source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(html_string, row_count, column_count): try: from bs4 import BeautifulSoup from bs4.element import Tag except ImportError: print('ERROR: You must have BeautifulSoup to use html2data') return data_table = [] for row in range(0, row_count): data_table.append([]) for column in range(0, column_count): data_table[-1].append(None) soup = BeautifulSoup(html_string, 'html.parser') table = soup.find('table') if not table: return '' trs = table.findAll('tr') if len(trs) == 0: return [['']] for tr in range(len(trs)): ths = trs[tr].findAll('th') if len(ths) == 0: tds = trs[tr].findAll('td') else: tds = ths if len(tds) == 0: tds = [] for i in range(0, column_count): tds.append(Tag('', name='')) for i in range(len(tds)): td = tds[i] row, column = find_unassigned_table_cell(data_table) r_span_count = 1 c_span_count = 1 if td.has_attr('rowspan'): r_span_count = int(td['rowspan']) if td.has_attr('colspan'): c_span_count = int(td['colspan']) for row_prime in range(row, row + r_span_count): for column_prime in range(column, column + c_span_count): if row_prime == row and column_prime == column: items = [] for item in td.contents: items.append(str(item)) string = ''.join(items).strip() text = restructify(string).rstrip() data_table[row_prime][column_prime] = text else: data_table[row_prime][column_prime] = '' if i + 1 < column_count and i == len(tds) - 1: for x in range(len(tds), column_count): if data_table[row][x] is None: data_table[row][x] = '' for row in range(len(data_table)): for column in range(len(data_table[row])): if not data_table[row][column]: data_table[row][column] = '' return data_table
extract_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(html_string, row_count, column_count):\n try:\n from bs4 import BeautifulSoup\n from bs4.element import Tag\n except ImportError:\n print('ERROR: You must have BeautifulSoup to use html2data')\n return\n data_table = []\n for row in range(0, row_count):\n data_table.append([])\n for column in range(0, column_count):\n data_table[-1].append(None)\n soup = BeautifulSoup(html_string, 'html.parser')\n table = soup.find('table')\n if not table:\n return ''\n trs = table.findAll('tr')\n if len(trs) == 0:\n return [['']]\n for tr in range(len(trs)):\n ths = trs[tr].findAll('th')\n if len(ths) == 0:\n tds = trs[tr].findAll('td')\n else:\n tds = ths\n if len(tds) == 0:\n tds = []\n for i in range(0, column_count):\n tds.append(Tag('', name=''))\n for i in range(len(tds)):\n td = tds[i]\n row, column = find_unassigned_table_cell(data_table)\n r_span_count = 1\n c_span_count = 1\n if td.has_attr('rowspan'):\n r_span_count = int(td['rowspan'])\n if td.has_attr('colspan'):\n c_span_count = int(td['colspan'])\n for row_prime in range(row, row + r_span_count):\n for column_prime in range(column, column + c_span_count):\n if row_prime == row and column_prime == column:\n items = []\n for item in td.contents:\n items.append(str(item))\n string = ''.join(items).strip()\n text = restructify(string).rstrip()\n data_table[row_prime][column_prime] = text\n else:\n data_table[row_prime][column_prime] = ''\n if i + 1 < column_count and i == len(tds) - 1:\n for x in range(len(tds), column_count):\n if data_table[row][x] is None:\n data_table[row][x] = ''\n for row in range(len(data_table)):\n for column in range(len(data_table[row])):\n if not data_table[row][column]:\n data_table[row][column] = ''\n return data_table\n", "role": "user" }, { "content": "extract_table", "role": "assistant" } ]
def x(dbapi_connection, connection_record): cursor = dbapi_connection.cursor() cursor.execute('PRAGMA foreign_keys=ON') cursor.close()
do_sqlite_connect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dbapi_connection, connection_record):\n cursor = dbapi_connection.cursor()\n cursor.execute('PRAGMA foreign_keys=ON')\n cursor.close()\n", "role": "user" }, { "content": "do_sqlite_connect", "role": "assistant" } ]
def x(self, app, info, options): super(SQLAlchemy, self).apply_driver_hacks(app, info, options) if info.drivername == 'sqlite': connect_args = options.setdefault('connect_args', {}) if 'isolation_level' not in connect_args: connect_args['isolation_level'] = None if not event.contains(Engine, 'connect', do_sqlite_connect): event.listen(Engine, 'connect', do_sqlite_connect) if not event.contains(Engine, 'begin', do_sqlite_begin): event.listen(Engine, 'begin', do_sqlite_begin) from sqlite3 import register_adapter def x(proxy): return proxy._get_current_object() register_adapter(LocalProxy, adapt_proxy) elif info.drivername == 'postgresql+psycopg2': from psycopg2.extensions import adapt, register_adapter def x(proxy): return adapt(proxy._get_current_object()) register_adapter(LocalProxy, adapt_proxy) elif info.drivername == 'mysql+pymysql': from pymysql import converters def x(val, mapping): return converters.escape_item(val._get_current_object(), self. engine.dialect.encoding, mapping=mapping) converters.conversions[LocalProxy] = escape_local_proxy converters.encoders[LocalProxy] = escape_local_proxy
apply_driver_hacks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, app, info, options):\n super(SQLAlchemy, self).apply_driver_hacks(app, info, options)\n if info.drivername == 'sqlite':\n connect_args = options.setdefault('connect_args', {})\n if 'isolation_level' not in connect_args:\n connect_args['isolation_level'] = None\n if not event.contains(Engine, 'connect', do_sqlite_connect):\n event.listen(Engine, 'connect', do_sqlite_connect)\n if not event.contains(Engine, 'begin', do_sqlite_begin):\n event.listen(Engine, 'begin', do_sqlite_begin)\n from sqlite3 import register_adapter\n\n def x(proxy):\n return proxy._get_current_object()\n register_adapter(LocalProxy, adapt_proxy)\n elif info.drivername == 'postgresql+psycopg2':\n from psycopg2.extensions import adapt, register_adapter\n\n def x(proxy):\n return adapt(proxy._get_current_object())\n register_adapter(LocalProxy, adapt_proxy)\n elif info.drivername == 'mysql+pymysql':\n from pymysql import converters\n\n def x(val, mapping):\n return converters.escape_item(val._get_current_object(), self.\n engine.dialect.encoding, mapping=mapping)\n converters.conversions[LocalProxy] = escape_local_proxy\n converters.encoders[LocalProxy] = escape_local_proxy\n", "role": "user" }, { "content": "apply_driver_hacks", "role": "assistant" } ]
def x(verbose): click.secho('Creating all tables!', fg='yellow', bold=True) with click.progressbar(_db.metadata.sorted_tables) as bar: for table in bar: if verbose: click.echo(' Creating table {0}'.format(table)) table.create(bind=_db.engine, checkfirst=True) create_alembic_version_table() click.secho('Created all tables!', fg='green')
create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(verbose):\n click.secho('Creating all tables!', fg='yellow', bold=True)\n with click.progressbar(_db.metadata.sorted_tables) as bar:\n for table in bar:\n if verbose:\n click.echo(' Creating table {0}'.format(table))\n table.create(bind=_db.engine, checkfirst=True)\n create_alembic_version_table()\n click.secho('Created all tables!', fg='green')\n", "role": "user" }, { "content": "create", "role": "assistant" } ]
def x(verbose): click.secho('Dropping all tables!', fg='red', bold=True) with click.progressbar(reversed(_db.metadata.sorted_tables)) as bar: for table in bar: if verbose: click.echo(' Dropping table {0}'.format(table)) table.drop(bind=_db.engine, checkfirst=True) drop_alembic_version_table() click.secho('Dropped all tables!', fg='green')
drop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(verbose):\n click.secho('Dropping all tables!', fg='red', bold=True)\n with click.progressbar(reversed(_db.metadata.sorted_tables)) as bar:\n for table in bar:\n if verbose:\n click.echo(' Dropping table {0}'.format(table))\n table.drop(bind=_db.engine, checkfirst=True)\n drop_alembic_version_table()\n click.secho('Dropped all tables!', fg='green')\n", "role": "user" }, { "content": "drop", "role": "assistant" } ]
def x(): click.secho('Creating database {0}'.format(_db.engine.url), fg='green') if not database_exists(str(_db.engine.url)): create_database(str(_db.engine.url))
init
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n click.secho('Creating database {0}'.format(_db.engine.url), fg='green')\n if not database_exists(str(_db.engine.url)):\n create_database(str(_db.engine.url))\n", "role": "user" }, { "content": "init", "role": "assistant" } ]
def x(): click.secho('Destroying database {0}'.format(_db.engine.url), fg='red', bold=True) if _db.engine.name == 'sqlite': try: drop_database(_db.engine.url) except FileNotFoundError as e: click.secho('Sqlite database has not been initialised', fg= 'red', bold=True) else: drop_database(_db.engine.url)
destroy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n click.secho('Destroying database {0}'.format(_db.engine.url), fg='red',\n bold=True)\n if _db.engine.name == 'sqlite':\n try:\n drop_database(_db.engine.url)\n except FileNotFoundError as e:\n click.secho('Sqlite database has not been initialised', fg=\n 'red', bold=True)\n else:\n drop_database(_db.engine.url)\n", "role": "user" }, { "content": "destroy", "role": "assistant" } ]
def x(self, op): missing = self.missing ismissing = self.ismissing window = self.window it = iter(self.iterable) queue = deque(islice(it, window)) ol = self.skiplist(e for e in queue if e == e) yield op(ol, missing) for newelem in it: oldelem = queue.popleft() if not ismissing(oldelem): ol.remove(oldelem) queue.append(newelem) if not ismissing(newelem): ol.insert(newelem) yield op(ol, missing)
rolling
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, op):\n missing = self.missing\n ismissing = self.ismissing\n window = self.window\n it = iter(self.iterable)\n queue = deque(islice(it, window))\n ol = self.skiplist(e for e in queue if e == e)\n yield op(ol, missing)\n for newelem in it:\n oldelem = queue.popleft()\n if not ismissing(oldelem):\n ol.remove(oldelem)\n queue.append(newelem)\n if not ismissing(newelem):\n ol.insert(newelem)\n yield op(ol, missing)\n", "role": "user" }, { "content": "rolling", "role": "assistant" } ]
def x(span): columns = 1 first_column = span[0][1] for i in range(len(span)): if span[i][1] > first_column: columns += 1 first_column = span[i][1] return columns
get_span_column_count
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(span):\n columns = 1\n first_column = span[0][1]\n for i in range(len(span)):\n if span[i][1] > first_column:\n columns += 1\n first_column = span[i][1]\n return columns\n", "role": "user" }, { "content": "get_span_column_count", "role": "assistant" } ]
def x(self): ndict = {} for key, val in self.__dict__.items(): if key[0] == '_': ndict[key[1:]] = val else: ndict[key] = val return ndict
to_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n ndict = {}\n for key, val in self.__dict__.items():\n if key[0] == '_':\n ndict[key[1:]] = val\n else:\n ndict[key] = val\n return ndict\n", "role": "user" }, { "content": "to_dict", "role": "assistant" } ]
def x(span, column_widths): start_column = span[0][1] column_count = get_span_column_count(span) total_width = 0 for i in range(start_column, start_column + column_count): total_width += column_widths[i] total_width += column_count - 1 return total_width
get_span_char_width
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(span, column_widths):\n start_column = span[0][1]\n column_count = get_span_column_count(span)\n total_width = 0\n for i in range(start_column, start_column + column_count):\n total_width += column_widths[i]\n total_width += column_count - 1\n return total_width\n", "role": "user" }, { "content": "get_span_char_width", "role": "assistant" } ]
def x(old_key, model, properties): inspector = reflection.Inspector.from_engine(db.engine) primary_key_names = inspector.get_primary_keys(model.__tablename__) new_secret_key = current_app.secret_key db.session.expunge_all() try: with db.session.begin_nested(): current_app.secret_key = old_key db_columns = [] for primary_key in primary_key_names: db_columns.append(getattr(model, primary_key)) for prop in properties: db_columns.append(getattr(model, prop)) old_rows = db.session.query(*db_columns).all() except Exception as e: current_app.logger.error( 'Exception occurred while reading encrypted properties. Try again before starting the server with the new secret key.' ) raise e finally: current_app.secret_key = new_secret_key db.session.expunge_all() for old_row in old_rows: primary_keys, old_entries = old_row[:len(primary_key_names)], old_row[ len(primary_key_names):] primary_key_fields = dict(zip(primary_key_names, primary_keys)) update_values = dict(zip(properties, old_entries)) model.query.filter_by(**primary_key_fields).update(update_values) db.session.commit()
rebuild_encrypted_properties
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(old_key, model, properties):\n inspector = reflection.Inspector.from_engine(db.engine)\n primary_key_names = inspector.get_primary_keys(model.__tablename__)\n new_secret_key = current_app.secret_key\n db.session.expunge_all()\n try:\n with db.session.begin_nested():\n current_app.secret_key = old_key\n db_columns = []\n for primary_key in primary_key_names:\n db_columns.append(getattr(model, primary_key))\n for prop in properties:\n db_columns.append(getattr(model, prop))\n old_rows = db.session.query(*db_columns).all()\n except Exception as e:\n current_app.logger.error(\n 'Exception occurred while reading encrypted properties. Try again before starting the server with the new secret key.'\n )\n raise e\n finally:\n current_app.secret_key = new_secret_key\n db.session.expunge_all()\n for old_row in old_rows:\n primary_keys, old_entries = old_row[:len(primary_key_names)], old_row[\n len(primary_key_names):]\n primary_key_fields = dict(zip(primary_key_names, primary_keys))\n update_values = dict(zip(properties, old_entries))\n model.query.filter_by(**primary_key_fields).update(update_values)\n db.session.commit()\n", "role": "user" }, { "content": "rebuild_encrypted_properties", "role": "assistant" } ]
def x(): alembic = current_app.extensions['invenio-db'].alembic if not alembic.migration_context._has_version_table(): alembic.migration_context._ensure_version_table() for head in alembic.script_directory.revision_map._real_heads: alembic.migration_context.stamp(alembic.script_directory, head)
