source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(nbl, auto_correlations=False): t = 1 if auto_correlations is False else -1 return int(t + math.sqrt(1 + 8 * nbl)) // 2
nr_of_antenna
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nbl, auto_correlations=False):\n t = 1 if auto_correlations is False else -1\n return int(t + math.sqrt(1 + 8 * nbl)) // 2\n", "role": "user" }, { "content": "nr_of_antenna", "role": "assistant" } ]
def x(shape, dtype): return np.product(shape) * np.dtype(dtype).itemsize
array_bytes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(shape, dtype):\n return np.product(shape) * np.dtype(dtype).itemsize\n", "role": "user" }, { "content": "array_bytes", "role": "assistant" } ]
def x(ary=None, shape=None, dtype=None): if ary is not None: shape, dtype = ary.shape, ary.dtype elif shape is None or dtype is None: raise ValueError( 'random_like(ary, shape, dtype) must be supplied with either an array argument, or the shape and dtype of the desired random array.' ) if np.issubdtype(dtype, np.complexfloating): return (np.random.random(size=shape) + np.random.random(size=shape) * 1.0j).astype(dtype) else: return np.random.random(size=shape).astype(dtype)
random_like
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ary=None, shape=None, dtype=None):\n if ary is not None:\n shape, dtype = ary.shape, ary.dtype\n elif shape is None or dtype is None:\n raise ValueError(\n 'random_like(ary, shape, dtype) must be supplied with either an array argument, or the shape and dtype of the desired random array.'\n )\n if np.issubdtype(dtype, np.complexfloating):\n return (np.random.random(size=shape) + np.random.random(size=shape) *\n 1.0j).astype(dtype)\n else:\n return np.random.random(size=shape).astype(dtype)\n", "role": "user" }, { "content": "random_like", "role": "assistant" } ]
def x(nested): flat_return = list() def x(nested, flat): for i in nested: __inner_flat(i, flat) if isinstance(i, list) else flat.append(i) return flat __inner_flat(nested, flat_return) return flat_return
flatten
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nested):\n flat_return = list()\n\n def x(nested, flat):\n for i in nested:\n __inner_flat(i, flat) if isinstance(i, list) else flat.append(i)\n return flat\n __inner_flat(nested, flat_return)\n return flat_return\n", "role": "user" }, { "content": "flatten", "role": "assistant" } ]
def x(ary, template): shape = shape_from_str_tuple(ary['shape'], template) dtype = dtype_from_str(ary['dtype'], template) return array_bytes(shape, dtype)
dict_array_bytes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ary, template):\n shape = shape_from_str_tuple(ary['shape'], template)\n dtype = dtype_from_str(ary['dtype'], template)\n return array_bytes(shape, dtype)\n", "role": "user" }, { "content": "dict_array_bytes", "role": "assistant" } ]
def x(arrays, template): return np.sum([dict_array_bytes(ary, template) for ary in arrays])
dict_array_bytes_required
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arrays, template):\n return np.sum([dict_array_bytes(ary, template) for ary in arrays])\n", "role": "user" }, { "content": "dict_array_bytes_required", "role": "assistant" } ]
def x(bytes_available, arrays, template, dim_ord, nsolvers=1): if not isinstance(dim_ord, list): raise TypeError('dim_ord should be a list') if bytes_available < 0: bytes_available = 0 modified_dims = {} T = template.copy() bytes_used = dict_array_bytes_required(arrays, T) * nsolvers while bytes_used > bytes_available: try: dims = dim_ord.pop(0) montblanc.log.debug( 'Applying reduction {s}. Bytes available: {a} used: {u}'. format(s=dims, a=fmt_bytes(bytes_available), u=fmt_bytes( bytes_used))) dims = dims.strip().split('&') except IndexError: return False, modified_dims for dim in dims: match = re.match(__DIM_REDUCTION_RE, dim) if not match: raise ValueError( "{d} is an invalid dimension reduction string Valid strings are for e.g. 'ntime', 'ntime=20' or 'ntime=20%'" .format(d=dim)) dim_name = match.group('name') dim_value = match.group('value') dim_percent = match.group('percent') dim_value = 1 if dim_value is None else int(dim_value) if dim_percent == '%': dim_value = int(T[dim_name] * int(dim_value) / 100.0) if dim_value < 1: dim_value = 1 else: dim_ord.insert(0, dim) if T[dim_name] > dim_value: modified_dims[dim_name] = dim_value T[dim_name] = dim_value else: montblanc.log.info( 'Ignored reduction of {d} of size {s} to {v}. '.format( d=dim_name, s=T[dim_name], v=dim_value)) bytes_used = dict_array_bytes_required(arrays, T) * nsolvers return True, modified_dims
viable_dim_config
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(bytes_available, arrays, template, dim_ord, nsolvers=1):\n if not isinstance(dim_ord, list):\n raise TypeError('dim_ord should be a list')\n if bytes_available < 0:\n bytes_available = 0\n modified_dims = {}\n T = template.copy()\n bytes_used = dict_array_bytes_required(arrays, T) * nsolvers\n while bytes_used > bytes_available:\n try:\n dims = dim_ord.pop(0)\n montblanc.log.debug(\n 'Applying reduction {s}. Bytes available: {a} used: {u}'.\n format(s=dims, a=fmt_bytes(bytes_available), u=fmt_bytes(\n bytes_used)))\n dims = dims.strip().split('&')\n except IndexError:\n return False, modified_dims\n for dim in dims:\n match = re.match(__DIM_REDUCTION_RE, dim)\n if not match:\n raise ValueError(\n \"{d} is an invalid dimension reduction string Valid strings are for e.g. 'ntime', 'ntime=20' or 'ntime=20%'\"\n .format(d=dim))\n dim_name = match.group('name')\n dim_value = match.group('value')\n dim_percent = match.group('percent')\n dim_value = 1 if dim_value is None else int(dim_value)\n if dim_percent == '%':\n dim_value = int(T[dim_name] * int(dim_value) / 100.0)\n if dim_value < 1:\n dim_value = 1\n else:\n dim_ord.insert(0, dim)\n if T[dim_name] > dim_value:\n modified_dims[dim_name] = dim_value\n T[dim_name] = dim_value\n else:\n montblanc.log.info(\n 'Ignored reduction of {d} of size {s} to {v}. '.format(\n d=dim_name, s=T[dim_name], v=dim_value))\n bytes_used = dict_array_bytes_required(arrays, T) * nsolvers\n return True, modified_dims\n", "role": "user" }, { "content": "viable_dim_config", "role": "assistant" } ]
def x(l, shape, dtype): return np.array(l, dtype=dtype).reshape(shape)
shape_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(l, shape, dtype):\n return np.array(l, dtype=dtype).reshape(shape)\n", "role": "user" }, { "content": "shape_list", "role": "assistant" } ]
def x(blockdimx, blockdimy, blockdimz, dimx, dimy, dimz): while blockdimz > dimz: tmp = blockdimz // 2 if tmp < dimz: break blockdimy *= 2 blockdimz = tmp while blockdimy > dimy: tmp = blockdimy // 2 if tmp < dimy: break blockdimx *= 2 blockdimy = tmp if dimx < blockdimx: blockdimx = dimx if dimy < blockdimy: blockdimy = dimy if dimz < blockdimz: blockdimz = dimz return blockdimx, blockdimy, blockdimz
redistribute_threads
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(blockdimx, blockdimy, blockdimz, dimx, dimy, dimz):\n while blockdimz > dimz:\n tmp = blockdimz // 2\n if tmp < dimz:\n break\n blockdimy *= 2\n blockdimz = tmp\n while blockdimy > dimy:\n tmp = blockdimy // 2\n if tmp < dimy:\n break\n blockdimx *= 2\n blockdimy = tmp\n if dimx < blockdimx:\n blockdimx = dimx\n if dimy < blockdimy:\n blockdimy = dimy\n if dimz < blockdimz:\n blockdimz = dimz\n return blockdimx, blockdimy, blockdimz\n", "role": "user" }, { "content": "redistribute_threads", "role": "assistant" } ]
def x(cube, slvr_cfg): import montblanc.src_types as mbs autocor = slvr_cfg['auto_correlations'] ntime = 10 na = 7 nbands = 1 nchan = 16 npol = 4 nbl = nr_of_baselines(na, autocor) if not npol == 4: raise ValueError( 'npol set to {}, but only 4 polarisations are currently supported.' ) cube.register_dimension('ntime', ntime, description='Timesteps') cube.register_dimension('na', na, description='Antenna') cube.register_dimension('nbands', nbands, description='Bands') cube.register_dimension('nchan', nchan, description='Channels') cube.register_dimension('npol', npol, description='Polarisations') cube.register_dimension('nbl', nbl, description='Baselines') cube.register_dimension('npolchan', nchan * npol, description= 'Polarised channels') cube.register_dimension('nvis', ntime * nbl * nchan, description= 'Visibilities') src_cfg = default_sources() src_nr_vars = sources_to_nr_vars(src_cfg) cube.register_dimension('nsrc', sum(src_nr_vars.itervalues()), description='Sources (Total)') for nr_var, nr_of_src in src_nr_vars.iteritems(): cube.register_dimension(nr_var, nr_of_src, description='{} sources' .format(mbs.SOURCE_DIM_TYPES[nr_var]))
register_default_dimensions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cube, slvr_cfg):\n import montblanc.src_types as mbs\n autocor = slvr_cfg['auto_correlations']\n ntime = 10\n na = 7\n nbands = 1\n nchan = 16\n npol = 4\n nbl = nr_of_baselines(na, autocor)\n if not npol == 4:\n raise ValueError(\n 'npol set to {}, but only 4 polarisations are currently supported.'\n )\n cube.register_dimension('ntime', ntime, description='Timesteps')\n cube.register_dimension('na', na, description='Antenna')\n cube.register_dimension('nbands', nbands, description='Bands')\n cube.register_dimension('nchan', nchan, description='Channels')\n cube.register_dimension('npol', npol, description='Polarisations')\n cube.register_dimension('nbl', nbl, description='Baselines')\n cube.register_dimension('npolchan', nchan * npol, description=\n 'Polarised channels')\n cube.register_dimension('nvis', ntime * nbl * nchan, description=\n 'Visibilities')\n src_cfg = default_sources()\n src_nr_vars = sources_to_nr_vars(src_cfg)\n cube.register_dimension('nsrc', sum(src_nr_vars.itervalues()),\n description='Sources (Total)')\n for nr_var, nr_of_src in src_nr_vars.iteritems():\n cube.register_dimension(nr_var, nr_of_src, description='{} sources'\n .format(mbs.SOURCE_DIM_TYPES[nr_var]))\n", "role": "user" }, { "content": "register_default_dimensions", "role": "assistant" } ]
def x(ifname): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) return socket.inet_ntoa(fcntl.ioctl(s.fileno(), 35093, struct.pack( '256s', ifname[:15]))[20:24])
get_ip_address
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ifname):\n s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)\n return socket.inet_ntoa(fcntl.ioctl(s.fileno(), 35093, struct.pack(\n '256s', ifname[:15]))[20:24])\n", "role": "user" }, { "content": "get_ip_address", "role": "assistant" } ]
def x(): search_paths = os.environ.get('PATH', '').split(os.pathsep) nvcc_path = find_in_path('nvcc', search_paths) default_cuda_path = os.path.join('usr', 'local', 'cuda') cuda_path = os.environ.get('CUDA_PATH', default_cuda_path) nvcc_found = os.path.exists(nvcc_path) cuda_path_found = os.path.exists(cuda_path) if not nvcc_found and not cuda_path_found: raise InspectCudaException( "Neither nvcc '{}' or the CUDA_PATH '{}' were found!".format( nvcc_path, cuda_path)) if not nvcc_found: log.warn( "nvcc compiler not found at '{}'. Searching within the CUDA_PATH '{}'" .format(nvcc_path, cuda_path)) bin_dir = os.path.join(cuda_path, 'bin') nvcc_path = find_in_path('nvcc', bin_dir) nvcc_found = os.path.exists(nvcc_path) if not nvcc_found: raise InspectCudaException( "nvcc not found in '{}' or under the CUDA_PATH at '{}' ". format(search_paths, cuda_path)) if not cuda_path_found: cuda_path = os.path.normpath(os.path.join(os.path.dirname(nvcc_path ), '..')) log.warn( "CUDA_PATH not found, inferring it as '{}' from the nvcc location '{}'" .format(cuda_path, nvcc_path)) cuda_path_found = True include_dirs = [] library_dirs = [] define_macros = [] if cuda_path_found: include_dirs.append(os.path.join(cuda_path, 'include')) if sys.platform == 'win32': library_dirs.append(os.path.join(cuda_path, 'bin')) library_dirs.append(os.path.join(cuda_path, 'lib', 'x64')) else: library_dirs.append(os.path.join(cuda_path, 'lib64')) library_dirs.append(os.path.join(cuda_path, 'lib')) if sys.platform == 'darwin': library_dirs.append(os.path.join(default_cuda_path, 'lib')) return {'cuda_available': True, 'nvcc_path': nvcc_path, 'include_dirs': include_dirs, 'library_dirs': library_dirs, 'define_macros': define_macros, 'libraries': ['cudart', 'cuda'], 'language': 'c++'}
nvcc_compiler_settings
