source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(nbl, auto_correlations=False):
t = 1 if auto_correlations is False else -1
return int(t + math.sqrt(1 + 8 * nbl)) // 2
|
nr_of_antenna
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nbl, auto_correlations=False):\n t = 1 if auto_correlations is False else -1\n return int(t + math.sqrt(1 + 8 * nbl)) // 2\n",
"role": "user"
},
{
"content": "nr_of_antenna",
"role": "assistant"
}
] |
def x(shape, dtype):
return np.product(shape) * np.dtype(dtype).itemsize
|
array_bytes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(shape, dtype):\n return np.product(shape) * np.dtype(dtype).itemsize\n",
"role": "user"
},
{
"content": "array_bytes",
"role": "assistant"
}
] |
def x(ary=None, shape=None, dtype=None):
if ary is not None:
shape, dtype = ary.shape, ary.dtype
elif shape is None or dtype is None:
raise ValueError(
'random_like(ary, shape, dtype) must be supplied with either an array argument, or the shape and dtype of the desired random array.'
)
if np.issubdtype(dtype, np.complexfloating):
return (np.random.random(size=shape) + np.random.random(size=shape) *
1.0j).astype(dtype)
else:
return np.random.random(size=shape).astype(dtype)
|
random_like
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ary=None, shape=None, dtype=None):\n if ary is not None:\n shape, dtype = ary.shape, ary.dtype\n elif shape is None or dtype is None:\n raise ValueError(\n 'random_like(ary, shape, dtype) must be supplied with either an array argument, or the shape and dtype of the desired random array.'\n )\n if np.issubdtype(dtype, np.complexfloating):\n return (np.random.random(size=shape) + np.random.random(size=shape) *\n 1.0j).astype(dtype)\n else:\n return np.random.random(size=shape).astype(dtype)\n",
"role": "user"
},
{
"content": "random_like",
"role": "assistant"
}
] |
def x(nested):
flat_return = list()
def x(nested, flat):
for i in nested:
__inner_flat(i, flat) if isinstance(i, list) else flat.append(i)
return flat
__inner_flat(nested, flat_return)
return flat_return
|
flatten
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nested):\n flat_return = list()\n\n def x(nested, flat):\n for i in nested:\n __inner_flat(i, flat) if isinstance(i, list) else flat.append(i)\n return flat\n __inner_flat(nested, flat_return)\n return flat_return\n",
"role": "user"
},
{
"content": "flatten",
"role": "assistant"
}
] |
def x(ary, template):
shape = shape_from_str_tuple(ary['shape'], template)
dtype = dtype_from_str(ary['dtype'], template)
return array_bytes(shape, dtype)
|
dict_array_bytes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ary, template):\n shape = shape_from_str_tuple(ary['shape'], template)\n dtype = dtype_from_str(ary['dtype'], template)\n return array_bytes(shape, dtype)\n",
"role": "user"
},
{
"content": "dict_array_bytes",
"role": "assistant"
}
] |
def x(arrays, template):
return np.sum([dict_array_bytes(ary, template) for ary in arrays])
|
dict_array_bytes_required
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arrays, template):\n return np.sum([dict_array_bytes(ary, template) for ary in arrays])\n",
"role": "user"
},
{
"content": "dict_array_bytes_required",
"role": "assistant"
}
] |
def x(bytes_available, arrays, template, dim_ord, nsolvers=1):
if not isinstance(dim_ord, list):
raise TypeError('dim_ord should be a list')
if bytes_available < 0:
bytes_available = 0
modified_dims = {}
T = template.copy()
bytes_used = dict_array_bytes_required(arrays, T) * nsolvers
while bytes_used > bytes_available:
try:
dims = dim_ord.pop(0)
montblanc.log.debug(
'Applying reduction {s}. Bytes available: {a} used: {u}'.
format(s=dims, a=fmt_bytes(bytes_available), u=fmt_bytes(
bytes_used)))
dims = dims.strip().split('&')
except IndexError:
return False, modified_dims
for dim in dims:
match = re.match(__DIM_REDUCTION_RE, dim)
if not match:
raise ValueError(
"{d} is an invalid dimension reduction string Valid strings are for e.g. 'ntime', 'ntime=20' or 'ntime=20%'"
.format(d=dim))
dim_name = match.group('name')
dim_value = match.group('value')
dim_percent = match.group('percent')
dim_value = 1 if dim_value is None else int(dim_value)
if dim_percent == '%':
dim_value = int(T[dim_name] * int(dim_value) / 100.0)
if dim_value < 1:
dim_value = 1
else:
dim_ord.insert(0, dim)
if T[dim_name] > dim_value:
modified_dims[dim_name] = dim_value
T[dim_name] = dim_value
else:
montblanc.log.info(
'Ignored reduction of {d} of size {s} to {v}. '.format(
d=dim_name, s=T[dim_name], v=dim_value))
bytes_used = dict_array_bytes_required(arrays, T) * nsolvers
return True, modified_dims
|
viable_dim_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(bytes_available, arrays, template, dim_ord, nsolvers=1):\n if not isinstance(dim_ord, list):\n raise TypeError('dim_ord should be a list')\n if bytes_available < 0:\n bytes_available = 0\n modified_dims = {}\n T = template.copy()\n bytes_used = dict_array_bytes_required(arrays, T) * nsolvers\n while bytes_used > bytes_available:\n try:\n dims = dim_ord.pop(0)\n montblanc.log.debug(\n 'Applying reduction {s}. Bytes available: {a} used: {u}'.\n format(s=dims, a=fmt_bytes(bytes_available), u=fmt_bytes(\n bytes_used)))\n dims = dims.strip().split('&')\n except IndexError:\n return False, modified_dims\n for dim in dims:\n match = re.match(__DIM_REDUCTION_RE, dim)\n if not match:\n raise ValueError(\n \"{d} is an invalid dimension reduction string Valid strings are for e.g. 'ntime', 'ntime=20' or 'ntime=20%'\"\n .format(d=dim))\n dim_name = match.group('name')\n dim_value = match.group('value')\n dim_percent = match.group('percent')\n dim_value = 1 if dim_value is None else int(dim_value)\n if dim_percent == '%':\n dim_value = int(T[dim_name] * int(dim_value) / 100.0)\n if dim_value < 1:\n dim_value = 1\n else:\n dim_ord.insert(0, dim)\n if T[dim_name] > dim_value:\n modified_dims[dim_name] = dim_value\n T[dim_name] = dim_value\n else:\n montblanc.log.info(\n 'Ignored reduction of {d} of size {s} to {v}. '.format(\n d=dim_name, s=T[dim_name], v=dim_value))\n bytes_used = dict_array_bytes_required(arrays, T) * nsolvers\n return True, modified_dims\n",
"role": "user"
},
{
"content": "viable_dim_config",
"role": "assistant"
}
] |
def x(l, shape, dtype):
return np.array(l, dtype=dtype).reshape(shape)
|
shape_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(l, shape, dtype):\n return np.array(l, dtype=dtype).reshape(shape)\n",
"role": "user"
},
{
"content": "shape_list",
"role": "assistant"
}
] |
def x(blockdimx, blockdimy, blockdimz, dimx, dimy, dimz):
while blockdimz > dimz:
tmp = blockdimz // 2
if tmp < dimz:
break
blockdimy *= 2
blockdimz = tmp
while blockdimy > dimy:
tmp = blockdimy // 2
if tmp < dimy:
break
blockdimx *= 2
blockdimy = tmp
if dimx < blockdimx:
blockdimx = dimx
if dimy < blockdimy:
blockdimy = dimy
if dimz < blockdimz:
blockdimz = dimz
return blockdimx, blockdimy, blockdimz
|
redistribute_threads
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(blockdimx, blockdimy, blockdimz, dimx, dimy, dimz):\n while blockdimz > dimz:\n tmp = blockdimz // 2\n if tmp < dimz:\n break\n blockdimy *= 2\n blockdimz = tmp\n while blockdimy > dimy:\n tmp = blockdimy // 2\n if tmp < dimy:\n break\n blockdimx *= 2\n blockdimy = tmp\n if dimx < blockdimx:\n blockdimx = dimx\n if dimy < blockdimy:\n blockdimy = dimy\n if dimz < blockdimz:\n blockdimz = dimz\n return blockdimx, blockdimy, blockdimz\n",
"role": "user"
},
{
"content": "redistribute_threads",
"role": "assistant"
}
] |
def x(cube, slvr_cfg):
import montblanc.src_types as mbs
autocor = slvr_cfg['auto_correlations']
ntime = 10
na = 7
nbands = 1
nchan = 16
npol = 4
nbl = nr_of_baselines(na, autocor)
if not npol == 4:
raise ValueError(
'npol set to {}, but only 4 polarisations are currently supported.'
)
cube.register_dimension('ntime', ntime, description='Timesteps')
cube.register_dimension('na', na, description='Antenna')
cube.register_dimension('nbands', nbands, description='Bands')
cube.register_dimension('nchan', nchan, description='Channels')
cube.register_dimension('npol', npol, description='Polarisations')
cube.register_dimension('nbl', nbl, description='Baselines')
cube.register_dimension('npolchan', nchan * npol, description=
'Polarised channels')
cube.register_dimension('nvis', ntime * nbl * nchan, description=
'Visibilities')
src_cfg = default_sources()
src_nr_vars = sources_to_nr_vars(src_cfg)
cube.register_dimension('nsrc', sum(src_nr_vars.itervalues()),
description='Sources (Total)')
for nr_var, nr_of_src in src_nr_vars.iteritems():
cube.register_dimension(nr_var, nr_of_src, description='{} sources'
.format(mbs.SOURCE_DIM_TYPES[nr_var]))
|
register_default_dimensions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cube, slvr_cfg):\n import montblanc.src_types as mbs\n autocor = slvr_cfg['auto_correlations']\n ntime = 10\n na = 7\n nbands = 1\n nchan = 16\n npol = 4\n nbl = nr_of_baselines(na, autocor)\n if not npol == 4:\n raise ValueError(\n 'npol set to {}, but only 4 polarisations are currently supported.'\n )\n cube.register_dimension('ntime', ntime, description='Timesteps')\n cube.register_dimension('na', na, description='Antenna')\n cube.register_dimension('nbands', nbands, description='Bands')\n cube.register_dimension('nchan', nchan, description='Channels')\n cube.register_dimension('npol', npol, description='Polarisations')\n cube.register_dimension('nbl', nbl, description='Baselines')\n cube.register_dimension('npolchan', nchan * npol, description=\n 'Polarised channels')\n cube.register_dimension('nvis', ntime * nbl * nchan, description=\n 'Visibilities')\n src_cfg = default_sources()\n src_nr_vars = sources_to_nr_vars(src_cfg)\n cube.register_dimension('nsrc', sum(src_nr_vars.itervalues()),\n description='Sources (Total)')\n for nr_var, nr_of_src in src_nr_vars.iteritems():\n cube.register_dimension(nr_var, nr_of_src, description='{} sources'\n .format(mbs.SOURCE_DIM_TYPES[nr_var]))\n",
"role": "user"
},
{
"content": "register_default_dimensions",
"role": "assistant"
}
] |
def x(ifname):
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
return socket.inet_ntoa(fcntl.ioctl(s.fileno(), 35093, struct.pack(
'256s', ifname[:15]))[20:24])
|
get_ip_address
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ifname):\n s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)\n return socket.inet_ntoa(fcntl.ioctl(s.fileno(), 35093, struct.pack(\n '256s', ifname[:15]))[20:24])\n",
"role": "user"
},
{
"content": "get_ip_address",
"role": "assistant"
}
] |
def x():
search_paths = os.environ.get('PATH', '').split(os.pathsep)
nvcc_path = find_in_path('nvcc', search_paths)
default_cuda_path = os.path.join('usr', 'local', 'cuda')
cuda_path = os.environ.get('CUDA_PATH', default_cuda_path)
nvcc_found = os.path.exists(nvcc_path)
cuda_path_found = os.path.exists(cuda_path)
if not nvcc_found and not cuda_path_found:
raise InspectCudaException(
"Neither nvcc '{}' or the CUDA_PATH '{}' were found!".format(
nvcc_path, cuda_path))
if not nvcc_found:
log.warn(
"nvcc compiler not found at '{}'. Searching within the CUDA_PATH '{}'"
.format(nvcc_path, cuda_path))
bin_dir = os.path.join(cuda_path, 'bin')
nvcc_path = find_in_path('nvcc', bin_dir)
nvcc_found = os.path.exists(nvcc_path)
if not nvcc_found:
raise InspectCudaException(
"nvcc not found in '{}' or under the CUDA_PATH at '{}' ".
format(search_paths, cuda_path))
if not cuda_path_found:
cuda_path = os.path.normpath(os.path.join(os.path.dirname(nvcc_path
), '..'))
