Dispatching event "%s"', event.get('type'))
if event['type'] in self._routes:
for detail_key, detail_values in self._routes.get(event['type'], {}
).items():
event_value = event.get(detail_key, '*')
yield from detail_values.get(event_value, [])
else:
return
|
dispatch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event: Event) ->Iterator[Any]:\n LOG.debug('Dispatching event \"%s\"', event.get('type'))\n if event['type'] in self._routes:\n for detail_key, detail_values in self._routes.get(event['type'], {}\n ).items():\n event_value = event.get(detail_key, '*')\n yield from detail_values.get(event_value, [])\n else:\n return\n",
"role": "user"
},
{
"content": "dispatch",
"role": "assistant"
}
] |
def x(self, pattern: str, handler: Any, flags: int=0, channel: str='*',
subtype: Optional[str]=None) ->None:
LOG.debug('Registering message endpoint "%s: %s"', pattern, handler)
match = re.compile(pattern, flags)
if subtype not in self._routes[channel]:
self._routes[channel][subtype] = dict()
if match in self._routes[channel][subtype]:
self._routes[channel][subtype][match].append(handler)
else:
self._routes[channel][subtype][match] = [handler]
|
register
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pattern: str, handler: Any, flags: int=0, channel: str='*',\n subtype: Optional[str]=None) ->None:\n LOG.debug('Registering message endpoint \"%s: %s\"', pattern, handler)\n match = re.compile(pattern, flags)\n if subtype not in self._routes[channel]:\n self._routes[channel][subtype] = dict()\n if match in self._routes[channel][subtype]:\n self._routes[channel][subtype][match].append(handler)\n else:\n self._routes[channel][subtype][match] = [handler]\n",
"role": "user"
},
{
"content": "register",
"role": "assistant"
}
] |
def x(self, message: Message) ->Iterator[Any]:
if 'text' in message:
text = message['text'] or ''
elif 'message' in message:
text = message['message'].get('text', '')
else:
text = ''
msg_subtype = message.get('subtype')
for subtype, matchs in itertools.chain(self._routes[message['channel']]
.items(), self._routes['*'].items()):
if msg_subtype == subtype or subtype is None:
for match, endpoints in matchs.items():
if match.search(text):
yield from endpoints
|
dispatch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, message: Message) ->Iterator[Any]:\n if 'text' in message:\n text = message['text'] or ''\n elif 'message' in message:\n text = message['message'].get('text', '')\n else:\n text = ''\n msg_subtype = message.get('subtype')\n for subtype, matchs in itertools.chain(self._routes[message['channel']]\n .items(), self._routes['*'].items()):\n if msg_subtype == subtype or subtype is None:\n for match, endpoints in matchs.items():\n if match.search(text):\n yield from endpoints\n",
"role": "user"
},
{
"content": "dispatch",
"role": "assistant"
}
] |
def x(self, url: Union[str, methods], data: Optional[MutableMapping]=None,
headers: Optional[MutableMapping]=None, as_json: Optional[bool]=None
) ->dict:
url, body, headers = sansio.prepare_request(url=url, data=data, headers
=headers, global_headers=self._headers, token=self._token)
return self._make_query(url, body, headers)
|
query
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, url: Union[str, methods], data: Optional[MutableMapping]=None,\n headers: Optional[MutableMapping]=None, as_json: Optional[bool]=None\n ) ->dict:\n url, body, headers = sansio.prepare_request(url=url, data=data, headers\n =headers, global_headers=self._headers, token=self._token)\n return self._make_query(url, body, headers)\n",
"role": "user"
},
{
"content": "query",
"role": "assistant"
}
] |
def x(self, url: Optional[str]=None, bot_id: Optional[str]=None) ->Iterator[
events.Event]:
while True:
bot_id = bot_id or self._find_bot_id()
url = url or self._find_rtm_url()
for event in self._incoming_from_rtm(url, bot_id):
yield event
url = None
|
rtm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, url: Optional[str]=None, bot_id: Optional[str]=None) ->Iterator[\n events.Event]:\n while True:\n bot_id = bot_id or self._find_bot_id()\n url = url or self._find_rtm_url()\n for event in self._incoming_from_rtm(url, bot_id):\n yield event\n url = None\n",
"role": "user"
},
{
"content": "rtm",
"role": "assistant"
}
] |
def x(self, request, extra_context=None):
context = {'title': _('Log in'), 'app_path': request.get_full_path()}
if (REDIRECT_FIELD_NAME not in request.GET and REDIRECT_FIELD_NAME not in
request.POST):
context[REDIRECT_FIELD_NAME] = request.get_full_path()
context.update(extra_context or {})
defaults = {'extra_context': context, 'current_app': self.name,
'authentication_form': self.login_form or AdminAuthenticationForm,
'template_name': self.login_template or 'admin/login.html'}
return login(request, **defaults)
|
login
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, extra_context=None):\n context = {'title': _('Log in'), 'app_path': request.get_full_path()}\n if (REDIRECT_FIELD_NAME not in request.GET and REDIRECT_FIELD_NAME not in\n request.POST):\n context[REDIRECT_FIELD_NAME] = request.get_full_path()\n context.update(extra_context or {})\n defaults = {'extra_context': context, 'current_app': self.name,\n 'authentication_form': self.login_form or AdminAuthenticationForm,\n 'template_name': self.login_template or 'admin/login.html'}\n return login(request, **defaults)\n",
"role": "user"
},
{
"content": "login",
"role": "assistant"
}
] |
def x(config_file):
def x(fp):
try:
return yaml.safe_load(fp)
except yaml.YAMLError as e:
sys.stderr.write(text_type(e))
sys.exit(1)
if config_file == '-':
return load(sys.stdin)
if not os.path.exists(config_file):
sys.stderr.write(
'ERROR: Must either run next to config.yaml or specify a config file.\n'
+ __doc__)
sys.exit(2)
with open(config_file) as fp:
return load(fp)
|
get_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(config_file):\n\n def x(fp):\n try:\n return yaml.safe_load(fp)\n except yaml.YAMLError as e:\n sys.stderr.write(text_type(e))\n sys.exit(1)\n if config_file == '-':\n return load(sys.stdin)\n if not os.path.exists(config_file):\n sys.stderr.write(\n 'ERROR: Must either run next to config.yaml or specify a config file.\\n'\n + __doc__)\n sys.exit(2)\n with open(config_file) as fp:\n return load(fp)\n",
"role": "user"
},
{
"content": "get_config",
"role": "assistant"
}
] |
def x(config_options, local_options, cli_options):
options = DEFAULT_OPTIONS.copy()
if config_options is not None:
options.update(config_options)
if local_options is not None:
options.update(local_options)
if cli_options is not None:
options.update(cli_options)
return options
|
get_options
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(config_options, local_options, cli_options):\n options = DEFAULT_OPTIONS.copy()\n if config_options is not None:\n options.update(config_options)\n if local_options is not None:\n options.update(local_options)\n if cli_options is not None:\n options.update(cli_options)\n return options\n",
"role": "user"
},
{
"content": "get_options",
"role": "assistant"
}
] |
def x(results, metric, options):
formatter = options['Formatter']
context = metric.copy()
try:
context['dimension'] = list(metric['Dimensions'].values())[0]
except AttributeError:
context['dimension'] = ''
for result in results:
stat_keys = metric['Statistics']
if not isinstance(stat_keys, list):
stat_keys = [stat_keys]
for statistic in stat_keys:
context['statistic'] = statistic
context['Unit'] = result['Unit']
metric_name = (formatter % context).replace('/', '.').lower()
line = '{0} {1} {2}\n'.format(metric_name, result[statistic],
timegm(result['Timestamp'].timetuple()))
sys.stdout.write(line)
|
output_results
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(results, metric, options):\n formatter = options['Formatter']\n context = metric.copy()\n try:\n context['dimension'] = list(metric['Dimensions'].values())[0]\n except AttributeError:\n context['dimension'] = ''\n for result in results:\n stat_keys = metric['Statistics']\n if not isinstance(stat_keys, list):\n stat_keys = [stat_keys]\n for statistic in stat_keys:\n context['statistic'] = statistic\n context['Unit'] = result['Unit']\n metric_name = (formatter % context).replace('/', '.').lower()\n line = '{0} {1} {2}\\n'.format(metric_name, result[statistic],\n timegm(result['Timestamp'].timetuple()))\n sys.stdout.write(line)\n",
"role": "user"
},
{
"content": "output_results",
"role": "assistant"
}
] |
def x(self, gsuri, localpath, binary_mode=False, tmpdir=None):
bucket_name, gs_rel_path = self.parse_uri(gsuri)
bucket = self._client.get_bucket(bucket_name)
ablob = bucket.get_blob(gs_rel_path)
if not ablob:
raise GoogleStorageIOError("No such file on Google Storage: '{}'".