create_alembic_version_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n alembic = current_app.extensions['invenio-db'].alembic\n if not alembic.migration_context._has_version_table():\n alembic.migration_context._ensure_version_table()\n for head in alembic.script_directory.revision_map._real_heads:\n alembic.migration_context.stamp(alembic.script_directory, head)\n", "role": "user" }, { "content": "create_alembic_version_table", "role": "assistant" } ]
def x(): if _db.engine.dialect.has_table(_db.engine, 'alembic_version'): alembic_version = _db.Table('alembic_version', _db.metadata, autoload_with=_db.engine) alembic_version.drop(bind=_db.engine)
drop_alembic_version_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n if _db.engine.dialect.has_table(_db.engine, 'alembic_version'):\n alembic_version = _db.Table('alembic_version', _db.metadata,\n autoload_with=_db.engine)\n alembic_version.drop(bind=_db.engine)\n", "role": "user" }, { "content": "drop_alembic_version_table", "role": "assistant" } ]
def x(manager, model): if manager.options.get('use_module_name', True): return '%s%sVersion' % (model.__module__.title().replace('.', ''), model.__name__) else: return '%sVersion' % (model.__name__,)
versioning_model_classname
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(manager, model):\n if manager.options.get('use_module_name', True):\n return '%s%sVersion' % (model.__module__.title().replace('.', ''),\n model.__name__)\n else:\n return '%sVersion' % (model.__name__,)\n", "role": "user" }, { "content": "versioning_model_classname", "role": "assistant" } ]
def x(manager, base): declared_models = base._decl_class_registry.keys() return all(versioning_model_classname(manager, c) in declared_models for c in manager.pending_classes)
versioning_models_registered
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(manager, base):\n declared_models = base._decl_class_registry.keys()\n return all(versioning_model_classname(manager, c) in declared_models for\n c in manager.pending_classes)\n", "role": "user" }, { "content": "versioning_models_registered", "role": "assistant" } ]
def x(v): np = len(v) N = (int(sqrt(1 + 8 * np)) - 1) // 2 if N * (N + 1) // 2 != np: raise ValueError('Cannot convert vector to symmetric matrix') sym = ndarray((N, N)) iterable = iter(v) for r in range(N): for c in range(r + 1): sym[r, c] = sym[c, r] = iterable.next() return sym
vector_to_symmetric
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(v):\n np = len(v)\n N = (int(sqrt(1 + 8 * np)) - 1) // 2\n if N * (N + 1) // 2 != np:\n raise ValueError('Cannot convert vector to symmetric matrix')\n sym = ndarray((N, N))\n iterable = iter(v)\n for r in range(N):\n for c in range(r + 1):\n sym[r, c] = sym[c, r] = iterable.next()\n return sym\n", "role": "user" }, { "content": "vector_to_symmetric", "role": "assistant" } ]
def x(self, ddof=None, bias=0): N = self.n M = N if bias else N - 1 M = M if ddof is None else N - ddof return (self.sxx - outer(self.sx, self.sx) / N) / M
cov
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ddof=None, bias=0):\n N = self.n\n M = N if bias else N - 1\n M = M if ddof is None else N - ddof\n return (self.sxx - outer(self.sx, self.sx) / N) / M\n", "role": "user" }, { "content": "cov", "role": "assistant" } ]
def x(self): cov = self.cov() N = cov.shape[0] corr = ndarray((N, N)) for r in range(N): for c in range(r): corr[r, c] = corr[c, r] = cov[r, c] / sqrt(cov[r, r] * cov[c, c]) corr[r, r] = 1.0 return corr
corr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n cov = self.cov()\n N = cov.shape[0]\n corr = ndarray((N, N))\n for r in range(N):\n for c in range(r):\n corr[r, c] = corr[c, r] = cov[r, c] / sqrt(cov[r, r] * cov[c, c])\n corr[r, r] = 1.0\n return corr\n", "role": "user" }, { "content": "corr", "role": "assistant" } ]
def x(sharpe, T=1.0): x = 0.5 * T * sharpe * sharpe return x / qp(x)
calmar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sharpe, T=1.0):\n x = 0.5 * T * sharpe * sharpe\n return x / qp(x)\n", "role": "user" }, { "content": "calmar", "role": "assistant" } ]
def x(sharpe, T, tau=1.0): return calmar(sharpe, tau) / calmar(sharpe, T)
calmarnorm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sharpe, T, tau=1.0):\n return calmar(sharpe, tau) / calmar(sharpe, T)\n", "role": "user" }, { "content": "calmarnorm", "role": "assistant" } ]
def x(): op.execute('COMMIT') ctx = op.get_context() metadata = ctx.opts['target_metadata'] metadata.naming_convention = NAMING_CONVENTION metadata.bind = ctx.connection.engine insp = Inspector.from_engine(ctx.connection.engine) for table_name in insp.get_table_names(): if table_name not in metadata.tables: continue table = metadata.tables[table_name] ixs = {} uqs = {} fks = {} for ix in insp.get_indexes(table_name): ixs[tuple(ix['column_names'])] = ix for uq in insp.get_unique_constraints(table_name): uqs[tuple(uq['column_names'])] = uq for fk in insp.get_foreign_keys(table_name): fks[tuple(fk['constrained_columns']), fk['referred_table']] = fk with op.batch_alter_table(table_name, naming_convention= NAMING_CONVENTION) as batch_op: for c in (list(table.constraints) + list(table.indexes)): key = None if isinstance(c, sa.schema.ForeignKeyConstraint): key = tuple(c.column_keys), c.referred_table.name fk = fks.get(key) if fk and c.name != fk['name']: batch_op.drop_constraint(fk['name'], type_='foreignkey' ) batch_op.create_foreign_key(op.f(c.name), fk[ 'referred_table'], fk['constrained_columns'], fk['referred_columns'], **fk['options']) elif isinstance(c, sa.schema.UniqueConstraint): key = tuple(c.columns.keys()) uq = uqs.get(key) if uq and c.name != uq['name']: batch_op.drop_constraint(uq['name'], type_='unique') batch_op.create_unique_constraint(op.f(c.name), uq[ 'column_names']) elif isinstance(c, sa.schema.CheckConstraint): util.warn('Update {0.table.name} CHECK {0.name} manually' .format(c)) elif isinstance(c, sa.schema.Index): key = tuple(c.columns.keys()) ix = ixs.get(key) if ix and c.name != ix['name']: batch_op.drop_index(ix['name']) batch_op.create_index(op.f(c.name), ix[ 'column_names'], unique=ix['unique']) elif isinstance(c, sa.schema.PrimaryKeyConstraint ) or c.name == '_unnamed_': pass else: raise RuntimeError('Missing {0!r}'.format(c))
upgrade
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n op.execute('COMMIT')\n ctx = op.get_context()\n metadata = ctx.opts['target_metadata']\n metadata.naming_convention = NAMING_CONVENTION\n metadata.bind = ctx.connection.engine\n insp = Inspector.from_engine(ctx.connection.engine)\n for table_name in insp.get_table_names():\n if table_name not in metadata.tables:\n continue\n table = metadata.tables[table_name]\n ixs = {}\n uqs = {}\n fks = {}\n for ix in insp.get_indexes(table_name):\n ixs[tuple(ix['column_names'])] = ix\n for uq in insp.get_unique_constraints(table_name):\n uqs[tuple(uq['column_names'])] = uq\n for fk in insp.get_foreign_keys(table_name):\n fks[tuple(fk['constrained_columns']), fk['referred_table']] = fk\n with op.batch_alter_table(table_name, naming_convention=\n NAMING_CONVENTION) as batch_op:\n for c in (list(table.constraints) + list(table.indexes)):\n key = None\n if isinstance(c, sa.schema.ForeignKeyConstraint):\n key = tuple(c.column_keys), c.referred_table.name\n fk = fks.get(key)\n if fk and c.name != fk['name']:\n batch_op.drop_constraint(fk['name'], type_='foreignkey'\n )\n batch_op.create_foreign_key(op.f(c.name), fk[\n 'referred_table'], fk['constrained_columns'],\n fk['referred_columns'], **fk['options'])\n elif isinstance(c, sa.schema.UniqueConstraint):\n key = tuple(c.columns.keys())\n uq = uqs.get(key)\n if uq and c.name != uq['name']:\n batch_op.drop_constraint(uq['name'], type_='unique')\n batch_op.create_unique_constraint(op.f(c.name), uq[\n 'column_names'])\n elif isinstance(c, sa.schema.CheckConstraint):\n util.warn('Update {0.table.name} CHECK {0.name} manually'\n .format(c))\n elif isinstance(c, sa.schema.Index):\n key = tuple(c.columns.keys())\n ix = ixs.get(key)\n if ix and c.name != ix['name']:\n batch_op.drop_index(ix['name'])\n batch_op.create_index(op.f(c.name), ix[\n 'column_names'], unique=ix['unique'])\n elif isinstance(c, sa.schema.PrimaryKeyConstraint\n ) or c.name == '_unnamed_':\n pass\n else:\n raise RuntimeError('Missing {0!r}'.format(c))\n", "role": "user" }, { "content": "upgrade", "role": "assistant" } ]
def x(table, spans=[[[0, 0]]], use_headers=True, headers_row=0): table = copy.deepcopy(table) table_ok = check_table(table) if not table_ok == '': return 'ERROR: ' + table_ok if not spans == [[[0, 0]]]: for span in spans: span_ok = check_span(span, table) if not span_ok == '': return 'ERROR: ' + span_ok table = ensure_table_strings(table) table = multis_2_mono(table) output = [] column_widths = [] for col in table[0]: column_widths.append(0) for row in range(len(table)): for column in range(len(table[row])): if len(table[row][column]) > column_widths[column]: column_widths[column] = len(table[row][column]) underline = '' for col in column_widths: underline = ''.join([underline + col * '=', ' ']) output.append(underline) for row in range(len(table)): string = '' column = 0 while column < len(table[row]): span = get_span(spans, row, column) if span and span[0] == [row, column] and not table[row][column ] == '': span_col_count = get_span_column_count(span) end_col = column + span_col_count width = sum(column_widths[column:end_col]) width += 2 * (span_col_count - 1) string += center_line(width, table[row][column]) + ' ' elif table[row][column] == '': pass else: string += center_line(column_widths[column], table[row][column] ) + ' ' column += 1 output.append(string) if row == headers_row and use_headers: output.append(underline) elif row_includes_spans(table, row, spans): new_underline = '' column = 0 while column < len(table[row]): span = get_span(spans, row, column) if span and span[0] == [row, column] and not table[row][column ] == '': span_col_count = get_span_column_count(span) end_column = column + span_col_count width = sum(column_widths[column:end_column]) width += 2 * (span_col_count - 1) new_underline += width * '-' + ' ' elif table[row][column] == '': pass else: new_underline += column_widths[column] * '-' + ' ' column += 1 output.append(new_underline) for i in range(len(output)): output[i] = output[i].rstrip() output.append(underline) return '\n'.join(output)
data2simplerst
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(table, spans=[[[0, 0]]], use_headers=True, headers_row=0):\n table = copy.deepcopy(table)\n table_ok = check_table(table)\n if not table_ok == '':\n return 'ERROR: ' + table_ok\n if not spans == [[[0, 0]]]:\n for span in spans:\n span_ok = check_span(span, table)\n if not span_ok == '':\n return 'ERROR: ' + span_ok\n table = ensure_table_strings(table)\n table = multis_2_mono(table)\n output = []\n column_widths = []\n for col in table[0]:\n column_widths.append(0)\n for row in range(len(table)):\n for column in range(len(table[row])):\n if len(table[row][column]) > column_widths[column]:\n column_widths[column] = len(table[row][column])\n underline = ''\n for col in column_widths:\n underline = ''.join([underline + col * '=', ' '])\n output.append(underline)\n for row in range(len(table)):\n string = ''\n column = 0\n while column < len(table[row]):\n span = get_span(spans, row, column)\n if span and span[0] == [row, column] and not table[row][column\n ] == '':\n span_col_count = get_span_column_count(span)\n end_col = column + span_col_count\n width = sum(column_widths[column:end_col])\n width += 2 * (span_col_count - 1)\n string += center_line(width, table[row][column]) + ' '\n elif table[row][column] == '':\n pass\n else:\n string += center_line(column_widths[column], table[row][column]\n ) + ' '\n column += 1\n output.append(string)\n if row == headers_row and use_headers:\n output.append(underline)\n elif row_includes_spans(table, row, spans):\n new_underline = ''\n column = 0\n while column < len(table[row]):\n span = get_span(spans, row, column)\n if span and span[0] == [row, column] and not table[row][column\n ] == '':\n span_col_count = get_span_column_count(span)\n end_column = column + span_col_count\n width = sum(column_widths[column:end_column])\n width += 2 * (span_col_count - 1)\n new_underline += width * '-' + ' '\n elif table[row][column] == '':\n pass\n else:\n new_underline += column_widths[column] * '-' + ' '\n column += 1\n output.append(new_underline)\n for i in range(len(output)):\n output[i] = output[i].rstrip()\n output.append(underline)\n return '\\n'.join(output)\n", "role": "user" }, { "content": "data2simplerst", "role": "assistant" } ]
def x(converted_text, html): soup = BeautifulSoup(html, 'html.parser') link_exceptions = ['footnote-reference', 'fn-backref', 'citation-reference' ] footnotes = {} citations = {} backrefs = {} links = soup.find_all('a') for link in links: href = link.get('href') text = process_tag(link) classes = dict(link.attrs).get('class', '') if 'footnote-reference' in classes: footnotes[href] = '#' + link.get('id') elif 'citation-reference' in classes: text = process_tag(link) citations[text] = '#' + link.get('id') elif 'fn-backref' in classes: sibling = link.findNext('td') text = process_tag(sibling) backrefs[href] = text excepted_link = False for class_type in classes: if class_type in link_exceptions: excepted_link = True if not excepted_link: if text.endswith('_'): text = text[0:-1] if len(text.split(' ')) > 1: text = text[1:-1] converted_text += '.. _' + text + ': ' + href + '\n' if len(footnotes.keys()) > 0: converted_text += '\n' for key in footnotes.keys(): text = backrefs[footnotes[key]] converted_text += '.. [' + key + '] ' + text + '\n' if len(citations.keys()) > 0: converted_text += '\n' for key in citations.keys(): text = backrefs[citations[key]] converted_text += '.. ' + key[0:-1] + ' ' + text + '\n' return converted_text.rstrip()
add_links
