source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self):
if self.channel_open:
try:
self.backend.cancel(self.consumer_tag)
except KeyError:
pass
|
cancel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.channel_open:\n try:\n self.backend.cancel(self.consumer_tag)\n except KeyError:\n pass\n",
"role": "user"
},
{
"content": "cancel",
"role": "assistant"
}
] |
def x(self):
self.cancel()
self.backend.close()
self._closed = True
|
close
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.cancel()\n self.backend.close()\n self._closed = True\n",
"role": "user"
},
{
"content": "close",
"role": "assistant"
}
] |
def x(self, prefetch_size=0, prefetch_count=0, apply_global=False):
return self.backend.qos(prefetch_size, prefetch_count, apply_global)
|
qos
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, prefetch_size=0, prefetch_count=0, apply_global=False):\n return self.backend.qos(prefetch_size, prefetch_count, apply_global)\n",
"role": "user"
},
{
"content": "qos",
"role": "assistant"
}
] |
def x(self):
self.backend.exchange_declare(exchange=self.exchange, type=self.
exchange_type, durable=self.durable, auto_delete=self.auto_delete)
|
declare
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.backend.exchange_declare(exchange=self.exchange, type=self.\n exchange_type, durable=self.durable, auto_delete=self.auto_delete)\n",
"role": "user"
},
{
"content": "declare",
"role": "assistant"
}
] |
def x(self, message_data, delivery_mode=None, priority=None, content_type=
None, content_encoding=None, serializer=None):
delivery_mode = delivery_mode or self.delivery_mode
if not content_type:
serializer = serializer or self.serializer
content_type, content_encoding, message_data = serialization.encode(
message_data, serializer=serializer)
elif isinstance(message_data, unicode):
if not content_encoding:
content_encoding = 'utf-8'
message_data = message_data.encode(content_encoding)
elif not content_encoding:
content_encoding = 'binary'
return self.backend.prepare_message(message_data, delivery_mode,
priority=priority, content_type=content_type, content_encoding=
content_encoding)
|
create_message
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, message_data, delivery_mode=None, priority=None, content_type=\n None, content_encoding=None, serializer=None):\n delivery_mode = delivery_mode or self.delivery_mode\n if not content_type:\n serializer = serializer or self.serializer\n content_type, content_encoding, message_data = serialization.encode(\n message_data, serializer=serializer)\n elif isinstance(message_data, unicode):\n if not content_encoding:\n content_encoding = 'utf-8'\n message_data = message_data.encode(content_encoding)\n elif not content_encoding:\n content_encoding = 'binary'\n return self.backend.prepare_message(message_data, delivery_mode,\n priority=priority, content_type=content_type, content_encoding=\n content_encoding)\n",
"role": "user"
},
{
"content": "create_message",
"role": "assistant"
}
] |
def x(self, message_data, routing_key=None, delivery_mode=None, mandatory=
False, immediate=False, priority=0, content_type=None, content_encoding
=None, serializer=None, exchange=None):
headers = None
routing_key = routing_key or self.routing_key
if self.exchange_type == 'headers':
headers, routing_key = routing_key, ''
exchange = exchange or self.exchange
message = self.create_message(message_data, priority=priority,
delivery_mode=delivery_mode, content_type=content_type,
content_encoding=content_encoding, serializer=serializer)
self.backend.publish(message, exchange=exchange, routing_key=
routing_key, mandatory=mandatory, immediate=immediate, headers=headers)
|
send
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, message_data, routing_key=None, delivery_mode=None, mandatory=\n False, immediate=False, priority=0, content_type=None, content_encoding\n =None, serializer=None, exchange=None):\n headers = None\n routing_key = routing_key or self.routing_key\n if self.exchange_type == 'headers':\n headers, routing_key = routing_key, ''\n exchange = exchange or self.exchange\n message = self.create_message(message_data, priority=priority,\n delivery_mode=delivery_mode, content_type=content_type,\n content_encoding=content_encoding, serializer=serializer)\n self.backend.publish(message, exchange=exchange, routing_key=\n routing_key, mandatory=mandatory, immediate=immediate, headers=headers)\n",
"role": "user"
},
{
"content": "send",
"role": "assistant"
}
] |
def x(self, message_data, delivery_mode=None):
self.publisher.send(message_data, delivery_mode=delivery_mode)
|
send
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, message_data, delivery_mode=None):\n self.publisher.send(message_data, delivery_mode=delivery_mode)\n",
"role": "user"
},
{
"content": "send",
"role": "assistant"
}
] |
def x(self):
self.consumer.close()
self.publisher.close()
self._closed = True
|
close
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.consumer.close()\n self.publisher.close()\n self._closed = True\n",
"role": "user"
},
{
"content": "close",
"role": "assistant"
}
] |
def x(self, queue, **options):
options.setdefault('routing_key', options.pop('binding_key', None))
consumer = Consumer(self.connection, queue=queue, backend=self.backend,
**options)
self.consumers.append(consumer)
return consumer
|
add_consumer_from_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, queue, **options):\n options.setdefault('routing_key', options.pop('binding_key', None))\n consumer = Consumer(self.connection, queue=queue, backend=self.backend,\n **options)\n self.consumers.append(consumer)\n return consumer\n",
"role": "user"
},
{
"content": "add_consumer_from_dict",
"role": "assistant"
}
] |
def x(self, consumer):
consumer.backend = self.backend
self.consumers.append(consumer)
|
add_consumer
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, consumer):\n consumer.backend = self.backend\n self.consumers.append(consumer)\n",
"role": "user"
},
{
"content": "add_consumer",
"role": "assistant"
}
] |
def x(self, consumer, nowait=False):
if consumer.queue not in self._open_consumers:
callback = (consumer.callbacks and consumer._receive_callback or
self._receive_callback)
self.backend.declare_consumer(queue=consumer.queue, no_ack=consumer
.no_ack, nowait=nowait, callback=callback, consumer_tag=
consumer.consumer_tag)
self._open_consumers[consumer.queue] = consumer.consumer_tag
|
declare_consumer
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, consumer, nowait=False):\n if consumer.queue not in self._open_consumers:\n callback = (consumer.callbacks and consumer._receive_callback or\n self._receive_callback)\n self.backend.declare_consumer(queue=consumer.queue, no_ack=consumer\n .no_ack, nowait=nowait, callback=callback, consumer_tag=\n consumer.consumer_tag)\n self._open_consumers[consumer.queue] = consumer.consumer_tag\n",
"role": "user"
},
{
"content": "declare_consumer",
"role": "assistant"
}
] |
def x(self):
head = self.consumers[:-1]
tail = self.consumers[-1]
[self._declare_consumer(consumer, nowait=True) for consumer in head]
self._declare_consumer(tail, nowait=False)
|
consume
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n head = self.consumers[:-1]\n tail = self.consumers[-1]\n [self._declare_consumer(consumer, nowait=True) for consumer in head]\n self._declare_consumer(tail, nowait=False)\n",
"role": "user"
},
{
"content": "consume",
"role": "assistant"
}
] |
def x(self, limit=None):
self.consume()
return self.backend.consume(limit=limit)
|
iterconsume