log.warn(
"CUDA_PATH not found, inferring it as '{}' from the nvcc location '{}'"
.format(cuda_path, nvcc_path))
cuda_path_found = True
include_dirs = []
library_dirs = []
define_macros = []
if cuda_path_found:
include_dirs.append(os.path.join(cuda_path, 'include'))
if sys.platform == 'win32':
library_dirs.append(os.path.join(cuda_path, 'bin'))
library_dirs.append(os.path.join(cuda_path, 'lib', 'x64'))
else:
library_dirs.append(os.path.join(cuda_path, 'lib64'))
library_dirs.append(os.path.join(cuda_path, 'lib'))
if sys.platform == 'darwin':
library_dirs.append(os.path.join(default_cuda_path, 'lib'))
return {'cuda_available': True, 'nvcc_path': nvcc_path, 'include_dirs':
include_dirs, 'library_dirs': library_dirs, 'define_macros':
define_macros, 'libraries': ['cudart', 'cuda'], 'language': 'c++'}
|
nvcc_compiler_settings
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n search_paths = os.environ.get('PATH', '').split(os.pathsep)\n nvcc_path = find_in_path('nvcc', search_paths)\n default_cuda_path = os.path.join('usr', 'local', 'cuda')\n cuda_path = os.environ.get('CUDA_PATH', default_cuda_path)\n nvcc_found = os.path.exists(nvcc_path)\n cuda_path_found = os.path.exists(cuda_path)\n if not nvcc_found and not cuda_path_found:\n raise InspectCudaException(\n \"Neither nvcc '{}' or the CUDA_PATH '{}' were found!\".format(\n nvcc_path, cuda_path))\n if not nvcc_found:\n log.warn(\n \"nvcc compiler not found at '{}'. Searching within the CUDA_PATH '{}'\"\n .format(nvcc_path, cuda_path))\n bin_dir = os.path.join(cuda_path, 'bin')\n nvcc_path = find_in_path('nvcc', bin_dir)\n nvcc_found = os.path.exists(nvcc_path)\n if not nvcc_found:\n raise InspectCudaException(\n \"nvcc not found in '{}' or under the CUDA_PATH at '{}' \".\n format(search_paths, cuda_path))\n if not cuda_path_found:\n cuda_path = os.path.normpath(os.path.join(os.path.dirname(nvcc_path\n ), '..'))\n log.warn(\n \"CUDA_PATH not found, inferring it as '{}' from the nvcc location '{}'\"\n .format(cuda_path, nvcc_path))\n cuda_path_found = True\n include_dirs = []\n library_dirs = []\n define_macros = []\n if cuda_path_found:\n include_dirs.append(os.path.join(cuda_path, 'include'))\n if sys.platform == 'win32':\n library_dirs.append(os.path.join(cuda_path, 'bin'))\n library_dirs.append(os.path.join(cuda_path, 'lib', 'x64'))\n else:\n library_dirs.append(os.path.join(cuda_path, 'lib64'))\n library_dirs.append(os.path.join(cuda_path, 'lib'))\n if sys.platform == 'darwin':\n library_dirs.append(os.path.join(default_cuda_path, 'lib'))\n return {'cuda_available': True, 'nvcc_path': nvcc_path, 'include_dirs':\n include_dirs, 'library_dirs': library_dirs, 'define_macros':\n define_macros, 'libraries': ['cudart', 'cuda'], 'language': 'c++'}\n",
"role": "user"
},
{
"content": "nvcc_compiler_settings",
"role": "assistant"
}
] |
def x(compiler, nvcc_settings):
compiler.src_extensions.append('.cu')
default_compiler_so = compiler.compiler_so
default_compile = compiler._compile
def x(obj, src, ext, cc_args, extra_postargs, pp_opts):
if os.path.splitext(src)[1] == '.cu':
compiler.set_executable('compiler_so', nvcc_settings['nvcc_path'])
default_compile(obj, src, ext, cc_args, extra_postargs, pp_opts)
compiler.compiler_so = default_compiler_so
compiler._compile = _compile
|
customize_compiler_for_nvcc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(compiler, nvcc_settings):\n compiler.src_extensions.append('.cu')\n default_compiler_so = compiler.compiler_so\n default_compile = compiler._compile\n\n def x(obj, src, ext, cc_args, extra_postargs, pp_opts):\n if os.path.splitext(src)[1] == '.cu':\n compiler.set_executable('compiler_so', nvcc_settings['nvcc_path'])\n default_compile(obj, src, ext, cc_args, extra_postargs, pp_opts)\n compiler.compiler_so = default_compiler_so\n compiler._compile = _compile\n",
"role": "user"
},
{
"content": "customize_compiler_for_nvcc",
"role": "assistant"
}
] |
def x():
nvcc_settings = nvcc_compiler_settings()
sysconfig.get_config_vars()
nvcc_compiler = ccompiler.new_compiler()
sysconfig.customize_compiler(nvcc_compiler)
customize_compiler_for_nvcc(nvcc_compiler, nvcc_settings)
output = inspect_cuda_version_and_devices(nvcc_compiler, nvcc_settings)
return json.loads(output), nvcc_settings
|
inspect_cuda
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n nvcc_settings = nvcc_compiler_settings()\n sysconfig.get_config_vars()\n nvcc_compiler = ccompiler.new_compiler()\n sysconfig.customize_compiler(nvcc_compiler)\n customize_compiler_for_nvcc(nvcc_compiler, nvcc_settings)\n output = inspect_cuda_version_and_devices(nvcc_compiler, nvcc_settings)\n return json.loads(output), nvcc_settings\n",
"role": "user"
},
{
"content": "inspect_cuda",
"role": "assistant"
}
] |
def x(self):
slvr = self
D = {'LIGHTSPEED': montblanc.constants.C}
D.update(self.type_dict())
D.update(self.dim_local_size_dict())
for p in self._properties.itervalues():
D[p.name] = getattr(self, p.name)
return D
|
template_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n slvr = self\n D = {'LIGHTSPEED': montblanc.constants.C}\n D.update(self.type_dict())\n D.update(self.dim_local_size_dict())\n for p in self._properties.itervalues():\n D[p.name] = getattr(self, p.name)\n return D\n",
"role": "user"
},
{
"content": "template_dict",
"role": "assistant"
}
] |
def x(slvr_cfg):
from montblanc.impl.rime.tensorflow.RimeSolver import RimeSolver
return RimeSolver(slvr_cfg)
|
rime_solver
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(slvr_cfg):\n from montblanc.impl.rime.tensorflow.RimeSolver import RimeSolver\n return RimeSolver(slvr_cfg)\n",
"role": "user"
},
{
"content": "rime_solver",
"role": "assistant"
}
] |
def x(obj, argspec=None):
if argspec is None:
argspec = [DEFAULT_ARGSPEC]
return {n: m for n, m in inspect.getmembers(obj, callable) if not n.
startswith('_') and inspect.getargspec(m).args in argspec}
|
find_sources
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj, argspec=None):\n if argspec is None:\n argspec = [DEFAULT_ARGSPEC]\n return {n: m for n, m in inspect.getmembers(obj, callable) if not n.\n startswith('_') and inspect.getargspec(m).args in argspec}\n",
"role": "user"
},
{
"content": "find_sources",
"role": "assistant"
}
] |
def x(self):
try:
return self._sources
except AttributeError:
self._sources = find_sources(self)
return self._sources
|
sources
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n return self._sources\n except AttributeError:\n self._sources = find_sources(self)\n return self._sources\n",
"role": "user"
},
{
"content": "sources",
"role": "assistant"
}
] |
def x(times, antenna_positions, field_centre):
import pyrap.quanta as pq
try:
zenith = pm.direction('AZEL', '0deg', '90deg')
except AttributeError as e:
if pm is None:
raise ImportError('python-casacore import failed')
raise
reference_positions = [pm.position('itrf', *(pq.quantity(x, 'm') for x in
pos)) for pos in antenna_positions]
fc_rad = pm.direction('J2000', *(pq.quantity(f, 'rad') for f in
field_centre))
return np.asarray([(pm.do_frame(pm.epoch('UTC', pq.quantity(t, 's'))) and
[(pm.do_frame(rp) and pm.posangle(fc_rad, zenith).get_value('rad')) for
rp in reference_positions]) for t in times])
|
parallactic_angles
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(times, antenna_positions, field_centre):\n import pyrap.quanta as pq\n try:\n zenith = pm.direction('AZEL', '0deg', '90deg')\n except AttributeError as e:\n if pm is None:\n raise ImportError('python-casacore import failed')\n raise\n reference_positions = [pm.position('itrf', *(pq.quantity(x, 'm') for x in\n pos)) for pos in antenna_positions]\n fc_rad = pm.direction('J2000', *(pq.quantity(f, 'rad') for f in\n field_centre))\n return np.asarray([(pm.do_frame(pm.epoch('UTC', pq.quantity(t, 's'))) and\n [(pm.do_frame(rp) and pm.posangle(fc_rad, zenith).get_value('rad')) for\n rp in reference_positions]) for t in times])\n",
"role": "user"
},
{
"content": "parallactic_angles",
"role": "assistant"
}
] |
def x():
cfmt = logging.Formatter('%(name)s - %(levelname)s - %(message)s')
ffmt = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
ch.setFormatter(cfmt)
fh = logging.handlers.RotatingFileHandler('montblanc.log', maxBytes=10 *
1024 * 1024, backupCount=10)
fh.setLevel(logging.INFO)
fh.setFormatter(ffmt)
mb_logger = logging.getLogger('montblanc')
mb_logger.handlers = []
mb_logger.setLevel(logging.DEBUG)
mb_logger.addHandler(ch)
mb_logger.addHandler(fh)
cf_logger = logging.getLogger('concurrent.futures')
cf_logger.setLevel(logging.DEBUG)
cf_logger.addHandler(ch)
cf_logger.addHandler(fh)
return mb_logger
|
setup_logging
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n cfmt = logging.Formatter('%(name)s - %(levelname)s - %(message)s')\n ffmt = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')\n ch = logging.StreamHandler()\n ch.setLevel(logging.INFO)\n ch.setFormatter(cfmt)\n fh = logging.handlers.RotatingFileHandler('montblanc.log', maxBytes=10 *\n 1024 * 1024, backupCount=10)\n fh.setLevel(logging.INFO)\n fh.setFormatter(ffmt)\n mb_logger = logging.getLogger('montblanc')\n mb_logger.handlers = []\n mb_logger.setLevel(logging.DEBUG)\n mb_logger.addHandler(ch)\n mb_logger.addHandler(fh)\n cf_logger = logging.getLogger('concurrent.futures')\n cf_logger.setLevel(logging.DEBUG)\n cf_logger.addHandler(ch)\n cf_logger.addHandler(fh)\n return mb_logger\n",
"role": "user"
},
{
"content": "setup_logging",
"role": "assistant"
}
] |
def x(method):
@functools.wraps(method)
def x(self, context):
if not self._is_cached:
return method(self, context)
name = context.name
cached = self._constant_cache.get(name, None)
if cached is None:
data = self._constant_cache[name] = method(self, context)
return data
cached_ok = cached.dtype == context.dtype and all(l <= r for l, r in
zip(context.shape, cached.shape))
if not cached_ok:
data = self._constant_cache[name] = method(self, context)
return data
return cached[tuple(slice(0, s) for s in context.shape)]
f = wrapper
f.__decorator__ = constant_cache.__name__
return f
|
constant_cache
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(method):\n\n @functools.wraps(method)\n def x(self, context):\n if not self._is_cached:\n return method(self, context)\n name = context.name\n cached = self._constant_cache.get(name, None)\n if cached is None:\n data = self._constant_cache[name] = method(self, context)\n return data\n cached_ok = cached.dtype == context.dtype and all(l <= r for l, r in\n zip(context.shape, cached.shape))\n if not cached_ok:\n data = self._constant_cache[name] = method(self, context)\n return data\n return cached[tuple(slice(0, s) for s in context.shape)]\n f = wrapper\n f.__decorator__ = constant_cache.__name__\n return f\n",
"role": "user"
},
{
"content": "constant_cache",
"role": "assistant"
}
] |
def x(method):
@functools.wraps(method)
def x(self, context):
if not self._is_cached:
return method(self, context)
name = context.name
idx = context.array_extents(name)
key = tuple(i for t in idx for i in t)
array_cache = self._chunk_cache[name]
if key not in array_cache:
array_cache[key] = method(self, context)
return array_cache[key]
f = wrapper
f.__decorator__ = chunk_cache.__name__
return f
|
chunk_cache
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(method):\n\n @functools.wraps(method)\n def x(self, context):\n if not self._is_cached:\n return method(self, context)\n name = context.name\n idx = context.array_extents(name)\n key = tuple(i for t in idx for i in t)\n array_cache = self._chunk_cache[name]\n if key not in array_cache:\n array_cache[key] = method(self, context)\n return array_cache[key]\n f = wrapper\n f.__decorator__ = chunk_cache.__name__\n return f\n",
"role": "user"
},
{
"content": "chunk_cache",
"role": "assistant"
}
] |
def x(cube, data_source):
from montblanc.impl.rime.tensorflow.sources import find_sources, DEFAULT_ARGSPEC
from montblanc.impl.rime.tensorflow.sources import constant_cache
staging_area_data_source = ('default' if not data_source == 'test' else
data_source)
cache = True
default_prov = DefaultsSourceProvider(cache=cache)
for n, a in cube.arrays().iteritems():
if 'temporary' in a.tags:
continue
data_source = a.get(staging_area_data_source)
if cache is True and 'constant' in a.tags:
data_source = constant_cache(data_source)
method = types.MethodType(data_source, default_prov)
setattr(default_prov, n, method)
def x(self):
try:
return self._sources
except AttributeError:
self._sources = find_sources(self, [DEFAULT_ARGSPEC] + [['s', 'c']]
)
return self._sources
default_prov.sources = types.MethodType(_sources, default_prov)
return default_prov
|
create_defaults_source_provider
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cube, data_source):\n from montblanc.impl.rime.tensorflow.sources import find_sources, DEFAULT_ARGSPEC\n from montblanc.impl.rime.tensorflow.sources import constant_cache\n staging_area_data_source = ('default' if not data_source == 'test' else\n data_source)\n cache = True\n default_prov = DefaultsSourceProvider(cache=cache)\n for n, a in cube.arrays().iteritems():\n if 'temporary' in a.tags:\n continue\n data_source = a.get(staging_area_data_source)\n if cache is True and 'constant' in a.tags:\n data_source = constant_cache(data_source)\n method = types.MethodType(data_source, default_prov)\n setattr(default_prov, n, method)\n\n def x(self):\n try:\n return self._sources\n except AttributeError:\n self._sources = find_sources(self, [DEFAULT_ARGSPEC] + [['s', 'c']]\n )\n return self._sources\n default_prov.sources = types.MethodType(_sources, default_prov)\n return default_prov\n",
"role": "user"
},
{
"content": "create_defaults_source_provider",
"role": "assistant"
}
] |
def x(cube, source_providers, budget_dims):
update_map = collections.defaultdict(list)
for prov in source_providers:
for dim_tuple in prov.updated_dimensions():
name, size = dim_tuple
if name == 'nsrc':
continue
dim_update = DimensionUpdate(size, prov.name())
update_map[name].append(dim_update)
if len(update_map) == 0:
return cube.bytes_required()
update_list = []
for name, updates in update_map.iteritems():
if not all(updates[0].size == du.size for du in updates[1:]):
raise ValueError(
"Received conflicting global size updates '{u}' for dimension '{n}'."
