source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, parentItem=None):
if parentItem is None:
parentItem = self.rootItem
checkStates = odict()
children = parentItem.getChildren()
for child in children:
checkStates[child.itemData[0]] = child.getCheckState()
return checkStates
|
getNodesCheckState
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parentItem=None):\n if parentItem is None:\n parentItem = self.rootItem\n checkStates = odict()\n children = parentItem.getChildren()\n for child in children:\n checkStates[child.itemData[0]] = child.getCheckState()\n return checkStates\n",
"role": "user"
},
{
"content": "getNodesCheckState",
"role": "assistant"
}
] |
def x(major=0, minor=0, micro=0, releaselevel='dev', serial=0):
try:
releaselevel = int(releaselevel)
except ValueError:
releaselevel = RELEASE_LEVEL_VALUE.get(releaselevel, 0)
hex_version = int(serial)
hex_version |= releaselevel * 1 << 4
hex_version |= int(micro) * 1 << 8
hex_version |= int(minor) * 1 << 16
hex_version |= int(major) * 1 << 24
return hex_version
|
calc_hexversion
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(major=0, minor=0, micro=0, releaselevel='dev', serial=0):\n try:\n releaselevel = int(releaselevel)\n except ValueError:\n releaselevel = RELEASE_LEVEL_VALUE.get(releaselevel, 0)\n hex_version = int(serial)\n hex_version |= releaselevel * 1 << 4\n hex_version |= int(micro) * 1 << 8\n hex_version |= int(minor) * 1 << 16\n hex_version |= int(major) * 1 << 24\n return hex_version\n",
"role": "user"
},
{
"content": "calc_hexversion",
"role": "assistant"
}
] |
def x(self, pos):
menu = QMenu(self)
menu.addAction(self._zoomBackAction)
plotArea = self.getWidgetHandle()
globalPosition = plotArea.mapToGlobal(pos)
menu.exec_(globalPosition)
|
contextMenu
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pos):\n menu = QMenu(self)\n menu.addAction(self._zoomBackAction)\n plotArea = self.getWidgetHandle()\n globalPosition = plotArea.mapToGlobal(pos)\n menu.exec_(globalPosition)\n",
"role": "user"
},
{
"content": "contextMenu",
"role": "assistant"
}
] |
def x(array, kernel):
array = np.asarray(array, dtype=np.complex)
kernel = np.asarray(kernel, dtype=np.complex)
if array.ndim != kernel.ndim:
raise ValueError('Image and kernel must have same number of dimensions'
)
array_shape = array.shape
kernel_shape = kernel.shape
new_shape = np.array(array_shape) + np.array(kernel_shape)
array_slices = []
kernel_slices = []
for new_dimsize, array_dimsize, kernel_dimsize in zip(new_shape,
array_shape, kernel_shape):
center = new_dimsize - (new_dimsize + 1) // 2
array_slices += [slice(center - array_dimsize // 2, center + (
array_dimsize + 1) // 2)]
kernel_slices += [slice(center - kernel_dimsize // 2, center + (
kernel_dimsize + 1) // 2)]
array_slices = tuple(array_slices)
kernel_slices = tuple(kernel_slices)
if not np.all(new_shape == array_shape):
big_array = np.zeros(new_shape, dtype=np.complex)
big_array[array_slices] = array
else:
big_array = array
if not np.all(new_shape == kernel_shape):
big_kernel = np.zeros(new_shape, dtype=np.complex)
big_kernel[kernel_slices] = kernel
else:
big_kernel = kernel
array_fft = np.fft.fftn(big_array)
kernel_fft = np.fft.fftn(np.fft.ifftshift(big_kernel))
rifft = np.fft.ifftn(array_fft * kernel_fft)
return rifft[array_slices].real
|
convolve_fft
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(array, kernel):\n array = np.asarray(array, dtype=np.complex)\n kernel = np.asarray(kernel, dtype=np.complex)\n if array.ndim != kernel.ndim:\n raise ValueError('Image and kernel must have same number of dimensions'\n )\n array_shape = array.shape\n kernel_shape = kernel.shape\n new_shape = np.array(array_shape) + np.array(kernel_shape)\n array_slices = []\n kernel_slices = []\n for new_dimsize, array_dimsize, kernel_dimsize in zip(new_shape,\n array_shape, kernel_shape):\n center = new_dimsize - (new_dimsize + 1) // 2\n array_slices += [slice(center - array_dimsize // 2, center + (\n array_dimsize + 1) // 2)]\n kernel_slices += [slice(center - kernel_dimsize // 2, center + (\n kernel_dimsize + 1) // 2)]\n array_slices = tuple(array_slices)\n kernel_slices = tuple(kernel_slices)\n if not np.all(new_shape == array_shape):\n big_array = np.zeros(new_shape, dtype=np.complex)\n big_array[array_slices] = array\n else:\n big_array = array\n if not np.all(new_shape == kernel_shape):\n big_kernel = np.zeros(new_shape, dtype=np.complex)\n big_kernel[kernel_slices] = kernel\n else:\n big_kernel = kernel\n array_fft = np.fft.fftn(big_array)\n kernel_fft = np.fft.fftn(np.fft.ifftshift(big_kernel))\n rifft = np.fft.ifftn(array_fft * kernel_fft)\n return rifft[array_slices].real\n",
"role": "user"
},
{
"content": "convolve_fft",
"role": "assistant"
}
] |
def x(self):
self.eigvals, self.eigvecs = np.linalg.eig((self.tensor.transpose() +
self.tensor) / 2.0)
self.eigvals = np.diag(np.dot(np.dot(self.eigvecs.transpose(), self.
tensor), self.eigvecs))
|
diagonalize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.eigvals, self.eigvecs = np.linalg.eig((self.tensor.transpose() +\n self.tensor) / 2.0)\n self.eigvals = np.diag(np.dot(np.dot(self.eigvecs.transpose(), self.\n tensor), self.eigvecs))\n",
"role": "user"
},
{
"content": "diagonalize",
"role": "assistant"
}
] |
def x(self):
signs = np.array([[1, 1, 1], [-1, 1, 1], [1, -1, 1], [1, 1, -1], [-1, -
1, 1], [-1, 1, -1], [1, -1, -1], [-1, -1, -1]])
eulangs = []
eigframes = []
for i, sign in enumerate(signs):
eigframe = np.dot(self.eigvecs, np.diag(sign))
if np.linalg.det(eigframe) > 0.0001:
eigframes.append(np.array(eigframe))
eulangs.append(np.array(transformations.euler_from_matrix(
eigframe, axes='szyz')))
self.eigframes = np.array(eigframes)
self.eulangs = -np.array(eulangs)
|
euler_angles_and_eigenframes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n signs = np.array([[1, 1, 1], [-1, 1, 1], [1, -1, 1], [1, 1, -1], [-1, -\n 1, 1], [-1, 1, -1], [1, -1, -1], [-1, -1, -1]])\n eulangs = []\n eigframes = []\n for i, sign in enumerate(signs):\n eigframe = np.dot(self.eigvecs, np.diag(sign))\n if np.linalg.det(eigframe) > 0.0001:\n eigframes.append(np.array(eigframe))\n eulangs.append(np.array(transformations.euler_from_matrix(\n eigframe, axes='szyz')))\n self.eigframes = np.array(eigframes)\n self.eulangs = -np.array(eulangs)\n",
"role": "user"
},
{
"content": "euler_angles_and_eigenframes",
"role": "assistant"
}
] |
def x(self, n):
for i in range(n):
self.line = next(self.output)
return self.line
|
skip_lines
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n):\n for i in range(n):\n self.line = next(self.output)\n return self.line\n",
"role": "user"
},
{
"content": "skip_lines",
"role": "assistant"
}
] |
def x(self, indices=False):
if indices:
self.line = self._skip_lines(1)
tensor = np.zeros((3, 3))
for i in range(3):
tokens = self.line.split()
if indices:
tensor[i][0] = float(tokens[1])
tensor[i][1] = float(tokens[2])
tensor[i][2] = float(tokens[3])
else:
tensor[i][0] = float(tokens[0])
tensor[i][1] = float(tokens[1])
tensor[i][2] = float(tokens[2])
self.line = self._skip_lines(1)
return tensor
|
parse_tensor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, indices=False):\n if indices:\n self.line = self._skip_lines(1)\n tensor = np.zeros((3, 3))\n for i in range(3):\n tokens = self.line.split()\n if indices:\n tensor[i][0] = float(tokens[1])\n tensor[i][1] = float(tokens[2])\n tensor[i][2] = float(tokens[3])\n else:\n tensor[i][0] = float(tokens[0])\n tensor[i][1] = float(tokens[1])\n tensor[i][2] = float(tokens[2])\n self.line = self._skip_lines(1)\n return tensor\n",
"role": "user"
},
{
"content": "parse_tensor",
"role": "assistant"
}
] |
def x(self):
for self.line in self.output:
self.index = 0
if self.line[1:13] == 'Total Charge':
tokens = self.line.split()
self.charge = int(tokens[-1])
if (self.line[1:13] or self.line[0:12]) == 'Multiplicity':
tokens = self.line.split()
self.multiplicity = int(tokens[-1])
if self.line[0:33] == 'CARTESIAN COORDINATES (ANGSTROEM)':
if not hasattr(self, 'names'):
self.names = dict()
if not hasattr(self, 'coords'):
self.coords = dict()
self.line = self._skip_lines(2)
names = list()
coords = list()
while self.line.strip():
tokens = self.line.split()
names.append(tokens[0])
x = float(tokens[1])
y = float(tokens[2])
z = float(tokens[3])
coords.append((x, y, z))
self.line = next(self.output)
self.names = np.array(names)
self.coords[self.index] = np.array(coords)
if self.line[22:50] == 'MULLIKEN POPULATION ANALYSIS':
if not hasattr(self, 'populations'):
self.populations = dict()
self.line = self._skip_lines(6)
populations = list()
while self.line.strip() and 'Sum' not in self.line:
tokens = self.line.split()
populations.append((float(tokens[-2]), float(tokens[-1])))
self.line = next(self.output)
self.populations['mulliken'][self.index] = np.array(populations)
if self.line[37:44] == 'EPR/NMR':
self.eprnmr = dict()
if self.line[0:19] == 'ELECTRONIC G-MATRIX':
self.line = self._skip_lines(4)
self.eprnmr['g']['tensor'] = self._parse_tensor()
if self.line[0:27] == 'ZERO-FIELD-SPLITTING TENSOR':
self.line = self._skip_lines(4)
self.eprnmr['zfs']['tensor'] = self._parse_tensor()
if self.line[1:8] == 'Nucleus':
tokens = self.line.split()
nucleus = int(re.findall('\\d+', tokens[1])[0])
while 'Raw HFC' not in self.line:
self.line = self._skip_lines(1)
self.line = self._skip_lines(2)
self.eprnmr['hfc'][nucleus]['tensor'] = self._parse_tensor()
self.line = self._skip_lines(1)
self.eprnmr['hfc'][nucleus]['fc'] = self._parse_components()
self.eprnmr['hfc'][nucleus]['sd'] = self._parse_components()
self.line = self._skip_lines(1)
self.eprnmr['hfc'][nucleus]['orb'] = self._parse_components()
self.eprnmr['hfc'][nucleus]['dia'] = self._parse_components()
if self.line[36:43] == 'M R C I':
self.mrci = dict()
if self.line[1:19] == 'SPIN-SPIN COUPLING':
self.line = self._skip_lines(4)
self.mrci['zfs']['ssc']['tensor'] = self._parse_tensor()
if self.line[1:30] == '2ND ORDER SPIN-ORBIT COUPLING':
while 'Second' not in self.line:
self.line = self._skip_lines(1)
self.line = self._skip_lines(1)
self.mrci['zfs']['soc']['second_order']['0']['tensor'
] = self._parse_tensor()
self.line = self._skip_lines(2)
self.mrci['zfs']['soc']['second_order']['m']['tensor'
] = self._parse_tensor()
self.line = self._skip_lines(2)
self.mrci['zfs']['soc']['second_order']['p']['tensor'
] = self._parse_tensor()
if self.line[1:42] == 'EFFECTIVE HAMILTONIAN SPIN-ORBIT COUPLING':
self.line = self._skip_lines(4)
self.mrci['zfs']['soc']['heff']['tensor'] = self._parse_tensor()
|
parse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for self.line in self.output:\n self.index = 0\n if self.line[1:13] == 'Total Charge':\n tokens = self.line.split()\n self.charge = int(tokens[-1])\n if (self.line[1:13] or self.line[0:12]) == 'Multiplicity':\n tokens = self.line.split()\n self.multiplicity = int(tokens[-1])\n if self.line[0:33] == 'CARTESIAN COORDINATES (ANGSTROEM)':\n if not hasattr(self, 'names'):\n self.names = dict()\n if not hasattr(self, 'coords'):\n self.coords = dict()\n self.line = self._skip_lines(2)\n names = list()\n coords = list()\n while self.line.strip():\n tokens = self.line.split()\n names.append(tokens[0])\n x = float(tokens[1])\n y = float(tokens[2])\n z = float(tokens[3])\n coords.append((x, y, z))\n self.line = next(self.output)\n self.names = np.array(names)\n self.coords[self.index] = np.array(coords)\n if self.line[22:50] == 'MULLIKEN POPULATION ANALYSIS':\n if not hasattr(self, 'populations'):\n self.populations = dict()\n self.line = self._skip_lines(6)\n populations = list()\n while self.line.strip() and 'Sum' not in self.line:\n tokens = self.line.split()\n populations.append((float(tokens[-2]), float(tokens[-1])))\n self.line = next(self.output)\n self.populations['mulliken'][self.index] = np.array(populations)\n if self.line[37:44] == 'EPR/NMR':\n self.eprnmr = dict()\n if self.line[0:19] == 'ELECTRONIC G-MATRIX':\n self.line = self._skip_lines(4)\n self.eprnmr['g']['tensor'] = self._parse_tensor()\n if self.line[0:27] == 'ZERO-FIELD-SPLITTING TENSOR':\n self.line = self._skip_lines(4)\n self.eprnmr['zfs']['tensor'] = self._parse_tensor()\n if self.line[1:8] == 'Nucleus':\n tokens = self.line.split()\n nucleus = int(re.findall('\\\\d+', tokens[1])[0])\n while 'Raw HFC' not in self.line:\n self.line = self._skip_lines(1)\n self.line = self._skip_lines(2)\n self.eprnmr['hfc'][nucleus]['tensor'] = self._parse_tensor()\n self.line = self._skip_lines(1)\n self.eprnmr['hfc'][nucleus]['fc'] = self._parse_components()\n self.eprnmr['hfc'][nucleus]['sd'] = self._parse_components()\n self.line = self._skip_lines(1)\n self.eprnmr['hfc'][nucleus]['orb'] = self._parse_components()\n self.eprnmr['hfc'][nucleus]['dia'] = self._parse_components()\n if self.line[36:43] == 'M R C I':\n self.mrci = dict()\n if self.line[1:19] == 'SPIN-SPIN COUPLING':\n self.line = self._skip_lines(4)\n self.mrci['zfs']['ssc']['tensor'] = self._parse_tensor()\n if self.line[1:30] == '2ND ORDER SPIN-ORBIT COUPLING':\n while 'Second' not in self.line:\n self.line = self._skip_lines(1)\n self.line = self._skip_lines(1)\n self.mrci['zfs']['soc']['second_order']['0']['tensor'\n ] = self._parse_tensor()\n self.line = self._skip_lines(2)\n self.mrci['zfs']['soc']['second_order']['m']['tensor'\n ] = self._parse_tensor()\n self.line = self._skip_lines(2)\n self.mrci['zfs']['soc']['second_order']['p']['tensor'\n ] = self._parse_tensor()\n if self.line[1:42] == 'EFFECTIVE HAMILTONIAN SPIN-ORBIT COUPLING':\n self.line = self._skip_lines(4)\n self.mrci['zfs']['soc']['heff']['tensor'] = self._parse_tensor()\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
] |
def x(self, target, value, oldvalue, initiator):
if value == oldvalue:
return value
if self.allow_null and value is None:
return value
if self.check_value(value):
return value
else:
if self.throw_exception:
if self.message:
self.message = self.message.format(field=self.field,
new_value=value, old_value=oldvalue, key=initiator.key)
raise ValidateError(self.message)
else:
raise ValidateError('Value %s from column %s is not valid' %
(value, initiator.key))
return oldvalue
|
validate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, target, value, oldvalue, initiator):\n if value == oldvalue:\n return value\n if self.allow_null and value is None:\n return value\n if self.check_value(value):\n return value\n else:\n if self.throw_exception:\n if self.message:\n self.message = self.message.format(field=self.field,\n new_value=value, old_value=oldvalue, key=initiator.key)\n raise ValidateError(self.message)\n else:\n raise ValidateError('Value %s from column %s is not valid' %\n (value, initiator.key))\n return oldvalue\n",
"role": "user"
},
{
"content": "validate",
"role": "assistant"
}
] |
def x(self):
if not event.contains(self.field, 'set', self.__validate):
event.listen(self.field, 'set', self.__validate, retval=True)
|
create_event
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not event.contains(self.field, 'set', self.__validate):\n event.listen(self.field, 'set', self.__validate, retval=True)\n",
"role": "user"
},
{
"content": "create_event",
"role": "assistant"
}
] |
def x(self):
if event.contains(self.field, 'set', self.__validate):
event.remove(self.field, 'set', self.__validate)
|
stop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if event.contains(self.field, 'set', self.__validate):\n event.remove(self.field, 'set', self.__validate)\n",
"role": "user"
},
{
"content": "stop",
"role": "assistant"
}
] |
def x(self):
if not event.contains(self.field, 'set', self.__validate):
self.__create_event()
|
start
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not event.contains(self.field, 'set', self.__validate):\n self.__create_event()\n",
"role": "user"
},
{
"content": "start",
"role": "assistant"
}
] |
def x(self, cucSo, gioiTinh):
for cung in self.thapNhiCung:
khoangCach = khoangCachCung(cung.cungSo, self.cungMenh, gioiTinh)
cung.daiHan(cucSo + khoangCach * 10)
return self
|
nhapDaiHan
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cucSo, gioiTinh):\n for cung in self.thapNhiCung:\n khoangCach = khoangCachCung(cung.cungSo, self.cungMenh, gioiTinh)\n cung.daiHan(cucSo + khoangCach * 10)\n return self\n",
"role": "user"
},
{
"content": "nhapDaiHan",
"role": "assistant"
}
] |
def x(data, edges=None, weights=None, minlam=0.2, maxlam=1000.0, numlam=30,
alpha=0.2, inflate=2.0, converge=1e-06, maxsteps=1000000, lam=None,
verbose=0, missing_val=None, full_path=False, loss='normal'):
if edges.shape[0] < 1:
return data
init_edges = edges
if verbose:
print('Decomposing graph into trails')
if loss == 'binomial':
flat_data = data[0].flatten()
nonmissing_flat_data = flat_data, data[1].flatten()
else:
flat_data = data.flatten()
nonmissing_flat_data = flat_data
if edges is None:
if loss == 'binomial':
if verbose:
print(
'Using default edge set of a grid of same shape as the data: {0}'
.format(data[0].shape))
edges = hypercube_edges(data[0].shape)
else:
if verbose:
print(
'Using default edge set of a grid of same shape as the data: {0}'
.format(data.shape))
edges = hypercube_edges(data.shape)
if missing_val is not None:
if verbose:
print('Removing all data points whose data value is {0}'.
format(missing_val))
edges = [(e1, e2) for e1, e2 in edges if flat_data[e1] !=
missing_val and flat_data[e2] != missing_val]
if loss == 'binomial':
nonmissing_flat_data = flat_data[flat_data != missing_val
], nonmissing_flat_data[1][flat_data != missing_val]
else:
nonmissing_flat_data = flat_data[flat_data != missing_val]
g = Graph()
g.add_edges_from(edges)
chains = decompose_graph(g, heuristic='greedy')
ntrails, trails, breakpoints, edges = chains_to_trails(chains)
if verbose:
print('Setting up trail solver')
if loss == 'normal':
solver = TrailSolver(alpha, inflate, maxsteps, converge)
elif loss == 'logistic':
solver = LogisticTrailSolver(alpha, inflate, maxsteps, converge)
elif loss == 'binomial':
solver = BinomialTrailSolver(alpha, inflate, maxsteps, converge)
else:
raise NotImplementedError('Loss must be normal, logistic, or binomial')
solver.set_data(nonmissing_flat_data, edges, ntrails, trails,
breakpoints, weights=weights)
if verbose:
print('Solving')
if lam:
beta = solver.solve(lam)
else:
beta = solver.solution_path(minlam, maxlam, numlam, verbose=max(0,
verbose - 1))
if not full_path:
beta = beta['best']
mask = np.ones_like(beta)
mask[init_edges[:, 0]] = 0
mask[init_edges[:, 1]] = 0
beta[mask > 0] = data[mask > 0]
return beta
|
solve_gfl
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, edges=None, weights=None, minlam=0.2, maxlam=1000.0, numlam=30,\n alpha=0.2, inflate=2.0, converge=1e-06, maxsteps=1000000, lam=None,\n verbose=0, missing_val=None, full_path=False, loss='normal'):\n if edges.shape[0] < 1:\n return data\n init_edges = edges\n if verbose:\n print('Decomposing graph into trails')\n if loss == 'binomial':\n flat_data = data[0].flatten()\n nonmissing_flat_data = flat_data, data[1].flatten()\n else:\n flat_data = data.flatten()\n nonmissing_flat_data = flat_data\n if edges is None:\n if loss == 'binomial':\n if verbose:\n print(\n 'Using default edge set of a grid of same shape as the data: {0}'\n .format(data[0].shape))\n edges = hypercube_edges(data[0].shape)\n else:\n if verbose:\n print(\n 'Using default edge set of a grid of same shape as the data: {0}'\n .format(data.shape))\n edges = hypercube_edges(data.shape)\n if missing_val is not None:\n if verbose:\n print('Removing all data points whose data value is {0}'.\n format(missing_val))\n edges = [(e1, e2) for e1, e2 in edges if flat_data[e1] !=\n missing_val and flat_data[e2] != missing_val]\n if loss == 'binomial':\n nonmissing_flat_data = flat_data[flat_data != missing_val\n ], nonmissing_flat_data[1][flat_data != missing_val]\n else:\n nonmissing_flat_data = flat_data[flat_data != missing_val]\n g = Graph()\n g.add_edges_from(edges)\n chains = decompose_graph(g, heuristic='greedy')\n ntrails, trails, breakpoints, edges = chains_to_trails(chains)\n if verbose:\n print('Setting up trail solver')\n if loss == 'normal':\n solver = TrailSolver(alpha, inflate, maxsteps, converge)\n elif loss == 'logistic':\n solver = LogisticTrailSolver(alpha, inflate, maxsteps, converge)\n elif loss == 'binomial':\n solver = BinomialTrailSolver(alpha, inflate, maxsteps, converge)\n else:\n raise NotImplementedError('Loss must be normal, logistic, or binomial')\n solver.set_data(nonmissing_flat_data, edges, ntrails, trails,\n breakpoints, weights=weights)\n if verbose:\n print('Solving')\n if lam:\n beta = solver.solve(lam)\n else:\n beta = solver.solution_path(minlam, maxlam, numlam, verbose=max(0, \n verbose - 1))\n if not full_path:\n beta = beta['best']\n mask = np.ones_like(beta)\n mask[init_edges[:, 0]] = 0\n mask[init_edges[:, 1]] = 0\n beta[mask > 0] = data[mask > 0]\n return beta\n",
"role": "user"
},
{
"content": "solve_gfl",
"role": "assistant"
}
] |
def x(nn, tt, nnnn, duongLich=True, timeZone=7):
thangNhuan = 0
if nn > 0 and nn < 32 and tt < 13 and tt > 0:
if duongLich is True:
[nn, tt, nnnn, thangNhuan] = S2L(nn, tt, nnnn, timeZone=timeZone)
return [nn, tt, nnnn, thangNhuan]
else:
raise Exception('Ngày, tháng, năm không chính xác.')