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, limit=None):\n self.consume()\n return self.backend.consume(limit=limit)\n",
"role": "user"
},
{
"content": "iterconsume",
"role": "assistant"
}
] |
def x(self):
for consumer_tag in self._open_consumers.values():
try:
self.backend.cancel(consumer_tag)
except KeyError:
pass
self._open_consumers.clear()
|
cancel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for consumer_tag in self._open_consumers.values():\n try:\n self.backend.cancel(consumer_tag)\n except KeyError:\n pass\n self._open_consumers.clear()\n",
"role": "user"
},
{
"content": "cancel",
"role": "assistant"
}
] |
def x(source, destination=None, backup_dir=None):
try:
import pypandoc
except ImportError:
os.system('pip install pypandoc')
import pypandoc
destination = destination or os.path.splitext(source)[0] + '.rst'
backup_dir = backup_dir or os.path.join(os.path.dirname(destination), 'bak'
)
bak_name = os.path.basename(destination) + time.strftime(
'.%Y%m%d%H%M%S.bak')
bak_path = os.path.join(backup_dir, bak_name)
if os.path.isfile(destination):
if not os.path.isdir(os.path.dirname(bak_path)):
os.mkdir(os.path.dirname(bak_path))
os.rename(destination, bak_path)
try:
pypandoc.convert(source, 'rst', format='md', outputfile=destination)
except:
if os.path.isfile(destination):
os.remove(destination)
if os.path.isfile(bak_path):
os.rename(bak_path, destination)
raise
|
convert_md_to_rst
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(source, destination=None, backup_dir=None):\n try:\n import pypandoc\n except ImportError:\n os.system('pip install pypandoc')\n import pypandoc\n destination = destination or os.path.splitext(source)[0] + '.rst'\n backup_dir = backup_dir or os.path.join(os.path.dirname(destination), 'bak'\n )\n bak_name = os.path.basename(destination) + time.strftime(\n '.%Y%m%d%H%M%S.bak')\n bak_path = os.path.join(backup_dir, bak_name)\n if os.path.isfile(destination):\n if not os.path.isdir(os.path.dirname(bak_path)):\n os.mkdir(os.path.dirname(bak_path))\n os.rename(destination, bak_path)\n try:\n pypandoc.convert(source, 'rst', format='md', outputfile=destination)\n except:\n if os.path.isfile(destination):\n os.remove(destination)\n if os.path.isfile(bak_path):\n os.rename(bak_path, destination)\n raise\n",
"role": "user"
},
{
"content": "convert_md_to_rst",
"role": "assistant"
}
] |
def x(base_path=None):
if base_path:
path = os.path.join(base_path, 'README.md')
else:
path = 'README.md'
convert_md_to_rst(path)
print('Successfully converted README.md to README.rst')
|
build_readme
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(base_path=None):\n if base_path:\n path = os.path.join(base_path, 'README.md')\n else:\n path = 'README.md'\n convert_md_to_rst(path)\n print('Successfully converted README.md to README.rst')\n",
"role": "user"
},
{
"content": "build_readme",
"role": "assistant"
}
] |
def x(self):
self.current_situation = bitstrings.BitString([random.randrange(2) for
_ in range(self.address_size + (1 << self.address_size))])
return self.current_situation
|
sense
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.current_situation = bitstrings.BitString([random.randrange(2) for\n _ in range(self.address_size + (1 << self.address_size))])\n return self.current_situation\n",
"role": "user"
},
{
"content": "sense",
"role": "assistant"
}
] |
def x(self, action):
assert action in self.possible_actions
self.remaining_cycles -= 1
index = int(bitstrings.BitString(self.current_situation[:self.
address_size]))
bit = self.current_situation[self.address_size + index]
return action == bit
|
execute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, action):\n assert action in self.possible_actions\n self.remaining_cycles -= 1\n index = int(bitstrings.BitString(self.current_situation[:self.\n address_size]))\n bit = self.current_situation[self.address_size + index]\n return action == bit\n",
"role": "user"
},
{
"content": "execute",
"role": "assistant"
}
] |
def x(self):
self.remaining_cycles = self.initial_training_cycles
self.needle_index = random.randrange(self.input_size)
|
reset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.remaining_cycles = self.initial_training_cycles\n self.needle_index = random.randrange(self.input_size)\n",
"role": "user"
},
{
"content": "reset",
"role": "assistant"
}
] |
def x(self):
haystack = bitstrings.BitString.random(self.input_size)
self.needle_value = haystack[self.needle_index]
return haystack
|
sense
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n haystack = bitstrings.BitString.random(self.input_size)\n self.needle_value = haystack[self.needle_index]\n return haystack\n",
"role": "user"
},
{
"content": "sense",
"role": "assistant"
}
] |
def x(self, action):
assert action in self.possible_actions
self.remaining_cycles -= 1
return action == self.needle_value
|
execute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, action):\n assert action in self.possible_actions\n self.remaining_cycles -= 1\n return action == self.needle_value\n",
"role": "user"
},
{
"content": "execute",
"role": "assistant"
}
] |
def x(self):
possible_actions = self.wrapped.get_possible_actions()
if len(possible_actions) <= 20:
try:
possible_actions = list(set(possible_actions))
except TypeError:
possible_actions = list(possible_actions)
try:
possible_actions.sort()
except TypeError:
pass
self.logger.info('Possible actions:')
for action in possible_actions:
self.logger.info(' %s', action)
else:
self.logger.info('%d possible actions.', len(possible_actions))
return possible_actions
|
get_possible_actions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n possible_actions = self.wrapped.get_possible_actions()\n if len(possible_actions) <= 20:\n try:\n possible_actions = list(set(possible_actions))\n except TypeError:\n possible_actions = list(possible_actions)\n try:\n possible_actions.sort()\n except TypeError:\n pass\n self.logger.info('Possible actions:')\n for action in possible_actions:\n self.logger.info(' %s', action)\n else:\n self.logger.info('%d possible actions.', len(possible_actions))\n return possible_actions\n",
"role": "user"
},
{
"content": "get_possible_actions",
"role": "assistant"
}
] |
def x(self):
situation = self.wrapped.sense()
self.logger.debug('Situation: %s', situation)
return situation
|
sense
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n situation = self.wrapped.sense()\n self.logger.debug('Situation: %s', situation)\n return situation\n",
"role": "user"
},
{
"content": "sense",
"role": "assistant"
}
] |
def x(self, action):
self.logger.debug('Executing action: %s', action)
reward = self.wrapped.execute(action)
if reward:
self.total_reward += reward
self.steps += 1
self.logger.debug('Reward received on this step: %.5f', reward or 0)
self.logger.debug('Average reward per step: %.5f', self.total_reward /
self.steps)
return reward
|
execute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, action):\n self.logger.debug('Executing action: %s', action)\n reward = self.wrapped.execute(action)\n if reward:\n self.total_reward += reward\n self.steps += 1\n self.logger.debug('Reward received on this step: %.5f', reward or 0)\n self.logger.debug('Average reward per step: %.5f', self.total_reward /\n self.steps)\n return reward\n",
"role": "user"
},
{
"content": "execute",
"role": "assistant"
}
] |
def x(self):
more = self.wrapped.more()
if not self.steps % 100:
self.logger.info('Steps completed: %d', self.steps)
self.logger.info('Average reward per step: %.5f', self.total_reward /
(self.steps or 1))
if not more:
self.logger.info('Run completed.')
