source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, parentItem=None): if parentItem is None: parentItem = self.rootItem checkStates = odict() children = parentItem.getChildren() for child in children: checkStates[child.itemData[0]] = child.getCheckState() return checkStates
getNodesCheckState
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parentItem=None):\n if parentItem is None:\n parentItem = self.rootItem\n checkStates = odict()\n children = parentItem.getChildren()\n for child in children:\n checkStates[child.itemData[0]] = child.getCheckState()\n return checkStates\n", "role": "user" }, { "content": "getNodesCheckState", "role": "assistant" } ]
def x(major=0, minor=0, micro=0, releaselevel='dev', serial=0): try: releaselevel = int(releaselevel) except ValueError: releaselevel = RELEASE_LEVEL_VALUE.get(releaselevel, 0) hex_version = int(serial) hex_version |= releaselevel * 1 << 4 hex_version |= int(micro) * 1 << 8 hex_version |= int(minor) * 1 << 16 hex_version |= int(major) * 1 << 24 return hex_version
calc_hexversion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(major=0, minor=0, micro=0, releaselevel='dev', serial=0):\n try:\n releaselevel = int(releaselevel)\n except ValueError:\n releaselevel = RELEASE_LEVEL_VALUE.get(releaselevel, 0)\n hex_version = int(serial)\n hex_version |= releaselevel * 1 << 4\n hex_version |= int(micro) * 1 << 8\n hex_version |= int(minor) * 1 << 16\n hex_version |= int(major) * 1 << 24\n return hex_version\n", "role": "user" }, { "content": "calc_hexversion", "role": "assistant" } ]
def x(self, pos): menu = QMenu(self) menu.addAction(self._zoomBackAction) plotArea = self.getWidgetHandle() globalPosition = plotArea.mapToGlobal(pos) menu.exec_(globalPosition)
contextMenu
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pos):\n menu = QMenu(self)\n menu.addAction(self._zoomBackAction)\n plotArea = self.getWidgetHandle()\n globalPosition = plotArea.mapToGlobal(pos)\n menu.exec_(globalPosition)\n", "role": "user" }, { "content": "contextMenu", "role": "assistant" } ]
def x(array, kernel): array = np.asarray(array, dtype=np.complex) kernel = np.asarray(kernel, dtype=np.complex) if array.ndim != kernel.ndim: raise ValueError('Image and kernel must have same number of dimensions' ) array_shape = array.shape kernel_shape = kernel.shape new_shape = np.array(array_shape) + np.array(kernel_shape) array_slices = [] kernel_slices = [] for new_dimsize, array_dimsize, kernel_dimsize in zip(new_shape, array_shape, kernel_shape): center = new_dimsize - (new_dimsize + 1) // 2 array_slices += [slice(center - array_dimsize // 2, center + ( array_dimsize + 1) // 2)] kernel_slices += [slice(center - kernel_dimsize // 2, center + ( kernel_dimsize + 1) // 2)] array_slices = tuple(array_slices) kernel_slices = tuple(kernel_slices) if not np.all(new_shape == array_shape): big_array = np.zeros(new_shape, dtype=np.complex) big_array[array_slices] = array else: big_array = array if not np.all(new_shape == kernel_shape): big_kernel = np.zeros(new_shape, dtype=np.complex) big_kernel[kernel_slices] = kernel else: big_kernel = kernel array_fft = np.fft.fftn(big_array) kernel_fft = np.fft.fftn(np.fft.ifftshift(big_kernel)) rifft = np.fft.ifftn(array_fft * kernel_fft) return rifft[array_slices].real
convolve_fft
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(array, kernel):\n array = np.asarray(array, dtype=np.complex)\n kernel = np.asarray(kernel, dtype=np.complex)\n if array.ndim != kernel.ndim:\n raise ValueError('Image and kernel must have same number of dimensions'\n )\n array_shape = array.shape\n kernel_shape = kernel.shape\n new_shape = np.array(array_shape) + np.array(kernel_shape)\n array_slices = []\n kernel_slices = []\n for new_dimsize, array_dimsize, kernel_dimsize in zip(new_shape,\n array_shape, kernel_shape):\n center = new_dimsize - (new_dimsize + 1) // 2\n array_slices += [slice(center - array_dimsize // 2, center + (\n array_dimsize + 1) // 2)]\n kernel_slices += [slice(center - kernel_dimsize // 2, center + (\n kernel_dimsize + 1) // 2)]\n array_slices = tuple(array_slices)\n kernel_slices = tuple(kernel_slices)\n if not np.all(new_shape == array_shape):\n big_array = np.zeros(new_shape, dtype=np.complex)\n big_array[array_slices] = array\n else:\n big_array = array\n if not np.all(new_shape == kernel_shape):\n big_kernel = np.zeros(new_shape, dtype=np.complex)\n big_kernel[kernel_slices] = kernel\n else:\n big_kernel = kernel\n array_fft = np.fft.fftn(big_array)\n kernel_fft = np.fft.fftn(np.fft.ifftshift(big_kernel))\n rifft = np.fft.ifftn(array_fft * kernel_fft)\n return rifft[array_slices].real\n", "role": "user" }, { "content": "convolve_fft", "role": "assistant" } ]
def x(self): self.eigvals, self.eigvecs = np.linalg.eig((self.tensor.transpose() + self.tensor) / 2.0) self.eigvals = np.diag(np.dot(np.dot(self.eigvecs.transpose(), self. tensor), self.eigvecs))
diagonalize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.eigvals, self.eigvecs = np.linalg.eig((self.tensor.transpose() +\n self.tensor) / 2.0)\n self.eigvals = np.diag(np.dot(np.dot(self.eigvecs.transpose(), self.\n tensor), self.eigvecs))\n", "role": "user" }, { "content": "diagonalize", "role": "assistant" } ]
def x(self): signs = np.array([[1, 1, 1], [-1, 1, 1], [1, -1, 1], [1, 1, -1], [-1, - 1, 1], [-1, 1, -1], [1, -1, -1], [-1, -1, -1]]) eulangs = [] eigframes = [] for i, sign in enumerate(signs): eigframe = np.dot(self.eigvecs, np.diag(sign)) if np.linalg.det(eigframe) > 0.0001: eigframes.append(np.array(eigframe)) eulangs.append(np.array(transformations.euler_from_matrix( eigframe, axes='szyz'))) self.eigframes = np.array(eigframes) self.eulangs = -np.array(eulangs)
euler_angles_and_eigenframes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n signs = np.array([[1, 1, 1], [-1, 1, 1], [1, -1, 1], [1, 1, -1], [-1, -\n 1, 1], [-1, 1, -1], [1, -1, -1], [-1, -1, -1]])\n eulangs = []\n eigframes = []\n for i, sign in enumerate(signs):\n eigframe = np.dot(self.eigvecs, np.diag(sign))\n if np.linalg.det(eigframe) > 0.0001:\n eigframes.append(np.array(eigframe))\n eulangs.append(np.array(transformations.euler_from_matrix(\n eigframe, axes='szyz')))\n self.eigframes = np.array(eigframes)\n self.eulangs = -np.array(eulangs)\n", "role": "user" }, { "content": "euler_angles_and_eigenframes", "role": "assistant" } ]
def x(self, n): for i in range(n): self.line = next(self.output) return self.line
skip_lines
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n):\n for i in range(n):\n self.line = next(self.output)\n return self.line\n", "role": "user" }, { "content": "skip_lines", "role": "assistant" } ]
def x(self, indices=False): if indices: self.line = self._skip_lines(1) tensor = np.zeros((3, 3)) for i in range(3): tokens = self.line.split() if indices: tensor[i][0] = float(tokens[1]) tensor[i][1] = float(tokens[2]) tensor[i][2] = float(tokens[3]) else: tensor[i][0] = float(tokens[0]) tensor[i][1] = float(tokens[1]) tensor[i][2] = float(tokens[2]) self.line = self._skip_lines(1) return tensor
parse_tensor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, indices=False):\n if indices:\n self.line = self._skip_lines(1)\n tensor = np.zeros((3, 3))\n for i in range(3):\n tokens = self.line.split()\n if indices:\n tensor[i][0] = float(tokens[1])\n tensor[i][1] = float(tokens[2])\n tensor[i][2] = float(tokens[3])\n else:\n tensor[i][0] = float(tokens[0])\n tensor[i][1] = float(tokens[1])\n tensor[i][2] = float(tokens[2])\n self.line = self._skip_lines(1)\n return tensor\n", "role": "user" }, { "content": "parse_tensor", "role": "assistant" } ]
def x(self): for self.line in self.output: self.index = 0 if self.line[1:13] == 'Total Charge': tokens = self.line.split() self.charge = int(tokens[-1]) if (self.line[1:13] or self.line[0:12]) == 'Multiplicity': tokens = self.line.split() self.multiplicity = int(tokens[-1]) if self.line[0:33] == 'CARTESIAN COORDINATES (ANGSTROEM)': if not hasattr(self, 'names'): self.names = dict() if not hasattr(self, 'coords'): self.coords = dict() self.line = self._skip_lines(2) names = list() coords = list() while self.line.strip(): tokens = self.line.split() names.append(tokens[0]) x = float(tokens[1]) y = float(tokens[2]) z = float(tokens[3]) coords.append((x, y, z)) self.line = next(self.output) self.names = np.array(names) self.coords[self.index] = np.array(coords) if self.line[22:50] == 'MULLIKEN POPULATION ANALYSIS': if not hasattr(self, 'populations'): self.populations = dict() self.line = self._skip_lines(6) populations = list() while self.line.strip() and 'Sum' not in self.line: tokens = self.line.split() populations.append((float(tokens[-2]), float(tokens[-1]))) self.line = next(self.output) self.populations['mulliken'][self.index] = np.array(populations) if self.line[37:44] == 'EPR/NMR': self.eprnmr = dict() if self.line[0:19] == 'ELECTRONIC G-MATRIX': self.line = self._skip_lines(4) self.eprnmr['g']['tensor'] = self._parse_tensor() if self.line[0:27] == 'ZERO-FIELD-SPLITTING TENSOR': self.line = self._skip_lines(4) self.eprnmr['zfs']['tensor'] = self._parse_tensor() if self.line[1:8] == 'Nucleus': tokens = self.line.split() nucleus = int(re.findall('\\d+', tokens[1])[0]) while 'Raw HFC' not in self.line: self.line = self._skip_lines(1) self.line = self._skip_lines(2) self.eprnmr['hfc'][nucleus]['tensor'] = self._parse_tensor() self.line = self._skip_lines(1) self.eprnmr['hfc'][nucleus]['fc'] = self._parse_components() self.eprnmr['hfc'][nucleus]['sd'] = self._parse_components() self.line = self._skip_lines(1) self.eprnmr['hfc'][nucleus]['orb'] = self._parse_components() self.eprnmr['hfc'][nucleus]['dia'] = self._parse_components() if self.line[36:43] == 'M R C I': self.mrci = dict() if self.line[1:19] == 'SPIN-SPIN COUPLING': self.line = self._skip_lines(4) self.mrci['zfs']['ssc']['tensor'] = self._parse_tensor() if self.line[1:30] == '2ND ORDER SPIN-ORBIT COUPLING': while 'Second' not in self.line: self.line = self._skip_lines(1) self.line = self._skip_lines(1) self.mrci['zfs']['soc']['second_order']['0']['tensor' ] = self._parse_tensor() self.line = self._skip_lines(2) self.mrci['zfs']['soc']['second_order']['m']['tensor' ] = self._parse_tensor() self.line = self._skip_lines(2) self.mrci['zfs']['soc']['second_order']['p']['tensor' ] = self._parse_tensor() if self.line[1:42] == 'EFFECTIVE HAMILTONIAN SPIN-ORBIT COUPLING': self.line = self._skip_lines(4) self.mrci['zfs']['soc']['heff']['tensor'] = self._parse_tensor()
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for self.line in self.output:\n self.index = 0\n if self.line[1:13] == 'Total Charge':\n tokens = self.line.split()\n self.charge = int(tokens[-1])\n if (self.line[1:13] or self.line[0:12]) == 'Multiplicity':\n tokens = self.line.split()\n self.multiplicity = int(tokens[-1])\n if self.line[0:33] == 'CARTESIAN COORDINATES (ANGSTROEM)':\n if not hasattr(self, 'names'):\n self.names = dict()\n if not hasattr(self, 'coords'):\n self.coords = dict()\n self.line = self._skip_lines(2)\n names = list()\n coords = list()\n while self.line.strip():\n tokens = self.line.split()\n names.append(tokens[0])\n x = float(tokens[1])\n y = float(tokens[2])\n z = float(tokens[3])\n coords.append((x, y, z))\n self.line = next(self.output)\n self.names = np.array(names)\n self.coords[self.index] = np.array(coords)\n if self.line[22:50] == 'MULLIKEN POPULATION ANALYSIS':\n if not hasattr(self, 'populations'):\n self.populations = dict()\n self.line = self._skip_lines(6)\n populations = list()\n while self.line.strip() and 'Sum' not in self.line:\n tokens = self.line.split()\n populations.append((float(tokens[-2]), float(tokens[-1])))\n self.line = next(self.output)\n self.populations['mulliken'][self.index] = np.array(populations)\n if self.line[37:44] == 'EPR/NMR':\n self.eprnmr = dict()\n if self.line[0:19] == 'ELECTRONIC G-MATRIX':\n self.line = self._skip_lines(4)\n self.eprnmr['g']['tensor'] = self._parse_tensor()\n if self.line[0:27] == 'ZERO-FIELD-SPLITTING TENSOR':\n self.line = self._skip_lines(4)\n self.eprnmr['zfs']['tensor'] = self._parse_tensor()\n if self.line[1:8] == 'Nucleus':\n tokens = self.line.split()\n nucleus = int(re.findall('\\\\d+', tokens[1])[0])\n while 'Raw HFC' not in self.line:\n self.line = self._skip_lines(1)\n self.line = self._skip_lines(2)\n self.eprnmr['hfc'][nucleus]['tensor'] = self._parse_tensor()\n self.line = self._skip_lines(1)\n self.eprnmr['hfc'][nucleus]['fc'] = self._parse_components()\n self.eprnmr['hfc'][nucleus]['sd'] = self._parse_components()\n self.line = self._skip_lines(1)\n self.eprnmr['hfc'][nucleus]['orb'] = self._parse_components()\n self.eprnmr['hfc'][nucleus]['dia'] = self._parse_components()\n if self.line[36:43] == 'M R C I':\n self.mrci = dict()\n if self.line[1:19] == 'SPIN-SPIN COUPLING':\n self.line = self._skip_lines(4)\n self.mrci['zfs']['ssc']['tensor'] = self._parse_tensor()\n if self.line[1:30] == '2ND ORDER SPIN-ORBIT COUPLING':\n while 'Second' not in self.line:\n self.line = self._skip_lines(1)\n self.line = self._skip_lines(1)\n self.mrci['zfs']['soc']['second_order']['0']['tensor'\n ] = self._parse_tensor()\n self.line = self._skip_lines(2)\n self.mrci['zfs']['soc']['second_order']['m']['tensor'\n ] = self._parse_tensor()\n self.line = self._skip_lines(2)\n self.mrci['zfs']['soc']['second_order']['p']['tensor'\n ] = self._parse_tensor()\n if self.line[1:42] == 'EFFECTIVE HAMILTONIAN SPIN-ORBIT COUPLING':\n self.line = self._skip_lines(4)\n self.mrci['zfs']['soc']['heff']['tensor'] = self._parse_tensor()\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]
def x(self, target, value, oldvalue, initiator): if value == oldvalue: return value if self.allow_null and value is None: return value if self.check_value(value): return value else: if self.throw_exception: if self.message: self.message = self.message.format(field=self.field, new_value=value, old_value=oldvalue, key=initiator.key) raise ValidateError(self.message) else: raise ValidateError('Value %s from column %s is not valid' % (value, initiator.key)) return oldvalue
validate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, target, value, oldvalue, initiator):\n if value == oldvalue:\n return value\n if self.allow_null and value is None:\n return value\n if self.check_value(value):\n return value\n else:\n if self.throw_exception:\n if self.message:\n self.message = self.message.format(field=self.field,\n new_value=value, old_value=oldvalue, key=initiator.key)\n raise ValidateError(self.message)\n else:\n raise ValidateError('Value %s from column %s is not valid' %\n (value, initiator.key))\n return oldvalue\n", "role": "user" }, { "content": "validate", "role": "assistant" } ]
def x(self): if not event.contains(self.field, 'set', self.__validate): event.listen(self.field, 'set', self.__validate, retval=True)
create_event
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not event.contains(self.field, 'set', self.__validate):\n event.listen(self.field, 'set', self.__validate, retval=True)\n", "role": "user" }, { "content": "create_event", "role": "assistant" } ]
def x(self): if event.contains(self.field, 'set', self.__validate): event.remove(self.field, 'set', self.__validate)
stop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if event.contains(self.field, 'set', self.__validate):\n event.remove(self.field, 'set', self.__validate)\n", "role": "user" }, { "content": "stop", "role": "assistant" } ]
def x(self): if not event.contains(self.field, 'set', self.__validate): self.__create_event()
start
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not event.contains(self.field, 'set', self.__validate):\n self.__create_event()\n", "role": "user" }, { "content": "start", "role": "assistant" } ]
def x(self, cucSo, gioiTinh): for cung in self.thapNhiCung: khoangCach = khoangCachCung(cung.cungSo, self.cungMenh, gioiTinh) cung.daiHan(cucSo + khoangCach * 10) return self
nhapDaiHan
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cucSo, gioiTinh):\n for cung in self.thapNhiCung:\n khoangCach = khoangCachCung(cung.cungSo, self.cungMenh, gioiTinh)\n cung.daiHan(cucSo + khoangCach * 10)\n return self\n", "role": "user" }, { "content": "nhapDaiHan", "role": "assistant" } ]
def x(data, edges=None, weights=None, minlam=0.2, maxlam=1000.0, numlam=30, alpha=0.2, inflate=2.0, converge=1e-06, maxsteps=1000000, lam=None, verbose=0, missing_val=None, full_path=False, loss='normal'): if edges.shape[0] < 1: return data init_edges = edges if verbose: print('Decomposing graph into trails') if loss == 'binomial': flat_data = data[0].flatten() nonmissing_flat_data = flat_data, data[1].flatten() else: flat_data = data.flatten() nonmissing_flat_data = flat_data if edges is None: if loss == 'binomial': if verbose: print( 'Using default edge set of a grid of same shape as the data: {0}' .format(data[0].shape)) edges = hypercube_edges(data[0].shape) else: if verbose: print( 'Using default edge set of a grid of same shape as the data: {0}' .format(data.shape)) edges = hypercube_edges(data.shape) if missing_val is not None: if verbose: print('Removing all data points whose data value is {0}'. format(missing_val)) edges = [(e1, e2) for e1, e2 in edges if flat_data[e1] != missing_val and flat_data[e2] != missing_val] if loss == 'binomial': nonmissing_flat_data = flat_data[flat_data != missing_val ], nonmissing_flat_data[1][flat_data != missing_val] else: nonmissing_flat_data = flat_data[flat_data != missing_val] g = Graph() g.add_edges_from(edges) chains = decompose_graph(g, heuristic='greedy') ntrails, trails, breakpoints, edges = chains_to_trails(chains) if verbose: print('Setting up trail solver') if loss == 'normal': solver = TrailSolver(alpha, inflate, maxsteps, converge) elif loss == 'logistic': solver = LogisticTrailSolver(alpha, inflate, maxsteps, converge) elif loss == 'binomial': solver = BinomialTrailSolver(alpha, inflate, maxsteps, converge) else: raise NotImplementedError('Loss must be normal, logistic, or binomial') solver.set_data(nonmissing_flat_data, edges, ntrails, trails, breakpoints, weights=weights) if verbose: print('Solving') if lam: beta = solver.solve(lam) else: beta = solver.solution_path(minlam, maxlam, numlam, verbose=max(0, verbose - 1)) if not full_path: beta = beta['best'] mask = np.ones_like(beta) mask[init_edges[:, 0]] = 0 mask[init_edges[:, 1]] = 0 beta[mask > 0] = data[mask > 0] return beta
solve_gfl
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, edges=None, weights=None, minlam=0.2, maxlam=1000.0, numlam=30,\n alpha=0.2, inflate=2.0, converge=1e-06, maxsteps=1000000, lam=None,\n verbose=0, missing_val=None, full_path=False, loss='normal'):\n if edges.shape[0] < 1:\n return data\n init_edges = edges\n if verbose:\n print('Decomposing graph into trails')\n if loss == 'binomial':\n flat_data = data[0].flatten()\n nonmissing_flat_data = flat_data, data[1].flatten()\n else:\n flat_data = data.flatten()\n nonmissing_flat_data = flat_data\n if edges is None:\n if loss == 'binomial':\n if verbose:\n print(\n 'Using default edge set of a grid of same shape as the data: {0}'\n .format(data[0].shape))\n edges = hypercube_edges(data[0].shape)\n else:\n if verbose:\n print(\n 'Using default edge set of a grid of same shape as the data: {0}'\n .format(data.shape))\n edges = hypercube_edges(data.shape)\n if missing_val is not None:\n if verbose:\n print('Removing all data points whose data value is {0}'.\n format(missing_val))\n edges = [(e1, e2) for e1, e2 in edges if flat_data[e1] !=\n missing_val and flat_data[e2] != missing_val]\n if loss == 'binomial':\n nonmissing_flat_data = flat_data[flat_data != missing_val\n ], nonmissing_flat_data[1][flat_data != missing_val]\n else:\n nonmissing_flat_data = flat_data[flat_data != missing_val]\n g = Graph()\n g.add_edges_from(edges)\n chains = decompose_graph(g, heuristic='greedy')\n ntrails, trails, breakpoints, edges = chains_to_trails(chains)\n if verbose:\n print('Setting up trail solver')\n if loss == 'normal':\n solver = TrailSolver(alpha, inflate, maxsteps, converge)\n elif loss == 'logistic':\n solver = LogisticTrailSolver(alpha, inflate, maxsteps, converge)\n elif loss == 'binomial':\n solver = BinomialTrailSolver(alpha, inflate, maxsteps, converge)\n else:\n raise NotImplementedError('Loss must be normal, logistic, or binomial')\n solver.set_data(nonmissing_flat_data, edges, ntrails, trails,\n breakpoints, weights=weights)\n if verbose:\n print('Solving')\n if lam:\n beta = solver.solve(lam)\n else:\n beta = solver.solution_path(minlam, maxlam, numlam, verbose=max(0, \n verbose - 1))\n if not full_path:\n beta = beta['best']\n mask = np.ones_like(beta)\n mask[init_edges[:, 0]] = 0\n mask[init_edges[:, 1]] = 0\n beta[mask > 0] = data[mask > 0]\n return beta\n", "role": "user" }, { "content": "solve_gfl", "role": "assistant" } ]
def x(nn, tt, nnnn, duongLich=True, timeZone=7): thangNhuan = 0 if nn > 0 and nn < 32 and tt < 13 and tt > 0: if duongLich is True: [nn, tt, nnnn, thangNhuan] = S2L(nn, tt, nnnn, timeZone=timeZone) return [nn, tt, nnnn, thangNhuan] else: raise Exception('Ngày, tháng, năm không chính xác.')