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(converted_text, html):\n soup = BeautifulSoup(html, 'html.parser')\n link_exceptions = ['footnote-reference', 'fn-backref', 'citation-reference'\n ]\n footnotes = {}\n citations = {}\n backrefs = {}\n links = soup.find_all('a')\n for link in links:\n href = link.get('href')\n text = process_tag(link)\n classes = dict(link.attrs).get('class', '')\n if 'footnote-reference' in classes:\n footnotes[href] = '#' + link.get('id')\n elif 'citation-reference' in classes:\n text = process_tag(link)\n citations[text] = '#' + link.get('id')\n elif 'fn-backref' in classes:\n sibling = link.findNext('td')\n text = process_tag(sibling)\n backrefs[href] = text\n excepted_link = False\n for class_type in classes:\n if class_type in link_exceptions:\n excepted_link = True\n if not excepted_link:\n if text.endswith('_'):\n text = text[0:-1]\n if len(text.split(' ')) > 1:\n text = text[1:-1]\n converted_text += '.. _' + text + ': ' + href + '\\n'\n if len(footnotes.keys()) > 0:\n converted_text += '\\n'\n for key in footnotes.keys():\n text = backrefs[footnotes[key]]\n converted_text += '.. [' + key + '] ' + text + '\\n'\n if len(citations.keys()) > 0:\n converted_text += '\\n'\n for key in citations.keys():\n text = backrefs[citations[key]]\n converted_text += '.. ' + key[0:-1] + ' ' + text + '\\n'\n return converted_text.rstrip()\n", "role": "user" }, { "content": "add_links", "role": "assistant" } ]
def x(self, providers, symbols, start, end, logger, backend, **kwargs): logger = logger or logging.getLogger(self.__class__.__name__) start, end = self.dates(start, end) data = {} for sym in symbols: symbol = self.parse_symbol(sym, providers) provider = symbol.provider if not provider: raise MissingDataProvider('data provider for %s not available' % sym) pre = self.preprocess(symbol, start, end, logger, backend, **kwargs) if pre.intervals: result = None for st, en in pre.intervals: logger.info('Loading %s from %s. From %s to %s', symbol. ticker, provider, st, en) res = provider.load(symbol, st, en, logger, backend, **kwargs) if result is None: result = res else: result.update(res) else: result = pre.result result = self.onresult(symbol, result, logger, backend, **kwargs) data[sym] = result return self.onfinishload(data, logger, backend, **kwargs)
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, providers, symbols, start, end, logger, backend, **kwargs):\n logger = logger or logging.getLogger(self.__class__.__name__)\n start, end = self.dates(start, end)\n data = {}\n for sym in symbols:\n symbol = self.parse_symbol(sym, providers)\n provider = symbol.provider\n if not provider:\n raise MissingDataProvider('data provider for %s not available' %\n sym)\n pre = self.preprocess(symbol, start, end, logger, backend, **kwargs)\n if pre.intervals:\n result = None\n for st, en in pre.intervals:\n logger.info('Loading %s from %s. From %s to %s', symbol.\n ticker, provider, st, en)\n res = provider.load(symbol, st, en, logger, backend, **kwargs)\n if result is None:\n result = res\n else:\n result.update(res)\n else:\n result = pre.result\n result = self.onresult(symbol, result, logger, backend, **kwargs)\n data[sym] = result\n return self.onfinishload(data, logger, backend, **kwargs)\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(self, start, end): td = date.today() end = safetodate(end) or td end = end if end <= td else td start = safetodate(start) if not start or start > end: start = end - timedelta(days=int(round(30.4 * settings.months_history)) ) return start, end
dates
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start, end):\n td = date.today()\n end = safetodate(end) or td\n end = end if end <= td else td\n start = safetodate(start)\n if not start or start > end:\n start = end - timedelta(days=int(round(30.4 * settings.months_history))\n )\n return start, end\n", "role": "user" }, { "content": "dates", "role": "assistant" } ]
def x(self, symbol, providers): separator = settings.field_separator symbol = str(symbol) bits = symbol.split(separator) pnames = providers.keys() ticker = symbol provider = None field = None if len(bits) == 2: ticker = bits[0] if bits[1] in pnames: provider = bits[1] else: field = bits[1] elif len(bits) == 3: ticker = bits[0] if bits[1] in pnames: provider = bits[1] field = bits[2] elif bits[2] in pnames: provider = bits[2] field = bits[1] else: raise BadSymbol('Could not parse %s. Unrecognized provider.' % symbol) elif len(bits) > 3: raise BadSymbol('Could not parse %s.' % symbol) return self.symbol_for_ticker(ticker, field, provider, providers)
parse_symbol
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, symbol, providers):\n separator = settings.field_separator\n symbol = str(symbol)\n bits = symbol.split(separator)\n pnames = providers.keys()\n ticker = symbol\n provider = None\n field = None\n if len(bits) == 2:\n ticker = bits[0]\n if bits[1] in pnames:\n provider = bits[1]\n else:\n field = bits[1]\n elif len(bits) == 3:\n ticker = bits[0]\n if bits[1] in pnames:\n provider = bits[1]\n field = bits[2]\n elif bits[2] in pnames:\n provider = bits[2]\n field = bits[1]\n else:\n raise BadSymbol('Could not parse %s. Unrecognized provider.' %\n symbol)\n elif len(bits) > 3:\n raise BadSymbol('Could not parse %s.' % symbol)\n return self.symbol_for_ticker(ticker, field, provider, providers)\n", "role": "user" }, { "content": "parse_symbol", "role": "assistant" } ]
def x(self, ticker, field, provider, providers): provider = provider or settings.default_provider if provider: provider = providers.get(provider, None) return self.symboldata(ticker, field, provider)
symbol_for_ticker
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ticker, field, provider, providers):\n provider = provider or settings.default_provider\n if provider:\n provider = providers.get(provider, None)\n return self.symboldata(ticker, field, provider)\n", "role": "user" }, { "content": "symbol_for_ticker", "role": "assistant" } ]
def x(self, ticker, start, end, logger, backend, **kwargs): return self.preprocessdata(intervals=((start, end),))
preprocess
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ticker, start, end, logger, backend, **kwargs):\n return self.preprocessdata(intervals=((start, end),))\n", "role": "user" }, { "content": "preprocess", "role": "assistant" } ]
def x(self, provider): if isinstance(provider, type): provider = provider() self[provider.code] = provider
register
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, provider):\n if isinstance(provider, type):\n provider = provider()\n self[provider.code] = provider\n", "role": "user" }, { "content": "register", "role": "assistant" } ]
def x(self, provider): if isinstance(provider, type): provider = provider() if isinstance(provider, DataProvider): provider = provider.code return self.pop(str(provider).upper(), None)
unregister
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, provider):\n if isinstance(provider, type):\n provider = provider()\n if isinstance(provider, DataProvider):\n provider = provider.code\n return self.pop(str(provider).upper(), None)\n", "role": "user" }, { "content": "unregister", "role": "assistant" } ]
def x(timeseries_expression, method=None, functions=None, debug=False): if not parsefunc: raise ExpressionError('Could not parse. No parser installed.') functions = functions if functions is not None else function_registry expr_str = str(timeseries_expression).lower() return parsefunc(expr_str, functions, method, debug)
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(timeseries_expression, method=None, functions=None, debug=False):\n if not parsefunc:\n raise ExpressionError('Could not parse. No parser installed.')\n functions = functions if functions is not None else function_registry\n expr_str = str(timeseries_expression).lower()\n return parsefunc(expr_str, functions, method, debug)\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]
def x(expression, start=None, end=None, loader=None, logger=None, backend= None, **kwargs): if isinstance(expression, str): expression = parse(expression) if not expression or expression.malformed(): raise CouldNotParse(expression) symbols = expression.symbols() start = start if not start else todate(start) end = end if not end else todate(end) data = providers.load(symbols, start, end, loader=loader, logger=logger, backend=backend, **kwargs) return DSLResult(expression, data, backend=backend)
evaluate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(expression, start=None, end=None, loader=None, logger=None, backend=\n None, **kwargs):\n if isinstance(expression, str):\n expression = parse(expression)\n if not expression or expression.malformed():\n raise CouldNotParse(expression)\n symbols = expression.symbols()\n start = start if not start else todate(start)\n end = end if not end else todate(end)\n data = providers.load(symbols, start, end, loader=loader, logger=logger,\n backend=backend, **kwargs)\n return DSLResult(expression, data, backend=backend)\n", "role": "user" }, { "content": "evaluate", "role": "assistant" } ]
def x(text): try: import docutils.statemachine import docutils.parsers.rst.tableparser except ImportError: print('ERROR: You must install the docutils library to use grid2data') return text = text.strip() lines = text.split('\n') for i in range(len(lines)): lines[i] = lines[i].strip() parser = docutils.parsers.rst.tableparser.GridTableParser() grid_data = parser.parse(docutils.statemachine.StringList(list(lines))) grid_data = list(grid_data) column_widths = grid_data.pop(0) column_count = len(column_widths) if len(grid_data[0]) > 0: use_headers = True headers = grid_data[0][0] row_count = len(grid_data[1]) + 1 grid_data[1].insert(0, headers) grid_data.pop(0) else: use_headers = False grid_data.pop(0) row_count = len(grid_data[0]) grid_data = grid_data[0] table = make_empty_table(row_count, column_count) spans = [] for row in range(len(grid_data)): for column in range(len(grid_data[row])): try: text = '\n'.join(grid_data[row][column][3]).rstrip() table[row][column] = text extra_rows = grid_data[row][column][0] extra_columns = grid_data[row][column][1] span = make_span(row, column, extra_rows, extra_columns) span = sorted(span) span = list(span for span, _ in itertools.groupby(span)) if not len(span) == 1: spans.append(span) except TypeError: pass spans = sorted(spans) return table, spans, use_headers
grid2data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text):\n try:\n import docutils.statemachine\n import docutils.parsers.rst.tableparser\n except ImportError:\n print('ERROR: You must install the docutils library to use grid2data')\n return\n text = text.strip()\n lines = text.split('\\n')\n for i in range(len(lines)):\n lines[i] = lines[i].strip()\n parser = docutils.parsers.rst.tableparser.GridTableParser()\n grid_data = parser.parse(docutils.statemachine.StringList(list(lines)))\n grid_data = list(grid_data)\n column_widths = grid_data.pop(0)\n column_count = len(column_widths)\n if len(grid_data[0]) > 0:\n use_headers = True\n headers = grid_data[0][0]\n row_count = len(grid_data[1]) + 1\n grid_data[1].insert(0, headers)\n grid_data.pop(0)\n else:\n use_headers = False\n grid_data.pop(0)\n row_count = len(grid_data[0])\n grid_data = grid_data[0]\n table = make_empty_table(row_count, column_count)\n spans = []\n for row in range(len(grid_data)):\n for column in range(len(grid_data[row])):\n try:\n text = '\\n'.join(grid_data[row][column][3]).rstrip()\n table[row][column] = text\n extra_rows = grid_data[row][column][0]\n extra_columns = grid_data[row][column][1]\n span = make_span(row, column, extra_rows, extra_columns)\n span = sorted(span)\n span = list(span for span, _ in itertools.groupby(span))\n if not len(span) == 1:\n spans.append(span)\n except TypeError:\n pass\n spans = sorted(spans)\n return table, spans, use_headers\n", "role": "user" }, { "content": "grid2data", "role": "assistant" } ]
def x(self, cutoff=0.0, best_tree=None): if best_tree: raise NotImplementedError('best_tree option not yet supported.') cons = ConsensusTree(self.treelist, cutoff) cons.update() return cons.ttree
get_consensus_tree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cutoff=0.0, best_tree=None):\n if best_tree:\n raise NotImplementedError('best_tree option not yet supported.')\n cons = ConsensusTree(self.treelist, cutoff)\n cons.update()\n return cons.ttree\n", "role": "user" }, { "content": "get_consensus_tree", "role": "assistant" } ]
def x(self, nrows=None, ncols=None, start=0, fixed_order=False, shared_axis =False, **kwargs): if not self.treelist: print('Treelist is empty') return None, None if not fixed_order: treelist = self.copy().treelist else: if fixed_order is True: fixed_order = self.treelist[0].get_tip_labels() treelist = [ToyTree(i, fixed_order=fixed_order) for i in self.copy( ).treelist] for tree in treelist: tree.style.update(kwargs) if not (ncols or nrows): ncols = 5 nrows = 1 elif not (ncols and nrows): if ncols: if ncols == 1: if self.ntrees <= 5: nrows = self.ntrees else: nrows = 2 elif self.ntrees <= 10: nrows = 2 else: nrows = 3 if nrows: if nrows == 1: if self.ntrees <= 5: ncols = self.ntrees else: ncols = 5 elif self.ntrees <= 10: ncols = 5 else: ncols = 3 else: pass draw = TreeGrid(treelist) if kwargs.get('debug'): return draw canvas, axes = draw.update(nrows, ncols, start, shared_axis, **kwargs) return canvas, axes
draw_tree_grid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nrows=None, ncols=None, start=0, fixed_order=False, shared_axis\n =False, **kwargs):\n if not self.treelist:\n print('Treelist is empty')\n return None, None\n if not fixed_order:\n treelist = self.copy().treelist\n else:\n if fixed_order is True:\n fixed_order = self.treelist[0].get_tip_labels()\n treelist = [ToyTree(i, fixed_order=fixed_order) for i in self.copy(\n ).treelist]\n for tree in treelist:\n tree.style.update(kwargs)\n if not (ncols or nrows):\n ncols = 5\n nrows = 1\n elif not (ncols and nrows):\n if ncols:\n if ncols == 1:\n if self.ntrees <= 5:\n nrows = self.ntrees\n else:\n nrows = 2\n elif self.ntrees <= 10:\n nrows = 2\n else:\n nrows = 3\n if nrows:\n if nrows == 1:\n if self.ntrees <= 5:\n ncols = self.ntrees\n else:\n ncols = 5\n elif self.ntrees <= 10:\n ncols = 5\n else:\n ncols = 3\n else:\n pass\n draw = TreeGrid(treelist)\n if kwargs.get('debug'):\n return draw\n canvas, axes = draw.update(nrows, ncols, start, shared_axis, **kwargs)\n return canvas, axes\n", "role": "user" }, { "content": "draw_tree_grid", "role": "assistant" } ]