.format(n=name, u=updates))
update_list.append((name, updates[0].size))
montblanc.log.info('Updating dimensions {} from source providers.'.
format(str(update_list)))
for name, global_size in update_list:
extent_size = budget_dims.get(name, global_size)
extent_size = global_size if extent_size == 0 else extent_size
if extent_size > global_size:
extent_size = global_size
cube.update_dimension(name, global_size=global_size, lower_extent=0,
upper_extent=extent_size)
nsrc = sum(cube.dim_global_size(*mbu.source_nr_vars()))
es = max(cube.dim_extent_size(*mbu.source_nr_vars()))
cube.update_dimension('nsrc', global_size=nsrc, lower_extent=0,
upper_extent=es)
return cube.bytes_required()
|
apply_source_provider_dim_updates
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cube, source_providers, budget_dims):\n update_map = collections.defaultdict(list)\n for prov in source_providers:\n for dim_tuple in prov.updated_dimensions():\n name, size = dim_tuple\n if name == 'nsrc':\n continue\n dim_update = DimensionUpdate(size, prov.name())\n update_map[name].append(dim_update)\n if len(update_map) == 0:\n return cube.bytes_required()\n update_list = []\n for name, updates in update_map.iteritems():\n if not all(updates[0].size == du.size for du in updates[1:]):\n raise ValueError(\n \"Received conflicting global size updates '{u}' for dimension '{n}'.\"\n .format(n=name, u=updates))\n update_list.append((name, updates[0].size))\n montblanc.log.info('Updating dimensions {} from source providers.'.\n format(str(update_list)))\n for name, global_size in update_list:\n extent_size = budget_dims.get(name, global_size)\n extent_size = global_size if extent_size == 0 else extent_size\n if extent_size > global_size:\n extent_size = global_size\n cube.update_dimension(name, global_size=global_size, lower_extent=0,\n upper_extent=extent_size)\n nsrc = sum(cube.dim_global_size(*mbu.source_nr_vars()))\n es = max(cube.dim_extent_size(*mbu.source_nr_vars()))\n cube.update_dimension('nsrc', global_size=nsrc, lower_extent=0,\n upper_extent=es)\n return cube.bytes_required()\n",
"role": "user"
},
{
"content": "apply_source_provider_dim_updates",
"role": "assistant"
}
] |
def x(cube, slvr_cfg):
mbu.register_default_dimensions(cube, slvr_cfg)
cube.register_dimension('beam_lw', 2, description='E Beam cube l width')
cube.register_dimension('beam_mh', 2, description='E Beam cube m height')
cube.register_dimension('beam_nud', 2, description='E Beam cube nu depth')
from montblanc.impl.rime.tensorflow.config import A, P
def x(A, T):
def x(D):
new_dict = D.copy()
new_dict['dtype'] = mbu.dtype_from_str(D['dtype'], T)
return new_dict
return [_massage_dtype_in_dict(D) for D in A]
dtype = slvr_cfg['dtype']
is_f32 = dtype == 'float'
T = {'ft': np.float32 if is_f32 else np.float64, 'ct': np.complex64 if
is_f32 else np.complex128, 'int': int}
cube.register_properties(_massage_dtypes(P, T))
cube.register_arrays(_massage_dtypes(A, T))
|
setup_hypercube
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cube, slvr_cfg):\n mbu.register_default_dimensions(cube, slvr_cfg)\n cube.register_dimension('beam_lw', 2, description='E Beam cube l width')\n cube.register_dimension('beam_mh', 2, description='E Beam cube m height')\n cube.register_dimension('beam_nud', 2, description='E Beam cube nu depth')\n from montblanc.impl.rime.tensorflow.config import A, P\n\n def x(A, T):\n\n def x(D):\n new_dict = D.copy()\n new_dict['dtype'] = mbu.dtype_from_str(D['dtype'], T)\n return new_dict\n return [_massage_dtype_in_dict(D) for D in A]\n dtype = slvr_cfg['dtype']\n is_f32 = dtype == 'float'\n T = {'ft': np.float32 if is_f32 else np.float64, 'ct': np.complex64 if\n is_f32 else np.complex128, 'int': int}\n cube.register_properties(_massage_dtypes(P, T))\n cube.register_arrays(_massage_dtypes(A, T))\n",
"role": "user"
},
{
"content": "setup_hypercube",
"role": "assistant"
}
] |
def x(iter_dims, data_sources):
src_nr_vars = set(source_var_types().values())
iter_dims = set(iter_dims)
src_data_sources = collections.defaultdict(list)
feed_many = []
feed_once = []
for ds in data_sources:
src_int = src_nr_vars.intersection(ds.shape)
if len(src_int) > 1:
raise ValueError(
"Data source '{}' contains multiple source types '{}'".
format(ds.name, src_int))
elif len(src_int) == 1:
src_data_sources[src_int.pop()].append(ds)
continue
if len(iter_dims.intersection(ds.shape)) > 0:
feed_many.append(ds)
continue
feed_once.append(ds)
return src_data_sources, feed_many, feed_once
|
partition
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(iter_dims, data_sources):\n src_nr_vars = set(source_var_types().values())\n iter_dims = set(iter_dims)\n src_data_sources = collections.defaultdict(list)\n feed_many = []\n feed_once = []\n for ds in data_sources:\n src_int = src_nr_vars.intersection(ds.shape)\n if len(src_int) > 1:\n raise ValueError(\n \"Data source '{}' contains multiple source types '{}'\".\n format(ds.name, src_int))\n elif len(src_int) == 1:\n src_data_sources[src_int.pop()].append(ds)\n continue\n if len(iter_dims.intersection(ds.shape)) > 0:\n feed_many.append(ds)\n continue\n feed_once.append(ds)\n return src_data_sources, feed_many, feed_once\n",
"role": "user"
},
{
"content": "partition",
"role": "assistant"
}
] |
def x(self, cube, data_sources, data_sinks, global_iter_args):
try:
self._feed_impl(cube, data_sources, data_sinks, global_iter_args)
except Exception as e:
montblanc.log.exception('Feed Exception')
raise
|
feed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cube, data_sources, data_sinks, global_iter_args):\n try:\n self._feed_impl(cube, data_sources, data_sinks, global_iter_args)\n except Exception as e:\n montblanc.log.exception('Feed Exception')\n raise\n",
"role": "user"
},
{
"content": "feed",
"role": "assistant"
}
] |
def x(self, cube, data_sources, data_sinks, global_iter_args):
session = self._tf_session
FD = self._tf_feed_data
LSA = FD.local
src_types = LSA.sources.keys()
src_strides = [int(i) for i in cube.dim_extent_size(*src_types)]
src_staging_areas = [[LSA.sources[t][s] for t in src_types] for s in
range(self._nr_of_shards)]
compute_feed_dict = {ph: cube.dim_global_size(n) for n, ph in FD.
src_ph_vars.iteritems()}
compute_feed_dict.update({ph: getattr(cube, n) for n, ph in FD.
property_ph_vars.iteritems()})
chunks_fed = 0
which_shard = itertools.cycle([self._shard(d, s) for s in range(self.
_shards_per_device) for d, dev in enumerate(self._devices)])
while True:
try:
result = session.run(LSA.descriptor.get_op)
descriptor = result['descriptor']
except tf.errors.OutOfRangeError as e:
montblanc.log.exception('Descriptor reading exception')
if descriptor[0] == -1:
break
descriptor.flags.writeable = False
emptiest_staging_areas = np.argsort(self._inputs_waiting.get())
shard = emptiest_staging_areas[0]
shard = which_shard.next()
feed_f = self._feed_executors[shard].submit(self._feed_actual,
data_sources.copy(), cube.copy(), descriptor, shard, src_types,
src_strides, src_staging_areas[shard], global_iter_args)
compute_f = self._compute_executors[shard].submit(self._compute,
compute_feed_dict, shard)
consume_f = self._consumer_executor.submit(self._consume,
data_sinks.copy(), cube.copy(), global_iter_args)
self._inputs_waiting.increment(shard)
yield feed_f, compute_f, consume_f
chunks_fed += 1
montblanc.log.info('Done feeding {n} chunks.'.format(n=chunks_fed))
|
feed_impl
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cube, data_sources, data_sinks, global_iter_args):\n session = self._tf_session\n FD = self._tf_feed_data\n LSA = FD.local\n src_types = LSA.sources.keys()\n src_strides = [int(i) for i in cube.dim_extent_size(*src_types)]\n src_staging_areas = [[LSA.sources[t][s] for t in src_types] for s in\n range(self._nr_of_shards)]\n compute_feed_dict = {ph: cube.dim_global_size(n) for n, ph in FD.\n src_ph_vars.iteritems()}\n compute_feed_dict.update({ph: getattr(cube, n) for n, ph in FD.\n property_ph_vars.iteritems()})\n chunks_fed = 0\n which_shard = itertools.cycle([self._shard(d, s) for s in range(self.\n _shards_per_device) for d, dev in enumerate(self._devices)])\n while True:\n try:\n result = session.run(LSA.descriptor.get_op)\n descriptor = result['descriptor']\n except tf.errors.OutOfRangeError as e:\n montblanc.log.exception('Descriptor reading exception')\n if descriptor[0] == -1:\n break\n descriptor.flags.writeable = False\n emptiest_staging_areas = np.argsort(self._inputs_waiting.get())\n shard = emptiest_staging_areas[0]\n shard = which_shard.next()\n feed_f = self._feed_executors[shard].submit(self._feed_actual,\n data_sources.copy(), cube.copy(), descriptor, shard, src_types,\n src_strides, src_staging_areas[shard], global_iter_args)\n compute_f = self._compute_executors[shard].submit(self._compute,\n compute_feed_dict, shard)\n consume_f = self._consumer_executor.submit(self._consume,\n data_sinks.copy(), cube.copy(), global_iter_args)\n self._inputs_waiting.increment(shard)\n yield feed_f, compute_f, consume_f\n chunks_fed += 1\n montblanc.log.info('Done feeding {n} chunks.'.format(n=chunks_fed))\n",
"role": "user"
},
{
"content": "feed_impl",
"role": "assistant"
}
] |
def x(self, feed_dict, shard):
try:
descriptor, enq = self._tfrun(self._tf_expr[shard], feed_dict=feed_dict
)
self._inputs_waiting.decrement(shard)
except Exception as e:
montblanc.log.exception('Compute Exception')
raise
|
compute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, feed_dict, shard):\n try:\n descriptor, enq = self._tfrun(self._tf_expr[shard], feed_dict=feed_dict\n )\n self._inputs_waiting.decrement(shard)\n except Exception as e:\n montblanc.log.exception('Compute Exception')\n raise\n",
"role": "user"
},
{
"content": "compute",
"role": "assistant"
}
] |
def x(self, data_sinks, cube, global_iter_args):
LSA = self._tf_feed_data.local
output = self._tfrun(LSA.output.get_op)
assert len(output) > 0
assert LSA.output.fed_arrays[0] == 'descriptor'
descriptor = output['descriptor']
descriptor.flags.writeable = False
dims = self._transcoder.decode(descriptor)
cube.update_dimensions(dims)
try:
input_data = self._source_cache.pop(descriptor.data)
except KeyError:
raise ValueError(
'No input data cache available in source cache for descriptor {}!'
.format(descriptor))
gen = ((n, a) for n, a in output.iteritems() if not n == 'descriptor')
for n, a in gen:
sink_context = SinkContext(n, cube, self.config(), global_iter_args,
cube.array(n) if n in cube.arrays() else {}, a, input_data)
_supply_data(data_sinks[n], sink_context)
|
consume_impl
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data_sinks, cube, global_iter_args):\n LSA = self._tf_feed_data.local\n output = self._tfrun(LSA.output.get_op)\n assert len(output) > 0\n assert LSA.output.fed_arrays[0] == 'descriptor'\n descriptor = output['descriptor']\n descriptor.flags.writeable = False\n dims = self._transcoder.decode(descriptor)\n cube.update_dimensions(dims)\n try:\n input_data = self._source_cache.pop(descriptor.data)\n except KeyError:\n raise ValueError(\n 'No input data cache available in source cache for descriptor {}!'\n .format(descriptor))\n gen = ((n, a) for n, a in output.iteritems() if not n == 'descriptor')\n for n, a in gen:\n sink_context = SinkContext(n, cube, self.config(), global_iter_args,\n cube.array(n) if n in cube.arrays() else {}, a, input_data)\n _supply_data(data_sinks[n], sink_context)\n",
"role": "user"
},
{
"content": "consume_impl",
"role": "assistant"
}
] |
def x(**kwargs):
from configuration import load_config, config_validator, raise_validator_errors
def x(d1, d2):
return {k: (_merge_copy(d1[k], d2[k]) if k in d1 and isinstance(d1[
k], dict) and isinstance(d2[k], dict) else d2[k]) for k in d2}
try:
cfg_file = kwargs.pop('cfg_file')
except KeyError as e:
slvr_cfg = kwargs
else:
cfg = load_config(cfg_file)
slvr_cfg = _merge_copy(cfg, kwargs)
validator = config_validator()
validator.validate(slvr_cfg)
raise_validator_errors(validator)
return validator.document
|
rime_solver_cfg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(**kwargs):\n from configuration import load_config, config_validator, raise_validator_errors\n\n def x(d1, d2):\n return {k: (_merge_copy(d1[k], d2[k]) if k in d1 and isinstance(d1[\n k], dict) and isinstance(d2[k], dict) else d2[k]) for k in d2}\n try:\n cfg_file = kwargs.pop('cfg_file')\n except KeyError as e:\n slvr_cfg = kwargs\n else:\n cfg = load_config(cfg_file)\n slvr_cfg = _merge_copy(cfg, kwargs)\n validator = config_validator()\n validator.validate(slvr_cfg)\n raise_validator_errors(validator)\n return validator.document\n",
"role": "user"
},
{
"content": "rime_solver_cfg",
"role": "assistant"
}
] |
def x(filename_schema, feed_type):
template = FitsFilenameTemplate(filename_schema)
def x(corr, template):
try:
return tuple(template.substitute(corr=corr.lower(), CORR=corr.
upper(), reim=ri.lower(), REIM=ri.upper()) for ri in REIM)
except KeyError:
raise ValueError(
"Invalid filename schema '%s'. FITS Beam filename schemas must follow forms such as 'beam_$(corr)_$(reim).fits' or 'beam_$(CORR)_$(REIM).fits."