ngayThangNam
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nn, tt, nnnn, duongLich=True, timeZone=7):\n thangNhuan = 0\n if nn > 0 and nn < 32 and tt < 13 and tt > 0:\n if duongLich is True:\n [nn, tt, nnnn, thangNhuan] = S2L(nn, tt, nnnn, timeZone=timeZone)\n return [nn, tt, nnnn, thangNhuan]\n else:\n raise Exception('Ngày, tháng, năm không chính xác.')\n", "role": "user" }, { "content": "ngayThangNam", "role": "assistant" } ]
def x(nn, tt, nnnn, duongLich=True, timeZone=7, thangNhuan=False): if duongLich is False: [nn, tt, nnnn] = L2S(nn, tt, nnnn, thangNhuan, timeZone) jd = jdFromDate(nn, tt, nnnn) canNgay = (jd + 9) % 10 + 1 chiNgay = (jd + 1) % 12 + 1 return [canNgay, chiNgay]
canChiNgay
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nn, tt, nnnn, duongLich=True, timeZone=7, thangNhuan=False):\n if duongLich is False:\n [nn, tt, nnnn] = L2S(nn, tt, nnnn, thangNhuan, timeZone)\n jd = jdFromDate(nn, tt, nnnn)\n canNgay = (jd + 9) % 10 + 1\n chiNgay = (jd + 1) % 12 + 1\n return [canNgay, chiNgay]\n", "role": "user" }, { "content": "canChiNgay", "role": "assistant" } ]
def x(nn, tt, nnnn, duongLich=True, timeZone=7): if duongLich is True: [nn, tt, nnnn, thangNhuan] = ngayThangNam(nn, tt, nnnn, timeZone= timeZone) canThang = (nnnn * 12 + tt + 3) % 10 + 1 canNamSinh = (nnnn + 6) % 10 + 1 chiNam = (nnnn + 8) % 12 + 1 return [canThang, canNamSinh, chiNam]
ngayThangNamCanChi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nn, tt, nnnn, duongLich=True, timeZone=7):\n if duongLich is True:\n [nn, tt, nnnn, thangNhuan] = ngayThangNam(nn, tt, nnnn, timeZone=\n timeZone)\n canThang = (nnnn * 12 + tt + 3) % 10 + 1\n canNamSinh = (nnnn + 6) % 10 + 1\n chiNam = (nnnn + 8) % 12 + 1\n return [canThang, canNamSinh, chiNam]\n", "role": "user" }, { "content": "ngayThangNamCanChi", "role": "assistant" } ]
def x(tenHanh): if tenHanh in ['Kim', 'K']: return {'id': 1, 'tenHanh': 'Kim', 'cuc': 4, 'tenCuc': 'Kim tứ Cục', 'css': 'hanhKim'} elif tenHanh == 'Moc' or tenHanh == 'M': return {'id': 2, 'tenHanh': 'Mộc', 'cuc': 3, 'tenCuc': 'Mộc tam Cục', 'css': 'hanhMoc'} elif tenHanh == 'Thuy' or tenHanh == 'T': return {'id': 3, 'tenHanh': 'Thủy', 'cuc': 2, 'tenCuc': 'Thủy nhị Cục', 'css': 'hanhThuy'} elif tenHanh == 'Hoa' or tenHanh == 'H': return {'id': 4, 'tenHanh': 'Hỏa', 'cuc': 6, 'tenCuc': 'Hỏa lục Cục', 'css': 'hanhHoa'} elif tenHanh == 'Tho' or tenHanh == 'O': return {'id': 5, 'tenHanh': 'Thổ', 'cuc': 5, 'tenCuc': 'Thổ ngũ Cục', 'css': 'hanhTho'} else: raise Exception( 'Tên Hành phải thuộc Kim (K), Mộc (M), Thủy (T), Hỏa (H) hoặc Thổ (O)' )
nguHanh
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tenHanh):\n if tenHanh in ['Kim', 'K']:\n return {'id': 1, 'tenHanh': 'Kim', 'cuc': 4, 'tenCuc': 'Kim tứ Cục',\n 'css': 'hanhKim'}\n elif tenHanh == 'Moc' or tenHanh == 'M':\n return {'id': 2, 'tenHanh': 'Mộc', 'cuc': 3, 'tenCuc':\n 'Mộc tam Cục', 'css': 'hanhMoc'}\n elif tenHanh == 'Thuy' or tenHanh == 'T':\n return {'id': 3, 'tenHanh': 'Thủy', 'cuc': 2, 'tenCuc':\n 'Thủy nhị Cục', 'css': 'hanhThuy'}\n elif tenHanh == 'Hoa' or tenHanh == 'H':\n return {'id': 4, 'tenHanh': 'Hỏa', 'cuc': 6, 'tenCuc':\n 'Hỏa lục Cục', 'css': 'hanhHoa'}\n elif tenHanh == 'Tho' or tenHanh == 'O':\n return {'id': 5, 'tenHanh': 'Thổ', 'cuc': 5, 'tenCuc':\n 'Thổ ngũ Cục', 'css': 'hanhTho'}\n else:\n raise Exception(\n 'Tên Hành phải thuộc Kim (K), Mộc (M), Thủy (T), Hỏa (H) hoặc Thổ (O)'\n )\n", "role": "user" }, { "content": "nguHanh", "role": "assistant" } ]
def x(diaChi, thienCan, xuatBanMenh=False): banMenh = {'K1': 'HẢI TRUNG KIM', 'T1': 'GIÁNG HẠ THỦY', 'H1': 'TÍCH LỊCH HỎA', 'O1': 'BÍCH THƯỢNG THỔ', 'M1': 'TANG ÐỐ MỘC', 'T2': 'ÐẠI KHÊ THỦY', 'H2': 'LƯ TRUNG HỎA', 'O2': 'THÀNH ÐẦU THỔ', 'M2': 'TÒNG BÁ MỘC', 'K2': 'KIM BẠCH KIM', 'H3': 'PHÚ ÐĂNG HỎA', 'O3': 'SA TRUNG THỔ', 'M3': 'ÐẠI LÂM MỘC', 'K3': 'BẠCH LẠP KIM', 'T3': 'TRƯỜNG LƯU THỦY', 'K4': 'SA TRUNG KIM', 'T4': 'THIÊN HÀ THỦY', 'H4': 'THIÊN THƯỢNG HỎA', 'O4': 'LỘ BÀN THỔ', 'M4': 'DƯƠNG LIỄU MỘC', 'T5': 'TRUYỀN TRUNG THỦY', 'H5': 'SƠN HẠ HỎA', 'O5': 'ÐẠI TRẠCH THỔ', 'M5': 'THẠCH LỰU MỘC', 'K5': 'KIẾM PHONG KIM', 'H6': 'SƠN ÐẦU HỎA', 'O6': 'ỐC THƯỢNG THỔ', 'M6': 'BÌNH ÐỊA MỘC', 'K6': 'XOA XUYẾN KIM', 'T6': 'ÐẠI HẢI THỦY'} matranNapAm = [[0, 'G', 'Ất', 'Bính', 'Đinh', 'Mậu', 'Kỷ', 'Canh', 'Tân', 'N', 'Q'], [1, 'K1', False, 'T1', False, 'H1', False, 'O1', False, 'M1', False], [2, False, 'K1', False, 'T1', False, 'H1', False, 'O1', False, 'M1'], [3, 'T2', False, 'H2', False, 'O2', False, 'M2', False, 'K2', False], [4, False, 'T2', False, 'H2', False, 'O2', False, 'M2', False, 'K2'], [5, 'H3', False, 'O3', False, 'M3', False, 'K3', False, 'T3', False], [6, False, 'H3', False, 'O3', False, 'M3', False, 'K3', False, 'T3'], [7, 'K4', False, 'T4', False, 'H4', False, 'O4', False, 'M4', False], [8, False, 'K4', False, 'T4', False, 'H4', False, 'O4', False, 'M4'], [ 9, 'T5', False, 'H5', False, 'O5', False, 'M5', False, 'K5', False], [10, False, 'T5', False, 'H5', False, 'O5', False, 'M5', False, 'K5'], [11, 'H6', False, 'O6', False, 'M6', False, 'K6', False, 'T6', False], [12, False, 'H6', False, 'O6', False, 'M6', False, 'K6', False, 'T6']] try: nh = matranNapAm[diaChi][thienCan] if nh[0] in ['K', 'M', 'T', 'H', 'O']: if xuatBanMenh is True: return banMenh[nh] else: return nh[0] except: raise Exception(nguHanhNapAm.__doc__)
nguHanhNapAm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(diaChi, thienCan, xuatBanMenh=False):\n banMenh = {'K1': 'HẢI TRUNG KIM', 'T1': 'GIÁNG HẠ THỦY', 'H1':\n 'TÍCH LỊCH HỎA', 'O1': 'BÍCH THƯỢNG THỔ', 'M1': 'TANG ÐỐ MỘC', 'T2':\n 'ÐẠI KHÊ THỦY', 'H2': 'LƯ TRUNG HỎA', 'O2': 'THÀNH ÐẦU THỔ', 'M2':\n 'TÒNG BÁ MỘC', 'K2': 'KIM BẠCH KIM', 'H3': 'PHÚ ÐĂNG HỎA', 'O3':\n 'SA TRUNG THỔ', 'M3': 'ÐẠI LÂM MỘC', 'K3': 'BẠCH LẠP KIM', 'T3':\n 'TRƯỜNG LƯU THỦY', 'K4': 'SA TRUNG KIM', 'T4': 'THIÊN HÀ THỦY',\n 'H4': 'THIÊN THƯỢNG HỎA', 'O4': 'LỘ BÀN THỔ', 'M4':\n 'DƯƠNG LIỄU MỘC', 'T5': 'TRUYỀN TRUNG THỦY', 'H5': 'SƠN HẠ HỎA',\n 'O5': 'ÐẠI TRẠCH THỔ', 'M5': 'THẠCH LỰU MỘC', 'K5':\n 'KIẾM PHONG KIM', 'H6': 'SƠN ÐẦU HỎA', 'O6': 'ỐC THƯỢNG THỔ', 'M6':\n 'BÌNH ÐỊA MỘC', 'K6': 'XOA XUYẾN KIM', 'T6': 'ÐẠI HẢI THỦY'}\n matranNapAm = [[0, 'G', 'Ất', 'Bính', 'Đinh', 'Mậu', 'Kỷ', 'Canh',\n 'Tân', 'N', 'Q'], [1, 'K1', False, 'T1', False, 'H1', False, 'O1', \n False, 'M1', False], [2, False, 'K1', False, 'T1', False, 'H1', \n False, 'O1', False, 'M1'], [3, 'T2', False, 'H2', False, 'O2', \n False, 'M2', False, 'K2', False], [4, False, 'T2', False, 'H2', \n False, 'O2', False, 'M2', False, 'K2'], [5, 'H3', False, 'O3', \n False, 'M3', False, 'K3', False, 'T3', False], [6, False, 'H3', \n False, 'O3', False, 'M3', False, 'K3', False, 'T3'], [7, 'K4', \n False, 'T4', False, 'H4', False, 'O4', False, 'M4', False], [8, \n False, 'K4', False, 'T4', False, 'H4', False, 'O4', False, 'M4'], [\n 9, 'T5', False, 'H5', False, 'O5', False, 'M5', False, 'K5', False],\n [10, False, 'T5', False, 'H5', False, 'O5', False, 'M5', False,\n 'K5'], [11, 'H6', False, 'O6', False, 'M6', False, 'K6', False,\n 'T6', False], [12, False, 'H6', False, 'O6', False, 'M6', False,\n 'K6', False, 'T6']]\n try:\n nh = matranNapAm[diaChi][thienCan]\n if nh[0] in ['K', 'M', 'T', 'H', 'O']:\n if xuatBanMenh is True:\n return banMenh[nh]\n else:\n return nh[0]\n except:\n raise Exception(nguHanhNapAm.__doc__)\n", "role": "user" }, { "content": "nguHanhNapAm", "role": "assistant" } ]
def x(cuc, ngaySinhAmLich): cungDan = 3 cucBanDau = cuc if cuc not in [2, 3, 4, 5, 6]: raise Exception('Số cục phải là 2, 3, 4, 5, 6') while cuc < ngaySinhAmLich: cuc += cucBanDau cungDan += 1 saiLech = cuc - ngaySinhAmLich if saiLech % 2 is 1: saiLech = -saiLech return dichCung(cungDan, saiLech)
timTuVi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cuc, ngaySinhAmLich):\n cungDan = 3\n cucBanDau = cuc\n if cuc not in [2, 3, 4, 5, 6]:\n raise Exception('Số cục phải là 2, 3, 4, 5, 6')\n while cuc < ngaySinhAmLich:\n cuc += cucBanDau\n cungDan += 1\n saiLech = cuc - ngaySinhAmLich\n if saiLech % 2 is 1:\n saiLech = -saiLech\n return dichCung(cungDan, saiLech)\n", "role": "user" }, { "content": "timTuVi", "role": "assistant" } ]
def x(ntseq): nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3, 'a': 0, 'c': 1, 'g': 2, 't': 3} aa_dict = ( 'KQE*TPASRRG*ILVLNHDYTPASSRGCILVFKQE*TPASRRGWMLVLNHDYTPASSRGCILVF') return ''.join([aa_dict[nt2num[ntseq[i]] + 4 * nt2num[ntseq[i + 1]] + 16 * nt2num[ntseq[i + 2]]] for i in range(0, len(ntseq), 3) if i + 2 < len(ntseq)])
nt2aa
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ntseq):\n nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3, 'a': 0, 'c': 1, 'g': 2, 't': 3}\n aa_dict = (\n 'KQE*TPASRRG*ILVLNHDYTPASSRGCILVFKQE*TPASRRGWMLVLNHDYTPASSRGCILVF')\n return ''.join([aa_dict[nt2num[ntseq[i]] + 4 * nt2num[ntseq[i + 1]] + \n 16 * nt2num[ntseq[i + 2]]] for i in range(0, len(ntseq), 3) if i + \n 2 < len(ntseq)])\n", "role": "user" }, { "content": "nt2aa", "role": "assistant" } ]
def x(ntseq): nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3, 'a': 0, 'c': 1, 'g': 2, 't': 3} codon_rep = ( '\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0¡¢£¤¥¦§¨©ª«¬\xad®¯°±²³´µ¶·¸¹º»¼½¾¿' ) return ''.join([codon_rep[nt2num[ntseq[i]] + 4 * nt2num[ntseq[i + 1]] + 16 * nt2num[ntseq[i + 2]]] for i in range(0, len(ntseq), 3) if i + 2 < len(ntseq)])
nt2codon_rep
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ntseq):\n nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3, 'a': 0, 'c': 1, 'g': 2, 't': 3}\n codon_rep = (\n '\\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\\xa0¡¢£¤¥¦§¨©ª«¬\\xad®¯°±²³´µ¶·¸¹º»¼½¾¿'\n )\n return ''.join([codon_rep[nt2num[ntseq[i]] + 4 * nt2num[ntseq[i + 1]] +\n 16 * nt2num[ntseq[i + 2]]] for i in range(0, len(ntseq), 3) if i + \n 2 < len(ntseq)])\n", "role": "user" }, { "content": "nt2codon_rep", "role": "assistant" } ]
def x(seq, cutR, max_palindrome): complement_dict = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A'} if cutR < max_palindrome: seq = seq + ''.join([complement_dict[nt] for nt in seq[cutR - max_palindrome:]][::-1]) else: seq = seq[:len(seq) - cutR + max_palindrome] return seq
cutR_seq
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq, cutR, max_palindrome):\n complement_dict = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A'}\n if cutR < max_palindrome:\n seq = seq + ''.join([complement_dict[nt] for nt in seq[cutR -\n max_palindrome:]][::-1])\n else:\n seq = seq[:len(seq) - cutR + max_palindrome]\n return seq\n", "role": "user" }, { "content": "cutR_seq", "role": "assistant" } ]
def x(seq, cutL, max_palindrome): complement_dict = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A'} if cutL < max_palindrome: seq = ''.join([complement_dict[nt] for nt in seq[:max_palindrome - cutL]][::-1]) + seq else: seq = seq[cutL - max_palindrome:] return seq
cutL_seq
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq, cutL, max_palindrome):\n complement_dict = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A'}\n if cutL < max_palindrome:\n seq = ''.join([complement_dict[nt] for nt in seq[:max_palindrome -\n cutL]][::-1]) + seq\n else:\n seq = seq[cutL - max_palindrome:]\n return seq\n", "role": "user" }, { "content": "cutL_seq", "role": "assistant" } ]
def x(codons_dict): sub_codons_left = {} for aa in codons_dict.keys(): sub_codons_left[aa] = list(set([x[0] for x in codons_dict[aa]] + [x [:2] for x in codons_dict[aa]])) return sub_codons_left
generate_sub_codons_left
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(codons_dict):\n sub_codons_left = {}\n for aa in codons_dict.keys():\n sub_codons_left[aa] = list(set([x[0] for x in codons_dict[aa]] + [x\n [:2] for x in codons_dict[aa]]))\n return sub_codons_left\n", "role": "user" }, { "content": "generate_sub_codons_left", "role": "assistant" } ]
def x(codons_dict): sub_codons_right = {} for aa in codons_dict.keys(): sub_codons_right[aa] = list(set([x[-1] for x in codons_dict[aa]] + [x[-2:] for x in codons_dict[aa]])) return sub_codons_right
generate_sub_codons_right
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(codons_dict):\n sub_codons_right = {}\n for aa in codons_dict.keys():\n sub_codons_right[aa] = list(set([x[-1] for x in codons_dict[aa]] +\n [x[-2:] for x in codons_dict[aa]]))\n return sub_codons_right\n", "role": "user" }, { "content": "generate_sub_codons_right", "role": "assistant" } ]
def x(seq, aa_alphabet): if all([(x in 'ACGTacgt') for x in seq]): return 'ntseq' elif all([(x in aa_alphabet) for x in seq]): return 'aaseq' elif all([x in aa_alphabet + '[]{}0123456789,']): return 'regex'
determine_seq_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq, aa_alphabet):\n if all([(x in 'ACGTacgt') for x in seq]):\n return 'ntseq'\n elif all([(x in aa_alphabet) for x in seq]):\n return 'aaseq'\n elif all([x in aa_alphabet + '[]{}0123456789,']):\n return 'regex'\n", "role": "user" }, { "content": "determine_seq_type", "role": "assistant" } ]
def x(R): w, v = np.linalg.eig(R) for i in range(4): if np.abs(w[i] - 1) < 1e-08: return np.real(v[:, i] / np.sum(v[:, i])) return -1
calc_steady_state_dist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(R):\n w, v = np.linalg.eig(R)\n for i in range(4):\n if np.abs(w[i] - 1) < 1e-08:\n return np.real(v[:, i] / np.sum(v[:, i]))\n return -1\n", "role": "user" }, { "content": "calc_steady_state_dist", "role": "assistant" } ]
def x(ins_len, C_R, CP_first_nt): nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3} num2nt = 'ACGT' if ins_len == 0: return '' seq = num2nt[CP_first_nt.searchsorted(np.random.random())] ins_len += -1 while ins_len > 0: seq += num2nt[C_R[nt2num[seq[-1]], :].searchsorted(np.random.random())] ins_len += -1 return seq
rnd_ins_seq
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ins_len, C_R, CP_first_nt):\n nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n num2nt = 'ACGT'\n if ins_len == 0:\n return ''\n seq = num2nt[CP_first_nt.searchsorted(np.random.random())]\n ins_len += -1\n while ins_len > 0:\n seq += num2nt[C_R[nt2num[seq[-1]], :].searchsorted(np.random.random())]\n ins_len += -1\n return seq\n", "role": "user" }, { "content": "rnd_ins_seq", "role": "assistant" } ]
def x(self, conserved_J_residues='FVW'): coding_pass = False while ~coding_pass: recomb_events = self.choose_random_recomb_events() V_seq = self.cutV_genomic_CDR3_segs[recomb_events['V']] if len(V_seq) <= max(recomb_events['delV'], 0): continue D_seq = self.cutD_genomic_CDR3_segs[recomb_events['D']] J_seq = self.cutJ_genomic_CDR3_segs[recomb_events['J']] if len(D_seq) < recomb_events['delDl'] + recomb_events['delDr'] or len( J_seq) < recomb_events['delJ']: continue V_seq = V_seq[:len(V_seq) - recomb_events['delV']] D_seq = D_seq[recomb_events['delDl']:len(D_seq) - recomb_events[ 'delDr']] J_seq = J_seq[recomb_events['delJ']:] if (len(V_seq) + len(D_seq) + len(J_seq) + recomb_events['insVD'] + recomb_events['insDJ']) % 3 != 0: continue insVD_seq = rnd_ins_seq(recomb_events['insVD'], self.C_Rvd, self. C_first_nt_bias_insVD) insDJ_seq = rnd_ins_seq(recomb_events['insDJ'], self.C_Rdj, self. C_first_nt_bias_insDJ)[::-1] ntseq = V_seq + insVD_seq + D_seq + insDJ_seq + J_seq aaseq = nt2aa(ntseq) if '*' not in aaseq and aaseq[0] == 'C' and aaseq[-1 ] in conserved_J_residues: return ntseq, aaseq, recomb_events['V'], recomb_events['J']
gen_rnd_prod_CDR3
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, conserved_J_residues='FVW'):\n coding_pass = False\n while ~coding_pass:\n recomb_events = self.choose_random_recomb_events()\n V_seq = self.cutV_genomic_CDR3_segs[recomb_events['V']]\n if len(V_seq) <= max(recomb_events['delV'], 0):\n continue\n D_seq = self.cutD_genomic_CDR3_segs[recomb_events['D']]\n J_seq = self.cutJ_genomic_CDR3_segs[recomb_events['J']]\n if len(D_seq) < recomb_events['delDl'] + recomb_events['delDr'] or len(\n J_seq) < recomb_events['delJ']:\n continue\n V_seq = V_seq[:len(V_seq) - recomb_events['delV']]\n D_seq = D_seq[recomb_events['delDl']:len(D_seq) - recomb_events[\n 'delDr']]\n J_seq = J_seq[recomb_events['delJ']:]\n if (len(V_seq) + len(D_seq) + len(J_seq) + recomb_events['insVD'] +\n recomb_events['insDJ']) % 3 != 0:\n continue\n insVD_seq = rnd_ins_seq(recomb_events['insVD'], self.C_Rvd, self.\n C_first_nt_bias_insVD)\n insDJ_seq = rnd_ins_seq(recomb_events['insDJ'], self.C_Rdj, self.\n C_first_nt_bias_insDJ)[::-1]\n ntseq = V_seq + insVD_seq + D_seq + insDJ_seq + J_seq\n aaseq = nt2aa(ntseq)\n if '*' not in aaseq and aaseq[0] == 'C' and aaseq[-1\n ] in conserved_J_residues:\n return ntseq, aaseq, recomb_events['V'], recomb_events['J']\n", "role": "user" }, { "content": "gen_rnd_prod_CDR3", "role": "assistant" } ]