format(gs_rel_path))
tmp_fid, tmp_file_path = tempfile.mkstemp(text=not binary_mode, dir=tmpdir)
ablob.chunk_size = 1 << 30
ablob.download_to_filename(client=self._client, filename=tmp_file_path)
return os.rename(tmp_file_path, localpath)
|
download_to_path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, gsuri, localpath, binary_mode=False, tmpdir=None):\n bucket_name, gs_rel_path = self.parse_uri(gsuri)\n bucket = self._client.get_bucket(bucket_name)\n ablob = bucket.get_blob(gs_rel_path)\n if not ablob:\n raise GoogleStorageIOError(\"No such file on Google Storage: '{}'\".\n format(gs_rel_path))\n tmp_fid, tmp_file_path = tempfile.mkstemp(text=not binary_mode, dir=tmpdir)\n ablob.chunk_size = 1 << 30\n ablob.download_to_filename(client=self._client, filename=tmp_file_path)\n return os.rename(tmp_file_path, localpath)\n",
"role": "user"
},
{
"content": "download_to_path",
"role": "assistant"
}
] |
def x(f, digits, rounding=ROUND_HALF_UP):
return Decimal(str(f)).quantize(Decimal(10) ** (-1 * digits), rounding=
rounding)
|
round_float
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f, digits, rounding=ROUND_HALF_UP):\n return Decimal(str(f)).quantize(Decimal(10) ** (-1 * digits), rounding=\n rounding)\n",
"role": "user"
},
{
"content": "round_float",
"role": "assistant"
}
] |
def x(f, min_digits=2, max_digits=6):
if f >= 1 or f <= 0:
return str(round_float(f, min_digits))
start_str = str(round_float(f, max_digits))
digits = start_str.split('.')[1]
non_zero_indices = []
for i, digit in enumerate(digits):
if digit != '0':
non_zero_indices.append(i + 1)
if len(non_zero_indices) == 0:
num_digits = min_digits
else:
min_non_zero_indices = range(non_zero_indices[0], non_zero_indices[
-1] + 1)[:min_digits]
num_digits = min_non_zero_indices[-1]
return str(round_float(f, num_digits))
|
float_str
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f, min_digits=2, max_digits=6):\n if f >= 1 or f <= 0:\n return str(round_float(f, min_digits))\n start_str = str(round_float(f, max_digits))\n digits = start_str.split('.')[1]\n non_zero_indices = []\n for i, digit in enumerate(digits):\n if digit != '0':\n non_zero_indices.append(i + 1)\n if len(non_zero_indices) == 0:\n num_digits = min_digits\n else:\n min_non_zero_indices = range(non_zero_indices[0], non_zero_indices[\n -1] + 1)[:min_digits]\n num_digits = min_non_zero_indices[-1]\n return str(round_float(f, num_digits))\n",
"role": "user"
},
{
"content": "float_str",
"role": "assistant"
}
] |
def x(self):
user = self.user
if user.first_name is not None:
return self.full_name
elif user.username is not None:
return user.username
else:
return str(user.id)
|
default_format
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n user = self.user\n if user.first_name is not None:\n return self.full_name\n elif user.username is not None:\n return user.username\n else:\n return str(user.id)\n",
"role": "user"
},
{
"content": "default_format",
"role": "assistant"
}
] |
def x(self):
formatted_user = []
if self.user.first_name is not None:
formatted_user.append(self.user.first_name)
if self.user.last_name is not None:
formatted_user.append(self.user.last_name)
return ' '.join(formatted_user)
|
full_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n formatted_user = []\n if self.user.first_name is not None:\n formatted_user.append(self.user.first_name)\n if self.user.last_name is not None:\n formatted_user.append(self.user.last_name)\n return ' '.join(formatted_user)\n",
"role": "user"
},
{
"content": "full_name",
"role": "assistant"
}
] |
def x(self):
formatted_user = self.full_name
if self.user.username is not None:
formatted_user += ' [' + self.user.username + ']'
if not formatted_user:
formatted_user = self._id()
return formatted_user
|
full_format
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n formatted_user = self.full_name\n if self.user.username is not None:\n formatted_user += ' [' + self.user.username + ']'\n if not formatted_user:\n formatted_user = self._id()\n return formatted_user\n",
"role": "user"
},
{
"content": "full_format",
"role": "assistant"
}
] |
def x(self):
data = [self.full_name, self._username(), self._id(), self.
_language_code(), self._is_bot()]
return ' '.join(filter(None, data))
|
full_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n data = [self.full_name, self._username(), self._id(), self.\n _language_code(), self._is_bot()]\n return ' '.join(filter(None, data))\n",
"role": "user"
},
{
"content": "full_data",
"role": "assistant"
}
] |
def x(self):
data = [self.chat.title, self._username(), self._type(), self._id()]
return ' '.join(filter(None, data))
|
full_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n data = [self.chat.title, self._username(), self._type(), self._id()]\n return ' '.join(filter(None, data))\n",
"role": "user"
},
{
"content": "full_data",
"role": "assistant"
}
] |
def x(func):
@wraps(func)
def x(row, cohort, filter_fn=None, normalized_per_mb=None, **kwargs):
filter_fn = first_not_none_param([filter_fn, cohort.filter_fn],
no_filter)
normalized_per_mb = first_not_none_param([normalized_per_mb, cohort
.normalized_per_mb], False)
return func(row=row, cohort=cohort, filter_fn=filter_fn,
normalized_per_mb=normalized_per_mb, **kwargs)
return wrapper
|
use_defaults
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func):\n\n @wraps(func)\n def x(row, cohort, filter_fn=None, normalized_per_mb=None, **kwargs):\n filter_fn = first_not_none_param([filter_fn, cohort.filter_fn],\n no_filter)\n normalized_per_mb = first_not_none_param([normalized_per_mb, cohort\n .normalized_per_mb], False)\n return func(row=row, cohort=cohort, filter_fn=filter_fn,\n normalized_per_mb=normalized_per_mb, **kwargs)\n return wrapper\n",
"role": "user"
},
{
"content": "use_defaults",
"role": "assistant"
}
] |
def x(func):
@use_defaults
@wraps(func)
def x(row, cohort, filter_fn=None, normalized_per_mb=None, **kwargs):
per_patient_data = func(row=row, cohort=cohort, filter_fn=filter_fn,
normalized_per_mb=normalized_per_mb, **kwargs)
patient_id = row['patient_id']
if patient_id in per_patient_data:
count = len(per_patient_data[patient_id])
if normalized_per_mb:
count /= float(get_patient_to_mb(cohort)[patient_id])
return count
return np.nan
return wrapper
|
count_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func):\n\n @use_defaults\n @wraps(func)\n def x(row, cohort, filter_fn=None, normalized_per_mb=None, **kwargs):\n per_patient_data = func(row=row, cohort=cohort, filter_fn=filter_fn,\n normalized_per_mb=normalized_per_mb, **kwargs)\n patient_id = row['patient_id']\n if patient_id in per_patient_data:\n count = len(per_patient_data[patient_id])\n if normalized_per_mb:\n count /= float(get_patient_to_mb(cohort)[patient_id])\n return count\n return np.nan\n return wrapper\n",
"role": "user"
},
{
"content": "count_function",
"role": "assistant"
}
] |
def x(function_name, filterable_variant_function=None):
@count_function
def x(row, cohort, filter_fn, normalized_per_mb, **kwargs):
def x(filterable_variant, **kwargs):
assert filter_fn is not None, 'filter_fn should never be None, but it is.'
return (filterable_variant_function(filterable_variant) if
filterable_variant_function is not None else True
) and filter_fn(filterable_variant, **kwargs)
patient_id = row['patient_id']
return cohort.load_variants(patients=[cohort.patient_from_id(
patient_id)], filter_fn=count_filter_fn, **kwargs)
count.__name__ = function_name
count.__doc__ = str(''.join(inspect.getsourcelines(
filterable_variant_function)[0])
) if filterable_variant_function is not None else ''
return count
|
count_variants_function_builder
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(function_name, filterable_variant_function=None):\n\n @count_function\n def x(row, cohort, filter_fn, normalized_per_mb, **kwargs):\n\n def x(filterable_variant, **kwargs):\n assert filter_fn is not None, 'filter_fn should never be None, but it is.'\n return (filterable_variant_function(filterable_variant) if \n filterable_variant_function is not None else True\n ) and filter_fn(filterable_variant, **kwargs)\n patient_id = row['patient_id']\n return cohort.load_variants(patients=[cohort.patient_from_id(\n patient_id)], filter_fn=count_filter_fn, **kwargs)\n count.__name__ = function_name\n count.__doc__ = str(''.join(inspect.getsourcelines(\n filterable_variant_function)[0])\n ) if filterable_variant_function is not None else ''\n return count\n",
"role": "user"
},
{
"content": "count_variants_function_builder",
"role": "assistant"
}
] |
def x(function_name, only_nonsynonymous, filterable_effect_function=None):
@count_function
def x(row, cohort, filter_fn, normalized_per_mb, **kwargs):
def x(filterable_effect, **kwargs):
assert filter_fn is not None, 'filter_fn should never be None, but it is.'
return (filterable_effect_function(filterable_effect) if
filterable_effect_function is not None else True
) and filter_fn(filterable_effect, **kwargs)
patient_id = row['patient_id']
return cohort.load_effects(only_nonsynonymous=only_nonsynonymous,
patients=[cohort.patient_from_id(patient_id)], filter_fn=
count_filter_fn, **kwargs)
count.__name__ = function_name
count.__doc__ = 'only_nonsynonymous=%s\n' % only_nonsynonymous + str(''
.join(inspect.getsourcelines(filterable_effect_function)[0])
) if filterable_effect_function is not None else ''
count.only_nonsynonymous = only_nonsynonymous
count.filterable_effect_function = filterable_effect_function
return count
|
count_effects_function_builder
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(function_name, only_nonsynonymous, filterable_effect_function=None):\n\n @count_function\n def x(row, cohort, filter_fn, normalized_per_mb, **kwargs):\n\n def x(filterable_effect, **kwargs):\n assert filter_fn is not None, 'filter_fn should never be None, but it is.'\n return (filterable_effect_function(filterable_effect) if \n filterable_effect_function is not None else True\n ) and filter_fn(filterable_effect, **kwargs)\n patient_id = row['patient_id']\n return cohort.load_effects(only_nonsynonymous=only_nonsynonymous,\n patients=[cohort.patient_from_id(patient_id)], filter_fn=\n count_filter_fn, **kwargs)\n count.__name__ = function_name\n count.__doc__ = 'only_nonsynonymous=%s\\n' % only_nonsynonymous + str(''\n .join(inspect.getsourcelines(filterable_effect_function)[0])\n ) if filterable_effect_function is not None else ''\n count.only_nonsynonymous = only_nonsynonymous\n count.filterable_effect_function = filterable_effect_function\n return count\n",
"role": "user"
},
{
"content": "count_effects_function_builder",
"role": "assistant"
}
] |
def x(row, cohort, **kwargs):
patient_id = row['patient_id']
patient = cohort.patient_from_id(patient_id)
variants = cohort.load_variants(patients=[patient], filter_fn=no_filter)
if patient_id in variants.keys():
variants = variants[patient_id]
else:
return np.nan
def x(variant):
filterable_variant = FilterableVariant(variant, variants, patient)
return variant_stats_from_variant(variant, filterable_variant.