self.logger.info('Total steps: %d', self.steps)
self.logger.info('Total reward received: %.5f', self.total_reward)
self.logger.info('Average reward per step: %.5f', self.total_reward /
(self.steps or 1))
return more
|
more
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n more = self.wrapped.more()\n if not self.steps % 100:\n self.logger.info('Steps completed: %d', self.steps)\n self.logger.info('Average reward per step: %.5f', self.total_reward /\n (self.steps or 1))\n if not more:\n self.logger.info('Run completed.')\n self.logger.info('Total steps: %d', self.steps)\n self.logger.info('Total reward received: %.5f', self.total_reward)\n self.logger.info('Average reward per step: %.5f', self.total_reward /\n (self.steps or 1))\n return more\n",
"role": "user"
},
{
"content": "more",
"role": "assistant"
}
] |
def x(self, action):
reward = self.reward_function(action, self.classifications[self.steps])
self.total_reward += reward
self.steps += 1
return reward
|
execute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, action):\n reward = self.reward_function(action, self.classifications[self.steps])\n self.total_reward += reward\n self.steps += 1\n return reward\n",
"role": "user"
},
{
"content": "execute",
"role": "assistant"
}
] |
def x(self):
if bitstrings.using_numpy():
return numpy.array(self.classifications)
else:
return self.classifications
|
get_classifications
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if bitstrings.using_numpy():\n return numpy.array(self.classifications)\n else:\n return self.classifications\n",
"role": "user"
},
{
"content": "get_classifications",
"role": "assistant"
}
] |
def x(self, scenario):
assert isinstance(scenario, scenarios.Scenario)
return ClassifierSet(self, scenario.get_possible_actions())
|
new_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, scenario):\n assert isinstance(scenario, scenarios.Scenario)\n return ClassifierSet(self, scenario.get_possible_actions())\n",
"role": "user"
},
{
"content": "new_model",
"role": "assistant"
}
] |
def x(self, scenario):
assert isinstance(scenario, scenarios.Scenario)
model = self.new_model(scenario)
model.run(scenario, learn=True)
return model
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, scenario):\n assert isinstance(scenario, scenarios.Scenario)\n model = self.new_model(scenario)\n model.run(scenario, learn=True)\n return model\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self):
total_weight = 0
total_prediction = 0
for rule in self._rules.values():
total_weight += rule.prediction_weight
total_prediction += rule.prediction * rule.prediction_weight
self._prediction = total_prediction / (total_weight or 1)
self._prediction_weight = total_weight
|
compute_prediction
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n total_weight = 0\n total_prediction = 0\n for rule in self._rules.values():\n total_weight += rule.prediction_weight\n total_prediction += rule.prediction * rule.prediction_weight\n self._prediction = total_prediction / (total_weight or 1)\n self._prediction_weight = total_weight\n",
"role": "user"
},
{
"content": "compute_prediction",
"role": "assistant"
}
] |
def x(self):
if self._best_prediction is None and self._action_sets:
self._best_prediction = max(action_set.prediction for action_set in
self._action_sets.values())
return self._best_prediction
|
best_prediction
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._best_prediction is None and self._action_sets:\n self._best_prediction = max(action_set.prediction for action_set in\n self._action_sets.values())\n return self._best_prediction\n",
"role": "user"
},
{
"content": "best_prediction",
"role": "assistant"
}
] |
def x(self):
if self._best_actions is None:
best_prediction = self.best_prediction
self._best_actions = tuple(action for action, action_set in self.
_action_sets.items() if action_set.prediction == best_prediction)
return self._best_actions
|
best_actions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._best_actions is None:\n best_prediction = self.best_prediction\n self._best_actions = tuple(action for action, action_set in self.\n _action_sets.items() if action_set.prediction == best_prediction)\n return self._best_actions\n",
"role": "user"
},
{
"content": "best_actions",
"role": "assistant"
}
] |
def x(self):
if self._selected_action is not None:
raise ValueError('The action has already been selected.')
strategy = self._algorithm.action_selection_strategy
self._selected_action = strategy(self)
return self._selected_action
|
select_action
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._selected_action is not None:\n raise ValueError('The action has already been selected.')\n strategy = self._algorithm.action_selection_strategy\n self._selected_action = strategy(self)\n return self._selected_action\n",
"role": "user"
},
{
"content": "select_action",
"role": "assistant"
}
] |
def x(self, action):
assert action in self._action_sets
if self._selected_action is not None:
raise ValueError('The action has already been selected.')
self._selected_action = action
|
set_selected_action
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, action):\n assert action in self._action_sets\n if self._selected_action is not None:\n raise ValueError('The action has already been selected.')\n self._selected_action = action\n",
"role": "user"
},
{
"content": "set_selected_action",
"role": "assistant"
}
] |
def x(self, payoff):
if self._selected_action is None:
raise ValueError('The action has not been selected yet.')
if self._closed:
raise ValueError(
'The payoff for this match set has alreadybeen applied.')
self._payoff = float(payoff)
|
set_payoff
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, payoff):\n if self._selected_action is None:\n raise ValueError('The action has not been selected yet.')\n if self._closed:\n raise ValueError(\n 'The payoff for this match set has alreadybeen applied.')\n self._payoff = float(payoff)\n",
"role": "user"
},
{
"content": "set_payoff",
"role": "assistant"
}
] |
def x(self, predecessor):
assert predecessor is None or isinstance(predecessor, MatchSet)
if predecessor is not None:
expectation = self._algorithm.get_future_expectation(self)
predecessor.payoff += expectation
|
pay
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, predecessor):\n assert predecessor is None or isinstance(predecessor, MatchSet)\n if predecessor is not None:\n expectation = self._algorithm.get_future_expectation(self)\n predecessor.payoff += expectation\n",
"role": "user"
},
{
"content": "pay",
"role": "assistant"
}
] |
def x(self):
if self._selected_action is None:
raise ValueError('The action has not been selected yet.')
if self._closed:
raise ValueError(
'The payoff for this match set has alreadybeen applied.')
self._algorithm.distribute_payoff(self)
self._payoff = 0
self._algorithm.update(self)
self._closed = True
|
apply_payoff
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._selected_action is None:\n raise ValueError('The action has not been selected yet.')\n if self._closed:\n raise ValueError(\n 'The payoff for this match set has alreadybeen applied.')\n self._algorithm.distribute_payoff(self)\n self._payoff = 0\n self._algorithm.update(self)\n self._closed = True\n",
"role": "user"
},
{
"content": "apply_payoff",
"role": "assistant"
}
] |
def x(self, situation):
by_action = {}
for condition, actions in self._population.items():
if not condition(situation):
continue
for action, rule in actions.items():
if action in by_action:
by_action[action][condition] = rule
else:
by_action[action] = {condition: rule}
match_set = MatchSet(self, situation, by_action)
if self._algorithm.covering_is_required(match_set):
rule = self._algorithm.cover(match_set)
assert rule.condition(situation)
replaced = self.add(rule)
for replaced_rule in replaced:
action = replaced_rule.action
condition = replaced_rule.condition
if action in by_action and condition in by_action[action]:
del by_action[action][condition]
if not by_action[action]:
del by_action[action]
if rule.action not in by_action:
by_action[rule.action] = {}
by_action[rule.action][rule.condition] = rule
match_set = MatchSet(self, situation, by_action)
return match_set
|
match
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, situation):\n by_action = {}\n for condition, actions in self._population.items():\n if not condition(situation):\n continue\n for action, rule in actions.items():\n if action in by_action:\n by_action[action][condition] = rule\n else:\n by_action[action] = {condition: rule}\n match_set = MatchSet(self, situation, by_action)\n if self._algorithm.covering_is_required(match_set):\n rule = self._algorithm.cover(match_set)\n assert rule.condition(situation)\n replaced = self.add(rule)\n for replaced_rule in replaced:\n action = replaced_rule.action\n condition = replaced_rule.condition\n if action in by_action and condition in by_action[action]:\n del by_action[action][condition]\n if not by_action[action]:\n del by_action[action]\n if rule.action not in by_action:\n by_action[rule.action] = {}\n by_action[rule.action][rule.condition] = rule\n match_set = MatchSet(self, situation, by_action)\n return match_set\n",
"role": "user"
},
{
"content": "match",
"role": "assistant"
}
] |
def x(self, rule):
assert isinstance(rule, ClassifierRule)
condition = rule.condition
action = rule.action
if condition not in self._population:
self._population[condition] = {}
if action in self._population[condition]:
existing_rule = self._population[condition][action]
existing_rule.numerosity += rule.numerosity
else:
self._population[condition][action] = rule
return self._algorithm.prune(self)
|
add
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rule):\n assert isinstance(rule, ClassifierRule)\n condition = rule.condition\n action = rule.action\n if condition not in self._population:\n self._population[condition] = {}\n if action in self._population[condition]:\n existing_rule = self._population[condition][action]\n existing_rule.numerosity += rule.numerosity\n else:\n self._population[condition][action] = rule\n return self._algorithm.prune(self)\n",
"role": "user"
},
{
"content": "add",
"role": "assistant"
}
] |
def x(self, rule, count=1):
assert isinstance(rule, ClassifierRule)
assert isinstance(count, int) and count >= 0
rule = self.get(rule)
if rule is None:
return False
rule.numerosity -= count
if rule.numerosity <= 0:
rule.numerosity = 0
del self._population[rule.condition][rule.action]
if not self._population[rule.condition]:
del self._population[rule.condition]
return True
return False
|
discard
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rule, count=1):\n assert isinstance(rule, ClassifierRule)\n assert isinstance(count, int) and count >= 0\n rule = self.get(rule)\n if rule is None:\n return False\n rule.numerosity -= count\n if rule.numerosity <= 0:\n rule.numerosity = 0\n del self._population[rule.condition][rule.action]\n if not self._population[rule.condition]:\n del self._population[rule.condition]\n return True\n return False\n",
"role": "user"
},
{
"content": "discard",
"role": "assistant"
}
] |
def x(self, rule, default=None):
assert isinstance(rule, ClassifierRule)
if (rule.condition not in self._population or rule.action not in self.