% filename_schema)
if feed_type == 'linear':
CORRELATIONS = LINEAR_CORRELATIONS
elif feed_type == 'circular':
CORRELATIONS = CIRCULAR_CORRELATIONS
else:
raise ValueError(
"Invalid feed_type '{}'. Should be 'linear' or 'circular'")
return collections.OrderedDict((c, _re_im_filenames(c, template)) for c in
CORRELATIONS)
|
create_filenames
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename_schema, feed_type):\n template = FitsFilenameTemplate(filename_schema)\n\n def x(corr, template):\n try:\n return tuple(template.substitute(corr=corr.lower(), CORR=corr.\n upper(), reim=ri.lower(), REIM=ri.upper()) for ri in REIM)\n except KeyError:\n raise ValueError(\n \"Invalid filename schema '%s'. FITS Beam filename schemas must follow forms such as 'beam_$(corr)_$(reim).fits' or 'beam_$(CORR)_$(REIM).fits.\"\n % filename_schema)\n if feed_type == 'linear':\n CORRELATIONS = LINEAR_CORRELATIONS\n elif feed_type == 'circular':\n CORRELATIONS = CIRCULAR_CORRELATIONS\n else:\n raise ValueError(\n \"Invalid feed_type '{}'. Should be 'linear' or 'circular'\")\n return collections.OrderedDict((c, _re_im_filenames(c, template)) for c in\n CORRELATIONS)\n",
"role": "user"
},
{
"content": "create_filenames",
"role": "assistant"
}
] |
def x(filenames):
kw = {'mode': 'update', 'memmap': False}
def x(fn):
return fits.open(fn, **kw) if os.path.exists(fn) else None
return collections.OrderedDict((corr, tuple(_fh(fn) for fn in files)) for
corr, files in filenames.iteritems())
|
open_fits_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filenames):\n kw = {'mode': 'update', 'memmap': False}\n\n def x(fn):\n return fits.open(fn, **kw) if os.path.exists(fn) else None\n return collections.OrderedDict((corr, tuple(_fh(fn) for fn in files)) for\n corr, files in filenames.iteritems())\n",
"role": "user"
},
{
"content": "open_fits_files",
"role": "assistant"
}
] |
def x(filenames, file_dict):
try:
f = iter(f for tup in file_dict.itervalues() for f in tup if f is not
None).next()
except StopIteration as e:
raise (ValueError(
"No FITS files were found. Searched filenames: '{f}'.".format(f
=filenames.values())), None, sys.exc_info()[2])
axes = FitsAxes(f[0].header)
for i, u in enumerate(axes.cunit):
if u == 'DEG':
axes.cunit[i] = 'RAD'
axes.set_axis_scale(i, np.pi / 180.0)
return axes
|
create_axes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filenames, file_dict):\n try:\n f = iter(f for tup in file_dict.itervalues() for f in tup if f is not\n None).next()\n except StopIteration as e:\n raise (ValueError(\n \"No FITS files were found. Searched filenames: '{f}'.\".format(f\n =filenames.values())), None, sys.exc_info()[2])\n axes = FitsAxes(f[0].header)\n for i, u in enumerate(axes.cunit):\n if u == 'DEG':\n axes.cunit[i] = 'RAD'\n axes.set_axis_scale(i, np.pi / 180.0)\n return axes\n",
"role": "user"
},
{
"content": "create_axes",
"role": "assistant"
}
] |
def x(self, feed_type='linear'):
self._filenames = filenames = _create_filenames(self._filename_schema,
feed_type)
self._files = files = _open_fits_files(filenames)
self._axes = axes = _create_axes(filenames, files)
self._dim_indices = dim_indices = l_ax, m_ax, f_ax = tuple(axes.iaxis(d
) for d in self._fits_dims)
for i, ax in zip(dim_indices, self._fits_dims):
if i == -1:
raise ValueError("'%s' axis not found!" % ax)
self._cube_extents = _cube_extents(axes, l_ax, m_ax, f_ax, self._l_sign,
self._m_sign)
self._shape = tuple(axes.naxis[d] for d in dim_indices) + (4,)
self._beam_freq_map = axes.grid[f_ax]
self._dim_updates = [(n, axes.naxis[i]) for n, i in zip(self._beam_dims,
dim_indices)]
self._initialised = True
|
initialise
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, feed_type='linear'):\n self._filenames = filenames = _create_filenames(self._filename_schema,\n feed_type)\n self._files = files = _open_fits_files(filenames)\n self._axes = axes = _create_axes(filenames, files)\n self._dim_indices = dim_indices = l_ax, m_ax, f_ax = tuple(axes.iaxis(d\n ) for d in self._fits_dims)\n for i, ax in zip(dim_indices, self._fits_dims):\n if i == -1:\n raise ValueError(\"'%s' axis not found!\" % ax)\n self._cube_extents = _cube_extents(axes, l_ax, m_ax, f_ax, self._l_sign,\n self._m_sign)\n self._shape = tuple(axes.naxis[d] for d in dim_indices) + (4,)\n self._beam_freq_map = axes.grid[f_ax]\n self._dim_updates = [(n, axes.naxis[i]) for n, i in zip(self._beam_dims,\n dim_indices)]\n self._initialised = True\n",
"role": "user"
},
{
"content": "initialise",
"role": "assistant"
}
] |
def x(self, context):
if context.shape != self.shape:
raise ValueError(
'Partial feeding of the beam cube is not yet supported %s %s.' %
(context.shape, self.shape))
ebeam = np.empty(context.shape, context.dtype)
for i, (re, im) in enumerate(self._files.itervalues()):
ebeam[:, :, :, i].real[:] = 0 if re is None else re[0].data.T
ebeam[:, :, :, i].imag[:] = 0 if im is None else im[0].data.T
return ebeam
|
ebeam
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n if context.shape != self.shape:\n raise ValueError(\n 'Partial feeding of the beam cube is not yet supported %s %s.' %\n (context.shape, self.shape))\n ebeam = np.empty(context.shape, context.dtype)\n for i, (re, im) in enumerate(self._files.itervalues()):\n ebeam[:, :, :, i].real[:] = 0 if re is None else re[0].data.T\n ebeam[:, :, :, i].imag[:] = 0 if im is None else im[0].data.T\n return ebeam\n",
"role": "user"
},
{
"content": "ebeam",
"role": "assistant"
}
] |
def x(self, context):
column = self._vis_column
msshape = None
try:
coldesc = self._manager.column_descriptors[column]
except KeyError as e:
coldesc = None
if coldesc is not None:
try:
msshape = [-1] + coldesc['shape'].tolist()
except KeyError as e:
msshape = None
if msshape is None:
guessed_shape = [self._manager._nchan, 4]
montblanc.log.warn(
"Could not obtain 'shape' from the '{c}' column descriptor. Guessing it is '{gs}'."
.format(c=column, gs=guessed_shape))
msshape = [-1] + guessed_shape
lrow, urow = MS.row_extents(context)
self._manager.ordered_main_table.putcol(column, context.data.reshape(
msshape), startrow=lrow, nrow=urow - lrow)
|
model_vis
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n column = self._vis_column\n msshape = None\n try:\n coldesc = self._manager.column_descriptors[column]\n except KeyError as e:\n coldesc = None\n if coldesc is not None:\n try:\n msshape = [-1] + coldesc['shape'].tolist()\n except KeyError as e:\n msshape = None\n if msshape is None:\n guessed_shape = [self._manager._nchan, 4]\n montblanc.log.warn(\n \"Could not obtain 'shape' from the '{c}' column descriptor. Guessing it is '{gs}'.\"\n .format(c=column, gs=guessed_shape))\n msshape = [-1] + guessed_shape\n lrow, urow = MS.row_extents(context)\n self._manager.ordered_main_table.putcol(column, context.data.reshape(\n msshape), startrow=lrow, nrow=urow - lrow)\n",
"role": "user"
},
{
"content": "model_vis",
"role": "assistant"
}
] |
def x(method):
@functools.wraps(method)
def x(self, context):
idx = context.array_extents(context.name)
key = tuple(i for t in idx for i in t)
with self._lock:
array_cache = self._cache[context.name]
if key not in array_cache:
array_cache[key] = method(context)
return array_cache[key]
return memoizer
|
cache
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(method):\n\n @functools.wraps(method)\n def x(self, context):\n idx = context.array_extents(context.name)\n key = tuple(i for t in idx for i in t)\n with self._lock:\n array_cache = self._cache[context.name]\n if key not in array_cache:\n array_cache[key] = method(context)\n return array_cache[key]\n return memoizer\n",
"role": "user"
},
{
"content": "cache",
"role": "assistant"
}
] |
def x(method):
@functools.wraps(method)
def x(self, context):
return method(context)
return memoizer
|
proxy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(method):\n\n @functools.wraps(method)\n def x(self, context):\n return method(context)\n return memoizer\n",
"role": "user"
},
{
"content": "proxy",
"role": "assistant"
}
] |
def x(self, start_context):
for p in self._providers:
p.start(start_context)
if self._clear_start:
self.clear_cache()
|
start
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, start_context):\n for p in self._providers:\n p.start(start_context)\n if self._clear_start:\n self.clear_cache()\n",
"role": "user"
},
{
"content": "start",
"role": "assistant"
}
] |
def x(self, stop_context):
for p in self._providers:
p.stop(stop_context)
if self._clear_stop:
self.clear_cache()
|
stop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, stop_context):\n for p in self._providers:\n p.stop(stop_context)\n if self._clear_stop:\n self.clear_cache()\n",
"role": "user"
},
{
"content": "stop",
"role": "assistant"
}
] |
def x(self, context):
k = 0 if context.cfg['auto_correlations'] == True else 1
na = context.dim_global_size('na')
gen = (i.astype(context.dtype) for i in np.triu_indices(na, k))
if self._is_cached:
array_cache = self._chunk_cache['default_base_ant_pairs']
key = k, na
if key not in array_cache:
array_cache[key] = tuple(gen)
return array_cache[key]
return tuple(gen)
|
default_base_ant_pairs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n k = 0 if context.cfg['auto_correlations'] == True else 1\n na = context.dim_global_size('na')\n gen = (i.astype(context.dtype) for i in np.triu_indices(na, k))\n if self._is_cached:\n array_cache = self._chunk_cache['default_base_ant_pairs']\n key = k, na\n if key not in array_cache:\n array_cache[key] = tuple(gen)\n return array_cache[key]\n return tuple(gen)\n",
"role": "user"
},
{
"content": "default_base_ant_pairs",
"role": "assistant"
}
] |
def x(self, context):
ant1, ant2 = default_base_ant_pairs(self, context)
(tl, tu), (bl, bu) = context.dim_extents('ntime', 'nbl')
ant1_result = np.empty(context.shape, context.dtype)
ant1_result[:, :] = ant1[np.newaxis, bl:bu]
return ant1_result
|
default_antenna1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n ant1, ant2 = default_base_ant_pairs(self, context)\n (tl, tu), (bl, bu) = context.dim_extents('ntime', 'nbl')\n ant1_result = np.empty(context.shape, context.dtype)\n ant1_result[:, :] = ant1[np.newaxis, bl:bu]\n return ant1_result\n",
"role": "user"
},
{
"content": "default_antenna1",
"role": "assistant"
}
] |
def x(self, context):
ant1, ant2 = default_base_ant_pairs(self, context)
(tl, tu), (bl, bu) = context.dim_extents('ntime', 'nbl')
ant2_result = np.empty(context.shape, context.dtype)
ant2_result[:, :] = ant2[np.newaxis, bl:bu]
return ant2_result
|
default_antenna2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n ant1, ant2 = default_base_ant_pairs(self, context)\n (tl, tu), (bl, bu) = context.dim_extents('ntime', 'nbl')\n ant2_result = np.empty(context.shape, context.dtype)\n ant2_result[:, :] = ant2[np.newaxis, bl:bu]\n return ant2_result\n",
"role": "user"
},
{
"content": "default_antenna2",
"role": "assistant"
}
] |
def x(self, context):
A = np.empty(context.shape, context.dtype)
A[:, :, :] = [[[1, 0, 0, 1]]]
return A
|
identity_on_pols
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n A = np.empty(context.shape, context.dtype)\n A[:, :, :] = [[[1, 0, 0, 1]]]\n return A\n",
"role": "user"
},
{
"content": "identity_on_pols",
"role": "assistant"
}
] |
def x(self, context):
A = np.empty(context.shape, context.dtype)
A[:, :, :] = [[[1, 0, 0, 0]]]
return A
|
default_stokes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n A = np.empty(context.shape, context.dtype)\n A[:, :, :] = [[[1, 0, 0, 0]]]\n return A\n",
"role": "user"
},
{
"content": "default_stokes",
"role": "assistant"
}
] |
def x(self, context):
channels = self._manager.spectral_window_table.getcol(MS.CHAN_FREQ)
return channels.reshape(context.shape).astype(context.dtype)
|
frequency
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n channels = self._manager.spectral_window_table.getcol(MS.CHAN_FREQ)\n return channels.reshape(context.shape).astype(context.dtype)\n",
"role": "user"
},
{
"content": "frequency",
"role": "assistant"
}
] |
def x(self, context):
num_chans = self._manager.spectral_window_table.getcol(MS.NUM_CHAN)
ref_freqs = self._manager.spectral_window_table.getcol(MS.REF_FREQUENCY)
data = np.hstack(np.repeat(rf, bs) for bs, rf in zip(num_chans, ref_freqs))