variant_metadata).tumor_stats.variant_allele_frequency
vafs = [grab_vaf(variant) for variant in variants]
return 2 * pd.Series(vafs).median()
|
median_vaf_purity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(row, cohort, **kwargs):\n patient_id = row['patient_id']\n patient = cohort.patient_from_id(patient_id)\n variants = cohort.load_variants(patients=[patient], filter_fn=no_filter)\n if patient_id in variants.keys():\n variants = variants[patient_id]\n else:\n return np.nan\n\n def x(variant):\n filterable_variant = FilterableVariant(variant, variants, patient)\n return variant_stats_from_variant(variant, filterable_variant.\n variant_metadata).tumor_stats.variant_allele_frequency\n vafs = [grab_vaf(variant) for variant in variants]\n return 2 * pd.Series(vafs).median()\n",
"role": "user"
},
{
"content": "median_vaf_purity",
"role": "assistant"
}
] |
def x(df, col, pred_col, n_bootstrap=1000):
scores = np.zeros(n_bootstrap)
old_len = len(df)
df.dropna(subset=[col], inplace=True)
new_len = len(df)
if new_len < old_len:
logger.info('Dropping NaN values in %s to go from %d to %d rows' %
(col, old_len, new_len))
preds = df[pred_col].astype(int)
for i in range(n_bootstrap):
sampled_counts, sampled_pred = resample(df[col], preds)
if is_single_class(sampled_pred, col=pred_col):
continue
scores[i] = roc_auc_score(sampled_pred, sampled_counts)
return scores
|
bootstrap_auc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df, col, pred_col, n_bootstrap=1000):\n scores = np.zeros(n_bootstrap)\n old_len = len(df)\n df.dropna(subset=[col], inplace=True)\n new_len = len(df)\n if new_len < old_len:\n logger.info('Dropping NaN values in %s to go from %d to %d rows' %\n (col, old_len, new_len))\n preds = df[pred_col].astype(int)\n for i in range(n_bootstrap):\n sampled_counts, sampled_pred = resample(df[col], preds)\n if is_single_class(sampled_pred, col=pred_col):\n continue\n scores[i] = roc_auc_score(sampled_pred, sampled_counts)\n return scores\n",
"role": "user"
},
{
"content": "bootstrap_auc",
"role": "assistant"
}
] |
def x(self, worker_start_callback: callable, worker_end_callback: callable,
are_async: bool=False):
scheduler = self.immediate if are_async else self.background
self.worker_start_callback = lambda worker: scheduler(Work(lambda :
worker_start_callback(worker), 'worker_start_callback:' + worker.name))
self.worker_end_callback = lambda worker: self.immediate(Work(lambda :
worker_end_callback(worker), 'worker_end_callback:' + worker.name))
|
set_callbacks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, worker_start_callback: callable, worker_end_callback: callable,\n are_async: bool=False):\n scheduler = self.immediate if are_async else self.background\n self.worker_start_callback = lambda worker: scheduler(Work(lambda :\n worker_start_callback(worker), 'worker_start_callback:' + worker.name))\n self.worker_end_callback = lambda worker: self.immediate(Work(lambda :\n worker_end_callback(worker), 'worker_end_callback:' + worker.name))\n",
"role": "user"
},
{
"content": "set_callbacks",
"role": "assistant"
}
] |
def x(self, worker: Worker):
with self.running_workers_lock:
self.running_workers.append(worker)
thread = SchedulerThread(worker, self._worker_ended)
thread.start()
self.worker_start_callback(worker)
|
start_worker
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, worker: Worker):\n with self.running_workers_lock:\n self.running_workers.append(worker)\n thread = SchedulerThread(worker, self._worker_ended)\n thread.start()\n self.worker_start_callback(worker)\n",
"role": "user"
},
{
"content": "start_worker",
"role": "assistant"
}
] |
def x(self, name: str):
if not self.running:
return self.immediate_worker
worker = self._new_worker(name)
self._start_worker(worker)
return worker
|
new_worker
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name: str):\n if not self.running:\n return self.immediate_worker\n worker = self._new_worker(name)\n self._start_worker(worker)\n return worker\n",
"role": "user"
},
{
"content": "new_worker",
"role": "assistant"
}
] |
def x(self, name: str, min_workers: int=0, max_workers: int=1,
max_seconds_idle: int=DEFAULT_WORKER_POOL_MAX_SECONDS_IDLE):
if not self.running:
return self.immediate_worker
worker = self._new_worker_pool(name, min_workers, max_workers,
max_seconds_idle)
self._start_worker_pool(worker)
return worker
|
new_worker_pool
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name: str, min_workers: int=0, max_workers: int=1,\n max_seconds_idle: int=DEFAULT_WORKER_POOL_MAX_SECONDS_IDLE):\n if not self.running:\n return self.immediate_worker\n worker = self._new_worker_pool(name, min_workers, max_workers,\n max_seconds_idle)\n self._start_worker_pool(worker)\n return worker\n",
"role": "user"
},
{
"content": "new_worker_pool",
"role": "assistant"
}
] |
def x(self, on=None, join_with=None, join_how=None, return_cols=False,
rename_cols=False, keep_paren_contents=True, **kwargs):
df = self._as_dataframe_unmodified(join_with=join_with, join_how=join_how)
if on is None:
return DataFrameHolder.return_obj(None, df, return_cols)
if type(on) == str:
return DataFrameHolder.return_obj(on, df, return_cols)
def x(on, col, df):
on_argnames = on.__code__.co_varnames
if 'cohort' not in on_argnames:
func = lambda row: on(row=row, **kwargs)
else:
func = lambda row: on(row=row, cohort=self, **kwargs)
if self.show_progress:
tqdm.pandas(desc=col)
df[col] = df.progress_apply(func, axis=1)
else:
df[col] = df.apply(func, axis=1)
return DataFrameHolder(col, df)
def x(func, num=0):
return func.__name__ if not is_lambda(func) else 'column_%d' % num
def x(func):
return func.__name__ == (lambda : None).__name__
if type(on) == FunctionType:
return apply_func(on, func_name(on), df).return_self(return_cols)
if len(kwargs) > 0:
logger.warning(
'Note: kwargs used with multiple functions; passing them to all functions'
)
if type(on) == dict:
cols = []
for key, value in on.items():
if type(value) == str:
df[key] = df[value]
col = key
elif type(value) == FunctionType:
col, df = apply_func(on=value, col=key, df=df)
else:
raise ValueError(
'A value of `on`, %s, is not a str or function' % str(
value))
cols.append(col)
if type(on) == list:
cols = []
for i, elem in enumerate(on):
if type(elem) == str:
col = elem
elif type(elem) == FunctionType:
col = func_name(elem, i)
col, df = apply_func(on=elem, col=col, df=df)
cols.append(col)
if rename_cols:
rename_dict = _strip_column_names(df.columns, keep_paren_contents=
keep_paren_contents)
df.rename(columns=rename_dict, inplace=True)
cols = [rename_dict[col] for col in cols]
return DataFrameHolder(cols, df).return_self(return_cols)
|
as_dataframe
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, on=None, join_with=None, join_how=None, return_cols=False,\n rename_cols=False, keep_paren_contents=True, **kwargs):\n df = self._as_dataframe_unmodified(join_with=join_with, join_how=join_how)\n if on is None:\n return DataFrameHolder.return_obj(None, df, return_cols)\n if type(on) == str:\n return DataFrameHolder.return_obj(on, df, return_cols)\n\n def x(on, col, df):\n on_argnames = on.__code__.co_varnames\n if 'cohort' not in on_argnames:\n func = lambda row: on(row=row, **kwargs)\n else:\n func = lambda row: on(row=row, cohort=self, **kwargs)\n if self.show_progress:\n tqdm.pandas(desc=col)\n df[col] = df.progress_apply(func, axis=1)\n else:\n df[col] = df.apply(func, axis=1)\n return DataFrameHolder(col, df)\n\n def x(func, num=0):\n return func.__name__ if not is_lambda(func) else 'column_%d' % num\n\n def x(func):\n return func.__name__ == (lambda : None).__name__\n if type(on) == FunctionType:\n return apply_func(on, func_name(on), df).return_self(return_cols)\n if len(kwargs) > 0:\n logger.warning(\n 'Note: kwargs used with multiple functions; passing them to all functions'\n )\n if type(on) == dict:\n cols = []\n for key, value in on.items():\n if type(value) == str:\n df[key] = df[value]\n col = key\n elif type(value) == FunctionType:\n col, df = apply_func(on=value, col=key, df=df)\n else:\n raise ValueError(\n 'A value of `on`, %s, is not a str or function' % str(\n value))\n cols.append(col)\n if type(on) == list:\n cols = []\n for i, elem in enumerate(on):\n if type(elem) == str:\n col = elem\n elif type(elem) == FunctionType:\n col = func_name(elem, i)\n col, df = apply_func(on=elem, col=col, df=df)\n cols.append(col)\n if rename_cols:\n rename_dict = _strip_column_names(df.columns, keep_paren_contents=\n keep_paren_contents)\n df.rename(columns=rename_dict, inplace=True)\n cols = [rename_dict[col] for col in cols]\n return DataFrameHolder(cols, df).return_self(return_cols)\n",
"role": "user"
},
{
"content": "as_dataframe",
"role": "assistant"
}
] |
def x(self, df_loader_name):
logger.debug('loading dataframe: {}'.format(df_loader_name))
df_loaders = [df_loader for df_loader in self.df_loaders if df_loader.
name == df_loader_name]
if len(df_loaders) == 0:
raise ValueError('No DataFrameLoader with name %s' % df_loader_name)
if len(df_loaders) > 1:
raise ValueError('Multiple DataFrameLoaders with name %s' %
df_loader_name)
return df_loaders[0].load_dataframe()
|
load_dataframe
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, df_loader_name):\n logger.debug('loading dataframe: {}'.format(df_loader_name))\n df_loaders = [df_loader for df_loader in self.df_loaders if df_loader.\n name == df_loader_name]\n if len(df_loaders) == 0:\n raise ValueError('No DataFrameLoader with name %s' % df_loader_name)\n if len(df_loaders) > 1:\n raise ValueError('Multiple DataFrameLoaders with name %s' %\n df_loader_name)\n return df_loaders[0].load_dataframe()\n",
"role": "user"
},
{
"content": "load_dataframe",
"role": "assistant"
}
] |
def x(self, fn, default='None'):
if fn is None:
fn_name = default
else:
fn_name = fn.__name__
return fn_name
|
get_function_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fn, default='None'):\n if fn is None:\n fn_name = default\n else:\n fn_name = fn.__name__\n return fn_name\n",
"role": "user"
},
{
"content": "get_function_name",
"role": "assistant"
}
] |
def x(self, patients=None, filter_fn=None, **kwargs):
filter_fn = first_not_none_param([filter_fn, self.filter_fn], no_filter)
filter_fn_name = self._get_function_name(filter_fn)
logger.debug('loading variants with filter_fn: {}'.format(filter_fn_name))
patient_variants = {}
for patient in self.iter_patients(patients):
variants = self._load_single_patient_variants(patient, filter_fn,
**kwargs)
if variants is not None:
patient_variants[patient.id] = variants
return patient_variants
|
load_variants
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, patients=None, filter_fn=None, **kwargs):\n filter_fn = first_not_none_param([filter_fn, self.filter_fn], no_filter)\n filter_fn_name = self._get_function_name(filter_fn)\n logger.debug('loading variants with filter_fn: {}'.format(filter_fn_name))\n patient_variants = {}\n for patient in self.iter_patients(patients):\n variants = self._load_single_patient_variants(patient, filter_fn,\n **kwargs)\n if variants is not None:\n patient_variants[patient.id] = variants\n return patient_variants\n",
"role": "user"
},
{
"content": "load_variants",
"role": "assistant"
}
] |
def x(self, filter_fn, **kwargs):
filter_fn_name = self._get_function_name(filter_fn, default='filter-none')
logger.debug('Computing hash for filter_fn: {} with kwargs {}'.format(
filter_fn_name, str(dict(**kwargs))))
fn_source = str(dill.source.getsource(filter_fn))
pickled_fn_source = pickle.dumps(fn_source)
hashed_fn_source = int(hashlib.sha1(pickled_fn_source).hexdigest(), 16
) % 10 ** 11
kw_dict = dict(**kwargs)
kw_hash = list()
if not kw_dict:
kw_hash = ['default']
else:
[kw_hash.append('{}-{}'.format(key, h)) for key, h in sorted(
kw_dict.items())]
closure = []
nonlocals = inspect.getclosurevars(filter_fn).nonlocals
for key, val in nonlocals.items():
if inspect.isfunction(val):
closure.append(self._hash_filter_fn(val))
closure.sort()
closure_str = 'null' if len(closure) == 0 else '-'.join(closure)
hashed_fn = '.'.join(['-'.join([filter_fn_name, str(hashed_fn_source)]),
'.'.join(kw_hash), closure_str])
return hashed_fn
|
hash_filter_fn
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filter_fn, **kwargs):\n filter_fn_name = self._get_function_name(filter_fn, default='filter-none')\n logger.debug('Computing hash for filter_fn: {} with kwargs {}'.format(\n filter_fn_name, str(dict(**kwargs))))\n fn_source = str(dill.source.getsource(filter_fn))\n pickled_fn_source = pickle.dumps(fn_source)\n hashed_fn_source = int(hashlib.sha1(pickled_fn_source).hexdigest(), 16\n ) % 10 ** 11\n kw_dict = dict(**kwargs)\n kw_hash = list()\n if not kw_dict:\n kw_hash = ['default']\n else:\n [kw_hash.append('{}-{}'.format(key, h)) for key, h in sorted(\n kw_dict.items())]\n closure = []\n nonlocals = inspect.getclosurevars(filter_fn).nonlocals\n for key, val in nonlocals.items():\n if inspect.isfunction(val):\n closure.append(self._hash_filter_fn(val))\n closure.sort()\n closure_str = 'null' if len(closure) == 0 else '-'.join(closure)\n hashed_fn = '.'.join(['-'.join([filter_fn_name, str(hashed_fn_source)]),\n '.'.join(kw_hash), closure_str])\n return hashed_fn\n",
"role": "user"
},
{
"content": "hash_filter_fn",
"role": "assistant"
}
] |
def x(self, patient, filter_fn, use_cache=True, **kwargs):
if filter_fn is None:
use_filtered_cache = False
else:
filter_fn_name = self._get_function_name(filter_fn)
logger.debug('loading variants for patient {} with filter_fn {}'.