def x(self): recomb_events = {} recomb_events['V'] = self.CPV.searchsorted(np.random.random()) DJ_choice = self.CPDJ.searchsorted(np.random.random()) recomb_events['D'] = DJ_choice / self.num_J_genes recomb_events['J'] = DJ_choice % self.num_J_genes recomb_events['delV'] = self.given_V_CPdelV[recomb_events['V'], : ].searchsorted(np.random.random()) recomb_events['delJ'] = self.given_J_CPdelJ[recomb_events['J'], : ].searchsorted(np.random.random()) delDldelDr_choice = self.given_D_CPdelDldelDr[recomb_events['D'], : ].searchsorted(np.random.random()) recomb_events['delDl'] = delDldelDr_choice / self.num_delDr_poss recomb_events['delDr'] = delDldelDr_choice % self.num_delDr_poss recomb_events['insVD'] = self.CinsVD.searchsorted(np.random.random()) recomb_events['insDJ'] = self.CinsDJ.searchsorted(np.random.random()) return recomb_events
choose_random_recomb_events
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n recomb_events = {}\n recomb_events['V'] = self.CPV.searchsorted(np.random.random())\n DJ_choice = self.CPDJ.searchsorted(np.random.random())\n recomb_events['D'] = DJ_choice / self.num_J_genes\n recomb_events['J'] = DJ_choice % self.num_J_genes\n recomb_events['delV'] = self.given_V_CPdelV[recomb_events['V'], :\n ].searchsorted(np.random.random())\n recomb_events['delJ'] = self.given_J_CPdelJ[recomb_events['J'], :\n ].searchsorted(np.random.random())\n delDldelDr_choice = self.given_D_CPdelDldelDr[recomb_events['D'], :\n ].searchsorted(np.random.random())\n recomb_events['delDl'] = delDldelDr_choice / self.num_delDr_poss\n recomb_events['delDr'] = delDldelDr_choice % self.num_delDr_poss\n recomb_events['insVD'] = self.CinsVD.searchsorted(np.random.random())\n recomb_events['insDJ'] = self.CinsDJ.searchsorted(np.random.random())\n return recomb_events\n", "role": "user" }, { "content": "choose_random_recomb_events", "role": "assistant" } ]
def x(self, conserved_J_residues='FVW'): coding_pass = False while ~coding_pass: recomb_events = self.choose_random_recomb_events() V_seq = self.cutV_genomic_CDR3_segs[recomb_events['V']] if len(V_seq) <= max(recomb_events['delV'], 0): continue J_seq = self.cutJ_genomic_CDR3_segs[recomb_events['J']] if len(J_seq) < recomb_events['delJ']: continue V_seq = V_seq[:len(V_seq) - recomb_events['delV']] J_seq = J_seq[recomb_events['delJ']:] if (len(V_seq) + len(J_seq) + recomb_events['insVJ']) % 3 != 0: continue insVJ_seq = rnd_ins_seq(recomb_events['insVJ'], self.C_Rvj, self. C_first_nt_bias_insVJ) ntseq = V_seq + insVJ_seq + J_seq aaseq = nt2aa(ntseq) if '*' not in aaseq and aaseq[0] == 'C' and aaseq[-1 ] in conserved_J_residues: return ntseq, aaseq, recomb_events['V'], recomb_events['J']
gen_rnd_prod_CDR3
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, conserved_J_residues='FVW'):\n coding_pass = False\n while ~coding_pass:\n recomb_events = self.choose_random_recomb_events()\n V_seq = self.cutV_genomic_CDR3_segs[recomb_events['V']]\n if len(V_seq) <= max(recomb_events['delV'], 0):\n continue\n J_seq = self.cutJ_genomic_CDR3_segs[recomb_events['J']]\n if len(J_seq) < recomb_events['delJ']:\n continue\n V_seq = V_seq[:len(V_seq) - recomb_events['delV']]\n J_seq = J_seq[recomb_events['delJ']:]\n if (len(V_seq) + len(J_seq) + recomb_events['insVJ']) % 3 != 0:\n continue\n insVJ_seq = rnd_ins_seq(recomb_events['insVJ'], self.C_Rvj, self.\n C_first_nt_bias_insVJ)\n ntseq = V_seq + insVJ_seq + J_seq\n aaseq = nt2aa(ntseq)\n if '*' not in aaseq and aaseq[0] == 'C' and aaseq[-1\n ] in conserved_J_residues:\n return ntseq, aaseq, recomb_events['V'], recomb_events['J']\n", "role": "user" }, { "content": "gen_rnd_prod_CDR3", "role": "assistant" } ]
def x(self): recomb_events = {} VJ_choice = self.CPVJ.searchsorted(np.random.random()) recomb_events['V'] = VJ_choice / self.num_J_genes recomb_events['J'] = VJ_choice % self.num_J_genes recomb_events['delV'] = self.given_V_CPdelV[recomb_events['V'], : ].searchsorted(np.random.random()) recomb_events['delJ'] = self.given_J_CPdelJ[recomb_events['J'], : ].searchsorted(np.random.random()) recomb_events['insVJ'] = self.CPinsVJ.searchsorted(np.random.random()) return recomb_events
choose_random_recomb_events
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n recomb_events = {}\n VJ_choice = self.CPVJ.searchsorted(np.random.random())\n recomb_events['V'] = VJ_choice / self.num_J_genes\n recomb_events['J'] = VJ_choice % self.num_J_genes\n recomb_events['delV'] = self.given_V_CPdelV[recomb_events['V'], :\n ].searchsorted(np.random.random())\n recomb_events['delJ'] = self.given_J_CPdelJ[recomb_events['J'], :\n ].searchsorted(np.random.random())\n recomb_events['insVJ'] = self.CPinsVJ.searchsorted(np.random.random())\n return recomb_events\n", "role": "user" }, { "content": "choose_random_recomb_events", "role": "assistant" } ]
def x(self): source, created = RateSource.objects.get_or_create(name=self. get_source_name()) source.base_currency = self.get_base_currency() source.save() for currency, value in six.iteritems(self.get_rates()): try: rate = Rate.objects.get(source=source, currency=currency) except Rate.DoesNotExist: rate = Rate(source=source, currency=currency) rate.value = value rate.save()
update_rates
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n source, created = RateSource.objects.get_or_create(name=self.\n get_source_name())\n source.base_currency = self.get_base_currency()\n source.save()\n for currency, value in six.iteritems(self.get_rates()):\n try:\n rate = Rate.objects.get(source=source, currency=currency)\n except Rate.DoesNotExist:\n rate = Rate(source=source, currency=currency)\n rate.value = value\n rate.save()\n", "role": "user" }, { "content": "update_rates", "role": "assistant" } ]
def x(self, regex_seq, V_usage_mask_in=None, J_usage_mask_in=None, print_warnings=True, raise_overload_warning=True): V_usage_mask, J_usage_mask = self.format_usage_masks(V_usage_mask_in, J_usage_mask_in, print_warnings) CDR3_seqs = self.list_seqs_from_regex(regex_seq, print_warnings, raise_overload_warning) pgen = 0 for CDR3_seq in CDR3_seqs: if len(CDR3_seq) == 0: continue pgen += self.compute_CDR3_pgen(CDR3_seq, V_usage_mask, J_usage_mask) return pgen
compute_regex_CDR3_template_pgen
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, regex_seq, V_usage_mask_in=None, J_usage_mask_in=None,\n print_warnings=True, raise_overload_warning=True):\n V_usage_mask, J_usage_mask = self.format_usage_masks(V_usage_mask_in,\n J_usage_mask_in, print_warnings)\n CDR3_seqs = self.list_seqs_from_regex(regex_seq, print_warnings,\n raise_overload_warning)\n pgen = 0\n for CDR3_seq in CDR3_seqs:\n if len(CDR3_seq) == 0:\n continue\n pgen += self.compute_CDR3_pgen(CDR3_seq, V_usage_mask, J_usage_mask)\n return pgen\n", "role": "user" }, { "content": "compute_regex_CDR3_template_pgen", "role": "assistant" } ]
def x(self, CDR3_seq, ntseq): max_alignment = 0 if len(ntseq) == 0: return 0 aa_aligned = True while aa_aligned: if ntseq[max_alignment:max_alignment + 3] in self.codons_dict[CDR3_seq [max_alignment / 3]]: max_alignment += 3 if max_alignment / 3 == len(CDR3_seq): return max_alignment else: break aa_aligned = False last_codon = ntseq[max_alignment:max_alignment + 3] codon_frag = '' for nt in last_codon: codon_frag += nt if codon_frag in self.sub_codons_left[CDR3_seq[max_alignment / 3]]: max_alignment += 1 else: break return max_alignment
max_nt_to_aa_alignment_left
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, CDR3_seq, ntseq):\n max_alignment = 0\n if len(ntseq) == 0:\n return 0\n aa_aligned = True\n while aa_aligned:\n if ntseq[max_alignment:max_alignment + 3] in self.codons_dict[CDR3_seq\n [max_alignment / 3]]:\n max_alignment += 3\n if max_alignment / 3 == len(CDR3_seq):\n return max_alignment\n else:\n break\n aa_aligned = False\n last_codon = ntseq[max_alignment:max_alignment + 3]\n codon_frag = ''\n for nt in last_codon:\n codon_frag += nt\n if codon_frag in self.sub_codons_left[CDR3_seq[max_alignment / 3]]:\n max_alignment += 1\n else:\n break\n return max_alignment\n", "role": "user" }, { "content": "max_nt_to_aa_alignment_left", "role": "assistant" } ]
def x(self, CDR3_seq, ntseq): r_CDR3_seq = CDR3_seq[::-1] r_ntseq = ntseq[::-1] max_alignment = 0 if len(ntseq) == 0: return 0 aa_aligned = True while aa_aligned: if r_ntseq[max_alignment:max_alignment + 3][::-1] in self.codons_dict[ r_CDR3_seq[max_alignment / 3]]: max_alignment += 3 if max_alignment / 3 == len(CDR3_seq): return max_alignment else: break aa_aligned = False r_last_codon = r_ntseq[max_alignment:max_alignment + 3] codon_frag = '' for nt in r_last_codon: codon_frag = nt + codon_frag if codon_frag in self.sub_codons_right[r_CDR3_seq[max_alignment / 3]]: max_alignment += 1 else: break return max_alignment
max_nt_to_aa_alignment_right
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, CDR3_seq, ntseq):\n r_CDR3_seq = CDR3_seq[::-1]\n r_ntseq = ntseq[::-1]\n max_alignment = 0\n if len(ntseq) == 0:\n return 0\n aa_aligned = True\n while aa_aligned:\n if r_ntseq[max_alignment:max_alignment + 3][::-1] in self.codons_dict[\n r_CDR3_seq[max_alignment / 3]]:\n max_alignment += 3\n if max_alignment / 3 == len(CDR3_seq):\n return max_alignment\n else:\n break\n aa_aligned = False\n r_last_codon = r_ntseq[max_alignment:max_alignment + 3]\n codon_frag = ''\n for nt in r_last_codon:\n codon_frag = nt + codon_frag\n if codon_frag in self.sub_codons_right[r_CDR3_seq[max_alignment / 3]]:\n max_alignment += 1\n else:\n break\n return max_alignment\n", "role": "user" }, { "content": "max_nt_to_aa_alignment_right", "role": "assistant" } ]
def x(self, CDR3_seq, V_usage_mask, J_usage_mask): Pi_V, max_V_align = self.compute_Pi_V(CDR3_seq, V_usage_mask) Pi_L = self.compute_Pi_L(CDR3_seq, Pi_V, max_V_align) Pi_J_given_D, max_J_align = self.compute_Pi_J_given_D(CDR3_seq, J_usage_mask) Pi_JinsDJ_given_D = self.compute_Pi_JinsDJ_given_D(CDR3_seq, Pi_J_given_D, max_J_align) Pi_R = self.compute_Pi_R(CDR3_seq, Pi_JinsDJ_given_D) pgen = 0 for pos in range(len(CDR3_seq) * 3 - 1): pgen += np.dot(Pi_L[:, pos], Pi_R[:, pos + 1]) return pgen
compute_CDR3_pgen
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, CDR3_seq, V_usage_mask, J_usage_mask):\n Pi_V, max_V_align = self.compute_Pi_V(CDR3_seq, V_usage_mask)\n Pi_L = self.compute_Pi_L(CDR3_seq, Pi_V, max_V_align)\n Pi_J_given_D, max_J_align = self.compute_Pi_J_given_D(CDR3_seq,\n J_usage_mask)\n Pi_JinsDJ_given_D = self.compute_Pi_JinsDJ_given_D(CDR3_seq,\n Pi_J_given_D, max_J_align)\n Pi_R = self.compute_Pi_R(CDR3_seq, Pi_JinsDJ_given_D)\n pgen = 0\n for pos in range(len(CDR3_seq) * 3 - 1):\n pgen += np.dot(Pi_L[:, pos], Pi_R[:, pos + 1])\n return pgen\n", "role": "user" }, { "content": "compute_CDR3_pgen", "role": "assistant" } ]
def x(self, CDR3_seq, Pi_V, max_V_align): max_insertions = len(self.PinsVD) - 1 Pi_L = np.zeros((4, len(CDR3_seq) * 3)) for init_pos in range(0, max_V_align, 3): Pi_L[:, init_pos] += self.PinsVD[0] * Pi_V[:, init_pos] Pi_L[:, init_pos + 1] += self.PinsVD[1] * np.dot(self.lDvd[CDR3_seq [init_pos / 3]], Pi_V[:, init_pos]) current_base_nt_vec = np.dot(self.lTvd[CDR3_seq[init_pos / 3]], Pi_V[:, init_pos]) Pi_L[0, init_pos + 2] += self.PinsVD[2] * np.sum(current_base_nt_vec) base_ins = 2 for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + max_insertions / 3]: Pi_L[:, init_pos + base_ins + 1] += self.PinsVD[base_ins + 1 ] * np.dot(self.Svd[aa], current_base_nt_vec) Pi_L[:, init_pos + base_ins + 2] += self.PinsVD[base_ins + 2 ] * np.dot(self.Dvd[aa], current_base_nt_vec) current_base_nt_vec = np.dot(self.Tvd[aa], current_base_nt_vec) Pi_L[0, init_pos + base_ins + 3] += self.PinsVD[base_ins + 3 ] * np.sum(current_base_nt_vec) base_ins += 3 for init_pos in range(1, max_V_align, 3): Pi_L[:, init_pos] += self.PinsVD[0] * Pi_V[:, init_pos] current_base_nt_vec = np.multiply(Pi_V[:, init_pos], self. first_nt_bias_insVD) Pi_L[0, init_pos + 1] += self.PinsVD[1] * np.sum(current_base_nt_vec) base_ins = 1 for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + max_insertions / 3]: Pi_L[:, init_pos + base_ins + 1] += self.PinsVD[base_ins + 1 ] * np.dot(self.Svd[aa], current_base_nt_vec) Pi_L[:, init_pos + base_ins + 2] += self.PinsVD[base_ins + 2 ] * np.dot(self.Dvd[aa], current_base_nt_vec) current_base_nt_vec = np.dot(self.Tvd[aa], current_base_nt_vec) Pi_L[0, init_pos + base_ins + 3] += self.PinsVD[base_ins + 3 ] * np.sum(current_base_nt_vec) base_ins += 3 for init_pos in range(2, max_V_align, 3): Pi_L[0, init_pos] += self.PinsVD[0] * Pi_V[0, init_pos] current_base_nt_vec = self.zero_nt_bias_insVD * Pi_V[0, init_pos] base_ins = 0 for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + max_insertions / 3]: Pi_L[:, init_pos + base_ins + 1] += self.PinsVD[base_ins + 1 ] * np.dot(self.Svd[aa], current_base_nt_vec) Pi_L[:, init_pos + base_ins + 2] += self.PinsVD[base_ins + 2 ] * np.dot(self.Dvd[aa], current_base_nt_vec) current_base_nt_vec = np.dot(self.Tvd[aa], current_base_nt_vec) Pi_L[0, init_pos + base_ins + 3] += self.PinsVD[base_ins + 3 ] * np.sum(current_base_nt_vec) base_ins += 3 return Pi_L
compute_Pi_L
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, CDR3_seq, Pi_V, max_V_align):\n max_insertions = len(self.PinsVD) - 1\n Pi_L = np.zeros((4, len(CDR3_seq) * 3))\n for init_pos in range(0, max_V_align, 3):\n Pi_L[:, init_pos] += self.PinsVD[0] * Pi_V[:, init_pos]\n Pi_L[:, init_pos + 1] += self.PinsVD[1] * np.dot(self.lDvd[CDR3_seq\n [init_pos / 3]], Pi_V[:, init_pos])\n current_base_nt_vec = np.dot(self.lTvd[CDR3_seq[init_pos / 3]],\n Pi_V[:, init_pos])\n Pi_L[0, init_pos + 2] += self.PinsVD[2] * np.sum(current_base_nt_vec)\n base_ins = 2\n for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + max_insertions / 3]:\n Pi_L[:, init_pos + base_ins + 1] += self.PinsVD[base_ins + 1\n ] * np.dot(self.Svd[aa], current_base_nt_vec)\n Pi_L[:, init_pos + base_ins + 2] += self.PinsVD[base_ins + 2\n ] * np.dot(self.Dvd[aa], current_base_nt_vec)\n current_base_nt_vec = np.dot(self.Tvd[aa], current_base_nt_vec)\n Pi_L[0, init_pos + base_ins + 3] += self.PinsVD[base_ins + 3\n ] * np.sum(current_base_nt_vec)\n base_ins += 3\n for init_pos in range(1, max_V_align, 3):\n Pi_L[:, init_pos] += self.PinsVD[0] * Pi_V[:, init_pos]\n current_base_nt_vec = np.multiply(Pi_V[:, init_pos], self.\n first_nt_bias_insVD)\n Pi_L[0, init_pos + 1] += self.PinsVD[1] * np.sum(current_base_nt_vec)\n base_ins = 1\n for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + max_insertions / 3]:\n Pi_L[:, init_pos + base_ins + 1] += self.PinsVD[base_ins + 1\n ] * np.dot(self.Svd[aa], current_base_nt_vec)\n Pi_L[:, init_pos + base_ins + 2] += self.PinsVD[base_ins + 2\n ] * np.dot(self.Dvd[aa], current_base_nt_vec)\n current_base_nt_vec = np.dot(self.Tvd[aa], current_base_nt_vec)\n Pi_L[0, init_pos + base_ins + 3] += self.PinsVD[base_ins + 3\n ] * np.sum(current_base_nt_vec)\n base_ins += 3\n for init_pos in range(2, max_V_align, 3):\n Pi_L[0, init_pos] += self.PinsVD[0] * Pi_V[0, init_pos]\n current_base_nt_vec = self.zero_nt_bias_insVD * Pi_V[0, init_pos]\n base_ins = 0\n for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + max_insertions / 3]:\n Pi_L[:, init_pos + base_ins + 1] += self.PinsVD[base_ins + 1\n ] * np.dot(self.Svd[aa], current_base_nt_vec)\n Pi_L[:, init_pos + base_ins + 2] += self.PinsVD[base_ins + 2\n ] * np.dot(self.Dvd[aa], current_base_nt_vec)\n current_base_nt_vec = np.dot(self.Tvd[aa], current_base_nt_vec)\n Pi_L[0, init_pos + base_ins + 3] += self.PinsVD[base_ins + 3\n ] * np.sum(current_base_nt_vec)\n base_ins += 3\n return Pi_L\n", "role": "user" }, { "content": "compute_Pi_L", "role": "assistant" } ]