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n search_paths = os.environ.get('PATH', '').split(os.pathsep)\n nvcc_path = find_in_path('nvcc', search_paths)\n default_cuda_path = os.path.join('usr', 'local', 'cuda')\n cuda_path = os.environ.get('CUDA_PATH', default_cuda_path)\n nvcc_found = os.path.exists(nvcc_path)\n cuda_path_found = os.path.exists(cuda_path)\n if not nvcc_found and not cuda_path_found:\n raise InspectCudaException(\n \"Neither nvcc '{}' or the CUDA_PATH '{}' were found!\".format(\n nvcc_path, cuda_path))\n if not nvcc_found:\n log.warn(\n \"nvcc compiler not found at '{}'. Searching within the CUDA_PATH '{}'\"\n .format(nvcc_path, cuda_path))\n bin_dir = os.path.join(cuda_path, 'bin')\n nvcc_path = find_in_path('nvcc', bin_dir)\n nvcc_found = os.path.exists(nvcc_path)\n if not nvcc_found:\n raise InspectCudaException(\n \"nvcc not found in '{}' or under the CUDA_PATH at '{}' \".\n format(search_paths, cuda_path))\n if not cuda_path_found:\n cuda_path = os.path.normpath(os.path.join(os.path.dirname(nvcc_path\n ), '..'))\n log.warn(\n \"CUDA_PATH not found, inferring it as '{}' from the nvcc location '{}'\"\n .format(cuda_path, nvcc_path))\n cuda_path_found = True\n include_dirs = []\n library_dirs = []\n define_macros = []\n if cuda_path_found:\n include_dirs.append(os.path.join(cuda_path, 'include'))\n if sys.platform == 'win32':\n library_dirs.append(os.path.join(cuda_path, 'bin'))\n library_dirs.append(os.path.join(cuda_path, 'lib', 'x64'))\n else:\n library_dirs.append(os.path.join(cuda_path, 'lib64'))\n library_dirs.append(os.path.join(cuda_path, 'lib'))\n if sys.platform == 'darwin':\n library_dirs.append(os.path.join(default_cuda_path, 'lib'))\n return {'cuda_available': True, 'nvcc_path': nvcc_path, 'include_dirs':\n include_dirs, 'library_dirs': library_dirs, 'define_macros':\n define_macros, 'libraries': ['cudart', 'cuda'], 'language': 'c++'}\n", "role": "user" }, { "content": "nvcc_compiler_settings", "role": "assistant" } ]
def x(compiler, nvcc_settings): compiler.src_extensions.append('.cu') default_compiler_so = compiler.compiler_so default_compile = compiler._compile def x(obj, src, ext, cc_args, extra_postargs, pp_opts): if os.path.splitext(src)[1] == '.cu': compiler.set_executable('compiler_so', nvcc_settings['nvcc_path']) default_compile(obj, src, ext, cc_args, extra_postargs, pp_opts) compiler.compiler_so = default_compiler_so compiler._compile = _compile
customize_compiler_for_nvcc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(compiler, nvcc_settings):\n compiler.src_extensions.append('.cu')\n default_compiler_so = compiler.compiler_so\n default_compile = compiler._compile\n\n def x(obj, src, ext, cc_args, extra_postargs, pp_opts):\n if os.path.splitext(src)[1] == '.cu':\n compiler.set_executable('compiler_so', nvcc_settings['nvcc_path'])\n default_compile(obj, src, ext, cc_args, extra_postargs, pp_opts)\n compiler.compiler_so = default_compiler_so\n compiler._compile = _compile\n", "role": "user" }, { "content": "customize_compiler_for_nvcc", "role": "assistant" } ]
def x(): nvcc_settings = nvcc_compiler_settings() sysconfig.get_config_vars() nvcc_compiler = ccompiler.new_compiler() sysconfig.customize_compiler(nvcc_compiler) customize_compiler_for_nvcc(nvcc_compiler, nvcc_settings) output = inspect_cuda_version_and_devices(nvcc_compiler, nvcc_settings) return json.loads(output), nvcc_settings
inspect_cuda
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n nvcc_settings = nvcc_compiler_settings()\n sysconfig.get_config_vars()\n nvcc_compiler = ccompiler.new_compiler()\n sysconfig.customize_compiler(nvcc_compiler)\n customize_compiler_for_nvcc(nvcc_compiler, nvcc_settings)\n output = inspect_cuda_version_and_devices(nvcc_compiler, nvcc_settings)\n return json.loads(output), nvcc_settings\n", "role": "user" }, { "content": "inspect_cuda", "role": "assistant" } ]
def x(self): slvr = self D = {'LIGHTSPEED': montblanc.constants.C} D.update(self.type_dict()) D.update(self.dim_local_size_dict()) for p in self._properties.itervalues(): D[p.name] = getattr(self, p.name) return D
template_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n slvr = self\n D = {'LIGHTSPEED': montblanc.constants.C}\n D.update(self.type_dict())\n D.update(self.dim_local_size_dict())\n for p in self._properties.itervalues():\n D[p.name] = getattr(self, p.name)\n return D\n", "role": "user" }, { "content": "template_dict", "role": "assistant" } ]
def x(slvr_cfg): from montblanc.impl.rime.tensorflow.RimeSolver import RimeSolver return RimeSolver(slvr_cfg)
rime_solver
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(slvr_cfg):\n from montblanc.impl.rime.tensorflow.RimeSolver import RimeSolver\n return RimeSolver(slvr_cfg)\n", "role": "user" }, { "content": "rime_solver", "role": "assistant" } ]
def x(obj, argspec=None): if argspec is None: argspec = [DEFAULT_ARGSPEC] return {n: m for n, m in inspect.getmembers(obj, callable) if not n. startswith('_') and inspect.getargspec(m).args in argspec}
find_sources
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(obj, argspec=None):\n if argspec is None:\n argspec = [DEFAULT_ARGSPEC]\n return {n: m for n, m in inspect.getmembers(obj, callable) if not n.\n startswith('_') and inspect.getargspec(m).args in argspec}\n", "role": "user" }, { "content": "find_sources", "role": "assistant" } ]
def x(self): try: return self._sources except AttributeError: self._sources = find_sources(self) return self._sources
sources
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n return self._sources\n except AttributeError:\n self._sources = find_sources(self)\n return self._sources\n", "role": "user" }, { "content": "sources", "role": "assistant" } ]
def x(times, antenna_positions, field_centre): import pyrap.quanta as pq try: zenith = pm.direction('AZEL', '0deg', '90deg') except AttributeError as e: if pm is None: raise ImportError('python-casacore import failed') raise reference_positions = [pm.position('itrf', *(pq.quantity(x, 'm') for x in pos)) for pos in antenna_positions] fc_rad = pm.direction('J2000', *(pq.quantity(f, 'rad') for f in field_centre)) return np.asarray([(pm.do_frame(pm.epoch('UTC', pq.quantity(t, 's'))) and [(pm.do_frame(rp) and pm.posangle(fc_rad, zenith).get_value('rad')) for rp in reference_positions]) for t in times])
parallactic_angles
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(times, antenna_positions, field_centre):\n import pyrap.quanta as pq\n try:\n zenith = pm.direction('AZEL', '0deg', '90deg')\n except AttributeError as e:\n if pm is None:\n raise ImportError('python-casacore import failed')\n raise\n reference_positions = [pm.position('itrf', *(pq.quantity(x, 'm') for x in\n pos)) for pos in antenna_positions]\n fc_rad = pm.direction('J2000', *(pq.quantity(f, 'rad') for f in\n field_centre))\n return np.asarray([(pm.do_frame(pm.epoch('UTC', pq.quantity(t, 's'))) and\n [(pm.do_frame(rp) and pm.posangle(fc_rad, zenith).get_value('rad')) for\n rp in reference_positions]) for t in times])\n", "role": "user" }, { "content": "parallactic_angles", "role": "assistant" } ]
def x(): cfmt = logging.Formatter('%(name)s - %(levelname)s - %(message)s') ffmt = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') ch = logging.StreamHandler() ch.setLevel(logging.INFO) ch.setFormatter(cfmt) fh = logging.handlers.RotatingFileHandler('montblanc.log', maxBytes=10 * 1024 * 1024, backupCount=10) fh.setLevel(logging.INFO) fh.setFormatter(ffmt) mb_logger = logging.getLogger('montblanc') mb_logger.handlers = [] mb_logger.setLevel(logging.DEBUG) mb_logger.addHandler(ch) mb_logger.addHandler(fh) cf_logger = logging.getLogger('concurrent.futures') cf_logger.setLevel(logging.DEBUG) cf_logger.addHandler(ch) cf_logger.addHandler(fh) return mb_logger
setup_logging
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n cfmt = logging.Formatter('%(name)s - %(levelname)s - %(message)s')\n ffmt = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')\n ch = logging.StreamHandler()\n ch.setLevel(logging.INFO)\n ch.setFormatter(cfmt)\n fh = logging.handlers.RotatingFileHandler('montblanc.log', maxBytes=10 *\n 1024 * 1024, backupCount=10)\n fh.setLevel(logging.INFO)\n fh.setFormatter(ffmt)\n mb_logger = logging.getLogger('montblanc')\n mb_logger.handlers = []\n mb_logger.setLevel(logging.DEBUG)\n mb_logger.addHandler(ch)\n mb_logger.addHandler(fh)\n cf_logger = logging.getLogger('concurrent.futures')\n cf_logger.setLevel(logging.DEBUG)\n cf_logger.addHandler(ch)\n cf_logger.addHandler(fh)\n return mb_logger\n", "role": "user" }, { "content": "setup_logging", "role": "assistant" } ]
def x(method): @functools.wraps(method) def x(self, context): if not self._is_cached: return method(self, context) name = context.name cached = self._constant_cache.get(name, None) if cached is None: data = self._constant_cache[name] = method(self, context) return data cached_ok = cached.dtype == context.dtype and all(l <= r for l, r in zip(context.shape, cached.shape)) if not cached_ok: data = self._constant_cache[name] = method(self, context) return data return cached[tuple(slice(0, s) for s in context.shape)] f = wrapper f.__decorator__ = constant_cache.__name__ return f
constant_cache
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(method):\n\n @functools.wraps(method)\n def x(self, context):\n if not self._is_cached:\n return method(self, context)\n name = context.name\n cached = self._constant_cache.get(name, None)\n if cached is None:\n data = self._constant_cache[name] = method(self, context)\n return data\n cached_ok = cached.dtype == context.dtype and all(l <= r for l, r in\n zip(context.shape, cached.shape))\n if not cached_ok:\n data = self._constant_cache[name] = method(self, context)\n return data\n return cached[tuple(slice(0, s) for s in context.shape)]\n f = wrapper\n f.__decorator__ = constant_cache.__name__\n return f\n", "role": "user" }, { "content": "constant_cache", "role": "assistant" } ]
def x(method): @functools.wraps(method) def x(self, context): if not self._is_cached: return method(self, context) name = context.name idx = context.array_extents(name) key = tuple(i for t in idx for i in t) array_cache = self._chunk_cache[name] if key not in array_cache: array_cache[key] = method(self, context) return array_cache[key] f = wrapper f.__decorator__ = chunk_cache.__name__ return f
chunk_cache
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(method):\n\n @functools.wraps(method)\n def x(self, context):\n if not self._is_cached:\n return method(self, context)\n name = context.name\n idx = context.array_extents(name)\n key = tuple(i for t in idx for i in t)\n array_cache = self._chunk_cache[name]\n if key not in array_cache:\n array_cache[key] = method(self, context)\n return array_cache[key]\n f = wrapper\n f.__decorator__ = chunk_cache.__name__\n return f\n", "role": "user" }, { "content": "chunk_cache", "role": "assistant" } ]
def x(cube, data_source): from montblanc.impl.rime.tensorflow.sources import find_sources, DEFAULT_ARGSPEC from montblanc.impl.rime.tensorflow.sources import constant_cache staging_area_data_source = ('default' if not data_source == 'test' else data_source) cache = True default_prov = DefaultsSourceProvider(cache=cache) for n, a in cube.arrays().iteritems(): if 'temporary' in a.tags: continue data_source = a.get(staging_area_data_source) if cache is True and 'constant' in a.tags: data_source = constant_cache(data_source) method = types.MethodType(data_source, default_prov) setattr(default_prov, n, method) def x(self): try: return self._sources except AttributeError: self._sources = find_sources(self, [DEFAULT_ARGSPEC] + [['s', 'c']] ) return self._sources default_prov.sources = types.MethodType(_sources, default_prov) return default_prov
create_defaults_source_provider
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cube, data_source):\n from montblanc.impl.rime.tensorflow.sources import find_sources, DEFAULT_ARGSPEC\n from montblanc.impl.rime.tensorflow.sources import constant_cache\n staging_area_data_source = ('default' if not data_source == 'test' else\n data_source)\n cache = True\n default_prov = DefaultsSourceProvider(cache=cache)\n for n, a in cube.arrays().iteritems():\n if 'temporary' in a.tags:\n continue\n data_source = a.get(staging_area_data_source)\n if cache is True and 'constant' in a.tags:\n data_source = constant_cache(data_source)\n method = types.MethodType(data_source, default_prov)\n setattr(default_prov, n, method)\n\n def x(self):\n try:\n return self._sources\n except AttributeError:\n self._sources = find_sources(self, [DEFAULT_ARGSPEC] + [['s', 'c']]\n )\n return self._sources\n default_prov.sources = types.MethodType(_sources, default_prov)\n return default_prov\n", "role": "user" }, { "content": "create_defaults_source_provider", "role": "assistant" } ]