format(patient.id, filter_fn_name))
use_filtered_cache = use_cache
if use_filtered_cache:
logger.debug('... identifying filtered-cache file name')
try:
filtered_cache_file_name = '%s-variants.%s.pkl' % (self.
merge_type, self._hash_filter_fn(filter_fn, **kwargs))
except:
logger.warning(
'... error identifying filtered-cache file name for patient {}: {}'
.format(patient.id, filter_fn_name))
use_filtered_cache = False
else:
logger.debug('... trying to load filtered variants from cache: {}'
.format(filtered_cache_file_name))
try:
cached = self.load_from_cache(self.cache_names['variant'],
patient.id, filtered_cache_file_name)
if cached is not None:
return cached
except:
logger.warning(
'Error loading variants from cache for patient: {}'.
format(patient.id))
pass
logger.debug('... getting merged variants for: {}'.format(patient.id))
merged_variants = self._load_single_patient_merged_variants(patient,
use_cache=use_cache)
if merged_variants is None:
logger.info('Variants did not exist for patient %s' % patient.id)
return None
logger.debug('... applying filters to variants for: {}'.format(patient.id))
filtered_variants = filter_variants(variant_collection=merged_variants,
patient=patient, filter_fn=filter_fn, **kwargs)
if use_filtered_cache:
logger.debug('... saving filtered variants to cache: {}'.format(
filtered_cache_file_name))
self.save_to_cache(filtered_variants, self.cache_names['variant'],
patient.id, filtered_cache_file_name)
return filtered_variants
|
load_single_patient_variants
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, patient, filter_fn, use_cache=True, **kwargs):\n if filter_fn is None:\n use_filtered_cache = False\n else:\n filter_fn_name = self._get_function_name(filter_fn)\n logger.debug('loading variants for patient {} with filter_fn {}'.\n format(patient.id, filter_fn_name))\n use_filtered_cache = use_cache\n if use_filtered_cache:\n logger.debug('... identifying filtered-cache file name')\n try:\n filtered_cache_file_name = '%s-variants.%s.pkl' % (self.\n merge_type, self._hash_filter_fn(filter_fn, **kwargs))\n except:\n logger.warning(\n '... error identifying filtered-cache file name for patient {}: {}'\n .format(patient.id, filter_fn_name))\n use_filtered_cache = False\n else:\n logger.debug('... trying to load filtered variants from cache: {}'\n .format(filtered_cache_file_name))\n try:\n cached = self.load_from_cache(self.cache_names['variant'],\n patient.id, filtered_cache_file_name)\n if cached is not None:\n return cached\n except:\n logger.warning(\n 'Error loading variants from cache for patient: {}'.\n format(patient.id))\n pass\n logger.debug('... getting merged variants for: {}'.format(patient.id))\n merged_variants = self._load_single_patient_merged_variants(patient,\n use_cache=use_cache)\n if merged_variants is None:\n logger.info('Variants did not exist for patient %s' % patient.id)\n return None\n logger.debug('... applying filters to variants for: {}'.format(patient.id))\n filtered_variants = filter_variants(variant_collection=merged_variants,\n patient=patient, filter_fn=filter_fn, **kwargs)\n if use_filtered_cache:\n logger.debug('... saving filtered variants to cache: {}'.format(\n filtered_cache_file_name))\n self.save_to_cache(filtered_variants, self.cache_names['variant'],\n patient.id, filtered_cache_file_name)\n return filtered_variants\n",
"role": "user"
},
{
"content": "load_single_patient_variants",
"role": "assistant"
}
] |
def x(self, patient, use_cache=True):
logger.debug('loading merged variants for patient {}'.format(patient.id))
no_variants = False
try:
if use_cache:
variant_cache_file_name = '%s-variants.pkl' % self.merge_type
merged_variants = self.load_from_cache(self.cache_names[
'variant'], patient.id, variant_cache_file_name)
if merged_variants is not None:
return merged_variants
variant_collections = []
optional_maf_cols = ['t_ref_count', 't_alt_count', 'n_ref_count',
'n_alt_count']
if self.additional_maf_cols is not None:
optional_maf_cols.extend(self.additional_maf_cols)
for patient_variants in patient.variants_list:
if type(patient_variants) == str:
if '.vcf' in patient_variants:
try:
variant_collections.append(varcode.load_vcf_fast(
patient_variants))
except StopIteration as e:
logger.warning(
'Empty VCF (or possibly a VCF error) for patient {}: {}'
.format(patient.id, str(e)))
elif '.maf' in patient_variants:
variant_collections.append(varcode.load_maf(
patient_variants, optional_cols=optional_maf_cols,
encoding='latin-1'))
else:
raise ValueError("Don't know how to read %s" %
patient_variants)
elif type(patient_variants) == VariantCollection:
variant_collections.append(patient_variants)
else:
raise ValueError("Don't know how to read %s" % patient_variants
)
if len(variant_collections) == 0:
no_variants = True
elif len(variant_collections) == 1:
variants = variant_collections[0]
merged_variants = variants
else:
merged_variants = self._merge_variant_collections(
variant_collections, self.merge_type)
except IOError:
no_variants = True
if no_variants:
print('Variants did not exist for patient %s' % patient.id)
merged_variants = None
if use_cache:
self.save_to_cache(merged_variants, self.cache_names['variant'],
patient.id, variant_cache_file_name)
return merged_variants
|
load_single_patient_merged_variants
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, patient, use_cache=True):\n logger.debug('loading merged variants for patient {}'.format(patient.id))\n no_variants = False\n try:\n if use_cache:\n variant_cache_file_name = '%s-variants.pkl' % self.merge_type\n merged_variants = self.load_from_cache(self.cache_names[\n 'variant'], patient.id, variant_cache_file_name)\n if merged_variants is not None:\n return merged_variants\n variant_collections = []\n optional_maf_cols = ['t_ref_count', 't_alt_count', 'n_ref_count',\n 'n_alt_count']\n if self.additional_maf_cols is not None:\n optional_maf_cols.extend(self.additional_maf_cols)\n for patient_variants in patient.variants_list:\n if type(patient_variants) == str:\n if '.vcf' in patient_variants:\n try:\n variant_collections.append(varcode.load_vcf_fast(\n patient_variants))\n except StopIteration as e:\n logger.warning(\n 'Empty VCF (or possibly a VCF error) for patient {}: {}'\n .format(patient.id, str(e)))\n elif '.maf' in patient_variants:\n variant_collections.append(varcode.load_maf(\n patient_variants, optional_cols=optional_maf_cols,\n encoding='latin-1'))\n else:\n raise ValueError(\"Don't know how to read %s\" %\n patient_variants)\n elif type(patient_variants) == VariantCollection:\n variant_collections.append(patient_variants)\n else:\n raise ValueError(\"Don't know how to read %s\" % patient_variants\n )\n if len(variant_collections) == 0:\n no_variants = True\n elif len(variant_collections) == 1:\n variants = variant_collections[0]\n merged_variants = variants\n else:\n merged_variants = self._merge_variant_collections(\n variant_collections, self.merge_type)\n except IOError:\n no_variants = True\n if no_variants:\n print('Variants did not exist for patient %s' % patient.id)\n merged_variants = None\n if use_cache:\n self.save_to_cache(merged_variants, self.cache_names['variant'],\n patient.id, variant_cache_file_name)\n return merged_variants\n",
"role": "user"
},
{
"content": "load_single_patient_merged_variants",
"role": "assistant"
}
] |
def x(self, as_dataframe=False, filter_fn=None):
filter_fn = first_not_none_param([filter_fn, self.filter_fn], no_filter)
patient_annotations = {}
for patient in self:
annotations = self._load_single_patient_polyphen(patient, filter_fn
=filter_fn)
if annotations is not None:
annotations['patient_id'] = patient.id
patient_annotations[patient.id] = annotations
if as_dataframe:
return pd.concat(patient_annotations.values())
return patient_annotations
|
load_polyphen_annotations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, as_dataframe=False, filter_fn=None):\n filter_fn = first_not_none_param([filter_fn, self.filter_fn], no_filter)\n patient_annotations = {}\n for patient in self:\n annotations = self._load_single_patient_polyphen(patient, filter_fn\n =filter_fn)\n if annotations is not None:\n annotations['patient_id'] = patient.id\n patient_annotations[patient.id] = annotations\n if as_dataframe:\n return pd.concat(patient_annotations.values())\n return patient_annotations\n",
"role": "user"
},
{
"content": "load_polyphen_annotations",
"role": "assistant"
}
] |
def x(self, patients=None, only_nonsynonymous=False, all_effects=False,
filter_fn=None, **kwargs):
filter_fn = first_not_none_param([filter_fn, self.filter_fn], no_filter)
filter_fn_name = self._get_function_name(filter_fn)
logger.debug('loading effects with filter_fn {}'.format(filter_fn_name))
patient_effects = {}
for patient in self.iter_patients(patients):
effects = self._load_single_patient_effects(patient,
only_nonsynonymous, all_effects, filter_fn, **kwargs)
if effects is not None:
patient_effects[patient.id] = effects
return patient_effects
|
load_effects
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, patients=None, only_nonsynonymous=False, all_effects=False,\n filter_fn=None, **kwargs):\n filter_fn = first_not_none_param([filter_fn, self.filter_fn], no_filter)\n filter_fn_name = self._get_function_name(filter_fn)\n logger.debug('loading effects with filter_fn {}'.format(filter_fn_name))\n patient_effects = {}\n for patient in self.iter_patients(patients):\n effects = self._load_single_patient_effects(patient,\n only_nonsynonymous, all_effects, filter_fn, **kwargs)\n if effects is not None:\n patient_effects[patient.id] = effects\n return patient_effects\n",