_population[rule.condition]):
return default
return self._population[rule.condition][rule.action]
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rule, default=None):\n assert isinstance(rule, ClassifierRule)\n if (rule.condition not in self._population or rule.action not in self.\n _population[rule.condition]):\n return default\n return self._population[rule.condition][rule.action]\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self, scenario, learn=True):
assert isinstance(scenario, scenarios.Scenario)
previous_match_set = None
while scenario.more():
situation = scenario.sense()
match_set = self.match(situation)
match_set.select_action()
reward = scenario.execute(match_set.selected_action)
if learn:
assert reward is not None
if scenario.is_dynamic:
if previous_match_set is not None:
match_set.pay(previous_match_set)
previous_match_set.apply_payoff()
match_set.payoff = reward
previous_match_set = match_set
else:
match_set.payoff = reward
match_set.apply_payoff()
if learn and previous_match_set is not None:
previous_match_set.apply_payoff()
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, scenario, learn=True):\n assert isinstance(scenario, scenarios.Scenario)\n previous_match_set = None\n while scenario.more():\n situation = scenario.sense()\n match_set = self.match(situation)\n match_set.select_action()\n reward = scenario.execute(match_set.selected_action)\n if learn:\n assert reward is not None\n if scenario.is_dynamic:\n if previous_match_set is not None:\n match_set.pay(previous_match_set)\n previous_match_set.apply_payoff()\n match_set.payoff = reward\n previous_match_set = match_set\n else:\n match_set.payoff = reward\n match_set.apply_payoff()\n if learn and previous_match_set is not None:\n previous_match_set.apply_payoff()\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(system, user, local, include_missing):
if not (system or user or local):
system = user = local = True
for path in get_configfile_paths(system=system, user=user, local=local,
only_existing=not include_missing):
click.echo(path)
|
ls
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(system, user, local, include_missing):\n if not (system or user or local):\n system = user = local = True\n for path in get_configfile_paths(system=system, user=user, local=local,\n only_existing=not include_missing):\n click.echo(path)\n",
"role": "user"
},
{
"content": "ls",
"role": "assistant"
}
] |
def x(config_file, profile):
try:
section = load_profile_from_files([config_file] if config_file else
None, profile)
click.echo('Configuration file: {}'.format(config_file if
config_file else 'auto-detected'))
click.echo('Profile: {}'.format(profile if profile else
'auto-detected'))
click.echo('---')
for key, val in section.items():
click.echo('{} = {}'.format(key, val))
except (ValueError, ConfigFileReadError, ConfigFileParseError) as e:
click.echo(e)
|
inspect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(config_file, profile):\n try:\n section = load_profile_from_files([config_file] if config_file else\n None, profile)\n click.echo('Configuration file: {}'.format(config_file if\n config_file else 'auto-detected'))\n click.echo('Profile: {}'.format(profile if profile else\n 'auto-detected'))\n click.echo('---')\n for key, val in section.items():\n click.echo('{} = {}'.format(key, val))\n except (ValueError, ConfigFileReadError, ConfigFileParseError) as e:\n click.echo(e)\n",
"role": "user"
},
{
"content": "inspect",
"role": "assistant"
}
] |
def x(config_file, profile):
if config_file:
click.echo('Using configuration file: {}'.format(config_file))
else:
config_file = get_configfile_path()
if config_file:
click.echo('Found existing configuration file: {}'.format(
config_file))
else:
config_file = get_default_configfile_path()
click.echo(
'Configuration file not found; the default location is: {}'
.format(config_file))
config_file = default_text_input('Configuration file path', config_file
)
config_file = os.path.expanduser(config_file)
config_base = os.path.dirname(config_file)
if config_base and not os.path.exists(config_base):
if click.confirm('Configuration file path does not exist. Create it?',
abort=True):
try:
os.makedirs(config_base)
except Exception as e:
click.echo('Error creating configuration path: {}'.format(e))
return 1
try:
config = load_config_from_files([config_file])
except:
config = get_default_config()
if profile:
click.echo('Using profile: {}'.format(profile))
else:
existing = config.sections()
if existing:
profiles = 'create new or choose from: {}'.format(', '.join(
existing))
default_profile = ''
else:
profiles = 'create new'
default_profile = 'prod'
profile = default_text_input('Profile (%s)' % profiles,
default_profile, optional=False)
if not config.has_section(profile):
config.add_section(profile)
variables = 'endpoint token client solver proxy'.split()
prompts = ['API endpoint URL', 'Authentication token',
'Default client class (qpu or sw)', 'Default solver']
for var, prompt in zip(variables, prompts):
default_val = config.get(profile, var, fallback=None)
val = default_text_input(prompt, default_val)
if val:
val = os.path.expandvars(val)
if val != default_val:
config.set(profile, var, val)
try:
with open(config_file, 'w') as fp:
config.write(fp)
except Exception as e:
click.echo('Error writing to configuration file: {}'.format(e))
return 2
click.echo('Configuration saved.')
return 0
|
create
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(config_file, profile):\n if config_file:\n click.echo('Using configuration file: {}'.format(config_file))\n else:\n config_file = get_configfile_path()\n if config_file:\n click.echo('Found existing configuration file: {}'.format(\n config_file))\n else:\n config_file = get_default_configfile_path()\n click.echo(\n 'Configuration file not found; the default location is: {}'\n .format(config_file))\n config_file = default_text_input('Configuration file path', config_file\n )\n config_file = os.path.expanduser(config_file)\n config_base = os.path.dirname(config_file)\n if config_base and not os.path.exists(config_base):\n if click.confirm('Configuration file path does not exist. Create it?',\n abort=True):\n try:\n os.makedirs(config_base)\n except Exception as e:\n click.echo('Error creating configuration path: {}'.format(e))\n return 1\n try:\n config = load_config_from_files([config_file])\n except:\n config = get_default_config()\n if profile:\n click.echo('Using profile: {}'.format(profile))\n else:\n existing = config.sections()\n if existing:\n profiles = 'create new or choose from: {}'.format(', '.join(\n existing))\n default_profile = ''\n else:\n profiles = 'create new'\n default_profile = 'prod'\n profile = default_text_input('Profile (%s)' % profiles,\n default_profile, optional=False)\n if not config.has_section(profile):\n config.add_section(profile)\n variables = 'endpoint token client solver proxy'.split()\n prompts = ['API endpoint URL', 'Authentication token',\n 'Default client class (qpu or sw)', 'Default solver']\n for var, prompt in zip(variables, prompts):\n default_val = config.get(profile, var, fallback=None)\n val = default_text_input(prompt, default_val)\n if val:\n val = os.path.expandvars(val)\n if val != default_val:\n config.set(profile, var, val)\n try:\n with open(config_file, 'w') as fp:\n config.write(fp)\n except Exception as e:\n click.echo('Error writing to configuration file: {}'.format(e))\n return 2\n click.echo('Configuration saved.')\n return 0\n",
"role": "user"
},
{
"content": "create",
"role": "assistant"
}
] |
def x(config_file, profile, solver_def, request_timeout, polling_timeout,
output):
config = dict(config_file=config_file, profile=profile, solver=solver_def)
if request_timeout is not None:
config.update(request_timeout=request_timeout)
if polling_timeout is not None:
config.update(polling_timeout=polling_timeout)
try:
client = Client.from_config(**config)
except Exception as e:
raise CLIError('Invalid configuration: {}'.format(e), code=1)
if config_file:
output('Using configuration file: {config_file}', config_file=
config_file)
if profile:
output('Using profile: {profile}', profile=profile)
output('Using endpoint: {endpoint}', endpoint=client.endpoint)
t0 = timer()
try:
solver = client.get_solver()
except SolverAuthenticationError:
raise CLIError(
'Authentication error. Check credentials in your configuration file.'