def x(self, CDR3_seq, Pi_J_given_D, max_J_align): max_insertions = len(self.PinsDJ) - 1 Pi_JinsDJ_given_D = [np.zeros((4, len(CDR3_seq) * 3)) for i in range( len(Pi_J_given_D))] for D_in in range(len(Pi_J_given_D)): for init_pos in range(-1, -(max_J_align + 1), -3): Pi_JinsDJ_given_D[D_in][:, init_pos] += self.PinsDJ[0 ] * Pi_J_given_D[D_in][:, init_pos] Pi_JinsDJ_given_D[D_in][:, init_pos - 1] += self.PinsDJ[1 ] * np.dot(self.rDdj[CDR3_seq[init_pos / 3]], Pi_J_given_D[ D_in][:, init_pos]) current_base_nt_vec = np.dot(self.rTdj[CDR3_seq[init_pos / 3]], Pi_J_given_D[D_in][:, init_pos]) Pi_JinsDJ_given_D[D_in][0, init_pos - 2] += self.PinsDJ[2 ] * np.sum(current_base_nt_vec) base_ins = 2 for aa in CDR3_seq[init_pos / 3 - 1:init_pos / 3 - max_insertions / 3:-1]: Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 1 ] += self.PinsDJ[base_ins + 1] * np.dot(self.Sdj[aa], current_base_nt_vec) Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 2 ] += self.PinsDJ[base_ins + 2] * np.dot(self.Ddj[aa], current_base_nt_vec) current_base_nt_vec = np.dot(self.Tdj[aa], current_base_nt_vec) Pi_JinsDJ_given_D[D_in][0, init_pos - base_ins - 3 ] += self.PinsDJ[base_ins + 3] * np.sum(current_base_nt_vec ) base_ins += 3 for init_pos in range(-2, -(max_J_align + 1), -3): Pi_JinsDJ_given_D[D_in][:, init_pos] += self.PinsDJ[0 ] * Pi_J_given_D[D_in][:, init_pos] current_base_nt_vec = np.multiply(Pi_J_given_D[D_in][:, init_pos], self.first_nt_bias_insDJ) Pi_JinsDJ_given_D[D_in][0, init_pos - 1] += self.PinsDJ[1 ] * np.sum(current_base_nt_vec) base_ins = 1 for aa in CDR3_seq[init_pos / 3 - 1:init_pos / 3 - max_insertions / 3:-1]: Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 1 ] += self.PinsDJ[base_ins + 1] * np.dot(self.Sdj[aa], current_base_nt_vec) Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 2 ] += self.PinsDJ[base_ins + 2] * np.dot(self.Ddj[aa], current_base_nt_vec) current_base_nt_vec = np.dot(self.Tdj[aa], current_base_nt_vec) Pi_JinsDJ_given_D[D_in][0, init_pos - base_ins - 3 ] += self.PinsDJ[base_ins + 3] * np.sum(current_base_nt_vec ) base_ins += 3 for init_pos in range(-3, -(max_J_align + 1), -3): Pi_JinsDJ_given_D[D_in][0, init_pos] += self.PinsDJ[0 ] * Pi_J_given_D[D_in][0, init_pos] current_base_nt_vec = self.zero_nt_bias_insDJ * Pi_J_given_D[D_in][ 0, init_pos] base_ins = 0 for aa in CDR3_seq[init_pos / 3 - 1:init_pos / 3 - max_insertions / 3:-1]: Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 1 ] += self.PinsDJ[base_ins + 1] * np.dot(self.Sdj[aa], current_base_nt_vec) Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 2 ] += self.PinsDJ[base_ins + 2] * np.dot(self.Ddj[aa], current_base_nt_vec) current_base_nt_vec = np.dot(self.Tdj[aa], current_base_nt_vec) Pi_JinsDJ_given_D[D_in][0, init_pos - base_ins - 3 ] += self.PinsDJ[base_ins + 3] * np.sum(current_base_nt_vec ) base_ins += 3 return Pi_JinsDJ_given_D
compute_Pi_JinsDJ_given_D
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, CDR3_seq, Pi_J_given_D, max_J_align):\n max_insertions = len(self.PinsDJ) - 1\n Pi_JinsDJ_given_D = [np.zeros((4, len(CDR3_seq) * 3)) for i in range(\n len(Pi_J_given_D))]\n for D_in in range(len(Pi_J_given_D)):\n for init_pos in range(-1, -(max_J_align + 1), -3):\n Pi_JinsDJ_given_D[D_in][:, init_pos] += self.PinsDJ[0\n ] * Pi_J_given_D[D_in][:, init_pos]\n Pi_JinsDJ_given_D[D_in][:, init_pos - 1] += self.PinsDJ[1\n ] * np.dot(self.rDdj[CDR3_seq[init_pos / 3]], Pi_J_given_D[\n D_in][:, init_pos])\n current_base_nt_vec = np.dot(self.rTdj[CDR3_seq[init_pos / 3]],\n Pi_J_given_D[D_in][:, init_pos])\n Pi_JinsDJ_given_D[D_in][0, init_pos - 2] += self.PinsDJ[2\n ] * np.sum(current_base_nt_vec)\n base_ins = 2\n for aa in CDR3_seq[init_pos / 3 - 1:init_pos / 3 - \n max_insertions / 3:-1]:\n Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 1\n ] += self.PinsDJ[base_ins + 1] * np.dot(self.Sdj[aa],\n current_base_nt_vec)\n Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 2\n ] += self.PinsDJ[base_ins + 2] * np.dot(self.Ddj[aa],\n current_base_nt_vec)\n current_base_nt_vec = np.dot(self.Tdj[aa], current_base_nt_vec)\n Pi_JinsDJ_given_D[D_in][0, init_pos - base_ins - 3\n ] += self.PinsDJ[base_ins + 3] * np.sum(current_base_nt_vec\n )\n base_ins += 3\n for init_pos in range(-2, -(max_J_align + 1), -3):\n Pi_JinsDJ_given_D[D_in][:, init_pos] += self.PinsDJ[0\n ] * Pi_J_given_D[D_in][:, init_pos]\n current_base_nt_vec = np.multiply(Pi_J_given_D[D_in][:,\n init_pos], self.first_nt_bias_insDJ)\n Pi_JinsDJ_given_D[D_in][0, init_pos - 1] += self.PinsDJ[1\n ] * np.sum(current_base_nt_vec)\n base_ins = 1\n for aa in CDR3_seq[init_pos / 3 - 1:init_pos / 3 - \n max_insertions / 3:-1]:\n Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 1\n ] += self.PinsDJ[base_ins + 1] * np.dot(self.Sdj[aa],\n current_base_nt_vec)\n Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 2\n ] += self.PinsDJ[base_ins + 2] * np.dot(self.Ddj[aa],\n current_base_nt_vec)\n current_base_nt_vec = np.dot(self.Tdj[aa], current_base_nt_vec)\n Pi_JinsDJ_given_D[D_in][0, init_pos - base_ins - 3\n ] += self.PinsDJ[base_ins + 3] * np.sum(current_base_nt_vec\n )\n base_ins += 3\n for init_pos in range(-3, -(max_J_align + 1), -3):\n Pi_JinsDJ_given_D[D_in][0, init_pos] += self.PinsDJ[0\n ] * Pi_J_given_D[D_in][0, init_pos]\n current_base_nt_vec = self.zero_nt_bias_insDJ * Pi_J_given_D[D_in][\n 0, init_pos]\n base_ins = 0\n for aa in CDR3_seq[init_pos / 3 - 1:init_pos / 3 - \n max_insertions / 3:-1]:\n Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 1\n ] += self.PinsDJ[base_ins + 1] * np.dot(self.Sdj[aa],\n current_base_nt_vec)\n Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 2\n ] += self.PinsDJ[base_ins + 2] * np.dot(self.Ddj[aa],\n current_base_nt_vec)\n current_base_nt_vec = np.dot(self.Tdj[aa], current_base_nt_vec)\n Pi_JinsDJ_given_D[D_in][0, init_pos - base_ins - 3\n ] += self.PinsDJ[base_ins + 3] * np.sum(current_base_nt_vec\n )\n base_ins += 3\n return Pi_JinsDJ_given_D\n", "role": "user" }, { "content": "compute_Pi_JinsDJ_given_D", "role": "assistant" } ]
def x(self, CDR3_seq, V_usage_mask, J_usage_mask): Pi_J, r_J_usage_mask = self.compute_Pi_J(CDR3_seq, J_usage_mask) Pi_V_given_J, max_V_align = self.compute_Pi_V_given_J(CDR3_seq, V_usage_mask, r_J_usage_mask) Pi_V_insVJ_given_J = self.compute_Pi_V_insVJ_given_J(CDR3_seq, Pi_V_given_J, max_V_align) pgen = 0 for j in range(len(r_J_usage_mask)): for pos in range(len(CDR3_seq) * 3 - 1): pgen += np.dot(Pi_V_insVJ_given_J[j][:, pos], Pi_J[j][:, pos + 1]) return pgen
compute_CDR3_pgen
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, CDR3_seq, V_usage_mask, J_usage_mask):\n Pi_J, r_J_usage_mask = self.compute_Pi_J(CDR3_seq, J_usage_mask)\n Pi_V_given_J, max_V_align = self.compute_Pi_V_given_J(CDR3_seq,\n V_usage_mask, r_J_usage_mask)\n Pi_V_insVJ_given_J = self.compute_Pi_V_insVJ_given_J(CDR3_seq,\n Pi_V_given_J, max_V_align)\n pgen = 0\n for j in range(len(r_J_usage_mask)):\n for pos in range(len(CDR3_seq) * 3 - 1):\n pgen += np.dot(Pi_V_insVJ_given_J[j][:, pos], Pi_J[j][:, pos + 1])\n return pgen\n", "role": "user" }, { "content": "compute_CDR3_pgen", "role": "assistant" } ]
def x(self, CDR3_seq, Pi_V_given_J, max_V_align): max_insertions = len(self.PinsVJ) - 1 Pi_V_insVJ_given_J = [np.zeros((4, len(CDR3_seq) * 3)) for i in range( len(Pi_V_given_J))] for j in range(len(Pi_V_given_J)): for init_pos in range(0, max_V_align, 3): Pi_V_insVJ_given_J[j][:, init_pos] += self.PinsVJ[0 ] * Pi_V_given_J[j][:, init_pos] Pi_V_insVJ_given_J[j][:, init_pos + 1] += self.PinsVJ[1] * np.dot( self.lDvj[CDR3_seq[init_pos / 3]], Pi_V_given_J[j][:, init_pos] ) current_base_nt_vec = np.dot(self.lTvj[CDR3_seq[init_pos / 3]], Pi_V_given_J[j][:, init_pos]) Pi_V_insVJ_given_J[j][0, init_pos + 2] += self.PinsVJ[2] * np.sum( current_base_nt_vec) base_ins = 2 for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + max_insertions / 3]: Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 1 ] += self.PinsVJ[base_ins + 1] * np.dot(self.Svj[aa], current_base_nt_vec) Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 2 ] += self.PinsVJ[base_ins + 2] * np.dot(self.Dvj[aa], current_base_nt_vec) current_base_nt_vec = np.dot(self.Tvj[aa], current_base_nt_vec) Pi_V_insVJ_given_J[j][0, init_pos + base_ins + 3 ] += self.PinsVJ[base_ins + 3] * np.sum(current_base_nt_vec ) base_ins += 3 for init_pos in range(1, max_V_align, 3): Pi_V_insVJ_given_J[j][:, init_pos] += self.PinsVJ[0 ] * Pi_V_given_J[j][:, init_pos] current_base_nt_vec = np.multiply(Pi_V_given_J[j][:, init_pos], self.first_nt_bias_insVJ) Pi_V_insVJ_given_J[j][0, init_pos + 1] += self.PinsVJ[1] * np.sum( current_base_nt_vec) base_ins = 1 for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + max_insertions / 3]: Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 1 ] += self.PinsVJ[base_ins + 1] * np.dot(self.Svj[aa], current_base_nt_vec) Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 2 ] += self.PinsVJ[base_ins + 2] * np.dot(self.Dvj[aa], current_base_nt_vec) current_base_nt_vec = np.dot(self.Tvj[aa], current_base_nt_vec) Pi_V_insVJ_given_J[j][0, init_pos + base_ins + 3 ] += self.PinsVJ[base_ins + 3] * np.sum(current_base_nt_vec ) base_ins += 3 for init_pos in range(2, max_V_align, 3): Pi_V_insVJ_given_J[j][0, init_pos] += self.PinsVJ[0 ] * Pi_V_given_J[j][0, init_pos] current_base_nt_vec = self.zero_nt_bias_insVJ * Pi_V_given_J[j][ 0, init_pos] base_ins = 0 for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + max_insertions / 3]: Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 1 ] += self.PinsVJ[base_ins + 1] * np.dot(self.Svj[aa], current_base_nt_vec) Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 2 ] += self.PinsVJ[base_ins + 2] * np.dot(self.Dvj[aa], current_base_nt_vec) current_base_nt_vec = np.dot(self.Tvj[aa], current_base_nt_vec) Pi_V_insVJ_given_J[j][0, init_pos + base_ins + 3 ] += self.PinsVJ[base_ins + 3] * np.sum(current_base_nt_vec ) base_ins += 3 return Pi_V_insVJ_given_J
compute_Pi_V_insVJ_given_J
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, CDR3_seq, Pi_V_given_J, max_V_align):\n max_insertions = len(self.PinsVJ) - 1\n Pi_V_insVJ_given_J = [np.zeros((4, len(CDR3_seq) * 3)) for i in range(\n len(Pi_V_given_J))]\n for j in range(len(Pi_V_given_J)):\n for init_pos in range(0, max_V_align, 3):\n Pi_V_insVJ_given_J[j][:, init_pos] += self.PinsVJ[0\n ] * Pi_V_given_J[j][:, init_pos]\n Pi_V_insVJ_given_J[j][:, init_pos + 1] += self.PinsVJ[1] * np.dot(\n self.lDvj[CDR3_seq[init_pos / 3]], Pi_V_given_J[j][:, init_pos]\n )\n current_base_nt_vec = np.dot(self.lTvj[CDR3_seq[init_pos / 3]],\n Pi_V_given_J[j][:, init_pos])\n Pi_V_insVJ_given_J[j][0, init_pos + 2] += self.PinsVJ[2] * np.sum(\n current_base_nt_vec)\n base_ins = 2\n for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + \n max_insertions / 3]:\n Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 1\n ] += self.PinsVJ[base_ins + 1] * np.dot(self.Svj[aa],\n current_base_nt_vec)\n Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 2\n ] += self.PinsVJ[base_ins + 2] * np.dot(self.Dvj[aa],\n current_base_nt_vec)\n current_base_nt_vec = np.dot(self.Tvj[aa], current_base_nt_vec)\n Pi_V_insVJ_given_J[j][0, init_pos + base_ins + 3\n ] += self.PinsVJ[base_ins + 3] * np.sum(current_base_nt_vec\n )\n base_ins += 3\n for init_pos in range(1, max_V_align, 3):\n Pi_V_insVJ_given_J[j][:, init_pos] += self.PinsVJ[0\n ] * Pi_V_given_J[j][:, init_pos]\n current_base_nt_vec = np.multiply(Pi_V_given_J[j][:, init_pos],\n self.first_nt_bias_insVJ)\n Pi_V_insVJ_given_J[j][0, init_pos + 1] += self.PinsVJ[1] * np.sum(\n current_base_nt_vec)\n base_ins = 1\n for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + \n max_insertions / 3]:\n Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 1\n ] += self.PinsVJ[base_ins + 1] * np.dot(self.Svj[aa],\n current_base_nt_vec)\n Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 2\n ] += self.PinsVJ[base_ins + 2] * np.dot(self.Dvj[aa],\n current_base_nt_vec)\n current_base_nt_vec = np.dot(self.Tvj[aa], current_base_nt_vec)\n Pi_V_insVJ_given_J[j][0, init_pos + base_ins + 3\n ] += self.PinsVJ[base_ins + 3] * np.sum(current_base_nt_vec\n )\n base_ins += 3\n for init_pos in range(2, max_V_align, 3):\n Pi_V_insVJ_given_J[j][0, init_pos] += self.PinsVJ[0\n ] * Pi_V_given_J[j][0, init_pos]\n current_base_nt_vec = self.zero_nt_bias_insVJ * Pi_V_given_J[j][\n 0, init_pos]\n base_ins = 0\n for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + \n max_insertions / 3]:\n Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 1\n ] += self.PinsVJ[base_ins + 1] * np.dot(self.Svj[aa],\n current_base_nt_vec)\n Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 2\n ] += self.PinsVJ[base_ins + 2] * np.dot(self.Dvj[aa],\n current_base_nt_vec)\n current_base_nt_vec = np.dot(self.Tvj[aa], current_base_nt_vec)\n Pi_V_insVJ_given_J[j][0, init_pos + base_ins + 3\n ] += self.PinsVJ[base_ins + 3] * np.sum(current_base_nt_vec\n )\n base_ins += 3\n return Pi_V_insVJ_given_J\n", "role": "user" }, { "content": "compute_Pi_V_insVJ_given_J", "role": "assistant" } ]
def x(self, lam): s = weighted_graphtf(self.nnodes, self.y, self.weights, lam, self.Dk. shape[0], self.Dk.shape[1], self.Dk.nnz, self.Dk.row.astype('int32' ), self.Dk.col.astype('int32'), self.Dk.data.astype('double'), self .maxsteps, self.converge, self.beta, self.u) self.steps.append(s) return self.beta
solve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, lam):\n s = weighted_graphtf(self.nnodes, self.y, self.weights, lam, self.Dk.\n shape[0], self.Dk.shape[1], self.Dk.nnz, self.Dk.row.astype('int32'\n ), self.Dk.col.astype('int32'), self.Dk.data.astype('double'), self\n .maxsteps, self.converge, self.beta, self.u)\n self.steps.append(s)\n return self.beta\n", "role": "user" }, { "content": "solve", "role": "assistant" } ]
def x(self, min_lambda, max_lambda, lambda_bins, verbose=0): self.u = np.zeros(self.Dk.shape[0], dtype='double') lambda_grid = np.exp(np.linspace(np.log(max_lambda), np.log(min_lambda), lambda_bins)) aic_trace = np.zeros(lambda_grid.shape) aicc_trace = np.zeros(lambda_grid.shape) bic_trace = np.zeros(lambda_grid.shape) dof_trace = np.zeros(lambda_grid.shape) log_likelihood_trace = np.zeros(lambda_grid.shape) beta_trace = [] best_idx = None best_plateaus = None if self.edges is None: self.edges = defaultdict(list) elist = csr_matrix(self.D).indices.reshape((self.D.shape[0], 2)) for n1, n2 in elist: self.edges[n1].append(n2) self.edges[n2].append(n1) for i, lam in enumerate(lambda_grid): if verbose: print('#{0} Lambda = {1}'.format(i, lam)) beta = self.solve(lam) if verbose: print('Calculating degrees of freedom') dof_vals = self.Dk_minus_one.dot(beta) if self.k > 0 else beta plateaus = calc_plateaus(dof_vals, self.edges, rel_tol=0.01 ) if self.k % 2 == 0 else nearly_unique(dof_vals, rel_tol=0.03) dof_trace[i] = max(1, len(plateaus)) if verbose: print('Calculating Information Criteria') log_likelihood_trace[i] = -0.5 * ((self.y - beta) ** 2).sum() aic_trace[i] = 2.0 * dof_trace[i] - 2.0 * log_likelihood_trace[i] aicc_trace[i] = aic_trace[i] + 2 * dof_trace[i] * (dof_trace[i] + 1 ) / (len(beta) - dof_trace[i] - 1.0) bic_trace[i] = -2 * log_likelihood_trace[i] + dof_trace[i] * (np. log(len(beta)) - np.log(2 * np.pi)) if best_idx is None or bic_trace[i] < bic_trace[best_idx]: best_idx = i best_plateaus = plateaus beta_trace.append(np.array(beta)) if verbose: print('DoF: {0} AIC: {1} AICc: {2} BIC: {3}\n'.format(dof_trace [i], aic_trace[i], aicc_trace[i], bic_trace[i])) if verbose: print( 'Best setting (by BIC): lambda={0} [DoF: {1}, AIC: {2}, AICc: {3} BIC: {4}]' .format(lambda_grid[best_idx], dof_trace[best_idx], aic_trace[ best_idx], aicc_trace[best_idx], bic_trace[best_idx])) return {'aic': aic_trace, 'aicc': aicc_trace, 'bic': bic_trace, 'dof': dof_trace, 'loglikelihood': log_likelihood_trace, 'beta': np.array( beta_trace), 'lambda': lambda_grid, 'best_idx': best_idx, 'best': beta_trace[best_idx], 'plateaus': best_plateaus}
solution_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, min_lambda, max_lambda, lambda_bins, verbose=0):\n self.u = np.zeros(self.Dk.shape[0], dtype='double')\n lambda_grid = np.exp(np.linspace(np.log(max_lambda), np.log(min_lambda),\n lambda_bins))\n aic_trace = np.zeros(lambda_grid.shape)\n aicc_trace = np.zeros(lambda_grid.shape)\n bic_trace = np.zeros(lambda_grid.shape)\n dof_trace = np.zeros(lambda_grid.shape)\n log_likelihood_trace = np.zeros(lambda_grid.shape)\n beta_trace = []\n best_idx = None\n best_plateaus = None\n if self.edges is None:\n self.edges = defaultdict(list)\n elist = csr_matrix(self.D).indices.reshape((self.D.shape[0], 2))\n for n1, n2 in elist:\n self.edges[n1].append(n2)\n self.edges[n2].append(n1)\n for i, lam in enumerate(lambda_grid):\n if verbose:\n print('#{0} Lambda = {1}'.format(i, lam))\n beta = self.solve(lam)\n if verbose:\n print('Calculating degrees of freedom')\n dof_vals = self.Dk_minus_one.dot(beta) if self.k > 0 else beta\n plateaus = calc_plateaus(dof_vals, self.edges, rel_tol=0.01\n ) if self.k % 2 == 0 else nearly_unique(dof_vals, rel_tol=0.03)\n dof_trace[i] = max(1, len(plateaus))\n if verbose:\n print('Calculating Information Criteria')\n log_likelihood_trace[i] = -0.5 * ((self.y - beta) ** 2).sum()\n aic_trace[i] = 2.0 * dof_trace[i] - 2.0 * log_likelihood_trace[i]\n aicc_trace[i] = aic_trace[i] + 2 * dof_trace[i] * (dof_trace[i] + 1\n ) / (len(beta) - dof_trace[i] - 1.0)\n bic_trace[i] = -2 * log_likelihood_trace[i] + dof_trace[i] * (np.\n log(len(beta)) - np.log(2 * np.pi))\n if best_idx is None or bic_trace[i] < bic_trace[best_idx]:\n best_idx = i\n best_plateaus = plateaus\n beta_trace.append(np.array(beta))\n if verbose:\n print('DoF: {0} AIC: {1} AICc: {2} BIC: {3}\\n'.format(dof_trace\n [i], aic_trace[i], aicc_trace[i], bic_trace[i]))\n if verbose:\n print(\n 'Best setting (by BIC): lambda={0} [DoF: {1}, AIC: {2}, AICc: {3} BIC: {4}]'\n .format(lambda_grid[best_idx], dof_trace[best_idx], aic_trace[\n best_idx], aicc_trace[best_idx], bic_trace[best_idx]))\n return {'aic': aic_trace, 'aicc': aicc_trace, 'bic': bic_trace, 'dof':\n dof_trace, 'loglikelihood': log_likelihood_trace, 'beta': np.array(\n beta_trace), 'lambda': lambda_grid, 'best_idx': best_idx, 'best':\n beta_trace[best_idx], 'plateaus': best_plateaus}\n", "role": "user" }, { "content": "solution_path", "role": "assistant" } ]