"role": "user"
},
{
"content": "load_effects",
"role": "assistant"
}
] |
def x(self):
kallisto_data = pd.concat([self._load_single_patient_kallisto(patient) for
patient in self], copy=False)
if self.kallisto_ensembl_version is None:
raise ValueError(
'Required a kallisto_ensembl_version but none was specified')
ensembl_release = cached_release(self.kallisto_ensembl_version)
kallisto_data['gene_name'] = kallisto_data['target_id'].map(lambda t:
ensembl_release.gene_name_of_transcript_id(t))
kallisto_data = kallisto_data.groupby(['patient_id', 'gene_name'])[[
'est_counts']].sum().reset_index()
return kallisto_data
|
load_kallisto
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n kallisto_data = pd.concat([self._load_single_patient_kallisto(patient) for\n patient in self], copy=False)\n if self.kallisto_ensembl_version is None:\n raise ValueError(\n 'Required a kallisto_ensembl_version but none was specified')\n ensembl_release = cached_release(self.kallisto_ensembl_version)\n kallisto_data['gene_name'] = kallisto_data['target_id'].map(lambda t:\n ensembl_release.gene_name_of_transcript_id(t))\n kallisto_data = kallisto_data.groupby(['patient_id', 'gene_name'])[[\n 'est_counts']].sum().reset_index()\n return kallisto_data\n",
"role": "user"
},
{
"content": "load_kallisto",
"role": "assistant"
}
] |
def x(self, patient):
data = pd.read_csv(patient.tumor_sample.kallisto_path, sep='\t')
data['patient_id'] = patient.id
return data
|
load_single_patient_kallisto
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, patient):\n data = pd.read_csv(patient.tumor_sample.kallisto_path, sep='\\t')\n data['patient_id'] = patient.id\n return data\n",
"role": "user"
},
{
"content": "load_single_patient_kallisto",
"role": "assistant"
}
] |
def x(self, filter_ok=True):
return pd.concat([self._load_single_patient_cufflinks(patient,
filter_ok) for patient in self], copy=False)
|
load_cufflinks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filter_ok=True):\n return pd.concat([self._load_single_patient_cufflinks(patient,\n filter_ok) for patient in self], copy=False)\n",
"role": "user"
},
{
"content": "load_cufflinks",
"role": "assistant"
}
] |
def x(self, patient, filter_ok):
data = pd.read_csv(patient.tumor_sample.cufflinks_path, sep='\t')
data['patient_id'] = patient.id
if filter_ok:
data = data[data['FPKM_status'] == 'OK']
return data
|
load_single_patient_cufflinks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, patient, filter_ok):\n data = pd.read_csv(patient.tumor_sample.cufflinks_path, sep='\\t')\n data['patient_id'] = patient.id\n if filter_ok:\n data = data[data['FPKM_status'] == 'OK']\n return data\n",
"role": "user"
},
{
"content": "load_single_patient_cufflinks",
"role": "assistant"
}
] |
def x(self, epitopes, ic50_cutoff):
mutant_binding_predictions = []
for binding_prediction in epitopes:
peptide = binding_prediction.peptide
peptide_offset = binding_prediction.offset
isovar_row = dict(binding_prediction.source_sequence_key)
is_mutant = contains_mutant_residues(peptide_start_in_protein=
peptide_offset, peptide_length=len(peptide),
mutation_start_in_protein=isovar_row[
'variant_aa_interval_start'], mutation_end_in_protein=
isovar_row['variant_aa_interval_end'])
if is_mutant and binding_prediction.value <= ic50_cutoff:
mutant_binding_predictions.append(binding_prediction)
return EpitopeCollection(mutant_binding_predictions)
|
get_filtered_isovar_epitopes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, epitopes, ic50_cutoff):\n mutant_binding_predictions = []\n for binding_prediction in epitopes:\n peptide = binding_prediction.peptide\n peptide_offset = binding_prediction.offset\n isovar_row = dict(binding_prediction.source_sequence_key)\n is_mutant = contains_mutant_residues(peptide_start_in_protein=\n peptide_offset, peptide_length=len(peptide),\n mutation_start_in_protein=isovar_row[\n 'variant_aa_interval_start'], mutation_end_in_protein=\n isovar_row['variant_aa_interval_end'])\n if is_mutant and binding_prediction.value <= ic50_cutoff:\n mutant_binding_predictions.append(binding_prediction)\n return EpitopeCollection(mutant_binding_predictions)\n",
"role": "user"
},
{
"content": "get_filtered_isovar_epitopes",
"role": "assistant"
}
] |
def x(self, on, bootstrap_samples=100, ax=None, **kwargs):
plot_col, df = self.as_dataframe(on, return_cols=True, **kwargs)
df = filter_not_null(df, 'benefit')
df = filter_not_null(df, plot_col)
df.benefit = df.benefit.astype(bool)
return roc_curve_plot(df, plot_col, 'benefit', bootstrap_samples, ax=ax)
|
plot_roc_curve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, on, bootstrap_samples=100, ax=None, **kwargs):\n plot_col, df = self.as_dataframe(on, return_cols=True, **kwargs)\n df = filter_not_null(df, 'benefit')\n df = filter_not_null(df, plot_col)\n df.benefit = df.benefit.astype(bool)\n return roc_curve_plot(df, plot_col, 'benefit', bootstrap_samples, ax=ax)\n",
"role": "user"
},
{
"content": "plot_roc_curve",
"role": "assistant"
}
] |
def x(self, on, benefit_col='benefit', label='Response', ax=None,
alternative='two-sided', boolean_value_map={}, order=None, **kwargs):
no_benefit_plot_name = 'No %s' % self.benefit_plot_name
boolean_value_map = boolean_value_map or {(True): self.
benefit_plot_name, (False): no_benefit_plot_name}
order = order or [no_benefit_plot_name, self.benefit_plot_name]
return self.plot_boolean(on=on, boolean_col=benefit_col, alternative=
alternative, boolean_label=label, boolean_value_map=
boolean_value_map, order=order, ax=ax, **kwargs)
|
plot_benefit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, on, benefit_col='benefit', label='Response', ax=None,\n alternative='two-sided', boolean_value_map={}, order=None, **kwargs):\n no_benefit_plot_name = 'No %s' % self.benefit_plot_name\n boolean_value_map = boolean_value_map or {(True): self.\n benefit_plot_name, (False): no_benefit_plot_name}\n order = order or [no_benefit_plot_name, self.benefit_plot_name]\n return self.plot_boolean(on=on, boolean_col=benefit_col, alternative=\n alternative, boolean_label=label, boolean_value_map=\n boolean_value_map, order=order, ax=ax, **kwargs)\n",
"role": "user"
},
{
"content": "plot_benefit",
"role": "assistant"
}
] |
def x(self, on, boolean_col, plot_col=None, boolean_label=None,
boolean_value_map={}, order=None, ax=None, alternative='two-sided', **
kwargs):
cols, df = self.as_dataframe(on, return_cols=True, **kwargs)
plot_col = self.plot_col_from_cols(cols=cols, plot_col=plot_col)
df = filter_not_null(df, boolean_col)
df = filter_not_null(df, plot_col)
if boolean_label:
df[boolean_label] = df[boolean_col]
boolean_col = boolean_label
condition_value = None
if boolean_value_map:
assert set(boolean_value_map.keys()) == set([True, False]
), 'Improper mapping of boolean column provided'
df[boolean_col] = df[boolean_col].map(lambda v: boolean_value_map[v])
condition_value = boolean_value_map[True]
if df[plot_col].dtype == 'bool':
results = fishers_exact_plot(data=df, condition1=boolean_col,
condition2=plot_col, condition1_value=condition_value,
alternative=alternative, order=order, ax=ax)
else:
results = mann_whitney_plot(data=df, condition=boolean_col,
distribution=plot_col, condition_value=condition_value,
alternative=alternative, order=order, ax=ax)
return results
|
plot_boolean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, on, boolean_col, plot_col=None, boolean_label=None,\n boolean_value_map={}, order=None, ax=None, alternative='two-sided', **\n kwargs):\n cols, df = self.as_dataframe(on, return_cols=True, **kwargs)\n plot_col = self.plot_col_from_cols(cols=cols, plot_col=plot_col)\n df = filter_not_null(df, boolean_col)\n df = filter_not_null(df, plot_col)\n if boolean_label:\n df[boolean_label] = df[boolean_col]\n boolean_col = boolean_label\n condition_value = None\n if boolean_value_map:\n assert set(boolean_value_map.keys()) == set([True, False]\n ), 'Improper mapping of boolean column provided'\n df[boolean_col] = df[boolean_col].map(lambda v: boolean_value_map[v])\n condition_value = boolean_value_map[True]\n if df[plot_col].dtype == 'bool':\n results = fishers_exact_plot(data=df, condition1=boolean_col,\n condition2=plot_col, condition1_value=condition_value,\n alternative=alternative, order=order, ax=ax)\n else:\n results = mann_whitney_plot(data=df, condition=boolean_col,\n distribution=plot_col, condition_value=condition_value,\n alternative=alternative, order=order, ax=ax)\n return results\n",
"role": "user"
},
{
"content": "plot_boolean",
"role": "assistant"
}
] |
def x(self, on, how='os', survival_units='Days', strata=None, ax=None,
ci_show=False, with_condition_color='#B38600', no_condition_color=
'#A941AC', with_condition_label=None, no_condition_label=None,
color_map=None, label_map=None, color_palette='Set2', threshold=None,
**kwargs):
assert how in ['os', 'pfs'
], 'Invalid choice of survival plot type %s' % how
cols, df = self.as_dataframe(on, return_cols=True, **kwargs)
plot_col = self.plot_col_from_cols(cols=cols, only_allow_one=True)
df = filter_not_null(df, plot_col)
results = plot_kmf(df=df, condition_col=plot_col, xlabel=survival_units,
ylabel='Overall Survival (%)' if how == 'os' else
'Progression-Free Survival (%)', censor_col='deceased' if how ==
'os' else 'progressed_or_deceased', survival_col=how, strata_col=
strata, threshold=threshold, ax=ax, ci_show=ci_show,
with_condition_color=with_condition_color, no_condition_color=
no_condition_color, with_condition_label=with_condition_label,
no_condition_label=no_condition_label, color_palette=color_palette,
label_map=label_map, color_map=color_map)
return results
|