, 2)
except SolverNotFoundError:
raise CLIError('Solver not available.', 6)
except (InvalidAPIResponseError, UnsupportedSolverError):
raise CLIError('Invalid or unexpected API response.', 3)
except RequestTimeout:
raise CLIError('API connection timed out.', 4)
except requests.exceptions.SSLError as e:
if 'CERTIFICATE_VERIFY_FAILED' in str(e):
raise CLIError(
'Certificate verification failed. Please check that your API endpoint is correct. If you are connecting to a private or third-party D-Wave system that uses self-signed certificate(s), please see https://support.dwavesys.com/hc/en-us/community/posts/360018930954.'
, 5)
raise CLIError('Unexpected SSL error while fetching solver: {!r}'.
format(e), 5)
except Exception as e:
raise CLIError('Unexpected error while fetching solver: {!r}'.
format(e), 5)
t1 = timer()
output('Using solver: {solver_id}', solver_id=solver.id)
try:
future = solver.sample_ising({(0): 1}, {})
timing = future.timing
except RequestTimeout:
raise CLIError('API connection timed out.', 8)
except PollingTimeout:
raise CLIError('Polling timeout exceeded.', 9)
except Exception as e:
raise CLIError('Sampling error: {!r}'.format(e), 10)
finally:
output('Submitted problem ID: {problem_id}', problem_id=future.id)
t2 = timer()
output('\nWall clock time:')
output(' * Solver definition fetch: {wallclock_solver_definition:.3f} ms',
wallclock_solver_definition=(t1 - t0) * 1000.0)
output(' * Problem submit and results fetch: {wallclock_sampling:.3f} ms',
wallclock_sampling=(t2 - t1) * 1000.0)
output(' * Total: {wallclock_total:.3f} ms', wallclock_total=(t2 - t0) *
1000.0)
if timing.items():
output('\nQPU timing:')
for component, duration in timing.items():
output(' * %(name)s = {%(name)s} us' % {'name': component}, **{
component: duration})
else:
output('\nQPU timing data not available.')
|
ping
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(config_file, profile, solver_def, request_timeout, polling_timeout,\n output):\n config = dict(config_file=config_file, profile=profile, solver=solver_def)\n if request_timeout is not None:\n config.update(request_timeout=request_timeout)\n if polling_timeout is not None:\n config.update(polling_timeout=polling_timeout)\n try:\n client = Client.from_config(**config)\n except Exception as e:\n raise CLIError('Invalid configuration: {}'.format(e), code=1)\n if config_file:\n output('Using configuration file: {config_file}', config_file=\n config_file)\n if profile:\n output('Using profile: {profile}', profile=profile)\n output('Using endpoint: {endpoint}', endpoint=client.endpoint)\n t0 = timer()\n try:\n solver = client.get_solver()\n except SolverAuthenticationError:\n raise CLIError(\n 'Authentication error. Check credentials in your configuration file.'\n , 2)\n except SolverNotFoundError:\n raise CLIError('Solver not available.', 6)\n except (InvalidAPIResponseError, UnsupportedSolverError):\n raise CLIError('Invalid or unexpected API response.', 3)\n except RequestTimeout:\n raise CLIError('API connection timed out.', 4)\n except requests.exceptions.SSLError as e:\n if 'CERTIFICATE_VERIFY_FAILED' in str(e):\n raise CLIError(\n 'Certificate verification failed. Please check that your API endpoint is correct. If you are connecting to a private or third-party D-Wave system that uses self-signed certificate(s), please see https://support.dwavesys.com/hc/en-us/community/posts/360018930954.'\n , 5)\n raise CLIError('Unexpected SSL error while fetching solver: {!r}'.\n format(e), 5)\n except Exception as e:\n raise CLIError('Unexpected error while fetching solver: {!r}'.\n format(e), 5)\n t1 = timer()\n output('Using solver: {solver_id}', solver_id=solver.id)\n try:\n future = solver.sample_ising({(0): 1}, {})\n timing = future.timing\n except RequestTimeout:\n raise CLIError('API connection timed out.', 8)\n except PollingTimeout:\n raise CLIError('Polling timeout exceeded.', 9)\n except Exception as e:\n raise CLIError('Sampling error: {!r}'.format(e), 10)\n finally:\n output('Submitted problem ID: {problem_id}', problem_id=future.id)\n t2 = timer()\n output('\\nWall clock time:')\n output(' * Solver definition fetch: {wallclock_solver_definition:.3f} ms',\n wallclock_solver_definition=(t1 - t0) * 1000.0)\n output(' * Problem submit and results fetch: {wallclock_sampling:.3f} ms',\n wallclock_sampling=(t2 - t1) * 1000.0)\n output(' * Total: {wallclock_total:.3f} ms', wallclock_total=(t2 - t0) *\n 1000.0)\n if timing.items():\n output('\\nQPU timing:')\n for component, duration in timing.items():\n output(' * %(name)s = {%(name)s} us' % {'name': component}, **{\n component: duration})\n else:\n output('\\nQPU timing data not available.')\n",
"role": "user"
},
{
"content": "ping",
"role": "assistant"
}
] |
def x(config_file, profile, solver_def, json_output, request_timeout,
polling_timeout):
now = utcnow()
info = dict(datetime=now.isoformat(), timestamp=datetime_to_timestamp(
now), code=0)
def x(fmt, **kwargs):
info.update(kwargs)
if not json_output:
click.echo(fmt.format(**kwargs))
def x():
if json_output:
click.echo(json.dumps(info))
try:
_ping(config_file, profile, solver_def, request_timeout,
polling_timeout, output)
except CLIError as error:
output('Error: {error} (code: {code})', error=str(error), code=
error.code)
sys.exit(error.code)
except Exception as error:
output('Unhandled error: {error}', error=str(error))
sys.exit(127)
finally:
flush()
|
ping
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(config_file, profile, solver_def, json_output, request_timeout,\n polling_timeout):\n now = utcnow()\n info = dict(datetime=now.isoformat(), timestamp=datetime_to_timestamp(\n now), code=0)\n\n def x(fmt, **kwargs):\n info.update(kwargs)\n if not json_output:\n click.echo(fmt.format(**kwargs))\n\n def x():\n if json_output:\n click.echo(json.dumps(info))\n try:\n _ping(config_file, profile, solver_def, request_timeout,\n polling_timeout, output)\n except CLIError as error:\n output('Error: {error} (code: {code})', error=str(error), code=\n error.code)\n sys.exit(error.code)\n except Exception as error:\n output('Unhandled error: {error}', error=str(error))\n sys.exit(127)\n finally:\n flush()\n",
"role": "user"
},
{
"content": "ping",
"role": "assistant"
}
] |
def x(config_file, profile, solver_def, list_solvers):
with Client.from_config(config_file=config_file, profile=profile,
solver=solver_def) as client:
try:
solvers = client.get_solvers(**client.default_solver)
except SolverNotFoundError:
click.echo('Solver(s) {} not found.'.format(solver_def))
return 1
if list_solvers:
for solver in solvers:
click.echo(solver.id)
return
for solver in solvers:
click.echo('Solver: {}'.format(solver.id))
click.echo(' Parameters:')
for name, val in sorted(solver.parameters.items()):
click.echo(' {}: {}'.format(name, strtrunc(val) if val else
'?'))