|
ngayThangNam
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nn, tt, nnnn, duongLich=True, timeZone=7):\n thangNhuan = 0\n if nn > 0 and nn < 32 and tt < 13 and tt > 0:\n if duongLich is True:\n [nn, tt, nnnn, thangNhuan] = S2L(nn, tt, nnnn, timeZone=timeZone)\n return [nn, tt, nnnn, thangNhuan]\n else:\n raise Exception('Ngày, tháng, năm không chính xác.')\n",
"role": "user"
},
{
"content": "ngayThangNam",
"role": "assistant"
}
] |
def x(nn, tt, nnnn, duongLich=True, timeZone=7, thangNhuan=False):
if duongLich is False:
[nn, tt, nnnn] = L2S(nn, tt, nnnn, thangNhuan, timeZone)
jd = jdFromDate(nn, tt, nnnn)
canNgay = (jd + 9) % 10 + 1
chiNgay = (jd + 1) % 12 + 1
return [canNgay, chiNgay]
|
canChiNgay
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nn, tt, nnnn, duongLich=True, timeZone=7, thangNhuan=False):\n if duongLich is False:\n [nn, tt, nnnn] = L2S(nn, tt, nnnn, thangNhuan, timeZone)\n jd = jdFromDate(nn, tt, nnnn)\n canNgay = (jd + 9) % 10 + 1\n chiNgay = (jd + 1) % 12 + 1\n return [canNgay, chiNgay]\n",
"role": "user"
},
{
"content": "canChiNgay",
"role": "assistant"
}
] |
def x(nn, tt, nnnn, duongLich=True, timeZone=7):
if duongLich is True:
[nn, tt, nnnn, thangNhuan] = ngayThangNam(nn, tt, nnnn, timeZone=
timeZone)
canThang = (nnnn * 12 + tt + 3) % 10 + 1
canNamSinh = (nnnn + 6) % 10 + 1
chiNam = (nnnn + 8) % 12 + 1
return [canThang, canNamSinh, chiNam]
|
ngayThangNamCanChi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nn, tt, nnnn, duongLich=True, timeZone=7):\n if duongLich is True:\n [nn, tt, nnnn, thangNhuan] = ngayThangNam(nn, tt, nnnn, timeZone=\n timeZone)\n canThang = (nnnn * 12 + tt + 3) % 10 + 1\n canNamSinh = (nnnn + 6) % 10 + 1\n chiNam = (nnnn + 8) % 12 + 1\n return [canThang, canNamSinh, chiNam]\n",
"role": "user"
},
{
"content": "ngayThangNamCanChi",
"role": "assistant"
}
] |
def x(tenHanh):
if tenHanh in ['Kim', 'K']:
return {'id': 1, 'tenHanh': 'Kim', 'cuc': 4, 'tenCuc': 'Kim tứ Cục',
'css': 'hanhKim'}
elif tenHanh == 'Moc' or tenHanh == 'M':
return {'id': 2, 'tenHanh': 'Mộc', 'cuc': 3, 'tenCuc':
'Mộc tam Cục', 'css': 'hanhMoc'}
elif tenHanh == 'Thuy' or tenHanh == 'T':
return {'id': 3, 'tenHanh': 'Thủy', 'cuc': 2, 'tenCuc':
'Thủy nhị Cục', 'css': 'hanhThuy'}
elif tenHanh == 'Hoa' or tenHanh == 'H':
return {'id': 4, 'tenHanh': 'Hỏa', 'cuc': 6, 'tenCuc':
'Hỏa lục Cục', 'css': 'hanhHoa'}
elif tenHanh == 'Tho' or tenHanh == 'O':
return {'id': 5, 'tenHanh': 'Thổ', 'cuc': 5, 'tenCuc':
'Thổ ngũ Cục', 'css': 'hanhTho'}
else:
raise Exception(
'Tên Hành phải thuộc Kim (K), Mộc (M), Thủy (T), Hỏa (H) hoặc Thổ (O)'
)
|
nguHanh
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tenHanh):\n if tenHanh in ['Kim', 'K']:\n return {'id': 1, 'tenHanh': 'Kim', 'cuc': 4, 'tenCuc': 'Kim tứ Cục',\n 'css': 'hanhKim'}\n elif tenHanh == 'Moc' or tenHanh == 'M':\n return {'id': 2, 'tenHanh': 'Mộc', 'cuc': 3, 'tenCuc':\n 'Mộc tam Cục', 'css': 'hanhMoc'}\n elif tenHanh == 'Thuy' or tenHanh == 'T':\n return {'id': 3, 'tenHanh': 'Thủy', 'cuc': 2, 'tenCuc':\n 'Thủy nhị Cục', 'css': 'hanhThuy'}\n elif tenHanh == 'Hoa' or tenHanh == 'H':\n return {'id': 4, 'tenHanh': 'Hỏa', 'cuc': 6, 'tenCuc':\n 'Hỏa lục Cục', 'css': 'hanhHoa'}\n elif tenHanh == 'Tho' or tenHanh == 'O':\n return {'id': 5, 'tenHanh': 'Thổ', 'cuc': 5, 'tenCuc':\n 'Thổ ngũ Cục', 'css': 'hanhTho'}\n else:\n raise Exception(\n 'Tên Hành phải thuộc Kim (K), Mộc (M), Thủy (T), Hỏa (H) hoặc Thổ (O)'\n )\n",
"role": "user"
},
{
"content": "nguHanh",
"role": "assistant"
}
] |
def x(diaChi, thienCan, xuatBanMenh=False):
banMenh = {'K1': 'HẢI TRUNG KIM', 'T1': 'GIÁNG HẠ THỦY', 'H1':
'TÍCH LỊCH HỎA', 'O1': 'BÍCH THƯỢNG THỔ', 'M1': 'TANG ÐỐ MỘC', 'T2':
'ÐẠI KHÊ THỦY', 'H2': 'LƯ TRUNG HỎA', 'O2': 'THÀNH ÐẦU THỔ', 'M2':
'TÒNG BÁ MỘC', 'K2': 'KIM BẠCH KIM', 'H3': 'PHÚ ÐĂNG HỎA', 'O3':
'SA TRUNG THỔ', 'M3': 'ÐẠI LÂM MỘC', 'K3': 'BẠCH LẠP KIM', 'T3':
'TRƯỜNG LƯU THỦY', 'K4': 'SA TRUNG KIM', 'T4': 'THIÊN HÀ THỦY',
'H4': 'THIÊN THƯỢNG HỎA', 'O4': 'LỘ BÀN THỔ', 'M4':
'DƯƠNG LIỄU MỘC', 'T5': 'TRUYỀN TRUNG THỦY', 'H5': 'SƠN HẠ HỎA',
'O5': 'ÐẠI TRẠCH THỔ', 'M5': 'THẠCH LỰU MỘC', 'K5':
'KIẾM PHONG KIM', 'H6': 'SƠN ÐẦU HỎA', 'O6': 'ỐC THƯỢNG THỔ', 'M6':
'BÌNH ÐỊA MỘC', 'K6': 'XOA XUYẾN KIM', 'T6': 'ÐẠI HẢI THỦY'}
matranNapAm = [[0, 'G', 'Ất', 'Bính', 'Đinh', 'Mậu', 'Kỷ', 'Canh',
'Tân', 'N', 'Q'], [1, 'K1', False, 'T1', False, 'H1', False, 'O1',
False, 'M1', False], [2, False, 'K1', False, 'T1', False, 'H1',
False, 'O1', False, 'M1'], [3, 'T2', False, 'H2', False, 'O2',
False, 'M2', False, 'K2', False], [4, False, 'T2', False, 'H2',
False, 'O2', False, 'M2', False, 'K2'], [5, 'H3', False, 'O3',
False, 'M3', False, 'K3', False, 'T3', False], [6, False, 'H3',
False, 'O3', False, 'M3', False, 'K3', False, 'T3'], [7, 'K4',
False, 'T4', False, 'H4', False, 'O4', False, 'M4', False], [8,
False, 'K4', False, 'T4', False, 'H4', False, 'O4', False, 'M4'], [
9, 'T5', False, 'H5', False, 'O5', False, 'M5', False, 'K5', False],
[10, False, 'T5', False, 'H5', False, 'O5', False, 'M5', False,
'K5'], [11, 'H6', False, 'O6', False, 'M6', False, 'K6', False,
'T6', False], [12, False, 'H6', False, 'O6', False, 'M6', False,
'K6', False, 'T6']]
try:
nh = matranNapAm[diaChi][thienCan]
if nh[0] in ['K', 'M', 'T', 'H', 'O']:
if xuatBanMenh is True:
return banMenh[nh]
else:
return nh[0]
except:
raise Exception(nguHanhNapAm.__doc__)
|
nguHanhNapAm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(diaChi, thienCan, xuatBanMenh=False):\n banMenh = {'K1': 'HẢI TRUNG KIM', 'T1': 'GIÁNG HẠ THỦY', 'H1':\n 'TÍCH LỊCH HỎA', 'O1': 'BÍCH THƯỢNG THỔ', 'M1': 'TANG ÐỐ MỘC', 'T2':\n 'ÐẠI KHÊ THỦY', 'H2': 'LƯ TRUNG HỎA', 'O2': 'THÀNH ÐẦU THỔ', 'M2':\n 'TÒNG BÁ MỘC', 'K2': 'KIM BẠCH KIM', 'H3': 'PHÚ ÐĂNG HỎA', 'O3':\n 'SA TRUNG THỔ', 'M3': 'ÐẠI LÂM MỘC', 'K3': 'BẠCH LẠP KIM', 'T3':\n 'TRƯỜNG LƯU THỦY', 'K4': 'SA TRUNG KIM', 'T4': 'THIÊN HÀ THỦY',\n 'H4': 'THIÊN THƯỢNG HỎA', 'O4': 'LỘ BÀN THỔ', 'M4':\n 'DƯƠNG LIỄU MỘC', 'T5': 'TRUYỀN TRUNG THỦY', 'H5': 'SƠN HẠ HỎA',\n 'O5': 'ÐẠI TRẠCH THỔ', 'M5': 'THẠCH LỰU MỘC', 'K5':\n 'KIẾM PHONG KIM', 'H6': 'SƠN ÐẦU HỎA', 'O6': 'ỐC THƯỢNG THỔ', 'M6':\n 'BÌNH ÐỊA MỘC', 'K6': 'XOA XUYẾN KIM', 'T6': 'ÐẠI HẢI THỦY'}\n matranNapAm = [[0, 'G', 'Ất', 'Bính', 'Đinh', 'Mậu', 'Kỷ', 'Canh',\n 'Tân', 'N', 'Q'], [1, 'K1', False, 'T1', False, 'H1', False, 'O1', \n False, 'M1', False], [2, False, 'K1', False, 'T1', False, 'H1', \n False, 'O1', False, 'M1'], [3, 'T2', False, 'H2', False, 'O2', \n False, 'M2', False, 'K2', False], [4, False, 'T2', False, 'H2', \n False, 'O2', False, 'M2', False, 'K2'], [5, 'H3', False, 'O3', \n False, 'M3', False, 'K3', False, 'T3', False], [6, False, 'H3', \n False, 'O3', False, 'M3', False, 'K3', False, 'T3'], [7, 'K4', \n False, 'T4', False, 'H4', False, 'O4', False, 'M4', False], [8, \n False, 'K4', False, 'T4', False, 'H4', False, 'O4', False, 'M4'], [\n 9, 'T5', False, 'H5', False, 'O5', False, 'M5', False, 'K5', False],\n [10, False, 'T5', False, 'H5', False, 'O5', False, 'M5', False,\n 'K5'], [11, 'H6', False, 'O6', False, 'M6', False, 'K6', False,\n 'T6', False], [12, False, 'H6', False, 'O6', False, 'M6', False,\n 'K6', False, 'T6']]\n try:\n nh = matranNapAm[diaChi][thienCan]\n if nh[0] in ['K', 'M', 'T', 'H', 'O']:\n if xuatBanMenh is True:\n return banMenh[nh]\n else:\n return nh[0]\n except:\n raise Exception(nguHanhNapAm.__doc__)\n",
"role": "user"
},
{
"content": "nguHanhNapAm",
"role": "assistant"
}
] |
def x(cuc, ngaySinhAmLich):
cungDan = 3
cucBanDau = cuc
if cuc not in [2, 3, 4, 5, 6]:
raise Exception('Số cục phải là 2, 3, 4, 5, 6')
while cuc < ngaySinhAmLich:
cuc += cucBanDau
cungDan += 1
saiLech = cuc - ngaySinhAmLich
if saiLech % 2 is 1:
saiLech = -saiLech
return dichCung(cungDan, saiLech)
|
timTuVi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cuc, ngaySinhAmLich):\n cungDan = 3\n cucBanDau = cuc\n if cuc not in [2, 3, 4, 5, 6]:\n raise Exception('Số cục phải là 2, 3, 4, 5, 6')\n while cuc < ngaySinhAmLich:\n cuc += cucBanDau\n cungDan += 1\n saiLech = cuc - ngaySinhAmLich\n if saiLech % 2 is 1:\n saiLech = -saiLech\n return dichCung(cungDan, saiLech)\n",
"role": "user"
},
{
"content": "timTuVi",
"role": "assistant"
}
] |
def x(ntseq):
nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3, 'a': 0, 'c': 1, 'g': 2, 't': 3}
aa_dict = (
'KQE*TPASRRG*ILVLNHDYTPASSRGCILVFKQE*TPASRRGWMLVLNHDYTPASSRGCILVF')
return ''.join([aa_dict[nt2num[ntseq[i]] + 4 * nt2num[ntseq[i + 1]] +
16 * nt2num[ntseq[i + 2]]] for i in range(0, len(ntseq), 3) if i +
2 < len(ntseq)])
|
nt2aa
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ntseq):\n nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3, 'a': 0, 'c': 1, 'g': 2, 't': 3}\n aa_dict = (\n 'KQE*TPASRRG*ILVLNHDYTPASSRGCILVFKQE*TPASRRGWMLVLNHDYTPASSRGCILVF')\n return ''.join([aa_dict[nt2num[ntseq[i]] + 4 * nt2num[ntseq[i + 1]] + \n 16 * nt2num[ntseq[i + 2]]] for i in range(0, len(ntseq), 3) if i + \n 2 < len(ntseq)])\n",
"role": "user"
},
{
"content": "nt2aa",
"role": "assistant"
}
] |
def x(ntseq):
nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3, 'a': 0, 'c': 1, 'g': 2, 't': 3}
codon_rep = (
'\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0¡¢£¤¥¦§¨©ª«¬\xad®¯°±²³´µ¶·¸¹º»¼½¾¿'
)
return ''.join([codon_rep[nt2num[ntseq[i]] + 4 * nt2num[ntseq[i + 1]] +
16 * nt2num[ntseq[i + 2]]] for i in range(0, len(ntseq), 3) if i +
2 < len(ntseq)])
|
nt2codon_rep
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ntseq):\n nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3, 'a': 0, 'c': 1, 'g': 2, 't': 3}\n codon_rep = (\n '\\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\\xa0¡¢£¤¥¦§¨©ª«¬\\xad®¯°±²³´µ¶·¸¹º»¼½¾¿'\n )\n return ''.join([codon_rep[nt2num[ntseq[i]] + 4 * nt2num[ntseq[i + 1]] +\n 16 * nt2num[ntseq[i + 2]]] for i in range(0, len(ntseq), 3) if i + \n 2 < len(ntseq)])\n",
"role": "user"
},
{
"content": "nt2codon_rep",
"role": "assistant"
}
] |
def x(seq, cutR, max_palindrome):
complement_dict = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A'}
if cutR < max_palindrome:
seq = seq + ''.join([complement_dict[nt] for nt in seq[cutR -
max_palindrome:]][::-1])
else:
seq = seq[:len(seq) - cutR + max_palindrome]
return seq
|
cutR_seq
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq, cutR, max_palindrome):\n complement_dict = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A'}\n if cutR < max_palindrome:\n seq = seq + ''.join([complement_dict[nt] for nt in seq[cutR -\n max_palindrome:]][::-1])\n else:\n seq = seq[:len(seq) - cutR + max_palindrome]\n return seq\n",
"role": "user"
},
{
"content": "cutR_seq",
"role": "assistant"
}
] |
def x(seq, cutL, max_palindrome):
complement_dict = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A'}
if cutL < max_palindrome:
seq = ''.join([complement_dict[nt] for nt in seq[:max_palindrome -
cutL]][::-1]) + seq
else:
seq = seq[cutL - max_palindrome:]
return seq
|
cutL_seq
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq, cutL, max_palindrome):\n complement_dict = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A'}\n if cutL < max_palindrome:\n seq = ''.join([complement_dict[nt] for nt in seq[:max_palindrome -\n cutL]][::-1]) + seq\n else:\n seq = seq[cutL - max_palindrome:]\n return seq\n",
"role": "user"
},
{
"content": "cutL_seq",
"role": "assistant"
}
] |
def x(codons_dict):
sub_codons_left = {}
for aa in codons_dict.keys():
sub_codons_left[aa] = list(set([x[0] for x in codons_dict[aa]] + [x
[:2] for x in codons_dict[aa]]))
return sub_codons_left
|
generate_sub_codons_left
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(codons_dict):\n sub_codons_left = {}\n for aa in codons_dict.keys():\n sub_codons_left[aa] = list(set([x[0] for x in codons_dict[aa]] + [x\n [:2] for x in codons_dict[aa]]))\n return sub_codons_left\n",
"role": "user"
},
{
"content": "generate_sub_codons_left",
"role": "assistant"
}
] |
def x(codons_dict):
sub_codons_right = {}
for aa in codons_dict.keys():
sub_codons_right[aa] = list(set([x[-1] for x in codons_dict[aa]] +
[x[-2:] for x in codons_dict[aa]]))
return sub_codons_right
|
generate_sub_codons_right
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(codons_dict):\n sub_codons_right = {}\n for aa in codons_dict.keys():\n sub_codons_right[aa] = list(set([x[-1] for x in codons_dict[aa]] +\n [x[-2:] for x in codons_dict[aa]]))\n return sub_codons_right\n",
"role": "user"
},
{
"content": "generate_sub_codons_right",
"role": "assistant"
}
] |
def x(seq, aa_alphabet):
if all([(x in 'ACGTacgt') for x in seq]):
return 'ntseq'
elif all([(x in aa_alphabet) for x in seq]):
return 'aaseq'
elif all([x in aa_alphabet + '[]{}0123456789,']):
return 'regex'
|
determine_seq_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq, aa_alphabet):\n if all([(x in 'ACGTacgt') for x in seq]):\n return 'ntseq'\n elif all([(x in aa_alphabet) for x in seq]):\n return 'aaseq'\n elif all([x in aa_alphabet + '[]{}0123456789,']):\n return 'regex'\n",
"role": "user"
},
{
"content": "determine_seq_type",
"role": "assistant"
}
] |
def x(R):
w, v = np.linalg.eig(R)
for i in range(4):
if np.abs(w[i] - 1) < 1e-08:
return np.real(v[:, i] / np.sum(v[:, i]))
return -1
|
calc_steady_state_dist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(R):\n w, v = np.linalg.eig(R)\n for i in range(4):\n if np.abs(w[i] - 1) < 1e-08:\n return np.real(v[:, i] / np.sum(v[:, i]))\n return -1\n",
"role": "user"
},
{
"content": "calc_steady_state_dist",
"role": "assistant"
}
] |
def x(ins_len, C_R, CP_first_nt):
nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
num2nt = 'ACGT'
if ins_len == 0:
return ''
seq = num2nt[CP_first_nt.searchsorted(np.random.random())]
ins_len += -1
while ins_len > 0:
seq += num2nt[C_R[nt2num[seq[-1]], :].searchsorted(np.random.random())]
ins_len += -1
return seq
|
rnd_ins_seq
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ins_len, C_R, CP_first_nt):\n nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n num2nt = 'ACGT'\n if ins_len == 0:\n return ''\n seq = num2nt[CP_first_nt.searchsorted(np.random.random())]\n ins_len += -1\n while ins_len > 0:\n seq += num2nt[C_R[nt2num[seq[-1]], :].searchsorted(np.random.random())]\n ins_len += -1\n return seq\n",
"role": "user"
},
{
"content": "rnd_ins_seq",
"role": "assistant"
}
] |
def x(self, conserved_J_residues='FVW'):
coding_pass = False
while ~coding_pass:
recomb_events = self.choose_random_recomb_events()
V_seq = self.cutV_genomic_CDR3_segs[recomb_events['V']]
if len(V_seq) <= max(recomb_events['delV'], 0):
continue
D_seq = self.cutD_genomic_CDR3_segs[recomb_events['D']]
J_seq = self.cutJ_genomic_CDR3_segs[recomb_events['J']]
if len(D_seq) < recomb_events['delDl'] + recomb_events['delDr'] or len(
J_seq) < recomb_events['delJ']:
continue
V_seq = V_seq[:len(V_seq) - recomb_events['delV']]
D_seq = D_seq[recomb_events['delDl']:len(D_seq) - recomb_events[
'delDr']]
J_seq = J_seq[recomb_events['delJ']:]
if (len(V_seq) + len(D_seq) + len(J_seq) + recomb_events['insVD'] +
recomb_events['insDJ']) % 3 != 0:
continue
insVD_seq = rnd_ins_seq(recomb_events['insVD'], self.C_Rvd, self.