plot_survival
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, on, how='os', survival_units='Days', strata=None, ax=None,\n ci_show=False, with_condition_color='#B38600', no_condition_color=\n '#A941AC', with_condition_label=None, no_condition_label=None,\n color_map=None, label_map=None, color_palette='Set2', threshold=None,\n **kwargs):\n assert how in ['os', 'pfs'\n ], 'Invalid choice of survival plot type %s' % how\n cols, df = self.as_dataframe(on, return_cols=True, **kwargs)\n plot_col = self.plot_col_from_cols(cols=cols, only_allow_one=True)\n df = filter_not_null(df, plot_col)\n results = plot_kmf(df=df, condition_col=plot_col, xlabel=survival_units,\n ylabel='Overall Survival (%)' if how == 'os' else\n 'Progression-Free Survival (%)', censor_col='deceased' if how ==\n 'os' else 'progressed_or_deceased', survival_col=how, strata_col=\n strata, threshold=threshold, ax=ax, ci_show=ci_show,\n with_condition_color=with_condition_color, no_condition_color=\n no_condition_color, with_condition_label=with_condition_label,\n no_condition_label=no_condition_label, color_palette=color_palette,\n label_map=label_map, color_map=color_map)\n return results\n",
"role": "user"
},
{
"content": "plot_survival",
"role": "assistant"
}
] |
def x(self, on, x_col=None, plot_type='jointplot', stat_func=pearsonr,
show_stat_func=True, plot_kwargs={}, **kwargs):
if plot_type not in ['boxplot', 'barplot', 'jointplot', 'regplot']:
raise ValueError('Invalid plot_type %s' % plot_type)
plot_cols, df = self.as_dataframe(on, return_cols=True, **kwargs)
if len(plot_cols) != 2:
raise ValueError(
'Must be comparing two columns, but there are %d columns' % len
(plot_cols))
for plot_col in plot_cols:
df = filter_not_null(df, plot_col)
if x_col is None:
x_col = plot_cols[0]
y_col = plot_cols[1]
elif x_col == plot_cols[0]:
y_col = plot_cols[1]
else:
y_col = plot_cols[0]
series_x = df[x_col]
series_y = df[y_col]
coeff, p_value = stat_func(series_x, series_y)
if plot_type == 'jointplot':
plot = sb.jointplot(data=df, x=x_col, y=y_col, stat_func=stat_func if
show_stat_func else None, **plot_kwargs)
elif plot_type == 'regplot':
plot = sb.regplot(data=df, x=x_col, y=y_col, **plot_kwargs)
elif plot_type == 'boxplot':
plot = stripboxplot(data=df, x=x_col, y=y_col, **plot_kwargs)
else:
plot = sb.barplot(data=df, x=x_col, y=y_col, **plot_kwargs)
return CorrelationResults(coeff=coeff, p_value=p_value, stat_func=
stat_func, series_x=series_x, series_y=series_y, plot=plot)
|
plot_correlation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, on, x_col=None, plot_type='jointplot', stat_func=pearsonr,\n show_stat_func=True, plot_kwargs={}, **kwargs):\n if plot_type not in ['boxplot', 'barplot', 'jointplot', 'regplot']:\n raise ValueError('Invalid plot_type %s' % plot_type)\n plot_cols, df = self.as_dataframe(on, return_cols=True, **kwargs)\n if len(plot_cols) != 2:\n raise ValueError(\n 'Must be comparing two columns, but there are %d columns' % len\n (plot_cols))\n for plot_col in plot_cols:\n df = filter_not_null(df, plot_col)\n if x_col is None:\n x_col = plot_cols[0]\n y_col = plot_cols[1]\n elif x_col == plot_cols[0]:\n y_col = plot_cols[1]\n else:\n y_col = plot_cols[0]\n series_x = df[x_col]\n series_y = df[y_col]\n coeff, p_value = stat_func(series_x, series_y)\n if plot_type == 'jointplot':\n plot = sb.jointplot(data=df, x=x_col, y=y_col, stat_func=stat_func if\n show_stat_func else None, **plot_kwargs)\n elif plot_type == 'regplot':\n plot = sb.regplot(data=df, x=x_col, y=y_col, **plot_kwargs)\n elif plot_type == 'boxplot':\n plot = stripboxplot(data=df, x=x_col, y=y_col, **plot_kwargs)\n else:\n plot = sb.barplot(data=df, x=x_col, y=y_col, **plot_kwargs)\n return CorrelationResults(coeff=coeff, p_value=p_value, stat_func=\n stat_func, series_x=series_x, series_y=series_y, plot=plot)\n",
"role": "user"
},
{
"content": "plot_correlation",
"role": "assistant"
}
] |
def x(self):
results = []
for patient in self:
results.append(patient.id)
return results
|
list_patient_ids
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n results = []\n for patient in self:\n results.append(patient.id)\n return results\n",
"role": "user"
},
{
"content": "list_patient_ids",
"role": "assistant"
}
] |
def x(self):
provenance_summary = {}
df = self.as_dataframe()
for cache in self.cache_names:
cache_name = self.cache_names[cache]
cache_provenance = None
num_discrepant = 0
this_cache_dir = path.join(self.cache_dir, cache_name)
if path.exists(this_cache_dir):
for patient_id in self._list_patient_ids():
patient_cache_dir = path.join(this_cache_dir, patient_id)
try:
this_provenance = self.load_provenance(patient_cache_dir
=patient_cache_dir)
except:
this_provenance = None
if this_provenance:
if not cache_provenance:
cache_provenance = this_provenance
else:
num_discrepant += compare_provenance(this_provenance,
cache_provenance)
if num_discrepant == 0:
provenance_summary[cache_name] = cache_provenance
else:
provenance_summary[cache_name] = None
return provenance_summary
|
summarize_provenance_per_cache
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n provenance_summary = {}\n df = self.as_dataframe()\n for cache in self.cache_names:\n cache_name = self.cache_names[cache]\n cache_provenance = None\n num_discrepant = 0\n this_cache_dir = path.join(self.cache_dir, cache_name)\n if path.exists(this_cache_dir):\n for patient_id in self._list_patient_ids():\n patient_cache_dir = path.join(this_cache_dir, patient_id)\n try:\n this_provenance = self.load_provenance(patient_cache_dir\n =patient_cache_dir)\n except:\n this_provenance = None\n if this_provenance:\n if not cache_provenance:\n cache_provenance = this_provenance\n else:\n num_discrepant += compare_provenance(this_provenance,\n cache_provenance)\n if num_discrepant == 0:\n provenance_summary[cache_name] = cache_provenance\n else:\n provenance_summary[cache_name] = None\n return provenance_summary\n",
"role": "user"
},
{
"content": "summarize_provenance_per_cache",
"role": "assistant"
}
] |
def x(self):
if self.dataframe_hash:
return self.dataframe_hash
else:
df = self._as_dataframe_unmodified()
return self.dataframe_hash
|
summarize_dataframe
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.dataframe_hash:\n return self.dataframe_hash\n else:\n df = self._as_dataframe_unmodified()\n return self.dataframe_hash\n",
"role": "user"
},
{
"content": "summarize_dataframe",
"role": "assistant"
}
] |
def x(self):
provenance_per_cache = self.summarize_provenance_per_cache()
summary_provenance = None
num_discrepant = 0
for cache in provenance_per_cache:
if not summary_provenance:
summary_provenance = provenance_per_cache[cache]
summary_provenance_name = cache
num_discrepant += compare_provenance(provenance_per_cache[cache],
summary_provenance, left_outer_diff='In %s but not in %s' % (
cache, summary_provenance_name), right_outer_diff=
'In %s but not in %s' % (summary_provenance_name, cache))
if num_discrepant == 0:
prov = summary_provenance
else:
prov = provenance_per_cache
return prov
|
summarize_provenance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n provenance_per_cache = self.summarize_provenance_per_cache()\n summary_provenance = None\n num_discrepant = 0\n for cache in provenance_per_cache:\n if not summary_provenance:\n summary_provenance = provenance_per_cache[cache]\n summary_provenance_name = cache\n num_discrepant += compare_provenance(provenance_per_cache[cache],\n summary_provenance, left_outer_diff='In %s but not in %s' % (\n cache, summary_provenance_name), right_outer_diff=\n 'In %s but not in %s' % (summary_provenance_name, cache))\n if num_discrepant == 0:\n prov = summary_provenance\n else:\n prov = provenance_per_cache\n return prov\n",
"role": "user"
},
{
"content": "summarize_provenance",
"role": "assistant"
}
] |
def x(self):
provenance_file_summary = self.summarize_provenance()
dataframe_hash = self.summarize_dataframe()
results = {'provenance_file_summary': provenance_file_summary,
'dataframe_hash': dataframe_hash}
return results
|
summarize_data_sources
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n provenance_file_summary = self.summarize_provenance()\n dataframe_hash = self.summarize_dataframe()\n results = {'provenance_file_summary': provenance_file_summary,\n 'dataframe_hash': dataframe_hash}\n return results\n",
"role": "user"
},
{
"content": "summarize_data_sources",
"role": "assistant"
}
] |
def x(variant, variant_metadata):
sample_info = variant_metadata['sample_info']
assert len(sample_info
) == 2, 'More than two samples found in the somatic VCF'
tumor_stats = _strelka_variant_stats(variant, sample_info['TUMOR'])
normal_stats = _strelka_variant_stats(variant, sample_info['NORMAL'])
return SomaticVariantStats(tumor_stats=tumor_stats, normal_stats=
normal_stats)
|
strelka_somatic_variant_stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(variant, variant_metadata):\n sample_info = variant_metadata['sample_info']\n assert len(sample_info\n ) == 2, 'More than two samples found in the somatic VCF'\n tumor_stats = _strelka_variant_stats(variant, sample_info['TUMOR'])\n normal_stats = _strelka_variant_stats(variant, sample_info['NORMAL'])\n return SomaticVariantStats(tumor_stats=tumor_stats, normal_stats=\n normal_stats)\n",
"role": "user"
},
{
"content": "strelka_somatic_variant_stats",
"role": "assistant"
}
] |
def x(variant, sample_info):
if variant.is_deletion or variant.is_insertion:
ref_depth = int(sample_info['TAR'][0])
alt_depth = int(sample_info['TIR'][0])
depth = ref_depth + alt_depth
else:
ref_depth = int(sample_info[variant.ref + 'U'][0])