def x(cube, source_providers, budget_dims): update_map = collections.defaultdict(list) for prov in source_providers: for dim_tuple in prov.updated_dimensions(): name, size = dim_tuple if name == 'nsrc': continue dim_update = DimensionUpdate(size, prov.name()) update_map[name].append(dim_update) if len(update_map) == 0: return cube.bytes_required() update_list = [] for name, updates in update_map.iteritems(): if not all(updates[0].size == du.size for du in updates[1:]): raise ValueError( "Received conflicting global size updates '{u}' for dimension '{n}'." .format(n=name, u=updates)) update_list.append((name, updates[0].size)) montblanc.log.info('Updating dimensions {} from source providers.'. format(str(update_list))) for name, global_size in update_list: extent_size = budget_dims.get(name, global_size) extent_size = global_size if extent_size == 0 else extent_size if extent_size > global_size: extent_size = global_size cube.update_dimension(name, global_size=global_size, lower_extent=0, upper_extent=extent_size) nsrc = sum(cube.dim_global_size(*mbu.source_nr_vars())) es = max(cube.dim_extent_size(*mbu.source_nr_vars())) cube.update_dimension('nsrc', global_size=nsrc, lower_extent=0, upper_extent=es) return cube.bytes_required()
apply_source_provider_dim_updates
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cube, source_providers, budget_dims):\n update_map = collections.defaultdict(list)\n for prov in source_providers:\n for dim_tuple in prov.updated_dimensions():\n name, size = dim_tuple\n if name == 'nsrc':\n continue\n dim_update = DimensionUpdate(size, prov.name())\n update_map[name].append(dim_update)\n if len(update_map) == 0:\n return cube.bytes_required()\n update_list = []\n for name, updates in update_map.iteritems():\n if not all(updates[0].size == du.size for du in updates[1:]):\n raise ValueError(\n \"Received conflicting global size updates '{u}' for dimension '{n}'.\"\n .format(n=name, u=updates))\n update_list.append((name, updates[0].size))\n montblanc.log.info('Updating dimensions {} from source providers.'.\n format(str(update_list)))\n for name, global_size in update_list:\n extent_size = budget_dims.get(name, global_size)\n extent_size = global_size if extent_size == 0 else extent_size\n if extent_size > global_size:\n extent_size = global_size\n cube.update_dimension(name, global_size=global_size, lower_extent=0,\n upper_extent=extent_size)\n nsrc = sum(cube.dim_global_size(*mbu.source_nr_vars()))\n es = max(cube.dim_extent_size(*mbu.source_nr_vars()))\n cube.update_dimension('nsrc', global_size=nsrc, lower_extent=0,\n upper_extent=es)\n return cube.bytes_required()\n", "role": "user" }, { "content": "apply_source_provider_dim_updates", "role": "assistant" } ]
def x(cube, slvr_cfg): mbu.register_default_dimensions(cube, slvr_cfg) cube.register_dimension('beam_lw', 2, description='E Beam cube l width') cube.register_dimension('beam_mh', 2, description='E Beam cube m height') cube.register_dimension('beam_nud', 2, description='E Beam cube nu depth') from montblanc.impl.rime.tensorflow.config import A, P def x(A, T): def x(D): new_dict = D.copy() new_dict['dtype'] = mbu.dtype_from_str(D['dtype'], T) return new_dict return [_massage_dtype_in_dict(D) for D in A] dtype = slvr_cfg['dtype'] is_f32 = dtype == 'float' T = {'ft': np.float32 if is_f32 else np.float64, 'ct': np.complex64 if is_f32 else np.complex128, 'int': int} cube.register_properties(_massage_dtypes(P, T)) cube.register_arrays(_massage_dtypes(A, T))
setup_hypercube
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cube, slvr_cfg):\n mbu.register_default_dimensions(cube, slvr_cfg)\n cube.register_dimension('beam_lw', 2, description='E Beam cube l width')\n cube.register_dimension('beam_mh', 2, description='E Beam cube m height')\n cube.register_dimension('beam_nud', 2, description='E Beam cube nu depth')\n from montblanc.impl.rime.tensorflow.config import A, P\n\n def x(A, T):\n\n def x(D):\n new_dict = D.copy()\n new_dict['dtype'] = mbu.dtype_from_str(D['dtype'], T)\n return new_dict\n return [_massage_dtype_in_dict(D) for D in A]\n dtype = slvr_cfg['dtype']\n is_f32 = dtype == 'float'\n T = {'ft': np.float32 if is_f32 else np.float64, 'ct': np.complex64 if\n is_f32 else np.complex128, 'int': int}\n cube.register_properties(_massage_dtypes(P, T))\n cube.register_arrays(_massage_dtypes(A, T))\n", "role": "user" }, { "content": "setup_hypercube", "role": "assistant" } ]
def x(iter_dims, data_sources): src_nr_vars = set(source_var_types().values()) iter_dims = set(iter_dims) src_data_sources = collections.defaultdict(list) feed_many = [] feed_once = [] for ds in data_sources: src_int = src_nr_vars.intersection(ds.shape) if len(src_int) > 1: raise ValueError( "Data source '{}' contains multiple source types '{}'". format(ds.name, src_int)) elif len(src_int) == 1: src_data_sources[src_int.pop()].append(ds) continue if len(iter_dims.intersection(ds.shape)) > 0: feed_many.append(ds) continue feed_once.append(ds) return src_data_sources, feed_many, feed_once
partition
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(iter_dims, data_sources):\n src_nr_vars = set(source_var_types().values())\n iter_dims = set(iter_dims)\n src_data_sources = collections.defaultdict(list)\n feed_many = []\n feed_once = []\n for ds in data_sources:\n src_int = src_nr_vars.intersection(ds.shape)\n if len(src_int) > 1:\n raise ValueError(\n \"Data source '{}' contains multiple source types '{}'\".\n format(ds.name, src_int))\n elif len(src_int) == 1:\n src_data_sources[src_int.pop()].append(ds)\n continue\n if len(iter_dims.intersection(ds.shape)) > 0:\n feed_many.append(ds)\n continue\n feed_once.append(ds)\n return src_data_sources, feed_many, feed_once\n", "role": "user" }, { "content": "partition", "role": "assistant" } ]
def x(self, cube, data_sources, data_sinks, global_iter_args): try: self._feed_impl(cube, data_sources, data_sinks, global_iter_args) except Exception as e: montblanc.log.exception('Feed Exception') raise
feed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cube, data_sources, data_sinks, global_iter_args):\n try:\n self._feed_impl(cube, data_sources, data_sinks, global_iter_args)\n except Exception as e:\n montblanc.log.exception('Feed Exception')\n raise\n", "role": "user" }, { "content": "feed", "role": "assistant" } ]
def x(self, cube, data_sources, data_sinks, global_iter_args): session = self._tf_session FD = self._tf_feed_data LSA = FD.local src_types = LSA.sources.keys() src_strides = [int(i) for i in cube.dim_extent_size(*src_types)] src_staging_areas = [[LSA.sources[t][s] for t in src_types] for s in range(self._nr_of_shards)] compute_feed_dict = {ph: cube.dim_global_size(n) for n, ph in FD. src_ph_vars.iteritems()} compute_feed_dict.update({ph: getattr(cube, n) for n, ph in FD. property_ph_vars.iteritems()}) chunks_fed = 0 which_shard = itertools.cycle([self._shard(d, s) for s in range(self. _shards_per_device) for d, dev in enumerate(self._devices)]) while True: try: result = session.run(LSA.descriptor.get_op) descriptor = result['descriptor'] except tf.errors.OutOfRangeError as e: montblanc.log.exception('Descriptor reading exception') if descriptor[0] == -1: break descriptor.flags.writeable = False emptiest_staging_areas = np.argsort(self._inputs_waiting.get()) shard = emptiest_staging_areas[0] shard = which_shard.next() feed_f = self._feed_executors[shard].submit(self._feed_actual, data_sources.copy(), cube.copy(), descriptor, shard, src_types, src_strides, src_staging_areas[shard], global_iter_args) compute_f = self._compute_executors[shard].submit(self._compute, compute_feed_dict, shard) consume_f = self._consumer_executor.submit(self._consume, data_sinks.copy(), cube.copy(), global_iter_args) self._inputs_waiting.increment(shard) yield feed_f, compute_f, consume_f chunks_fed += 1 montblanc.log.info('Done feeding {n} chunks.'.format(n=chunks_fed))
feed_impl
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cube, data_sources, data_sinks, global_iter_args):\n session = self._tf_session\n FD = self._tf_feed_data\n LSA = FD.local\n src_types = LSA.sources.keys()\n src_strides = [int(i) for i in cube.dim_extent_size(*src_types)]\n src_staging_areas = [[LSA.sources[t][s] for t in src_types] for s in\n range(self._nr_of_shards)]\n compute_feed_dict = {ph: cube.dim_global_size(n) for n, ph in FD.\n src_ph_vars.iteritems()}\n compute_feed_dict.update({ph: getattr(cube, n) for n, ph in FD.\n property_ph_vars.iteritems()})\n chunks_fed = 0\n which_shard = itertools.cycle([self._shard(d, s) for s in range(self.\n _shards_per_device) for d, dev in enumerate(self._devices)])\n while True:\n try:\n result = session.run(LSA.descriptor.get_op)\n descriptor = result['descriptor']\n except tf.errors.OutOfRangeError as e:\n montblanc.log.exception('Descriptor reading exception')\n if descriptor[0] == -1:\n break\n descriptor.flags.writeable = False\n emptiest_staging_areas = np.argsort(self._inputs_waiting.get())\n shard = emptiest_staging_areas[0]\n shard = which_shard.next()\n feed_f = self._feed_executors[shard].submit(self._feed_actual,\n data_sources.copy(), cube.copy(), descriptor, shard, src_types,\n src_strides, src_staging_areas[shard], global_iter_args)\n compute_f = self._compute_executors[shard].submit(self._compute,\n compute_feed_dict, shard)\n consume_f = self._consumer_executor.submit(self._consume,\n data_sinks.copy(), cube.copy(), global_iter_args)\n self._inputs_waiting.increment(shard)\n yield feed_f, compute_f, consume_f\n chunks_fed += 1\n montblanc.log.info('Done feeding {n} chunks.'.format(n=chunks_fed))\n", "role": "user" }, { "content": "feed_impl", "role": "assistant" } ]
def x(self, feed_dict, shard): try: descriptor, enq = self._tfrun(self._tf_expr[shard], feed_dict=feed_dict ) self._inputs_waiting.decrement(shard) except Exception as e: montblanc.log.exception('Compute Exception') raise
compute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, feed_dict, shard):\n try:\n descriptor, enq = self._tfrun(self._tf_expr[shard], feed_dict=feed_dict\n )\n self._inputs_waiting.decrement(shard)\n except Exception as e:\n montblanc.log.exception('Compute Exception')\n raise\n", "role": "user" }, { "content": "compute", "role": "assistant" } ]
def x(self, data_sinks, cube, global_iter_args): LSA = self._tf_feed_data.local output = self._tfrun(LSA.output.get_op) assert len(output) > 0 assert LSA.output.fed_arrays[0] == 'descriptor' descriptor = output['descriptor'] descriptor.flags.writeable = False dims = self._transcoder.decode(descriptor) cube.update_dimensions(dims) try: input_data = self._source_cache.pop(descriptor.data) except KeyError: raise ValueError( 'No input data cache available in source cache for descriptor {}!' .format(descriptor)) gen = ((n, a) for n, a in output.iteritems() if not n == 'descriptor') for n, a in gen: sink_context = SinkContext(n, cube, self.config(), global_iter_args, cube.array(n) if n in cube.arrays() else {}, a, input_data) _supply_data(data_sinks[n], sink_context)
consume_impl
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_sinks, cube, global_iter_args):\n LSA = self._tf_feed_data.local\n output = self._tfrun(LSA.output.get_op)\n assert len(output) > 0\n assert LSA.output.fed_arrays[0] == 'descriptor'\n descriptor = output['descriptor']\n descriptor.flags.writeable = False\n dims = self._transcoder.decode(descriptor)\n cube.update_dimensions(dims)\n try:\n input_data = self._source_cache.pop(descriptor.data)\n except KeyError:\n raise ValueError(\n 'No input data cache available in source cache for descriptor {}!'\n .format(descriptor))\n gen = ((n, a) for n, a in output.iteritems() if not n == 'descriptor')\n for n, a in gen:\n sink_context = SinkContext(n, cube, self.config(), global_iter_args,\n cube.array(n) if n in cube.arrays() else {}, a, input_data)\n _supply_data(data_sinks[n], sink_context)\n", "role": "user" }, { "content": "consume_impl", "role": "assistant" } ]