def x(self, lam): s = weighted_graphtf_logit(self.nnodes, self.trials, self.successes, lam, self.Dk.shape[0], self.Dk.shape[1], self.Dk.nnz, self.Dk.row. astype('int32'), self.Dk.col.astype('int32'), self.Dk.data.astype( 'double'), self.maxsteps, self.converge, self.beta, self.u) self.steps.append(s) return self.beta
solve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, lam):\n s = weighted_graphtf_logit(self.nnodes, self.trials, self.successes,\n lam, self.Dk.shape[0], self.Dk.shape[1], self.Dk.nnz, self.Dk.row.\n astype('int32'), self.Dk.col.astype('int32'), self.Dk.data.astype(\n 'double'), self.maxsteps, self.converge, self.beta, self.u)\n self.steps.append(s)\n return self.beta\n", "role": "user" }, { "content": "solve", "role": "assistant" } ]
def x(self, lam): s = weighted_graphtf_poisson(self.nnodes, self.obs, lam, self.Dk.shape[ 0], self.Dk.shape[1], self.Dk.nnz, self.Dk.row.astype('int32'), self.Dk.col.astype('int32'), self.Dk.data.astype('double'), self. maxsteps, self.converge, self.beta, self.u) self.steps.append(s) return self.beta
solve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, lam):\n s = weighted_graphtf_poisson(self.nnodes, self.obs, lam, self.Dk.shape[\n 0], self.Dk.shape[1], self.Dk.nnz, self.Dk.row.astype('int32'),\n self.Dk.col.astype('int32'), self.Dk.data.astype('double'), self.\n maxsteps, self.converge, self.beta, self.u)\n self.steps.append(s)\n return self.beta\n", "role": "user" }, { "content": "solve", "role": "assistant" } ]
def x(self, genV, genJ): V_allele_names = [V[0] for V in genV] V_mask_mapping = {} for v in set([x.split('*')[0] for x in V_allele_names]): V_mask_mapping[v] = [] for v in set(['V'.join(x.split('*')[0].split('V')[1:]) for x in V_allele_names]): V_mask_mapping[v] = [] for i, v in enumerate(V_allele_names): V_mask_mapping[v] = [i] V_mask_mapping['V'.join(v.split('*')[0].split('V')[1:])].append(i) V_mask_mapping[v.split('*')[0]].append(i) J_allele_names = [J[0] for J in genJ] J_mask_mapping = {} for j in set([x.split('*')[0] for x in J_allele_names]): J_mask_mapping[j] = [] for j in set(['J'.join(x.split('*')[0].split('J')[1:]) for x in J_allele_names]): J_mask_mapping[j] = [] for i, j in enumerate(J_allele_names): J_mask_mapping[j] = [i] J_mask_mapping['J'.join(j.split('*')[0].split('J')[1:])].append(i) J_mask_mapping[j.split('*')[0]].append(i) self.V_allele_names = V_allele_names self.V_mask_mapping = V_mask_mapping self.J_allele_names = J_allele_names self.J_mask_mapping = J_mask_mapping
make_V_and_J_mask_mapping
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, genV, genJ):\n V_allele_names = [V[0] for V in genV]\n V_mask_mapping = {}\n for v in set([x.split('*')[0] for x in V_allele_names]):\n V_mask_mapping[v] = []\n for v in set(['V'.join(x.split('*')[0].split('V')[1:]) for x in\n V_allele_names]):\n V_mask_mapping[v] = []\n for i, v in enumerate(V_allele_names):\n V_mask_mapping[v] = [i]\n V_mask_mapping['V'.join(v.split('*')[0].split('V')[1:])].append(i)\n V_mask_mapping[v.split('*')[0]].append(i)\n J_allele_names = [J[0] for J in genJ]\n J_mask_mapping = {}\n for j in set([x.split('*')[0] for x in J_allele_names]):\n J_mask_mapping[j] = []\n for j in set(['J'.join(x.split('*')[0].split('J')[1:]) for x in\n J_allele_names]):\n J_mask_mapping[j] = []\n for i, j in enumerate(J_allele_names):\n J_mask_mapping[j] = [i]\n J_mask_mapping['J'.join(j.split('*')[0].split('J')[1:])].append(i)\n J_mask_mapping[j.split('*')[0]].append(i)\n self.V_allele_names = V_allele_names\n self.V_mask_mapping = V_mask_mapping\n self.J_allele_names = J_allele_names\n self.J_mask_mapping = J_mask_mapping\n", "role": "user" }, { "content": "make_V_and_J_mask_mapping", "role": "assistant" } ]
def x(self, generative_model, genomic_data): cutD_genomic_CDR3_segs = genomic_data.cutD_genomic_CDR3_segs nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3} num_dell_pos, num_delr_pos, num_D_genes = (generative_model. PdelDldelDr_given_D.shape) PD_nt_pos_vec = [[]] * num_D_genes PD_2nd_nt_pos_per_aa_vec = [[]] * num_D_genes for D_in in range(num_D_genes): current_PD_nt_pos_vec = np.zeros((4, len(cutD_genomic_CDR3_segs[D_in])) ) current_PD_2nd_nt_pos_per_aa_vec = {} for aa in self.codons_dict.keys(): current_PD_2nd_nt_pos_per_aa_vec[aa] = np.zeros((4, len( cutD_genomic_CDR3_segs[D_in]))) for pos, nt in enumerate(cutD_genomic_CDR3_segs[D_in]): current_PD_nt_pos_vec[nt2num[nt], pos] = 1 for ins_nt in 'ACGT': for aa in self.codons_dict.keys(): if ins_nt + cutD_genomic_CDR3_segs[D_in][pos:pos + 2 ] in self.codons_dict[aa]: current_PD_2nd_nt_pos_per_aa_vec[aa][nt2num[ins_nt], pos] = 1 PD_nt_pos_vec[D_in] = current_PD_nt_pos_vec PD_2nd_nt_pos_per_aa_vec[D_in] = current_PD_2nd_nt_pos_per_aa_vec min_delDl_given_DdelDr = [[]] * num_D_genes max_delDl_given_DdelDr = [[]] * num_D_genes zeroD_given_D = [[]] * num_D_genes for D_in in range(num_D_genes): current_min_delDl_given_delDr = [0] * num_delr_pos current_max_delDl_given_delDr = [0] * num_delr_pos current_zeroD = 0 for delr in range(num_delr_pos): if num_dell_pos > len(cutD_genomic_CDR3_segs[D_in]) - delr: current_zeroD += generative_model.PdelDldelDr_given_D[len( cutD_genomic_CDR3_segs[D_in]) - delr, delr, D_in] dell = 0 while generative_model.PdelDldelDr_given_D[dell, delr, D_in ] == 0 and dell < num_dell_pos - 1: dell += 1 if generative_model.PdelDldelDr_given_D[dell, delr, D_in] == 0: current_min_delDl_given_delDr[delr] = -1 else: current_min_delDl_given_delDr[delr] = dell if current_min_delDl_given_delDr[delr] == -1: current_max_delDl_given_delDr[delr] = -1 else: dell = num_dell_pos - 1 while generative_model.PdelDldelDr_given_D[dell, delr, D_in ] == 0 and dell >= 0: dell -= 1 if generative_model.PdelDldelDr_given_D[dell, delr, D_in] == 0: current_max_delDl_given_delDr[delr] = -1 else: current_max_delDl_given_delDr[delr] = dell min_delDl_given_DdelDr[D_in] = current_min_delDl_given_delDr max_delDl_given_DdelDr[D_in] = current_max_delDl_given_delDr zeroD_given_D[D_in] = current_zeroD self.PD_nt_pos_vec = PD_nt_pos_vec self.PD_2nd_nt_pos_per_aa_vec = PD_2nd_nt_pos_per_aa_vec self.min_delDl_given_DdelDr = min_delDl_given_DdelDr self.max_delDl_given_DdelDr = max_delDl_given_DdelDr self.zeroD_given_D = zeroD_given_D
preprocess_D_segs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, generative_model, genomic_data):\n cutD_genomic_CDR3_segs = genomic_data.cutD_genomic_CDR3_segs\n nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n num_dell_pos, num_delr_pos, num_D_genes = (generative_model.\n PdelDldelDr_given_D.shape)\n PD_nt_pos_vec = [[]] * num_D_genes\n PD_2nd_nt_pos_per_aa_vec = [[]] * num_D_genes\n for D_in in range(num_D_genes):\n current_PD_nt_pos_vec = np.zeros((4, len(cutD_genomic_CDR3_segs[D_in]))\n )\n current_PD_2nd_nt_pos_per_aa_vec = {}\n for aa in self.codons_dict.keys():\n current_PD_2nd_nt_pos_per_aa_vec[aa] = np.zeros((4, len(\n cutD_genomic_CDR3_segs[D_in])))\n for pos, nt in enumerate(cutD_genomic_CDR3_segs[D_in]):\n current_PD_nt_pos_vec[nt2num[nt], pos] = 1\n for ins_nt in 'ACGT':\n for aa in self.codons_dict.keys():\n if ins_nt + cutD_genomic_CDR3_segs[D_in][pos:pos + 2\n ] in self.codons_dict[aa]:\n current_PD_2nd_nt_pos_per_aa_vec[aa][nt2num[ins_nt],\n pos] = 1\n PD_nt_pos_vec[D_in] = current_PD_nt_pos_vec\n PD_2nd_nt_pos_per_aa_vec[D_in] = current_PD_2nd_nt_pos_per_aa_vec\n min_delDl_given_DdelDr = [[]] * num_D_genes\n max_delDl_given_DdelDr = [[]] * num_D_genes\n zeroD_given_D = [[]] * num_D_genes\n for D_in in range(num_D_genes):\n current_min_delDl_given_delDr = [0] * num_delr_pos\n current_max_delDl_given_delDr = [0] * num_delr_pos\n current_zeroD = 0\n for delr in range(num_delr_pos):\n if num_dell_pos > len(cutD_genomic_CDR3_segs[D_in]) - delr:\n current_zeroD += generative_model.PdelDldelDr_given_D[len(\n cutD_genomic_CDR3_segs[D_in]) - delr, delr, D_in]\n dell = 0\n while generative_model.PdelDldelDr_given_D[dell, delr, D_in\n ] == 0 and dell < num_dell_pos - 1:\n dell += 1\n if generative_model.PdelDldelDr_given_D[dell, delr, D_in] == 0:\n current_min_delDl_given_delDr[delr] = -1\n else:\n current_min_delDl_given_delDr[delr] = dell\n if current_min_delDl_given_delDr[delr] == -1:\n current_max_delDl_given_delDr[delr] = -1\n else:\n dell = num_dell_pos - 1\n while generative_model.PdelDldelDr_given_D[dell, delr, D_in\n ] == 0 and dell >= 0:\n dell -= 1\n if generative_model.PdelDldelDr_given_D[dell, delr, D_in] == 0:\n current_max_delDl_given_delDr[delr] = -1\n else:\n current_max_delDl_given_delDr[delr] = dell\n min_delDl_given_DdelDr[D_in] = current_min_delDl_given_delDr\n max_delDl_given_DdelDr[D_in] = current_max_delDl_given_delDr\n zeroD_given_D[D_in] = current_zeroD\n self.PD_nt_pos_vec = PD_nt_pos_vec\n self.PD_2nd_nt_pos_per_aa_vec = PD_2nd_nt_pos_per_aa_vec\n self.min_delDl_given_DdelDr = min_delDl_given_DdelDr\n self.max_delDl_given_DdelDr = max_delDl_given_DdelDr\n self.zeroD_given_D = zeroD_given_D\n", "role": "user" }, { "content": "preprocess_D_segs", "role": "assistant" } ]
def x(self, generative_model, genomic_data): cutJ_genomic_CDR3_segs = genomic_data.cutJ_genomic_CDR3_segs nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3} num_del_pos = generative_model.PdelJ_given_J.shape[0] num_D_genes, num_J_genes = generative_model.PDJ.shape PJ = np.sum(generative_model.PDJ, axis=0) PJdelJ_nt_pos_vec = [[]] * num_J_genes PJdelJ_2nd_nt_pos_per_aa_vec = [[]] * num_J_genes for J_in, pj in enumerate(PJ): current_PJdelJ_nt_pos_vec = np.zeros((4, len(cutJ_genomic_CDR3_segs [J_in]))) current_PJdelJ_2nd_nt_pos_per_aa_vec = {} for aa in self.codons_dict.keys(): current_PJdelJ_2nd_nt_pos_per_aa_vec[aa] = np.zeros((4, len( cutJ_genomic_CDR3_segs[J_in]))) for pos, nt in enumerate(cutJ_genomic_CDR3_segs[J_in]): if pos >= num_del_pos: continue if (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 1: current_PJdelJ_nt_pos_vec[nt2num[nt], pos ] = pj * generative_model.PdelJ_given_J[pos, J_in] elif (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 2: for ins_nt in 'ACGT': for aa in self.codons_dict.keys(): if ins_nt + cutJ_genomic_CDR3_segs[J_in][pos:pos + 2 ] in self.codons_dict[aa]: current_PJdelJ_2nd_nt_pos_per_aa_vec[aa][nt2num [ins_nt], pos ] = pj * generative_model.PdelJ_given_J[pos, J_in] elif (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 0: current_PJdelJ_nt_pos_vec[0, pos ] = pj * generative_model.PdelJ_given_J[pos, J_in] PJdelJ_nt_pos_vec[J_in] = current_PJdelJ_nt_pos_vec PJdelJ_2nd_nt_pos_per_aa_vec[J_in ] = current_PJdelJ_2nd_nt_pos_per_aa_vec self.PJdelJ_nt_pos_vec = PJdelJ_nt_pos_vec self.PJdelJ_2nd_nt_pos_per_aa_vec = PJdelJ_2nd_nt_pos_per_aa_vec
generate_PJdelJ_nt_pos_vecs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, generative_model, genomic_data):\n cutJ_genomic_CDR3_segs = genomic_data.cutJ_genomic_CDR3_segs\n nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n num_del_pos = generative_model.PdelJ_given_J.shape[0]\n num_D_genes, num_J_genes = generative_model.PDJ.shape\n PJ = np.sum(generative_model.PDJ, axis=0)\n PJdelJ_nt_pos_vec = [[]] * num_J_genes\n PJdelJ_2nd_nt_pos_per_aa_vec = [[]] * num_J_genes\n for J_in, pj in enumerate(PJ):\n current_PJdelJ_nt_pos_vec = np.zeros((4, len(cutJ_genomic_CDR3_segs\n [J_in])))\n current_PJdelJ_2nd_nt_pos_per_aa_vec = {}\n for aa in self.codons_dict.keys():\n current_PJdelJ_2nd_nt_pos_per_aa_vec[aa] = np.zeros((4, len(\n cutJ_genomic_CDR3_segs[J_in])))\n for pos, nt in enumerate(cutJ_genomic_CDR3_segs[J_in]):\n if pos >= num_del_pos:\n continue\n if (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 1:\n current_PJdelJ_nt_pos_vec[nt2num[nt], pos\n ] = pj * generative_model.PdelJ_given_J[pos, J_in]\n elif (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 2:\n for ins_nt in 'ACGT':\n for aa in self.codons_dict.keys():\n if ins_nt + cutJ_genomic_CDR3_segs[J_in][pos:pos + 2\n ] in self.codons_dict[aa]:\n current_PJdelJ_2nd_nt_pos_per_aa_vec[aa][nt2num\n [ins_nt], pos\n ] = pj * generative_model.PdelJ_given_J[pos,\n J_in]\n elif (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 0:\n current_PJdelJ_nt_pos_vec[0, pos\n ] = pj * generative_model.PdelJ_given_J[pos, J_in]\n PJdelJ_nt_pos_vec[J_in] = current_PJdelJ_nt_pos_vec\n PJdelJ_2nd_nt_pos_per_aa_vec[J_in\n ] = current_PJdelJ_2nd_nt_pos_per_aa_vec\n self.PJdelJ_nt_pos_vec = PJdelJ_nt_pos_vec\n self.PJdelJ_2nd_nt_pos_per_aa_vec = PJdelJ_2nd_nt_pos_per_aa_vec\n", "role": "user" }, { "content": "generate_PJdelJ_nt_pos_vecs", "role": "assistant" } ]
def x(self): nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3} Tvd = {} for aa in self.codons_dict.keys(): current_Tvd = np.zeros((4, 4)) for init_nt in 'ACGT': for codon in self.codons_dict[aa]: current_Tvd[nt2num[codon[2]], nt2num[init_nt]] += self.Rvd[ nt2num[codon[2]], nt2num[codon[1]]] * self.Rvd[nt2num[ codon[1]], nt2num[codon[0]]] * self.Rvd[nt2num[codon[0] ], nt2num[init_nt]] Tvd[aa] = current_Tvd Svd = {} for aa in self.codons_dict.keys(): current_Svd = np.zeros((4, 4)) for ins_nt in 'ACGT': if any([codon.startswith(ins_nt) for codon in self.codons_dict[aa]] ): current_Svd[nt2num[ins_nt], :] = self.Rvd[nt2num[ins_nt], :] Svd[aa] = current_Svd Dvd = {} for aa in self.codons_dict.keys(): current_Dvd = np.zeros((4, 4)) for init_nt in 'ACGT': for codon in self.codons_dict[aa]: current_Dvd[nt2num[codon[2]], nt2num[init_nt]] += self.Rvd[ nt2num[codon[1]], nt2num[codon[0]]] * self.Rvd[nt2num[ codon[0]], nt2num[init_nt]] Dvd[aa] = current_Dvd lTvd = {} for aa in self.codons_dict.keys(): current_lTvd = np.zeros((4, 4)) for codon in self.codons_dict[aa]: current_lTvd[nt2num[codon[2]], nt2num[codon[0]]] += self.Rvd[ nt2num[codon[2]], nt2num[codon[1]]] * self.first_nt_bias_insVD[ nt2num[codon[1]]] lTvd[aa] = current_lTvd lDvd = {} for aa in self.codons_dict.keys(): current_lDvd = np.zeros((4, 4)) for codon in self.codons_dict[aa]: current_lDvd[nt2num[codon[2]], nt2num[codon[0]] ] += self.first_nt_bias_insVD[nt2num[codon[1]]] lDvd[aa] = current_lDvd self.Tvd = Tvd self.Svd = Svd self.Dvd = Dvd self.lTvd = lTvd self.lDvd = lDvd
generate_VD_junction_transfer_matrices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n Tvd = {}\n for aa in self.codons_dict.keys():\n current_Tvd = np.zeros((4, 4))\n for init_nt in 'ACGT':\n for codon in self.codons_dict[aa]:\n current_Tvd[nt2num[codon[2]], nt2num[init_nt]] += self.Rvd[\n nt2num[codon[2]], nt2num[codon[1]]] * self.Rvd[nt2num[\n codon[1]], nt2num[codon[0]]] * self.Rvd[nt2num[codon[0]\n ], nt2num[init_nt]]\n Tvd[aa] = current_Tvd\n Svd = {}\n for aa in self.codons_dict.keys():\n current_Svd = np.zeros((4, 4))\n for ins_nt in 'ACGT':\n if any([codon.startswith(ins_nt) for codon in self.codons_dict[aa]]\n ):\n current_Svd[nt2num[ins_nt], :] = self.Rvd[nt2num[ins_nt], :]\n Svd[aa] = current_Svd\n Dvd = {}\n for aa in self.codons_dict.keys():\n current_Dvd = np.zeros((4, 4))\n for init_nt in 'ACGT':\n for codon in self.codons_dict[aa]:\n current_Dvd[nt2num[codon[2]], nt2num[init_nt]] += self.Rvd[\n nt2num[codon[1]], nt2num[codon[0]]] * self.Rvd[nt2num[\n codon[0]], nt2num[init_nt]]\n Dvd[aa] = current_Dvd\n lTvd = {}\n for aa in self.codons_dict.keys():\n current_lTvd = np.zeros((4, 4))\n for codon in self.codons_dict[aa]:\n current_lTvd[nt2num[codon[2]], nt2num[codon[0]]] += self.Rvd[\n nt2num[codon[2]], nt2num[codon[1]]] * self.first_nt_bias_insVD[\n nt2num[codon[1]]]\n lTvd[aa] = current_lTvd\n lDvd = {}\n for aa in self.codons_dict.keys():\n current_lDvd = np.zeros((4, 4))\n for codon in self.codons_dict[aa]:\n current_lDvd[nt2num[codon[2]], nt2num[codon[0]]\n ] += self.first_nt_bias_insVD[nt2num[codon[1]]]\n lDvd[aa] = current_lDvd\n self.Tvd = Tvd\n self.Svd = Svd\n self.Dvd = Dvd\n self.lTvd = lTvd\n self.lDvd = lDvd\n", "role": "user" }, { "content": "generate_VD_junction_transfer_matrices", "role": "assistant" } ]