return data.reshape(context.shape).astype(context.dtype)
|
ref_frequency
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n num_chans = self._manager.spectral_window_table.getcol(MS.NUM_CHAN)\n ref_freqs = self._manager.spectral_window_table.getcol(MS.REF_FREQUENCY)\n data = np.hstack(np.repeat(rf, bs) for bs, rf in zip(num_chans, ref_freqs))\n return data.reshape(context.shape).astype(context.dtype)\n",
"role": "user"
},
{
"content": "ref_frequency",
"role": "assistant"
}
] |
def x(self, context):
cube = context._cube
a1_actual = cube.array('antenna1', reify=True)
a1_ctx = SourceContext('antenna1', cube, context.cfg, context.iter_args,
cube.array('antenna1'), a1_actual.shape, a1_actual.dtype)
a2_actual = cube.array('antenna2', reify=True)
a2_ctx = SourceContext('antenna2', cube, context.cfg, context.iter_args,
cube.array('antenna2'), a2_actual.shape, a2_actual.dtype)
ant1 = self.antenna1(a1_ctx).ravel()
ant2 = self.antenna2(a2_ctx).ravel()
lrow, urow = MS.uvw_row_extents(context)
uvw = self._manager.ordered_uvw_table.getcol(MS.UVW, startrow=lrow,
nrow=urow - lrow)
ntime, nbl = context.dim_extent_size('ntime', 'nbl')
na = context.dim_global_size('na')
chunks = np.repeat(nbl, ntime).astype(ant1.dtype)
auvw = mbu.antenna_uvw(uvw, ant1, ant2, chunks, nr_of_antenna=na)
return auvw.reshape(context.shape).astype(context.dtype)
|
uvw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n cube = context._cube\n a1_actual = cube.array('antenna1', reify=True)\n a1_ctx = SourceContext('antenna1', cube, context.cfg, context.iter_args,\n cube.array('antenna1'), a1_actual.shape, a1_actual.dtype)\n a2_actual = cube.array('antenna2', reify=True)\n a2_ctx = SourceContext('antenna2', cube, context.cfg, context.iter_args,\n cube.array('antenna2'), a2_actual.shape, a2_actual.dtype)\n ant1 = self.antenna1(a1_ctx).ravel()\n ant2 = self.antenna2(a2_ctx).ravel()\n lrow, urow = MS.uvw_row_extents(context)\n uvw = self._manager.ordered_uvw_table.getcol(MS.UVW, startrow=lrow,\n nrow=urow - lrow)\n ntime, nbl = context.dim_extent_size('ntime', 'nbl')\n na = context.dim_global_size('na')\n chunks = np.repeat(nbl, ntime).astype(ant1.dtype)\n auvw = mbu.antenna_uvw(uvw, ant1, ant2, chunks, nr_of_antenna=na)\n return auvw.reshape(context.shape).astype(context.dtype)\n",
"role": "user"
},
{
"content": "uvw",
"role": "assistant"
}
] |
def x(self, context):
lrow, urow = MS.uvw_row_extents(context)
antenna1 = self._manager.ordered_uvw_table.getcol(MS.ANTENNA1, startrow
=lrow, nrow=urow - lrow)
return antenna1.reshape(context.shape).astype(context.dtype)
|
antenna1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n lrow, urow = MS.uvw_row_extents(context)\n antenna1 = self._manager.ordered_uvw_table.getcol(MS.ANTENNA1, startrow\n =lrow, nrow=urow - lrow)\n return antenna1.reshape(context.shape).astype(context.dtype)\n",
"role": "user"
},
{
"content": "antenna1",
"role": "assistant"
}
] |
def x(self, context):
lrow, urow = MS.uvw_row_extents(context)
antenna2 = self._manager.ordered_uvw_table.getcol(MS.ANTENNA2, startrow
=lrow, nrow=urow - lrow)
return antenna2.reshape(context.shape).astype(context.dtype)
|
antenna2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n lrow, urow = MS.uvw_row_extents(context)\n antenna2 = self._manager.ordered_uvw_table.getcol(MS.ANTENNA2, startrow\n =lrow, nrow=urow - lrow)\n return antenna2.reshape(context.shape).astype(context.dtype)\n",
"role": "user"
},
{
"content": "antenna2",
"role": "assistant"
}
] |
def x(self, context):
(lt, ut), (la, ua) = context.dim_extents('ntime', 'na')
return mbu.parallactic_angles(self._times[lt:ut], self.
_antenna_positions[la:ua], self._phase_dir).reshape(context.shape
).astype(context.dtype)
|
parallactic_angles
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n (lt, ut), (la, ua) = context.dim_extents('ntime', 'na')\n return mbu.parallactic_angles(self._times[lt:ut], self.\n _antenna_positions[la:ua], self._phase_dir).reshape(context.shape\n ).astype(context.dtype)\n",
"role": "user"
},
{
"content": "parallactic_angles",
"role": "assistant"
}
] |
def x(self, context):
lrow, urow = MS.row_extents(context)
data = self._manager.ordered_main_table.getcol(self._vis_column,
startrow=lrow, nrow=urow - lrow)
return data.reshape(context.shape).astype(context.dtype)
|
observed_vis
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n lrow, urow = MS.row_extents(context)\n data = self._manager.ordered_main_table.getcol(self._vis_column,\n startrow=lrow, nrow=urow - lrow)\n return data.reshape(context.shape).astype(context.dtype)\n",
"role": "user"
},
{
"content": "observed_vis",
"role": "assistant"
}
] |
def x(self, context):
lrow, urow = MS.row_extents(context)
flag = self._manager.ordered_main_table.getcol(MS.FLAG, startrow=lrow,
nrow=urow - lrow)
return flag.reshape(context.shape).astype(context.dtype)
|
flag
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n lrow, urow = MS.row_extents(context)\n flag = self._manager.ordered_main_table.getcol(MS.FLAG, startrow=lrow,\n nrow=urow - lrow)\n return flag.reshape(context.shape).astype(context.dtype)\n",
"role": "user"
},
{
"content": "flag",
"role": "assistant"
}
] |
def x(self, context):
lrow, urow = MS.row_extents(context)
weight = self._manager.ordered_main_table.getcol(MS.WEIGHT, startrow=
lrow, nrow=urow - lrow)
weight = np.repeat(weight, self._manager.channels_per_band, 0)
return weight.reshape(context.shape).astype(context.dtype)
|
weight
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n lrow, urow = MS.row_extents(context)\n weight = self._manager.ordered_main_table.getcol(MS.WEIGHT, startrow=\n lrow, nrow=urow - lrow)\n weight = np.repeat(weight, self._manager.channels_per_band, 0)\n return weight.reshape(context.shape).astype(context.dtype)\n",
"role": "user"
},
{
"content": "weight",
"role": "assistant"
}
] |
def x():
from os.path import join as pjoin
import pkg_resources
import tensorflow as tf
path = pjoin('ext', 'rime.so')
rime_lib_path = pkg_resources.resource_filename('montblanc', path)
return tf.load_op_library(rime_lib_path)
|
load_tf_lib
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n from os.path import join as pjoin\n import pkg_resources\n import tensorflow as tf\n path = pjoin('ext', 'rime.so')\n rime_lib_path = pkg_resources.resource_filename('montblanc', path)\n return tf.load_op_library(rime_lib_path)\n",
"role": "user"
},
{
"content": "load_tf_lib",
"role": "assistant"
}
] |
def x(validator):
if len(validator._errors) == 0:
return
def x(path, name=None):
L = [name] if name is not None else []
L.extend('["%s"]' % p for p in path)
return ''.join(L)
def x(path, dicts):
for p in path:
dicts = dicts[p]
return dicts
wrap = partial(textwrap.wrap, initial_indent=' ' * 4, subsequent_indent
=' ' * 8)
msg = ['There were configuration errors:']
for e in validator._errors:
schema_leaf = _path_leaf(e.document_path, validator.schema)
doc_str = _path_str(e.document_path, 'cfg')
msg.append("Invalid configuration option %s == '%s'." % (doc_str, e
.value))
try:
otype = schema_leaf['type']
msg.extend(wrap("Type must be '%s'." % otype))
except KeyError:
pass
try:
allowed = schema_leaf['allowed']
msg.extend(wrap("Allowed values are '%s'." % allowed))
except KeyError:
pass
try:
description = schema_leaf['__description__']
msg.extend(wrap('Description: %s' % description))
except KeyError:
pass
raise ValueError('\n'.join(msg))
|
raise_validator_errors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(validator):\n if len(validator._errors) == 0:\n return\n\n def x(path, name=None):\n L = [name] if name is not None else []\n L.extend('[\"%s\"]' % p for p in path)\n return ''.join(L)\n\n def x(path, dicts):\n for p in path:\n dicts = dicts[p]\n return dicts\n wrap = partial(textwrap.wrap, initial_indent=' ' * 4, subsequent_indent\n =' ' * 8)\n msg = ['There were configuration errors:']\n for e in validator._errors:\n schema_leaf = _path_leaf(e.document_path, validator.schema)\n doc_str = _path_str(e.document_path, 'cfg')\n msg.append(\"Invalid configuration option %s == '%s'.\" % (doc_str, e\n .value))\n try:\n otype = schema_leaf['type']\n msg.extend(wrap(\"Type must be '%s'.\" % otype))\n except KeyError:\n pass\n try:\n allowed = schema_leaf['allowed']\n msg.extend(wrap(\"Allowed values are '%s'.\" % allowed))\n except KeyError:\n pass\n try:\n description = schema_leaf['__description__']\n msg.extend(wrap('Description: %s' % description))\n except KeyError:\n pass\n raise ValueError('\\n'.join(msg))\n",
"role": "user"
},
{
"content": "raise_validator_errors",
"role": "assistant"
}
] |
def x(text, level, indent=2):
return '\n'.join('%s%s' % (level * indent * ' ', s) for s in text.
splitlines())
|
indented
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, level, indent=2):\n return '\\n'.join('%s%s' % (level * indent * ' ', s) for s in text.\n splitlines())\n",
"role": "user"
},
{
"content": "indented",
"role": "assistant"
}
] |
def x(text, level, indent=2):
return indented('{\n%s\n}' % indented(text, level + 1, indent) or
'None', level, indent) + '\n'
|
dumped
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, level, indent=2):\n return indented('{\\n%s\\n}' % indented(text, level + 1, indent) or\n 'None', level, indent) + '\\n'\n",
"role": "user"
},
{
"content": "dumped",
"role": "assistant"
}
] |
def x(source_path, target_path, allow_undo=True, no_confirm=False,
rename_on_collision=True, silent=False, extra_flags=0, hWnd=None):
return _file_operation(shellcon.FO_COPY, source_path, target_path,
allow_undo, no_confirm, rename_on_collision, silent, extra_flags, hWnd)
|
copy_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(source_path, target_path, allow_undo=True, no_confirm=False,\n rename_on_collision=True, silent=False, extra_flags=0, hWnd=None):\n return _file_operation(shellcon.FO_COPY, source_path, target_path,\n allow_undo, no_confirm, rename_on_collision, silent, extra_flags, hWnd)\n",
"role": "user"
},
{
"content": "copy_file",
"role": "assistant"
}
] |
def x(source_path, target_path, allow_undo=True, no_confirm=False,
rename_on_collision=True, silent=False, extra_flags=0, hWnd=None):
return _file_operation(shellcon.FO_MOVE, source_path, target_path,
allow_undo, no_confirm, rename_on_collision, silent, extra_flags, hWnd)
|
move_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(source_path, target_path, allow_undo=True, no_confirm=False,\n rename_on_collision=True, silent=False, extra_flags=0, hWnd=None):\n return _file_operation(shellcon.FO_MOVE, source_path, target_path,\n allow_undo, no_confirm, rename_on_collision, silent, extra_flags, hWnd)\n",
"role": "user"
},
{
"content": "move_file",
"role": "assistant"
}
] |
def x(source_path, target_path, allow_undo=True, no_confirm=False,
rename_on_collision=True, silent=False, extra_flags=0, hWnd=None):
return _file_operation(shellcon.FO_RENAME, source_path, target_path,
allow_undo, no_confirm, rename_on_collision, silent, extra_flags, hWnd)
|
rename_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(source_path, target_path, allow_undo=True, no_confirm=False,\n rename_on_collision=True, silent=False, extra_flags=0, hWnd=None):\n return _file_operation(shellcon.FO_RENAME, source_path, target_path,\n allow_undo, no_confirm, rename_on_collision, silent, extra_flags, hWnd)\n",
"role": "user"
},
{
"content": "rename_file",
"role": "assistant"
}
] |
def x(source_path, allow_undo=True, no_confirm=False, silent=False,
extra_flags=0, hWnd=None):
return _file_operation(shellcon.FO_DELETE, source_path, None,
allow_undo, no_confirm, False, silent, extra_flags, hWnd)
|
delete_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(source_path, allow_undo=True, no_confirm=False, silent=False,\n extra_flags=0, hWnd=None):\n return _file_operation(shellcon.FO_DELETE, source_path, None,\n allow_undo, no_confirm, False, silent, extra_flags, hWnd)\n",
"role": "user"
},
{
"content": "delete_file",
"role": "assistant"
}
] |
def x(filename):
if not pythoncom.StgIsStorageFile(filename):
return {}
flags = storagecon.STGM_READ | storagecon.STGM_SHARE_EXCLUSIVE
storage = pythoncom.StgOpenStorage(filename, None, flags)
try:
properties_storage = storage.QueryInterface(pythoncom.