def x(**kwargs): from configuration import load_config, config_validator, raise_validator_errors def x(d1, d2): return {k: (_merge_copy(d1[k], d2[k]) if k in d1 and isinstance(d1[ k], dict) and isinstance(d2[k], dict) else d2[k]) for k in d2} try: cfg_file = kwargs.pop('cfg_file') except KeyError as e: slvr_cfg = kwargs else: cfg = load_config(cfg_file) slvr_cfg = _merge_copy(cfg, kwargs) validator = config_validator() validator.validate(slvr_cfg) raise_validator_errors(validator) return validator.document
rime_solver_cfg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(**kwargs):\n from configuration import load_config, config_validator, raise_validator_errors\n\n def x(d1, d2):\n return {k: (_merge_copy(d1[k], d2[k]) if k in d1 and isinstance(d1[\n k], dict) and isinstance(d2[k], dict) else d2[k]) for k in d2}\n try:\n cfg_file = kwargs.pop('cfg_file')\n except KeyError as e:\n slvr_cfg = kwargs\n else:\n cfg = load_config(cfg_file)\n slvr_cfg = _merge_copy(cfg, kwargs)\n validator = config_validator()\n validator.validate(slvr_cfg)\n raise_validator_errors(validator)\n return validator.document\n", "role": "user" }, { "content": "rime_solver_cfg", "role": "assistant" } ]
def x(filename_schema, feed_type): template = FitsFilenameTemplate(filename_schema) def x(corr, template): try: return tuple(template.substitute(corr=corr.lower(), CORR=corr. upper(), reim=ri.lower(), REIM=ri.upper()) for ri in REIM) except KeyError: raise ValueError( "Invalid filename schema '%s'. FITS Beam filename schemas must follow forms such as 'beam_$(corr)_$(reim).fits' or 'beam_$(CORR)_$(REIM).fits." % filename_schema) if feed_type == 'linear': CORRELATIONS = LINEAR_CORRELATIONS elif feed_type == 'circular': CORRELATIONS = CIRCULAR_CORRELATIONS else: raise ValueError( "Invalid feed_type '{}'. Should be 'linear' or 'circular'") return collections.OrderedDict((c, _re_im_filenames(c, template)) for c in CORRELATIONS)
create_filenames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename_schema, feed_type):\n template = FitsFilenameTemplate(filename_schema)\n\n def x(corr, template):\n try:\n return tuple(template.substitute(corr=corr.lower(), CORR=corr.\n upper(), reim=ri.lower(), REIM=ri.upper()) for ri in REIM)\n except KeyError:\n raise ValueError(\n \"Invalid filename schema '%s'. FITS Beam filename schemas must follow forms such as 'beam_$(corr)_$(reim).fits' or 'beam_$(CORR)_$(REIM).fits.\"\n % filename_schema)\n if feed_type == 'linear':\n CORRELATIONS = LINEAR_CORRELATIONS\n elif feed_type == 'circular':\n CORRELATIONS = CIRCULAR_CORRELATIONS\n else:\n raise ValueError(\n \"Invalid feed_type '{}'. Should be 'linear' or 'circular'\")\n return collections.OrderedDict((c, _re_im_filenames(c, template)) for c in\n CORRELATIONS)\n", "role": "user" }, { "content": "create_filenames", "role": "assistant" } ]
def x(filenames): kw = {'mode': 'update', 'memmap': False} def x(fn): return fits.open(fn, **kw) if os.path.exists(fn) else None return collections.OrderedDict((corr, tuple(_fh(fn) for fn in files)) for corr, files in filenames.iteritems())
open_fits_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filenames):\n kw = {'mode': 'update', 'memmap': False}\n\n def x(fn):\n return fits.open(fn, **kw) if os.path.exists(fn) else None\n return collections.OrderedDict((corr, tuple(_fh(fn) for fn in files)) for\n corr, files in filenames.iteritems())\n", "role": "user" }, { "content": "open_fits_files", "role": "assistant" } ]
def x(filenames, file_dict): try: f = iter(f for tup in file_dict.itervalues() for f in tup if f is not None).next() except StopIteration as e: raise (ValueError( "No FITS files were found. Searched filenames: '{f}'.".format(f =filenames.values())), None, sys.exc_info()[2]) axes = FitsAxes(f[0].header) for i, u in enumerate(axes.cunit): if u == 'DEG': axes.cunit[i] = 'RAD' axes.set_axis_scale(i, np.pi / 180.0) return axes
create_axes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filenames, file_dict):\n try:\n f = iter(f for tup in file_dict.itervalues() for f in tup if f is not\n None).next()\n except StopIteration as e:\n raise (ValueError(\n \"No FITS files were found. Searched filenames: '{f}'.\".format(f\n =filenames.values())), None, sys.exc_info()[2])\n axes = FitsAxes(f[0].header)\n for i, u in enumerate(axes.cunit):\n if u == 'DEG':\n axes.cunit[i] = 'RAD'\n axes.set_axis_scale(i, np.pi / 180.0)\n return axes\n", "role": "user" }, { "content": "create_axes", "role": "assistant" } ]
def x(self, feed_type='linear'): self._filenames = filenames = _create_filenames(self._filename_schema, feed_type) self._files = files = _open_fits_files(filenames) self._axes = axes = _create_axes(filenames, files) self._dim_indices = dim_indices = l_ax, m_ax, f_ax = tuple(axes.iaxis(d ) for d in self._fits_dims) for i, ax in zip(dim_indices, self._fits_dims): if i == -1: raise ValueError("'%s' axis not found!" % ax) self._cube_extents = _cube_extents(axes, l_ax, m_ax, f_ax, self._l_sign, self._m_sign) self._shape = tuple(axes.naxis[d] for d in dim_indices) + (4,) self._beam_freq_map = axes.grid[f_ax] self._dim_updates = [(n, axes.naxis[i]) for n, i in zip(self._beam_dims, dim_indices)] self._initialised = True
initialise
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, feed_type='linear'):\n self._filenames = filenames = _create_filenames(self._filename_schema,\n feed_type)\n self._files = files = _open_fits_files(filenames)\n self._axes = axes = _create_axes(filenames, files)\n self._dim_indices = dim_indices = l_ax, m_ax, f_ax = tuple(axes.iaxis(d\n ) for d in self._fits_dims)\n for i, ax in zip(dim_indices, self._fits_dims):\n if i == -1:\n raise ValueError(\"'%s' axis not found!\" % ax)\n self._cube_extents = _cube_extents(axes, l_ax, m_ax, f_ax, self._l_sign,\n self._m_sign)\n self._shape = tuple(axes.naxis[d] for d in dim_indices) + (4,)\n self._beam_freq_map = axes.grid[f_ax]\n self._dim_updates = [(n, axes.naxis[i]) for n, i in zip(self._beam_dims,\n dim_indices)]\n self._initialised = True\n", "role": "user" }, { "content": "initialise", "role": "assistant" } ]
def x(self, context): if context.shape != self.shape: raise ValueError( 'Partial feeding of the beam cube is not yet supported %s %s.' % (context.shape, self.shape)) ebeam = np.empty(context.shape, context.dtype) for i, (re, im) in enumerate(self._files.itervalues()): ebeam[:, :, :, i].real[:] = 0 if re is None else re[0].data.T ebeam[:, :, :, i].imag[:] = 0 if im is None else im[0].data.T return ebeam
ebeam
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n if context.shape != self.shape:\n raise ValueError(\n 'Partial feeding of the beam cube is not yet supported %s %s.' %\n (context.shape, self.shape))\n ebeam = np.empty(context.shape, context.dtype)\n for i, (re, im) in enumerate(self._files.itervalues()):\n ebeam[:, :, :, i].real[:] = 0 if re is None else re[0].data.T\n ebeam[:, :, :, i].imag[:] = 0 if im is None else im[0].data.T\n return ebeam\n", "role": "user" }, { "content": "ebeam", "role": "assistant" } ]
def x(self, context): column = self._vis_column msshape = None try: coldesc = self._manager.column_descriptors[column] except KeyError as e: coldesc = None if coldesc is not None: try: msshape = [-1] + coldesc['shape'].tolist() except KeyError as e: msshape = None if msshape is None: guessed_shape = [self._manager._nchan, 4] montblanc.log.warn( "Could not obtain 'shape' from the '{c}' column descriptor. Guessing it is '{gs}'." .format(c=column, gs=guessed_shape)) msshape = [-1] + guessed_shape lrow, urow = MS.row_extents(context) self._manager.ordered_main_table.putcol(column, context.data.reshape( msshape), startrow=lrow, nrow=urow - lrow)
model_vis
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n column = self._vis_column\n msshape = None\n try:\n coldesc = self._manager.column_descriptors[column]\n except KeyError as e:\n coldesc = None\n if coldesc is not None:\n try:\n msshape = [-1] + coldesc['shape'].tolist()\n except KeyError as e:\n msshape = None\n if msshape is None:\n guessed_shape = [self._manager._nchan, 4]\n montblanc.log.warn(\n \"Could not obtain 'shape' from the '{c}' column descriptor. Guessing it is '{gs}'.\"\n .format(c=column, gs=guessed_shape))\n msshape = [-1] + guessed_shape\n lrow, urow = MS.row_extents(context)\n self._manager.ordered_main_table.putcol(column, context.data.reshape(\n msshape), startrow=lrow, nrow=urow - lrow)\n", "role": "user" }, { "content": "model_vis", "role": "assistant" } ]
def x(method): @functools.wraps(method) def x(self, context): idx = context.array_extents(context.name) key = tuple(i for t in idx for i in t) with self._lock: array_cache = self._cache[context.name] if key not in array_cache: array_cache[key] = method(context) return array_cache[key] return memoizer
cache
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(method):\n\n @functools.wraps(method)\n def x(self, context):\n idx = context.array_extents(context.name)\n key = tuple(i for t in idx for i in t)\n with self._lock:\n array_cache = self._cache[context.name]\n if key not in array_cache:\n array_cache[key] = method(context)\n return array_cache[key]\n return memoizer\n", "role": "user" }, { "content": "cache", "role": "assistant" } ]
def x(method): @functools.wraps(method) def x(self, context): return method(context) return memoizer
proxy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(method):\n\n @functools.wraps(method)\n def x(self, context):\n return method(context)\n return memoizer\n", "role": "user" }, { "content": "proxy", "role": "assistant" } ]
def x(self, start_context): for p in self._providers: p.start(start_context) if self._clear_start: self.clear_cache()
start
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start_context):\n for p in self._providers:\n p.start(start_context)\n if self._clear_start:\n self.clear_cache()\n", "role": "user" }, { "content": "start", "role": "assistant" } ]
def x(self, stop_context): for p in self._providers: p.stop(stop_context) if self._clear_stop: self.clear_cache()
stop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, stop_context):\n for p in self._providers:\n p.stop(stop_context)\n if self._clear_stop:\n self.clear_cache()\n", "role": "user" }, { "content": "stop", "role": "assistant" } ]
def x(self, context): k = 0 if context.cfg['auto_correlations'] == True else 1 na = context.dim_global_size('na') gen = (i.astype(context.dtype) for i in np.triu_indices(na, k)) if self._is_cached: array_cache = self._chunk_cache['default_base_ant_pairs'] key = k, na if key not in array_cache: array_cache[key] = tuple(gen) return array_cache[key] return tuple(gen)
default_base_ant_pairs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n k = 0 if context.cfg['auto_correlations'] == True else 1\n na = context.dim_global_size('na')\n gen = (i.astype(context.dtype) for i in np.triu_indices(na, k))\n if self._is_cached:\n array_cache = self._chunk_cache['default_base_ant_pairs']\n key = k, na\n if key not in array_cache:\n array_cache[key] = tuple(gen)\n return array_cache[key]\n return tuple(gen)\n", "role": "user" }, { "content": "default_base_ant_pairs", "role": "assistant" } ]
def x(self, context): ant1, ant2 = default_base_ant_pairs(self, context) (tl, tu), (bl, bu) = context.dim_extents('ntime', 'nbl') ant1_result = np.empty(context.shape, context.dtype) ant1_result[:, :] = ant1[np.newaxis, bl:bu] return ant1_result
default_antenna1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n ant1, ant2 = default_base_ant_pairs(self, context)\n (tl, tu), (bl, bu) = context.dim_extents('ntime', 'nbl')\n ant1_result = np.empty(context.shape, context.dtype)\n ant1_result[:, :] = ant1[np.newaxis, bl:bu]\n return ant1_result\n", "role": "user" }, { "content": "default_antenna1", "role": "assistant" } ]
def x(self, context): ant1, ant2 = default_base_ant_pairs(self, context) (tl, tu), (bl, bu) = context.dim_extents('ntime', 'nbl') ant2_result = np.empty(context.shape, context.dtype) ant2_result[:, :] = ant2[np.newaxis, bl:bu] return ant2_result
default_antenna2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n ant1, ant2 = default_base_ant_pairs(self, context)\n (tl, tu), (bl, bu) = context.dim_extents('ntime', 'nbl')\n ant2_result = np.empty(context.shape, context.dtype)\n ant2_result[:, :] = ant2[np.newaxis, bl:bu]\n return ant2_result\n", "role": "user" }, { "content": "default_antenna2", "role": "assistant" } ]