def x(self, axes=None, html=False, fixed_order=True, **kwargs): if not self.treelist: print('Treelist is empty') return None, None if not self.all_tips_shared: print('All trees in treelist do not share the same tips') return None, None if not fixed_order: raise Exception( 'fixed_order must be either True or a list with the tip order') if isinstance(fixed_order, (list, tuple)): pass elif fixed_order is True: fixed_order = self.treelist[0].get_tip_labels() else: raise Exception( 'fixed_order argument must be True or a list with the tip order') treelist = [ToyTree(i, fixed_order=fixed_order) for i in self.copy(). treelist] if kwargs.get('tip_labels'): print(TIP_LABELS_ADVICE) try: changed_autoformat = False if not html: toyplot.config.autoformat = 'png' changed_autoformat = True mstyle = STYLES['m'] mstyle.update({i: j for i, j in kwargs.items() if (j is not None) & (i != 'tip_labels')}) for tree in treelist: tree.style.update(mstyle) draw = CloudTree(treelist, **kwargs) if kwargs.get('debug'): return draw canvas, axes = draw.update(axes) return canvas, axes finally: if changed_autoformat: toyplot.config.autoformat = 'html'
draw_cloud_tree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, axes=None, html=False, fixed_order=True, **kwargs):\n if not self.treelist:\n print('Treelist is empty')\n return None, None\n if not self.all_tips_shared:\n print('All trees in treelist do not share the same tips')\n return None, None\n if not fixed_order:\n raise Exception(\n 'fixed_order must be either True or a list with the tip order')\n if isinstance(fixed_order, (list, tuple)):\n pass\n elif fixed_order is True:\n fixed_order = self.treelist[0].get_tip_labels()\n else:\n raise Exception(\n 'fixed_order argument must be True or a list with the tip order')\n treelist = [ToyTree(i, fixed_order=fixed_order) for i in self.copy().\n treelist]\n if kwargs.get('tip_labels'):\n print(TIP_LABELS_ADVICE)\n try:\n changed_autoformat = False\n if not html:\n toyplot.config.autoformat = 'png'\n changed_autoformat = True\n mstyle = STYLES['m']\n mstyle.update({i: j for i, j in kwargs.items() if (j is not None) &\n (i != 'tip_labels')})\n for tree in treelist:\n tree.style.update(mstyle)\n draw = CloudTree(treelist, **kwargs)\n if kwargs.get('debug'):\n return draw\n canvas, axes = draw.update(axes)\n return canvas, axes\n finally:\n if changed_autoformat:\n toyplot.config.autoformat = 'html'\n", "role": "user" }, { "content": "draw_cloud_tree", "role": "assistant" } ]
def x(self): observed = {} for idx, tree in enumerate(self.treelist): nwk = tree.write(tree_format=9) hashed = md5(nwk.encode('utf-8')).hexdigest() if hashed not in observed: observed[hashed] = idx self.treedict[idx] = 1 else: idx = observed[hashed] self.treedict[idx] += 1
hash_trees
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n observed = {}\n for idx, tree in enumerate(self.treelist):\n nwk = tree.write(tree_format=9)\n hashed = md5(nwk.encode('utf-8')).hexdigest()\n if hashed not in observed:\n observed[hashed] = idx\n self.treedict[idx] = 1\n else:\n idx = observed[hashed]\n self.treedict[idx] += 1\n", "role": "user" }, { "content": "hash_trees", "role": "assistant" } ]
def x(self): ndict = {j: i for i, j in enumerate(self.names)} namedict = {i: j for i, j in enumerate(self.names)} clade_counts = {} for tidx, ncopies in self.treedict.items(): ttree = self.treelist[tidx].unroot() for node in ttree.treenode.traverse('preorder'): bits = np.zeros(len(ttree), dtype=np.bool_) for child in node.iter_leaf_names(): bits[ndict[child]] = True bitstring = bits.tobytes() revstring = np.invert(bits).tobytes() if bitstring in clade_counts: clade_counts[bitstring] += ncopies elif revstring not in clade_counts: clade_counts[bitstring] = ncopies else: clade_counts[revstring] += ncopies for key, val in clade_counts.items(): clade_counts[key] = val / float(len(self.treelist)) self.namedict = namedict self.clade_counts = sorted(clade_counts.items(), key=lambda x: x[1], reverse=True)
find_clades
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n ndict = {j: i for i, j in enumerate(self.names)}\n namedict = {i: j for i, j in enumerate(self.names)}\n clade_counts = {}\n for tidx, ncopies in self.treedict.items():\n ttree = self.treelist[tidx].unroot()\n for node in ttree.treenode.traverse('preorder'):\n bits = np.zeros(len(ttree), dtype=np.bool_)\n for child in node.iter_leaf_names():\n bits[ndict[child]] = True\n bitstring = bits.tobytes()\n revstring = np.invert(bits).tobytes()\n if bitstring in clade_counts:\n clade_counts[bitstring] += ncopies\n elif revstring not in clade_counts:\n clade_counts[bitstring] = ncopies\n else:\n clade_counts[revstring] += ncopies\n for key, val in clade_counts.items():\n clade_counts[key] = val / float(len(self.treelist))\n self.namedict = namedict\n self.clade_counts = sorted(clade_counts.items(), key=lambda x: x[1],\n reverse=True)\n", "role": "user" }, { "content": "find_clades", "role": "assistant" } ]
def x(self): passed = [] carrs = np.array([list(i[0]) for i in self.clade_counts], dtype=int) freqs = np.array([i[1] for i in self.clade_counts]) for idx in range(carrs.shape[0]): conflict = False if freqs[idx] < self.cutoff: continue for pidx in passed: intersect = np.max(carrs[idx] + carrs[pidx]) > 1 subset_test0 = np.all(carrs[idx] - carrs[pidx] >= 0) subset_test1 = np.all(carrs[pidx] - carrs[idx] >= 0) if intersect: if not subset_test0 and not subset_test1: conflict = True if not conflict: passed.append(idx) rclades = [] for idx in passed: rclades.append((carrs[idx], freqs[idx])) self.fclade_counts = rclades
filter_clades
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n passed = []\n carrs = np.array([list(i[0]) for i in self.clade_counts], dtype=int)\n freqs = np.array([i[1] for i in self.clade_counts])\n for idx in range(carrs.shape[0]):\n conflict = False\n if freqs[idx] < self.cutoff:\n continue\n for pidx in passed:\n intersect = np.max(carrs[idx] + carrs[pidx]) > 1\n subset_test0 = np.all(carrs[idx] - carrs[pidx] >= 0)\n subset_test1 = np.all(carrs[pidx] - carrs[idx] >= 0)\n if intersect:\n if not subset_test0 and not subset_test1:\n conflict = True\n if not conflict:\n passed.append(idx)\n rclades = []\n for idx in passed:\n rclades.append((carrs[idx], freqs[idx]))\n self.fclade_counts = rclades\n", "role": "user" }, { "content": "filter_clades", "role": "assistant" } ]
def x(self): nodes = {} idxarr = np.arange(len(self.fclade_counts[0][0])) queue = [] countdict = defaultdict(int) for clade, count in self.fclade_counts: mask = np.int_(list(clade)).astype(np.bool) ccx = idxarr[mask] queue.append((len(ccx), frozenset(ccx))) countdict[frozenset(ccx)] = count while queue: queue.sort() clade_size, clade = queue.pop(0) new_queue = [] for _, ancestor in queue: if clade.issubset(ancestor): new_ancestor = ancestor - clade | frozenset([clade]) countdict[new_ancestor] = countdict.pop(ancestor) ancestor = new_ancestor new_queue.append((len(ancestor), ancestor)) if clade_size == 1: name = list(clade)[0] name = self.namedict[name] else: name = None children = [nodes.pop(c) for c in clade if c in nodes] node = TreeNode(name=name) for child in children: node.add_child(child) if not node.is_leaf(): node.dist = int(round(100 * countdict[clade])) node.support = int(round(100 * countdict[clade])) else: node.dist = int(100) node.support = int(100) nodes[clade] = node queue = new_queue nodelist = list(nodes.values()) tre = nodelist[0] self.ttree = ToyTree(tre.write(format=0)) self.ttree._coords.update() self.nodelist = nodelist
build_trees
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n nodes = {}\n idxarr = np.arange(len(self.fclade_counts[0][0]))\n queue = []\n countdict = defaultdict(int)\n for clade, count in self.fclade_counts:\n mask = np.int_(list(clade)).astype(np.bool)\n ccx = idxarr[mask]\n queue.append((len(ccx), frozenset(ccx)))\n countdict[frozenset(ccx)] = count\n while queue:\n queue.sort()\n clade_size, clade = queue.pop(0)\n new_queue = []\n for _, ancestor in queue:\n if clade.issubset(ancestor):\n new_ancestor = ancestor - clade | frozenset([clade])\n countdict[new_ancestor] = countdict.pop(ancestor)\n ancestor = new_ancestor\n new_queue.append((len(ancestor), ancestor))\n if clade_size == 1:\n name = list(clade)[0]\n name = self.namedict[name]\n else:\n name = None\n children = [nodes.pop(c) for c in clade if c in nodes]\n node = TreeNode(name=name)\n for child in children:\n node.add_child(child)\n if not node.is_leaf():\n node.dist = int(round(100 * countdict[clade]))\n node.support = int(round(100 * countdict[clade]))\n else:\n node.dist = int(100)\n node.support = int(100)\n nodes[clade] = node\n queue = new_queue\n nodelist = list(nodes.values())\n tre = nodelist[0]\n self.ttree = ToyTree(tre.write(format=0))\n self.ttree._coords.update()\n self.nodelist = nodelist\n", "role": "user" }, { "content": "build_trees", "role": "assistant" } ]
def x(self, word1, word2): return self.phonetics(word1) == self.phonetics(word2)
sounds_like
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, word1, word2):\n return self.phonetics(word1) == self.phonetics(word2)\n", "role": "user" }, { "content": "sounds_like", "role": "assistant" } ]
def x(self, word1, word2, metric='levenshtein'): if metric in self.distances: distance_func = self.distances[metric] return distance_func(self.phonetics(word1), self.phonetics(word2)) else: raise DistanceMetricError( 'Distance metric not supported! Choose from levenshtein, hamming.')
distance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, word1, word2, metric='levenshtein'):\n if metric in self.distances:\n distance_func = self.distances[metric]\n return distance_func(self.phonetics(word1), self.phonetics(word2))\n else:\n raise DistanceMetricError(\n 'Distance metric not supported! Choose from levenshtein, hamming.')\n", "role": "user" }, { "content": "distance", "role": "assistant" } ]
def x(table, spans): heights = [] for row in table: heights.append(-1) for row in range(len(table)): for column in range(len(table[row])): text = table[row][column] span = get_span(spans, row, column) row_count = get_span_row_count(span) height = len(text.split('\n')) if row_count == 1 and height > heights[row]: heights[row] = height for row in range(len(table)): for column in range(len(table[row])): span = get_span(spans, row, column) row_count = get_span_row_count(span) if row_count > 1: text_row = span[0][0] text_column = span[0][1] end_row = text_row + row_count text = table[text_row][text_column] height = len(text.split('\n')) - (row_count - 1) add_row = 0 while height > sum(heights[text_row:end_row]): heights[text_row + add_row] += 1 if add_row + 1 < row_count: add_row += 1 else: add_row = 0 return heights
get_output_row_heights
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(table, spans):\n heights = []\n for row in table:\n heights.append(-1)\n for row in range(len(table)):\n for column in range(len(table[row])):\n text = table[row][column]\n span = get_span(spans, row, column)\n row_count = get_span_row_count(span)\n height = len(text.split('\\n'))\n if row_count == 1 and height > heights[row]:\n heights[row] = height\n for row in range(len(table)):\n for column in range(len(table[row])):\n span = get_span(spans, row, column)\n row_count = get_span_row_count(span)\n if row_count > 1:\n text_row = span[0][0]\n text_column = span[0][1]\n end_row = text_row + row_count\n text = table[text_row][text_column]\n height = len(text.split('\\n')) - (row_count - 1)\n add_row = 0\n while height > sum(heights[text_row:end_row]):\n heights[text_row + add_row] += 1\n if add_row + 1 < row_count:\n add_row += 1\n else:\n add_row = 0\n return heights\n", "role": "user" }, { "content": "get_output_row_heights", "role": "assistant" } ]
def x(olist, nobs): if nobs: rem = nobs % 2 midpoint = nobs // 2 me = olist[midpoint] if not rem: me = 0.5 * (me + olist[midpoint - 1]) return me else: return NaN
smedian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(olist, nobs):\n if nobs:\n rem = nobs % 2\n midpoint = nobs // 2\n me = olist[midpoint]\n if not rem:\n me = 0.5 * (me + olist[midpoint - 1])\n return me\n else:\n return NaN\n", "role": "user" }, { "content": "smedian", "role": "assistant" } ]
def x(input, window): nobs, i, j, sum_x = 0, 0, 0, 0.0 N = len(input) if window > N: raise ValueError('Out of bound') output = np.ndarray(N - window + 1, dtype=input.dtype) for val in input[:window]: if val == val: nobs += 1 sum_x += val output[j] = NaN if not nobs else sum_x / nobs for val in input[window:]: prev = input[j] if prev == prev: sum_x -= prev nobs -= 1 if val == val: nobs += 1 sum_x += val j += 1 output[j] = NaN if not nobs else sum_x / nobs return output
roll_mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input, window):\n nobs, i, j, sum_x = 0, 0, 0, 0.0\n N = len(input)\n if window > N:\n raise ValueError('Out of bound')\n output = np.ndarray(N - window + 1, dtype=input.dtype)\n for val in input[:window]:\n if val == val:\n nobs += 1\n sum_x += val\n output[j] = NaN if not nobs else sum_x / nobs\n for val in input[window:]:\n prev = input[j]\n if prev == prev:\n sum_x -= prev\n nobs -= 1\n if val == val:\n nobs += 1\n sum_x += val\n j += 1\n output[j] = NaN if not nobs else sum_x / nobs\n return output\n", "role": "user" }, { "content": "roll_mean", "role": "assistant" } ]
def x(input, window, scale=1.0, ddof=0): nobs, i, j, sx, sxx = 0, 0, 0, 0.0, 0.0 N = len(input) sqrt = np.sqrt if window > N: raise ValueError('Out of bound') output = np.ndarray(N - window + 1, dtype=input.dtype) for val in input[:window]: if val == val: nobs += 1 sx += val sxx += val * val nn = nobs - ddof output[j] = NaN if nn <= 0 else sqrt(scale * (sxx - sx * sx / nobs) / nn) for val in input[window:]: prev = input[j] if prev == prev: sx -= prev sxx -= prev * prev nobs -= 1 if val == val: nobs += 1 sx += val sxx += val * val j += 1 nn = nobs - ddof output[j] = NaN if nn <= 0 else sqrt(scale * (sxx - sx * sx / nobs) / nn) return output
roll_sd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input, window, scale=1.0, ddof=0):\n nobs, i, j, sx, sxx = 0, 0, 0, 0.0, 0.0\n N = len(input)\n sqrt = np.sqrt\n if window > N:\n raise ValueError('Out of bound')\n output = np.ndarray(N - window + 1, dtype=input.dtype)\n for val in input[:window]:\n if val == val:\n nobs += 1\n sx += val\n sxx += val * val\n nn = nobs - ddof\n output[j] = NaN if nn <= 0 else sqrt(scale * (sxx - sx * sx / nobs) / nn)\n for val in input[window:]:\n prev = input[j]\n if prev == prev:\n sx -= prev\n sxx -= prev * prev\n nobs -= 1\n if val == val:\n nobs += 1\n sx += val\n sxx += val * val\n j += 1\n nn = nobs - ddof\n output[j] = NaN if nn <= 0 else sqrt(scale * (sxx - sx * sx / nobs) /\n nn)\n return output\n", "role": "user" }, { "content": "roll_sd", "role": "assistant" } ]