alt_depth = int(sample_info[variant.alt + 'U'][0])
depth = alt_depth + ref_depth
if depth > 0:
vaf = float(alt_depth) / depth
else:
vaf = None
return VariantStats(depth=depth, alt_depth=alt_depth,
variant_allele_frequency=vaf)
|
strelka_variant_stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(variant, sample_info):\n if variant.is_deletion or variant.is_insertion:\n ref_depth = int(sample_info['TAR'][0])\n alt_depth = int(sample_info['TIR'][0])\n depth = ref_depth + alt_depth\n else:\n ref_depth = int(sample_info[variant.ref + 'U'][0])\n alt_depth = int(sample_info[variant.alt + 'U'][0])\n depth = alt_depth + ref_depth\n if depth > 0:\n vaf = float(alt_depth) / depth\n else:\n vaf = None\n return VariantStats(depth=depth, alt_depth=alt_depth,\n variant_allele_frequency=vaf)\n",
"role": "user"
},
{
"content": "strelka_variant_stats",
"role": "assistant"
}
] |
def x(variant, variant_metadata):
sample_info = variant_metadata['sample_info']
assert len(sample_info
) == 2, 'More than two samples found in the somatic VCF'
tumor_sample_infos = [info for info in sample_info.values() if info[
'GT'] == '0/1']
assert len(tumor_sample_infos
) == 1, 'More than one tumor sample found in the VCF file'
tumor_sample_info = tumor_sample_infos[0]
normal_sample_info = [info for info in sample_info.values() if info[
'GT'] != '0/1'][0]
tumor_stats = _mutect_variant_stats(variant, tumor_sample_info)
normal_stats = _mutect_variant_stats(variant, normal_sample_info)
return SomaticVariantStats(tumor_stats=tumor_stats, normal_stats=
normal_stats)
|
mutect_somatic_variant_stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(variant, variant_metadata):\n sample_info = variant_metadata['sample_info']\n assert len(sample_info\n ) == 2, 'More than two samples found in the somatic VCF'\n tumor_sample_infos = [info for info in sample_info.values() if info[\n 'GT'] == '0/1']\n assert len(tumor_sample_infos\n ) == 1, 'More than one tumor sample found in the VCF file'\n tumor_sample_info = tumor_sample_infos[0]\n normal_sample_info = [info for info in sample_info.values() if info[\n 'GT'] != '0/1'][0]\n tumor_stats = _mutect_variant_stats(variant, tumor_sample_info)\n normal_stats = _mutect_variant_stats(variant, normal_sample_info)\n return SomaticVariantStats(tumor_stats=tumor_stats, normal_stats=\n normal_stats)\n",
"role": "user"
},
{
"content": "mutect_somatic_variant_stats",
"role": "assistant"
}
] |
def x(variant, sample_info):
ref_depth, alt_depth = sample_info['AD']
depth = int(ref_depth) + int(alt_depth)
vaf = float(alt_depth) / depth
return VariantStats(depth=depth, alt_depth=alt_depth,
variant_allele_frequency=vaf)
|
mutect_variant_stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(variant, sample_info):\n ref_depth, alt_depth = sample_info['AD']\n depth = int(ref_depth) + int(alt_depth)\n vaf = float(alt_depth) / depth\n return VariantStats(depth=depth, alt_depth=alt_depth,\n variant_allele_frequency=vaf)\n",
"role": "user"
},
{
"content": "mutect_variant_stats",
"role": "assistant"
}
] |
def x(variant, variant_metadata):
tumor_stats = None
normal_stats = None
if 't_ref_count' in variant_metadata:
tumor_stats = _maf_variant_stats(variant, variant_metadata, prefix='t')
if 'n_ref_count' in variant_metadata:
normal_stats = _maf_variant_stats(variant, variant_metadata, prefix='n'
)
return SomaticVariantStats(tumor_stats=tumor_stats, normal_stats=
normal_stats)
|
maf_somatic_variant_stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(variant, variant_metadata):\n tumor_stats = None\n normal_stats = None\n if 't_ref_count' in variant_metadata:\n tumor_stats = _maf_variant_stats(variant, variant_metadata, prefix='t')\n if 'n_ref_count' in variant_metadata:\n normal_stats = _maf_variant_stats(variant, variant_metadata, prefix='n'\n )\n return SomaticVariantStats(tumor_stats=tumor_stats, normal_stats=\n normal_stats)\n",
"role": "user"
},
{
"content": "maf_somatic_variant_stats",
"role": "assistant"
}
] |
def x(variant_file, variant_metadata):
if 'strelka' in variant_file.lower():
return True
elif 'NORMAL' in variant_metadata['sample_info'].keys():
return True
else:
vcf_reader = vcf.Reader(open(variant_file, 'r'))
try:
vcf_type = vcf_reader.metadata['content']
except KeyError:
vcf_type = ''
if 'strelka' in vcf_type.lower():
return True
return False
|
vcf_is_strelka
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(variant_file, variant_metadata):\n if 'strelka' in variant_file.lower():\n return True\n elif 'NORMAL' in variant_metadata['sample_info'].keys():\n return True\n else:\n vcf_reader = vcf.Reader(open(variant_file, 'r'))\n try:\n vcf_type = vcf_reader.metadata['content']\n except KeyError:\n vcf_type = ''\n if 'strelka' in vcf_type.lower():\n return True\n return False\n",
"role": "user"
},
{
"content": "vcf_is_strelka",
"role": "assistant"
}
] |
def x(variant, metadata, merge_fn=lambda all_stats: max(all_stats, key=lambda
stats: stats.tumor_stats.depth)):
all_stats = []
for variant_file, variant_metadata in metadata.items():
if _vcf_is_maf(variant_file=variant_file):
stats = maf_somatic_variant_stats(variant, variant_metadata)
elif _vcf_is_strelka(variant_file=variant_file, variant_metadata=
variant_metadata):
stats = strelka_somatic_variant_stats(variant, variant_metadata)
elif _vcf_is_mutect(variant_file=variant_file, variant_metadata=
variant_metadata):
stats = mutect_somatic_variant_stats(variant, variant_metadata)
else:
raise ValueError(
'Cannot parse sample fields, variant file {} is from an unsupported caller.'
.format(variant_file))
all_stats.append(stats)
return merge_fn(all_stats)
|
variant_stats_from_variant
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(variant, metadata, merge_fn=lambda all_stats: max(all_stats, key=lambda\n stats: stats.tumor_stats.depth)):\n all_stats = []\n for variant_file, variant_metadata in metadata.items():\n if _vcf_is_maf(variant_file=variant_file):\n stats = maf_somatic_variant_stats(variant, variant_metadata)\n elif _vcf_is_strelka(variant_file=variant_file, variant_metadata=\n variant_metadata):\n stats = strelka_somatic_variant_stats(variant, variant_metadata)\n elif _vcf_is_mutect(variant_file=variant_file, variant_metadata=\n variant_metadata):\n stats = mutect_somatic_variant_stats(variant, variant_metadata)\n else:\n raise ValueError(\n 'Cannot parse sample fields, variant file {} is from an unsupported caller.'\n .format(variant_file))\n all_stats.append(stats)\n return merge_fn(all_stats)\n",
"role": "user"
},
{
"content": "variant_stats_from_variant",
"role": "assistant"
}
] |
def x(self):
try:
work = self.queue.get(timeout=self.max_seconds_idle)
except queue.Empty:
self.end_notify()
return False
else:
self._work(work)
self.queue.task_done()
return True
|
get_and_execute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n work = self.queue.get(timeout=self.max_seconds_idle)\n except queue.Empty:\n self.end_notify()\n return False\n else:\n self._work(work)\n self.queue.task_done()\n return True\n",
"role": "user"
},
{
"content": "get_and_execute",
"role": "assistant"
}
] |
def x(self, full_info: bool=False):
chat = self.api_object
if full_info:
self.__format_full(chat)
else:
self.__format_simple(chat)
|
format
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, full_info: bool=False):\n chat = self.api_object\n if full_info:\n self.__format_full(chat)\n else:\n self.__format_simple(chat)\n",
"role": "user"
},
{
"content": "format",
"role": "assistant"
}
] |
def x(self):
settings = []
for setting in _SETTINGS:
value = self.get(setting)
is_set = self.is_set(setting)
default_value = self.get_default_value(setting)
is_supported = True
settings.append((setting, value, default_value, is_set, is_supported))
for setting in sorted(self.settings_state.list_keys()):
if not self.is_supported(setting):
value = self.get(setting)
default_value = None
is_set = True
is_supported = False
settings.append((setting, value, default_value, is_set,
is_supported))
return settings
|
list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n settings = []\n for setting in _SETTINGS:\n value = self.get(setting)\n is_set = self.is_set(setting)\n default_value = self.get_default_value(setting)\n is_supported = True\n settings.append((setting, value, default_value, is_set, is_supported))\n for setting in sorted(self.settings_state.list_keys()):\n if not self.is_supported(setting):\n value = self.get(setting)\n default_value = None\n is_set = True\n is_supported = False\n settings.append((setting, value, default_value, is_set,\n is_supported))\n return settings\n",
"role": "user"
},
{
"content": "list",
"role": "assistant"
}
] |
def x(cohort, coverage_path, min_tumor_depth, min_normal_depth=0,
pageant_dir_fn=None):
if pageant_dir_fn is None:
pageant_dir_fn = lambda patient: patient.id
columns_both = ['depth1', 'depth2', 'onBP1', 'onBP2', 'numOnLoci',
'fracBPOn1', 'fracBPOn2', 'fracLociOn', 'offBP1', 'offBP2',
'numOffLoci', 'fracBPOff1', 'fracBPOff2', 'fracLociOff']
columns_single = ['depth', 'onBP', 'numOnLoci', 'fracBPOn',
'fracLociOn', 'offBP', 'numOffLoci', 'fracBPOff', 'fracLociOff']
if min_normal_depth < 0:
raise ValueError('min_normal_depth must be >= 0')
use_tumor_only = min_normal_depth == 0
columns = columns_single if use_tumor_only else columns_both
ensembl_loci_dfs = []
for patient in cohort:
patient_ensembl_loci_df = pd.read_csv(path.join(coverage_path,
pageant_dir_fn(patient), 'cdf.csv'), names=columns, header=1)
if use_tumor_only:
depth_mask = patient_ensembl_loci_df.depth == min_tumor_depth
else:
depth_mask = (patient_ensembl_loci_df.depth1 == min_normal_depth
) & (patient_ensembl_loci_df.depth2 == min_tumor_depth)