def x(self, context): A = np.empty(context.shape, context.dtype) A[:, :, :] = [[[1, 0, 0, 1]]] return A
identity_on_pols
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n A = np.empty(context.shape, context.dtype)\n A[:, :, :] = [[[1, 0, 0, 1]]]\n return A\n", "role": "user" }, { "content": "identity_on_pols", "role": "assistant" } ]
def x(self, context): A = np.empty(context.shape, context.dtype) A[:, :, :] = [[[1, 0, 0, 0]]] return A
default_stokes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n A = np.empty(context.shape, context.dtype)\n A[:, :, :] = [[[1, 0, 0, 0]]]\n return A\n", "role": "user" }, { "content": "default_stokes", "role": "assistant" } ]
def x(self, context): channels = self._manager.spectral_window_table.getcol(MS.CHAN_FREQ) return channels.reshape(context.shape).astype(context.dtype)
frequency
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n channels = self._manager.spectral_window_table.getcol(MS.CHAN_FREQ)\n return channels.reshape(context.shape).astype(context.dtype)\n", "role": "user" }, { "content": "frequency", "role": "assistant" } ]
def x(self, context): num_chans = self._manager.spectral_window_table.getcol(MS.NUM_CHAN) ref_freqs = self._manager.spectral_window_table.getcol(MS.REF_FREQUENCY) data = np.hstack(np.repeat(rf, bs) for bs, rf in zip(num_chans, ref_freqs)) return data.reshape(context.shape).astype(context.dtype)
ref_frequency
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n num_chans = self._manager.spectral_window_table.getcol(MS.NUM_CHAN)\n ref_freqs = self._manager.spectral_window_table.getcol(MS.REF_FREQUENCY)\n data = np.hstack(np.repeat(rf, bs) for bs, rf in zip(num_chans, ref_freqs))\n return data.reshape(context.shape).astype(context.dtype)\n", "role": "user" }, { "content": "ref_frequency", "role": "assistant" } ]
def x(self, context): cube = context._cube a1_actual = cube.array('antenna1', reify=True) a1_ctx = SourceContext('antenna1', cube, context.cfg, context.iter_args, cube.array('antenna1'), a1_actual.shape, a1_actual.dtype) a2_actual = cube.array('antenna2', reify=True) a2_ctx = SourceContext('antenna2', cube, context.cfg, context.iter_args, cube.array('antenna2'), a2_actual.shape, a2_actual.dtype) ant1 = self.antenna1(a1_ctx).ravel() ant2 = self.antenna2(a2_ctx).ravel() lrow, urow = MS.uvw_row_extents(context) uvw = self._manager.ordered_uvw_table.getcol(MS.UVW, startrow=lrow, nrow=urow - lrow) ntime, nbl = context.dim_extent_size('ntime', 'nbl') na = context.dim_global_size('na') chunks = np.repeat(nbl, ntime).astype(ant1.dtype) auvw = mbu.antenna_uvw(uvw, ant1, ant2, chunks, nr_of_antenna=na) return auvw.reshape(context.shape).astype(context.dtype)
uvw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n cube = context._cube\n a1_actual = cube.array('antenna1', reify=True)\n a1_ctx = SourceContext('antenna1', cube, context.cfg, context.iter_args,\n cube.array('antenna1'), a1_actual.shape, a1_actual.dtype)\n a2_actual = cube.array('antenna2', reify=True)\n a2_ctx = SourceContext('antenna2', cube, context.cfg, context.iter_args,\n cube.array('antenna2'), a2_actual.shape, a2_actual.dtype)\n ant1 = self.antenna1(a1_ctx).ravel()\n ant2 = self.antenna2(a2_ctx).ravel()\n lrow, urow = MS.uvw_row_extents(context)\n uvw = self._manager.ordered_uvw_table.getcol(MS.UVW, startrow=lrow,\n nrow=urow - lrow)\n ntime, nbl = context.dim_extent_size('ntime', 'nbl')\n na = context.dim_global_size('na')\n chunks = np.repeat(nbl, ntime).astype(ant1.dtype)\n auvw = mbu.antenna_uvw(uvw, ant1, ant2, chunks, nr_of_antenna=na)\n return auvw.reshape(context.shape).astype(context.dtype)\n", "role": "user" }, { "content": "uvw", "role": "assistant" } ]
def x(self, context): lrow, urow = MS.uvw_row_extents(context) antenna1 = self._manager.ordered_uvw_table.getcol(MS.ANTENNA1, startrow =lrow, nrow=urow - lrow) return antenna1.reshape(context.shape).astype(context.dtype)
antenna1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n lrow, urow = MS.uvw_row_extents(context)\n antenna1 = self._manager.ordered_uvw_table.getcol(MS.ANTENNA1, startrow\n =lrow, nrow=urow - lrow)\n return antenna1.reshape(context.shape).astype(context.dtype)\n", "role": "user" }, { "content": "antenna1", "role": "assistant" } ]
def x(self, context): lrow, urow = MS.uvw_row_extents(context) antenna2 = self._manager.ordered_uvw_table.getcol(MS.ANTENNA2, startrow =lrow, nrow=urow - lrow) return antenna2.reshape(context.shape).astype(context.dtype)
antenna2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n lrow, urow = MS.uvw_row_extents(context)\n antenna2 = self._manager.ordered_uvw_table.getcol(MS.ANTENNA2, startrow\n =lrow, nrow=urow - lrow)\n return antenna2.reshape(context.shape).astype(context.dtype)\n", "role": "user" }, { "content": "antenna2", "role": "assistant" } ]
def x(self, context): (lt, ut), (la, ua) = context.dim_extents('ntime', 'na') return mbu.parallactic_angles(self._times[lt:ut], self. _antenna_positions[la:ua], self._phase_dir).reshape(context.shape ).astype(context.dtype)
parallactic_angles
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n (lt, ut), (la, ua) = context.dim_extents('ntime', 'na')\n return mbu.parallactic_angles(self._times[lt:ut], self.\n _antenna_positions[la:ua], self._phase_dir).reshape(context.shape\n ).astype(context.dtype)\n", "role": "user" }, { "content": "parallactic_angles", "role": "assistant" } ]
def x(self, context): lrow, urow = MS.row_extents(context) data = self._manager.ordered_main_table.getcol(self._vis_column, startrow=lrow, nrow=urow - lrow) return data.reshape(context.shape).astype(context.dtype)
observed_vis
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n lrow, urow = MS.row_extents(context)\n data = self._manager.ordered_main_table.getcol(self._vis_column,\n startrow=lrow, nrow=urow - lrow)\n return data.reshape(context.shape).astype(context.dtype)\n", "role": "user" }, { "content": "observed_vis", "role": "assistant" } ]
def x(self, context): lrow, urow = MS.row_extents(context) flag = self._manager.ordered_main_table.getcol(MS.FLAG, startrow=lrow, nrow=urow - lrow) return flag.reshape(context.shape).astype(context.dtype)
flag
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n lrow, urow = MS.row_extents(context)\n flag = self._manager.ordered_main_table.getcol(MS.FLAG, startrow=lrow,\n nrow=urow - lrow)\n return flag.reshape(context.shape).astype(context.dtype)\n", "role": "user" }, { "content": "flag", "role": "assistant" } ]
def x(self, context): lrow, urow = MS.row_extents(context) weight = self._manager.ordered_main_table.getcol(MS.WEIGHT, startrow= lrow, nrow=urow - lrow) weight = np.repeat(weight, self._manager.channels_per_band, 0) return weight.reshape(context.shape).astype(context.dtype)
weight
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n lrow, urow = MS.row_extents(context)\n weight = self._manager.ordered_main_table.getcol(MS.WEIGHT, startrow=\n lrow, nrow=urow - lrow)\n weight = np.repeat(weight, self._manager.channels_per_band, 0)\n return weight.reshape(context.shape).astype(context.dtype)\n", "role": "user" }, { "content": "weight", "role": "assistant" } ]
def x(): from os.path import join as pjoin import pkg_resources import tensorflow as tf path = pjoin('ext', 'rime.so') rime_lib_path = pkg_resources.resource_filename('montblanc', path) return tf.load_op_library(rime_lib_path)
load_tf_lib
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n from os.path import join as pjoin\n import pkg_resources\n import tensorflow as tf\n path = pjoin('ext', 'rime.so')\n rime_lib_path = pkg_resources.resource_filename('montblanc', path)\n return tf.load_op_library(rime_lib_path)\n", "role": "user" }, { "content": "load_tf_lib", "role": "assistant" } ]
def x(validator): if len(validator._errors) == 0: return def x(path, name=None): L = [name] if name is not None else [] L.extend('["%s"]' % p for p in path) return ''.join(L) def x(path, dicts): for p in path: dicts = dicts[p] return dicts wrap = partial(textwrap.wrap, initial_indent=' ' * 4, subsequent_indent =' ' * 8) msg = ['There were configuration errors:'] for e in validator._errors: schema_leaf = _path_leaf(e.document_path, validator.schema) doc_str = _path_str(e.document_path, 'cfg') msg.append("Invalid configuration option %s == '%s'." % (doc_str, e .value)) try: otype = schema_leaf['type'] msg.extend(wrap("Type must be '%s'." % otype)) except KeyError: pass try: allowed = schema_leaf['allowed'] msg.extend(wrap("Allowed values are '%s'." % allowed)) except KeyError: pass try: description = schema_leaf['__description__'] msg.extend(wrap('Description: %s' % description)) except KeyError: pass raise ValueError('\n'.join(msg))
raise_validator_errors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(validator):\n if len(validator._errors) == 0:\n return\n\n def x(path, name=None):\n L = [name] if name is not None else []\n L.extend('[\"%s\"]' % p for p in path)\n return ''.join(L)\n\n def x(path, dicts):\n for p in path:\n dicts = dicts[p]\n return dicts\n wrap = partial(textwrap.wrap, initial_indent=' ' * 4, subsequent_indent\n =' ' * 8)\n msg = ['There were configuration errors:']\n for e in validator._errors:\n schema_leaf = _path_leaf(e.document_path, validator.schema)\n doc_str = _path_str(e.document_path, 'cfg')\n msg.append(\"Invalid configuration option %s == '%s'.\" % (doc_str, e\n .value))\n try:\n otype = schema_leaf['type']\n msg.extend(wrap(\"Type must be '%s'.\" % otype))\n except KeyError:\n pass\n try:\n allowed = schema_leaf['allowed']\n msg.extend(wrap(\"Allowed values are '%s'.\" % allowed))\n except KeyError:\n pass\n try:\n description = schema_leaf['__description__']\n msg.extend(wrap('Description: %s' % description))\n except KeyError:\n pass\n raise ValueError('\\n'.join(msg))\n", "role": "user" }, { "content": "raise_validator_errors", "role": "assistant" } ]
def x(text, level, indent=2): return '\n'.join('%s%s' % (level * indent * ' ', s) for s in text. splitlines())
indented
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text, level, indent=2):\n return '\\n'.join('%s%s' % (level * indent * ' ', s) for s in text.\n splitlines())\n", "role": "user" }, { "content": "indented", "role": "assistant" } ]
def x(text, level, indent=2): return indented('{\n%s\n}' % indented(text, level + 1, indent) or 'None', level, indent) + '\n'
dumped
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text, level, indent=2):\n return indented('{\\n%s\\n}' % indented(text, level + 1, indent) or\n 'None', level, indent) + '\\n'\n", "role": "user" }, { "content": "dumped", "role": "assistant" } ]
def x(source_path, target_path, allow_undo=True, no_confirm=False, rename_on_collision=True, silent=False, extra_flags=0, hWnd=None): return _file_operation(shellcon.FO_COPY, source_path, target_path, allow_undo, no_confirm, rename_on_collision, silent, extra_flags, hWnd)
copy_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(source_path, target_path, allow_undo=True, no_confirm=False,\n rename_on_collision=True, silent=False, extra_flags=0, hWnd=None):\n return _file_operation(shellcon.FO_COPY, source_path, target_path,\n allow_undo, no_confirm, rename_on_collision, silent, extra_flags, hWnd)\n", "role": "user" }, { "content": "copy_file", "role": "assistant" } ]
def x(source_path, target_path, allow_undo=True, no_confirm=False, rename_on_collision=True, silent=False, extra_flags=0, hWnd=None): return _file_operation(shellcon.FO_MOVE, source_path, target_path, allow_undo, no_confirm, rename_on_collision, silent, extra_flags, hWnd)
move_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(source_path, target_path, allow_undo=True, no_confirm=False,\n rename_on_collision=True, silent=False, extra_flags=0, hWnd=None):\n return _file_operation(shellcon.FO_MOVE, source_path, target_path,\n allow_undo, no_confirm, rename_on_collision, silent, extra_flags, hWnd)\n", "role": "user" }, { "content": "move_file", "role": "assistant" } ]
def x(source_path, target_path, allow_undo=True, no_confirm=False, rename_on_collision=True, silent=False, extra_flags=0, hWnd=None): return _file_operation(shellcon.FO_RENAME, source_path, target_path, allow_undo, no_confirm, rename_on_collision, silent, extra_flags, hWnd)