def x(span, table): if not type(span) is list: return 'Spans must be a list of lists' for pair in span: if not type(pair) is list: return 'Spans must be a list of lists of int' if not len(pair) == 2: return 'Spans must be a [Row, Column] pair of integers' total_rows = get_span_row_count(span) total_columns = get_span_column_count(span) if not len(span) == total_rows * total_columns: return ''.join(['Spans must be rectangular in shape. ', str(span) + ' is invalid']) if max(span, key=lambda x: x[0])[0] > len(table) - 1: return ' '.join(["One of the span's rows extends beyond the", 'bounds of the table:', str(span)]) if max(span, key=lambda x: x[1])[1] > len(table[0]) - 1: return ' '.join(["One of the span's columns extends beyond the", 'bounds of the table:', str(span)]) test_span = copy.deepcopy(span) checked = [test_span.pop(0)] while len(test_span) > 0: row = test_span[0][0] col = test_span[0][1] matched = False for i in range(len(checked)): if row == checked[i][0] and abs(col - checked[i][1]) == 1: matched = True elif abs(row - checked[i][0]) == 1 and col == checked[i][1]: matched = True if matched: checked.append(test_span.pop(0)) else: checked.extend(test_span) return 'This span is not valid: ' + str(checked) return ''
check_span
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(span, table):\n if not type(span) is list:\n return 'Spans must be a list of lists'\n for pair in span:\n if not type(pair) is list:\n return 'Spans must be a list of lists of int'\n if not len(pair) == 2:\n return 'Spans must be a [Row, Column] pair of integers'\n total_rows = get_span_row_count(span)\n total_columns = get_span_column_count(span)\n if not len(span) == total_rows * total_columns:\n return ''.join(['Spans must be rectangular in shape. ', str(span) +\n ' is invalid'])\n if max(span, key=lambda x: x[0])[0] > len(table) - 1:\n return ' '.join([\"One of the span's rows extends beyond the\",\n 'bounds of the table:', str(span)])\n if max(span, key=lambda x: x[1])[1] > len(table[0]) - 1:\n return ' '.join([\"One of the span's columns extends beyond the\",\n 'bounds of the table:', str(span)])\n test_span = copy.deepcopy(span)\n checked = [test_span.pop(0)]\n while len(test_span) > 0:\n row = test_span[0][0]\n col = test_span[0][1]\n matched = False\n for i in range(len(checked)):\n if row == checked[i][0] and abs(col - checked[i][1]) == 1:\n matched = True\n elif abs(row - checked[i][0]) == 1 and col == checked[i][1]:\n matched = True\n if matched:\n checked.append(test_span.pop(0))\n else:\n checked.extend(test_span)\n return 'This span is not valid: ' + str(checked)\n return ''\n", "role": "user" }, { "content": "check_span", "role": "assistant" } ]
def x(cells): current = 0 while len(cells) > 1: count = 0 while count < len(cells): cell1 = cells[current] cell2 = cells[count] merge_direction = get_merge_direction(cell1, cell2) if not merge_direction == 'NONE': merge_cells(cell1, cell2, merge_direction) if current > count: current -= 1 cells.pop(count) else: count += 1 current += 1 if current >= len(cells): current = 0 return cells[0].text
merge_all_cells
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cells):\n current = 0\n while len(cells) > 1:\n count = 0\n while count < len(cells):\n cell1 = cells[current]\n cell2 = cells[count]\n merge_direction = get_merge_direction(cell1, cell2)\n if not merge_direction == 'NONE':\n merge_cells(cell1, cell2, merge_direction)\n if current > count:\n current -= 1\n cells.pop(count)\n else:\n count += 1\n current += 1\n if current >= len(cells):\n current = 0\n return cells[0].text\n", "role": "user" }, { "content": "merge_all_cells", "role": "assistant" } ]
def x(bppnewick): regex1 = re.compile(' #[-+]?[0-9]*\\.?[0-9]*[:]') regex2 = re.compile(' #[-+]?[0-9]*\\.?[0-9]*[;]') regex3 = re.compile(': ') new = regex1.sub(':', bppnewick) new = regex2.sub(';', new) new = regex3.sub(':', new) return new
bpp2newick
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(bppnewick):\n regex1 = re.compile(' #[-+]?[0-9]*\\\\.?[0-9]*[:]')\n regex2 = re.compile(' #[-+]?[0-9]*\\\\.?[0-9]*[;]')\n regex3 = re.compile(': ')\n new = regex1.sub(':', bppnewick)\n new = regex2.sub(';', new)\n new = regex3.sub(':', new)\n return new\n", "role": "user" }, { "content": "bpp2newick", "role": "assistant" } ]
def x(treenode): node = treenode while 1: if node.children: c1, c2 = node.children node = sorted([c1, c2], key=lambda x: len(x.get_leaves()))[0] else: return node
return_small_clade
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(treenode):\n node = treenode\n while 1:\n if node.children:\n c1, c2 = node.children\n node = sorted([c1, c2], key=lambda x: len(x.get_leaves()))[0]\n else:\n return node\n", "role": "user" }, { "content": "return_small_clade", "role": "assistant" } ]
def x(ttree, names, wildcard, regex, mrca=True, mono=True): if not any([names, wildcard, regex]): raise ToytreeError( 'must enter an outgroup, wildcard selector, or regex pattern') tips = [] if names: if isinstance(names, (str, int)): names = [names] notfound = [i for i in names if i not in ttree.get_tip_labels()] if any(notfound): raise ToytreeError('Sample {} is not in the tree'.format(notfound)) tips = [i for i in ttree.treenode.get_leaves() if i.name in names] elif regex: tips = [i for i in ttree.treenode.get_leaves() if re.match(regex, i .name)] if not any(tips): raise ToytreeError('No Samples matched the regular expression') elif wildcard: tips = [i for i in ttree.treenode.get_leaves() if wildcard in i.name] if not any(tips): raise ToytreeError('No Samples matched the wildcard') if not tips: raise ToytreeError('no matching tipnames') tipnames = [i.name for i in tips] if len(tips) == 1: if mrca: return tips[0] else: return tipnames mbool, mtype, mnames = ttree.treenode.check_monophyly(tipnames, 'name', ignore_missing=True) node = ttree.treenode.get_common_ancestor(tips) if mono: if not mbool: raise ToytreeError('Taxon list cannot be paraphyletic') if not mrca: return tipnames else: return node
fuzzy_match_tipnames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ttree, names, wildcard, regex, mrca=True, mono=True):\n if not any([names, wildcard, regex]):\n raise ToytreeError(\n 'must enter an outgroup, wildcard selector, or regex pattern')\n tips = []\n if names:\n if isinstance(names, (str, int)):\n names = [names]\n notfound = [i for i in names if i not in ttree.get_tip_labels()]\n if any(notfound):\n raise ToytreeError('Sample {} is not in the tree'.format(notfound))\n tips = [i for i in ttree.treenode.get_leaves() if i.name in names]\n elif regex:\n tips = [i for i in ttree.treenode.get_leaves() if re.match(regex, i\n .name)]\n if not any(tips):\n raise ToytreeError('No Samples matched the regular expression')\n elif wildcard:\n tips = [i for i in ttree.treenode.get_leaves() if wildcard in i.name]\n if not any(tips):\n raise ToytreeError('No Samples matched the wildcard')\n if not tips:\n raise ToytreeError('no matching tipnames')\n tipnames = [i.name for i in tips]\n if len(tips) == 1:\n if mrca:\n return tips[0]\n else:\n return tipnames\n mbool, mtype, mnames = ttree.treenode.check_monophyly(tipnames, 'name',\n ignore_missing=True)\n node = ttree.treenode.get_common_ancestor(tips)\n if mono:\n if not mbool:\n raise ToytreeError('Taxon list cannot be paraphyletic')\n if not mrca:\n return tipnames\n else:\n return node\n", "role": "user" }, { "content": "fuzzy_match_tipnames", "role": "assistant" } ]
def x(self, treeheight=1): ctree = self._ttree.copy() _height = ctree.treenode.height for node in ctree.treenode.traverse(): node.dist = node.dist / _height * treeheight ctree._coords.update() return ctree
node_scale_root_height
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, treeheight=1):\n ctree = self._ttree.copy()\n _height = ctree.treenode.height\n for node in ctree.treenode.traverse():\n node.dist = node.dist / _height * treeheight\n ctree._coords.update()\n return ctree\n", "role": "user" }, { "content": "node_scale_root_height", "role": "assistant" } ]
def x(self, seed=None): prop = 0.999 assert isinstance(prop, float), 'prop must be a float' assert prop < 1, 'prop must be a proportion >0 and < 1.' random.seed(seed) ctree = self._ttree.copy() for node in ctree.treenode.traverse(): if node.up and node.children: minjit = max([i.dist for i in node.children]) * prop maxjit = node.up.height * prop - node.height newheight = random.uniform(-minjit, maxjit) for child in node.children: child.dist += newheight node.dist -= newheight ctree._coords.update() return ctree
node_slider
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, seed=None):\n prop = 0.999\n assert isinstance(prop, float), 'prop must be a float'\n assert prop < 1, 'prop must be a proportion >0 and < 1.'\n random.seed(seed)\n ctree = self._ttree.copy()\n for node in ctree.treenode.traverse():\n if node.up and node.children:\n minjit = max([i.dist for i in node.children]) * prop\n maxjit = node.up.height * prop - node.height\n newheight = random.uniform(-minjit, maxjit)\n for child in node.children:\n child.dist += newheight\n node.dist -= newheight\n ctree._coords.update()\n return ctree\n", "role": "user" }, { "content": "node_slider", "role": "assistant" } ]
def x(self, multiplier=0.5, seed=None): random.seed(seed) ctree = self._ttree.copy() low, high = sorted([multiplier, 1.0 / multiplier]) mult = random.uniform(low, high) for node in ctree.treenode.traverse(): node.dist = node.dist * mult ctree._coords.update() return ctree
node_multiplier
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, multiplier=0.5, seed=None):\n random.seed(seed)\n ctree = self._ttree.copy()\n low, high = sorted([multiplier, 1.0 / multiplier])\n mult = random.uniform(low, high)\n for node in ctree.treenode.traverse():\n node.dist = node.dist * mult\n ctree._coords.update()\n return ctree\n", "role": "user" }, { "content": "node_multiplier", "role": "assistant" } ]
def x(self, strategy=1): ctree = self._ttree.copy() if strategy == 1: for node in ctree.treenode.traverse(): if node.is_leaf(): node.dist = node.height + 1 else: raise NotImplementedError( 'Strategy {} not yet implemented. Seeking developers.'.format( strategy)) return ctree
make_ultrametric
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, strategy=1):\n ctree = self._ttree.copy()\n if strategy == 1:\n for node in ctree.treenode.traverse():\n if node.is_leaf():\n node.dist = node.height + 1\n else:\n raise NotImplementedError(\n 'Strategy {} not yet implemented. Seeking developers.'.format(\n strategy))\n return ctree\n", "role": "user" }, { "content": "make_ultrametric", "role": "assistant" } ]
def x(ntips, ne=None, seed=None): random.seed(seed) coalunits = False if not ne: coalunits = True ne = 10000 tips = [toytree.tree().treenode.add_child(name=str(i)) for i in range( ntips)] while len(tips) > 1: rtree = toytree.tree() tip1 = tips.pop(random.choice(range(len(tips)))) tip2 = tips.pop(random.choice(range(len(tips)))) kingman = 4.0 * ne / float(ntips * (ntips - 1)) dist = random.expovariate(1.0 / kingman) rtree.treenode.add_child(tip1, dist=tip2.height + dist) rtree.treenode.add_child(tip2, dist=tip1.height + dist) tips.append(rtree.treenode) self = toytree.tree(tips[0].write()) self.treenode.ladderize() if coalunits: for node in self.treenode.traverse(): node.dist /= 2.0 * ne for node in self.treenode.traverse(): if node.is_leaf(): node.dist += node.height for tip in self.get_tip_labels(): node = self.treenode.search_nodes(name=tip)[0] node.name = 'r{}'.format(node.name) self._coords.update() return self
coaltree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ntips, ne=None, seed=None):\n random.seed(seed)\n coalunits = False\n if not ne:\n coalunits = True\n ne = 10000\n tips = [toytree.tree().treenode.add_child(name=str(i)) for i in range(\n ntips)]\n while len(tips) > 1:\n rtree = toytree.tree()\n tip1 = tips.pop(random.choice(range(len(tips))))\n tip2 = tips.pop(random.choice(range(len(tips))))\n kingman = 4.0 * ne / float(ntips * (ntips - 1))\n dist = random.expovariate(1.0 / kingman)\n rtree.treenode.add_child(tip1, dist=tip2.height + dist)\n rtree.treenode.add_child(tip2, dist=tip1.height + dist)\n tips.append(rtree.treenode)\n self = toytree.tree(tips[0].write())\n self.treenode.ladderize()\n if coalunits:\n for node in self.treenode.traverse():\n node.dist /= 2.0 * ne\n for node in self.treenode.traverse():\n if node.is_leaf():\n node.dist += node.height\n for tip in self.get_tip_labels():\n node = self.treenode.search_nodes(name=tip)[0]\n node.name = 'r{}'.format(node.name)\n self._coords.update()\n return self\n", "role": "user" }, { "content": "coaltree", "role": "assistant" } ]
def x(ntips, treeheight=1.0, seed=None): random.seed(seed) tmptree = TreeNode() tmptree.populate(ntips) self = toytree.tree(newick=tmptree.write()) self = self.ladderize().mod.make_ultrametric().mod.node_scale_root_height( treeheight) nidx = list(range(self.ntips)) random.shuffle(nidx) for tidx, node in enumerate(self.treenode.get_leaves()): node.name = 'r{}'.format(nidx[tidx]) self._coords.update() return self
unittree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ntips, treeheight=1.0, seed=None):\n random.seed(seed)\n tmptree = TreeNode()\n tmptree.populate(ntips)\n self = toytree.tree(newick=tmptree.write())\n self = self.ladderize().mod.make_ultrametric().mod.node_scale_root_height(\n treeheight)\n nidx = list(range(self.ntips))\n random.shuffle(nidx)\n for tidx, node in enumerate(self.treenode.get_leaves()):\n node.name = 'r{}'.format(nidx[tidx])\n self._coords.update()\n return self\n", "role": "user" }, { "content": "unittree", "role": "assistant" } ]
def x(ntips, treeheight=1.0): rtree = toytree.tree() rtree.treenode.add_child(name='0') rtree.treenode.add_child(name='1') for i in range(2, ntips): cherry = toytree.tree() cherry.treenode.add_child(name=str(i)) cherry.treenode.add_child(rtree.treenode) rtree = cherry tre = toytree.tree(rtree.write(tree_format=9)) tre = tre.mod.make_ultrametric() self = tre.mod.node_scale_root_height(treeheight) self._coords.update() return self
imbtree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ntips, treeheight=1.0):\n rtree = toytree.tree()\n rtree.treenode.add_child(name='0')\n rtree.treenode.add_child(name='1')\n for i in range(2, ntips):\n cherry = toytree.tree()\n cherry.treenode.add_child(name=str(i))\n cherry.treenode.add_child(rtree.treenode)\n rtree = cherry\n tre = toytree.tree(rtree.write(tree_format=9))\n tre = tre.mod.make_ultrametric()\n self = tre.mod.node_scale_root_height(treeheight)\n self._coords.update()\n return self\n", "role": "user" }, { "content": "imbtree", "role": "assistant" } ]