C_first_nt_bias_insVD)
insDJ_seq = rnd_ins_seq(recomb_events['insDJ'], self.C_Rdj, self.
C_first_nt_bias_insDJ)[::-1]
ntseq = V_seq + insVD_seq + D_seq + insDJ_seq + J_seq
aaseq = nt2aa(ntseq)
if '*' not in aaseq and aaseq[0] == 'C' and aaseq[-1
] in conserved_J_residues:
return ntseq, aaseq, recomb_events['V'], recomb_events['J']
|
gen_rnd_prod_CDR3
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, conserved_J_residues='FVW'):\n coding_pass = False\n while ~coding_pass:\n recomb_events = self.choose_random_recomb_events()\n V_seq = self.cutV_genomic_CDR3_segs[recomb_events['V']]\n if len(V_seq) <= max(recomb_events['delV'], 0):\n continue\n D_seq = self.cutD_genomic_CDR3_segs[recomb_events['D']]\n J_seq = self.cutJ_genomic_CDR3_segs[recomb_events['J']]\n if len(D_seq) < recomb_events['delDl'] + recomb_events['delDr'] or len(\n J_seq) < recomb_events['delJ']:\n continue\n V_seq = V_seq[:len(V_seq) - recomb_events['delV']]\n D_seq = D_seq[recomb_events['delDl']:len(D_seq) - recomb_events[\n 'delDr']]\n J_seq = J_seq[recomb_events['delJ']:]\n if (len(V_seq) + len(D_seq) + len(J_seq) + recomb_events['insVD'] +\n recomb_events['insDJ']) % 3 != 0:\n continue\n insVD_seq = rnd_ins_seq(recomb_events['insVD'], self.C_Rvd, self.\n C_first_nt_bias_insVD)\n insDJ_seq = rnd_ins_seq(recomb_events['insDJ'], self.C_Rdj, self.\n C_first_nt_bias_insDJ)[::-1]\n ntseq = V_seq + insVD_seq + D_seq + insDJ_seq + J_seq\n aaseq = nt2aa(ntseq)\n if '*' not in aaseq and aaseq[0] == 'C' and aaseq[-1\n ] in conserved_J_residues:\n return ntseq, aaseq, recomb_events['V'], recomb_events['J']\n",
"role": "user"
},
{
"content": "gen_rnd_prod_CDR3",
"role": "assistant"
}
] |
def x(self):
recomb_events = {}
recomb_events['V'] = self.CPV.searchsorted(np.random.random())
DJ_choice = self.CPDJ.searchsorted(np.random.random())
recomb_events['D'] = DJ_choice / self.num_J_genes
recomb_events['J'] = DJ_choice % self.num_J_genes
recomb_events['delV'] = self.given_V_CPdelV[recomb_events['V'], :
].searchsorted(np.random.random())
recomb_events['delJ'] = self.given_J_CPdelJ[recomb_events['J'], :
].searchsorted(np.random.random())
delDldelDr_choice = self.given_D_CPdelDldelDr[recomb_events['D'], :
].searchsorted(np.random.random())
recomb_events['delDl'] = delDldelDr_choice / self.num_delDr_poss
recomb_events['delDr'] = delDldelDr_choice % self.num_delDr_poss
recomb_events['insVD'] = self.CinsVD.searchsorted(np.random.random())
recomb_events['insDJ'] = self.CinsDJ.searchsorted(np.random.random())
return recomb_events
|
choose_random_recomb_events
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n recomb_events = {}\n recomb_events['V'] = self.CPV.searchsorted(np.random.random())\n DJ_choice = self.CPDJ.searchsorted(np.random.random())\n recomb_events['D'] = DJ_choice / self.num_J_genes\n recomb_events['J'] = DJ_choice % self.num_J_genes\n recomb_events['delV'] = self.given_V_CPdelV[recomb_events['V'], :\n ].searchsorted(np.random.random())\n recomb_events['delJ'] = self.given_J_CPdelJ[recomb_events['J'], :\n ].searchsorted(np.random.random())\n delDldelDr_choice = self.given_D_CPdelDldelDr[recomb_events['D'], :\n ].searchsorted(np.random.random())\n recomb_events['delDl'] = delDldelDr_choice / self.num_delDr_poss\n recomb_events['delDr'] = delDldelDr_choice % self.num_delDr_poss\n recomb_events['insVD'] = self.CinsVD.searchsorted(np.random.random())\n recomb_events['insDJ'] = self.CinsDJ.searchsorted(np.random.random())\n return recomb_events\n",
"role": "user"
},
{
"content": "choose_random_recomb_events",
"role": "assistant"
}
] |
def x(self, conserved_J_residues='FVW'):
coding_pass = False
while ~coding_pass:
recomb_events = self.choose_random_recomb_events()
V_seq = self.cutV_genomic_CDR3_segs[recomb_events['V']]
if len(V_seq) <= max(recomb_events['delV'], 0):
continue
J_seq = self.cutJ_genomic_CDR3_segs[recomb_events['J']]
if len(J_seq) < recomb_events['delJ']:
continue
V_seq = V_seq[:len(V_seq) - recomb_events['delV']]
J_seq = J_seq[recomb_events['delJ']:]
if (len(V_seq) + len(J_seq) + recomb_events['insVJ']) % 3 != 0:
continue
insVJ_seq = rnd_ins_seq(recomb_events['insVJ'], self.C_Rvj, self.
C_first_nt_bias_insVJ)
ntseq = V_seq + insVJ_seq + J_seq
aaseq = nt2aa(ntseq)
if '*' not in aaseq and aaseq[0] == 'C' and aaseq[-1
] in conserved_J_residues:
return ntseq, aaseq, recomb_events['V'], recomb_events['J']
|
gen_rnd_prod_CDR3
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, conserved_J_residues='FVW'):\n coding_pass = False\n while ~coding_pass:\n recomb_events = self.choose_random_recomb_events()\n V_seq = self.cutV_genomic_CDR3_segs[recomb_events['V']]\n if len(V_seq) <= max(recomb_events['delV'], 0):\n continue\n J_seq = self.cutJ_genomic_CDR3_segs[recomb_events['J']]\n if len(J_seq) < recomb_events['delJ']:\n continue\n V_seq = V_seq[:len(V_seq) - recomb_events['delV']]\n J_seq = J_seq[recomb_events['delJ']:]\n if (len(V_seq) + len(J_seq) + recomb_events['insVJ']) % 3 != 0:\n continue\n insVJ_seq = rnd_ins_seq(recomb_events['insVJ'], self.C_Rvj, self.\n C_first_nt_bias_insVJ)\n ntseq = V_seq + insVJ_seq + J_seq\n aaseq = nt2aa(ntseq)\n if '*' not in aaseq and aaseq[0] == 'C' and aaseq[-1\n ] in conserved_J_residues:\n return ntseq, aaseq, recomb_events['V'], recomb_events['J']\n",
"role": "user"
},
{
"content": "gen_rnd_prod_CDR3",
"role": "assistant"
}
] |
def x(self):
recomb_events = {}
VJ_choice = self.CPVJ.searchsorted(np.random.random())
recomb_events['V'] = VJ_choice / self.num_J_genes
recomb_events['J'] = VJ_choice % self.num_J_genes
recomb_events['delV'] = self.given_V_CPdelV[recomb_events['V'], :
].searchsorted(np.random.random())
recomb_events['delJ'] = self.given_J_CPdelJ[recomb_events['J'], :
].searchsorted(np.random.random())
recomb_events['insVJ'] = self.CPinsVJ.searchsorted(np.random.random())
return recomb_events
|
choose_random_recomb_events
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n recomb_events = {}\n VJ_choice = self.CPVJ.searchsorted(np.random.random())\n recomb_events['V'] = VJ_choice / self.num_J_genes\n recomb_events['J'] = VJ_choice % self.num_J_genes\n recomb_events['delV'] = self.given_V_CPdelV[recomb_events['V'], :\n ].searchsorted(np.random.random())\n recomb_events['delJ'] = self.given_J_CPdelJ[recomb_events['J'], :\n ].searchsorted(np.random.random())\n recomb_events['insVJ'] = self.CPinsVJ.searchsorted(np.random.random())\n return recomb_events\n",
"role": "user"
},
{
"content": "choose_random_recomb_events",
"role": "assistant"
}
] |
def x(self):
source, created = RateSource.objects.get_or_create(name=self.
get_source_name())
source.base_currency = self.get_base_currency()
source.save()
for currency, value in six.iteritems(self.get_rates()):
try:
rate = Rate.objects.get(source=source, currency=currency)
except Rate.DoesNotExist:
rate = Rate(source=source, currency=currency)
rate.value = value
rate.save()
|
update_rates
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n source, created = RateSource.objects.get_or_create(name=self.\n get_source_name())\n source.base_currency = self.get_base_currency()\n source.save()\n for currency, value in six.iteritems(self.get_rates()):\n try:\n rate = Rate.objects.get(source=source, currency=currency)\n except Rate.DoesNotExist:\n rate = Rate(source=source, currency=currency)\n rate.value = value\n rate.save()\n",
"role": "user"
},
{
"content": "update_rates",
"role": "assistant"
}
] |
def x(self, regex_seq, V_usage_mask_in=None, J_usage_mask_in=None,
print_warnings=True, raise_overload_warning=True):
V_usage_mask, J_usage_mask = self.format_usage_masks(V_usage_mask_in,
J_usage_mask_in, print_warnings)
CDR3_seqs = self.list_seqs_from_regex(regex_seq, print_warnings,
raise_overload_warning)
pgen = 0
for CDR3_seq in CDR3_seqs:
if len(CDR3_seq) == 0:
continue
pgen += self.compute_CDR3_pgen(CDR3_seq, V_usage_mask, J_usage_mask)
return pgen
|
compute_regex_CDR3_template_pgen
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, regex_seq, V_usage_mask_in=None, J_usage_mask_in=None,\n print_warnings=True, raise_overload_warning=True):\n V_usage_mask, J_usage_mask = self.format_usage_masks(V_usage_mask_in,\n J_usage_mask_in, print_warnings)\n CDR3_seqs = self.list_seqs_from_regex(regex_seq, print_warnings,\n raise_overload_warning)\n pgen = 0\n for CDR3_seq in CDR3_seqs:\n if len(CDR3_seq) == 0:\n continue\n pgen += self.compute_CDR3_pgen(CDR3_seq, V_usage_mask, J_usage_mask)\n return pgen\n",
"role": "user"
},
{
"content": "compute_regex_CDR3_template_pgen",
"role": "assistant"
}
] |
def x(self, CDR3_seq, ntseq):
max_alignment = 0
if len(ntseq) == 0:
return 0
aa_aligned = True
while aa_aligned:
if ntseq[max_alignment:max_alignment + 3] in self.codons_dict[CDR3_seq
[max_alignment / 3]]:
max_alignment += 3
if max_alignment / 3 == len(CDR3_seq):
return max_alignment
else:
break
aa_aligned = False
last_codon = ntseq[max_alignment:max_alignment + 3]
codon_frag = ''
for nt in last_codon:
codon_frag += nt
if codon_frag in self.sub_codons_left[CDR3_seq[max_alignment / 3]]:
max_alignment += 1
else:
break
return max_alignment
|
max_nt_to_aa_alignment_left
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, CDR3_seq, ntseq):\n max_alignment = 0\n if len(ntseq) == 0:\n return 0\n aa_aligned = True\n while aa_aligned:\n if ntseq[max_alignment:max_alignment + 3] in self.codons_dict[CDR3_seq\n [max_alignment / 3]]:\n max_alignment += 3\n if max_alignment / 3 == len(CDR3_seq):\n return max_alignment\n else:\n break\n aa_aligned = False\n last_codon = ntseq[max_alignment:max_alignment + 3]\n codon_frag = ''\n for nt in last_codon:\n codon_frag += nt\n if codon_frag in self.sub_codons_left[CDR3_seq[max_alignment / 3]]:\n max_alignment += 1\n else:\n break\n return max_alignment\n",
"role": "user"
},
{
"content": "max_nt_to_aa_alignment_left",
"role": "assistant"
}
] |
def x(self, CDR3_seq, ntseq):
r_CDR3_seq = CDR3_seq[::-1]
r_ntseq = ntseq[::-1]
max_alignment = 0
if len(ntseq) == 0:
return 0
aa_aligned = True
while aa_aligned:
if r_ntseq[max_alignment:max_alignment + 3][::-1] in self.codons_dict[
r_CDR3_seq[max_alignment / 3]]:
max_alignment += 3
if max_alignment / 3 == len(CDR3_seq):
return max_alignment
else:
break
aa_aligned = False
r_last_codon = r_ntseq[max_alignment:max_alignment + 3]
codon_frag = ''
for nt in r_last_codon:
codon_frag = nt + codon_frag
if codon_frag in self.sub_codons_right[r_CDR3_seq[max_alignment / 3]]:
max_alignment += 1
else:
break
return max_alignment
|
max_nt_to_aa_alignment_right
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, CDR3_seq, ntseq):\n r_CDR3_seq = CDR3_seq[::-1]\n r_ntseq = ntseq[::-1]\n max_alignment = 0\n if len(ntseq) == 0:\n return 0\n aa_aligned = True\n while aa_aligned:\n if r_ntseq[max_alignment:max_alignment + 3][::-1] in self.codons_dict[\n r_CDR3_seq[max_alignment / 3]]:\n max_alignment += 3\n if max_alignment / 3 == len(CDR3_seq):\n return max_alignment\n else:\n break\n aa_aligned = False\n r_last_codon = r_ntseq[max_alignment:max_alignment + 3]\n codon_frag = ''\n for nt in r_last_codon:\n codon_frag = nt + codon_frag\n if codon_frag in self.sub_codons_right[r_CDR3_seq[max_alignment / 3]]:\n max_alignment += 1\n else:\n break\n return max_alignment\n",
"role": "user"
},
{
"content": "max_nt_to_aa_alignment_right",
"role": "assistant"
}
] |
def x(self, CDR3_seq, V_usage_mask, J_usage_mask):
Pi_V, max_V_align = self.compute_Pi_V(CDR3_seq, V_usage_mask)
Pi_L = self.compute_Pi_L(CDR3_seq, Pi_V, max_V_align)
Pi_J_given_D, max_J_align = self.compute_Pi_J_given_D(CDR3_seq,
J_usage_mask)
Pi_JinsDJ_given_D = self.compute_Pi_JinsDJ_given_D(CDR3_seq,
Pi_J_given_D, max_J_align)
Pi_R = self.compute_Pi_R(CDR3_seq, Pi_JinsDJ_given_D)
pgen = 0
for pos in range(len(CDR3_seq) * 3 - 1):
pgen += np.dot(Pi_L[:, pos], Pi_R[:, pos + 1])
return pgen
|
compute_CDR3_pgen
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, CDR3_seq, V_usage_mask, J_usage_mask):\n Pi_V, max_V_align = self.compute_Pi_V(CDR3_seq, V_usage_mask)\n Pi_L = self.compute_Pi_L(CDR3_seq, Pi_V, max_V_align)\n Pi_J_given_D, max_J_align = self.compute_Pi_J_given_D(CDR3_seq,\n J_usage_mask)\n Pi_JinsDJ_given_D = self.compute_Pi_JinsDJ_given_D(CDR3_seq,\n Pi_J_given_D, max_J_align)\n Pi_R = self.compute_Pi_R(CDR3_seq, Pi_JinsDJ_given_D)\n pgen = 0\n for pos in range(len(CDR3_seq) * 3 - 1):\n pgen += np.dot(Pi_L[:, pos], Pi_R[:, pos + 1])\n return pgen\n",
"role": "user"
},
{
"content": "compute_CDR3_pgen",
"role": "assistant"
}
] |
def x(self, CDR3_seq, Pi_V, max_V_align):
max_insertions = len(self.PinsVD) - 1
Pi_L = np.zeros((4, len(CDR3_seq) * 3))
for init_pos in range(0, max_V_align, 3):
Pi_L[:, init_pos] += self.PinsVD[0] * Pi_V[:, init_pos]
Pi_L[:, init_pos + 1] += self.PinsVD[1] * np.dot(self.lDvd[CDR3_seq
[init_pos / 3]], Pi_V[:, init_pos])
current_base_nt_vec = np.dot(self.lTvd[CDR3_seq[init_pos / 3]],
Pi_V[:, init_pos])
Pi_L[0, init_pos + 2] += self.PinsVD[2] * np.sum(current_base_nt_vec)
base_ins = 2
for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + max_insertions / 3]:
Pi_L[:, init_pos + base_ins + 1] += self.PinsVD[base_ins + 1
] * np.dot(self.Svd[aa], current_base_nt_vec)
Pi_L[:, init_pos + base_ins + 2] += self.PinsVD[base_ins + 2
] * np.dot(self.Dvd[aa], current_base_nt_vec)
current_base_nt_vec = np.dot(self.Tvd[aa], current_base_nt_vec)
Pi_L[0, init_pos + base_ins + 3] += self.PinsVD[base_ins + 3
] * np.sum(current_base_nt_vec)
base_ins += 3
for init_pos in range(1, max_V_align, 3):
Pi_L[:, init_pos] += self.PinsVD[0] * Pi_V[:, init_pos]
current_base_nt_vec = np.multiply(Pi_V[:, init_pos], self.