rename_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(source_path, target_path, allow_undo=True, no_confirm=False,\n rename_on_collision=True, silent=False, extra_flags=0, hWnd=None):\n return _file_operation(shellcon.FO_RENAME, source_path, target_path,\n allow_undo, no_confirm, rename_on_collision, silent, extra_flags, hWnd)\n", "role": "user" }, { "content": "rename_file", "role": "assistant" } ]
def x(source_path, allow_undo=True, no_confirm=False, silent=False, extra_flags=0, hWnd=None): return _file_operation(shellcon.FO_DELETE, source_path, None, allow_undo, no_confirm, False, silent, extra_flags, hWnd)
delete_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(source_path, allow_undo=True, no_confirm=False, silent=False,\n extra_flags=0, hWnd=None):\n return _file_operation(shellcon.FO_DELETE, source_path, None,\n allow_undo, no_confirm, False, silent, extra_flags, hWnd)\n", "role": "user" }, { "content": "delete_file", "role": "assistant" } ]
def x(filename): if not pythoncom.StgIsStorageFile(filename): return {} flags = storagecon.STGM_READ | storagecon.STGM_SHARE_EXCLUSIVE storage = pythoncom.StgOpenStorage(filename, None, flags) try: properties_storage = storage.QueryInterface(pythoncom. IID_IPropertySetStorage) except pythoncom.com_error: return {} property_sheet = properties_storage.Open(FMTID_USER_DEFINED_PROPERTIES) try: data = property_sheet.ReadMultiple(PROPERTIES) finally: property_sheet = None (title, subject, author, created_on, keywords, comments, template_used, updated_by, edited_on, printed_on, saved_on, n_pages, n_words, n_characters, application) = data result = {} if title: result['title'] = title if subject: result['subject'] = subject if author: result['author'] = author if created_on: result['created_on'] = created_on if keywords: result['keywords'] = keywords if comments: result['comments'] = comments if template_used: result['template_used'] = template_used if updated_by: result['updated_by'] = updated_by if edited_on: result['edited_on'] = edited_on if printed_on: result['printed_on'] = printed_on if saved_on: result['saved_on'] = saved_on if n_pages: result['n_pages'] = n_pages if n_words: result['n_words'] = n_words if n_characters: result['n_characters'] = n_characters if application: result['application'] = application return result
structured_storage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n if not pythoncom.StgIsStorageFile(filename):\n return {}\n flags = storagecon.STGM_READ | storagecon.STGM_SHARE_EXCLUSIVE\n storage = pythoncom.StgOpenStorage(filename, None, flags)\n try:\n properties_storage = storage.QueryInterface(pythoncom.\n IID_IPropertySetStorage)\n except pythoncom.com_error:\n return {}\n property_sheet = properties_storage.Open(FMTID_USER_DEFINED_PROPERTIES)\n try:\n data = property_sheet.ReadMultiple(PROPERTIES)\n finally:\n property_sheet = None\n (title, subject, author, created_on, keywords, comments, template_used,\n updated_by, edited_on, printed_on, saved_on, n_pages, n_words,\n n_characters, application) = data\n result = {}\n if title:\n result['title'] = title\n if subject:\n result['subject'] = subject\n if author:\n result['author'] = author\n if created_on:\n result['created_on'] = created_on\n if keywords:\n result['keywords'] = keywords\n if comments:\n result['comments'] = comments\n if template_used:\n result['template_used'] = template_used\n if updated_by:\n result['updated_by'] = updated_by\n if edited_on:\n result['edited_on'] = edited_on\n if printed_on:\n result['printed_on'] = printed_on\n if saved_on:\n result['saved_on'] = saved_on\n if n_pages:\n result['n_pages'] = n_pages\n if n_words:\n result['n_words'] = n_words\n if n_characters:\n result['n_characters'] = n_characters\n if application:\n result['application'] = application\n return result\n", "role": "user" }, { "content": "structured_storage", "role": "assistant" } ]
def x(Path, Target, Arguments='', StartIn='', Icon=('', 0), Description=''): lnk = shortcut(Target) lnk.arguments = Arguments lnk.working_directory = StartIn lnk.icon_location = Icon lnk.description = Description lnk.write(Path)
CreateShortcut
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(Path, Target, Arguments='', StartIn='', Icon=('', 0), Description=''):\n lnk = shortcut(Target)\n lnk.arguments = Arguments\n lnk.working_directory = StartIn\n lnk.icon_location = Icon\n lnk.description = Description\n lnk.write(Path)\n", "role": "user" }, { "content": "CreateShortcut", "role": "assistant" } ]
def x(self, original_filepath): candidates = self.versions(original_filepath) if not candidates: raise x_not_found_in_recycle_bin('%s not found in the Recycle Bin' % original_filepath) newest = sorted(candidates, key=lambda entry: entry.recycle_date())[-1] return newest.undelete()
undelete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, original_filepath):\n candidates = self.versions(original_filepath)\n if not candidates:\n raise x_not_found_in_recycle_bin('%s not found in the Recycle Bin' %\n original_filepath)\n newest = sorted(candidates, key=lambda entry: entry.recycle_date())[-1]\n return newest.undelete()\n", "role": "user" }, { "content": "undelete", "role": "assistant" } ]
def x(name, queue_size, fed_arrays, data_sources, *args, **kwargs): qtype = SingleInputMultiQueueWrapper if 'count' in kwargs else QueueWrapper return qtype(name, queue_size, fed_arrays, data_sources, *args, **kwargs)
create_queue_wrapper
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, queue_size, fed_arrays, data_sources, *args, **kwargs):\n qtype = SingleInputMultiQueueWrapper if 'count' in kwargs else QueueWrapper\n return qtype(name, queue_size, fed_arrays, data_sources, *args, **kwargs)\n", "role": "user" }, { "content": "create_queue_wrapper", "role": "assistant" } ]
def x(assign_str): if not assign_str: return {} def x(stmt_value): if isinstance(stmt_value, ast.Call): func_name = stmt_value.func.id if func_name not in _BUILTIN_WHITELIST: raise ValueError( "Function '%s' in '%s' is not builtin. Available builtins: '%s'" % (func_name, assign_str, list(_BUILTIN_WHITELIST))) if stmt_value.args is not None: args = tuple(_eval_value(a) for a in stmt_value.args) else: args = () if stmt_value.keywords is not None: kwargs = {kw.arg: _eval_value(kw.value) for kw in stmt_value.keywords} else: kwargs = {} return getattr(__builtin__, func_name)(*args, **kwargs) else: return ast.literal_eval(stmt_value) variables = {} stmts = ast.parse(assign_str, mode='single').body for i, stmt in enumerate(stmts): if not isinstance(stmt, ast.Assign): raise ValueError( "Statement %d in '%s' is not a variable assignment." % (i, assign_str)) values = _eval_value(stmt.value) for target in stmt.targets: if isinstance(target, ast.Name): variables[target.id] = values elif isinstance(target, (ast.Tuple, ast.List)): if not all(isinstance(e, ast.Name) for e in target.elts): raise ValueError( "Tuple unpacking in assignment %d in expression '%s' failed as not all tuple contents are variable names." ) if not isinstance(values, (tuple, list)): elements = values, else: elements = values if not len(target.elts) == len(elements): raise ValueError( "Unpacking '%s' into a tuple/list in assignment %d of expression '%s' failed. The number of tuple elements did not match the number of values." % (values, i, assign_str)) for variable, value in zip(target.elts, elements): variables[variable.id] = value else: raise TypeError( "'%s' types are not supportedas assignment targets." % type(target)) return variables
parse_python_assigns
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(assign_str):\n if not assign_str:\n return {}\n\n def x(stmt_value):\n if isinstance(stmt_value, ast.Call):\n func_name = stmt_value.func.id\n if func_name not in _BUILTIN_WHITELIST:\n raise ValueError(\n \"Function '%s' in '%s' is not builtin. Available builtins: '%s'\"\n % (func_name, assign_str, list(_BUILTIN_WHITELIST)))\n if stmt_value.args is not None:\n args = tuple(_eval_value(a) for a in stmt_value.args)\n else:\n args = ()\n if stmt_value.keywords is not None:\n kwargs = {kw.arg: _eval_value(kw.value) for kw in\n stmt_value.keywords}\n else:\n kwargs = {}\n return getattr(__builtin__, func_name)(*args, **kwargs)\n else:\n return ast.literal_eval(stmt_value)\n variables = {}\n stmts = ast.parse(assign_str, mode='single').body\n for i, stmt in enumerate(stmts):\n if not isinstance(stmt, ast.Assign):\n raise ValueError(\n \"Statement %d in '%s' is not a variable assignment.\" % (i,\n assign_str))\n values = _eval_value(stmt.value)\n for target in stmt.targets:\n if isinstance(target, ast.Name):\n variables[target.id] = values\n elif isinstance(target, (ast.Tuple, ast.List)):\n if not all(isinstance(e, ast.Name) for e in target.elts):\n raise ValueError(\n \"Tuple unpacking in assignment %d in expression '%s' failed as not all tuple contents are variable names.\"\n )\n if not isinstance(values, (tuple, list)):\n elements = values,\n else:\n elements = values\n if not len(target.elts) == len(elements):\n raise ValueError(\n \"Unpacking '%s' into a tuple/list in assignment %d of expression '%s' failed. The number of tuple elements did not match the number of values.\"\n % (values, i, assign_str))\n for variable, value in zip(target.elts, elements):\n variables[variable.id] = value\n else:\n raise TypeError(\n \"'%s' types are not supportedas assignment targets.\" %\n type(target))\n return variables\n", "role": "user" }, { "content": "parse_python_assigns", "role": "assistant" } ]
def x(obj): SINK_ARGSPEC = ['self', 'context'] return {n: m for n, m in inspect.getmembers(obj, inspect.ismethod) if inspect.getargspec(m)[0] == SINK_ARGSPEC}
find_sinks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(obj):\n SINK_ARGSPEC = ['self', 'context']\n return {n: m for n, m in inspect.getmembers(obj, inspect.ismethod) if \n inspect.getargspec(m)[0] == SINK_ARGSPEC}\n", "role": "user" }, { "content": "find_sinks", "role": "assistant" } ]
def x(self): try: return self._sinks except AttributeError: self._sinks = find_sinks(self) return self._sinks
sinks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n return self._sinks\n except AttributeError:\n self._sinks = find_sinks(self)\n return self._sinks\n", "role": "user" }, { "content": "sinks", "role": "assistant" } ]
def x(uvw, antenna1, antenna2, chunks, nr_of_antenna): if antenna1.ndim != 1: raise ValueError('antenna1 shape should be (row,)') if antenna2.ndim != 1: raise ValueError('antenna2 shape should be (row,)') if uvw.ndim != 2 or uvw.shape[1] != 3: raise ValueError('uvw shape should be (row, 3)') if not uvw.shape[0] == antenna1.shape[0] == antenna2.shape[0]: raise ValueError( 'First dimension of uvw, antenna1 and antenna2 do not match') if chunks.ndim != 1: raise ValueError('chunks shape should be (utime,)') if nr_of_antenna < 1: raise ValueError('nr_of_antenna < 1') ant_uvw_shape = chunks.shape[0], nr_of_antenna, 3 antenna_uvw = np.full(ant_uvw_shape, np.nan, dtype=uvw.dtype) start = 0 for ci, chunk in enumerate(chunks): end = start + chunk _antenna_uvw_loop(uvw, antenna1, antenna2, antenna_uvw, ci, start, end) start = end return antenna_uvw
antenna_uvw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(uvw, antenna1, antenna2, chunks, nr_of_antenna):\n if antenna1.ndim != 1:\n raise ValueError('antenna1 shape should be (row,)')\n if antenna2.ndim != 1:\n raise ValueError('antenna2 shape should be (row,)')\n if uvw.ndim != 2 or uvw.shape[1] != 3:\n raise ValueError('uvw shape should be (row, 3)')\n if not uvw.shape[0] == antenna1.shape[0] == antenna2.shape[0]:\n raise ValueError(\n 'First dimension of uvw, antenna1 and antenna2 do not match')\n if chunks.ndim != 1:\n raise ValueError('chunks shape should be (utime,)')\n if nr_of_antenna < 1:\n raise ValueError('nr_of_antenna < 1')\n ant_uvw_shape = chunks.shape[0], nr_of_antenna, 3\n antenna_uvw = np.full(ant_uvw_shape, np.nan, dtype=uvw.dtype)\n start = 0\n for ci, chunk in enumerate(chunks):\n end = start + chunk\n _antenna_uvw_loop(uvw, antenna1, antenna2, antenna_uvw, ci, start, end)\n start = end\n return antenna_uvw\n", "role": "user" }, { "content": "antenna_uvw", "role": "assistant" } ]