solver.properties.pop('parameters', None)
click.echo(' Properties:')
for name, val in sorted(solver.properties.items()):
click.echo(' {}: {}'.format(name, strtrunc(val)))
click.echo(' Derived properties:')
for name in sorted(solver.derived_properties):
click.echo(' {}: {}'.format(name, strtrunc(getattr(
solver, name))))
click.echo()
|
solvers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(config_file, profile, solver_def, list_solvers):\n with Client.from_config(config_file=config_file, profile=profile,\n solver=solver_def) as client:\n try:\n solvers = client.get_solvers(**client.default_solver)\n except SolverNotFoundError:\n click.echo('Solver(s) {} not found.'.format(solver_def))\n return 1\n if list_solvers:\n for solver in solvers:\n click.echo(solver.id)\n return\n for solver in solvers:\n click.echo('Solver: {}'.format(solver.id))\n click.echo(' Parameters:')\n for name, val in sorted(solver.parameters.items()):\n click.echo(' {}: {}'.format(name, strtrunc(val) if val else\n '?'))\n solver.properties.pop('parameters', None)\n click.echo(' Properties:')\n for name, val in sorted(solver.properties.items()):\n click.echo(' {}: {}'.format(name, strtrunc(val)))\n click.echo(' Derived properties:')\n for name in sorted(solver.derived_properties):\n click.echo(' {}: {}'.format(name, strtrunc(getattr(\n solver, name))))\n click.echo()\n",
"role": "user"
},
{
"content": "solvers",
"role": "assistant"
}
] |
def x(config_file, profile, solver_def, biases, couplings, random_problem,
num_reads, verbose):
def x(s, maxlen=100):
click.echo(s if verbose else strtrunc(s, maxlen))
try:
client = Client.from_config(config_file=config_file, profile=
profile, solver=solver_def)
except Exception as e:
click.echo('Invalid configuration: {}'.format(e))
return 1
if config_file:
echo('Using configuration file: {}'.format(config_file))
if profile:
echo('Using profile: {}'.format(profile))
echo('Using endpoint: {}'.format(client.endpoint))
try:
solver = client.get_solver()
except SolverAuthenticationError:
click.echo(
'Authentication error. Check credentials in your configuration file.'
)
return 1
except (InvalidAPIResponseError, UnsupportedSolverError):
click.echo('Invalid or unexpected API response.')
return 2
except SolverNotFoundError:
click.echo('Solver with the specified features does not exist.')
return 3
echo('Using solver: {}'.format(solver.id))
if random_problem:
linear, quadratic = generate_random_ising_problem(solver)
else:
try:
linear = ast.literal_eval(biases) if biases else []
except Exception as e:
click.echo('Invalid biases: {}'.format(e))
try:
quadratic = ast.literal_eval(couplings) if couplings else {}
except Exception as e:
click.echo('Invalid couplings: {}'.format(e))
echo('Using qubit biases: {!r}'.format(linear))
echo('Using qubit couplings: {!r}'.format(quadratic))
echo('Number of samples: {}'.format(num_reads))
try:
result = solver.sample_ising(linear, quadratic, num_reads=num_reads
).result()
except Exception as e:
click.echo(e)
return 4
if verbose:
click.echo('Result: {!r}'.format(result))
echo('Samples: {!r}'.format(result['samples']))
echo('Occurrences: {!r}'.format(result['occurrences']))
echo('Energies: {!r}'.format(result['energies']))
|
sample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(config_file, profile, solver_def, biases, couplings, random_problem,\n num_reads, verbose):\n\n def x(s, maxlen=100):\n click.echo(s if verbose else strtrunc(s, maxlen))\n try:\n client = Client.from_config(config_file=config_file, profile=\n profile, solver=solver_def)\n except Exception as e:\n click.echo('Invalid configuration: {}'.format(e))\n return 1\n if config_file:\n echo('Using configuration file: {}'.format(config_file))\n if profile:\n echo('Using profile: {}'.format(profile))\n echo('Using endpoint: {}'.format(client.endpoint))\n try:\n solver = client.get_solver()\n except SolverAuthenticationError:\n click.echo(\n 'Authentication error. Check credentials in your configuration file.'\n )\n return 1\n except (InvalidAPIResponseError, UnsupportedSolverError):\n click.echo('Invalid or unexpected API response.')\n return 2\n except SolverNotFoundError:\n click.echo('Solver with the specified features does not exist.')\n return 3\n echo('Using solver: {}'.format(solver.id))\n if random_problem:\n linear, quadratic = generate_random_ising_problem(solver)\n else:\n try:\n linear = ast.literal_eval(biases) if biases else []\n except Exception as e:\n click.echo('Invalid biases: {}'.format(e))\n try:\n quadratic = ast.literal_eval(couplings) if couplings else {}\n except Exception as e:\n click.echo('Invalid couplings: {}'.format(e))\n echo('Using qubit biases: {!r}'.format(linear))\n echo('Using qubit couplings: {!r}'.format(quadratic))\n echo('Number of samples: {}'.format(num_reads))\n try:\n result = solver.sample_ising(linear, quadratic, num_reads=num_reads\n ).result()\n except Exception as e:\n click.echo(e)\n return 4\n if verbose:\n click.echo('Result: {!r}'.format(result))\n echo('Samples: {!r}'.format(result['samples']))\n echo('Occurrences: {!r}'.format(result['occurrences']))\n echo('Energies: {!r}'.format(result['energies']))\n",
"role": "user"
},
{
"content": "sample",
"role": "assistant"
}
] |
def x(samplerate, params, num_samples=256):
amplitude = params['mod_amplitude']
frequency = params['mod_frequency']
def x():
start_time = 0
while True:
time = start_time + np.arange(num_samples) / samplerate
start_time += num_samples / samplerate
output = amplitude * np.cos(2 * np.pi * frequency * time)
yield output
return lambda p=producer(): next(p)
|
get_input_callback
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(samplerate, params, num_samples=256):\n amplitude = params['mod_amplitude']\n frequency = params['mod_frequency']\n\n def x():\n start_time = 0\n while True:\n time = start_time + np.arange(num_samples) / samplerate\n start_time += num_samples / samplerate\n output = amplitude * np.cos(2 * np.pi * frequency * time)\n yield output\n return lambda p=producer(): next(p)\n",
"role": "user"
},
{
"content": "get_input_callback",
"role": "assistant"
}
] |
def x(resampler, samplerate, params):
def x(outdata, frames, time, _):
last_fmphase = getattr(callback, 'last_fmphase', 0)
df = params['fm_gain'] * resampler.read(frames)
df = np.pad(df, (0, frames - len(df)), mode='constant')
t = time.outputBufferDacTime + np.arange(frames) / samplerate
phase = 2 * np.pi * params['carrier_frequency'] * t
fmphase = last_fmphase + 2 * np.pi * np.cumsum(df) / samplerate
outdata[:, 0] = params['output_volume'] * np.cos(phase + fmphase)
callback.last_fmphase = fmphase[-1]
return callback
|
get_playback_callback
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(resampler, samplerate, params):\n\n def x(outdata, frames, time, _):\n last_fmphase = getattr(callback, 'last_fmphase', 0)\n df = params['fm_gain'] * resampler.read(frames)\n df = np.pad(df, (0, frames - len(df)), mode='constant')\n t = time.outputBufferDacTime + np.arange(frames) / samplerate\n phase = 2 * np.pi * params['carrier_frequency'] * t\n fmphase = last_fmphase + 2 * np.pi * np.cumsum(df) / samplerate\n outdata[:, 0] = params['output_volume'] * np.cos(phase + fmphase)\n callback.last_fmphase = fmphase[-1]\n return callback\n",
"role": "user"
},
{
"content": "get_playback_callback",
"role": "assistant"
}
] |
def x(source_samplerate, target_samplerate, params, converter_type):
from time import sleep
ratio = target_samplerate / source_samplerate
with sr.CallbackResampler(get_input_callback(source_samplerate, params),
ratio, converter_type) as resampler, sd.OutputStream(channels=1,
samplerate=target_samplerate, callback=get_playback_callback(
resampler, target_samplerate, params)):
print('Playing back... Ctrl+C to stop.')
try:
while True:
sleep(1)
except KeyboardInterrupt:
print('Aborting.')