def x(self): nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3} Tdj = {} for aa in self.codons_dict.keys(): current_Tdj = np.zeros((4, 4)) for init_nt in 'ACGT': for codon in self.codons_dict[aa]: current_Tdj[nt2num[codon[0]], nt2num[init_nt]] += self.Rdj[ nt2num[codon[0]], nt2num[codon[1]]] * self.Rdj[nt2num[ codon[1]], nt2num[codon[2]]] * self.Rdj[nt2num[codon[2] ], nt2num[init_nt]] Tdj[aa] = current_Tdj Sdj = {} for aa in self.codons_dict.keys(): current_Sdj = np.zeros((4, 4)) for ins_nt in 'ACGT': if any([codon.endswith(ins_nt) for codon in self.codons_dict[aa]]): current_Sdj[nt2num[ins_nt], :] = self.Rdj[nt2num[ins_nt], :] Sdj[aa] = current_Sdj Ddj = {} for aa in self.codons_dict.keys(): current_Ddj = np.zeros((4, 4)) for init_nt in 'ACGT': for codon in self.codons_dict[aa]: current_Ddj[nt2num[codon[0]], nt2num[init_nt]] += self.Rdj[ nt2num[codon[1]], nt2num[codon[2]]] * self.Rdj[nt2num[ codon[2]], nt2num[init_nt]] Ddj[aa] = current_Ddj rTdj = {} for aa in self.codons_dict.keys(): current_lTdj = np.zeros((4, 4)) for codon in self.codons_dict[aa]: current_lTdj[nt2num[codon[0]], nt2num[codon[2]]] += self.Rdj[ nt2num[codon[0]], nt2num[codon[1]]] * self.first_nt_bias_insDJ[ nt2num[codon[1]]] rTdj[aa] = current_lTdj rDdj = {} for aa in self.codons_dict.keys(): current_rDdj = np.zeros((4, 4)) for codon in self.codons_dict[aa]: current_rDdj[nt2num[codon[0]], nt2num[codon[2]] ] += self.first_nt_bias_insDJ[nt2num[codon[1]]] rDdj[aa] = current_rDdj self.Tdj = Tdj self.Sdj = Sdj self.Ddj = Ddj self.rTdj = rTdj self.rDdj = rDdj
generate_DJ_junction_transfer_matrices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n Tdj = {}\n for aa in self.codons_dict.keys():\n current_Tdj = np.zeros((4, 4))\n for init_nt in 'ACGT':\n for codon in self.codons_dict[aa]:\n current_Tdj[nt2num[codon[0]], nt2num[init_nt]] += self.Rdj[\n nt2num[codon[0]], nt2num[codon[1]]] * self.Rdj[nt2num[\n codon[1]], nt2num[codon[2]]] * self.Rdj[nt2num[codon[2]\n ], nt2num[init_nt]]\n Tdj[aa] = current_Tdj\n Sdj = {}\n for aa in self.codons_dict.keys():\n current_Sdj = np.zeros((4, 4))\n for ins_nt in 'ACGT':\n if any([codon.endswith(ins_nt) for codon in self.codons_dict[aa]]):\n current_Sdj[nt2num[ins_nt], :] = self.Rdj[nt2num[ins_nt], :]\n Sdj[aa] = current_Sdj\n Ddj = {}\n for aa in self.codons_dict.keys():\n current_Ddj = np.zeros((4, 4))\n for init_nt in 'ACGT':\n for codon in self.codons_dict[aa]:\n current_Ddj[nt2num[codon[0]], nt2num[init_nt]] += self.Rdj[\n nt2num[codon[1]], nt2num[codon[2]]] * self.Rdj[nt2num[\n codon[2]], nt2num[init_nt]]\n Ddj[aa] = current_Ddj\n rTdj = {}\n for aa in self.codons_dict.keys():\n current_lTdj = np.zeros((4, 4))\n for codon in self.codons_dict[aa]:\n current_lTdj[nt2num[codon[0]], nt2num[codon[2]]] += self.Rdj[\n nt2num[codon[0]], nt2num[codon[1]]] * self.first_nt_bias_insDJ[\n nt2num[codon[1]]]\n rTdj[aa] = current_lTdj\n rDdj = {}\n for aa in self.codons_dict.keys():\n current_rDdj = np.zeros((4, 4))\n for codon in self.codons_dict[aa]:\n current_rDdj[nt2num[codon[0]], nt2num[codon[2]]\n ] += self.first_nt_bias_insDJ[nt2num[codon[1]]]\n rDdj[aa] = current_rDdj\n self.Tdj = Tdj\n self.Sdj = Sdj\n self.Ddj = Ddj\n self.rTdj = rTdj\n self.rDdj = rDdj\n", "role": "user" }, { "content": "generate_DJ_junction_transfer_matrices", "role": "assistant" } ]
def x(self, generative_model, genomic_data): cutV_genomic_CDR3_segs = genomic_data.cutV_genomic_CDR3_segs nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3} num_del_pos = generative_model.PdelV_given_V.shape[0] num_V_genes = generative_model.PdelV_given_V.shape[1] PVdelV_nt_pos_vec = [[]] * num_V_genes PVdelV_2nd_nt_pos_per_aa_vec = [[]] * num_V_genes for V_in in range(num_V_genes): current_PVdelV_nt_pos_vec = np.zeros((4, len(cutV_genomic_CDR3_segs [V_in]))) current_PVdelV_2nd_nt_pos_per_aa_vec = {} for aa in self.codons_dict.keys(): current_PVdelV_2nd_nt_pos_per_aa_vec[aa] = np.zeros((4, len( cutV_genomic_CDR3_segs[V_in]))) for pos, nt in enumerate(cutV_genomic_CDR3_segs[V_in]): if len(cutV_genomic_CDR3_segs[V_in]) - pos > num_del_pos: continue if pos % 3 == 0: current_PVdelV_nt_pos_vec[nt2num[nt], pos ] = generative_model.PdelV_given_V[len( cutV_genomic_CDR3_segs[V_in]) - pos - 1, V_in] elif pos % 3 == 1: for ins_nt in 'ACGT': for aa in self.codons_dict.keys(): if cutV_genomic_CDR3_segs[V_in][pos - 1:pos + 1 ] + ins_nt in self.codons_dict[aa]: current_PVdelV_2nd_nt_pos_per_aa_vec[aa][nt2num [ins_nt], pos ] = generative_model.PdelV_given_V[len( cutV_genomic_CDR3_segs[V_in]) - pos - 1, V_in] elif pos % 3 == 2: current_PVdelV_nt_pos_vec[0, pos ] = generative_model.PdelV_given_V[len( cutV_genomic_CDR3_segs[V_in]) - pos - 1, V_in] PVdelV_nt_pos_vec[V_in] = current_PVdelV_nt_pos_vec PVdelV_2nd_nt_pos_per_aa_vec[V_in ] = current_PVdelV_2nd_nt_pos_per_aa_vec self.PVdelV_nt_pos_vec = PVdelV_nt_pos_vec self.PVdelV_2nd_nt_pos_per_aa_vec = PVdelV_2nd_nt_pos_per_aa_vec
generate_PVdelV_nt_pos_vecs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, generative_model, genomic_data):\n cutV_genomic_CDR3_segs = genomic_data.cutV_genomic_CDR3_segs\n nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n num_del_pos = generative_model.PdelV_given_V.shape[0]\n num_V_genes = generative_model.PdelV_given_V.shape[1]\n PVdelV_nt_pos_vec = [[]] * num_V_genes\n PVdelV_2nd_nt_pos_per_aa_vec = [[]] * num_V_genes\n for V_in in range(num_V_genes):\n current_PVdelV_nt_pos_vec = np.zeros((4, len(cutV_genomic_CDR3_segs\n [V_in])))\n current_PVdelV_2nd_nt_pos_per_aa_vec = {}\n for aa in self.codons_dict.keys():\n current_PVdelV_2nd_nt_pos_per_aa_vec[aa] = np.zeros((4, len(\n cutV_genomic_CDR3_segs[V_in])))\n for pos, nt in enumerate(cutV_genomic_CDR3_segs[V_in]):\n if len(cutV_genomic_CDR3_segs[V_in]) - pos > num_del_pos:\n continue\n if pos % 3 == 0:\n current_PVdelV_nt_pos_vec[nt2num[nt], pos\n ] = generative_model.PdelV_given_V[len(\n cutV_genomic_CDR3_segs[V_in]) - pos - 1, V_in]\n elif pos % 3 == 1:\n for ins_nt in 'ACGT':\n for aa in self.codons_dict.keys():\n if cutV_genomic_CDR3_segs[V_in][pos - 1:pos + 1\n ] + ins_nt in self.codons_dict[aa]:\n current_PVdelV_2nd_nt_pos_per_aa_vec[aa][nt2num\n [ins_nt], pos\n ] = generative_model.PdelV_given_V[len(\n cutV_genomic_CDR3_segs[V_in]) - pos - 1, V_in]\n elif pos % 3 == 2:\n current_PVdelV_nt_pos_vec[0, pos\n ] = generative_model.PdelV_given_V[len(\n cutV_genomic_CDR3_segs[V_in]) - pos - 1, V_in]\n PVdelV_nt_pos_vec[V_in] = current_PVdelV_nt_pos_vec\n PVdelV_2nd_nt_pos_per_aa_vec[V_in\n ] = current_PVdelV_2nd_nt_pos_per_aa_vec\n self.PVdelV_nt_pos_vec = PVdelV_nt_pos_vec\n self.PVdelV_2nd_nt_pos_per_aa_vec = PVdelV_2nd_nt_pos_per_aa_vec\n", "role": "user" }, { "content": "generate_PVdelV_nt_pos_vecs", "role": "assistant" } ]
def x(self, generative_model, genomic_data): cutJ_genomic_CDR3_segs = genomic_data.cutJ_genomic_CDR3_segs nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3} num_del_pos = generative_model.PdelJ_given_J.shape[0] num_D_genes, num_J_genes = generative_model.PVJ.shape PJdelJ_nt_pos_vec = [[]] * num_J_genes PJdelJ_2nd_nt_pos_per_aa_vec = [[]] * num_J_genes for J_in in range(num_J_genes): current_PJdelJ_nt_pos_vec = np.zeros((4, len(cutJ_genomic_CDR3_segs [J_in]))) current_PJdelJ_2nd_nt_pos_per_aa_vec = {} for aa in self.codons_dict.keys(): current_PJdelJ_2nd_nt_pos_per_aa_vec[aa] = np.zeros((4, len( cutJ_genomic_CDR3_segs[J_in]))) for pos, nt in enumerate(cutJ_genomic_CDR3_segs[J_in]): if pos >= num_del_pos: continue if (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 1: current_PJdelJ_nt_pos_vec[nt2num[nt], pos ] = generative_model.PdelJ_given_J[pos, J_in] elif (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 2: for ins_nt in 'ACGT': for aa in self.codons_dict.keys(): if ins_nt + cutJ_genomic_CDR3_segs[J_in][pos:pos + 2 ] in self.codons_dict[aa]: current_PJdelJ_2nd_nt_pos_per_aa_vec[aa][nt2num [ins_nt], pos ] = generative_model.PdelJ_given_J[pos, J_in] elif (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 0: current_PJdelJ_nt_pos_vec[0, pos ] = generative_model.PdelJ_given_J[pos, J_in] PJdelJ_nt_pos_vec[J_in] = current_PJdelJ_nt_pos_vec PJdelJ_2nd_nt_pos_per_aa_vec[J_in ] = current_PJdelJ_2nd_nt_pos_per_aa_vec self.PJdelJ_nt_pos_vec = PJdelJ_nt_pos_vec self.PJdelJ_2nd_nt_pos_per_aa_vec = PJdelJ_2nd_nt_pos_per_aa_vec
generate_PJdelJ_nt_pos_vecs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, generative_model, genomic_data):\n cutJ_genomic_CDR3_segs = genomic_data.cutJ_genomic_CDR3_segs\n nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n num_del_pos = generative_model.PdelJ_given_J.shape[0]\n num_D_genes, num_J_genes = generative_model.PVJ.shape\n PJdelJ_nt_pos_vec = [[]] * num_J_genes\n PJdelJ_2nd_nt_pos_per_aa_vec = [[]] * num_J_genes\n for J_in in range(num_J_genes):\n current_PJdelJ_nt_pos_vec = np.zeros((4, len(cutJ_genomic_CDR3_segs\n [J_in])))\n current_PJdelJ_2nd_nt_pos_per_aa_vec = {}\n for aa in self.codons_dict.keys():\n current_PJdelJ_2nd_nt_pos_per_aa_vec[aa] = np.zeros((4, len(\n cutJ_genomic_CDR3_segs[J_in])))\n for pos, nt in enumerate(cutJ_genomic_CDR3_segs[J_in]):\n if pos >= num_del_pos:\n continue\n if (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 1:\n current_PJdelJ_nt_pos_vec[nt2num[nt], pos\n ] = generative_model.PdelJ_given_J[pos, J_in]\n elif (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 2:\n for ins_nt in 'ACGT':\n for aa in self.codons_dict.keys():\n if ins_nt + cutJ_genomic_CDR3_segs[J_in][pos:pos + 2\n ] in self.codons_dict[aa]:\n current_PJdelJ_2nd_nt_pos_per_aa_vec[aa][nt2num\n [ins_nt], pos\n ] = generative_model.PdelJ_given_J[pos, J_in]\n elif (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 0:\n current_PJdelJ_nt_pos_vec[0, pos\n ] = generative_model.PdelJ_given_J[pos, J_in]\n PJdelJ_nt_pos_vec[J_in] = current_PJdelJ_nt_pos_vec\n PJdelJ_2nd_nt_pos_per_aa_vec[J_in\n ] = current_PJdelJ_2nd_nt_pos_per_aa_vec\n self.PJdelJ_nt_pos_vec = PJdelJ_nt_pos_vec\n self.PJdelJ_2nd_nt_pos_per_aa_vec = PJdelJ_2nd_nt_pos_per_aa_vec\n", "role": "user" }, { "content": "generate_PJdelJ_nt_pos_vecs", "role": "assistant" } ]
def x(self): nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3} Tvj = {} for aa in self.codons_dict.keys(): current_Tvj = np.zeros((4, 4)) for init_nt in 'ACGT': for codon in self.codons_dict[aa]: current_Tvj[nt2num[codon[2]], nt2num[init_nt]] += self.Rvj[ nt2num[codon[2]], nt2num[codon[1]]] * self.Rvj[nt2num[ codon[1]], nt2num[codon[0]]] * self.Rvj[nt2num[codon[0] ], nt2num[init_nt]] Tvj[aa] = current_Tvj Svj = {} for aa in self.codons_dict.keys(): current_Svj = np.zeros((4, 4)) for ins_nt in 'ACGT': if any([codon.startswith(ins_nt) for codon in self.codons_dict[aa]] ): current_Svj[nt2num[ins_nt], :] = self.Rvj[nt2num[ins_nt], :] Svj[aa] = current_Svj Dvj = {} for aa in self.codons_dict.keys(): current_Dvj = np.zeros((4, 4)) for init_nt in 'ACGT': for codon in self.codons_dict[aa]: current_Dvj[nt2num[codon[2]], nt2num[init_nt]] += self.Rvj[ nt2num[codon[1]], nt2num[codon[0]]] * self.Rvj[nt2num[ codon[0]], nt2num[init_nt]] Dvj[aa] = current_Dvj lTvj = {} for aa in self.codons_dict.keys(): current_lTvj = np.zeros((4, 4)) for codon in self.codons_dict[aa]: current_lTvj[nt2num[codon[2]], nt2num[codon[0]]] += self.Rvj[ nt2num[codon[2]], nt2num[codon[1]]] * self.first_nt_bias_insVJ[ nt2num[codon[1]]] lTvj[aa] = current_lTvj lDvj = {} for aa in self.codons_dict.keys(): current_lDvj = np.zeros((4, 4)) for codon in self.codons_dict[aa]: current_lDvj[nt2num[codon[2]], nt2num[codon[0]] ] += self.first_nt_bias_insVJ[nt2num[codon[1]]] lDvj[aa] = current_lDvj self.Tvj = Tvj self.Svj = Svj self.Dvj = Dvj self.lTvj = lTvj self.lDvj = lDvj
generate_VJ_junction_transfer_matrices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n Tvj = {}\n for aa in self.codons_dict.keys():\n current_Tvj = np.zeros((4, 4))\n for init_nt in 'ACGT':\n for codon in self.codons_dict[aa]:\n current_Tvj[nt2num[codon[2]], nt2num[init_nt]] += self.Rvj[\n nt2num[codon[2]], nt2num[codon[1]]] * self.Rvj[nt2num[\n codon[1]], nt2num[codon[0]]] * self.Rvj[nt2num[codon[0]\n ], nt2num[init_nt]]\n Tvj[aa] = current_Tvj\n Svj = {}\n for aa in self.codons_dict.keys():\n current_Svj = np.zeros((4, 4))\n for ins_nt in 'ACGT':\n if any([codon.startswith(ins_nt) for codon in self.codons_dict[aa]]\n ):\n current_Svj[nt2num[ins_nt], :] = self.Rvj[nt2num[ins_nt], :]\n Svj[aa] = current_Svj\n Dvj = {}\n for aa in self.codons_dict.keys():\n current_Dvj = np.zeros((4, 4))\n for init_nt in 'ACGT':\n for codon in self.codons_dict[aa]:\n current_Dvj[nt2num[codon[2]], nt2num[init_nt]] += self.Rvj[\n nt2num[codon[1]], nt2num[codon[0]]] * self.Rvj[nt2num[\n codon[0]], nt2num[init_nt]]\n Dvj[aa] = current_Dvj\n lTvj = {}\n for aa in self.codons_dict.keys():\n current_lTvj = np.zeros((4, 4))\n for codon in self.codons_dict[aa]:\n current_lTvj[nt2num[codon[2]], nt2num[codon[0]]] += self.Rvj[\n nt2num[codon[2]], nt2num[codon[1]]] * self.first_nt_bias_insVJ[\n nt2num[codon[1]]]\n lTvj[aa] = current_lTvj\n lDvj = {}\n for aa in self.codons_dict.keys():\n current_lDvj = np.zeros((4, 4))\n for codon in self.codons_dict[aa]:\n current_lDvj[nt2num[codon[2]], nt2num[codon[0]]\n ] += self.first_nt_bias_insVJ[nt2num[codon[1]]]\n lDvj[aa] = current_lDvj\n self.Tvj = Tvj\n self.Svj = Svj\n self.Dvj = Dvj\n self.lTvj = lTvj\n self.lDvj = lDvj\n", "role": "user" }, { "content": "generate_VJ_junction_transfer_matrices", "role": "assistant" } ]
def x(self): d = {} for i in self._attrsList: key = i value = getattr(self, i) d[key] = value return d
getFields
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n d = {}\n for i in self._attrsList:\n key = i\n value = getattr(self, i)\n d[key] = value\n return d\n", "role": "user" }, { "content": "getFields", "role": "assistant" } ]
def x(readDataInstance, arrayType, arrayLength): newArray = Array(arrayType) dataLength = len(readDataInstance) if arrayType is TYPE_DWORD: toRead = arrayLength * 4 if dataLength >= toRead: for i in range(arrayLength): newArray.append(DWORD(readDataInstance.readDword())) else: raise excep.DataLengthException('Not enough bytes to read.') elif arrayType is TYPE_WORD: toRead = arrayLength * 2 if dataLength >= toRead: for i in range(arrayLength): newArray.append(DWORD(readDataInstance.readWord())) else: raise excep.DataLengthException('Not enough bytes to read.') elif arrayType is TYPE_QWORD: toRead = arrayLength * 8 if dataLength >= toRead: for i in range(arrayLength): newArray.append(QWORD(readDataInstance.readQword())) else: raise excep.DataLengthException('Not enough bytes to read.') elif arrayType is TYPE_BYTE: for i in range(arrayLength): newArray.append(BYTE(readDataInstance.readByte())) else: raise excep.ArrayTypeException("Could't create an array of type %d" % arrayType) return newArray
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(readDataInstance, arrayType, arrayLength):\n newArray = Array(arrayType)\n dataLength = len(readDataInstance)\n if arrayType is TYPE_DWORD:\n toRead = arrayLength * 4\n if dataLength >= toRead:\n for i in range(arrayLength):\n newArray.append(DWORD(readDataInstance.readDword()))\n else:\n raise excep.DataLengthException('Not enough bytes to read.')\n elif arrayType is TYPE_WORD:\n toRead = arrayLength * 2\n if dataLength >= toRead:\n for i in range(arrayLength):\n newArray.append(DWORD(readDataInstance.readWord()))\n else:\n raise excep.DataLengthException('Not enough bytes to read.')\n elif arrayType is TYPE_QWORD:\n toRead = arrayLength * 8\n if dataLength >= toRead:\n for i in range(arrayLength):\n newArray.append(QWORD(readDataInstance.readQword()))\n else:\n raise excep.DataLengthException('Not enough bytes to read.')\n elif arrayType is TYPE_BYTE:\n for i in range(arrayLength):\n newArray.append(BYTE(readDataInstance.readByte()))\n else:\n raise excep.ArrayTypeException(\"Could't create an array of type %d\" %\n arrayType)\n return newArray\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]
def x(g, start, end): even_g = nx.subgraph(g, g.nodes()).copy() if end in even_g.neighbors(start): even_g.remove_edge(start, end) comps = list(nx.connected_components(even_g)) if len(comps) == 1: trail = list(nx.eulerian_circuit(even_g, start)) trail.append((start, end)) elif len(comps) == 2: subg1 = nx.subgraph(even_g, comps[0]) subg2 = nx.subgraph(even_g, comps[1]) start_subg, end_subg = (subg1, subg2) if start in subg1.nodes( ) else (subg2, subg1) trail = list(nx.eulerian_circuit(start_subg, start)) + [(start, end)] + list(nx.eulerian_circuit(end_subg, end)) else: raise Exception( 'Unknown edge case with connected components of size {0}:\n{1}' .format(len(comps), comps)) else: even_g.add_edge(start, end) circ = list(nx.eulerian_circuit(even_g, start)) try: trail_start = circ.index((start, end)) except: trail_start = circ.index((end, start)) trail = circ[trail_start + 1:] + circ[:trail_start] return trail
calc_euler_tour