def x(uvw, antenna1, antenna2, chunks, ant_uvw, max_err): start = 0 problem_str = [] for ci, chunk in enumerate(chunks): end = start + chunk ant1 = antenna1[start:end] ant2 = antenna2[start:end] cuvw = uvw[start:end] ant1_uvw = ant_uvw[ci, ant1, :] ant2_uvw = ant_uvw[ci, ant2, :] ruvw = ant2_uvw - ant1_uvw close = np.isclose(ruvw, cuvw) problems = np.nonzero(np.logical_or.reduce(np.invert(close), axis=1)) for row in problems[0]: problem_str.append( '[row %d [%d, %d] (chunk %d)]: original %s recovered %s ant1 %s ant2 %s' % (start + row, ant1[row], ant2[row], ci, cuvw[row], ruvw[ row], ant1_uvw[row], ant2_uvw[row])) if len(problem_str) >= max_err: break if len(problem_str) >= max_err: break start = end if len(problem_str) == 0: return problem_str = ['Antenna UVW Decomposition Failed', 'The following differences were found (first 100):'] + problem_str raise AntennaUVWDecompositionError('\n'.join(problem_str))
raise_decomposition_errors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(uvw, antenna1, antenna2, chunks, ant_uvw, max_err):\n start = 0\n problem_str = []\n for ci, chunk in enumerate(chunks):\n end = start + chunk\n ant1 = antenna1[start:end]\n ant2 = antenna2[start:end]\n cuvw = uvw[start:end]\n ant1_uvw = ant_uvw[ci, ant1, :]\n ant2_uvw = ant_uvw[ci, ant2, :]\n ruvw = ant2_uvw - ant1_uvw\n close = np.isclose(ruvw, cuvw)\n problems = np.nonzero(np.logical_or.reduce(np.invert(close), axis=1))\n for row in problems[0]:\n problem_str.append(\n '[row %d [%d, %d] (chunk %d)]: original %s recovered %s ant1 %s ant2 %s'\n % (start + row, ant1[row], ant2[row], ci, cuvw[row], ruvw[\n row], ant1_uvw[row], ant2_uvw[row]))\n if len(problem_str) >= max_err:\n break\n if len(problem_str) >= max_err:\n break\n start = end\n if len(problem_str) == 0:\n return\n problem_str = ['Antenna UVW Decomposition Failed',\n 'The following differences were found (first 100):'] + problem_str\n raise AntennaUVWDecompositionError('\\n'.join(problem_str))\n", "role": "user" }, { "content": "raise_decomposition_errors", "role": "assistant" } ]
def x(ant_uvw, max_err): problems = np.nonzero(np.add.reduce(np.isnan(ant_uvw), axis=2)) problem_str = [] for c, a in zip(*problems): problem_str.append('[chunk %d antenna %d]' % (c, a)) if len(problem_str) >= max_err: break if len(problem_str) == 0: return problem_str = ['Antenna were missing'] + problem_str raise AntennaMissingError('\n'.join(problem_str))
raise_missing_antenna_errors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ant_uvw, max_err):\n problems = np.nonzero(np.add.reduce(np.isnan(ant_uvw), axis=2))\n problem_str = []\n for c, a in zip(*problems):\n problem_str.append('[chunk %d antenna %d]' % (c, a))\n if len(problem_str) >= max_err:\n break\n if len(problem_str) == 0:\n return\n problem_str = ['Antenna were missing'] + problem_str\n raise AntennaMissingError('\\n'.join(problem_str))\n", "role": "user" }, { "content": "raise_missing_antenna_errors", "role": "assistant" } ]
def x(uvw, antenna1, antenna2, chunks, nr_of_antenna, check_missing=False, check_decomposition=False, max_err=100): ant_uvw = _antenna_uvw(uvw, antenna1, antenna2, chunks, nr_of_antenna) if check_missing: _raise_missing_antenna_errors(ant_uvw, max_err=max_err) if check_decomposition: _raise_decomposition_errors(uvw, antenna1, antenna2, chunks, ant_uvw, max_err=max_err) return ant_uvw
antenna_uvw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(uvw, antenna1, antenna2, chunks, nr_of_antenna, check_missing=False,\n check_decomposition=False, max_err=100):\n ant_uvw = _antenna_uvw(uvw, antenna1, antenna2, chunks, nr_of_antenna)\n if check_missing:\n _raise_missing_antenna_errors(ant_uvw, max_err=max_err)\n if check_decomposition:\n _raise_decomposition_errors(uvw, antenna1, antenna2, chunks,\n ant_uvw, max_err=max_err)\n return ant_uvw\n", "role": "user" }, { "content": "antenna_uvw", "role": "assistant" } ]
def x(**kwargs): S = OrderedDict() total = 0 invalid_types = [t for t in kwargs.keys() if t not in SOURCE_VAR_TYPES] for t in invalid_types: montblanc.log.warning( 'Source type %s is not yet implemented in montblanc. Valid source types are %s' % (t, SOURCE_VAR_TYPES.keys())) for k, v in SOURCE_VAR_TYPES.iteritems(): value = kwargs.get(k, 0) try: value = int(value) except ValueError: raise TypeError( 'Supplied value %s for source %s cannot be converted to an integer' % (value, k)) total += value S[k] = value if total == 0: S[POINT_TYPE] = 1 return S
default_sources
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(**kwargs):\n S = OrderedDict()\n total = 0\n invalid_types = [t for t in kwargs.keys() if t not in SOURCE_VAR_TYPES]\n for t in invalid_types:\n montblanc.log.warning(\n 'Source type %s is not yet implemented in montblanc. Valid source types are %s'\n % (t, SOURCE_VAR_TYPES.keys()))\n for k, v in SOURCE_VAR_TYPES.iteritems():\n value = kwargs.get(k, 0)\n try:\n value = int(value)\n except ValueError:\n raise TypeError(\n 'Supplied value %s for source %s cannot be converted to an integer'\n % (value, k))\n total += value\n S[k] = value\n if total == 0:\n S[POINT_TYPE] = 1\n return S\n", "role": "user" }, { "content": "default_sources", "role": "assistant" } ]
def x(sources): sources = default_sources(**sources) try: return OrderedDict((SOURCE_VAR_TYPES[name], nr) for name, nr in sources.iteritems()) except KeyError as e: raise KeyError( 'No source type %s is registered. Valid source types are %s' % (e, SOURCE_VAR_TYPES.keys()))
sources_to_nr_vars
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sources):\n sources = default_sources(**sources)\n try:\n return OrderedDict((SOURCE_VAR_TYPES[name], nr) for name, nr in\n sources.iteritems())\n except KeyError as e:\n raise KeyError(\n 'No source type %s is registered. Valid source types are %s' %\n (e, SOURCE_VAR_TYPES.keys()))\n", "role": "user" }, { "content": "sources_to_nr_vars", "role": "assistant" } ]
def x(start, end, nr_var_dict): starts = np.array([(0) for nr_var in SOURCE_VAR_TYPES.itervalues()]) ends = np.array([(nr_var_dict[nr_var] if nr_var in nr_var_dict else 0) for nr_var in SOURCE_VAR_TYPES.itervalues()]) sum_counts = np.cumsum(ends) idx = np.arange(len(starts)) start_idx, end_idx = np.searchsorted(sum_counts, [start, end], side='right' ) if end >= sum_counts[-1]: end = sum_counts[-1] end_idx = len(sum_counts) - 1 invalid = np.logical_not(np.logical_and(start_idx <= idx, idx <= end_idx)) starts[invalid] = ends[invalid] = 0 starts[start_idx] = start ends[end_idx] = end if start >= sum_counts[0]: starts[start_idx] -= sum_counts[start_idx - 1] if end >= sum_counts[0]: ends[end_idx] -= sum_counts[end_idx - 1] return OrderedDict((n, (starts[i], ends[i])) for i, n in enumerate( SOURCE_VAR_TYPES.values()))
source_range_tuple
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(start, end, nr_var_dict):\n starts = np.array([(0) for nr_var in SOURCE_VAR_TYPES.itervalues()])\n ends = np.array([(nr_var_dict[nr_var] if nr_var in nr_var_dict else 0) for\n nr_var in SOURCE_VAR_TYPES.itervalues()])\n sum_counts = np.cumsum(ends)\n idx = np.arange(len(starts))\n start_idx, end_idx = np.searchsorted(sum_counts, [start, end], side='right'\n )\n if end >= sum_counts[-1]:\n end = sum_counts[-1]\n end_idx = len(sum_counts) - 1\n invalid = np.logical_not(np.logical_and(start_idx <= idx, idx <= end_idx))\n starts[invalid] = ends[invalid] = 0\n starts[start_idx] = start\n ends[end_idx] = end\n if start >= sum_counts[0]:\n starts[start_idx] -= sum_counts[start_idx - 1]\n if end >= sum_counts[0]:\n ends[end_idx] -= sum_counts[end_idx - 1]\n return OrderedDict((n, (starts[i], ends[i])) for i, n in enumerate(\n SOURCE_VAR_TYPES.values()))\n", "role": "user" }, { "content": "source_range_tuple", "role": "assistant" } ]
def x(start, end, nr_var_dict): return OrderedDict((k, e - s) for k, (s, e) in source_range_tuple(start, end, nr_var_dict).iteritems())
source_range
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(start, end, nr_var_dict):\n return OrderedDict((k, e - s) for k, (s, e) in source_range_tuple(start,\n end, nr_var_dict).iteritems())\n", "role": "user" }, { "content": "source_range", "role": "assistant" } ]
def x(start, end, nr_var_dict): return OrderedDict((k, slice(s, e, 1)) for k, (s, e) in source_range_tuple(start, end, nr_var_dict).iteritems())
source_range_slices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(start, end, nr_var_dict):\n return OrderedDict((k, slice(s, e, 1)) for k, (s, e) in\n source_range_tuple(start, end, nr_var_dict).iteritems())\n", "role": "user" }, { "content": "source_range_slices", "role": "assistant" } ]
def x(self, context): lm = np.empty(context.shape, context.dtype) montblanc.log.info(context.array_schema.shape) montblanc.log.info(context.iter_args) ls, us = context.dim_extents('npsrc') lm[:, 0] = 0.0008 lm[:, 1] = 0.0036 lm[:, :] = 0 return lm
point_lm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n lm = np.empty(context.shape, context.dtype)\n montblanc.log.info(context.array_schema.shape)\n montblanc.log.info(context.iter_args)\n ls, us = context.dim_extents('npsrc')\n lm[:, 0] = 0.0008\n lm[:, 1] = 0.0036\n lm[:, :] = 0\n return lm\n", "role": "user" }, { "content": "point_lm", "role": "assistant" } ]
def x(self, context): stokes = np.empty(context.shape, context.dtype) stokes[:, :, 0] = 1 stokes[:, :, 1:4] = 0 return stokes
point_stokes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n stokes = np.empty(context.shape, context.dtype)\n stokes[:, :, 0] = 1\n stokes[:, :, 1:4] = 0\n return stokes\n", "role": "user" }, { "content": "point_stokes", "role": "assistant" } ]
def x(self, context): ref_freq = np.empty(context.shape, context.dtype) ref_freq[:] = 1415000000.0 return ref_freq
ref_frequency
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n ref_freq = np.empty(context.shape, context.dtype)\n ref_freq[:] = 1415000000.0\n return ref_freq\n", "role": "user" }, { "content": "ref_frequency", "role": "assistant" } ]
def x(self, scopes=[], add_scopes=[], rm_scopes=[], note='', note_url=''): success = False json = None if scopes: d = {'scopes': scopes} json = self._json(self._post(self._api, data=d), 200) if add_scopes: d = {'add_scopes': add_scopes} json = self._json(self._post(self._api, data=d), 200) if rm_scopes: d = {'remove_scopes': rm_scopes} json = self._json(self._post(self._api, data=d), 200) if note or note_url: d = {'note': note, 'note_url': note_url} json = self._json(self._post(self._api, data=d), 200) if json: self._update_(json) success = True return success
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, scopes=[], add_scopes=[], rm_scopes=[], note='', note_url=''):\n success = False\n json = None\n if scopes:\n d = {'scopes': scopes}\n json = self._json(self._post(self._api, data=d), 200)\n if add_scopes:\n d = {'add_scopes': add_scopes}\n json = self._json(self._post(self._api, data=d), 200)\n if rm_scopes:\n d = {'remove_scopes': rm_scopes}\n json = self._json(self._post(self._api, data=d), 200)\n if note or note_url:\n d = {'note': note, 'note_url': note_url}\n json = self._json(self._post(self._api, data=d), 200)\n if json:\n self._update_(json)\n success = True\n return success\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self, number=-1, etag=None): url = self._build_url('labels', base_url=self._api) return self._iter(int(number), url, Label, etag=etag)
iter_labels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, number=-1, etag=None):\n url = self._build_url('labels', base_url=self._api)\n return self._iter(int(number), url, Label, etag=etag)\n", "role": "user" }, { "content": "iter_labels", "role": "assistant" } ]
def x(frame): if frame is None: return None code = frame.f_code if (code.co_name == '__del__' or code.co_name == '_remove' or code. co_name == '_removeHandlerRef'): return None try: lst = [referer for referer in gc.get_referrers(code) if getattr( referer, '__code__', None) is code and inspect.getclosurevars( referer).nonlocals.items() <= frame.f_locals.items()] if lst: return lst[0] else: return None except ValueError: return None
current_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(frame):\n if frame is None:\n return None\n code = frame.f_code\n if (code.co_name == '__del__' or code.co_name == '_remove' or code.\n co_name == '_removeHandlerRef'):\n return None\n try:\n lst = [referer for referer in gc.get_referrers(code) if getattr(\n referer, '__code__', None) is code and inspect.getclosurevars(\n referer).nonlocals.items() <= frame.f_locals.items()]\n if lst:\n return lst[0]\n else:\n return None\n except ValueError:\n return None\n", "role": "user" }, { "content": "current_function", "role": "assistant" } ]
def x(frame): if frame is None: return None if hasattr(frame.f_globals, '__name__'): return frame.f_globals['__name__'] else: mod = inspect.getmodule(frame) if mod is None: return '' else: return mod.__name__