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(source_samplerate, target_samplerate, params, converter_type):\n from time import sleep\n ratio = target_samplerate / source_samplerate\n with sr.CallbackResampler(get_input_callback(source_samplerate, params),\n ratio, converter_type) as resampler, sd.OutputStream(channels=1,\n samplerate=target_samplerate, callback=get_playback_callback(\n resampler, target_samplerate, params)):\n print('Playing back... Ctrl+C to stop.')\n try:\n while True:\n sleep(1)\n except KeyboardInterrupt:\n print('Aborting.')\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(self, **params):
properties = self.properties
if self.software or not params:
return properties['num_reads_range'][1]
_, duration = properties['problem_run_duration_range']
annealing_time = params.get('annealing_time', properties[
'default_annealing_time'])
readout_thermalization = params.get('readout_thermalization',
properties['default_readout_thermalization'])
programming_thermalization = params.get('programming_thermalization',
properties['default_programming_thermalization'])
return min(properties['num_reads_range'][1], int((duration -
programming_thermalization) / (annealing_time +
readout_thermalization)))
|
max_num_reads
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **params):\n properties = self.properties\n if self.software or not params:\n return properties['num_reads_range'][1]\n _, duration = properties['problem_run_duration_range']\n annealing_time = params.get('annealing_time', properties[\n 'default_annealing_time'])\n readout_thermalization = params.get('readout_thermalization',\n properties['default_readout_thermalization'])\n programming_thermalization = params.get('programming_thermalization',\n properties['default_programming_thermalization'])\n return min(properties['num_reads_range'][1], int((duration -\n programming_thermalization) / (annealing_time +\n readout_thermalization)))\n",
"role": "user"
},
{
"content": "max_num_reads",
"role": "assistant"
}
] |
def x(self, linear, quadratic, **params):
return self._sample('ising', linear, quadratic, params)
|
sample_ising
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, linear, quadratic, **params):\n return self._sample('ising', linear, quadratic, params)\n",
"role": "user"
},
{
"content": "sample_ising",
"role": "assistant"
}
] |
def x(self, qubo, **params):
linear = {i1: v for (i1, i2), v in uniform_iterator(qubo) if i1 == i2}
quadratic = {(i1, i2): v for (i1, i2), v in uniform_iterator(qubo) if
i1 != i2}
return self._sample('qubo', linear, quadratic, params)
|
sample_qubo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, qubo, **params):\n linear = {i1: v for (i1, i2), v in uniform_iterator(qubo) if i1 == i2}\n quadratic = {(i1, i2): v for (i1, i2), v in uniform_iterator(qubo) if \n i1 != i2}\n return self._sample('qubo', linear, quadratic, params)\n",
"role": "user"
},
{
"content": "sample_qubo",
"role": "assistant"
}
] |
def x(self, type_, linear, quadratic, params):
if not self.check_problem(linear, quadratic):
raise ValueError('Problem graph incompatible with solver.')
combined_params = dict(self._params)
combined_params.update(params)
for key in combined_params:
if key not in self.parameters and not key.startswith('x_'):
raise KeyError('{} is not a parameter of this solver.'.format(key))
self._format_params(type_, combined_params)
body = json.dumps({'solver': self.id, 'data': encode_bqm_as_qp(self,
linear, quadratic), 'type': type_, 'params': combined_params})
_LOGGER.trace('Encoded sample request: %s', body)
future = Future(solver=self, id_=None, return_matrix=self.return_matrix,
submission_data=(type_, linear, quadratic, params))
_LOGGER.debug('Submitting new problem to: %s', self.id)
self.client._submit(body, future)
return future
|
sample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, type_, linear, quadratic, params):\n if not self.check_problem(linear, quadratic):\n raise ValueError('Problem graph incompatible with solver.')\n combined_params = dict(self._params)\n combined_params.update(params)\n for key in combined_params:\n if key not in self.parameters and not key.startswith('x_'):\n raise KeyError('{} is not a parameter of this solver.'.format(key))\n self._format_params(type_, combined_params)\n body = json.dumps({'solver': self.id, 'data': encode_bqm_as_qp(self,\n linear, quadratic), 'type': type_, 'params': combined_params})\n _LOGGER.trace('Encoded sample request: %s', body)\n future = Future(solver=self, id_=None, return_matrix=self.return_matrix,\n submission_data=(type_, linear, quadratic, params))\n _LOGGER.debug('Submitting new problem to: %s', self.id)\n self.client._submit(body, future)\n return future\n",
"role": "user"
},
{
"content": "sample",
"role": "assistant"
}
] |
def x(self, type_, params):
if 'initial_state' in params:
initial_state = params['initial_state']
if isinstance(initial_state, Mapping):
initial_state_list = [3] * self.properties['num_qubits']
low = -1 if type_ == 'ising' else 0
for v, val in initial_state.items():
if val == 3:
continue
if val <= 0:
initial_state_list[v] = low
else:
initial_state_list[v] = 1
params['initial_state'] = initial_state_list
|
format_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, type_, params):\n if 'initial_state' in params:\n initial_state = params['initial_state']\n if isinstance(initial_state, Mapping):\n initial_state_list = [3] * self.properties['num_qubits']\n low = -1 if type_ == 'ising' else 0\n for v, val in initial_state.items():\n if val == 3:\n continue\n if val <= 0:\n initial_state_list[v] = low\n else:\n initial_state_list[v] = 1\n params['initial_state'] = initial_state_list\n",
"role": "user"
},
{
"content": "format_params",
"role": "assistant"
}
] |
def x(self, linear, quadratic):
for key, value in uniform_iterator(linear):
if value != 0 and key not in self.nodes:
return False
for key, value in uniform_iterator(quadratic):
if value != 0 and tuple(key) not in self.edges:
return False
return True
|
check_problem
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, linear, quadratic):\n for key, value in uniform_iterator(linear):\n if value != 0 and key not in self.nodes:\n return False\n for key, value in uniform_iterator(quadratic):\n if value != 0 and tuple(key) not in self.edges:\n return False\n return True\n",
"role": "user"
},
{
"content": "check_problem",
"role": "assistant"
}
] |
def x(self, id_):
future = Future(self, id_, self.return_matrix, None)
self.client._poll(future)
return future
|
retrieve_problem
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, id_):\n future = Future(self, id_, self.return_matrix, None)\n self.client._poll(future)\n return future\n",
"role": "user"
},
{
"content": "retrieve_problem",
"role": "assistant"
}
] |
def x(identifier):
if isinstance(identifier, str):
return ConverterType[identifier]
if isinstance(identifier, ConverterType):
return identifier
return ConverterType(identifier)
|
get_converter_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(identifier):\n if isinstance(identifier, str):\n return ConverterType[identifier]\n if isinstance(identifier, ConverterType):\n return identifier\n return ConverterType(identifier)\n",
"role": "user"
},
{
"content": "get_converter_type",
"role": "assistant"
}
] |
def x(input_data, ratio, converter_type='sinc_best', verbose=False):
from samplerate.lowlevel import src_simple
from samplerate.exceptions import ResamplingError
input_data = np.require(input_data, requirements='C', dtype=np.float32)
if input_data.ndim == 2:
num_frames, channels = input_data.shape
output_shape = int(num_frames * ratio), channels
elif input_data.ndim == 1:
num_frames, channels = input_data.size, 1
output_shape = int(num_frames * ratio),
else:
raise ValueError('rank > 2 not supported')
output_data = np.empty(output_shape, dtype=np.float32)
converter_type = _get_converter_type(converter_type)
error, input_frames_used, output_frames_gen = src_simple(input_data,
output_data, ratio, converter_type.value, channels)
if error != 0:
raise ResamplingError(error)
if verbose:
info = (
'samplerate info:\n{} input frames used\n{} output frames generated\n'
.format(input_frames_used, output_frames_gen))
print(info)
return output_data[:output_frames_gen, :] if channels > 1 else output_data[
:output_frames_gen]
|
resample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input_data, ratio, converter_type='sinc_best', verbose=False):\n from samplerate.lowlevel import src_simple\n from samplerate.exceptions import ResamplingError\n input_data = np.require(input_data, requirements='C', dtype=np.float32)\n if input_data.ndim == 2:\n num_frames, channels = input_data.shape\n output_shape = int(num_frames * ratio), channels\n elif input_data.ndim == 1:\n num_frames, channels = input_data.size, 1\n output_shape = int(num_frames * ratio),\n else:\n raise ValueError('rank > 2 not supported')\n output_data = np.empty(output_shape, dtype=np.float32)\n converter_type = _get_converter_type(converter_type)\n error, input_frames_used, output_frames_gen = src_simple(input_data,\n output_data, ratio, converter_type.value, channels)\n if error != 0:\n raise ResamplingError(error)\n if verbose:\n info = (\n 'samplerate info:\\n{} input frames used\\n{} output frames generated\\n'\n .format(input_frames_used, output_frames_gen))\n print(info)\n return output_data[:output_frames_gen, :] if channels > 1 else output_data[\n :output_frames_gen]\n",
"role": "user"
},
{
"content": "resample",
"role": "assistant"
}
] |
def x(self, new_ratio):
from samplerate.lowlevel import src_set_ratio
return src_set_ratio(self._state, new_ratio)
|
set_ratio
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, new_ratio):\n from samplerate.lowlevel import src_set_ratio\n return src_set_ratio(self._state, new_ratio)\n",
"role": "user"
},
{
"content": "set_ratio",
"role": "assistant"
}
] |
def x(self, input_data, ratio, end_of_input=False, verbose=False):
from samplerate.lowlevel import src_process
from samplerate.exceptions import ResamplingError
input_data = np.require(input_data, requirements='C', dtype=np.float32)
if input_data.ndim == 2:
num_frames, channels = input_data.shape
output_shape = int(num_frames * ratio), channels
elif input_data.ndim == 1:
num_frames, channels = input_data.size, 1
output_shape = int(num_frames * ratio),
else:
raise ValueError('rank > 2 not supported')
if channels != self._channels:
raise ValueError('Invalid number of channels in input data.')