IID_IPropertySetStorage)
except pythoncom.com_error:
return {}
property_sheet = properties_storage.Open(FMTID_USER_DEFINED_PROPERTIES)
try:
data = property_sheet.ReadMultiple(PROPERTIES)
finally:
property_sheet = None
(title, subject, author, created_on, keywords, comments, template_used,
updated_by, edited_on, printed_on, saved_on, n_pages, n_words,
n_characters, application) = data
result = {}
if title:
result['title'] = title
if subject:
result['subject'] = subject
if author:
result['author'] = author
if created_on:
result['created_on'] = created_on
if keywords:
result['keywords'] = keywords
if comments:
result['comments'] = comments
if template_used:
result['template_used'] = template_used
if updated_by:
result['updated_by'] = updated_by
if edited_on:
result['edited_on'] = edited_on
if printed_on:
result['printed_on'] = printed_on
if saved_on:
result['saved_on'] = saved_on
if n_pages:
result['n_pages'] = n_pages
if n_words:
result['n_words'] = n_words
if n_characters:
result['n_characters'] = n_characters
if application:
result['application'] = application
return result
|
structured_storage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n if not pythoncom.StgIsStorageFile(filename):\n return {}\n flags = storagecon.STGM_READ | storagecon.STGM_SHARE_EXCLUSIVE\n storage = pythoncom.StgOpenStorage(filename, None, flags)\n try:\n properties_storage = storage.QueryInterface(pythoncom.\n IID_IPropertySetStorage)\n except pythoncom.com_error:\n return {}\n property_sheet = properties_storage.Open(FMTID_USER_DEFINED_PROPERTIES)\n try:\n data = property_sheet.ReadMultiple(PROPERTIES)\n finally:\n property_sheet = None\n (title, subject, author, created_on, keywords, comments, template_used,\n updated_by, edited_on, printed_on, saved_on, n_pages, n_words,\n n_characters, application) = data\n result = {}\n if title:\n result['title'] = title\n if subject:\n result['subject'] = subject\n if author:\n result['author'] = author\n if created_on:\n result['created_on'] = created_on\n if keywords:\n result['keywords'] = keywords\n if comments:\n result['comments'] = comments\n if template_used:\n result['template_used'] = template_used\n if updated_by:\n result['updated_by'] = updated_by\n if edited_on:\n result['edited_on'] = edited_on\n if printed_on:\n result['printed_on'] = printed_on\n if saved_on:\n result['saved_on'] = saved_on\n if n_pages:\n result['n_pages'] = n_pages\n if n_words:\n result['n_words'] = n_words\n if n_characters:\n result['n_characters'] = n_characters\n if application:\n result['application'] = application\n return result\n",
"role": "user"
},
{
"content": "structured_storage",
"role": "assistant"
}
] |
def x(Path, Target, Arguments='', StartIn='', Icon=('', 0), Description=''):
lnk = shortcut(Target)
lnk.arguments = Arguments
lnk.working_directory = StartIn
lnk.icon_location = Icon
lnk.description = Description
lnk.write(Path)
|
CreateShortcut
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(Path, Target, Arguments='', StartIn='', Icon=('', 0), Description=''):\n lnk = shortcut(Target)\n lnk.arguments = Arguments\n lnk.working_directory = StartIn\n lnk.icon_location = Icon\n lnk.description = Description\n lnk.write(Path)\n",
"role": "user"
},
{
"content": "CreateShortcut",
"role": "assistant"
}
] |
def x(self, original_filepath):
candidates = self.versions(original_filepath)
if not candidates:
raise x_not_found_in_recycle_bin('%s not found in the Recycle Bin' %
original_filepath)
newest = sorted(candidates, key=lambda entry: entry.recycle_date())[-1]
return newest.undelete()
|
undelete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, original_filepath):\n candidates = self.versions(original_filepath)\n if not candidates:\n raise x_not_found_in_recycle_bin('%s not found in the Recycle Bin' %\n original_filepath)\n newest = sorted(candidates, key=lambda entry: entry.recycle_date())[-1]\n return newest.undelete()\n",
"role": "user"
},
{
"content": "undelete",
"role": "assistant"
}
] |
def x(name, queue_size, fed_arrays, data_sources, *args, **kwargs):
qtype = SingleInputMultiQueueWrapper if 'count' in kwargs else QueueWrapper
return qtype(name, queue_size, fed_arrays, data_sources, *args, **kwargs)
|
create_queue_wrapper
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, queue_size, fed_arrays, data_sources, *args, **kwargs):\n qtype = SingleInputMultiQueueWrapper if 'count' in kwargs else QueueWrapper\n return qtype(name, queue_size, fed_arrays, data_sources, *args, **kwargs)\n",
"role": "user"
},
{
"content": "create_queue_wrapper",
"role": "assistant"
}
] |
def x(assign_str):
if not assign_str:
return {}
def x(stmt_value):
if isinstance(stmt_value, ast.Call):
func_name = stmt_value.func.id
if func_name not in _BUILTIN_WHITELIST:
raise ValueError(
"Function '%s' in '%s' is not builtin. Available builtins: '%s'"
% (func_name, assign_str, list(_BUILTIN_WHITELIST)))
if stmt_value.args is not None:
args = tuple(_eval_value(a) for a in stmt_value.args)
else:
args = ()
if stmt_value.keywords is not None:
kwargs = {kw.arg: _eval_value(kw.value) for kw in
stmt_value.keywords}
else:
kwargs = {}
return getattr(__builtin__, func_name)(*args, **kwargs)
else:
return ast.literal_eval(stmt_value)
variables = {}
stmts = ast.parse(assign_str, mode='single').body
for i, stmt in enumerate(stmts):
if not isinstance(stmt, ast.Assign):
raise ValueError(
"Statement %d in '%s' is not a variable assignment." % (i,
assign_str))
values = _eval_value(stmt.value)
for target in stmt.targets:
if isinstance(target, ast.Name):
variables[target.id] = values
elif isinstance(target, (ast.Tuple, ast.List)):
if not all(isinstance(e, ast.Name) for e in target.elts):
raise ValueError(
"Tuple unpacking in assignment %d in expression '%s' failed as not all tuple contents are variable names."
)
if not isinstance(values, (tuple, list)):
elements = values,
else:
elements = values
if not len(target.elts) == len(elements):
raise ValueError(
"Unpacking '%s' into a tuple/list in assignment %d of expression '%s' failed. The number of tuple elements did not match the number of values."
% (values, i, assign_str))
for variable, value in zip(target.elts, elements):
variables[variable.id] = value
else:
raise TypeError(
"'%s' types are not supportedas assignment targets." %
type(target))
return variables
|
parse_python_assigns
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(assign_str):\n if not assign_str:\n return {}\n\n def x(stmt_value):\n if isinstance(stmt_value, ast.Call):\n func_name = stmt_value.func.id\n if func_name not in _BUILTIN_WHITELIST:\n raise ValueError(\n \"Function '%s' in '%s' is not builtin. Available builtins: '%s'\"\n % (func_name, assign_str, list(_BUILTIN_WHITELIST)))\n if stmt_value.args is not None:\n args = tuple(_eval_value(a) for a in stmt_value.args)\n else:\n args = ()\n if stmt_value.keywords is not None:\n kwargs = {kw.arg: _eval_value(kw.value) for kw in\n stmt_value.keywords}\n else:\n kwargs = {}\n return getattr(__builtin__, func_name)(*args, **kwargs)\n else:\n return ast.literal_eval(stmt_value)\n variables = {}\n stmts = ast.parse(assign_str, mode='single').body\n for i, stmt in enumerate(stmts):\n if not isinstance(stmt, ast.Assign):\n raise ValueError(\n \"Statement %d in '%s' is not a variable assignment.\" % (i,\n assign_str))\n values = _eval_value(stmt.value)\n for target in stmt.targets:\n if isinstance(target, ast.Name):\n variables[target.id] = values\n elif isinstance(target, (ast.Tuple, ast.List)):\n if not all(isinstance(e, ast.Name) for e in target.elts):\n raise ValueError(\n \"Tuple unpacking in assignment %d in expression '%s' failed as not all tuple contents are variable names.\"\n )\n if not isinstance(values, (tuple, list)):\n elements = values,\n else:\n elements = values\n if not len(target.elts) == len(elements):\n raise ValueError(\n \"Unpacking '%s' into a tuple/list in assignment %d of expression '%s' failed. The number of tuple elements did not match the number of values.\"\n % (values, i, assign_str))\n for variable, value in zip(target.elts, elements):\n variables[variable.id] = value\n else:\n raise TypeError(\n \"'%s' types are not supportedas assignment targets.\" %\n type(target))\n return variables\n",
"role": "user"
},
{
"content": "parse_python_assigns",
"role": "assistant"
}
] |
def x(obj):
SINK_ARGSPEC = ['self', 'context']
return {n: m for n, m in inspect.getmembers(obj, inspect.ismethod) if
inspect.getargspec(m)[0] == SINK_ARGSPEC}
|
find_sinks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj):\n SINK_ARGSPEC = ['self', 'context']\n return {n: m for n, m in inspect.getmembers(obj, inspect.ismethod) if \n inspect.getargspec(m)[0] == SINK_ARGSPEC}\n",
"role": "user"
},
{
"content": "find_sinks",
"role": "assistant"
}
] |
def x(self):
try:
return self._sinks
except AttributeError:
self._sinks = find_sinks(self)
return self._sinks
|
sinks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n return self._sinks\n except AttributeError:\n self._sinks = find_sinks(self)\n return self._sinks\n",
"role": "user"
},
{
"content": "sinks",
"role": "assistant"
}
] |
def x(uvw, antenna1, antenna2, chunks, nr_of_antenna):
if antenna1.ndim != 1:
raise ValueError('antenna1 shape should be (row,)')
if antenna2.ndim != 1:
raise ValueError('antenna2 shape should be (row,)')
if uvw.ndim != 2 or uvw.shape[1] != 3:
raise ValueError('uvw shape should be (row, 3)')
if not uvw.shape[0] == antenna1.shape[0] == antenna2.shape[0]:
raise ValueError(
'First dimension of uvw, antenna1 and antenna2 do not match')
if chunks.ndim != 1:
raise ValueError('chunks shape should be (utime,)')
if nr_of_antenna < 1:
raise ValueError('nr_of_antenna < 1')
ant_uvw_shape = chunks.shape[0], nr_of_antenna, 3
antenna_uvw = np.full(ant_uvw_shape, np.nan, dtype=uvw.dtype)
start = 0
for ci, chunk in enumerate(chunks):
end = start + chunk
_antenna_uvw_loop(uvw, antenna1, antenna2, antenna_uvw, ci, start, end)
start = end
return antenna_uvw
|
antenna_uvw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(uvw, antenna1, antenna2, chunks, nr_of_antenna):\n if antenna1.ndim != 1:\n raise ValueError('antenna1 shape should be (row,)')\n if antenna2.ndim != 1:\n raise ValueError('antenna2 shape should be (row,)')\n if uvw.ndim != 2 or uvw.shape[1] != 3:\n raise ValueError('uvw shape should be (row, 3)')\n if not uvw.shape[0] == antenna1.shape[0] == antenna2.shape[0]:\n raise ValueError(\n 'First dimension of uvw, antenna1 and antenna2 do not match')\n if chunks.ndim != 1:\n raise ValueError('chunks shape should be (utime,)')\n if nr_of_antenna < 1:\n raise ValueError('nr_of_antenna < 1')\n ant_uvw_shape = chunks.shape[0], nr_of_antenna, 3\n antenna_uvw = np.full(ant_uvw_shape, np.nan, dtype=uvw.dtype)\n start = 0\n for ci, chunk in enumerate(chunks):\n end = start + chunk\n _antenna_uvw_loop(uvw, antenna1, antenna2, antenna_uvw, ci, start, end)\n start = end\n return antenna_uvw\n",
"role": "user"
},
{
"content": "antenna_uvw",
"role": "assistant"
}
] |
def x(uvw, antenna1, antenna2, chunks, ant_uvw, max_err):
start = 0
problem_str = []
for ci, chunk in enumerate(chunks):
end = start + chunk
ant1 = antenna1[start:end]
ant2 = antenna2[start:end]
cuvw = uvw[start:end]
ant1_uvw = ant_uvw[ci, ant1, :]
ant2_uvw = ant_uvw[ci, ant2, :]
ruvw = ant2_uvw - ant1_uvw
close = np.isclose(ruvw, cuvw)
problems = np.nonzero(np.logical_or.reduce(np.invert(close), axis=1))