first_nt_bias_insVD)
Pi_L[0, init_pos + 1] += self.PinsVD[1] * np.sum(current_base_nt_vec)
base_ins = 1
for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + max_insertions / 3]:
Pi_L[:, init_pos + base_ins + 1] += self.PinsVD[base_ins + 1
] * np.dot(self.Svd[aa], current_base_nt_vec)
Pi_L[:, init_pos + base_ins + 2] += self.PinsVD[base_ins + 2
] * np.dot(self.Dvd[aa], current_base_nt_vec)
current_base_nt_vec = np.dot(self.Tvd[aa], current_base_nt_vec)
Pi_L[0, init_pos + base_ins + 3] += self.PinsVD[base_ins + 3
] * np.sum(current_base_nt_vec)
base_ins += 3
for init_pos in range(2, max_V_align, 3):
Pi_L[0, init_pos] += self.PinsVD[0] * Pi_V[0, init_pos]
current_base_nt_vec = self.zero_nt_bias_insVD * Pi_V[0, init_pos]
base_ins = 0
for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + max_insertions / 3]:
Pi_L[:, init_pos + base_ins + 1] += self.PinsVD[base_ins + 1
] * np.dot(self.Svd[aa], current_base_nt_vec)
Pi_L[:, init_pos + base_ins + 2] += self.PinsVD[base_ins + 2
] * np.dot(self.Dvd[aa], current_base_nt_vec)
current_base_nt_vec = np.dot(self.Tvd[aa], current_base_nt_vec)
Pi_L[0, init_pos + base_ins + 3] += self.PinsVD[base_ins + 3
] * np.sum(current_base_nt_vec)
base_ins += 3
return Pi_L
|
compute_Pi_L
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, CDR3_seq, Pi_V, max_V_align):\n max_insertions = len(self.PinsVD) - 1\n Pi_L = np.zeros((4, len(CDR3_seq) * 3))\n for init_pos in range(0, max_V_align, 3):\n Pi_L[:, init_pos] += self.PinsVD[0] * Pi_V[:, init_pos]\n Pi_L[:, init_pos + 1] += self.PinsVD[1] * np.dot(self.lDvd[CDR3_seq\n [init_pos / 3]], Pi_V[:, init_pos])\n current_base_nt_vec = np.dot(self.lTvd[CDR3_seq[init_pos / 3]],\n Pi_V[:, init_pos])\n Pi_L[0, init_pos + 2] += self.PinsVD[2] * np.sum(current_base_nt_vec)\n base_ins = 2\n for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + max_insertions / 3]:\n Pi_L[:, init_pos + base_ins + 1] += self.PinsVD[base_ins + 1\n ] * np.dot(self.Svd[aa], current_base_nt_vec)\n Pi_L[:, init_pos + base_ins + 2] += self.PinsVD[base_ins + 2\n ] * np.dot(self.Dvd[aa], current_base_nt_vec)\n current_base_nt_vec = np.dot(self.Tvd[aa], current_base_nt_vec)\n Pi_L[0, init_pos + base_ins + 3] += self.PinsVD[base_ins + 3\n ] * np.sum(current_base_nt_vec)\n base_ins += 3\n for init_pos in range(1, max_V_align, 3):\n Pi_L[:, init_pos] += self.PinsVD[0] * Pi_V[:, init_pos]\n current_base_nt_vec = np.multiply(Pi_V[:, init_pos], self.\n first_nt_bias_insVD)\n Pi_L[0, init_pos + 1] += self.PinsVD[1] * np.sum(current_base_nt_vec)\n base_ins = 1\n for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + max_insertions / 3]:\n Pi_L[:, init_pos + base_ins + 1] += self.PinsVD[base_ins + 1\n ] * np.dot(self.Svd[aa], current_base_nt_vec)\n Pi_L[:, init_pos + base_ins + 2] += self.PinsVD[base_ins + 2\n ] * np.dot(self.Dvd[aa], current_base_nt_vec)\n current_base_nt_vec = np.dot(self.Tvd[aa], current_base_nt_vec)\n Pi_L[0, init_pos + base_ins + 3] += self.PinsVD[base_ins + 3\n ] * np.sum(current_base_nt_vec)\n base_ins += 3\n for init_pos in range(2, max_V_align, 3):\n Pi_L[0, init_pos] += self.PinsVD[0] * Pi_V[0, init_pos]\n current_base_nt_vec = self.zero_nt_bias_insVD * Pi_V[0, init_pos]\n base_ins = 0\n for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + max_insertions / 3]:\n Pi_L[:, init_pos + base_ins + 1] += self.PinsVD[base_ins + 1\n ] * np.dot(self.Svd[aa], current_base_nt_vec)\n Pi_L[:, init_pos + base_ins + 2] += self.PinsVD[base_ins + 2\n ] * np.dot(self.Dvd[aa], current_base_nt_vec)\n current_base_nt_vec = np.dot(self.Tvd[aa], current_base_nt_vec)\n Pi_L[0, init_pos + base_ins + 3] += self.PinsVD[base_ins + 3\n ] * np.sum(current_base_nt_vec)\n base_ins += 3\n return Pi_L\n",
"role": "user"
},
{
"content": "compute_Pi_L",
"role": "assistant"
}
] |
def x(self, CDR3_seq, Pi_J_given_D, max_J_align):
max_insertions = len(self.PinsDJ) - 1
Pi_JinsDJ_given_D = [np.zeros((4, len(CDR3_seq) * 3)) for i in range(
len(Pi_J_given_D))]
for D_in in range(len(Pi_J_given_D)):
for init_pos in range(-1, -(max_J_align + 1), -3):
Pi_JinsDJ_given_D[D_in][:, init_pos] += self.PinsDJ[0
] * Pi_J_given_D[D_in][:, init_pos]
Pi_JinsDJ_given_D[D_in][:, init_pos - 1] += self.PinsDJ[1
] * np.dot(self.rDdj[CDR3_seq[init_pos / 3]], Pi_J_given_D[
D_in][:, init_pos])
current_base_nt_vec = np.dot(self.rTdj[CDR3_seq[init_pos / 3]],
Pi_J_given_D[D_in][:, init_pos])
Pi_JinsDJ_given_D[D_in][0, init_pos - 2] += self.PinsDJ[2
] * np.sum(current_base_nt_vec)
base_ins = 2
for aa in CDR3_seq[init_pos / 3 - 1:init_pos / 3 -
max_insertions / 3:-1]:
Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 1
] += self.PinsDJ[base_ins + 1] * np.dot(self.Sdj[aa],
current_base_nt_vec)
Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 2
] += self.PinsDJ[base_ins + 2] * np.dot(self.Ddj[aa],
current_base_nt_vec)
current_base_nt_vec = np.dot(self.Tdj[aa], current_base_nt_vec)
Pi_JinsDJ_given_D[D_in][0, init_pos - base_ins - 3
] += self.PinsDJ[base_ins + 3] * np.sum(current_base_nt_vec
)
base_ins += 3
for init_pos in range(-2, -(max_J_align + 1), -3):
Pi_JinsDJ_given_D[D_in][:, init_pos] += self.PinsDJ[0
] * Pi_J_given_D[D_in][:, init_pos]
current_base_nt_vec = np.multiply(Pi_J_given_D[D_in][:,
init_pos], self.first_nt_bias_insDJ)
Pi_JinsDJ_given_D[D_in][0, init_pos - 1] += self.PinsDJ[1
] * np.sum(current_base_nt_vec)
base_ins = 1
for aa in CDR3_seq[init_pos / 3 - 1:init_pos / 3 -
max_insertions / 3:-1]:
Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 1
] += self.PinsDJ[base_ins + 1] * np.dot(self.Sdj[aa],
current_base_nt_vec)
Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 2
] += self.PinsDJ[base_ins + 2] * np.dot(self.Ddj[aa],
current_base_nt_vec)
current_base_nt_vec = np.dot(self.Tdj[aa], current_base_nt_vec)
Pi_JinsDJ_given_D[D_in][0, init_pos - base_ins - 3
] += self.PinsDJ[base_ins + 3] * np.sum(current_base_nt_vec
)
base_ins += 3
for init_pos in range(-3, -(max_J_align + 1), -3):
Pi_JinsDJ_given_D[D_in][0, init_pos] += self.PinsDJ[0
] * Pi_J_given_D[D_in][0, init_pos]
current_base_nt_vec = self.zero_nt_bias_insDJ * Pi_J_given_D[D_in][
0, init_pos]
base_ins = 0
for aa in CDR3_seq[init_pos / 3 - 1:init_pos / 3 -
max_insertions / 3:-1]:
Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 1
] += self.PinsDJ[base_ins + 1] * np.dot(self.Sdj[aa],
current_base_nt_vec)
Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 2
] += self.PinsDJ[base_ins + 2] * np.dot(self.Ddj[aa],
current_base_nt_vec)
current_base_nt_vec = np.dot(self.Tdj[aa], current_base_nt_vec)
Pi_JinsDJ_given_D[D_in][0, init_pos - base_ins - 3
] += self.PinsDJ[base_ins + 3] * np.sum(current_base_nt_vec
)
base_ins += 3
return Pi_JinsDJ_given_D
|
compute_Pi_JinsDJ_given_D
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, CDR3_seq, Pi_J_given_D, max_J_align):\n max_insertions = len(self.PinsDJ) - 1\n Pi_JinsDJ_given_D = [np.zeros((4, len(CDR3_seq) * 3)) for i in range(\n len(Pi_J_given_D))]\n for D_in in range(len(Pi_J_given_D)):\n for init_pos in range(-1, -(max_J_align + 1), -3):\n Pi_JinsDJ_given_D[D_in][:, init_pos] += self.PinsDJ[0\n ] * Pi_J_given_D[D_in][:, init_pos]\n Pi_JinsDJ_given_D[D_in][:, init_pos - 1] += self.PinsDJ[1\n ] * np.dot(self.rDdj[CDR3_seq[init_pos / 3]], Pi_J_given_D[\n D_in][:, init_pos])\n current_base_nt_vec = np.dot(self.rTdj[CDR3_seq[init_pos / 3]],\n Pi_J_given_D[D_in][:, init_pos])\n Pi_JinsDJ_given_D[D_in][0, init_pos - 2] += self.PinsDJ[2\n ] * np.sum(current_base_nt_vec)\n base_ins = 2\n for aa in CDR3_seq[init_pos / 3 - 1:init_pos / 3 - \n max_insertions / 3:-1]:\n Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 1\n ] += self.PinsDJ[base_ins + 1] * np.dot(self.Sdj[aa],\n current_base_nt_vec)\n Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 2\n ] += self.PinsDJ[base_ins + 2] * np.dot(self.Ddj[aa],\n current_base_nt_vec)\n current_base_nt_vec = np.dot(self.Tdj[aa], current_base_nt_vec)\n Pi_JinsDJ_given_D[D_in][0, init_pos - base_ins - 3\n ] += self.PinsDJ[base_ins + 3] * np.sum(current_base_nt_vec\n )\n base_ins += 3\n for init_pos in range(-2, -(max_J_align + 1), -3):\n Pi_JinsDJ_given_D[D_in][:, init_pos] += self.PinsDJ[0\n ] * Pi_J_given_D[D_in][:, init_pos]\n current_base_nt_vec = np.multiply(Pi_J_given_D[D_in][:,\n init_pos], self.first_nt_bias_insDJ)\n Pi_JinsDJ_given_D[D_in][0, init_pos - 1] += self.PinsDJ[1\n ] * np.sum(current_base_nt_vec)\n base_ins = 1\n for aa in CDR3_seq[init_pos / 3 - 1:init_pos / 3 - \n max_insertions / 3:-1]:\n Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 1\n ] += self.PinsDJ[base_ins + 1] * np.dot(self.Sdj[aa],\n current_base_nt_vec)\n Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 2\n ] += self.PinsDJ[base_ins + 2] * np.dot(self.Ddj[aa],\n current_base_nt_vec)\n current_base_nt_vec = np.dot(self.Tdj[aa], current_base_nt_vec)\n Pi_JinsDJ_given_D[D_in][0, init_pos - base_ins - 3\n ] += self.PinsDJ[base_ins + 3] * np.sum(current_base_nt_vec\n )\n base_ins += 3\n for init_pos in range(-3, -(max_J_align + 1), -3):\n Pi_JinsDJ_given_D[D_in][0, init_pos] += self.PinsDJ[0\n ] * Pi_J_given_D[D_in][0, init_pos]\n current_base_nt_vec = self.zero_nt_bias_insDJ * Pi_J_given_D[D_in][\n 0, init_pos]\n base_ins = 0\n for aa in CDR3_seq[init_pos / 3 - 1:init_pos / 3 - \n max_insertions / 3:-1]:\n Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 1\n ] += self.PinsDJ[base_ins + 1] * np.dot(self.Sdj[aa],\n current_base_nt_vec)\n Pi_JinsDJ_given_D[D_in][:, init_pos - base_ins - 2\n ] += self.PinsDJ[base_ins + 2] * np.dot(self.Ddj[aa],\n current_base_nt_vec)\n current_base_nt_vec = np.dot(self.Tdj[aa], current_base_nt_vec)\n Pi_JinsDJ_given_D[D_in][0, init_pos - base_ins - 3\n ] += self.PinsDJ[base_ins + 3] * np.sum(current_base_nt_vec\n )\n base_ins += 3\n return Pi_JinsDJ_given_D\n",
"role": "user"
},
{
"content": "compute_Pi_JinsDJ_given_D",
"role": "assistant"
}
] |
def x(self, CDR3_seq, V_usage_mask, J_usage_mask):
Pi_J, r_J_usage_mask = self.compute_Pi_J(CDR3_seq, J_usage_mask)
Pi_V_given_J, max_V_align = self.compute_Pi_V_given_J(CDR3_seq,
V_usage_mask, r_J_usage_mask)
Pi_V_insVJ_given_J = self.compute_Pi_V_insVJ_given_J(CDR3_seq,
Pi_V_given_J, max_V_align)
pgen = 0
for j in range(len(r_J_usage_mask)):
for pos in range(len(CDR3_seq) * 3 - 1):
pgen += np.dot(Pi_V_insVJ_given_J[j][:, pos], Pi_J[j][:, pos + 1])
return pgen
|
compute_CDR3_pgen
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, CDR3_seq, V_usage_mask, J_usage_mask):\n Pi_J, r_J_usage_mask = self.compute_Pi_J(CDR3_seq, J_usage_mask)\n Pi_V_given_J, max_V_align = self.compute_Pi_V_given_J(CDR3_seq,\n V_usage_mask, r_J_usage_mask)\n Pi_V_insVJ_given_J = self.compute_Pi_V_insVJ_given_J(CDR3_seq,\n Pi_V_given_J, max_V_align)\n pgen = 0\n for j in range(len(r_J_usage_mask)):\n for pos in range(len(CDR3_seq) * 3 - 1):\n pgen += np.dot(Pi_V_insVJ_given_J[j][:, pos], Pi_J[j][:, pos + 1])\n return pgen\n",
"role": "user"
},
{
"content": "compute_CDR3_pgen",
"role": "assistant"
}
] |
def x(self, CDR3_seq, Pi_V_given_J, max_V_align):
max_insertions = len(self.PinsVJ) - 1
Pi_V_insVJ_given_J = [np.zeros((4, len(CDR3_seq) * 3)) for i in range(
len(Pi_V_given_J))]
for j in range(len(Pi_V_given_J)):
for init_pos in range(0, max_V_align, 3):
Pi_V_insVJ_given_J[j][:, init_pos] += self.PinsVJ[0
] * Pi_V_given_J[j][:, init_pos]
Pi_V_insVJ_given_J[j][:, init_pos + 1] += self.PinsVJ[1] * np.dot(
self.lDvj[CDR3_seq[init_pos / 3]], Pi_V_given_J[j][:, init_pos]
)
current_base_nt_vec = np.dot(self.lTvj[CDR3_seq[init_pos / 3]],
Pi_V_given_J[j][:, init_pos])
Pi_V_insVJ_given_J[j][0, init_pos + 2] += self.PinsVJ[2] * np.sum(
current_base_nt_vec)
base_ins = 2
for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 +
max_insertions / 3]:
Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 1
] += self.PinsVJ[base_ins + 1] * np.dot(self.Svj[aa],
current_base_nt_vec)
Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 2
] += self.PinsVJ[base_ins + 2] * np.dot(self.Dvj[aa],
current_base_nt_vec)
current_base_nt_vec = np.dot(self.Tvj[aa], current_base_nt_vec)
Pi_V_insVJ_given_J[j][0, init_pos + base_ins + 3
] += self.PinsVJ[base_ins + 3] * np.sum(current_base_nt_vec
)
base_ins += 3
for init_pos in range(1, max_V_align, 3):
Pi_V_insVJ_given_J[j][:, init_pos] += self.PinsVJ[0
] * Pi_V_given_J[j][:, init_pos]
current_base_nt_vec = np.multiply(Pi_V_given_J[j][:, init_pos],
self.first_nt_bias_insVJ)
Pi_V_insVJ_given_J[j][0, init_pos + 1] += self.PinsVJ[1] * np.sum(
current_base_nt_vec)
base_ins = 1
for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 +
max_insertions / 3]:
Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 1
] += self.PinsVJ[base_ins + 1] * np.dot(self.Svj[aa],
current_base_nt_vec)
Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 2
] += self.PinsVJ[base_ins + 2] * np.dot(self.Dvj[aa],
current_base_nt_vec)
current_base_nt_vec = np.dot(self.Tvj[aa], current_base_nt_vec)
Pi_V_insVJ_given_J[j][0, init_pos + base_ins + 3
] += self.PinsVJ[base_ins + 3] * np.sum(current_base_nt_vec
)
base_ins += 3
for init_pos in range(2, max_V_align, 3):
Pi_V_insVJ_given_J[j][0, init_pos] += self.PinsVJ[0
] * Pi_V_given_J[j][0, init_pos]
current_base_nt_vec = self.zero_nt_bias_insVJ * Pi_V_given_J[j][
0, init_pos]
base_ins = 0
for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 +
max_insertions / 3]:
Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 1
] += self.PinsVJ[base_ins + 1] * np.dot(self.Svj[aa],
current_base_nt_vec)
Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 2
] += self.PinsVJ[base_ins + 2] * np.dot(self.Dvj[aa],
current_base_nt_vec)
current_base_nt_vec = np.dot(self.Tvj[aa], current_base_nt_vec)
Pi_V_insVJ_given_J[j][0, init_pos + base_ins + 3
] += self.PinsVJ[base_ins + 3] * np.sum(current_base_nt_vec
)
base_ins += 3
return Pi_V_insVJ_given_J
|
compute_Pi_V_insVJ_given_J
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, CDR3_seq, Pi_V_given_J, max_V_align):\n max_insertions = len(self.PinsVJ) - 1\n Pi_V_insVJ_given_J = [np.zeros((4, len(CDR3_seq) * 3)) for i in range(\n len(Pi_V_given_J))]\n for j in range(len(Pi_V_given_J)):\n for init_pos in range(0, max_V_align, 3):\n Pi_V_insVJ_given_J[j][:, init_pos] += self.PinsVJ[0\n ] * Pi_V_given_J[j][:, init_pos]\n Pi_V_insVJ_given_J[j][:, init_pos + 1] += self.PinsVJ[1] * np.dot(\n self.lDvj[CDR3_seq[init_pos / 3]], Pi_V_given_J[j][:, init_pos]\n )\n current_base_nt_vec = np.dot(self.lTvj[CDR3_seq[init_pos / 3]],\n Pi_V_given_J[j][:, init_pos])\n Pi_V_insVJ_given_J[j][0, init_pos + 2] += self.PinsVJ[2] * np.sum(\n current_base_nt_vec)\n base_ins = 2\n for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + \n max_insertions / 3]:\n Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 1\n ] += self.PinsVJ[base_ins + 1] * np.dot(self.Svj[aa],\n current_base_nt_vec)\n Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 2\n ] += self.PinsVJ[base_ins + 2] * np.dot(self.Dvj[aa],\n current_base_nt_vec)\n current_base_nt_vec = np.dot(self.Tvj[aa], current_base_nt_vec)\n Pi_V_insVJ_given_J[j][0, init_pos + base_ins + 3\n ] += self.PinsVJ[base_ins + 3] * np.sum(current_base_nt_vec\n )\n base_ins += 3\n for init_pos in range(1, max_V_align, 3):\n Pi_V_insVJ_given_J[j][:, init_pos] += self.PinsVJ[0\n ] * Pi_V_given_J[j][:, init_pos]\n current_base_nt_vec = np.multiply(Pi_V_given_J[j][:, init_pos],\n self.first_nt_bias_insVJ)\n Pi_V_insVJ_given_J[j][0, init_pos + 1] += self.PinsVJ[1] * np.sum(\n current_base_nt_vec)\n base_ins = 1\n for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + \n max_insertions / 3]:\n Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 1\n ] += self.PinsVJ[base_ins + 1] * np.dot(self.Svj[aa],\n current_base_nt_vec)\n Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 2\n ] += self.PinsVJ[base_ins + 2] * np.dot(self.Dvj[aa],\n current_base_nt_vec)\n current_base_nt_vec = np.dot(self.Tvj[aa], current_base_nt_vec)\n Pi_V_insVJ_given_J[j][0, init_pos + base_ins + 3\n ] += self.PinsVJ[base_ins + 3] * np.sum(current_base_nt_vec\n )\n base_ins += 3\n for init_pos in range(2, max_V_align, 3):\n Pi_V_insVJ_given_J[j][0, init_pos] += self.PinsVJ[0\n ] * Pi_V_given_J[j][0, init_pos]\n current_base_nt_vec = self.zero_nt_bias_insVJ * Pi_V_given_J[j][\n 0, init_pos]\n base_ins = 0\n for aa in CDR3_seq[init_pos / 3 + 1:init_pos / 3 + \n max_insertions / 3]:\n Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 1\n ] += self.PinsVJ[base_ins + 1] * np.dot(self.Svj[aa],\n current_base_nt_vec)\n Pi_V_insVJ_given_J[j][:, init_pos + base_ins + 2\n ] += self.PinsVJ[base_ins + 2] * np.dot(self.Dvj[aa],\n current_base_nt_vec)\n current_base_nt_vec = np.dot(self.Tvj[aa], current_base_nt_vec)\n Pi_V_insVJ_given_J[j][0, init_pos + base_ins + 3\n ] += self.PinsVJ[base_ins + 3] * np.sum(current_base_nt_vec\n )\n base_ins += 3\n return Pi_V_insVJ_given_J\n",
"role": "user"
},
{
"content": "compute_Pi_V_insVJ_given_J",
"role": "assistant"
}
] |
def x(self, lam):
s = weighted_graphtf(self.nnodes, self.y, self.weights, lam, self.Dk.
shape[0], self.Dk.shape[1], self.Dk.nnz, self.Dk.row.astype('int32'
), self.Dk.col.astype('int32'), self.Dk.data.astype('double'), self
.maxsteps, self.converge, self.beta, self.u)
self.steps.append(s)
return self.beta
|
solve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lam):\n s = weighted_graphtf(self.nnodes, self.y, self.weights, lam, self.Dk.\n shape[0], self.Dk.shape[1], self.Dk.nnz, self.Dk.row.astype('int32'\n ), self.Dk.col.astype('int32'), self.Dk.data.astype('double'), self\n .maxsteps, self.converge, self.beta, self.u)\n self.steps.append(s)\n return self.beta\n",
"role": "user"
},
{
"content": "solve",
"role": "assistant"
}
] |
def x(self, min_lambda, max_lambda, lambda_bins, verbose=0):
self.u = np.zeros(self.Dk.shape[0], dtype='double')
lambda_grid = np.exp(np.linspace(np.log(max_lambda), np.log(min_lambda),
lambda_bins))
aic_trace = np.zeros(lambda_grid.shape)
aicc_trace = np.zeros(lambda_grid.shape)
bic_trace = np.zeros(lambda_grid.shape)
dof_trace = np.zeros(lambda_grid.shape)
log_likelihood_trace = np.zeros(lambda_grid.shape)
beta_trace = []
best_idx = None
best_plateaus = None
if self.edges is None:
self.edges = defaultdict(list)
elist = csr_matrix(self.D).indices.reshape((self.D.shape[0], 2))
for n1, n2 in elist:
self.edges[n1].append(n2)
self.edges[n2].append(n1)
for i, lam in enumerate(lambda_grid):
if verbose:
print('#{0} Lambda = {1}'.format(i, lam))
beta = self.solve(lam)
if verbose:
print('Calculating degrees of freedom')
dof_vals = self.Dk_minus_one.dot(beta) if self.k > 0 else beta
plateaus = calc_plateaus(dof_vals, self.edges, rel_tol=0.01
) if self.k % 2 == 0 else nearly_unique(dof_vals, rel_tol=0.03)
dof_trace[i] = max(1, len(plateaus))
if verbose:
print('Calculating Information Criteria')
log_likelihood_trace[i] = -0.5 * ((self.y - beta) ** 2).sum()
aic_trace[i] = 2.0 * dof_trace[i] - 2.0 * log_likelihood_trace[i]
aicc_trace[i] = aic_trace[i] + 2 * dof_trace[i] * (dof_trace[i] + 1
) / (len(beta) - dof_trace[i] - 1.0)
bic_trace[i] = -2 * log_likelihood_trace[i] + dof_trace[i] * (np.