patient_ensembl_loci_df = patient_ensembl_loci_df[depth_mask]
assert len(patient_ensembl_loci_df
) == 1, 'Incorrect number of tumor={}, normal={} depth loci results: {} for patient {}'.format(
min_tumor_depth, min_normal_depth, len(patient_ensembl_loci_df),
patient)
patient_ensembl_loci_df['patient_id'] = patient.id
ensembl_loci_dfs.append(patient_ensembl_loci_df)
ensembl_loci_df = pd.concat(ensembl_loci_dfs)
ensembl_loci_df['MB'] = ensembl_loci_df.numOnLoci / 1000000.0
return ensembl_loci_df[['patient_id', 'numOnLoci', 'MB']]
|
load_ensembl_coverage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cohort, coverage_path, min_tumor_depth, min_normal_depth=0,\n pageant_dir_fn=None):\n if pageant_dir_fn is None:\n pageant_dir_fn = lambda patient: patient.id\n columns_both = ['depth1', 'depth2', 'onBP1', 'onBP2', 'numOnLoci',\n 'fracBPOn1', 'fracBPOn2', 'fracLociOn', 'offBP1', 'offBP2',\n 'numOffLoci', 'fracBPOff1', 'fracBPOff2', 'fracLociOff']\n columns_single = ['depth', 'onBP', 'numOnLoci', 'fracBPOn',\n 'fracLociOn', 'offBP', 'numOffLoci', 'fracBPOff', 'fracLociOff']\n if min_normal_depth < 0:\n raise ValueError('min_normal_depth must be >= 0')\n use_tumor_only = min_normal_depth == 0\n columns = columns_single if use_tumor_only else columns_both\n ensembl_loci_dfs = []\n for patient in cohort:\n patient_ensembl_loci_df = pd.read_csv(path.join(coverage_path,\n pageant_dir_fn(patient), 'cdf.csv'), names=columns, header=1)\n if use_tumor_only:\n depth_mask = patient_ensembl_loci_df.depth == min_tumor_depth\n else:\n depth_mask = (patient_ensembl_loci_df.depth1 == min_normal_depth\n ) & (patient_ensembl_loci_df.depth2 == min_tumor_depth)\n patient_ensembl_loci_df = patient_ensembl_loci_df[depth_mask]\n assert len(patient_ensembl_loci_df\n ) == 1, 'Incorrect number of tumor={}, normal={} depth loci results: {} for patient {}'.format(\n min_tumor_depth, min_normal_depth, len(patient_ensembl_loci_df),\n patient)\n patient_ensembl_loci_df['patient_id'] = patient.id\n ensembl_loci_dfs.append(patient_ensembl_loci_df)\n ensembl_loci_df = pd.concat(ensembl_loci_dfs)\n ensembl_loci_df['MB'] = ensembl_loci_df.numOnLoci / 1000000.0\n return ensembl_loci_df[['patient_id', 'numOnLoci', 'MB']]\n",
"role": "user"
},
{
"content": "load_ensembl_coverage",
"role": "assistant"
}
] |
def x(plot, percent=0.1):
plot_bottom, plot_top = plot.get_ylim()
return percent * (plot_top - plot_bottom)
|
vertical_percent
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(plot, percent=0.1):\n plot_bottom, plot_top = plot.get_ylim()\n return percent * (plot_top - plot_bottom)\n",
"role": "user"
},
{
"content": "vertical_percent",
"role": "assistant"
}
] |
def x(plot, min_tick_value=None, max_tick_value=None):
for tick, tick_value in zip(plot.get_yticklabels(), plot.get_yticks()):
tick_label = as_numeric(tick_value)
if tick_label:
if (min_tick_value is not None and tick_label < min_tick_value or
max_tick_value is not None and tick_label > max_tick_value):
tick.set_visible(False)
|
hide_ticks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(plot, min_tick_value=None, max_tick_value=None):\n for tick, tick_value in zip(plot.get_yticklabels(), plot.get_yticks()):\n tick_label = as_numeric(tick_value)\n if tick_label:\n if (min_tick_value is not None and tick_label < min_tick_value or\n max_tick_value is not None and tick_label > max_tick_value):\n tick.set_visible(False)\n",
"role": "user"
},
{
"content": "hide_ticks",
"role": "assistant"
}
] |
def x(plot, col_a=0, col_b=1, significant=False):
plot_bottom, plot_top = plot.get_ylim()
line_height = vertical_percent(plot, 0.1)
plot_top = plot_top + line_height
plot.set_ylim(top=plot_top + line_height * 2)
color = 'black'
line_top = plot_top + line_height
plot.plot([col_a, col_a, col_b, col_b], [plot_top, line_top, line_top,
plot_top], lw=1.5, color=color)
indicator = '*' if significant else 'ns'
plot.text((col_a + col_b) * 0.5, line_top, indicator, ha='center', va=
'bottom', color=color)
|
add_significance_indicator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(plot, col_a=0, col_b=1, significant=False):\n plot_bottom, plot_top = plot.get_ylim()\n line_height = vertical_percent(plot, 0.1)\n plot_top = plot_top + line_height\n plot.set_ylim(top=plot_top + line_height * 2)\n color = 'black'\n line_top = plot_top + line_height\n plot.plot([col_a, col_a, col_b, col_b], [plot_top, line_top, line_top,\n plot_top], lw=1.5, color=color)\n indicator = '*' if significant else 'ns'\n plot.text((col_a + col_b) * 0.5, line_top, indicator, ha='center', va=\n 'bottom', color=color)\n",
"role": "user"
},
{
"content": "add_significance_indicator",
"role": "assistant"
}
] |
def x(x, y, data, ax=None, significant=None, **kwargs):
ax = sb.boxplot(x=x, y=y, data=data, ax=ax, fliersize=0, **kwargs)
plot = sb.stripplot(x=x, y=y, data=data, ax=ax, jitter=kwargs.pop(
'jitter', 0.05), color=kwargs.pop('color', '0.3'), **kwargs)
if data[y].min() >= 0:
hide_negative_y_ticks(plot)
if significant is not None:
add_significance_indicator(plot=plot, significant=significant)
return plot
|
stripboxplot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, data, ax=None, significant=None, **kwargs):\n ax = sb.boxplot(x=x, y=y, data=data, ax=ax, fliersize=0, **kwargs)\n plot = sb.stripplot(x=x, y=y, data=data, ax=ax, jitter=kwargs.pop(\n 'jitter', 0.05), color=kwargs.pop('color', '0.3'), **kwargs)\n if data[y].min() >= 0:\n hide_negative_y_ticks(plot)\n if significant is not None:\n add_significance_indicator(plot=plot, significant=significant)\n return plot\n",
"role": "user"
},
{
"content": "stripboxplot",
"role": "assistant"
}
] |
def x(data, condition1, condition2, ax=None, condition1_value=None,
alternative='two-sided', **kwargs):
plot = sb.barplot(x=condition1, y=condition2, ax=ax, data=data, **kwargs)
plot.set_ylabel('Percent %s' % condition2)
condition1_mask = get_condition_mask(data, condition1, condition1_value)
count_table = pd.crosstab(data[condition1], data[condition2])
print(count_table)
oddsratio, p_value = fisher_exact(count_table, alternative=alternative)
add_significance_indicator(plot=plot, significant=p_value <= 0.05)
only_percentage_ticks(plot)
if alternative != 'two-sided':
raise ValueError(
"We need to better understand the one-sided Fisher's Exact test")
sided_str = 'two-sided'
print("Fisher's Exact Test: OR: {}, p-value={} ({})".format(oddsratio,
p_value, sided_str))
return FishersExactResults(oddsratio=oddsratio, p_value=p_value,
sided_str=sided_str, with_condition1_series=data[condition1_mask][
condition2], without_condition1_series=data[~condition1_mask][
condition2], plot=plot)
|
fishers_exact_plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, condition1, condition2, ax=None, condition1_value=None,\n alternative='two-sided', **kwargs):\n plot = sb.barplot(x=condition1, y=condition2, ax=ax, data=data, **kwargs)\n plot.set_ylabel('Percent %s' % condition2)\n condition1_mask = get_condition_mask(data, condition1, condition1_value)\n count_table = pd.crosstab(data[condition1], data[condition2])\n print(count_table)\n oddsratio, p_value = fisher_exact(count_table, alternative=alternative)\n add_significance_indicator(plot=plot, significant=p_value <= 0.05)\n only_percentage_ticks(plot)\n if alternative != 'two-sided':\n raise ValueError(\n \"We need to better understand the one-sided Fisher's Exact test\")\n sided_str = 'two-sided'\n print(\"Fisher's Exact Test: OR: {}, p-value={} ({})\".format(oddsratio,\n p_value, sided_str))\n return FishersExactResults(oddsratio=oddsratio, p_value=p_value,\n sided_str=sided_str, with_condition1_series=data[condition1_mask][\n condition2], without_condition1_series=data[~condition1_mask][\n condition2], plot=plot)\n",
"role": "user"
},
{
"content": "fishers_exact_plot",
"role": "assistant"
}
] |
def x(data, condition, distribution, ax=None, condition_value=None,
alternative='two-sided', skip_plot=False, **kwargs):
condition_mask = get_condition_mask(data, condition, condition_value)
U, p_value = mannwhitneyu(data[condition_mask][distribution], data[~
condition_mask][distribution], alternative=alternative)
plot = None
if not skip_plot:
plot = stripboxplot(x=condition, y=distribution, data=data, ax=ax,
significant=p_value <= 0.05, **kwargs)
sided_str = sided_str_from_alternative(alternative, condition)
print('Mann-Whitney test: U={}, p-value={} ({})'.format(U, p_value,
sided_str))
return MannWhitneyResults(U=U, p_value=p_value, sided_str=sided_str,
with_condition_series=data[condition_mask][distribution],
without_condition_series=data[~condition_mask][distribution], plot=plot
)
|
mann_whitney_plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, condition, distribution, ax=None, condition_value=None,\n alternative='two-sided', skip_plot=False, **kwargs):\n condition_mask = get_condition_mask(data, condition, condition_value)\n U, p_value = mannwhitneyu(data[condition_mask][distribution], data[~\n condition_mask][distribution], alternative=alternative)\n plot = None\n if not skip_plot:\n plot = stripboxplot(x=condition, y=distribution, data=data, ax=ax,\n significant=p_value <= 0.05, **kwargs)\n sided_str = sided_str_from_alternative(alternative, condition)\n print('Mann-Whitney test: U={}, p-value={} ({})'.format(U, p_value,\n sided_str))\n return MannWhitneyResults(U=U, p_value=p_value, sided_str=sided_str,\n with_condition_series=data[condition_mask][distribution],\n without_condition_series=data[~condition_mask][distribution], plot=plot\n )\n",
"role": "user"
},
{
"content": "mann_whitney_plot",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.