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(g, start, end):\n even_g = nx.subgraph(g, g.nodes()).copy()\n if end in even_g.neighbors(start):\n even_g.remove_edge(start, end)\n comps = list(nx.connected_components(even_g))\n if len(comps) == 1:\n trail = list(nx.eulerian_circuit(even_g, start))\n trail.append((start, end))\n elif len(comps) == 2:\n subg1 = nx.subgraph(even_g, comps[0])\n subg2 = nx.subgraph(even_g, comps[1])\n start_subg, end_subg = (subg1, subg2) if start in subg1.nodes(\n ) else (subg2, subg1)\n trail = list(nx.eulerian_circuit(start_subg, start)) + [(start,\n end)] + list(nx.eulerian_circuit(end_subg, end))\n else:\n raise Exception(\n 'Unknown edge case with connected components of size {0}:\\n{1}'\n .format(len(comps), comps))\n else:\n even_g.add_edge(start, end)\n circ = list(nx.eulerian_circuit(even_g, start))\n try:\n trail_start = circ.index((start, end))\n except:\n trail_start = circ.index((end, start))\n trail = circ[trail_start + 1:] + circ[:trail_start]\n return trail\n", "role": "user" }, { "content": "calc_euler_tour", "role": "assistant" } ]
def x(subg, odds, verbose): if verbose: print('\tCreating edge map') edges = defaultdict(list) for x, y in subg.edges(): edges[x].append(y) edges[y].append(x) if verbose: print('\tSelecting trails') trails = [] for x in subg.nodes(): if verbose > 2: print('\t\tNode {0}'.format(x)) while len(edges[x]) > 0: y = edges[x][0] trail = [(x, y)] edges[x].remove(y) edges[y].remove(x) while len(edges[y]) > 0: x = y y = edges[y][0] trail.append((x, y)) edges[x].remove(y) edges[y].remove(x) trails.append(trail) return trails
greedy_trails
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(subg, odds, verbose):\n if verbose:\n print('\\tCreating edge map')\n edges = defaultdict(list)\n for x, y in subg.edges():\n edges[x].append(y)\n edges[y].append(x)\n if verbose:\n print('\\tSelecting trails')\n trails = []\n for x in subg.nodes():\n if verbose > 2:\n print('\\t\\tNode {0}'.format(x))\n while len(edges[x]) > 0:\n y = edges[x][0]\n trail = [(x, y)]\n edges[x].remove(y)\n edges[y].remove(x)\n while len(edges[y]) > 0:\n x = y\n y = edges[y][0]\n trail.append((x, y))\n edges[x].remove(y)\n edges[y].remove(x)\n trails.append(trail)\n return trails\n", "role": "user" }, { "content": "greedy_trails", "role": "assistant" } ]
def x(g, heuristic='tour', max_odds=20, verbose=0): subgraphs = [nx.subgraph(g, x).copy() for x in nx.connected_components(g)] chains = [] num_subgraphs = len(subgraphs) step = 0 while num_subgraphs > 0: if verbose: print('Step #{0} ({1} subgraphs)'.format(step, num_subgraphs)) for i in range(num_subgraphs - 1, -1, -1): subg = subgraphs[i] odds = [x for x, y in dict(nx.degree(subg)).items() if y % 2 == 1] if verbose > 1: if len(odds) == 0: print('\t\tNo odds') elif len(odds) == 2: print('\t\tExactly 2 odds') else: print('\t\t{0} odds'.format(len(odds))) if len(odds) == 0: trails = [list(nx.eulerian_circuit(subg))] elif len(odds) == 2: trails = [calc_euler_tour(subg, odds[0], odds[1])] elif heuristic in ['min', 'max', 'median', 'any']: trails = select_odd_degree_trail(subg, odds, max_odds, heuristic, verbose) elif heuristic == 'random': trails = select_random_trail(subg, verbose) elif heuristic == 'mindegree': trails = select_min_degree_trail(subg, max_odds, verbose) elif heuristic == 'ones': trails = select_single_edge_trails(subg, verbose) elif heuristic == 'tour': trails = pseudo_tour_trails(subg, odds, verbose) elif heuristic == 'greedy': trails = greedy_trails(subg, odds, verbose) if verbose > 2: print('\t\tTrails: {0}'.format(len(trails))) for trail in trails: subg.remove_edges_from(trail) chains.extend(trails) if subg.number_of_edges() == 0: del subgraphs[i] else: comps = list(nx.connected_components(subg)) if len(comps) > 1: for x in comps: compg = nx.subgraph(subg, x) if compg.number_of_edges() > 0: subgraphs.append(compg) del subgraphs[i] num_subgraphs = len(subgraphs) step += 1 return chains
decompose_graph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(g, heuristic='tour', max_odds=20, verbose=0):\n subgraphs = [nx.subgraph(g, x).copy() for x in nx.connected_components(g)]\n chains = []\n num_subgraphs = len(subgraphs)\n step = 0\n while num_subgraphs > 0:\n if verbose:\n print('Step #{0} ({1} subgraphs)'.format(step, num_subgraphs))\n for i in range(num_subgraphs - 1, -1, -1):\n subg = subgraphs[i]\n odds = [x for x, y in dict(nx.degree(subg)).items() if y % 2 == 1]\n if verbose > 1:\n if len(odds) == 0:\n print('\\t\\tNo odds')\n elif len(odds) == 2:\n print('\\t\\tExactly 2 odds')\n else:\n print('\\t\\t{0} odds'.format(len(odds)))\n if len(odds) == 0:\n trails = [list(nx.eulerian_circuit(subg))]\n elif len(odds) == 2:\n trails = [calc_euler_tour(subg, odds[0], odds[1])]\n elif heuristic in ['min', 'max', 'median', 'any']:\n trails = select_odd_degree_trail(subg, odds, max_odds,\n heuristic, verbose)\n elif heuristic == 'random':\n trails = select_random_trail(subg, verbose)\n elif heuristic == 'mindegree':\n trails = select_min_degree_trail(subg, max_odds, verbose)\n elif heuristic == 'ones':\n trails = select_single_edge_trails(subg, verbose)\n elif heuristic == 'tour':\n trails = pseudo_tour_trails(subg, odds, verbose)\n elif heuristic == 'greedy':\n trails = greedy_trails(subg, odds, verbose)\n if verbose > 2:\n print('\\t\\tTrails: {0}'.format(len(trails)))\n for trail in trails:\n subg.remove_edges_from(trail)\n chains.extend(trails)\n if subg.number_of_edges() == 0:\n del subgraphs[i]\n else:\n comps = list(nx.connected_components(subg))\n if len(comps) > 1:\n for x in comps:\n compg = nx.subgraph(subg, x)\n if compg.number_of_edges() > 0:\n subgraphs.append(compg)\n del subgraphs[i]\n num_subgraphs = len(subgraphs)\n step += 1\n return chains\n", "role": "user" }, { "content": "decompose_graph", "role": "assistant" } ]
def x(self, a): return Vector(self.x + a.x, self.y + a.y, self.z + a.z)
plus
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, a):\n return Vector(self.x + a.x, self.y + a.y, self.z + a.z)\n", "role": "user" }, { "content": "plus", "role": "assistant" } ]
def x(self, a): return Vector(self.x - a.x, self.y - a.y, self.z - a.z)
minus
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, a):\n return Vector(self.x - a.x, self.y - a.y, self.z - a.z)\n", "role": "user" }, { "content": "minus", "role": "assistant" } ]
def x(self, a): return Vector(self.x * a, self.y * a, self.z * a)
times
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, a):\n return Vector(self.x * a, self.y * a, self.z * a)\n", "role": "user" }, { "content": "times", "role": "assistant" } ]
def x(self, a): return Vector(self.x / a, self.y / a, self.z / a)
dividedBy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, a):\n return Vector(self.x / a, self.y / a, self.z / a)\n", "role": "user" }, { "content": "dividedBy", "role": "assistant" } ]
def x(self, a, t): return self.plus(a.minus(self).times(t))
lerp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, a, t):\n return self.plus(a.minus(self).times(t))\n", "role": "user" }, { "content": "lerp", "role": "assistant" } ]
def x(self, other, t): return Vertex(self.pos.lerp(other.pos, t), self.normal.lerp(other. normal, t))
interpolate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other, t):\n return Vertex(self.pos.lerp(other.pos, t), self.normal.lerp(other.\n normal, t))\n", "role": "user" }, { "content": "interpolate", "role": "assistant" } ]
def x(self, polygon, coplanarFront, coplanarBack, front, back): COPLANAR = 0 FRONT = 1 BACK = 2 SPANNING = 3 polygonType = 0 vertexLocs = [] numVertices = len(polygon.vertices) for i in range(numVertices): t = self.normal.dot(polygon.vertices[i].pos) - self.w loc = -1 if t < -Plane.EPSILON: loc = BACK elif t > Plane.EPSILON: loc = FRONT else: loc = COPLANAR polygonType |= loc vertexLocs.append(loc) if polygonType == COPLANAR: normalDotPlaneNormal = self.normal.dot(polygon.plane.normal) if normalDotPlaneNormal > 0: coplanarFront.append(polygon) else: coplanarBack.append(polygon) elif polygonType == FRONT: front.append(polygon) elif polygonType == BACK: back.append(polygon) elif polygonType == SPANNING: f = [] b = [] for i in range(numVertices): j = (i + 1) % numVertices ti = vertexLocs[i] tj = vertexLocs[j] vi = polygon.vertices[i] vj = polygon.vertices[j] if ti != BACK: f.append(vi) if ti != FRONT: if ti != BACK: b.append(vi.clone()) else: b.append(vi) if ti | tj == SPANNING: t = (self.w - self.normal.dot(vi.pos)) / self.normal.dot(vj .pos.minus(vi.pos)) v = vi.interpolate(vj, t) f.append(v) b.append(v.clone()) if len(f) >= 3: front.append(Polygon(f, polygon.shared)) if len(b) >= 3: back.append(Polygon(b, polygon.shared))
splitPolygon
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, polygon, coplanarFront, coplanarBack, front, back):\n COPLANAR = 0\n FRONT = 1\n BACK = 2\n SPANNING = 3\n polygonType = 0\n vertexLocs = []\n numVertices = len(polygon.vertices)\n for i in range(numVertices):\n t = self.normal.dot(polygon.vertices[i].pos) - self.w\n loc = -1\n if t < -Plane.EPSILON:\n loc = BACK\n elif t > Plane.EPSILON:\n loc = FRONT\n else:\n loc = COPLANAR\n polygonType |= loc\n vertexLocs.append(loc)\n if polygonType == COPLANAR:\n normalDotPlaneNormal = self.normal.dot(polygon.plane.normal)\n if normalDotPlaneNormal > 0:\n coplanarFront.append(polygon)\n else:\n coplanarBack.append(polygon)\n elif polygonType == FRONT:\n front.append(polygon)\n elif polygonType == BACK:\n back.append(polygon)\n elif polygonType == SPANNING:\n f = []\n b = []\n for i in range(numVertices):\n j = (i + 1) % numVertices\n ti = vertexLocs[i]\n tj = vertexLocs[j]\n vi = polygon.vertices[i]\n vj = polygon.vertices[j]\n if ti != BACK:\n f.append(vi)\n if ti != FRONT:\n if ti != BACK:\n b.append(vi.clone())\n else:\n b.append(vi)\n if ti | tj == SPANNING:\n t = (self.w - self.normal.dot(vi.pos)) / self.normal.dot(vj\n .pos.minus(vi.pos))\n v = vi.interpolate(vj, t)\n f.append(v)\n b.append(v.clone())\n if len(f) >= 3:\n front.append(Polygon(f, polygon.shared))\n if len(b) >= 3:\n back.append(Polygon(b, polygon.shared))\n", "role": "user" }, { "content": "splitPolygon", "role": "assistant" } ]
def x(self): for poly in self.polygons: poly.flip() self.plane.flip() if self.front: self.front.invert() if self.back: self.back.invert() temp = self.front self.front = self.back self.back = temp
invert
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for poly in self.polygons:\n poly.flip()\n self.plane.flip()\n if self.front:\n self.front.invert()\n if self.back:\n self.back.invert()\n temp = self.front\n self.front = self.back\n self.back = temp\n", "role": "user" }, { "content": "invert", "role": "assistant" } ]
def x(self, polygons): if not self.plane: return polygons[:] front = [] back = [] for poly in polygons: self.plane.splitPolygon(poly, front, back, front, back) if self.front: front = self.front.clipPolygons(front) if self.back: back = self.back.clipPolygons(back) else: back = [] front.extend(back) return front
clipPolygons
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, polygons):\n if not self.plane:\n return polygons[:]\n front = []\n back = []\n for poly in polygons:\n self.plane.splitPolygon(poly, front, back, front, back)\n if self.front:\n front = self.front.clipPolygons(front)\n if self.back:\n back = self.back.clipPolygons(back)\n else:\n back = []\n front.extend(back)\n return front\n", "role": "user" }, { "content": "clipPolygons", "role": "assistant" } ]
def x(self, bsp): self.polygons = bsp.clipPolygons(self.polygons) if self.front: self.front.clipTo(bsp) if self.back: self.back.clipTo(bsp)
clipTo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bsp):\n self.polygons = bsp.clipPolygons(self.polygons)\n if self.front:\n self.front.clipTo(bsp)\n if self.back:\n self.back.clipTo(bsp)\n", "role": "user" }, { "content": "clipTo", "role": "assistant" } ]
def x(self): polygons = self.polygons[:] if self.front: polygons.extend(self.front.allPolygons()) if self.back: polygons.extend(self.back.allPolygons()) return polygons
allPolygons
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n polygons = self.polygons[:]\n if self.front:\n polygons.extend(self.front.allPolygons())\n if self.back:\n polygons.extend(self.back.allPolygons())\n return polygons\n", "role": "user" }, { "content": "allPolygons", "role": "assistant" } ]
def x(self, polygons): if len(polygons) == 0: return if not self.plane: self.plane = polygons[0].plane.clone() self.polygons.append(polygons[0]) front = [] back = [] for poly in polygons[1:]: self.plane.splitPolygon(poly, self.polygons, self.polygons, front, back ) if len(front) > 0: if not self.front: self.front = BSPNode() self.front.build(front) if len(back) > 0: if not self.back: self.back = BSPNode() self.back.build(back)
build
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, polygons):\n if len(polygons) == 0:\n return\n if not self.plane:\n self.plane = polygons[0].plane.clone()\n self.polygons.append(polygons[0])\n front = []\n back = []\n for poly in polygons[1:]:\n self.plane.splitPolygon(poly, self.polygons, self.polygons, front, back\n )\n if len(front) > 0:\n if not self.front:\n self.front = BSPNode()\n self.front.build(front)\n if len(back) > 0:\n if not self.back:\n self.back = BSPNode()\n self.back.build(back)\n", "role": "user" }, { "content": "build", "role": "assistant" } ]
def x(currency): source = get_rate_source() try: return Rate.objects.get(source=source, currency=currency).value except Rate.DoesNotExist: raise CurrencyConversionException( 'Rate for %s in %s do not exists. Please run python manage.py update_rates' % (currency, source.name))
get_rate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(currency):\n source = get_rate_source()\n try:\n return Rate.objects.get(source=source, currency=currency).value\n except Rate.DoesNotExist:\n raise CurrencyConversionException(\n 'Rate for %s in %s do not exists. Please run python manage.py update_rates'\n % (currency, source.name))\n", "role": "user" }, { "content": "get_rate", "role": "assistant" } ]
def x(): backend = money_rates_settings.DEFAULT_BACKEND() try: return RateSource.objects.get(name=backend.get_source_name()) except RateSource.DoesNotExist: raise CurrencyConversionException( 'Rate for %s source do not exists. Please run python manage.py update_rates' % backend.get_source_name())
get_rate_source
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n backend = money_rates_settings.DEFAULT_BACKEND()\n try:\n return RateSource.objects.get(name=backend.get_source_name())\n except RateSource.DoesNotExist:\n raise CurrencyConversionException(\n 'Rate for %s source do not exists. Please run python manage.py update_rates'\n % backend.get_source_name())\n", "role": "user" }, { "content": "get_rate_source", "role": "assistant" } ]
def x(amount, currency_from, currency_to): source = get_rate_source() if source.base_currency != currency_from: rate_from = get_rate(currency_from) else: rate_from = Decimal(1) rate_to = get_rate(currency_to) if isinstance(amount, float): amount = Decimal(amount).quantize(Decimal('.000001')) return (amount / rate_from * rate_to).quantize(Decimal('1.00'))
base_convert_money
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(amount, currency_from, currency_to):\n source = get_rate_source()\n if source.base_currency != currency_from:\n rate_from = get_rate(currency_from)\n else:\n rate_from = Decimal(1)\n rate_to = get_rate(currency_to)\n if isinstance(amount, float):\n amount = Decimal(amount).quantize(Decimal('.000001'))\n return (amount / rate_from * rate_to).quantize(Decimal('1.00'))\n", "role": "user" }, { "content": "base_convert_money", "role": "assistant" } ]
def x(amount, currency_from, currency_to): new_amount = base_convert_money(amount, currency_from, currency_to) return moneyed.Money(new_amount, currency_to)
convert_money
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(amount, currency_from, currency_to):\n new_amount = base_convert_money(amount, currency_from, currency_to)\n return moneyed.Money(new_amount, currency_to)\n", "role": "user" }, { "content": "convert_money", "role": "assistant" } ]
def x(format_string=None, datetime_obj=None): datetime_obj = datetime_obj or datetime.now() if format_string is None: seconds = int(datetime_obj.strftime('%s')) milliseconds = datetime_obj.microsecond // 1000 return str(seconds * 1000 + milliseconds) else: formatter = SimpleDateFormat(format_string) return formatter.format_datetime(datetime_obj)
format_date
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(format_string=None, datetime_obj=None):\n datetime_obj = datetime_obj or datetime.now()\n if format_string is None:\n seconds = int(datetime_obj.strftime('%s'))\n milliseconds = datetime_obj.microsecond // 1000\n return str(seconds * 1000 + milliseconds)\n else:\n formatter = SimpleDateFormat(format_string)\n return formatter.format_datetime(datetime_obj)\n", "role": "user" }, { "content": "format_date", "role": "assistant" } ]
def x(buffer): allZero = True for byte in buffer: if byte != '\x00': allZero = False break return allZero
allZero
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(buffer):\n allZero = True\n for byte in buffer:\n if byte != '\\x00':\n allZero = False\n break\n return allZero\n", "role": "user" }, { "content": "allZero", "role": "assistant" } ]