log(len(beta)) - np.log(2 * np.pi))
if best_idx is None or bic_trace[i] < bic_trace[best_idx]:
best_idx = i
best_plateaus = plateaus
beta_trace.append(np.array(beta))
if verbose:
print('DoF: {0} AIC: {1} AICc: {2} BIC: {3}\n'.format(dof_trace
[i], aic_trace[i], aicc_trace[i], bic_trace[i]))
if verbose:
print(
'Best setting (by BIC): lambda={0} [DoF: {1}, AIC: {2}, AICc: {3} BIC: {4}]'
.format(lambda_grid[best_idx], dof_trace[best_idx], aic_trace[
best_idx], aicc_trace[best_idx], bic_trace[best_idx]))
return {'aic': aic_trace, 'aicc': aicc_trace, 'bic': bic_trace, 'dof':
dof_trace, 'loglikelihood': log_likelihood_trace, 'beta': np.array(
beta_trace), 'lambda': lambda_grid, 'best_idx': best_idx, 'best':
beta_trace[best_idx], 'plateaus': best_plateaus}
|
solution_path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, min_lambda, max_lambda, lambda_bins, verbose=0):\n self.u = np.zeros(self.Dk.shape[0], dtype='double')\n lambda_grid = np.exp(np.linspace(np.log(max_lambda), np.log(min_lambda),\n lambda_bins))\n aic_trace = np.zeros(lambda_grid.shape)\n aicc_trace = np.zeros(lambda_grid.shape)\n bic_trace = np.zeros(lambda_grid.shape)\n dof_trace = np.zeros(lambda_grid.shape)\n log_likelihood_trace = np.zeros(lambda_grid.shape)\n beta_trace = []\n best_idx = None\n best_plateaus = None\n if self.edges is None:\n self.edges = defaultdict(list)\n elist = csr_matrix(self.D).indices.reshape((self.D.shape[0], 2))\n for n1, n2 in elist:\n self.edges[n1].append(n2)\n self.edges[n2].append(n1)\n for i, lam in enumerate(lambda_grid):\n if verbose:\n print('#{0} Lambda = {1}'.format(i, lam))\n beta = self.solve(lam)\n if verbose:\n print('Calculating degrees of freedom')\n dof_vals = self.Dk_minus_one.dot(beta) if self.k > 0 else beta\n plateaus = calc_plateaus(dof_vals, self.edges, rel_tol=0.01\n ) if self.k % 2 == 0 else nearly_unique(dof_vals, rel_tol=0.03)\n dof_trace[i] = max(1, len(plateaus))\n if verbose:\n print('Calculating Information Criteria')\n log_likelihood_trace[i] = -0.5 * ((self.y - beta) ** 2).sum()\n aic_trace[i] = 2.0 * dof_trace[i] - 2.0 * log_likelihood_trace[i]\n aicc_trace[i] = aic_trace[i] + 2 * dof_trace[i] * (dof_trace[i] + 1\n ) / (len(beta) - dof_trace[i] - 1.0)\n bic_trace[i] = -2 * log_likelihood_trace[i] + dof_trace[i] * (np.\n log(len(beta)) - np.log(2 * np.pi))\n if best_idx is None or bic_trace[i] < bic_trace[best_idx]:\n best_idx = i\n best_plateaus = plateaus\n beta_trace.append(np.array(beta))\n if verbose:\n print('DoF: {0} AIC: {1} AICc: {2} BIC: {3}\\n'.format(dof_trace\n [i], aic_trace[i], aicc_trace[i], bic_trace[i]))\n if verbose:\n print(\n 'Best setting (by BIC): lambda={0} [DoF: {1}, AIC: {2}, AICc: {3} BIC: {4}]'\n .format(lambda_grid[best_idx], dof_trace[best_idx], aic_trace[\n best_idx], aicc_trace[best_idx], bic_trace[best_idx]))\n return {'aic': aic_trace, 'aicc': aicc_trace, 'bic': bic_trace, 'dof':\n dof_trace, 'loglikelihood': log_likelihood_trace, 'beta': np.array(\n beta_trace), 'lambda': lambda_grid, 'best_idx': best_idx, 'best':\n beta_trace[best_idx], 'plateaus': best_plateaus}\n",
"role": "user"
},
{
"content": "solution_path",
"role": "assistant"
}
] |
def x(self, lam):
s = weighted_graphtf_logit(self.nnodes, self.trials, self.successes,
lam, self.Dk.shape[0], self.Dk.shape[1], self.Dk.nnz, self.Dk.row.
astype('int32'), self.Dk.col.astype('int32'), self.Dk.data.astype(
'double'), self.maxsteps, self.converge, self.beta, self.u)
self.steps.append(s)
return self.beta
|
solve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lam):\n s = weighted_graphtf_logit(self.nnodes, self.trials, self.successes,\n lam, self.Dk.shape[0], self.Dk.shape[1], self.Dk.nnz, self.Dk.row.\n astype('int32'), self.Dk.col.astype('int32'), self.Dk.data.astype(\n 'double'), self.maxsteps, self.converge, self.beta, self.u)\n self.steps.append(s)\n return self.beta\n",
"role": "user"
},
{
"content": "solve",
"role": "assistant"
}
] |
def x(self, lam):
s = weighted_graphtf_poisson(self.nnodes, self.obs, lam, self.Dk.shape[
0], self.Dk.shape[1], self.Dk.nnz, self.Dk.row.astype('int32'),
self.Dk.col.astype('int32'), self.Dk.data.astype('double'), self.
maxsteps, self.converge, self.beta, self.u)
self.steps.append(s)
return self.beta
|
solve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lam):\n s = weighted_graphtf_poisson(self.nnodes, self.obs, lam, self.Dk.shape[\n 0], self.Dk.shape[1], self.Dk.nnz, self.Dk.row.astype('int32'),\n self.Dk.col.astype('int32'), self.Dk.data.astype('double'), self.\n maxsteps, self.converge, self.beta, self.u)\n self.steps.append(s)\n return self.beta\n",
"role": "user"
},
{
"content": "solve",
"role": "assistant"
}
] |
def x(self, genV, genJ):
V_allele_names = [V[0] for V in genV]
V_mask_mapping = {}
for v in set([x.split('*')[0] for x in V_allele_names]):
V_mask_mapping[v] = []
for v in set(['V'.join(x.split('*')[0].split('V')[1:]) for x in
V_allele_names]):
V_mask_mapping[v] = []
for i, v in enumerate(V_allele_names):
V_mask_mapping[v] = [i]
V_mask_mapping['V'.join(v.split('*')[0].split('V')[1:])].append(i)
V_mask_mapping[v.split('*')[0]].append(i)
J_allele_names = [J[0] for J in genJ]
J_mask_mapping = {}
for j in set([x.split('*')[0] for x in J_allele_names]):
J_mask_mapping[j] = []
for j in set(['J'.join(x.split('*')[0].split('J')[1:]) for x in
J_allele_names]):
J_mask_mapping[j] = []
for i, j in enumerate(J_allele_names):
J_mask_mapping[j] = [i]
J_mask_mapping['J'.join(j.split('*')[0].split('J')[1:])].append(i)
J_mask_mapping[j.split('*')[0]].append(i)
self.V_allele_names = V_allele_names
self.V_mask_mapping = V_mask_mapping
self.J_allele_names = J_allele_names
self.J_mask_mapping = J_mask_mapping
|
make_V_and_J_mask_mapping
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, genV, genJ):\n V_allele_names = [V[0] for V in genV]\n V_mask_mapping = {}\n for v in set([x.split('*')[0] for x in V_allele_names]):\n V_mask_mapping[v] = []\n for v in set(['V'.join(x.split('*')[0].split('V')[1:]) for x in\n V_allele_names]):\n V_mask_mapping[v] = []\n for i, v in enumerate(V_allele_names):\n V_mask_mapping[v] = [i]\n V_mask_mapping['V'.join(v.split('*')[0].split('V')[1:])].append(i)\n V_mask_mapping[v.split('*')[0]].append(i)\n J_allele_names = [J[0] for J in genJ]\n J_mask_mapping = {}\n for j in set([x.split('*')[0] for x in J_allele_names]):\n J_mask_mapping[j] = []\n for j in set(['J'.join(x.split('*')[0].split('J')[1:]) for x in\n J_allele_names]):\n J_mask_mapping[j] = []\n for i, j in enumerate(J_allele_names):\n J_mask_mapping[j] = [i]\n J_mask_mapping['J'.join(j.split('*')[0].split('J')[1:])].append(i)\n J_mask_mapping[j.split('*')[0]].append(i)\n self.V_allele_names = V_allele_names\n self.V_mask_mapping = V_mask_mapping\n self.J_allele_names = J_allele_names\n self.J_mask_mapping = J_mask_mapping\n",
"role": "user"
},
{
"content": "make_V_and_J_mask_mapping",
"role": "assistant"
}
] |
def x(self, generative_model, genomic_data):
cutD_genomic_CDR3_segs = genomic_data.cutD_genomic_CDR3_segs
nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
num_dell_pos, num_delr_pos, num_D_genes = (generative_model.
PdelDldelDr_given_D.shape)
PD_nt_pos_vec = [[]] * num_D_genes
PD_2nd_nt_pos_per_aa_vec = [[]] * num_D_genes
for D_in in range(num_D_genes):
current_PD_nt_pos_vec = np.zeros((4, len(cutD_genomic_CDR3_segs[D_in]))
)
current_PD_2nd_nt_pos_per_aa_vec = {}
for aa in self.codons_dict.keys():
current_PD_2nd_nt_pos_per_aa_vec[aa] = np.zeros((4, len(
cutD_genomic_CDR3_segs[D_in])))
for pos, nt in enumerate(cutD_genomic_CDR3_segs[D_in]):
current_PD_nt_pos_vec[nt2num[nt], pos] = 1
for ins_nt in 'ACGT':
for aa in self.codons_dict.keys():
if ins_nt + cutD_genomic_CDR3_segs[D_in][pos:pos + 2
] in self.codons_dict[aa]:
current_PD_2nd_nt_pos_per_aa_vec[aa][nt2num[ins_nt],
pos] = 1
PD_nt_pos_vec[D_in] = current_PD_nt_pos_vec
PD_2nd_nt_pos_per_aa_vec[D_in] = current_PD_2nd_nt_pos_per_aa_vec
min_delDl_given_DdelDr = [[]] * num_D_genes
max_delDl_given_DdelDr = [[]] * num_D_genes
zeroD_given_D = [[]] * num_D_genes
for D_in in range(num_D_genes):
current_min_delDl_given_delDr = [0] * num_delr_pos
current_max_delDl_given_delDr = [0] * num_delr_pos
current_zeroD = 0
for delr in range(num_delr_pos):
if num_dell_pos > len(cutD_genomic_CDR3_segs[D_in]) - delr:
current_zeroD += generative_model.PdelDldelDr_given_D[len(
cutD_genomic_CDR3_segs[D_in]) - delr, delr, D_in]
dell = 0
while generative_model.PdelDldelDr_given_D[dell, delr, D_in
] == 0 and dell < num_dell_pos - 1:
dell += 1
if generative_model.PdelDldelDr_given_D[dell, delr, D_in] == 0:
current_min_delDl_given_delDr[delr] = -1
else:
current_min_delDl_given_delDr[delr] = dell
if current_min_delDl_given_delDr[delr] == -1:
current_max_delDl_given_delDr[delr] = -1
else:
dell = num_dell_pos - 1
while generative_model.PdelDldelDr_given_D[dell, delr, D_in
] == 0 and dell >= 0:
dell -= 1
if generative_model.PdelDldelDr_given_D[dell, delr, D_in] == 0:
current_max_delDl_given_delDr[delr] = -1
else:
current_max_delDl_given_delDr[delr] = dell
min_delDl_given_DdelDr[D_in] = current_min_delDl_given_delDr
max_delDl_given_DdelDr[D_in] = current_max_delDl_given_delDr
zeroD_given_D[D_in] = current_zeroD
self.PD_nt_pos_vec = PD_nt_pos_vec
self.PD_2nd_nt_pos_per_aa_vec = PD_2nd_nt_pos_per_aa_vec
self.min_delDl_given_DdelDr = min_delDl_given_DdelDr
self.max_delDl_given_DdelDr = max_delDl_given_DdelDr
self.zeroD_given_D = zeroD_given_D
|
preprocess_D_segs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, generative_model, genomic_data):\n cutD_genomic_CDR3_segs = genomic_data.cutD_genomic_CDR3_segs\n nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n num_dell_pos, num_delr_pos, num_D_genes = (generative_model.\n PdelDldelDr_given_D.shape)\n PD_nt_pos_vec = [[]] * num_D_genes\n PD_2nd_nt_pos_per_aa_vec = [[]] * num_D_genes\n for D_in in range(num_D_genes):\n current_PD_nt_pos_vec = np.zeros((4, len(cutD_genomic_CDR3_segs[D_in]))\n )\n current_PD_2nd_nt_pos_per_aa_vec = {}\n for aa in self.codons_dict.keys():\n current_PD_2nd_nt_pos_per_aa_vec[aa] = np.zeros((4, len(\n cutD_genomic_CDR3_segs[D_in])))\n for pos, nt in enumerate(cutD_genomic_CDR3_segs[D_in]):\n current_PD_nt_pos_vec[nt2num[nt], pos] = 1\n for ins_nt in 'ACGT':\n for aa in self.codons_dict.keys():\n if ins_nt + cutD_genomic_CDR3_segs[D_in][pos:pos + 2\n ] in self.codons_dict[aa]:\n current_PD_2nd_nt_pos_per_aa_vec[aa][nt2num[ins_nt],\n pos] = 1\n PD_nt_pos_vec[D_in] = current_PD_nt_pos_vec\n PD_2nd_nt_pos_per_aa_vec[D_in] = current_PD_2nd_nt_pos_per_aa_vec\n min_delDl_given_DdelDr = [[]] * num_D_genes\n max_delDl_given_DdelDr = [[]] * num_D_genes\n zeroD_given_D = [[]] * num_D_genes\n for D_in in range(num_D_genes):\n current_min_delDl_given_delDr = [0] * num_delr_pos\n current_max_delDl_given_delDr = [0] * num_delr_pos\n current_zeroD = 0\n for delr in range(num_delr_pos):\n if num_dell_pos > len(cutD_genomic_CDR3_segs[D_in]) - delr:\n current_zeroD += generative_model.PdelDldelDr_given_D[len(\n cutD_genomic_CDR3_segs[D_in]) - delr, delr, D_in]\n dell = 0\n while generative_model.PdelDldelDr_given_D[dell, delr, D_in\n ] == 0 and dell < num_dell_pos - 1:\n dell += 1\n if generative_model.PdelDldelDr_given_D[dell, delr, D_in] == 0:\n current_min_delDl_given_delDr[delr] = -1\n else:\n current_min_delDl_given_delDr[delr] = dell\n if current_min_delDl_given_delDr[delr] == -1:\n current_max_delDl_given_delDr[delr] = -1\n else:\n dell = num_dell_pos - 1\n while generative_model.PdelDldelDr_given_D[dell, delr, D_in\n ] == 0 and dell >= 0:\n dell -= 1\n if generative_model.PdelDldelDr_given_D[dell, delr, D_in] == 0:\n current_max_delDl_given_delDr[delr] = -1\n else:\n current_max_delDl_given_delDr[delr] = dell\n min_delDl_given_DdelDr[D_in] = current_min_delDl_given_delDr\n max_delDl_given_DdelDr[D_in] = current_max_delDl_given_delDr\n zeroD_given_D[D_in] = current_zeroD\n self.PD_nt_pos_vec = PD_nt_pos_vec\n self.PD_2nd_nt_pos_per_aa_vec = PD_2nd_nt_pos_per_aa_vec\n self.min_delDl_given_DdelDr = min_delDl_given_DdelDr\n self.max_delDl_given_DdelDr = max_delDl_given_DdelDr\n self.zeroD_given_D = zeroD_given_D\n",
"role": "user"
},
{
"content": "preprocess_D_segs",
"role": "assistant"
}
] |
def x(self, generative_model, genomic_data):
cutJ_genomic_CDR3_segs = genomic_data.cutJ_genomic_CDR3_segs
nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
num_del_pos = generative_model.PdelJ_given_J.shape[0]
num_D_genes, num_J_genes = generative_model.PDJ.shape
PJ = np.sum(generative_model.PDJ, axis=0)
PJdelJ_nt_pos_vec = [[]] * num_J_genes
PJdelJ_2nd_nt_pos_per_aa_vec = [[]] * num_J_genes
for J_in, pj in enumerate(PJ):
current_PJdelJ_nt_pos_vec = np.zeros((4, len(cutJ_genomic_CDR3_segs
[J_in])))
current_PJdelJ_2nd_nt_pos_per_aa_vec = {}
for aa in self.codons_dict.keys():
current_PJdelJ_2nd_nt_pos_per_aa_vec[aa] = np.zeros((4, len(
cutJ_genomic_CDR3_segs[J_in])))
for pos, nt in enumerate(cutJ_genomic_CDR3_segs[J_in]):
if pos >= num_del_pos:
continue
if (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 1:
current_PJdelJ_nt_pos_vec[nt2num[nt], pos
] = pj * generative_model.PdelJ_given_J[pos, J_in]
elif (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 2:
for ins_nt in 'ACGT':
for aa in self.codons_dict.keys():
if ins_nt + cutJ_genomic_CDR3_segs[J_in][pos:pos + 2
] in self.codons_dict[aa]:
current_PJdelJ_2nd_nt_pos_per_aa_vec[aa][nt2num
[ins_nt], pos
] = pj * generative_model.PdelJ_given_J[pos,
J_in]
elif (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 0:
current_PJdelJ_nt_pos_vec[0, pos
] = pj * generative_model.PdelJ_given_J[pos, J_in]
PJdelJ_nt_pos_vec[J_in] = current_PJdelJ_nt_pos_vec
PJdelJ_2nd_nt_pos_per_aa_vec[J_in
] = current_PJdelJ_2nd_nt_pos_per_aa_vec
self.PJdelJ_nt_pos_vec = PJdelJ_nt_pos_vec
self.PJdelJ_2nd_nt_pos_per_aa_vec = PJdelJ_2nd_nt_pos_per_aa_vec
|
generate_PJdelJ_nt_pos_vecs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, generative_model, genomic_data):\n cutJ_genomic_CDR3_segs = genomic_data.cutJ_genomic_CDR3_segs\n nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n num_del_pos = generative_model.PdelJ_given_J.shape[0]\n num_D_genes, num_J_genes = generative_model.PDJ.shape\n PJ = np.sum(generative_model.PDJ, axis=0)\n PJdelJ_nt_pos_vec = [[]] * num_J_genes\n PJdelJ_2nd_nt_pos_per_aa_vec = [[]] * num_J_genes\n for J_in, pj in enumerate(PJ):\n current_PJdelJ_nt_pos_vec = np.zeros((4, len(cutJ_genomic_CDR3_segs\n [J_in])))\n current_PJdelJ_2nd_nt_pos_per_aa_vec = {}\n for aa in self.codons_dict.keys():\n current_PJdelJ_2nd_nt_pos_per_aa_vec[aa] = np.zeros((4, len(\n cutJ_genomic_CDR3_segs[J_in])))\n for pos, nt in enumerate(cutJ_genomic_CDR3_segs[J_in]):\n if pos >= num_del_pos:\n continue\n if (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 1:\n current_PJdelJ_nt_pos_vec[nt2num[nt], pos\n ] = pj * generative_model.PdelJ_given_J[pos, J_in]\n elif (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 2:\n for ins_nt in 'ACGT':\n for aa in self.codons_dict.keys():\n if ins_nt + cutJ_genomic_CDR3_segs[J_in][pos:pos + 2\n ] in self.codons_dict[aa]:\n current_PJdelJ_2nd_nt_pos_per_aa_vec[aa][nt2num\n [ins_nt], pos\n ] = pj * generative_model.PdelJ_given_J[pos,\n J_in]\n elif (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 0:\n current_PJdelJ_nt_pos_vec[0, pos\n ] = pj * generative_model.PdelJ_given_J[pos, J_in]\n PJdelJ_nt_pos_vec[J_in] = current_PJdelJ_nt_pos_vec\n PJdelJ_2nd_nt_pos_per_aa_vec[J_in\n ] = current_PJdelJ_2nd_nt_pos_per_aa_vec\n self.PJdelJ_nt_pos_vec = PJdelJ_nt_pos_vec\n self.PJdelJ_2nd_nt_pos_per_aa_vec = PJdelJ_2nd_nt_pos_per_aa_vec\n",
"role": "user"
},
{
"content": "generate_PJdelJ_nt_pos_vecs",
"role": "assistant"
}
] |
def x(self):
nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
Tvd = {}
for aa in self.codons_dict.keys():
current_Tvd = np.zeros((4, 4))
for init_nt in 'ACGT':
for codon in self.codons_dict[aa]:
current_Tvd[nt2num[codon[2]], nt2num[init_nt]] += self.Rvd[
nt2num[codon[2]], nt2num[codon[1]]] * self.Rvd[nt2num[
codon[1]], nt2num[codon[0]]] * self.Rvd[nt2num[codon[0]
], nt2num[init_nt]]
Tvd[aa] = current_Tvd
Svd = {}
for aa in self.codons_dict.keys():
current_Svd = np.zeros((4, 4))
for ins_nt in 'ACGT':
if any([codon.startswith(ins_nt) for codon in self.codons_dict[aa]]
):
current_Svd[nt2num[ins_nt], :] = self.Rvd[nt2num[ins_nt], :]
Svd[aa] = current_Svd
Dvd = {}
for aa in self.codons_dict.keys():
current_Dvd = np.zeros((4, 4))
for init_nt in 'ACGT':
for codon in self.codons_dict[aa]:
current_Dvd[nt2num[codon[2]], nt2num[init_nt]] += self.Rvd[
nt2num[codon[1]], nt2num[codon[0]]] * self.Rvd[nt2num[
codon[0]], nt2num[init_nt]]