current_module_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(frame):\n if frame is None:\n return None\n if hasattr(frame.f_globals, '__name__'):\n return frame.f_globals['__name__']\n else:\n mod = inspect.getmodule(frame)\n if mod is None:\n return ''\n else:\n return mod.__name__\n", "role": "user" }, { "content": "current_module_name", "role": "assistant" } ]
def x(self, frame, event, arg): if event != 'call': return src_mod = current_module_name(frame.f_back) dst_mod = current_module_name(frame) if src_mod == __modulename__ or dst_mod == __modulename__: return if not self.srcmodflt.match(src_mod): return if not self.dstmodflt.match(dst_mod): return src_func = current_function(frame.f_back) dst_func = current_function(frame) if not self.srcqnmflt.match(function_qname(src_func)): return if not self.dstqnmflt.match(function_qname(dst_func)): return src_name = function_fqname(src_func) dst_name = function_fqname(dst_func) if self.fnmsub is not None: src_name = re.sub(self.fnmsub[0], self.fnmsub[1], src_name) dst_name = re.sub(self.fnmsub[0], self.fnmsub[1], dst_name) if src_func is not None: if src_name in self.fncts: self.fncts[src_name][0] += 1 else: self.fncts[src_name] = [1, 0] if dst_func is not None and src_func is not None: if dst_name in self.fncts: self.fncts[dst_name][1] += 1 else: self.fncts[dst_name] = [0, 1] if dst_func is not None and src_func is not None: key = src_name, dst_name if key in self.calls: self.calls[key] += 1 else: self.calls[key] = 1
trace
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, frame, event, arg):\n if event != 'call':\n return\n src_mod = current_module_name(frame.f_back)\n dst_mod = current_module_name(frame)\n if src_mod == __modulename__ or dst_mod == __modulename__:\n return\n if not self.srcmodflt.match(src_mod):\n return\n if not self.dstmodflt.match(dst_mod):\n return\n src_func = current_function(frame.f_back)\n dst_func = current_function(frame)\n if not self.srcqnmflt.match(function_qname(src_func)):\n return\n if not self.dstqnmflt.match(function_qname(dst_func)):\n return\n src_name = function_fqname(src_func)\n dst_name = function_fqname(dst_func)\n if self.fnmsub is not None:\n src_name = re.sub(self.fnmsub[0], self.fnmsub[1], src_name)\n dst_name = re.sub(self.fnmsub[0], self.fnmsub[1], dst_name)\n if src_func is not None:\n if src_name in self.fncts:\n self.fncts[src_name][0] += 1\n else:\n self.fncts[src_name] = [1, 0]\n if dst_func is not None and src_func is not None:\n if dst_name in self.fncts:\n self.fncts[dst_name][1] += 1\n else:\n self.fncts[dst_name] = [0, 1]\n if dst_func is not None and src_func is not None:\n key = src_name, dst_name\n if key in self.calls:\n self.calls[key] += 1\n else:\n self.calls[key] = 1\n", "role": "user" }, { "content": "trace", "role": "assistant" } ]
def x(self): sys.settrace(None) if self.grpflt is not None: for k in self.fncts: m = self.grpflt.search(k) if m is not None: ms = m.group(0) if ms in self.group: self.group[ms].append(k) else: self.group[ms] = [k]
stop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n sys.settrace(None)\n if self.grpflt is not None:\n for k in self.fncts:\n m = self.grpflt.search(k)\n if m is not None:\n ms = m.group(0)\n if ms in self.group:\n self.group[ms].append(k)\n else:\n self.group[ms] = [k]\n", "role": "user" }, { "content": "stop", "role": "assistant" } ]
def x(n, h0, hr): n0 = n if n == 1 else n - 1 clst = [('%f,%f,%f' % (h0 + hr * hi / n0, 0.35, 0.85)) for hi in range(n)] return clst
clrgen
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n, h0, hr):\n n0 = n if n == 1 else n - 1\n clst = [('%f,%f,%f' % (h0 + hr * hi / n0, 0.35, 0.85)) for hi in range(n)]\n return clst\n", "role": "user" }, { "content": "clrgen", "role": "assistant" } ]
def x(self, fnm=None, size=None, fntsz=None, fntfm=None, clrgen=None, rmsz= False, prog='dot'): if clrgen is None: clrgen = lambda n: self._clrgen(n, 0.33, 0.825) clrlst = clrgen(len(self.group)) g = pgv.AGraph(strict=False, directed=True, landscape=False, rankdir= 'LR', newrank=True, fontsize=fntsz, fontname=fntfm, size=size, ratio='compress', color='black', bgcolor='#ffffff00') g.node_attr.update(penwidth=0.25, shape='box', style='rounded,filled') for k in self.fncts: g.add_node(k, fontsize=fntsz, fontname=fntfm) if self.lnksub is not None: lnktgt = re.sub(self.lnksub[0], self.lnksub[1], k) g.get_node(k).attr.update(href=lnktgt, target='_top') if self.fncts[k][1] == 0: g.get_node(k).attr.update(rank='source') if self.group: fngrpnm = {} for k in zip(range(len(self.group)), sorted(self.group)): g.add_subgraph(self.group[k[1]], name='cluster_' + k[1], label= k[1], penwidth=2, style='dotted', pencolor=clrlst[k[0]]) for l in self.group[k[1]]: fngrpnm[l] = k[0] g.get_node(l).attr.update(fillcolor=clrlst[k[0]]) for k in self.calls: if self.group: g.add_edge(k[0], k[1], penwidth=2, color=clrlst[fngrpnm[k[0]]]) else: g.add_edge(k[0], k[1], color='grey') g.layout(prog=prog) if fnm is not None: ext = os.path.splitext(fnm)[1] if ext == '.dot': g.write(fnm) elif ext == '.svg' and rmsz: img = g.draw(format='svg').decode('utf-8') cp = re.compile('\\n<svg width=\\"[^\\"]*\\" height="[^"]*"') img = cp.sub('\\n<svg', img, count=1) with open(fnm, 'w') as fd: fd.write(img) else: g.draw(fnm) return g
graph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fnm=None, size=None, fntsz=None, fntfm=None, clrgen=None, rmsz=\n False, prog='dot'):\n if clrgen is None:\n clrgen = lambda n: self._clrgen(n, 0.33, 0.825)\n clrlst = clrgen(len(self.group))\n g = pgv.AGraph(strict=False, directed=True, landscape=False, rankdir=\n 'LR', newrank=True, fontsize=fntsz, fontname=fntfm, size=size,\n ratio='compress', color='black', bgcolor='#ffffff00')\n g.node_attr.update(penwidth=0.25, shape='box', style='rounded,filled')\n for k in self.fncts:\n g.add_node(k, fontsize=fntsz, fontname=fntfm)\n if self.lnksub is not None:\n lnktgt = re.sub(self.lnksub[0], self.lnksub[1], k)\n g.get_node(k).attr.update(href=lnktgt, target='_top')\n if self.fncts[k][1] == 0:\n g.get_node(k).attr.update(rank='source')\n if self.group:\n fngrpnm = {}\n for k in zip(range(len(self.group)), sorted(self.group)):\n g.add_subgraph(self.group[k[1]], name='cluster_' + k[1], label=\n k[1], penwidth=2, style='dotted', pencolor=clrlst[k[0]])\n for l in self.group[k[1]]:\n fngrpnm[l] = k[0]\n g.get_node(l).attr.update(fillcolor=clrlst[k[0]])\n for k in self.calls:\n if self.group:\n g.add_edge(k[0], k[1], penwidth=2, color=clrlst[fngrpnm[k[0]]])\n else:\n g.add_edge(k[0], k[1], color='grey')\n g.layout(prog=prog)\n if fnm is not None:\n ext = os.path.splitext(fnm)[1]\n if ext == '.dot':\n g.write(fnm)\n elif ext == '.svg' and rmsz:\n img = g.draw(format='svg').decode('utf-8')\n cp = re.compile('\\\\n<svg width=\\\\\"[^\\\\\"]*\\\\\" height=\"[^\"]*\"')\n img = cp.sub('\\\\n<svg', img, count=1)\n with open(fnm, 'w') as fd:\n fd.write(img)\n else:\n g.draw(fnm)\n return g\n", "role": "user" }, { "content": "graph", "role": "assistant" } ]
def x(self, body, commit_id, path, position): url = self._build_url('comments', base_url=self._api) data = {'body': body, 'commit_id': commit_id, 'path': path, 'position': int(position)} json = self._json(self._post(url, data=data), 201) return ReviewComment(json, self) if json else None
create_review_comment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, body, commit_id, path, position):\n url = self._build_url('comments', base_url=self._api)\n data = {'body': body, 'commit_id': commit_id, 'path': path, 'position':\n int(position)}\n json = self._json(self._post(url, data=data), 201)\n return ReviewComment(json, self) if json else None\n", "role": "user" }, { "content": "create_review_comment", "role": "assistant" } ]
def x(self): resp = self._get(self._api, headers={'Accept': 'application/vnd.github.diff'}) return resp.content if self._boolean(resp, 200, 404) else None
diff
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n resp = self._get(self._api, headers={'Accept':\n 'application/vnd.github.diff'})\n return resp.content if self._boolean(resp, 200, 404) else None\n", "role": "user" }, { "content": "diff", "role": "assistant" } ]
def x(self): url = self._build_url('merge', base_url=self._api) return self._boolean(self._get(url), 204, 404)
is_merged
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n url = self._build_url('merge', base_url=self._api)\n return self._boolean(self._get(url), 204, 404)\n", "role": "user" }, { "content": "is_merged", "role": "assistant" } ]
def x(self, number=-1, etag=None): url = self._build_url('comments', base_url=self._api) return self._iter(int(number), url, ReviewComment, etag=etag)
iter_comments
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, number=-1, etag=None):\n url = self._build_url('comments', base_url=self._api)\n return self._iter(int(number), url, ReviewComment, etag=etag)\n", "role": "user" }, { "content": "iter_comments", "role": "assistant" } ]
def x(self, number=-1, etag=None): url = self._build_url('files', base_url=self._api) return self._iter(int(number), url, PullFile, etag=etag)
iter_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, number=-1, etag=None):\n url = self._build_url('files', base_url=self._api)\n return self._iter(int(number), url, PullFile, etag=etag)\n", "role": "user" }, { "content": "iter_files", "role": "assistant" } ]
def x(self, number=-1, etag=None): url = self._build_url(base_url=self.links['comments']) return self._iter(int(number), url, IssueComment, etag=etag)
iter_issue_comments
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, number=-1, etag=None):\n url = self._build_url(base_url=self.links['comments'])\n return self._iter(int(number), url, IssueComment, etag=etag)\n", "role": "user" }, { "content": "iter_issue_comments", "role": "assistant" } ]
def x(self, commit_message='', sha=None): parameters = {'commit_message': commit_message} if sha: parameters['sha'] = sha url = self._build_url('merge', base_url=self._api) json = self._json(self._put(url, data=dumps(parameters)), 200) self.merge_commit_sha = json['sha'] return json['merged']
merge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, commit_message='', sha=None):\n parameters = {'commit_message': commit_message}\n if sha:\n parameters['sha'] = sha\n url = self._build_url('merge', base_url=self._api)\n json = self._json(self._put(url, data=dumps(parameters)), 200)\n self.merge_commit_sha = json['sha']\n return json['merged']\n", "role": "user" }, { "content": "merge", "role": "assistant" } ]
def x(self): resp = self._get(self._api, headers={'Accept': 'application/vnd.github.patch'}) return resp.content if self._boolean(resp, 200, 404) else None
patch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n resp = self._get(self._api, headers={'Accept':\n 'application/vnd.github.patch'})\n return resp.content if self._boolean(resp, 200, 404) else None\n", "role": "user" }, { "content": "patch", "role": "assistant" } ]
def x(self, title=None, body=None, state=None): data = {'title': title, 'body': body, 'state': state} json = None self._remove_none(data) if data: json = self._json(self._patch(self._api, data=dumps(data)), 200) if json: self._update_(json) return True return False
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, title=None, body=None, state=None):\n data = {'title': title, 'body': body, 'state': state}\n json = None\n self._remove_none(data)\n if data:\n json = self._json(self._patch(self._api, data=dumps(data)), 200)\n if json:\n self._update_(json)\n return True\n return False\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self, body): url = self._build_url('comments', base_url=self.pull_request_url) index = self._api.rfind('/') + 1 in_reply_to = self._api[index:] json = self._json(self._post(url, data={'body': body, 'in_reply_to': in_reply_to}), 201) return ReviewComment(json, self) if json else None
reply
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, body):\n url = self._build_url('comments', base_url=self.pull_request_url)\n index = self._api.rfind('/') + 1\n in_reply_to = self._api[index:]\n json = self._json(self._post(url, data={'body': body, 'in_reply_to':\n in_reply_to}), 201)\n return ReviewComment(json, self) if json else None\n", "role": "user" }, { "content": "reply", "role": "assistant" } ]