for row in problems[0]:
problem_str.append(
'[row %d [%d, %d] (chunk %d)]: original %s recovered %s ant1 %s ant2 %s'
% (start + row, ant1[row], ant2[row], ci, cuvw[row], ruvw[
row], ant1_uvw[row], ant2_uvw[row]))
if len(problem_str) >= max_err:
break
if len(problem_str) >= max_err:
break
start = end
if len(problem_str) == 0:
return
problem_str = ['Antenna UVW Decomposition Failed',
'The following differences were found (first 100):'] + problem_str
raise AntennaUVWDecompositionError('\n'.join(problem_str))
|
raise_decomposition_errors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(uvw, antenna1, antenna2, chunks, ant_uvw, max_err):\n start = 0\n problem_str = []\n for ci, chunk in enumerate(chunks):\n end = start + chunk\n ant1 = antenna1[start:end]\n ant2 = antenna2[start:end]\n cuvw = uvw[start:end]\n ant1_uvw = ant_uvw[ci, ant1, :]\n ant2_uvw = ant_uvw[ci, ant2, :]\n ruvw = ant2_uvw - ant1_uvw\n close = np.isclose(ruvw, cuvw)\n problems = np.nonzero(np.logical_or.reduce(np.invert(close), axis=1))\n for row in problems[0]:\n problem_str.append(\n '[row %d [%d, %d] (chunk %d)]: original %s recovered %s ant1 %s ant2 %s'\n % (start + row, ant1[row], ant2[row], ci, cuvw[row], ruvw[\n row], ant1_uvw[row], ant2_uvw[row]))\n if len(problem_str) >= max_err:\n break\n if len(problem_str) >= max_err:\n break\n start = end\n if len(problem_str) == 0:\n return\n problem_str = ['Antenna UVW Decomposition Failed',\n 'The following differences were found (first 100):'] + problem_str\n raise AntennaUVWDecompositionError('\\n'.join(problem_str))\n",
"role": "user"
},
{
"content": "raise_decomposition_errors",
"role": "assistant"
}
] |
def x(ant_uvw, max_err):
problems = np.nonzero(np.add.reduce(np.isnan(ant_uvw), axis=2))
problem_str = []
for c, a in zip(*problems):
problem_str.append('[chunk %d antenna %d]' % (c, a))
if len(problem_str) >= max_err:
break
if len(problem_str) == 0:
return
problem_str = ['Antenna were missing'] + problem_str
raise AntennaMissingError('\n'.join(problem_str))
|
raise_missing_antenna_errors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ant_uvw, max_err):\n problems = np.nonzero(np.add.reduce(np.isnan(ant_uvw), axis=2))\n problem_str = []\n for c, a in zip(*problems):\n problem_str.append('[chunk %d antenna %d]' % (c, a))\n if len(problem_str) >= max_err:\n break\n if len(problem_str) == 0:\n return\n problem_str = ['Antenna were missing'] + problem_str\n raise AntennaMissingError('\\n'.join(problem_str))\n",
"role": "user"
},
{
"content": "raise_missing_antenna_errors",
"role": "assistant"
}
] |
def x(uvw, antenna1, antenna2, chunks, nr_of_antenna, check_missing=False,
check_decomposition=False, max_err=100):
ant_uvw = _antenna_uvw(uvw, antenna1, antenna2, chunks, nr_of_antenna)
if check_missing:
_raise_missing_antenna_errors(ant_uvw, max_err=max_err)
if check_decomposition:
_raise_decomposition_errors(uvw, antenna1, antenna2, chunks,
ant_uvw, max_err=max_err)
return ant_uvw
|
antenna_uvw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(uvw, antenna1, antenna2, chunks, nr_of_antenna, check_missing=False,\n check_decomposition=False, max_err=100):\n ant_uvw = _antenna_uvw(uvw, antenna1, antenna2, chunks, nr_of_antenna)\n if check_missing:\n _raise_missing_antenna_errors(ant_uvw, max_err=max_err)\n if check_decomposition:\n _raise_decomposition_errors(uvw, antenna1, antenna2, chunks,\n ant_uvw, max_err=max_err)\n return ant_uvw\n",
"role": "user"
},
{
"content": "antenna_uvw",
"role": "assistant"
}
] |
def x(**kwargs):
S = OrderedDict()
total = 0
invalid_types = [t for t in kwargs.keys() if t not in SOURCE_VAR_TYPES]
for t in invalid_types:
montblanc.log.warning(
'Source type %s is not yet implemented in montblanc. Valid source types are %s'
% (t, SOURCE_VAR_TYPES.keys()))
for k, v in SOURCE_VAR_TYPES.iteritems():
value = kwargs.get(k, 0)
try:
value = int(value)
except ValueError:
raise TypeError(
'Supplied value %s for source %s cannot be converted to an integer'
% (value, k))
total += value
S[k] = value
if total == 0:
S[POINT_TYPE] = 1
return S
|
default_sources
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(**kwargs):\n S = OrderedDict()\n total = 0\n invalid_types = [t for t in kwargs.keys() if t not in SOURCE_VAR_TYPES]\n for t in invalid_types:\n montblanc.log.warning(\n 'Source type %s is not yet implemented in montblanc. Valid source types are %s'\n % (t, SOURCE_VAR_TYPES.keys()))\n for k, v in SOURCE_VAR_TYPES.iteritems():\n value = kwargs.get(k, 0)\n try:\n value = int(value)\n except ValueError:\n raise TypeError(\n 'Supplied value %s for source %s cannot be converted to an integer'\n % (value, k))\n total += value\n S[k] = value\n if total == 0:\n S[POINT_TYPE] = 1\n return S\n",
"role": "user"
},
{
"content": "default_sources",
"role": "assistant"
}
] |
def x(sources):
sources = default_sources(**sources)
try:
return OrderedDict((SOURCE_VAR_TYPES[name], nr) for name, nr in
sources.iteritems())
except KeyError as e:
raise KeyError(
'No source type %s is registered. Valid source types are %s' %
(e, SOURCE_VAR_TYPES.keys()))
|
sources_to_nr_vars
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sources):\n sources = default_sources(**sources)\n try:\n return OrderedDict((SOURCE_VAR_TYPES[name], nr) for name, nr in\n sources.iteritems())\n except KeyError as e:\n raise KeyError(\n 'No source type %s is registered. Valid source types are %s' %\n (e, SOURCE_VAR_TYPES.keys()))\n",
"role": "user"
},
{
"content": "sources_to_nr_vars",
"role": "assistant"
}
] |
def x(start, end, nr_var_dict):
starts = np.array([(0) for nr_var in SOURCE_VAR_TYPES.itervalues()])
ends = np.array([(nr_var_dict[nr_var] if nr_var in nr_var_dict else 0) for
nr_var in SOURCE_VAR_TYPES.itervalues()])
sum_counts = np.cumsum(ends)
idx = np.arange(len(starts))
start_idx, end_idx = np.searchsorted(sum_counts, [start, end], side='right'
)
if end >= sum_counts[-1]:
end = sum_counts[-1]
end_idx = len(sum_counts) - 1
invalid = np.logical_not(np.logical_and(start_idx <= idx, idx <= end_idx))
starts[invalid] = ends[invalid] = 0
starts[start_idx] = start
ends[end_idx] = end
if start >= sum_counts[0]:
starts[start_idx] -= sum_counts[start_idx - 1]
if end >= sum_counts[0]:
ends[end_idx] -= sum_counts[end_idx - 1]
return OrderedDict((n, (starts[i], ends[i])) for i, n in enumerate(
SOURCE_VAR_TYPES.values()))
|
source_range_tuple
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(start, end, nr_var_dict):\n starts = np.array([(0) for nr_var in SOURCE_VAR_TYPES.itervalues()])\n ends = np.array([(nr_var_dict[nr_var] if nr_var in nr_var_dict else 0) for\n nr_var in SOURCE_VAR_TYPES.itervalues()])\n sum_counts = np.cumsum(ends)\n idx = np.arange(len(starts))\n start_idx, end_idx = np.searchsorted(sum_counts, [start, end], side='right'\n )\n if end >= sum_counts[-1]:\n end = sum_counts[-1]\n end_idx = len(sum_counts) - 1\n invalid = np.logical_not(np.logical_and(start_idx <= idx, idx <= end_idx))\n starts[invalid] = ends[invalid] = 0\n starts[start_idx] = start\n ends[end_idx] = end\n if start >= sum_counts[0]:\n starts[start_idx] -= sum_counts[start_idx - 1]\n if end >= sum_counts[0]:\n ends[end_idx] -= sum_counts[end_idx - 1]\n return OrderedDict((n, (starts[i], ends[i])) for i, n in enumerate(\n SOURCE_VAR_TYPES.values()))\n",
"role": "user"
},
{
"content": "source_range_tuple",
"role": "assistant"
}
] |
def x(start, end, nr_var_dict):
return OrderedDict((k, e - s) for k, (s, e) in source_range_tuple(start,
end, nr_var_dict).iteritems())
|
source_range
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(start, end, nr_var_dict):\n return OrderedDict((k, e - s) for k, (s, e) in source_range_tuple(start,\n end, nr_var_dict).iteritems())\n",
"role": "user"
},
{
"content": "source_range",
"role": "assistant"
}
] |
def x(start, end, nr_var_dict):
return OrderedDict((k, slice(s, e, 1)) for k, (s, e) in
source_range_tuple(start, end, nr_var_dict).iteritems())
|
source_range_slices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(start, end, nr_var_dict):\n return OrderedDict((k, slice(s, e, 1)) for k, (s, e) in\n source_range_tuple(start, end, nr_var_dict).iteritems())\n",
"role": "user"
},
{
"content": "source_range_slices",
"role": "assistant"
}
] |
def x(self, context):
lm = np.empty(context.shape, context.dtype)
montblanc.log.info(context.array_schema.shape)
montblanc.log.info(context.iter_args)
ls, us = context.dim_extents('npsrc')
lm[:, 0] = 0.0008
lm[:, 1] = 0.0036
lm[:, :] = 0
return lm
|
point_lm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n lm = np.empty(context.shape, context.dtype)\n montblanc.log.info(context.array_schema.shape)\n montblanc.log.info(context.iter_args)\n ls, us = context.dim_extents('npsrc')\n lm[:, 0] = 0.0008\n lm[:, 1] = 0.0036\n lm[:, :] = 0\n return lm\n",
"role": "user"
},
{
"content": "point_lm",
"role": "assistant"
}
] |
def x(self, context):
stokes = np.empty(context.shape, context.dtype)
stokes[:, :, 0] = 1
stokes[:, :, 1:4] = 0
return stokes
|
point_stokes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n stokes = np.empty(context.shape, context.dtype)\n stokes[:, :, 0] = 1\n stokes[:, :, 1:4] = 0\n return stokes\n",
"role": "user"
},
{
"content": "point_stokes",
"role": "assistant"
}
] |
def x(self, context):
ref_freq = np.empty(context.shape, context.dtype)
ref_freq[:] = 1415000000.0
return ref_freq
|
ref_frequency
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n ref_freq = np.empty(context.shape, context.dtype)\n ref_freq[:] = 1415000000.0\n return ref_freq\n",
"role": "user"
},
{
"content": "ref_frequency",
"role": "assistant"
}
] |
def x(self, scopes=[], add_scopes=[], rm_scopes=[], note='', note_url=''):
success = False
json = None
if scopes:
d = {'scopes': scopes}
json = self._json(self._post(self._api, data=d), 200)
if add_scopes:
d = {'add_scopes': add_scopes}
json = self._json(self._post(self._api, data=d), 200)
if rm_scopes:
d = {'remove_scopes': rm_scopes}
json = self._json(self._post(self._api, data=d), 200)
if note or note_url:
d = {'note': note, 'note_url': note_url}
json = self._json(self._post(self._api, data=d), 200)
if json:
self._update_(json)
success = True
return success
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, scopes=[], add_scopes=[], rm_scopes=[], note='', note_url=''):\n success = False\n json = None\n if scopes:\n d = {'scopes': scopes}\n json = self._json(self._post(self._api, data=d), 200)\n if add_scopes:\n d = {'add_scopes': add_scopes}\n json = self._json(self._post(self._api, data=d), 200)\n if rm_scopes:\n d = {'remove_scopes': rm_scopes}\n json = self._json(self._post(self._api, data=d), 200)\n if note or note_url:\n d = {'note': note, 'note_url': note_url}\n json = self._json(self._post(self._api, data=d), 200)\n if json:\n self._update_(json)\n success = True\n return success\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self, number=-1, etag=None):
url = self._build_url('labels', base_url=self._api)
return self._iter(int(number), url, Label, etag=etag)
|
iter_labels
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, number=-1, etag=None):\n url = self._build_url('labels', base_url=self._api)\n return self._iter(int(number), url, Label, etag=etag)\n",
"role": "user"
},
{
"content": "iter_labels",
"role": "assistant"
}
] |
def x(frame):
if frame is None:
return None
code = frame.f_code
if (code.co_name == '__del__' or code.co_name == '_remove' or code.