Dvd[aa] = current_Dvd
lTvd = {}
for aa in self.codons_dict.keys():
current_lTvd = np.zeros((4, 4))
for codon in self.codons_dict[aa]:
current_lTvd[nt2num[codon[2]], nt2num[codon[0]]] += self.Rvd[
nt2num[codon[2]], nt2num[codon[1]]] * self.first_nt_bias_insVD[
nt2num[codon[1]]]
lTvd[aa] = current_lTvd
lDvd = {}
for aa in self.codons_dict.keys():
current_lDvd = np.zeros((4, 4))
for codon in self.codons_dict[aa]:
current_lDvd[nt2num[codon[2]], nt2num[codon[0]]
] += self.first_nt_bias_insVD[nt2num[codon[1]]]
lDvd[aa] = current_lDvd
self.Tvd = Tvd
self.Svd = Svd
self.Dvd = Dvd
self.lTvd = lTvd
self.lDvd = lDvd
|
generate_VD_junction_transfer_matrices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n Tvd = {}\n for aa in self.codons_dict.keys():\n current_Tvd = np.zeros((4, 4))\n for init_nt in 'ACGT':\n for codon in self.codons_dict[aa]:\n current_Tvd[nt2num[codon[2]], nt2num[init_nt]] += self.Rvd[\n nt2num[codon[2]], nt2num[codon[1]]] * self.Rvd[nt2num[\n codon[1]], nt2num[codon[0]]] * self.Rvd[nt2num[codon[0]\n ], nt2num[init_nt]]\n Tvd[aa] = current_Tvd\n Svd = {}\n for aa in self.codons_dict.keys():\n current_Svd = np.zeros((4, 4))\n for ins_nt in 'ACGT':\n if any([codon.startswith(ins_nt) for codon in self.codons_dict[aa]]\n ):\n current_Svd[nt2num[ins_nt], :] = self.Rvd[nt2num[ins_nt], :]\n Svd[aa] = current_Svd\n Dvd = {}\n for aa in self.codons_dict.keys():\n current_Dvd = np.zeros((4, 4))\n for init_nt in 'ACGT':\n for codon in self.codons_dict[aa]:\n current_Dvd[nt2num[codon[2]], nt2num[init_nt]] += self.Rvd[\n nt2num[codon[1]], nt2num[codon[0]]] * self.Rvd[nt2num[\n codon[0]], nt2num[init_nt]]\n Dvd[aa] = current_Dvd\n lTvd = {}\n for aa in self.codons_dict.keys():\n current_lTvd = np.zeros((4, 4))\n for codon in self.codons_dict[aa]:\n current_lTvd[nt2num[codon[2]], nt2num[codon[0]]] += self.Rvd[\n nt2num[codon[2]], nt2num[codon[1]]] * self.first_nt_bias_insVD[\n nt2num[codon[1]]]\n lTvd[aa] = current_lTvd\n lDvd = {}\n for aa in self.codons_dict.keys():\n current_lDvd = np.zeros((4, 4))\n for codon in self.codons_dict[aa]:\n current_lDvd[nt2num[codon[2]], nt2num[codon[0]]\n ] += self.first_nt_bias_insVD[nt2num[codon[1]]]\n lDvd[aa] = current_lDvd\n self.Tvd = Tvd\n self.Svd = Svd\n self.Dvd = Dvd\n self.lTvd = lTvd\n self.lDvd = lDvd\n",
"role": "user"
},
{
"content": "generate_VD_junction_transfer_matrices",
"role": "assistant"
}
] |
def x(self):
nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
Tdj = {}
for aa in self.codons_dict.keys():
current_Tdj = np.zeros((4, 4))
for init_nt in 'ACGT':
for codon in self.codons_dict[aa]:
current_Tdj[nt2num[codon[0]], nt2num[init_nt]] += self.Rdj[
nt2num[codon[0]], nt2num[codon[1]]] * self.Rdj[nt2num[
codon[1]], nt2num[codon[2]]] * self.Rdj[nt2num[codon[2]
], nt2num[init_nt]]
Tdj[aa] = current_Tdj
Sdj = {}
for aa in self.codons_dict.keys():
current_Sdj = np.zeros((4, 4))
for ins_nt in 'ACGT':
if any([codon.endswith(ins_nt) for codon in self.codons_dict[aa]]):
current_Sdj[nt2num[ins_nt], :] = self.Rdj[nt2num[ins_nt], :]
Sdj[aa] = current_Sdj
Ddj = {}
for aa in self.codons_dict.keys():
current_Ddj = np.zeros((4, 4))
for init_nt in 'ACGT':
for codon in self.codons_dict[aa]:
current_Ddj[nt2num[codon[0]], nt2num[init_nt]] += self.Rdj[
nt2num[codon[1]], nt2num[codon[2]]] * self.Rdj[nt2num[
codon[2]], nt2num[init_nt]]
Ddj[aa] = current_Ddj
rTdj = {}
for aa in self.codons_dict.keys():
current_lTdj = np.zeros((4, 4))
for codon in self.codons_dict[aa]:
current_lTdj[nt2num[codon[0]], nt2num[codon[2]]] += self.Rdj[
nt2num[codon[0]], nt2num[codon[1]]] * self.first_nt_bias_insDJ[
nt2num[codon[1]]]
rTdj[aa] = current_lTdj
rDdj = {}
for aa in self.codons_dict.keys():
current_rDdj = np.zeros((4, 4))
for codon in self.codons_dict[aa]:
current_rDdj[nt2num[codon[0]], nt2num[codon[2]]
] += self.first_nt_bias_insDJ[nt2num[codon[1]]]
rDdj[aa] = current_rDdj
self.Tdj = Tdj
self.Sdj = Sdj
self.Ddj = Ddj
self.rTdj = rTdj
self.rDdj = rDdj
|
generate_DJ_junction_transfer_matrices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n Tdj = {}\n for aa in self.codons_dict.keys():\n current_Tdj = np.zeros((4, 4))\n for init_nt in 'ACGT':\n for codon in self.codons_dict[aa]:\n current_Tdj[nt2num[codon[0]], nt2num[init_nt]] += self.Rdj[\n nt2num[codon[0]], nt2num[codon[1]]] * self.Rdj[nt2num[\n codon[1]], nt2num[codon[2]]] * self.Rdj[nt2num[codon[2]\n ], nt2num[init_nt]]\n Tdj[aa] = current_Tdj\n Sdj = {}\n for aa in self.codons_dict.keys():\n current_Sdj = np.zeros((4, 4))\n for ins_nt in 'ACGT':\n if any([codon.endswith(ins_nt) for codon in self.codons_dict[aa]]):\n current_Sdj[nt2num[ins_nt], :] = self.Rdj[nt2num[ins_nt], :]\n Sdj[aa] = current_Sdj\n Ddj = {}\n for aa in self.codons_dict.keys():\n current_Ddj = np.zeros((4, 4))\n for init_nt in 'ACGT':\n for codon in self.codons_dict[aa]:\n current_Ddj[nt2num[codon[0]], nt2num[init_nt]] += self.Rdj[\n nt2num[codon[1]], nt2num[codon[2]]] * self.Rdj[nt2num[\n codon[2]], nt2num[init_nt]]\n Ddj[aa] = current_Ddj\n rTdj = {}\n for aa in self.codons_dict.keys():\n current_lTdj = np.zeros((4, 4))\n for codon in self.codons_dict[aa]:\n current_lTdj[nt2num[codon[0]], nt2num[codon[2]]] += self.Rdj[\n nt2num[codon[0]], nt2num[codon[1]]] * self.first_nt_bias_insDJ[\n nt2num[codon[1]]]\n rTdj[aa] = current_lTdj\n rDdj = {}\n for aa in self.codons_dict.keys():\n current_rDdj = np.zeros((4, 4))\n for codon in self.codons_dict[aa]:\n current_rDdj[nt2num[codon[0]], nt2num[codon[2]]\n ] += self.first_nt_bias_insDJ[nt2num[codon[1]]]\n rDdj[aa] = current_rDdj\n self.Tdj = Tdj\n self.Sdj = Sdj\n self.Ddj = Ddj\n self.rTdj = rTdj\n self.rDdj = rDdj\n",
"role": "user"
},
{
"content": "generate_DJ_junction_transfer_matrices",
"role": "assistant"
}
] |
def x(self, generative_model, genomic_data):
cutV_genomic_CDR3_segs = genomic_data.cutV_genomic_CDR3_segs
nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
num_del_pos = generative_model.PdelV_given_V.shape[0]
num_V_genes = generative_model.PdelV_given_V.shape[1]
PVdelV_nt_pos_vec = [[]] * num_V_genes
PVdelV_2nd_nt_pos_per_aa_vec = [[]] * num_V_genes
for V_in in range(num_V_genes):
current_PVdelV_nt_pos_vec = np.zeros((4, len(cutV_genomic_CDR3_segs
[V_in])))
current_PVdelV_2nd_nt_pos_per_aa_vec = {}
for aa in self.codons_dict.keys():
current_PVdelV_2nd_nt_pos_per_aa_vec[aa] = np.zeros((4, len(
cutV_genomic_CDR3_segs[V_in])))
for pos, nt in enumerate(cutV_genomic_CDR3_segs[V_in]):
if len(cutV_genomic_CDR3_segs[V_in]) - pos > num_del_pos:
continue
if pos % 3 == 0:
current_PVdelV_nt_pos_vec[nt2num[nt], pos
] = generative_model.PdelV_given_V[len(
cutV_genomic_CDR3_segs[V_in]) - pos - 1, V_in]
elif pos % 3 == 1:
for ins_nt in 'ACGT':
for aa in self.codons_dict.keys():
if cutV_genomic_CDR3_segs[V_in][pos - 1:pos + 1
] + ins_nt in self.codons_dict[aa]:
current_PVdelV_2nd_nt_pos_per_aa_vec[aa][nt2num
[ins_nt], pos
] = generative_model.PdelV_given_V[len(
cutV_genomic_CDR3_segs[V_in]) - pos - 1, V_in]
elif pos % 3 == 2:
current_PVdelV_nt_pos_vec[0, pos
] = generative_model.PdelV_given_V[len(
cutV_genomic_CDR3_segs[V_in]) - pos - 1, V_in]
PVdelV_nt_pos_vec[V_in] = current_PVdelV_nt_pos_vec
PVdelV_2nd_nt_pos_per_aa_vec[V_in
] = current_PVdelV_2nd_nt_pos_per_aa_vec
self.PVdelV_nt_pos_vec = PVdelV_nt_pos_vec
self.PVdelV_2nd_nt_pos_per_aa_vec = PVdelV_2nd_nt_pos_per_aa_vec
|
generate_PVdelV_nt_pos_vecs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, generative_model, genomic_data):\n cutV_genomic_CDR3_segs = genomic_data.cutV_genomic_CDR3_segs\n nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n num_del_pos = generative_model.PdelV_given_V.shape[0]\n num_V_genes = generative_model.PdelV_given_V.shape[1]\n PVdelV_nt_pos_vec = [[]] * num_V_genes\n PVdelV_2nd_nt_pos_per_aa_vec = [[]] * num_V_genes\n for V_in in range(num_V_genes):\n current_PVdelV_nt_pos_vec = np.zeros((4, len(cutV_genomic_CDR3_segs\n [V_in])))\n current_PVdelV_2nd_nt_pos_per_aa_vec = {}\n for aa in self.codons_dict.keys():\n current_PVdelV_2nd_nt_pos_per_aa_vec[aa] = np.zeros((4, len(\n cutV_genomic_CDR3_segs[V_in])))\n for pos, nt in enumerate(cutV_genomic_CDR3_segs[V_in]):\n if len(cutV_genomic_CDR3_segs[V_in]) - pos > num_del_pos:\n continue\n if pos % 3 == 0:\n current_PVdelV_nt_pos_vec[nt2num[nt], pos\n ] = generative_model.PdelV_given_V[len(\n cutV_genomic_CDR3_segs[V_in]) - pos - 1, V_in]\n elif pos % 3 == 1:\n for ins_nt in 'ACGT':\n for aa in self.codons_dict.keys():\n if cutV_genomic_CDR3_segs[V_in][pos - 1:pos + 1\n ] + ins_nt in self.codons_dict[aa]:\n current_PVdelV_2nd_nt_pos_per_aa_vec[aa][nt2num\n [ins_nt], pos\n ] = generative_model.PdelV_given_V[len(\n cutV_genomic_CDR3_segs[V_in]) - pos - 1, V_in]\n elif pos % 3 == 2:\n current_PVdelV_nt_pos_vec[0, pos\n ] = generative_model.PdelV_given_V[len(\n cutV_genomic_CDR3_segs[V_in]) - pos - 1, V_in]\n PVdelV_nt_pos_vec[V_in] = current_PVdelV_nt_pos_vec\n PVdelV_2nd_nt_pos_per_aa_vec[V_in\n ] = current_PVdelV_2nd_nt_pos_per_aa_vec\n self.PVdelV_nt_pos_vec = PVdelV_nt_pos_vec\n self.PVdelV_2nd_nt_pos_per_aa_vec = PVdelV_2nd_nt_pos_per_aa_vec\n",
"role": "user"
},
{
"content": "generate_PVdelV_nt_pos_vecs",
"role": "assistant"
}
] |
def x(self, generative_model, genomic_data):
cutJ_genomic_CDR3_segs = genomic_data.cutJ_genomic_CDR3_segs
nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
num_del_pos = generative_model.PdelJ_given_J.shape[0]
num_D_genes, num_J_genes = generative_model.PVJ.shape
PJdelJ_nt_pos_vec = [[]] * num_J_genes
PJdelJ_2nd_nt_pos_per_aa_vec = [[]] * num_J_genes
for J_in in range(num_J_genes):
current_PJdelJ_nt_pos_vec = np.zeros((4, len(cutJ_genomic_CDR3_segs
[J_in])))
current_PJdelJ_2nd_nt_pos_per_aa_vec = {}
for aa in self.codons_dict.keys():
current_PJdelJ_2nd_nt_pos_per_aa_vec[aa] = np.zeros((4, len(
cutJ_genomic_CDR3_segs[J_in])))
for pos, nt in enumerate(cutJ_genomic_CDR3_segs[J_in]):
if pos >= num_del_pos:
continue
if (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 1:
current_PJdelJ_nt_pos_vec[nt2num[nt], pos
] = generative_model.PdelJ_given_J[pos, J_in]
elif (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 2:
for ins_nt in 'ACGT':
for aa in self.codons_dict.keys():
if ins_nt + cutJ_genomic_CDR3_segs[J_in][pos:pos + 2
] in self.codons_dict[aa]:
current_PJdelJ_2nd_nt_pos_per_aa_vec[aa][nt2num
[ins_nt], pos
] = generative_model.PdelJ_given_J[pos, J_in]
elif (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 0:
current_PJdelJ_nt_pos_vec[0, pos
] = generative_model.PdelJ_given_J[pos, J_in]
PJdelJ_nt_pos_vec[J_in] = current_PJdelJ_nt_pos_vec
PJdelJ_2nd_nt_pos_per_aa_vec[J_in
] = current_PJdelJ_2nd_nt_pos_per_aa_vec
self.PJdelJ_nt_pos_vec = PJdelJ_nt_pos_vec
self.PJdelJ_2nd_nt_pos_per_aa_vec = PJdelJ_2nd_nt_pos_per_aa_vec
|
generate_PJdelJ_nt_pos_vecs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, generative_model, genomic_data):\n cutJ_genomic_CDR3_segs = genomic_data.cutJ_genomic_CDR3_segs\n nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n num_del_pos = generative_model.PdelJ_given_J.shape[0]\n num_D_genes, num_J_genes = generative_model.PVJ.shape\n PJdelJ_nt_pos_vec = [[]] * num_J_genes\n PJdelJ_2nd_nt_pos_per_aa_vec = [[]] * num_J_genes\n for J_in in range(num_J_genes):\n current_PJdelJ_nt_pos_vec = np.zeros((4, len(cutJ_genomic_CDR3_segs\n [J_in])))\n current_PJdelJ_2nd_nt_pos_per_aa_vec = {}\n for aa in self.codons_dict.keys():\n current_PJdelJ_2nd_nt_pos_per_aa_vec[aa] = np.zeros((4, len(\n cutJ_genomic_CDR3_segs[J_in])))\n for pos, nt in enumerate(cutJ_genomic_CDR3_segs[J_in]):\n if pos >= num_del_pos:\n continue\n if (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 1:\n current_PJdelJ_nt_pos_vec[nt2num[nt], pos\n ] = generative_model.PdelJ_given_J[pos, J_in]\n elif (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 2:\n for ins_nt in 'ACGT':\n for aa in self.codons_dict.keys():\n if ins_nt + cutJ_genomic_CDR3_segs[J_in][pos:pos + 2\n ] in self.codons_dict[aa]:\n current_PJdelJ_2nd_nt_pos_per_aa_vec[aa][nt2num\n [ins_nt], pos\n ] = generative_model.PdelJ_given_J[pos, J_in]\n elif (len(cutJ_genomic_CDR3_segs[J_in]) - pos) % 3 == 0:\n current_PJdelJ_nt_pos_vec[0, pos\n ] = generative_model.PdelJ_given_J[pos, J_in]\n PJdelJ_nt_pos_vec[J_in] = current_PJdelJ_nt_pos_vec\n PJdelJ_2nd_nt_pos_per_aa_vec[J_in\n ] = current_PJdelJ_2nd_nt_pos_per_aa_vec\n self.PJdelJ_nt_pos_vec = PJdelJ_nt_pos_vec\n self.PJdelJ_2nd_nt_pos_per_aa_vec = PJdelJ_2nd_nt_pos_per_aa_vec\n",
"role": "user"
},
{
"content": "generate_PJdelJ_nt_pos_vecs",
"role": "assistant"
}
] |
def x(self):
nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
Tvj = {}
for aa in self.codons_dict.keys():
current_Tvj = np.zeros((4, 4))
for init_nt in 'ACGT':
for codon in self.codons_dict[aa]:
current_Tvj[nt2num[codon[2]], nt2num[init_nt]] += self.Rvj[
nt2num[codon[2]], nt2num[codon[1]]] * self.Rvj[nt2num[
codon[1]], nt2num[codon[0]]] * self.Rvj[nt2num[codon[0]
], nt2num[init_nt]]
Tvj[aa] = current_Tvj
Svj = {}
for aa in self.codons_dict.keys():
current_Svj = np.zeros((4, 4))
for ins_nt in 'ACGT':
if any([codon.startswith(ins_nt) for codon in self.codons_dict[aa]]
):
current_Svj[nt2num[ins_nt], :] = self.Rvj[nt2num[ins_nt], :]
Svj[aa] = current_Svj
Dvj = {}
for aa in self.codons_dict.keys():
current_Dvj = np.zeros((4, 4))
for init_nt in 'ACGT':
for codon in self.codons_dict[aa]:
current_Dvj[nt2num[codon[2]], nt2num[init_nt]] += self.Rvj[
nt2num[codon[1]], nt2num[codon[0]]] * self.Rvj[nt2num[
codon[0]], nt2num[init_nt]]
Dvj[aa] = current_Dvj
lTvj = {}
for aa in self.codons_dict.keys():
current_lTvj = np.zeros((4, 4))
for codon in self.codons_dict[aa]:
current_lTvj[nt2num[codon[2]], nt2num[codon[0]]] += self.Rvj[
nt2num[codon[2]], nt2num[codon[1]]] * self.first_nt_bias_insVJ[
nt2num[codon[1]]]
lTvj[aa] = current_lTvj
lDvj = {}
for aa in self.codons_dict.keys():
current_lDvj = np.zeros((4, 4))
for codon in self.codons_dict[aa]:
current_lDvj[nt2num[codon[2]], nt2num[codon[0]]
] += self.first_nt_bias_insVJ[nt2num[codon[1]]]
lDvj[aa] = current_lDvj
self.Tvj = Tvj
self.Svj = Svj
self.Dvj = Dvj
self.lTvj = lTvj
self.lDvj = lDvj
|
generate_VJ_junction_transfer_matrices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n nt2num = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n Tvj = {}\n for aa in self.codons_dict.keys():\n current_Tvj = np.zeros((4, 4))\n for init_nt in 'ACGT':\n for codon in self.codons_dict[aa]:\n current_Tvj[nt2num[codon[2]], nt2num[init_nt]] += self.Rvj[\n nt2num[codon[2]], nt2num[codon[1]]] * self.Rvj[nt2num[\n codon[1]], nt2num[codon[0]]] * self.Rvj[nt2num[codon[0]\n ], nt2num[init_nt]]\n Tvj[aa] = current_Tvj\n Svj = {}\n for aa in self.codons_dict.keys():\n current_Svj = np.zeros((4, 4))\n for ins_nt in 'ACGT':\n if any([codon.startswith(ins_nt) for codon in self.codons_dict[aa]]\n ):\n current_Svj[nt2num[ins_nt], :] = self.Rvj[nt2num[ins_nt], :]\n Svj[aa] = current_Svj\n Dvj = {}\n for aa in self.codons_dict.keys():\n current_Dvj = np.zeros((4, 4))\n for init_nt in 'ACGT':\n for codon in self.codons_dict[aa]:\n current_Dvj[nt2num[codon[2]], nt2num[init_nt]] += self.Rvj[\n nt2num[codon[1]], nt2num[codon[0]]] * self.Rvj[nt2num[\n codon[0]], nt2num[init_nt]]\n Dvj[aa] = current_Dvj\n lTvj = {}\n for aa in self.codons_dict.keys():\n current_lTvj = np.zeros((4, 4))\n for codon in self.codons_dict[aa]:\n current_lTvj[nt2num[codon[2]], nt2num[codon[0]]] += self.Rvj[\n nt2num[codon[2]], nt2num[codon[1]]] * self.first_nt_bias_insVJ[\n nt2num[codon[1]]]\n lTvj[aa] = current_lTvj\n lDvj = {}\n for aa in self.codons_dict.keys():\n current_lDvj = np.zeros((4, 4))\n for codon in self.codons_dict[aa]:\n current_lDvj[nt2num[codon[2]], nt2num[codon[0]]\n ] += self.first_nt_bias_insVJ[nt2num[codon[1]]]\n lDvj[aa] = current_lDvj\n self.Tvj = Tvj\n self.Svj = Svj\n self.Dvj = Dvj\n self.lTvj = lTvj\n self.lDvj = lDvj\n",
"role": "user"
},
{
"content": "generate_VJ_junction_transfer_matrices",
"role": "assistant"
}
] |
def x(self):
d = {}
for i in self._attrsList:
key = i
value = getattr(self, i)
d[key] = value
return d
|
getFields
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n d = {}\n for i in self._attrsList:\n key = i\n value = getattr(self, i)\n d[key] = value\n return d\n",
"role": "user"
},
{
"content": "getFields",
"role": "assistant"
}
] |
def x(readDataInstance, arrayType, arrayLength):
newArray = Array(arrayType)
dataLength = len(readDataInstance)
if arrayType is TYPE_DWORD:
toRead = arrayLength * 4
if dataLength >= toRead:
for i in range(arrayLength):
newArray.append(DWORD(readDataInstance.readDword()))
else:
raise excep.DataLengthException('Not enough bytes to read.')