def x(ntips, treeheight=1.0): if ntips % 2: raise ToytreeError('balanced trees must have even number of tips.') rtree = toytree.tree() rtree.treenode.add_child(name='0') rtree.treenode.add_child(name='1') for i in range(2, ntips): node = return_small_clade(rtree.treenode) node.add_child(name=node.name) node.add_child(name=str(i)) node.name = None idx = 0 for node in rtree.treenode.traverse('postorder'): if node.is_leaf(): node.name = str(idx) idx += 1 tre = toytree.tree(rtree.write(tree_format=9)) tre = tre.mod.make_ultrametric() self = tre.mod.node_scale_root_height(treeheight) self._coords.update() return self
baltree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ntips, treeheight=1.0):\n if ntips % 2:\n raise ToytreeError('balanced trees must have even number of tips.')\n rtree = toytree.tree()\n rtree.treenode.add_child(name='0')\n rtree.treenode.add_child(name='1')\n for i in range(2, ntips):\n node = return_small_clade(rtree.treenode)\n node.add_child(name=node.name)\n node.add_child(name=str(i))\n node.name = None\n idx = 0\n for node in rtree.treenode.traverse('postorder'):\n if node.is_leaf():\n node.name = str(idx)\n idx += 1\n tre = toytree.tree(rtree.write(tree_format=9))\n tre = tre.mod.make_ultrametric()\n self = tre.mod.node_scale_root_height(treeheight)\n self._coords.update()\n return self\n", "role": "user" }, { "content": "baltree", "role": "assistant" } ]
def x(span, row_heights): start_row = span[0][0] row_count = get_span_row_count(span) total_height = 0 for i in range(start_row, start_row + row_count): total_height += row_heights[i] total_height += row_count - 1 return total_height
get_span_char_height
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(span, row_heights):\n start_row = span[0][0]\n row_count = get_span_row_count(span)\n total_height = 0\n for i in range(start_row, start_row + row_count):\n total_height += row_heights[i]\n total_height += row_count - 1\n return total_height\n", "role": "user" }, { "content": "get_span_char_height", "role": "assistant" } ]
def x(html_string): spans = extract_spans(html_string) column_count = get_html_column_count(html_string) row_count = get_html_row_count(spans) count = 0 while count < len(spans): if len(spans[count]) == 1: spans.pop(count) else: count += 1 table = extract_table(html_string, row_count, column_count) use_headers = headers_present(html_string) return table, spans, use_headers
html2data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(html_string):\n spans = extract_spans(html_string)\n column_count = get_html_column_count(html_string)\n row_count = get_html_row_count(spans)\n count = 0\n while count < len(spans):\n if len(spans[count]) == 1:\n spans.pop(count)\n else:\n count += 1\n table = extract_table(html_string, row_count, column_count)\n use_headers = headers_present(html_string)\n return table, spans, use_headers\n", "role": "user" }, { "content": "html2data", "role": "assistant" } ]
def x(self, tree_format=0): if self.treenode.children: features = {'name', 'dist', 'support', 'height', 'idx'} testnode = self.treenode.children[0] extrafeat = {i for i in testnode.features if i not in features} features.update(extrafeat) return self.treenode.write(format=tree_format)
newick
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tree_format=0):\n if self.treenode.children:\n features = {'name', 'dist', 'support', 'height', 'idx'}\n testnode = self.treenode.children[0]\n extrafeat = {i for i in testnode.features if i not in features}\n features.update(extrafeat)\n return self.treenode.write(format=tree_format)\n", "role": "user" }, { "content": "newick", "role": "assistant" } ]
def x(self, feature='idx'): elist = [] for cidx in self._coords.edges[:, 1]: node = self.treenode.search_nodes(idx=cidx)[0] elist.append(node.__getattribute__(feature) if hasattr(node, feature) else '') return elist
get_edge_values
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, feature='idx'):\n elist = []\n for cidx in self._coords.edges[:, 1]:\n node = self.treenode.search_nodes(idx=cidx)[0]\n elist.append(node.__getattribute__(feature) if hasattr(node,\n feature) else '')\n return elist\n", "role": "user" }, { "content": "get_edge_values", "role": "assistant" } ]
def x(self, node_value_dict=None, include_stem=True): idxs = {j: i for i, j in enumerate(self.get_edge_values())} values = [None] * self._coords.edges.shape[0] if node_value_dict is None: return values rmap = {} for key, val in node_value_dict.items(): if isinstance(key, (str, tuple)): node = fuzzy_match_tipnames(self, key, None, None, True, False) rmap[node.idx] = val else: rmap[key] = val node_value_dict = rmap for node in self.treenode.traverse('levelorder'): if node.idx in node_value_dict: if include_stem: if not node.is_root(): values[idxs[node.idx]] = node_value_dict[node.idx] for desc in node.get_descendants(): values[idxs[desc.idx]] = node_value_dict[node.idx] return values
get_edge_values_from_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, node_value_dict=None, include_stem=True):\n idxs = {j: i for i, j in enumerate(self.get_edge_values())}\n values = [None] * self._coords.edges.shape[0]\n if node_value_dict is None:\n return values\n rmap = {}\n for key, val in node_value_dict.items():\n if isinstance(key, (str, tuple)):\n node = fuzzy_match_tipnames(self, key, None, None, True, False)\n rmap[node.idx] = val\n else:\n rmap[key] = val\n node_value_dict = rmap\n for node in self.treenode.traverse('levelorder'):\n if node.idx in node_value_dict:\n if include_stem:\n if not node.is_root():\n values[idxs[node.idx]] = node_value_dict[node.idx]\n for desc in node.get_descendants():\n values[idxs[desc.idx]] = node_value_dict[node.idx]\n return values\n", "role": "user" }, { "content": "get_edge_values_from_dict", "role": "assistant" } ]
def x(self, names=None, wildcard=None, regex=None): if not any([names, wildcard, regex]): raise ToytreeError('at least one argument required') node = fuzzy_match_tipnames(self, names, wildcard, regex, True, False) return node.idx
get_mrca_idx_from_tip_labels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, names=None, wildcard=None, regex=None):\n if not any([names, wildcard, regex]):\n raise ToytreeError('at least one argument required')\n node = fuzzy_match_tipnames(self, names, wildcard, regex, True, False)\n return node.idx\n", "role": "user" }, { "content": "get_mrca_idx_from_tip_labels", "role": "assistant" } ]
def x(self, feature=None, show_root=False, show_tips=False): ndict = self.get_node_dict(return_internal=True, return_nodes=True) nodes = [ndict[i] for i in range(self.nnodes)[::-1]] if feature: vals = [(i.__getattribute__(feature) if hasattr(i, feature) else '' ) for i in nodes] else: vals = [' ' for i in nodes] if not show_root: vals = [(i if not j.is_root() else '') for i, j in zip(vals, nodes)] if not show_tips: vals = [(i if not j.is_leaf() else '') for i, j in zip(vals, nodes)] try: if all([(Decimal(str(i)) % 1 == 0) for i in vals if i]): vals = [(int(i) if isinstance(i, float) else i) for i in vals] except Exception: pass return vals
get_node_values
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, feature=None, show_root=False, show_tips=False):\n ndict = self.get_node_dict(return_internal=True, return_nodes=True)\n nodes = [ndict[i] for i in range(self.nnodes)[::-1]]\n if feature:\n vals = [(i.__getattribute__(feature) if hasattr(i, feature) else ''\n ) for i in nodes]\n else:\n vals = [' ' for i in nodes]\n if not show_root:\n vals = [(i if not j.is_root() else '') for i, j in zip(vals, nodes)]\n if not show_tips:\n vals = [(i if not j.is_leaf() else '') for i, j in zip(vals, nodes)]\n try:\n if all([(Decimal(str(i)) % 1 == 0) for i in vals if i]):\n vals = [(int(i) if isinstance(i, float) else i) for i in vals]\n except Exception:\n pass\n return vals\n", "role": "user" }, { "content": "get_node_values", "role": "assistant" } ]
def x(self, return_internal=False, return_nodes=False): if return_internal: if return_nodes: return {i.idx: i for i in self.treenode.traverse('preorder')} else: return {i.idx: i.name for i in self.treenode.traverse('preorder')} elif return_nodes: return {i.idx: i for i in self.treenode.traverse('preorder') if i. is_leaf()} else: return {i.idx: i.name for i in self.treenode.traverse('preorder') if i.is_leaf()}
get_node_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, return_internal=False, return_nodes=False):\n if return_internal:\n if return_nodes:\n return {i.idx: i for i in self.treenode.traverse('preorder')}\n else:\n return {i.idx: i.name for i in self.treenode.traverse('preorder')}\n elif return_nodes:\n return {i.idx: i for i in self.treenode.traverse('preorder') if i.\n is_leaf()}\n else:\n return {i.idx: i.name for i in self.treenode.traverse('preorder') if\n i.is_leaf()}\n", "role": "user" }, { "content": "get_node_dict", "role": "assistant" } ]
def x(self, axis=None): coords = self.get_node_coordinates() if axis == 'x': return coords[:self.ntips, 0] elif axis == 'y': return coords[:self.ntips, 1] return coords[:self.ntips]
get_tip_coordinates
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, axis=None):\n coords = self.get_node_coordinates()\n if axis == 'x':\n return coords[:self.ntips, 0]\n elif axis == 'y':\n return coords[:self.ntips, 1]\n return coords[:self.ntips]\n", "role": "user" }, { "content": "get_tip_coordinates", "role": "assistant" } ]
def x(self, idx=None): if not idx: return self.treenode.get_leaf_names()[::-1] else: treenode = self.treenode.search_nodes(idx=idx)[0] return treenode.get_leaf_names()[::-1]
get_tip_labels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, idx=None):\n if not idx:\n return self.treenode.get_leaf_names()[::-1]\n else:\n treenode = self.treenode.search_nodes(idx=idx)[0]\n return treenode.get_leaf_names()[::-1]\n", "role": "user" }, { "content": "get_tip_labels", "role": "assistant" } ]
def x(self, include_root=True): ctn1 = -1 + 2 * len(self) ctn2 = -2 + 2 * len(self) if self.is_rooted(): return bool(ctn1 == sum(1 for i in self.treenode.traverse())) if include_root: return bool(ctn2 == -1 + sum(1 for i in self.treenode.traverse())) return bool(ctn2 == sum(1 for i in self.treenode.traverse()))
is_bifurcating
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, include_root=True):\n ctn1 = -1 + 2 * len(self)\n ctn2 = -2 + 2 * len(self)\n if self.is_rooted():\n return bool(ctn1 == sum(1 for i in self.treenode.traverse()))\n if include_root:\n return bool(ctn2 == -1 + sum(1 for i in self.treenode.traverse()))\n return bool(ctn2 == sum(1 for i in self.treenode.traverse()))\n", "role": "user" }, { "content": "is_bifurcating", "role": "assistant" } ]
def x(self, direction=0): nself = deepcopy(self) nself.treenode.ladderize(direction=direction) nself._fixed_order = None nself._coords.update() return nself
ladderize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, direction=0):\n nself = deepcopy(self)\n nself.treenode.ladderize(direction=direction)\n nself._fixed_order = None\n nself._coords.update()\n return nself\n", "role": "user" }, { "content": "ladderize", "role": "assistant" } ]
def x(self, min_dist=1e-06, min_support=0): nself = self.copy() for node in nself.treenode.traverse(): if not node.is_leaf(): if (node.dist <= min_dist) | (node.support < min_support): node.delete() nself._coords.update() return nself
collapse_nodes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, min_dist=1e-06, min_support=0):\n nself = self.copy()\n for node in nself.treenode.traverse():\n if not node.is_leaf():\n if (node.dist <= min_dist) | (node.support < min_support):\n node.delete()\n nself._coords.update()\n return nself\n", "role": "user" }, { "content": "collapse_nodes", "role": "assistant" } ]
def x(self, names=None, wildcard=None, regex=None): nself = self.copy() if not any([names, wildcard, regex]): return nself tipnames = fuzzy_match_tipnames(ttree=nself, names=names, wildcard= wildcard, regex=regex, mrca=False, mono=False) if len(tipnames) == len(nself): raise ToytreeError('You cannot drop all tips from the tree.') if not tipnames: raise ToytreeError('No tips selected.') keeptips = [i for i in nself.get_tip_labels() if i not in tipnames] nself.treenode.prune(keeptips, preserve_branch_length=True) nself._coords.update() return nself
drop_tips
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, names=None, wildcard=None, regex=None):\n nself = self.copy()\n if not any([names, wildcard, regex]):\n return nself\n tipnames = fuzzy_match_tipnames(ttree=nself, names=names, wildcard=\n wildcard, regex=regex, mrca=False, mono=False)\n if len(tipnames) == len(nself):\n raise ToytreeError('You cannot drop all tips from the tree.')\n if not tipnames:\n raise ToytreeError('No tips selected.')\n keeptips = [i for i in nself.get_tip_labels() if i not in tipnames]\n nself.treenode.prune(keeptips, preserve_branch_length=True)\n nself._coords.update()\n return nself\n", "role": "user" }, { "content": "drop_tips", "role": "assistant" } ]
def x(self, names=None, wildcard=None, regex=None, idx=None): revd = {j: i for i, j in enumerate(self.get_tip_labels())} neworder = {} treenode = fuzzy_match_tipnames(self, names, wildcard, regex, True, True) children = treenode.up.children names = [[j.name for j in i.get_leaves()] for i in children] nidxs = [[revd[i] for i in j] for j in names] move = max(len(i) for i in nidxs) if len(nidxs[0]) > len(nidxs[1]): move = min(len(i) for i in nidxs) cnames = list(itertools.chain(*names)) tdict = {i: None for i in cnames} cycle = itertools.cycle(itertools.chain(*nidxs)) for m in range(move): next(cycle) for t in cnames: tdict[t] = next(cycle) for key in revd: if key in tdict: neworder[key] = tdict[key] else: neworder[key] = revd[key] revd = {j: i for i, j in neworder.items()} neworder = [revd[i] for i in range(self.ntips)] nself = ToyTree(self.newick, fixed_order=neworder) nself._coords.update() return nself
rotate_node