co_name == '_removeHandlerRef'):
return None
try:
lst = [referer for referer in gc.get_referrers(code) if getattr(
referer, '__code__', None) is code and inspect.getclosurevars(
referer).nonlocals.items() <= frame.f_locals.items()]
if lst:
return lst[0]
else:
return None
except ValueError:
return None
|
current_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(frame):\n if frame is None:\n return None\n code = frame.f_code\n if (code.co_name == '__del__' or code.co_name == '_remove' or code.\n co_name == '_removeHandlerRef'):\n return None\n try:\n lst = [referer for referer in gc.get_referrers(code) if getattr(\n referer, '__code__', None) is code and inspect.getclosurevars(\n referer).nonlocals.items() <= frame.f_locals.items()]\n if lst:\n return lst[0]\n else:\n return None\n except ValueError:\n return None\n",
"role": "user"
},
{
"content": "current_function",
"role": "assistant"
}
] |
def x(frame):
if frame is None:
return None
if hasattr(frame.f_globals, '__name__'):
return frame.f_globals['__name__']
else:
mod = inspect.getmodule(frame)
if mod is None:
return ''
else:
return mod.__name__
|
current_module_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(frame):\n if frame is None:\n return None\n if hasattr(frame.f_globals, '__name__'):\n return frame.f_globals['__name__']\n else:\n mod = inspect.getmodule(frame)\n if mod is None:\n return ''\n else:\n return mod.__name__\n",
"role": "user"
},
{
"content": "current_module_name",
"role": "assistant"
}
] |
def x(self, frame, event, arg):
if event != 'call':
return
src_mod = current_module_name(frame.f_back)
dst_mod = current_module_name(frame)
if src_mod == __modulename__ or dst_mod == __modulename__:
return
if not self.srcmodflt.match(src_mod):
return
if not self.dstmodflt.match(dst_mod):
return
src_func = current_function(frame.f_back)
dst_func = current_function(frame)
if not self.srcqnmflt.match(function_qname(src_func)):
return
if not self.dstqnmflt.match(function_qname(dst_func)):
return
src_name = function_fqname(src_func)
dst_name = function_fqname(dst_func)
if self.fnmsub is not None:
src_name = re.sub(self.fnmsub[0], self.fnmsub[1], src_name)
dst_name = re.sub(self.fnmsub[0], self.fnmsub[1], dst_name)
if src_func is not None:
if src_name in self.fncts:
self.fncts[src_name][0] += 1
else:
self.fncts[src_name] = [1, 0]
if dst_func is not None and src_func is not None:
if dst_name in self.fncts:
self.fncts[dst_name][1] += 1
else:
self.fncts[dst_name] = [0, 1]
if dst_func is not None and src_func is not None:
key = src_name, dst_name
if key in self.calls:
self.calls[key] += 1
else:
self.calls[key] = 1
|
trace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, frame, event, arg):\n if event != 'call':\n return\n src_mod = current_module_name(frame.f_back)\n dst_mod = current_module_name(frame)\n if src_mod == __modulename__ or dst_mod == __modulename__:\n return\n if not self.srcmodflt.match(src_mod):\n return\n if not self.dstmodflt.match(dst_mod):\n return\n src_func = current_function(frame.f_back)\n dst_func = current_function(frame)\n if not self.srcqnmflt.match(function_qname(src_func)):\n return\n if not self.dstqnmflt.match(function_qname(dst_func)):\n return\n src_name = function_fqname(src_func)\n dst_name = function_fqname(dst_func)\n if self.fnmsub is not None:\n src_name = re.sub(self.fnmsub[0], self.fnmsub[1], src_name)\n dst_name = re.sub(self.fnmsub[0], self.fnmsub[1], dst_name)\n if src_func is not None:\n if src_name in self.fncts:\n self.fncts[src_name][0] += 1\n else:\n self.fncts[src_name] = [1, 0]\n if dst_func is not None and src_func is not None:\n if dst_name in self.fncts:\n self.fncts[dst_name][1] += 1\n else:\n self.fncts[dst_name] = [0, 1]\n if dst_func is not None and src_func is not None:\n key = src_name, dst_name\n if key in self.calls:\n self.calls[key] += 1\n else:\n self.calls[key] = 1\n",
"role": "user"
},
{
"content": "trace",
"role": "assistant"
}
] |
def x(self):
sys.settrace(None)
if self.grpflt is not None:
for k in self.fncts:
m = self.grpflt.search(k)
if m is not None:
ms = m.group(0)
if ms in self.group:
self.group[ms].append(k)
else:
self.group[ms] = [k]
|
stop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n sys.settrace(None)\n if self.grpflt is not None:\n for k in self.fncts:\n m = self.grpflt.search(k)\n if m is not None:\n ms = m.group(0)\n if ms in self.group:\n self.group[ms].append(k)\n else:\n self.group[ms] = [k]\n",
"role": "user"
},
{
"content": "stop",
"role": "assistant"
}
] |
def x(n, h0, hr):
n0 = n if n == 1 else n - 1
clst = [('%f,%f,%f' % (h0 + hr * hi / n0, 0.35, 0.85)) for hi in range(n)]
return clst
|
clrgen
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n, h0, hr):\n n0 = n if n == 1 else n - 1\n clst = [('%f,%f,%f' % (h0 + hr * hi / n0, 0.35, 0.85)) for hi in range(n)]\n return clst\n",
"role": "user"
},
{
"content": "clrgen",
"role": "assistant"
}
] |
def x(self, fnm=None, size=None, fntsz=None, fntfm=None, clrgen=None, rmsz=
False, prog='dot'):
if clrgen is None:
clrgen = lambda n: self._clrgen(n, 0.33, 0.825)
clrlst = clrgen(len(self.group))
g = pgv.AGraph(strict=False, directed=True, landscape=False, rankdir=
'LR', newrank=True, fontsize=fntsz, fontname=fntfm, size=size,
ratio='compress', color='black', bgcolor='#ffffff00')
g.node_attr.update(penwidth=0.25, shape='box', style='rounded,filled')
for k in self.fncts:
g.add_node(k, fontsize=fntsz, fontname=fntfm)
if self.lnksub is not None:
lnktgt = re.sub(self.lnksub[0], self.lnksub[1], k)
g.get_node(k).attr.update(href=lnktgt, target='_top')
if self.fncts[k][1] == 0:
g.get_node(k).attr.update(rank='source')
if self.group:
fngrpnm = {}
for k in zip(range(len(self.group)), sorted(self.group)):
g.add_subgraph(self.group[k[1]], name='cluster_' + k[1], label=
k[1], penwidth=2, style='dotted', pencolor=clrlst[k[0]])
for l in self.group[k[1]]:
fngrpnm[l] = k[0]
g.get_node(l).attr.update(fillcolor=clrlst[k[0]])
for k in self.calls:
if self.group:
g.add_edge(k[0], k[1], penwidth=2, color=clrlst[fngrpnm[k[0]]])
else:
g.add_edge(k[0], k[1], color='grey')
g.layout(prog=prog)
if fnm is not None:
ext = os.path.splitext(fnm)[1]
if ext == '.dot':
g.write(fnm)
elif ext == '.svg' and rmsz:
img = g.draw(format='svg').decode('utf-8')
cp = re.compile('\\n<svg width=\\"[^\\"]*\\" height="[^"]*"')
img = cp.sub('\\n<svg', img, count=1)
with open(fnm, 'w') as fd:
fd.write(img)
else:
g.draw(fnm)
return g
|
graph
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fnm=None, size=None, fntsz=None, fntfm=None, clrgen=None, rmsz=\n False, prog='dot'):\n if clrgen is None:\n clrgen = lambda n: self._clrgen(n, 0.33, 0.825)\n clrlst = clrgen(len(self.group))\n g = pgv.AGraph(strict=False, directed=True, landscape=False, rankdir=\n 'LR', newrank=True, fontsize=fntsz, fontname=fntfm, size=size,\n ratio='compress', color='black', bgcolor='#ffffff00')\n g.node_attr.update(penwidth=0.25, shape='box', style='rounded,filled')\n for k in self.fncts:\n g.add_node(k, fontsize=fntsz, fontname=fntfm)\n if self.lnksub is not None:\n lnktgt = re.sub(self.lnksub[0], self.lnksub[1], k)\n g.get_node(k).attr.update(href=lnktgt, target='_top')\n if self.fncts[k][1] == 0:\n g.get_node(k).attr.update(rank='source')\n if self.group:\n fngrpnm = {}\n for k in zip(range(len(self.group)), sorted(self.group)):\n g.add_subgraph(self.group[k[1]], name='cluster_' + k[1], label=\n k[1], penwidth=2, style='dotted', pencolor=clrlst[k[0]])\n for l in self.group[k[1]]:\n fngrpnm[l] = k[0]\n g.get_node(l).attr.update(fillcolor=clrlst[k[0]])\n for k in self.calls:\n if self.group:\n g.add_edge(k[0], k[1], penwidth=2, color=clrlst[fngrpnm[k[0]]])\n else:\n g.add_edge(k[0], k[1], color='grey')\n g.layout(prog=prog)\n if fnm is not None:\n ext = os.path.splitext(fnm)[1]\n if ext == '.dot':\n g.write(fnm)\n elif ext == '.svg' and rmsz:\n img = g.draw(format='svg').decode('utf-8')\n cp = re.compile('\\\\n<svg width=\\\\\"[^\\\\\"]*\\\\\" height=\"[^\"]*\"')\n img = cp.sub('\\\\n<svg', img, count=1)\n with open(fnm, 'w') as fd:\n fd.write(img)\n else:\n g.draw(fnm)\n return g\n",
"role": "user"
},
{
"content": "graph",
"role": "assistant"
}
] |
def x(self, body, commit_id, path, position):
url = self._build_url('comments', base_url=self._api)
data = {'body': body, 'commit_id': commit_id, 'path': path, 'position':
int(position)}
json = self._json(self._post(url, data=data), 201)
return ReviewComment(json, self) if json else None
|
create_review_comment
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, body, commit_id, path, position):\n url = self._build_url('comments', base_url=self._api)\n data = {'body': body, 'commit_id': commit_id, 'path': path, 'position':\n int(position)}\n json = self._json(self._post(url, data=data), 201)\n return ReviewComment(json, self) if json else None\n",
"role": "user"
},
{
"content": "create_review_comment",
"role": "assistant"
}
] |
def x(self):
resp = self._get(self._api, headers={'Accept':
'application/vnd.github.diff'})
return resp.content if self._boolean(resp, 200, 404) else None
|
diff
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n resp = self._get(self._api, headers={'Accept':\n 'application/vnd.github.diff'})\n return resp.content if self._boolean(resp, 200, 404) else None\n",
"role": "user"
},
{
"content": "diff",
"role": "assistant"
}
] |
def x(self):
url = self._build_url('merge', base_url=self._api)
return self._boolean(self._get(url), 204, 404)
|
is_merged
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n url = self._build_url('merge', base_url=self._api)\n return self._boolean(self._get(url), 204, 404)\n",
"role": "user"
},
{
"content": "is_merged",
"role": "assistant"
}
] |
def x(self, number=-1, etag=None):
url = self._build_url('comments', base_url=self._api)
return self._iter(int(number), url, ReviewComment, etag=etag)
|
iter_comments
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, number=-1, etag=None):\n url = self._build_url('comments', base_url=self._api)\n return self._iter(int(number), url, ReviewComment, etag=etag)\n",
"role": "user"
},
{
"content": "iter_comments",
"role": "assistant"
}
] |
def x(self, number=-1, etag=None):
url = self._build_url('files', base_url=self._api)
return self._iter(int(number), url, PullFile, etag=etag)
|
iter_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, number=-1, etag=None):\n url = self._build_url('files', base_url=self._api)\n return self._iter(int(number), url, PullFile, etag=etag)\n",
"role": "user"
},
{
"content": "iter_files",
"role": "assistant"
}
] |
def x(self, number=-1, etag=None):
url = self._build_url(base_url=self.links['comments'])
return self._iter(int(number), url, IssueComment, etag=etag)
|
iter_issue_comments
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, number=-1, etag=None):\n url = self._build_url(base_url=self.links['comments'])\n return self._iter(int(number), url, IssueComment, etag=etag)\n",
"role": "user"
},
{
"content": "iter_issue_comments",
"role": "assistant"
}
] |
def x(self, commit_message='', sha=None):
parameters = {'commit_message': commit_message}
if sha:
parameters['sha'] = sha
url = self._build_url('merge', base_url=self._api)
json = self._json(self._put(url, data=dumps(parameters)), 200)
self.merge_commit_sha = json['sha']
return json['merged']
|
merge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, commit_message='', sha=None):\n parameters = {'commit_message': commit_message}\n if sha:\n parameters['sha'] = sha\n url = self._build_url('merge', base_url=self._api)\n json = self._json(self._put(url, data=dumps(parameters)), 200)\n self.merge_commit_sha = json['sha']\n return json['merged']\n",
"role": "user"
},
{
"content": "merge",
"role": "assistant"
}
] |
def x(self):
resp = self._get(self._api, headers={'Accept':
'application/vnd.github.patch'})
return resp.content if self._boolean(resp, 200, 404) else None
|
patch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n resp = self._get(self._api, headers={'Accept':\n 'application/vnd.github.patch'})\n return resp.content if self._boolean(resp, 200, 404) else None\n",
"role": "user"
},
{
"content": "patch",
"role": "assistant"
}
] |
def x(self, title=None, body=None, state=None):
data = {'title': title, 'body': body, 'state': state}
json = None
self._remove_none(data)
if data:
json = self._json(self._patch(self._api, data=dumps(data)), 200)
if json:
self._update_(json)
return True
return False
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, title=None, body=None, state=None):\n data = {'title': title, 'body': body, 'state': state}\n json = None\n self._remove_none(data)\n if data:\n json = self._json(self._patch(self._api, data=dumps(data)), 200)\n if json:\n self._update_(json)\n return True\n return False\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self, body):
url = self._build_url('comments', base_url=self.pull_request_url)
index = self._api.rfind('/') + 1
in_reply_to = self._api[index:]
json = self._json(self._post(url, data={'body': body, 'in_reply_to':
in_reply_to}), 201)
return ReviewComment(json, self) if json else None
|
reply
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, body):\n url = self._build_url('comments', base_url=self.pull_request_url)\n index = self._api.rfind('/') + 1\n in_reply_to = self._api[index:]\n json = self._json(self._post(url, data={'body': body, 'in_reply_to':\n in_reply_to}), 201)\n return ReviewComment(json, self) if json else None\n",
"role": "user"
},
{
"content": "reply",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.