elif arrayType is TYPE_WORD:
toRead = arrayLength * 2
if dataLength >= toRead:
for i in range(arrayLength):
newArray.append(DWORD(readDataInstance.readWord()))
else:
raise excep.DataLengthException('Not enough bytes to read.')
elif arrayType is TYPE_QWORD:
toRead = arrayLength * 8
if dataLength >= toRead:
for i in range(arrayLength):
newArray.append(QWORD(readDataInstance.readQword()))
else:
raise excep.DataLengthException('Not enough bytes to read.')
elif arrayType is TYPE_BYTE:
for i in range(arrayLength):
newArray.append(BYTE(readDataInstance.readByte()))
else:
raise excep.ArrayTypeException("Could't create an array of type %d" %
arrayType)
return newArray
|
parse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(readDataInstance, arrayType, arrayLength):\n newArray = Array(arrayType)\n dataLength = len(readDataInstance)\n if arrayType is TYPE_DWORD:\n toRead = arrayLength * 4\n if dataLength >= toRead:\n for i in range(arrayLength):\n newArray.append(DWORD(readDataInstance.readDword()))\n else:\n raise excep.DataLengthException('Not enough bytes to read.')\n elif arrayType is TYPE_WORD:\n toRead = arrayLength * 2\n if dataLength >= toRead:\n for i in range(arrayLength):\n newArray.append(DWORD(readDataInstance.readWord()))\n else:\n raise excep.DataLengthException('Not enough bytes to read.')\n elif arrayType is TYPE_QWORD:\n toRead = arrayLength * 8\n if dataLength >= toRead:\n for i in range(arrayLength):\n newArray.append(QWORD(readDataInstance.readQword()))\n else:\n raise excep.DataLengthException('Not enough bytes to read.')\n elif arrayType is TYPE_BYTE:\n for i in range(arrayLength):\n newArray.append(BYTE(readDataInstance.readByte()))\n else:\n raise excep.ArrayTypeException(\"Could't create an array of type %d\" %\n arrayType)\n return newArray\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
] |
def x(g, start, end):
even_g = nx.subgraph(g, g.nodes()).copy()
if end in even_g.neighbors(start):
even_g.remove_edge(start, end)
comps = list(nx.connected_components(even_g))
if len(comps) == 1:
trail = list(nx.eulerian_circuit(even_g, start))
trail.append((start, end))
elif len(comps) == 2:
subg1 = nx.subgraph(even_g, comps[0])
subg2 = nx.subgraph(even_g, comps[1])
start_subg, end_subg = (subg1, subg2) if start in subg1.nodes(
) else (subg2, subg1)
trail = list(nx.eulerian_circuit(start_subg, start)) + [(start,
end)] + list(nx.eulerian_circuit(end_subg, end))
else:
raise Exception(
'Unknown edge case with connected components of size {0}:\n{1}'
.format(len(comps), comps))
else:
even_g.add_edge(start, end)
circ = list(nx.eulerian_circuit(even_g, start))
try:
trail_start = circ.index((start, end))
except:
trail_start = circ.index((end, start))
trail = circ[trail_start + 1:] + circ[:trail_start]
return trail
|
calc_euler_tour
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(g, start, end):\n even_g = nx.subgraph(g, g.nodes()).copy()\n if end in even_g.neighbors(start):\n even_g.remove_edge(start, end)\n comps = list(nx.connected_components(even_g))\n if len(comps) == 1:\n trail = list(nx.eulerian_circuit(even_g, start))\n trail.append((start, end))\n elif len(comps) == 2:\n subg1 = nx.subgraph(even_g, comps[0])\n subg2 = nx.subgraph(even_g, comps[1])\n start_subg, end_subg = (subg1, subg2) if start in subg1.nodes(\n ) else (subg2, subg1)\n trail = list(nx.eulerian_circuit(start_subg, start)) + [(start,\n end)] + list(nx.eulerian_circuit(end_subg, end))\n else:\n raise Exception(\n 'Unknown edge case with connected components of size {0}:\\n{1}'\n .format(len(comps), comps))\n else:\n even_g.add_edge(start, end)\n circ = list(nx.eulerian_circuit(even_g, start))\n try:\n trail_start = circ.index((start, end))\n except:\n trail_start = circ.index((end, start))\n trail = circ[trail_start + 1:] + circ[:trail_start]\n return trail\n",
"role": "user"
},
{
"content": "calc_euler_tour",
"role": "assistant"
}
] |
def x(subg, odds, verbose):
if verbose:
print('\tCreating edge map')
edges = defaultdict(list)
for x, y in subg.edges():
edges[x].append(y)
edges[y].append(x)
if verbose:
print('\tSelecting trails')
trails = []
for x in subg.nodes():
if verbose > 2:
print('\t\tNode {0}'.format(x))
while len(edges[x]) > 0:
y = edges[x][0]
trail = [(x, y)]
edges[x].remove(y)
edges[y].remove(x)
while len(edges[y]) > 0:
x = y
y = edges[y][0]
trail.append((x, y))
edges[x].remove(y)
edges[y].remove(x)
trails.append(trail)
return trails
|
greedy_trails
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(subg, odds, verbose):\n if verbose:\n print('\\tCreating edge map')\n edges = defaultdict(list)\n for x, y in subg.edges():\n edges[x].append(y)\n edges[y].append(x)\n if verbose:\n print('\\tSelecting trails')\n trails = []\n for x in subg.nodes():\n if verbose > 2:\n print('\\t\\tNode {0}'.format(x))\n while len(edges[x]) > 0:\n y = edges[x][0]\n trail = [(x, y)]\n edges[x].remove(y)\n edges[y].remove(x)\n while len(edges[y]) > 0:\n x = y\n y = edges[y][0]\n trail.append((x, y))\n edges[x].remove(y)\n edges[y].remove(x)\n trails.append(trail)\n return trails\n",
"role": "user"
},
{
"content": "greedy_trails",
"role": "assistant"
}
] |
def x(g, heuristic='tour', max_odds=20, verbose=0):
subgraphs = [nx.subgraph(g, x).copy() for x in nx.connected_components(g)]
chains = []
num_subgraphs = len(subgraphs)
step = 0
while num_subgraphs > 0:
if verbose:
print('Step #{0} ({1} subgraphs)'.format(step, num_subgraphs))
for i in range(num_subgraphs - 1, -1, -1):
subg = subgraphs[i]
odds = [x for x, y in dict(nx.degree(subg)).items() if y % 2 == 1]
if verbose > 1:
if len(odds) == 0:
print('\t\tNo odds')
elif len(odds) == 2:
print('\t\tExactly 2 odds')
else:
print('\t\t{0} odds'.format(len(odds)))
if len(odds) == 0:
trails = [list(nx.eulerian_circuit(subg))]
elif len(odds) == 2:
trails = [calc_euler_tour(subg, odds[0], odds[1])]
elif heuristic in ['min', 'max', 'median', 'any']:
trails = select_odd_degree_trail(subg, odds, max_odds,
heuristic, verbose)
elif heuristic == 'random':
trails = select_random_trail(subg, verbose)
elif heuristic == 'mindegree':
trails = select_min_degree_trail(subg, max_odds, verbose)
elif heuristic == 'ones':
trails = select_single_edge_trails(subg, verbose)
elif heuristic == 'tour':
trails = pseudo_tour_trails(subg, odds, verbose)
elif heuristic == 'greedy':
trails = greedy_trails(subg, odds, verbose)
if verbose > 2:
print('\t\tTrails: {0}'.format(len(trails)))
for trail in trails:
subg.remove_edges_from(trail)
chains.extend(trails)
if subg.number_of_edges() == 0:
del subgraphs[i]
else:
comps = list(nx.connected_components(subg))
if len(comps) > 1:
for x in comps:
compg = nx.subgraph(subg, x)
if compg.number_of_edges() > 0:
subgraphs.append(compg)
del subgraphs[i]
num_subgraphs = len(subgraphs)
step += 1
return chains
|
decompose_graph
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(g, heuristic='tour', max_odds=20, verbose=0):\n subgraphs = [nx.subgraph(g, x).copy() for x in nx.connected_components(g)]\n chains = []\n num_subgraphs = len(subgraphs)\n step = 0\n while num_subgraphs > 0:\n if verbose:\n print('Step #{0} ({1} subgraphs)'.format(step, num_subgraphs))\n for i in range(num_subgraphs - 1, -1, -1):\n subg = subgraphs[i]\n odds = [x for x, y in dict(nx.degree(subg)).items() if y % 2 == 1]\n if verbose > 1:\n if len(odds) == 0:\n print('\\t\\tNo odds')\n elif len(odds) == 2:\n print('\\t\\tExactly 2 odds')\n else:\n print('\\t\\t{0} odds'.format(len(odds)))\n if len(odds) == 0:\n trails = [list(nx.eulerian_circuit(subg))]\n elif len(odds) == 2:\n trails = [calc_euler_tour(subg, odds[0], odds[1])]\n elif heuristic in ['min', 'max', 'median', 'any']:\n trails = select_odd_degree_trail(subg, odds, max_odds,\n heuristic, verbose)\n elif heuristic == 'random':\n trails = select_random_trail(subg, verbose)\n elif heuristic == 'mindegree':\n trails = select_min_degree_trail(subg, max_odds, verbose)\n elif heuristic == 'ones':\n trails = select_single_edge_trails(subg, verbose)\n elif heuristic == 'tour':\n trails = pseudo_tour_trails(subg, odds, verbose)\n elif heuristic == 'greedy':\n trails = greedy_trails(subg, odds, verbose)\n if verbose > 2:\n print('\\t\\tTrails: {0}'.format(len(trails)))\n for trail in trails:\n subg.remove_edges_from(trail)\n chains.extend(trails)\n if subg.number_of_edges() == 0:\n del subgraphs[i]\n else:\n comps = list(nx.connected_components(subg))\n if len(comps) > 1:\n for x in comps:\n compg = nx.subgraph(subg, x)\n if compg.number_of_edges() > 0:\n subgraphs.append(compg)\n del subgraphs[i]\n num_subgraphs = len(subgraphs)\n step += 1\n return chains\n",
"role": "user"
},
{
"content": "decompose_graph",
"role": "assistant"
}
] |
def x(self, a):
return Vector(self.x + a.x, self.y + a.y, self.z + a.z)
|
plus
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, a):\n return Vector(self.x + a.x, self.y + a.y, self.z + a.z)\n",
"role": "user"
},
{
"content": "plus",
"role": "assistant"
}
] |
def x(self, a):
return Vector(self.x - a.x, self.y - a.y, self.z - a.z)
|
minus
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, a):\n return Vector(self.x - a.x, self.y - a.y, self.z - a.z)\n",
"role": "user"
},
{
"content": "minus",
"role": "assistant"
}
] |
def x(self, a):
return Vector(self.x * a, self.y * a, self.z * a)
|
times
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, a):\n return Vector(self.x * a, self.y * a, self.z * a)\n",
"role": "user"
},
{
"content": "times",
"role": "assistant"
}
] |
def x(self, a):
return Vector(self.x / a, self.y / a, self.z / a)
|
dividedBy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, a):\n return Vector(self.x / a, self.y / a, self.z / a)\n",
"role": "user"
},
{
"content": "dividedBy",
"role": "assistant"
}
] |
def x(self, a, t):
return self.plus(a.minus(self).times(t))
|
lerp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, a, t):\n return self.plus(a.minus(self).times(t))\n",
"role": "user"
},
{
"content": "lerp",
"role": "assistant"
}
] |
def x(self, other, t):
return Vertex(self.pos.lerp(other.pos, t), self.normal.lerp(other.
normal, t))
|
interpolate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, other, t):\n return Vertex(self.pos.lerp(other.pos, t), self.normal.lerp(other.\n normal, t))\n",
"role": "user"
},
{
"content": "interpolate",
"role": "assistant"
}
] |
def x(self, polygon, coplanarFront, coplanarBack, front, back):
COPLANAR = 0
FRONT = 1
BACK = 2
SPANNING = 3
polygonType = 0
vertexLocs = []
numVertices = len(polygon.vertices)
for i in range(numVertices):
t = self.normal.dot(polygon.vertices[i].pos) - self.w
loc = -1
if t < -Plane.EPSILON:
loc = BACK
elif t > Plane.EPSILON:
loc = FRONT
else:
loc = COPLANAR
polygonType |= loc
vertexLocs.append(loc)
if polygonType == COPLANAR:
normalDotPlaneNormal = self.normal.dot(polygon.plane.normal)
if normalDotPlaneNormal > 0:
coplanarFront.append(polygon)
else:
coplanarBack.append(polygon)
elif polygonType == FRONT:
front.append(polygon)
elif polygonType == BACK:
back.append(polygon)
elif polygonType == SPANNING:
f = []
b = []
for i in range(numVertices):
j = (i + 1) % numVertices
ti = vertexLocs[i]
tj = vertexLocs[j]
vi = polygon.vertices[i]
vj = polygon.vertices[j]
if ti != BACK:
f.append(vi)
if ti != FRONT:
if ti != BACK:
b.append(vi.clone())
else:
b.append(vi)
if ti | tj == SPANNING:
t = (self.w - self.normal.dot(vi.pos)) / self.normal.dot(vj
.pos.minus(vi.pos))
v = vi.interpolate(vj, t)
f.append(v)
b.append(v.clone())
if len(f) >= 3:
front.append(Polygon(f, polygon.shared))
if len(b) >= 3:
back.append(Polygon(b, polygon.shared))
|
splitPolygon
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, polygon, coplanarFront, coplanarBack, front, back):\n COPLANAR = 0\n FRONT = 1\n BACK = 2\n SPANNING = 3\n polygonType = 0\n vertexLocs = []\n numVertices = len(polygon.vertices)\n for i in range(numVertices):\n t = self.normal.dot(polygon.vertices[i].pos) - self.w\n loc = -1\n if t < -Plane.EPSILON:\n loc = BACK\n elif t > Plane.EPSILON:\n loc = FRONT\n else:\n loc = COPLANAR\n polygonType |= loc\n vertexLocs.append(loc)\n if polygonType == COPLANAR:\n normalDotPlaneNormal = self.normal.dot(polygon.plane.normal)\n if normalDotPlaneNormal > 0:\n coplanarFront.append(polygon)\n else:\n coplanarBack.append(polygon)\n elif polygonType == FRONT:\n front.append(polygon)\n elif polygonType == BACK:\n back.append(polygon)\n elif polygonType == SPANNING:\n f = []\n b = []\n for i in range(numVertices):\n j = (i + 1) % numVertices\n ti = vertexLocs[i]\n tj = vertexLocs[j]\n vi = polygon.vertices[i]\n vj = polygon.vertices[j]\n if ti != BACK:\n f.append(vi)\n if ti != FRONT:\n if ti != BACK:\n b.append(vi.clone())\n else:\n b.append(vi)\n if ti | tj == SPANNING:\n t = (self.w - self.normal.dot(vi.pos)) / self.normal.dot(vj\n .pos.minus(vi.pos))\n v = vi.interpolate(vj, t)\n f.append(v)\n b.append(v.clone())\n if len(f) >= 3:\n front.append(Polygon(f, polygon.shared))\n if len(b) >= 3:\n back.append(Polygon(b, polygon.shared))\n",
"role": "user"
},
{
"content": "splitPolygon",
"role": "assistant"
}
] |
def x(self):
for poly in self.polygons:
poly.flip()
self.plane.flip()
if self.front:
self.front.invert()
if self.back:
self.back.invert()
temp = self.front
self.front = self.back
self.back = temp
|
invert
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for poly in self.polygons:\n poly.flip()\n self.plane.flip()\n if self.front:\n self.front.invert()\n if self.back:\n self.back.invert()\n temp = self.front\n self.front = self.back\n self.back = temp\n",
"role": "user"
},
{
"content": "invert",
"role": "assistant"
}
] |
def x(self, polygons):
if not self.plane:
return polygons[:]
front = []
back = []
for poly in polygons:
self.plane.splitPolygon(poly, front, back, front, back)
if self.front:
front = self.front.clipPolygons(front)
if self.back:
back = self.back.clipPolygons(back)
else:
back = []
front.extend(back)
return front
|
clipPolygons
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, polygons):\n if not self.plane:\n return polygons[:]\n front = []\n back = []\n for poly in polygons:\n self.plane.splitPolygon(poly, front, back, front, back)\n if self.front:\n front = self.front.clipPolygons(front)\n if self.back:\n back = self.back.clipPolygons(back)\n else:\n back = []\n front.extend(back)\n return front\n",
"role": "user"
},
{
"content": "clipPolygons",
"role": "assistant"
}
] |
def x(self, bsp):
self.polygons = bsp.clipPolygons(self.polygons)
if self.front:
self.front.clipTo(bsp)
if self.back:
self.back.clipTo(bsp)
|
clipTo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bsp):\n self.polygons = bsp.clipPolygons(self.polygons)\n if self.front:\n self.front.clipTo(bsp)\n if self.back:\n self.back.clipTo(bsp)\n",
"role": "user"
},
{
"content": "clipTo",
"role": "assistant"
}
] |
def x(self):
polygons = self.polygons[:]
if self.front:
polygons.extend(self.front.allPolygons())
if self.back:
polygons.extend(self.back.allPolygons())
return polygons
|
allPolygons
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n polygons = self.polygons[:]\n if self.front:\n polygons.extend(self.front.allPolygons())\n if self.back:\n polygons.extend(self.back.allPolygons())\n return polygons\n",
"role": "user"
},
{
"content": "allPolygons",
"role": "assistant"
}
] |
def x(self, polygons):
if len(polygons) == 0:
return
if not self.plane:
self.plane = polygons[0].plane.clone()
self.polygons.append(polygons[0])
front = []
back = []
for poly in polygons[1:]:
self.plane.splitPolygon(poly, self.polygons, self.polygons, front, back
)
if len(front) > 0:
if not self.front:
self.front = BSPNode()
self.front.build(front)
if len(back) > 0:
if not self.back:
self.back = BSPNode()
self.back.build(back)
|
build
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, polygons):\n if len(polygons) == 0:\n return\n if not self.plane:\n self.plane = polygons[0].plane.clone()\n self.polygons.append(polygons[0])\n front = []\n back = []\n for poly in polygons[1:]:\n self.plane.splitPolygon(poly, self.polygons, self.polygons, front, back\n )\n if len(front) > 0:\n if not self.front:\n self.front = BSPNode()\n self.front.build(front)\n if len(back) > 0:\n if not self.back:\n self.back = BSPNode()\n self.back.build(back)\n",
"role": "user"
},
{
"content": "build",
"role": "assistant"
}
] |
def x(currency):
source = get_rate_source()
try:
return Rate.objects.get(source=source, currency=currency).value
except Rate.DoesNotExist:
raise CurrencyConversionException(
'Rate for %s in %s do not exists. Please run python manage.py update_rates'
% (currency, source.name))
|
get_rate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(currency):\n source = get_rate_source()\n try:\n return Rate.objects.get(source=source, currency=currency).value\n except Rate.DoesNotExist:\n raise CurrencyConversionException(\n 'Rate for %s in %s do not exists. Please run python manage.py update_rates'\n % (currency, source.name))\n",
"role": "user"
},
{
"content": "get_rate",
"role": "assistant"
}
] |
def x():
backend = money_rates_settings.DEFAULT_BACKEND()
try:
return RateSource.objects.get(name=backend.get_source_name())
except RateSource.DoesNotExist:
raise CurrencyConversionException(
'Rate for %s source do not exists. Please run python manage.py update_rates'
% backend.get_source_name())
|
get_rate_source
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n backend = money_rates_settings.DEFAULT_BACKEND()\n try:\n return RateSource.objects.get(name=backend.get_source_name())\n except RateSource.DoesNotExist:\n raise CurrencyConversionException(\n 'Rate for %s source do not exists. Please run python manage.py update_rates'\n % backend.get_source_name())\n",
"role": "user"
},
{
"content": "get_rate_source",
"role": "assistant"
}
] |
def x(amount, currency_from, currency_to):
source = get_rate_source()
if source.base_currency != currency_from:
rate_from = get_rate(currency_from)
else:
rate_from = Decimal(1)
rate_to = get_rate(currency_to)
if isinstance(amount, float):
amount = Decimal(amount).quantize(Decimal('.000001'))
return (amount / rate_from * rate_to).quantize(Decimal('1.00'))
|
base_convert_money
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(amount, currency_from, currency_to):\n source = get_rate_source()\n if source.base_currency != currency_from:\n rate_from = get_rate(currency_from)\n else:\n rate_from = Decimal(1)\n rate_to = get_rate(currency_to)\n if isinstance(amount, float):\n amount = Decimal(amount).quantize(Decimal('.000001'))\n return (amount / rate_from * rate_to).quantize(Decimal('1.00'))\n",
"role": "user"
},