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, names=None, wildcard=None, regex=None, idx=None):\n revd = {j: i for i, j in enumerate(self.get_tip_labels())}\n neworder = {}\n treenode = fuzzy_match_tipnames(self, names, wildcard, regex, True, True)\n children = treenode.up.children\n names = [[j.name for j in i.get_leaves()] for i in children]\n nidxs = [[revd[i] for i in j] for j in names]\n move = max(len(i) for i in nidxs)\n if len(nidxs[0]) > len(nidxs[1]):\n move = min(len(i) for i in nidxs)\n cnames = list(itertools.chain(*names))\n tdict = {i: None for i in cnames}\n cycle = itertools.cycle(itertools.chain(*nidxs))\n for m in range(move):\n next(cycle)\n for t in cnames:\n tdict[t] = next(cycle)\n for key in revd:\n if key in tdict:\n neworder[key] = tdict[key]\n else:\n neworder[key] = revd[key]\n revd = {j: i for i, j in neworder.items()}\n neworder = [revd[i] for i in range(self.ntips)]\n nself = ToyTree(self.newick, fixed_order=neworder)\n nself._coords.update()\n return nself\n", "role": "user" }, { "content": "rotate_node", "role": "assistant" } ]
def x(self, dist=1.0, support=100, recursive=True): nself = self.copy() nself.treenode.resolve_polytomy(default_dist=dist, default_support= support, recursive=recursive) nself._coords.update() return nself
resolve_polytomy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dist=1.0, support=100, recursive=True):\n nself = self.copy()\n nself.treenode.resolve_polytomy(default_dist=dist, default_support=\n support, recursive=recursive)\n nself._coords.update()\n return nself\n", "role": "user" }, { "content": "resolve_polytomy", "role": "assistant" } ]
def x(self): nself = self.copy() nself.treenode.unroot() nself.treenode.ladderize() nself._coords.update() return nself
unroot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n nself = self.copy()\n nself.treenode.unroot()\n nself.treenode.ladderize()\n nself._coords.update()\n return nself\n", "role": "user" }, { "content": "unroot", "role": "assistant" } ]
def x(self, names=None, wildcard=None, regex=None): nself = self.copy() try: node = fuzzy_match_tipnames(nself, names, wildcard, regex, True, True) except ToytreeError: tipnames = fuzzy_match_tipnames(nself, names, wildcard, regex, False, False) tipnames = list(set(self.get_tip_labels()) - set(node)) node = fuzzy_match_tipnames(nself, tipnames, None, None, True, True) if not nself.is_bifurcating(): nself.treenode.resolve_polytomy() nself.treenode.set_outgroup(node) nself._coords.update() testnode = nself.treenode.get_leaves()[0] features = {'name', 'dist', 'support', 'height'} extrafeat = {i for i in testnode.features if i not in features} features.update(extrafeat) nnode = [i for i in nself.treenode.traverse() if not hasattr(i, 'idx')] if nnode: nnode = nnode[0] rnode = [i for i in nself.treenode.children if i != node][0] idxs = [int(i.idx) for i in nself.treenode.traverse() if hasattr(i, 'idx')] if len(node.is_leaf()) == 1: nnode.name = str('rerooted') rnode.name = node rnode.add_feature('idx', max(idxs) + 1) rnode.dist *= 2 sister = rnode.get_sisters()[0] sister.dist *= 2 rnode.support = 100 for feature in extrafeat: nnode.add_feature(feature, getattr(rnode, feature)) rnode.del_feature(feature) else: nnode.add_feature('idx', max(idxs) + 1) nnode.name = str('rerooted') nnode.dist *= 2 sister = nnode.get_sisters()[0] sister.dist *= 2 nnode.support = 100 nself.treenode.ladderize() nself._coords.update() return nself
root
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, names=None, wildcard=None, regex=None):\n nself = self.copy()\n try:\n node = fuzzy_match_tipnames(nself, names, wildcard, regex, True, True)\n except ToytreeError:\n tipnames = fuzzy_match_tipnames(nself, names, wildcard, regex, \n False, False)\n tipnames = list(set(self.get_tip_labels()) - set(node))\n node = fuzzy_match_tipnames(nself, tipnames, None, None, True, True)\n if not nself.is_bifurcating():\n nself.treenode.resolve_polytomy()\n nself.treenode.set_outgroup(node)\n nself._coords.update()\n testnode = nself.treenode.get_leaves()[0]\n features = {'name', 'dist', 'support', 'height'}\n extrafeat = {i for i in testnode.features if i not in features}\n features.update(extrafeat)\n nnode = [i for i in nself.treenode.traverse() if not hasattr(i, 'idx')]\n if nnode:\n nnode = nnode[0]\n rnode = [i for i in nself.treenode.children if i != node][0]\n idxs = [int(i.idx) for i in nself.treenode.traverse() if hasattr(i,\n 'idx')]\n if len(node.is_leaf()) == 1:\n nnode.name = str('rerooted')\n rnode.name = node\n rnode.add_feature('idx', max(idxs) + 1)\n rnode.dist *= 2\n sister = rnode.get_sisters()[0]\n sister.dist *= 2\n rnode.support = 100\n for feature in extrafeat:\n nnode.add_feature(feature, getattr(rnode, feature))\n rnode.del_feature(feature)\n else:\n nnode.add_feature('idx', max(idxs) + 1)\n nnode.name = str('rerooted')\n nnode.dist *= 2\n sister = nnode.get_sisters()[0]\n sister.dist *= 2\n nnode.support = 100\n nself.treenode.ladderize()\n nself._coords.update()\n return nself\n", "role": "user" }, { "content": "root", "role": "assistant" } ]
def x(self, tree_style=None, height=None, width=None, axes=None, orient= None, tip_labels=None, tip_labels_colors=None, tip_labels_style=None, tip_labels_align=None, node_labels=None, node_labels_style=None, node_sizes=None, node_colors=None, node_style=None, node_hover=None, node_markers=None, edge_colors=None, edge_widths=None, edge_type=None, edge_style=None, edge_align_style=None, use_edge_lengths=None, scalebar =None, padding=None, xbaseline=0, ybaseline=0, **kwargs): if kwargs.get('ts'): tree_style = kwargs.get('ts') nself = deepcopy(self) if tree_style: nself.style.update(TreeStyle(tree_style[0])) userargs = {'height': height, 'width': width, 'orient': orient, 'tip_labels': tip_labels, 'tip_labels_colors': tip_labels_colors, 'tip_labels_align': tip_labels_align, 'tip_labels_style': tip_labels_style, 'node_labels': node_labels, 'node_labels_style': node_labels_style, 'node_sizes': node_sizes, 'node_colors': node_colors, 'node_hover': node_hover, 'node_style': node_style, 'node_markers': node_markers, 'edge_type': edge_type, 'edge_colors': edge_colors, 'edge_widths': edge_widths, 'edge_style': edge_style, 'edge_align_style': edge_align_style, 'use_edge_lengths': use_edge_lengths, 'scalebar': scalebar, 'padding': padding, 'xbaseline': xbaseline, 'ybaseline': ybaseline} kwargs.update(userargs) censored = {i: j for i, j in kwargs.items() if j is not None} nself.style.update(censored) unrecognized = [i for i in kwargs if i not in userargs] if unrecognized: print('unrecognized arguments skipped: {}'.format(unrecognized)) print('check the docs, argument names may have changed.') draw = Drawing(nself) if kwargs.get('debug'): return draw canvas, axes = draw.update(axes=axes) return canvas, axes
draw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tree_style=None, height=None, width=None, axes=None, orient=\n None, tip_labels=None, tip_labels_colors=None, tip_labels_style=None,\n tip_labels_align=None, node_labels=None, node_labels_style=None,\n node_sizes=None, node_colors=None, node_style=None, node_hover=None,\n node_markers=None, edge_colors=None, edge_widths=None, edge_type=None,\n edge_style=None, edge_align_style=None, use_edge_lengths=None, scalebar\n =None, padding=None, xbaseline=0, ybaseline=0, **kwargs):\n if kwargs.get('ts'):\n tree_style = kwargs.get('ts')\n nself = deepcopy(self)\n if tree_style:\n nself.style.update(TreeStyle(tree_style[0]))\n userargs = {'height': height, 'width': width, 'orient': orient,\n 'tip_labels': tip_labels, 'tip_labels_colors': tip_labels_colors,\n 'tip_labels_align': tip_labels_align, 'tip_labels_style':\n tip_labels_style, 'node_labels': node_labels, 'node_labels_style':\n node_labels_style, 'node_sizes': node_sizes, 'node_colors':\n node_colors, 'node_hover': node_hover, 'node_style': node_style,\n 'node_markers': node_markers, 'edge_type': edge_type, 'edge_colors':\n edge_colors, 'edge_widths': edge_widths, 'edge_style': edge_style,\n 'edge_align_style': edge_align_style, 'use_edge_lengths':\n use_edge_lengths, 'scalebar': scalebar, 'padding': padding,\n 'xbaseline': xbaseline, 'ybaseline': ybaseline}\n kwargs.update(userargs)\n censored = {i: j for i, j in kwargs.items() if j is not None}\n nself.style.update(censored)\n unrecognized = [i for i in kwargs if i not in userargs]\n if unrecognized:\n print('unrecognized arguments skipped: {}'.format(unrecognized))\n print('check the docs, argument names may have changed.')\n draw = Drawing(nself)\n if kwargs.get('debug'):\n return draw\n canvas, axes = draw.update(axes=axes)\n return canvas, axes\n", "role": "user" }, { "content": "draw", "role": "assistant" } ]
def x(cell1, cell2): cell1_left = cell1.column cell1_right = cell1.column + cell1.column_count cell1_top = cell1.row cell1_bottom = cell1.row + cell1.row_count cell2_left = cell2.column cell2_right = cell2.column + cell2.column_count cell2_top = cell2.row cell2_bottom = cell2.row + cell2.row_count if (cell1_right == cell2_left and cell1_top == cell2_top and cell1_bottom == cell2_bottom and cell1.right_sections >= cell2. left_sections): return 'RIGHT' elif cell1_left == cell2_left and cell1_right == cell2_right and cell1_top == cell2_bottom and cell1.top_sections >= cell2.bottom_sections: return 'TOP' elif cell1_left == cell2_left and cell1_right == cell2_right and cell1_bottom == cell2_top and cell1.bottom_sections >= cell2.top_sections: return 'BOTTOM' elif cell1_left == cell2_right and cell1_top == cell2_top and cell1_bottom == cell2_bottom and cell1.left_sections >= cell2.right_sections: return 'LEFT' else: return 'NONE'
get_merge_direction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cell1, cell2):\n cell1_left = cell1.column\n cell1_right = cell1.column + cell1.column_count\n cell1_top = cell1.row\n cell1_bottom = cell1.row + cell1.row_count\n cell2_left = cell2.column\n cell2_right = cell2.column + cell2.column_count\n cell2_top = cell2.row\n cell2_bottom = cell2.row + cell2.row_count\n if (cell1_right == cell2_left and cell1_top == cell2_top and \n cell1_bottom == cell2_bottom and cell1.right_sections >= cell2.\n left_sections):\n return 'RIGHT'\n elif cell1_left == cell2_left and cell1_right == cell2_right and cell1_top == cell2_bottom and cell1.top_sections >= cell2.bottom_sections:\n return 'TOP'\n elif cell1_left == cell2_left and cell1_right == cell2_right and cell1_bottom == cell2_top and cell1.bottom_sections >= cell2.top_sections:\n return 'BOTTOM'\n elif cell1_left == cell2_right and cell1_top == cell2_top and cell1_bottom == cell2_bottom and cell1.left_sections >= cell2.right_sections:\n return 'LEFT'\n else:\n return 'NONE'\n", "role": "user" }, { "content": "get_merge_direction", "role": "assistant" } ]
def x(NHX_string): ndict = {} if '[&&NHX:' in NHX_string: NHX_string = NHX_string.replace('[&&NHX:', '') NHX_string = NHX_string.replace(']', '') for field in NHX_string.split(':'): try: pname, pvalue = field.split('=') ndict[pname] = pvalue except ValueError as e: raise NewickError('Invalid NHX format %s' % field) return ndict
parse_nhx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(NHX_string):\n ndict = {}\n if '[&&NHX:' in NHX_string:\n NHX_string = NHX_string.replace('[&&NHX:', '')\n NHX_string = NHX_string.replace(']', '')\n for field in NHX_string.split(':'):\n try:\n pname, pvalue = field.split('=')\n ndict[pname] = pvalue\n except ValueError as e:\n raise NewickError('Invalid NHX format %s' % field)\n return ndict\n", "role": "user" }, { "content": "parse_nhx", "role": "assistant" } ]
def x(self): if isinstance(self.intree, (str, bytes)): self.intree = self.intree.strip() if any([(i in self.intree) for i in ('http://', 'https://')]): response = requests.get(self.intree) response.raise_for_status() self.data = response.text.strip().split('\n') elif os.path.exists(self.intree): with open(self.intree, 'rU') as indata: self.data = indata.readlines() else: self.data = self.intree.split('\n') elif isinstance(self.intree, (list, set, tuple)): self.data = list(self.intree)
get_data_from_intree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if isinstance(self.intree, (str, bytes)):\n self.intree = self.intree.strip()\n if any([(i in self.intree) for i in ('http://', 'https://')]):\n response = requests.get(self.intree)\n response.raise_for_status()\n self.data = response.text.strip().split('\\n')\n elif os.path.exists(self.intree):\n with open(self.intree, 'rU') as indata:\n self.data = indata.readlines()\n else:\n self.data = self.intree.split('\\n')\n elif isinstance(self.intree, (list, set, tuple)):\n self.data = list(self.intree)\n", "role": "user" }, { "content": "get_data_from_intree", "role": "assistant" } ]
def x(self): if self.data[0].strip().upper() == '#NEXUS': nex = NexusParser(self.data) self.data = nex.newicks self.tdict = nex.tdict
parse_nexus
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.data[0].strip().upper() == '#NEXUS':\n nex = NexusParser(self.data)\n self.data = nex.newicks\n self.tdict = nex.tdict\n", "role": "user" }, { "content": "parse_nexus", "role": "assistant" } ]
def x(self): if not self.multitree: extractor = Newick2TreeNode(self.data[0].strip(), fmt=self.fmt) self.treenodes.append(extractor.newick_from_string()) else: for tre in self.data: extractor = Newick2TreeNode(tre.strip(), fmt=self.fmt) self.treenodes.append(extractor.newick_from_string())
get_treenodes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.multitree:\n extractor = Newick2TreeNode(self.data[0].strip(), fmt=self.fmt)\n self.treenodes.append(extractor.newick_from_string())\n else:\n for tre in self.data:\n extractor = Newick2TreeNode(tre.strip(), fmt=self.fmt)\n self.treenodes.append(extractor.newick_from_string())\n", "role": "user" }, { "content": "get_treenodes", "role": "assistant" } ]
def x(self): for chunk in self.data.split('(')[1:]: self.current_parent = (self.root if self.current_parent is None else self.current_parent.add_child()) subchunks = [ch.strip() for ch in chunk.split(',')] if subchunks[-1] != '' and not subchunks[-1].endswith(';'): raise NewickError('Broken newick structure at: {}'.format(chunk)) for idx, leaf in enumerate(subchunks): if leaf.strip() == '' and idx == len(subchunks) - 1: continue closing_nodes = leaf.split(')') self.apply_node_data(closing_nodes[0], 'leaf') if len(closing_nodes) > 1: for closing_internal in closing_nodes[1:]: closing_internal = closing_internal.rstrip(';') self.apply_node_data(closing_internal, 'internal') self.current_parent = self.current_parent.up return self.root