def x(self, byte): self.data.write(pack('B' if not self.signed else 'b', byte))
writeByte
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, byte):\n self.data.write(pack('B' if not self.signed else 'b', byte))\n", "role": "user" }, { "content": "writeByte", "role": "assistant" } ]
def x(self, word): self.data.write(pack(self.endianness + ('H' if not self.signed else 'h' ), word))
writeWord
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, word):\n self.data.write(pack(self.endianness + ('H' if not self.signed else 'h'\n ), word))\n", "role": "user" }, { "content": "writeWord", "role": "assistant" } ]
def x(self, dword): self.data.write(pack(self.endianness + ('L' if not self.signed else 'l' ), dword))
writeDword
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dword):\n self.data.write(pack(self.endianness + ('L' if not self.signed else 'l'\n ), dword))\n", "role": "user" }, { "content": "writeDword", "role": "assistant" } ]
def x(self, qword): self.data.write(pack(self.endianness + ('Q' if not self.signed else 'q' ), qword))
writeQword
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, qword):\n self.data.write(pack(self.endianness + ('Q' if not self.signed else 'q'\n ), qword))\n", "role": "user" }, { "content": "writeQword", "role": "assistant" } ]
def x(self, value): if value >= len(self.data.getvalue()): raise excep.WrongOffsetValueException( 'Wrong offset value. Must be less than %d' % len(self.data)) self.data.seek(value)
setOffset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if value >= len(self.data.getvalue()):\n raise excep.WrongOffsetValueException(\n 'Wrong offset value. Must be less than %d' % len(self.data))\n self.data.seek(value)\n", "role": "user" }, { "content": "setOffset", "role": "assistant" } ]
def x(self, nroBytes): self.data.seek(nroBytes + self.data.tell())
skipBytes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nroBytes):\n self.data.seek(nroBytes + self.data.tell())\n", "role": "user" }, { "content": "skipBytes", "role": "assistant" } ]
def x(self): dword = unpack(self.endianness + ('L' if not self.signed else 'l'), self.readAt(self.offset, 4))[0] self.offset += 4 return dword
readDword
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n dword = unpack(self.endianness + ('L' if not self.signed else 'l'),\n self.readAt(self.offset, 4))[0]\n self.offset += 4\n return dword\n", "role": "user" }, { "content": "readDword", "role": "assistant" } ]
def x(self): word = unpack(self.endianness + ('H' if not self.signed else 'h'), self .readAt(self.offset, 2))[0] self.offset += 2 return word
readWord
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n word = unpack(self.endianness + ('H' if not self.signed else 'h'), self\n .readAt(self.offset, 2))[0]\n self.offset += 2\n return word\n", "role": "user" }, { "content": "readWord", "role": "assistant" } ]
def x(self): byte = unpack('B' if not self.signed else 'b', self.readAt(self.offset, 1) )[0] self.offset += 1 return byte
readByte
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n byte = unpack('B' if not self.signed else 'b', self.readAt(self.offset, 1)\n )[0]\n self.offset += 1\n return byte\n", "role": "user" }, { "content": "readByte", "role": "assistant" } ]
def x(self): qword = unpack(self.endianness + ('Q' if not self.signed else 'b'), self.readAt(self.offset, 8))[0] self.offset += 8 return qword
readQword
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n qword = unpack(self.endianness + ('Q' if not self.signed else 'b'),\n self.readAt(self.offset, 8))[0]\n self.offset += 8\n return qword\n", "role": "user" }, { "content": "readQword", "role": "assistant" } ]
def x(self): resultStr = '' while self.data[self.offset] != '\x00': resultStr += self.data[self.offset] self.offset += 1 return resultStr
readString
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n resultStr = ''\n while self.data[self.offset] != '\\x00':\n resultStr += self.data[self.offset]\n self.offset += 1\n return resultStr\n", "role": "user" }, { "content": "readString", "role": "assistant" } ]
def x(self, align=4): s = self.readString() r = align - len(s) % align while r: s += self.data[self.offset] self.offset += 1 r -= 1 return s.rstrip('\x00')
readAlignedString
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, align=4):\n s = self.readString()\n r = align - len(s) % align\n while r:\n s += self.data[self.offset]\n self.offset += 1\n r -= 1\n return s.rstrip('\\x00')\n", "role": "user" }, { "content": "readAlignedString", "role": "assistant" } ]
def x(self, message, channel_name=None, fail_silently=False, options=None): if channel_name is None: channels = self.settings['CHANNELS'] else: try: channels = {'__selected__': self.settings['CHANNELS'][channel_name] } except KeyError: raise Exception('channels does not exist %s', channel_name) for _, config in channels.items(): if '_backend' not in config: raise ImproperlyConfigured( 'Specify the backend class in the channel configuration') backend = self._load_backend(config['_backend']) config = deepcopy(config) del config['_backend'] channel = backend(**config) channel.send(message, fail_silently=fail_silently, options=options)
send
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, message, channel_name=None, fail_silently=False, options=None):\n if channel_name is None:\n channels = self.settings['CHANNELS']\n else:\n try:\n channels = {'__selected__': self.settings['CHANNELS'][channel_name]\n }\n except KeyError:\n raise Exception('channels does not exist %s', channel_name)\n for _, config in channels.items():\n if '_backend' not in config:\n raise ImproperlyConfigured(\n 'Specify the backend class in the channel configuration')\n backend = self._load_backend(config['_backend'])\n config = deepcopy(config)\n del config['_backend']\n channel = backend(**config)\n channel.send(message, fail_silently=fail_silently, options=options)\n", "role": "user" }, { "content": "send", "role": "assistant" } ]
def x(self, method, path, params=None, headers=None, cookies=None, data= None, json=None, allow_redirects=None, timeout=None): headers = headers or {} timeout = timeout if timeout is not None else self._timeout allow_redirects = (allow_redirects if allow_redirects is not None else self._allow_redirects) if self._keep_alive and self.__session is None: self.__session = requests.Session() if self.__session is not None and not self._use_cookies: self.__session.cookies.clear() address = self._bake_address(path) req_headers = copy.deepcopy(self._additional_headers) req_headers.update(headers) response = http.request(method, address, session=self.__session, params =params, headers=headers, cookies=cookies, data=data, json=json, allow_redirects=allow_redirects, timeout=timeout) if self._auto_assert_ok: response.assert_ok() return response
request
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, method, path, params=None, headers=None, cookies=None, data=\n None, json=None, allow_redirects=None, timeout=None):\n headers = headers or {}\n timeout = timeout if timeout is not None else self._timeout\n allow_redirects = (allow_redirects if allow_redirects is not None else\n self._allow_redirects)\n if self._keep_alive and self.__session is None:\n self.__session = requests.Session()\n if self.__session is not None and not self._use_cookies:\n self.__session.cookies.clear()\n address = self._bake_address(path)\n req_headers = copy.deepcopy(self._additional_headers)\n req_headers.update(headers)\n response = http.request(method, address, session=self.__session, params\n =params, headers=headers, cookies=cookies, data=data, json=json,\n allow_redirects=allow_redirects, timeout=timeout)\n if self._auto_assert_ok:\n response.assert_ok()\n return response\n", "role": "user" }, { "content": "request", "role": "assistant" } ]
def x(anchor_pos_file_name): anchor_pos_and_functionality = {} anchor_pos_file = open(anchor_pos_file_name, 'r') first_line = True for line in anchor_pos_file: if first_line: first_line = False continue split_line = line.split(',') split_line = [x.strip() for x in split_line] anchor_pos_and_functionality[split_line[0]] = [int(split_line[1]), split_line[2].strip().strip('()')] return anchor_pos_and_functionality
load_genomic_CDR3_anchor_pos_and_functionality
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(anchor_pos_file_name):\n anchor_pos_and_functionality = {}\n anchor_pos_file = open(anchor_pos_file_name, 'r')\n first_line = True\n for line in anchor_pos_file:\n if first_line:\n first_line = False\n continue\n split_line = line.split(',')\n split_line = [x.strip() for x in split_line]\n anchor_pos_and_functionality[split_line[0]] = [int(split_line[1]),\n split_line[2].strip().strip('()')]\n return anchor_pos_and_functionality\n", "role": "user" }, { "content": "load_genomic_CDR3_anchor_pos_and_functionality", "role": "assistant" } ]
def x(params_file_name): params_file = open(params_file_name, 'r') V_gene_info = {} in_V_gene_sec = False for line in params_file: if line.startswith('#GeneChoice;V_gene;'): in_V_gene_sec = True elif in_V_gene_sec: if line[0] == '%': split_line = line[1:].split(';') V_gene_info[split_line[0]] = [split_line[1], int(split_line[2]) ] else: break params_file.close() genV = [[]] * len(V_gene_info.keys()) for V_gene in V_gene_info.keys(): genV[V_gene_info[V_gene][1]] = [V_gene, '', V_gene_info[V_gene][0]] return genV
read_igor_V_gene_parameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(params_file_name):\n params_file = open(params_file_name, 'r')\n V_gene_info = {}\n in_V_gene_sec = False\n for line in params_file:\n if line.startswith('#GeneChoice;V_gene;'):\n in_V_gene_sec = True\n elif in_V_gene_sec:\n if line[0] == '%':\n split_line = line[1:].split(';')\n V_gene_info[split_line[0]] = [split_line[1], int(split_line[2])\n ]\n else:\n break\n params_file.close()\n genV = [[]] * len(V_gene_info.keys())\n for V_gene in V_gene_info.keys():\n genV[V_gene_info[V_gene][1]] = [V_gene, '', V_gene_info[V_gene][0]]\n return genV\n", "role": "user" }, { "content": "read_igor_V_gene_parameters", "role": "assistant" } ]
def x(params_file_name): params_file = open(params_file_name, 'r') D_gene_info = {} in_D_gene_sec = False for line in params_file: if line.startswith('#GeneChoice;D_gene;'): in_D_gene_sec = True elif in_D_gene_sec: if line[0] == '%': split_line = line[1:].split(';') D_gene_info[split_line[0]] = [split_line[1], int(split_line[2]) ] else: break params_file.close() genD = [[]] * len(D_gene_info.keys()) for D_gene in D_gene_info.keys(): genD[D_gene_info[D_gene][1]] = [D_gene, D_gene_info[D_gene][0]] return genD
read_igor_D_gene_parameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(params_file_name):\n params_file = open(params_file_name, 'r')\n D_gene_info = {}\n in_D_gene_sec = False\n for line in params_file:\n if line.startswith('#GeneChoice;D_gene;'):\n in_D_gene_sec = True\n elif in_D_gene_sec:\n if line[0] == '%':\n split_line = line[1:].split(';')\n D_gene_info[split_line[0]] = [split_line[1], int(split_line[2])\n ]\n else:\n break\n params_file.close()\n genD = [[]] * len(D_gene_info.keys())\n for D_gene in D_gene_info.keys():\n genD[D_gene_info[D_gene][1]] = [D_gene, D_gene_info[D_gene][0]]\n return genD\n", "role": "user" }, { "content": "read_igor_D_gene_parameters", "role": "assistant" } ]
def x(params_file_name): params_file = open(params_file_name, 'r') J_gene_info = {} in_J_gene_sec = False for line in params_file: if line.startswith('#GeneChoice;J_gene;'): in_J_gene_sec = True elif in_J_gene_sec: if line[0] == '%': split_line = line[1:].split(';') J_gene_info[split_line[0]] = [split_line[1], int(split_line[2]) ] else: break params_file.close() genJ = [[]] * len(J_gene_info.keys()) for J_gene in J_gene_info.keys(): genJ[J_gene_info[J_gene][1]] = [J_gene, '', J_gene_info[J_gene][0]] return genJ
read_igor_J_gene_parameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(params_file_name):\n params_file = open(params_file_name, 'r')\n J_gene_info = {}\n in_J_gene_sec = False\n for line in params_file:\n if line.startswith('#GeneChoice;J_gene;'):\n in_J_gene_sec = True\n elif in_J_gene_sec:\n if line[0] == '%':\n split_line = line[1:].split(';')\n J_gene_info[split_line[0]] = [split_line[1], int(split_line[2])\n ]\n else:\n break\n params_file.close()\n genJ = [[]] * len(J_gene_info.keys())\n for J_gene in J_gene_info.keys():\n genJ[J_gene_info[J_gene][1]] = [J_gene, '', J_gene_info[J_gene][0]]\n return genJ\n", "role": "user" }, { "content": "read_igor_J_gene_parameters", "role": "assistant" } ]
def x(self, V_anchor_pos_file, J_anchor_pos_file): V_anchor_pos = load_genomic_CDR3_anchor_pos_and_functionality( V_anchor_pos_file) J_anchor_pos = load_genomic_CDR3_anchor_pos_and_functionality( J_anchor_pos_file) for V in self.genV: try: if V_anchor_pos[V[0]][0] > 0 and V_anchor_pos[V[0]][1] == 'F': V[1] = V[2][V_anchor_pos[V[0]][0]:] else: V[1] = '' except KeyError: V[1] = '' for J in self.genJ: try: if J_anchor_pos[J[0]][0] > 0 and J_anchor_pos[J[0]][1] == 'F': J[1] = J[2][:J_anchor_pos[J[0]][0] + 3] else: J[1] = '' except KeyError: J[1] = ''
anchor_and_curate_genV_and_genJ
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, V_anchor_pos_file, J_anchor_pos_file):\n V_anchor_pos = load_genomic_CDR3_anchor_pos_and_functionality(\n V_anchor_pos_file)\n J_anchor_pos = load_genomic_CDR3_anchor_pos_and_functionality(\n J_anchor_pos_file)\n for V in self.genV:\n try:\n if V_anchor_pos[V[0]][0] > 0 and V_anchor_pos[V[0]][1] == 'F':\n V[1] = V[2][V_anchor_pos[V[0]][0]:]\n else:\n V[1] = ''\n except KeyError:\n V[1] = ''\n for J in self.genJ:\n try:\n if J_anchor_pos[J[0]][0] > 0 and J_anchor_pos[J[0]][1] == 'F':\n J[1] = J[2][:J_anchor_pos[J[0]][0] + 3]\n else:\n J[1] = ''\n except KeyError:\n J[1] = ''\n", "role": "user" }, { "content": "anchor_and_curate_genV_and_genJ", "role": "assistant" } ]
def x(self): max_palindrome = self.max_delV_palindrome self.cutV_genomic_CDR3_segs = [] for CDR3_V_seg in [x[1] for x in self.genV]: if len(CDR3_V_seg) < max_palindrome: self.cutV_genomic_CDR3_segs += [cutR_seq(CDR3_V_seg, 0, len( CDR3_V_seg))] else: self.cutV_genomic_CDR3_segs += [cutR_seq(CDR3_V_seg, 0, max_palindrome)]
generate_cutV_genomic_CDR3_segs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n max_palindrome = self.max_delV_palindrome\n self.cutV_genomic_CDR3_segs = []\n for CDR3_V_seg in [x[1] for x in self.genV]:\n if len(CDR3_V_seg) < max_palindrome:\n self.cutV_genomic_CDR3_segs += [cutR_seq(CDR3_V_seg, 0, len(\n CDR3_V_seg))]\n else:\n self.cutV_genomic_CDR3_segs += [cutR_seq(CDR3_V_seg, 0,\n max_palindrome)]\n", "role": "user" }, { "content": "generate_cutV_genomic_CDR3_segs", "role": "assistant" } ]
def x(self): max_palindrome = self.max_delJ_palindrome self.cutJ_genomic_CDR3_segs = [] for CDR3_J_seg in [x[1] for x in self.genJ]: if len(CDR3_J_seg) < max_palindrome: self.cutJ_genomic_CDR3_segs += [cutL_seq(CDR3_J_seg, 0, len( CDR3_J_seg))] else: self.cutJ_genomic_CDR3_segs += [cutL_seq(CDR3_J_seg, 0, max_palindrome)]
generate_cutJ_genomic_CDR3_segs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n max_palindrome = self.max_delJ_palindrome\n self.cutJ_genomic_CDR3_segs = []\n for CDR3_J_seg in [x[1] for x in self.genJ]:\n if len(CDR3_J_seg) < max_palindrome:\n self.cutJ_genomic_CDR3_segs += [cutL_seq(CDR3_J_seg, 0, len(\n CDR3_J_seg))]\n else:\n self.cutJ_genomic_CDR3_segs += [cutL_seq(CDR3_J_seg, 0,\n max_palindrome)]\n", "role": "user" }, { "content": "generate_cutJ_genomic_CDR3_segs", "role": "assistant" } ]
def x(self, params_file_name, V_anchor_pos_file, J_anchor_pos_file): self.genV = read_igor_V_gene_parameters(params_file_name) self.genD = read_igor_D_gene_parameters(params_file_name) self.genJ = read_igor_J_gene_parameters(params_file_name) self.anchor_and_curate_genV_and_genJ(V_anchor_pos_file, J_anchor_pos_file) self.read_VDJ_palindrome_parameters(params_file_name) self.generate_cutV_genomic_CDR3_segs() self.generate_cutD_genomic_CDR3_segs() self.generate_cutJ_genomic_CDR3_segs()
load_igor_genomic_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, params_file_name, V_anchor_pos_file, J_anchor_pos_file):\n self.genV = read_igor_V_gene_parameters(params_file_name)\n self.genD = read_igor_D_gene_parameters(params_file_name)\n self.genJ = read_igor_J_gene_parameters(params_file_name)\n self.anchor_and_curate_genV_and_genJ(V_anchor_pos_file, J_anchor_pos_file)\n self.read_VDJ_palindrome_parameters(params_file_name)\n self.generate_cutV_genomic_CDR3_segs()\n self.generate_cutD_genomic_CDR3_segs()\n self.generate_cutJ_genomic_CDR3_segs()\n", "role": "user" }, { "content": "load_igor_genomic_data", "role": "assistant" } ]