{
"content": "base_convert_money",
"role": "assistant"
}
] |
def x(amount, currency_from, currency_to):
new_amount = base_convert_money(amount, currency_from, currency_to)
return moneyed.Money(new_amount, currency_to)
|
convert_money
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(amount, currency_from, currency_to):\n new_amount = base_convert_money(amount, currency_from, currency_to)\n return moneyed.Money(new_amount, currency_to)\n",
"role": "user"
},
{
"content": "convert_money",
"role": "assistant"
}
] |
def x(format_string=None, datetime_obj=None):
datetime_obj = datetime_obj or datetime.now()
if format_string is None:
seconds = int(datetime_obj.strftime('%s'))
milliseconds = datetime_obj.microsecond // 1000
return str(seconds * 1000 + milliseconds)
else:
formatter = SimpleDateFormat(format_string)
return formatter.format_datetime(datetime_obj)
|
format_date
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(format_string=None, datetime_obj=None):\n datetime_obj = datetime_obj or datetime.now()\n if format_string is None:\n seconds = int(datetime_obj.strftime('%s'))\n milliseconds = datetime_obj.microsecond // 1000\n return str(seconds * 1000 + milliseconds)\n else:\n formatter = SimpleDateFormat(format_string)\n return formatter.format_datetime(datetime_obj)\n",
"role": "user"
},
{
"content": "format_date",
"role": "assistant"
}
] |
def x(buffer):
allZero = True
for byte in buffer:
if byte != '\x00':
allZero = False
break
return allZero
|
allZero
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(buffer):\n allZero = True\n for byte in buffer:\n if byte != '\\x00':\n allZero = False\n break\n return allZero\n",
"role": "user"
},
{
"content": "allZero",
"role": "assistant"
}
] |
def x(self, byte):
self.data.write(pack('B' if not self.signed else 'b', byte))
|
writeByte
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, byte):\n self.data.write(pack('B' if not self.signed else 'b', byte))\n",
"role": "user"
},
{
"content": "writeByte",
"role": "assistant"
}
] |
def x(self, word):
self.data.write(pack(self.endianness + ('H' if not self.signed else 'h'
), word))
|
writeWord
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, word):\n self.data.write(pack(self.endianness + ('H' if not self.signed else 'h'\n ), word))\n",
"role": "user"
},
{
"content": "writeWord",
"role": "assistant"
}
] |
def x(self, dword):
self.data.write(pack(self.endianness + ('L' if not self.signed else 'l'
), dword))
|
writeDword
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dword):\n self.data.write(pack(self.endianness + ('L' if not self.signed else 'l'\n ), dword))\n",
"role": "user"
},
{
"content": "writeDword",
"role": "assistant"
}
] |
def x(self, qword):
self.data.write(pack(self.endianness + ('Q' if not self.signed else 'q'
), qword))
|
writeQword
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, qword):\n self.data.write(pack(self.endianness + ('Q' if not self.signed else 'q'\n ), qword))\n",
"role": "user"
},
{
"content": "writeQword",
"role": "assistant"
}
] |
def x(self, value):
if value >= len(self.data.getvalue()):
raise excep.WrongOffsetValueException(
'Wrong offset value. Must be less than %d' % len(self.data))
self.data.seek(value)
|
setOffset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if value >= len(self.data.getvalue()):\n raise excep.WrongOffsetValueException(\n 'Wrong offset value. Must be less than %d' % len(self.data))\n self.data.seek(value)\n",
"role": "user"
},
{
"content": "setOffset",
"role": "assistant"
}
] |
def x(self, nroBytes):
self.data.seek(nroBytes + self.data.tell())
|
skipBytes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nroBytes):\n self.data.seek(nroBytes + self.data.tell())\n",
"role": "user"
},
{
"content": "skipBytes",
"role": "assistant"
}
] |
def x(self):
dword = unpack(self.endianness + ('L' if not self.signed else 'l'),
self.readAt(self.offset, 4))[0]
self.offset += 4
return dword
|
readDword
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n dword = unpack(self.endianness + ('L' if not self.signed else 'l'),\n self.readAt(self.offset, 4))[0]\n self.offset += 4\n return dword\n",
"role": "user"
},
{
"content": "readDword",
"role": "assistant"
}
] |
def x(self):
word = unpack(self.endianness + ('H' if not self.signed else 'h'), self
.readAt(self.offset, 2))[0]
self.offset += 2
return word
|
readWord
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n word = unpack(self.endianness + ('H' if not self.signed else 'h'), self\n .readAt(self.offset, 2))[0]\n self.offset += 2\n return word\n",
"role": "user"
},
{
"content": "readWord",
"role": "assistant"
}
] |
def x(self):
byte = unpack('B' if not self.signed else 'b', self.readAt(self.offset, 1)
)[0]
self.offset += 1
return byte
|
readByte
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n byte = unpack('B' if not self.signed else 'b', self.readAt(self.offset, 1)\n )[0]\n self.offset += 1\n return byte\n",
"role": "user"
},
{
"content": "readByte",
"role": "assistant"
}
] |
def x(self):
qword = unpack(self.endianness + ('Q' if not self.signed else 'b'),
self.readAt(self.offset, 8))[0]
self.offset += 8
return qword
|
readQword
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n qword = unpack(self.endianness + ('Q' if not self.signed else 'b'),\n self.readAt(self.offset, 8))[0]\n self.offset += 8\n return qword\n",
"role": "user"
},
{
"content": "readQword",
"role": "assistant"
}
] |
def x(self):
resultStr = ''
while self.data[self.offset] != '\x00':
resultStr += self.data[self.offset]
self.offset += 1
return resultStr
|
readString
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n resultStr = ''\n while self.data[self.offset] != '\\x00':\n resultStr += self.data[self.offset]\n self.offset += 1\n return resultStr\n",
"role": "user"
},
{
"content": "readString",
"role": "assistant"
}
] |
def x(self, align=4):
s = self.readString()
r = align - len(s) % align
while r:
s += self.data[self.offset]
self.offset += 1
r -= 1
return s.rstrip('\x00')
|
readAlignedString
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, align=4):\n s = self.readString()\n r = align - len(s) % align\n while r:\n s += self.data[self.offset]\n self.offset += 1\n r -= 1\n return s.rstrip('\\x00')\n",
"role": "user"
},
{
"content": "readAlignedString",
"role": "assistant"
}
] |
def x(self, message, channel_name=None, fail_silently=False, options=None):
if channel_name is None:
channels = self.settings['CHANNELS']
else:
try:
channels = {'__selected__': self.settings['CHANNELS'][channel_name]
}
except KeyError:
raise Exception('channels does not exist %s', channel_name)
for _, config in channels.items():
if '_backend' not in config:
raise ImproperlyConfigured(
'Specify the backend class in the channel configuration')
backend = self._load_backend(config['_backend'])
config = deepcopy(config)
del config['_backend']
channel = backend(**config)
channel.send(message, fail_silently=fail_silently, options=options)
|
send
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, message, channel_name=None, fail_silently=False, options=None):\n if channel_name is None:\n channels = self.settings['CHANNELS']\n else:\n try:\n channels = {'__selected__': self.settings['CHANNELS'][channel_name]\n }\n except KeyError:\n raise Exception('channels does not exist %s', channel_name)\n for _, config in channels.items():\n if '_backend' not in config:\n raise ImproperlyConfigured(\n 'Specify the backend class in the channel configuration')\n backend = self._load_backend(config['_backend'])\n config = deepcopy(config)\n del config['_backend']\n channel = backend(**config)\n channel.send(message, fail_silently=fail_silently, options=options)\n",
"role": "user"
},
{
"content": "send",
"role": "assistant"
}
] |
def x(self, method, path, params=None, headers=None, cookies=None, data=
None, json=None, allow_redirects=None, timeout=None):
headers = headers or {}
timeout = timeout if timeout is not None else self._timeout
allow_redirects = (allow_redirects if allow_redirects is not None else
self._allow_redirects)
if self._keep_alive and self.__session is None:
self.__session = requests.Session()
if self.__session is not None and not self._use_cookies:
self.__session.cookies.clear()
address = self._bake_address(path)
req_headers = copy.deepcopy(self._additional_headers)
req_headers.update(headers)
response = http.request(method, address, session=self.__session, params
=params, headers=headers, cookies=cookies, data=data, json=json,
allow_redirects=allow_redirects, timeout=timeout)
if self._auto_assert_ok:
response.assert_ok()
return response
|
request
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, method, path, params=None, headers=None, cookies=None, data=\n None, json=None, allow_redirects=None, timeout=None):\n headers = headers or {}\n timeout = timeout if timeout is not None else self._timeout\n allow_redirects = (allow_redirects if allow_redirects is not None else\n self._allow_redirects)\n if self._keep_alive and self.__session is None:\n self.__session = requests.Session()\n if self.__session is not None and not self._use_cookies:\n self.__session.cookies.clear()\n address = self._bake_address(path)\n req_headers = copy.deepcopy(self._additional_headers)\n req_headers.update(headers)\n response = http.request(method, address, session=self.__session, params\n =params, headers=headers, cookies=cookies, data=data, json=json,\n allow_redirects=allow_redirects, timeout=timeout)\n if self._auto_assert_ok:\n response.assert_ok()\n return response\n",
"role": "user"
},
{
"content": "request",
"role": "assistant"
}
] |
def x(anchor_pos_file_name):
anchor_pos_and_functionality = {}
anchor_pos_file = open(anchor_pos_file_name, 'r')
first_line = True
for line in anchor_pos_file:
if first_line:
first_line = False
continue
split_line = line.split(',')
split_line = [x.strip() for x in split_line]
anchor_pos_and_functionality[split_line[0]] = [int(split_line[1]),
split_line[2].strip().strip('()')]
return anchor_pos_and_functionality
|
load_genomic_CDR3_anchor_pos_and_functionality
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(anchor_pos_file_name):\n anchor_pos_and_functionality = {}\n anchor_pos_file = open(anchor_pos_file_name, 'r')\n first_line = True\n for line in anchor_pos_file:\n if first_line:\n first_line = False\n continue\n split_line = line.split(',')\n split_line = [x.strip() for x in split_line]\n anchor_pos_and_functionality[split_line[0]] = [int(split_line[1]),\n split_line[2].strip().strip('()')]\n return anchor_pos_and_functionality\n",
"role": "user"
},
{
"content": "load_genomic_CDR3_anchor_pos_and_functionality",
"role": "assistant"
}
] |
def x(params_file_name):
params_file = open(params_file_name, 'r')
V_gene_info = {}
in_V_gene_sec = False
for line in params_file:
if line.startswith('#GeneChoice;V_gene;'):
in_V_gene_sec = True
elif in_V_gene_sec:
if line[0] == '%':
split_line = line[1:].split(';')
V_gene_info[split_line[0]] = [split_line[1], int(split_line[2])
]
else:
break
params_file.close()
genV = [[]] * len(V_gene_info.keys())
for V_gene in V_gene_info.keys():
genV[V_gene_info[V_gene][1]] = [V_gene, '', V_gene_info[V_gene][0]]
return genV
|
read_igor_V_gene_parameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(params_file_name):\n params_file = open(params_file_name, 'r')\n V_gene_info = {}\n in_V_gene_sec = False\n for line in params_file:\n if line.startswith('#GeneChoice;V_gene;'):\n in_V_gene_sec = True\n elif in_V_gene_sec:\n if line[0] == '%':\n split_line = line[1:].split(';')\n V_gene_info[split_line[0]] = [split_line[1], int(split_line[2])\n ]\n else:\n break\n params_file.close()\n genV = [[]] * len(V_gene_info.keys())\n for V_gene in V_gene_info.keys():\n genV[V_gene_info[V_gene][1]] = [V_gene, '', V_gene_info[V_gene][0]]\n return genV\n",
"role": "user"
},
{
"content": "read_igor_V_gene_parameters",
"role": "assistant"
}
] |
def x(params_file_name):
params_file = open(params_file_name, 'r')
D_gene_info = {}
in_D_gene_sec = False
for line in params_file:
if line.startswith('#GeneChoice;D_gene;'):
in_D_gene_sec = True
elif in_D_gene_sec:
if line[0] == '%':
split_line = line[1:].split(';')
D_gene_info[split_line[0]] = [split_line[1], int(split_line[2])
]
else:
break
params_file.close()
genD = [[]] * len(D_gene_info.keys())
for D_gene in D_gene_info.keys():
genD[D_gene_info[D_gene][1]] = [D_gene, D_gene_info[D_gene][0]]
return genD
|
read_igor_D_gene_parameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(params_file_name):\n params_file = open(params_file_name, 'r')\n D_gene_info = {}\n in_D_gene_sec = False\n for line in params_file:\n if line.startswith('#GeneChoice;D_gene;'):\n in_D_gene_sec = True\n elif in_D_gene_sec:\n if line[0] == '%':\n split_line = line[1:].split(';')\n D_gene_info[split_line[0]] = [split_line[1], int(split_line[2])\n ]\n else:\n break\n params_file.close()\n genD = [[]] * len(D_gene_info.keys())\n for D_gene in D_gene_info.keys():\n genD[D_gene_info[D_gene][1]] = [D_gene, D_gene_info[D_gene][0]]\n return genD\n",
"role": "user"
},
{
"content": "read_igor_D_gene_parameters",
"role": "assistant"
}
] |
def x(params_file_name):
params_file = open(params_file_name, 'r')
J_gene_info = {}
in_J_gene_sec = False
for line in params_file:
if line.startswith('#GeneChoice;J_gene;'):
in_J_gene_sec = True
elif in_J_gene_sec:
if line[0] == '%':
split_line = line[1:].split(';')
J_gene_info[split_line[0]] = [split_line[1], int(split_line[2])
]
else:
break
params_file.close()
genJ = [[]] * len(J_gene_info.keys())
for J_gene in J_gene_info.keys():
genJ[J_gene_info[J_gene][1]] = [J_gene, '', J_gene_info[J_gene][0]]
return genJ
|
read_igor_J_gene_parameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(params_file_name):\n params_file = open(params_file_name, 'r')\n J_gene_info = {}\n in_J_gene_sec = False\n for line in params_file:\n if line.startswith('#GeneChoice;J_gene;'):\n in_J_gene_sec = True\n elif in_J_gene_sec:\n if line[0] == '%':\n split_line = line[1:].split(';')\n J_gene_info[split_line[0]] = [split_line[1], int(split_line[2])\n ]\n else:\n break\n params_file.close()\n genJ = [[]] * len(J_gene_info.keys())\n for J_gene in J_gene_info.keys():\n genJ[J_gene_info[J_gene][1]] = [J_gene, '', J_gene_info[J_gene][0]]\n return genJ\n",
"role": "user"
},
{
"content": "read_igor_J_gene_parameters",
"role": "assistant"
}
] |
def x(self, V_anchor_pos_file, J_anchor_pos_file):
V_anchor_pos = load_genomic_CDR3_anchor_pos_and_functionality(
V_anchor_pos_file)
J_anchor_pos = load_genomic_CDR3_anchor_pos_and_functionality(
J_anchor_pos_file)
for V in self.genV:
try:
if V_anchor_pos[V[0]][0] > 0 and V_anchor_pos[V[0]][1] == 'F':
V[1] = V[2][V_anchor_pos[V[0]][0]:]
else:
V[1] = ''
except KeyError:
V[1] = ''
for J in self.genJ:
try:
if J_anchor_pos[J[0]][0] > 0 and J_anchor_pos[J[0]][1] == 'F':
J[1] = J[2][:J_anchor_pos[J[0]][0] + 3]
else:
J[1] = ''
except KeyError:
J[1] = ''
|
anchor_and_curate_genV_and_genJ
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, V_anchor_pos_file, J_anchor_pos_file):\n V_anchor_pos = load_genomic_CDR3_anchor_pos_and_functionality(\n V_anchor_pos_file)\n J_anchor_pos = load_genomic_CDR3_anchor_pos_and_functionality(\n J_anchor_pos_file)\n for V in self.genV:\n try:\n if V_anchor_pos[V[0]][0] > 0 and V_anchor_pos[V[0]][1] == 'F':\n V[1] = V[2][V_anchor_pos[V[0]][0]:]\n else:\n V[1] = ''\n except KeyError:\n V[1] = ''\n for J in self.genJ:\n try:\n if J_anchor_pos[J[0]][0] > 0 and J_anchor_pos[J[0]][1] == 'F':\n J[1] = J[2][:J_anchor_pos[J[0]][0] + 3]\n else:\n J[1] = ''\n except KeyError:\n J[1] = ''\n",
"role": "user"
},
{
"content": "anchor_and_curate_genV_and_genJ",
"role": "assistant"
}
] |
def x(self):
max_palindrome = self.max_delV_palindrome
self.cutV_genomic_CDR3_segs = []
for CDR3_V_seg in [x[1] for x in self.genV]:
if len(CDR3_V_seg) < max_palindrome:
self.cutV_genomic_CDR3_segs += [cutR_seq(CDR3_V_seg, 0, len(
CDR3_V_seg))]
else:
self.cutV_genomic_CDR3_segs += [cutR_seq(CDR3_V_seg, 0,
max_palindrome)]
|
generate_cutV_genomic_CDR3_segs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n max_palindrome = self.max_delV_palindrome\n self.cutV_genomic_CDR3_segs = []\n for CDR3_V_seg in [x[1] for x in self.genV]:\n if len(CDR3_V_seg) < max_palindrome:\n self.cutV_genomic_CDR3_segs += [cutR_seq(CDR3_V_seg, 0, len(\n CDR3_V_seg))]\n else:\n self.cutV_genomic_CDR3_segs += [cutR_seq(CDR3_V_seg, 0,\n max_palindrome)]\n",
"role": "user"
},
{
"content": "generate_cutV_genomic_CDR3_segs",
"role": "assistant"
}
] |
def x(self):
max_palindrome = self.max_delJ_palindrome
self.cutJ_genomic_CDR3_segs = []
for CDR3_J_seg in [x[1] for x in self.genJ]:
if len(CDR3_J_seg) < max_palindrome:
self.cutJ_genomic_CDR3_segs += [cutL_seq(CDR3_J_seg, 0, len(
CDR3_J_seg))]
else:
self.cutJ_genomic_CDR3_segs += [cutL_seq(CDR3_J_seg, 0,
max_palindrome)]
|
generate_cutJ_genomic_CDR3_segs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n max_palindrome = self.max_delJ_palindrome\n self.cutJ_genomic_CDR3_segs = []\n for CDR3_J_seg in [x[1] for x in self.genJ]:\n if len(CDR3_J_seg) < max_palindrome:\n self.cutJ_genomic_CDR3_segs += [cutL_seq(CDR3_J_seg, 0, len(\n CDR3_J_seg))]\n else:\n self.cutJ_genomic_CDR3_segs += [cutL_seq(CDR3_J_seg, 0,\n max_palindrome)]\n",
"role": "user"
},
{
"content": "generate_cutJ_genomic_CDR3_segs",
"role": "assistant"
}
] |
def x(self, params_file_name, V_anchor_pos_file, J_anchor_pos_file):
self.genV = read_igor_V_gene_parameters(params_file_name)
self.genD = read_igor_D_gene_parameters(params_file_name)
self.genJ = read_igor_J_gene_parameters(params_file_name)
self.anchor_and_curate_genV_and_genJ(V_anchor_pos_file, J_anchor_pos_file)
self.read_VDJ_palindrome_parameters(params_file_name)
self.generate_cutV_genomic_CDR3_segs()
self.generate_cutD_genomic_CDR3_segs()
self.generate_cutJ_genomic_CDR3_segs()
|
load_igor_genomic_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, params_file_name, V_anchor_pos_file, J_anchor_pos_file):\n self.genV = read_igor_V_gene_parameters(params_file_name)\n self.genD = read_igor_D_gene_parameters(params_file_name)\n self.genJ = read_igor_J_gene_parameters(params_file_name)\n self.anchor_and_curate_genV_and_genJ(V_anchor_pos_file, J_anchor_pos_file)\n self.read_VDJ_palindrome_parameters(params_file_name)\n self.generate_cutV_genomic_CDR3_segs()\n self.generate_cutD_genomic_CDR3_segs()\n self.generate_cutJ_genomic_CDR3_segs()\n",
"role": "user"
},
{
"content": "load_igor_genomic_data",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.