newick_from_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for chunk in self.data.split('(')[1:]:\n self.current_parent = (self.root if self.current_parent is None else\n self.current_parent.add_child())\n subchunks = [ch.strip() for ch in chunk.split(',')]\n if subchunks[-1] != '' and not subchunks[-1].endswith(';'):\n raise NewickError('Broken newick structure at: {}'.format(chunk))\n for idx, leaf in enumerate(subchunks):\n if leaf.strip() == '' and idx == len(subchunks) - 1:\n continue\n closing_nodes = leaf.split(')')\n self.apply_node_data(closing_nodes[0], 'leaf')\n if len(closing_nodes) > 1:\n for closing_internal in closing_nodes[1:]:\n closing_internal = closing_internal.rstrip(';')\n self.apply_node_data(closing_internal, 'internal')\n self.current_parent = self.current_parent.up\n return self.root\n", "role": "user" }, { "content": "newick_from_string", "role": "assistant" } ]
def x(self): lines = iter(self.data) while 1: try: line = next(lines).strip() except StopIteration: break if line.lower() == 'begin trees;': while 1: sub = next(lines).strip().split() if not sub: continue if sub[0].lower() == 'translate': while sub[0] != ';': sub = next(lines).strip().split() self.tdict[sub[0]] = sub[-1].strip(',') if sub[0].lower().startswith('tree'): self.newicks.append(sub[-1]) if sub[0].lower() == 'end;': break
extract_tree_block
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n lines = iter(self.data)\n while 1:\n try:\n line = next(lines).strip()\n except StopIteration:\n break\n if line.lower() == 'begin trees;':\n while 1:\n sub = next(lines).strip().split()\n if not sub:\n continue\n if sub[0].lower() == 'translate':\n while sub[0] != ';':\n sub = next(lines).strip().split()\n self.tdict[sub[0]] = sub[-1].strip(',')\n if sub[0].lower().startswith('tree'):\n self.newicks.append(sub[-1])\n if sub[0].lower() == 'end;':\n break\n", "role": "user" }, { "content": "extract_tree_block", "role": "assistant" } ]
def x(): parser = argparse.ArgumentParser(formatter_class=argparse. RawDescriptionHelpFormatter, epilog= """ * Example command-line usage: ## push test branch to conda --label=conda-test for travis CI ./versioner.py -p toytree -b test -t 0.1.7 ## push master as a new tag to git and conda ./versioner.py -p toytree -b master -t 0.1.7 --deploy ## build other deps on conda at --label=conda-test ./versioner.py -p toyplot --no-git ./versioner.py -p pypng --no-git """ ) parser.add_argument('-v', '--version', action='version', version='0.1') parser.add_argument('-p', dest='package', default='toytree', type=str, help='the tag to put in __init__ and use on conda') parser.add_argument('-b', dest='branch', default='master', type=str, help='the branch to build conda package from') parser.add_argument('-t', dest='tag', default='test', type=str, help= 'the tag to put in __init__ and use on conda') parser.add_argument('--deploy', dest='deploy', action='store_true', help='push the tag to git and upload to conda main label') parser.add_argument('--no-git', dest='nogit', action='store_true', help ='skip git update and only build/upload to conda') if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() return args
parse_command_line
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n parser = argparse.ArgumentParser(formatter_class=argparse.\n RawDescriptionHelpFormatter, epilog=\n \"\"\"\n * Example command-line usage: \n\n ## push test branch to conda --label=conda-test for travis CI\n ./versioner.py -p toytree -b test -t 0.1.7 \n\n ## push master as a new tag to git and conda\n ./versioner.py -p toytree -b master -t 0.1.7 --deploy\n\n ## build other deps on conda at --label=conda-test\n ./versioner.py -p toyplot --no-git\n ./versioner.py -p pypng --no-git\n\n \"\"\"\n )\n parser.add_argument('-v', '--version', action='version', version='0.1')\n parser.add_argument('-p', dest='package', default='toytree', type=str,\n help='the tag to put in __init__ and use on conda')\n parser.add_argument('-b', dest='branch', default='master', type=str,\n help='the branch to build conda package from')\n parser.add_argument('-t', dest='tag', default='test', type=str, help=\n 'the tag to put in __init__ and use on conda')\n parser.add_argument('--deploy', dest='deploy', action='store_true',\n help='push the tag to git and upload to conda main label')\n parser.add_argument('--no-git', dest='nogit', action='store_true', help\n ='skip git update and only build/upload to conda')\n if len(sys.argv) == 1:\n parser.print_help()\n sys.exit(1)\n args = parser.parse_args()\n return args\n", "role": "user" }, { "content": "parse_command_line", "role": "assistant" } ]
def x(self): self._get_git_branch() self._get_init_release_tag() try: self._get_log_commits() except Exception as inst: raise Exception( """ Error: the version in __init__.py is {}, so 'git log' is looking for commits that have happened since that version, but it appears there is not existing tag for that version. You may need to roll back the version in __init__.py to what is actually commited. Check with `git tag`. -------- {} """ .format(self.init_version, inst)) print("__init__.__version__ == '{}':".format(self.init_version)) print("'{}' is {} commits ahead of origin/{}".format(self.tag, len(self .commits), self.init_version))
get_git_status
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._get_git_branch()\n self._get_init_release_tag()\n try:\n self._get_log_commits()\n except Exception as inst:\n raise Exception(\n \"\"\"\n Error: the version in __init__.py is {}, so 'git log' is \n looking for commits that have happened since that version, but\n it appears there is not existing tag for that version. You may\n need to roll back the version in __init__.py to what is actually\n commited. Check with `git tag`.\n --------\n {}\n \"\"\"\n .format(self.init_version, inst))\n print(\"__init__.__version__ == '{}':\".format(self.init_version))\n print(\"'{}' is {} commits ahead of origin/{}\".format(self.tag, len(self\n .commits), self.init_version))\n", "role": "user" }, { "content": "get_git_status", "role": "assistant" } ]
def x(self): self._pull_branch_from_origin() if self.deploy: self._write_commits_to_release_notes() try: self._write_new_tag_to_init() self._write_branch_and_tag_to_meta_yaml() self._push_new_tag_to_git() except Exception as inst: print('\n Error:\n', inst) self._revert_tag_in_init() sys.exit(2)
push_git_package
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._pull_branch_from_origin()\n if self.deploy:\n self._write_commits_to_release_notes()\n try:\n self._write_new_tag_to_init()\n self._write_branch_and_tag_to_meta_yaml()\n self._push_new_tag_to_git()\n except Exception as inst:\n print('\\n Error:\\n', inst)\n self._revert_tag_in_init()\n sys.exit(2)\n", "role": "user" }, { "content": "push_git_package", "role": "assistant" } ]
def x(self): try: subprocess.check_call(['git', 'pull', 'origin', self.branch]) except Exception as inst: sys.exit( """ Your HEAD commit conflicts with origin/{tag}. Resolve, merge, and rerun versioner.py """ )
pull_branch_from_origin
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n subprocess.check_call(['git', 'pull', 'origin', self.branch])\n except Exception as inst:\n sys.exit(\n \"\"\"\n Your HEAD commit conflicts with origin/{tag}. \n Resolve, merge, and rerun versioner.py\n \"\"\"\n )\n", "role": "user" }, { "content": "pull_branch_from_origin", "role": "assistant" } ]
def x(self): self.init_version = re.search('^__version__ = [\'\\"]([^\'\\"]*)[\'\\"]', open(self.init_file, 'r').read(), re.M).group(1)
get_init_release_tag
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.init_version = re.search('^__version__ = [\\'\\\\\"]([^\\'\\\\\"]*)[\\'\\\\\"]',\n open(self.init_file, 'r').read(), re.M).group(1)\n", "role": "user" }, { "content": "get_init_release_tag", "role": "assistant" } ]
def x(self): cmd = 'git log --pretty=oneline {}..'.format(self.init_version) cmdlist = shlex.split(cmd) commits = subprocess.check_output(cmdlist) self.commits = [x.split(' ', 1) for x in commits.split('\n')]
get_log_commits
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n cmd = 'git log --pretty=oneline {}..'.format(self.init_version)\n cmdlist = shlex.split(cmd)\n commits = subprocess.check_output(cmdlist)\n self.commits = [x.split(' ', 1) for x in commits.split('\\n')]\n", "role": "user" }, { "content": "get_log_commits", "role": "assistant" } ]
def x(self): with open(self.release_file, 'a') as out: out.write('==========\n{}\n'.format(self.tag)) for commit in self.commits: try: msg = commit[1] if msg != 'cosmetic': out.write('-' + msg + '\n') except: pass
write_commits_to_release_notes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n with open(self.release_file, 'a') as out:\n out.write('==========\\n{}\\n'.format(self.tag))\n for commit in self.commits:\n try:\n msg = commit[1]\n if msg != 'cosmetic':\n out.write('-' + msg + '\\n')\n except:\n pass\n", "role": "user" }, { "content": "write_commits_to_release_notes", "role": "assistant" } ]
def x(self): for line in fileinput.input(self.init_file, inplace=1): if line.strip().startswith('__version__'): line = '__version__ = "' + self.tag + '"' print(line.strip('\n'))
write_new_tag_to_init
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for line in fileinput.input(self.init_file, inplace=1):\n if line.strip().startswith('__version__'):\n line = '__version__ = \"' + self.tag + '\"'\n print(line.strip('\\n'))\n", "role": "user" }, { "content": "write_new_tag_to_init", "role": "assistant" } ]
def x(self): with open(self.meta_yaml.replace('meta', 'template'), 'r') as infile: dat = infile.read() newdat = dat.format(**{'tag': self.tag, 'branch': self.branch}) with open(self.meta_yaml, 'w') as outfile: outfile.write(newdat)
write_branch_and_tag_to_meta_yaml
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n with open(self.meta_yaml.replace('meta', 'template'), 'r') as infile:\n dat = infile.read()\n newdat = dat.format(**{'tag': self.tag, 'branch': self.branch})\n with open(self.meta_yaml, 'w') as outfile:\n outfile.write(newdat)\n", "role": "user" }, { "content": "write_branch_and_tag_to_meta_yaml", "role": "assistant" } ]
def x(self): for line in fileinput.input(self.init_file, inplace=1): if line.strip().startswith('__version__'): line = '__version__ = "' + self.init_version + '"' print(line.strip('\n')) print('reverted __init__.__version__ back to {}'.format(self.init_version))
revert_tag_in_init
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for line in fileinput.input(self.init_file, inplace=1):\n if line.strip().startswith('__version__'):\n line = '__version__ = \"' + self.init_version + '\"'\n print(line.strip('\\n'))\n print('reverted __init__.__version__ back to {}'.format(self.init_version))\n", "role": "user" }, { "content": "revert_tag_in_init", "role": "assistant" } ]
def x(self): print('Pushing new version to git') subprocess.call(['git', 'add', self.release_file]) subprocess.call(['git', 'add', self.init_file]) subprocess.call(['git', 'commit', '-m', 'Updating {}/__init__.py to version {}'.format(self.package, self.tag)] ) subprocess.call(['git', 'push', 'origin', self.branch]) if self.deploy: subprocess.call(['git', 'tag', '-a', self.tag, '-m', 'Updating version to {}'.format(self.tag)]) subprocess.call(['git', 'push', 'origin'])
push_new_tag_to_git
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n print('Pushing new version to git')\n subprocess.call(['git', 'add', self.release_file])\n subprocess.call(['git', 'add', self.init_file])\n subprocess.call(['git', 'commit', '-m',\n 'Updating {}/__init__.py to version {}'.format(self.package, self.tag)]\n )\n subprocess.call(['git', 'push', 'origin', self.branch])\n if self.deploy:\n subprocess.call(['git', 'tag', '-a', self.tag, '-m',\n 'Updating version to {}'.format(self.tag)])\n subprocess.call(['git', 'push', 'origin'])\n", "role": "user" }, { "content": "push_new_tag_to_git", "role": "assistant" } ]
def x(self): bldir = './tmp-bld' if not os.path.exists(bldir): os.makedirs(bldir) for pybuild in ['2.7', '3']: build = api.build('conda-recipe/{}'.format(self.package), python= pybuild) if not self.deploy: cmd = ['anaconda', 'upload', build[0], '--label', 'test', '--force' ] else: cmd = ['anaconda', 'upload', build[0]] err = subprocess.Popen(cmd).communicate() api.convert(build[0], output_dir=bldir, platforms=['osx-64']) osxdir = os.path.join(bldir, 'osx-64', os.path.basename(build[0])) if not self.deploy: cmd = ['anaconda', 'upload', osxdir, '--label', 'test', '--force'] else: cmd = ['anaconda', 'upload', osxdir] err = subprocess.Popen(cmd).communicate() shutil.rmtree(bldir)
build_conda_packages
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n bldir = './tmp-bld'\n if not os.path.exists(bldir):\n os.makedirs(bldir)\n for pybuild in ['2.7', '3']:\n build = api.build('conda-recipe/{}'.format(self.package), python=\n pybuild)\n if not self.deploy:\n cmd = ['anaconda', 'upload', build[0], '--label', 'test', '--force'\n ]\n else:\n cmd = ['anaconda', 'upload', build[0]]\n err = subprocess.Popen(cmd).communicate()\n api.convert(build[0], output_dir=bldir, platforms=['osx-64'])\n osxdir = os.path.join(bldir, 'osx-64', os.path.basename(build[0]))\n if not self.deploy:\n cmd = ['anaconda', 'upload', osxdir, '--label', 'test', '--force']\n else:\n cmd = ['anaconda', 'upload', osxdir]\n err = subprocess.Popen(cmd).communicate()\n shutil.rmtree(bldir)\n", "role": "user" }, { "content": "build_conda_packages", "role": "assistant" } ]
def x(span): rows = 1 first_row = span[0][0] for i in range(len(span)): if span[i][0] > first_row: rows += 1 first_row = span[i][0] return rows
get_span_row_count
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(span):\n rows = 1\n first_row = span[0][0]\n for i in range(len(span)):\n if span[i][0] > first_row:\n rows += 1\n first_row = span[i][0]\n return rows\n", "role": "user" }, { "content": "get_span_row_count", "role": "assistant" } ]
def x(x, dtype=None): iterable = scalarasiter(x) if isinstance(iterable, ndarray): return iterable else: if not hasattr(iterable, '__len__'): iterable = list(iterable) if dtype == object_type: a = ndarray((len(iterable),), dtype=dtype) for i, v in enumerate(iterable): a[i] = v return a else: return array(iterable, dtype=dtype)
asarray
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, dtype=None):\n iterable = scalarasiter(x)\n if isinstance(iterable, ndarray):\n return iterable\n else:\n if not hasattr(iterable, '__len__'):\n iterable = list(iterable)\n if dtype == object_type:\n a = ndarray((len(iterable),), dtype=dtype)\n for i, v in enumerate(iterable):\n a[i] = v\n return a\n else:\n return array(iterable, dtype=dtype)\n", "role": "user" }, { "content": "asarray", "role": "assistant" } ]