output_data = np.empty(output_shape, dtype=np.float32)
error, input_frames_used, output_frames_gen = src_process(self._state,
input_data, output_data, ratio, end_of_input)
if error != 0:
raise ResamplingError(error)
if verbose:
info = (
'samplerate info:\n{} input frames used\n{} output frames generated\n'
.format(input_frames_used, output_frames_gen))
print(info)
return output_data[:output_frames_gen, :] if channels > 1 else output_data[
:output_frames_gen]
|
process
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_data, ratio, end_of_input=False, verbose=False):\n from samplerate.lowlevel import src_process\n from samplerate.exceptions import ResamplingError\n input_data = np.require(input_data, requirements='C', dtype=np.float32)\n if input_data.ndim == 2:\n num_frames, channels = input_data.shape\n output_shape = int(num_frames * ratio), channels\n elif input_data.ndim == 1:\n num_frames, channels = input_data.size, 1\n output_shape = int(num_frames * ratio),\n else:\n raise ValueError('rank > 2 not supported')\n if channels != self._channels:\n raise ValueError('Invalid number of channels in input data.')\n output_data = np.empty(output_shape, dtype=np.float32)\n error, input_frames_used, output_frames_gen = src_process(self._state,\n input_data, output_data, ratio, end_of_input)\n if error != 0:\n raise ResamplingError(error)\n if verbose:\n info = (\n 'samplerate info:\\n{} input frames used\\n{} output frames generated\\n'\n .format(input_frames_used, output_frames_gen))\n print(info)\n return output_data[:output_frames_gen, :] if channels > 1 else output_data[\n :output_frames_gen]\n",
"role": "user"
},
{
"content": "process",
"role": "assistant"
}
] |
def x(self):
from samplerate.lowlevel import ffi, src_callback_new, src_delete
from samplerate.exceptions import ResamplingError
state, handle, error = src_callback_new(self._callback, self.
_converter_type.value, self._channels)
if error != 0:
raise ResamplingError(error)
self._state = ffi.gc(state, src_delete)
self._handle = handle
|
create
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n from samplerate.lowlevel import ffi, src_callback_new, src_delete\n from samplerate.exceptions import ResamplingError\n state, handle, error = src_callback_new(self._callback, self.\n _converter_type.value, self._channels)\n if error != 0:\n raise ResamplingError(error)\n self._state = ffi.gc(state, src_delete)\n self._handle = handle\n",
"role": "user"
},
{
"content": "create",
"role": "assistant"
}
] |
def x(self, ratio):
from samplerate.lowlevel import src_set_ratio
if self._state is None:
self._create()
src_set_ratio(self._state, ratio)
self.ratio = ratio
|
set_starting_ratio
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ratio):\n from samplerate.lowlevel import src_set_ratio\n if self._state is None:\n self._create()\n src_set_ratio(self._state, ratio)\n self.ratio = ratio\n",
"role": "user"
},
{
"content": "set_starting_ratio",
"role": "assistant"
}
] |
def x(self):
from samplerate.lowlevel import src_reset
if self._state is None:
self._create()
src_reset(self._state)
|
reset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n from samplerate.lowlevel import src_reset\n if self._state is None:\n self._create()\n src_reset(self._state)\n",
"role": "user"
},
{
"content": "reset",
"role": "assistant"
}
] |
def x(self, num_frames):
from samplerate.lowlevel import src_callback_read, src_error
from samplerate.exceptions import ResamplingError
if self._state is None:
self._create()
if self._channels > 1:
output_shape = num_frames, self._channels
elif self._channels == 1:
output_shape = num_frames,
output_data = np.empty(output_shape, dtype=np.float32)
ret = src_callback_read(self._state, self._ratio, num_frames, output_data)
if ret == 0:
error = src_error(self._state)
if error:
raise ResamplingError(error)
return output_data[:ret, :] if self._channels > 1 else output_data[:ret]
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, num_frames):\n from samplerate.lowlevel import src_callback_read, src_error\n from samplerate.exceptions import ResamplingError\n if self._state is None:\n self._create()\n if self._channels > 1:\n output_shape = num_frames, self._channels\n elif self._channels == 1:\n output_shape = num_frames,\n output_data = np.empty(output_shape, dtype=np.float32)\n ret = src_callback_read(self._state, self._ratio, num_frames, output_data)\n if ret == 0:\n error = src_error(self._state)\n if error:\n raise ResamplingError(error)\n return output_data[:ret, :] if self._channels > 1 else output_data[:ret]\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(seq):
m = get_mean(seq)
return sum((v - m) ** 2 for v in seq) / float(len(seq))
|
get_variance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq):\n m = get_mean(seq)\n return sum((v - m) ** 2 for v in seq) / float(len(seq))\n",
"role": "user"
},
{
"content": "get_variance",
"role": "assistant"
}
] |
def x(seq, correct):
assert len(seq) == len(correct)
diffs = [abs(a - b) for a, b in zip(seq, correct)]
return sum(diffs) / float(len(diffs))
|
mean_absolute_error
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq, correct):\n assert len(seq) == len(correct)\n diffs = [abs(a - b) for a, b in zip(seq, correct)]\n return sum(diffs) / float(len(diffs))\n",
"role": "user"
},
{
"content": "mean_absolute_error",
"role": "assistant"
}
] |
def x(seq):
s = float(sum(seq))
return [(v / s) for v in seq]
|
normalize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq):\n s = float(sum(seq))\n return [(v / s) for v in seq]\n",
"role": "user"
},
{
"content": "normalize",
"role": "assistant"
}
] |
def x(x, mu, sigma):
t = x - mu
y = 0.5 * erfcc(-t / (sigma * math.sqrt(2.0)))
if y > 1.0:
y = 1.0
return y
|
normcdf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, mu, sigma):\n t = x - mu\n y = 0.5 * erfcc(-t / (sigma * math.sqrt(2.0)))\n if y > 1.0:\n y = 1.0\n return y\n",
"role": "user"
},
{
"content": "normcdf",
"role": "assistant"
}
] |
def x(x, mu, sigma):
u = (x - mu) / abs(sigma)
y = 1 / (math.sqrt(2 * pi) * abs(sigma)) * math.exp(-u * u / 2)
return y
|
normpdf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, mu, sigma):\n u = (x - mu) / abs(sigma)\n y = 1 / (math.sqrt(2 * pi) * abs(sigma)) * math.exp(-u * u / 2)\n return y\n",
"role": "user"
},
{
"content": "normpdf",
"role": "assistant"
}
] |
def x(data, class_attr=None, method=DEFAULT_DISCRETE_METRIC):
assert class_attr is None and isinstance(data, dict
) or class_attr is not None and isinstance(data, list)
if isinstance(data, dict):
counts = data
else:
counts = defaultdict(float)
for record in data:
counts[record.get(class_attr)] += 1.0
len_data = float(sum(cnt for _, cnt in iteritems(counts)))
n = max(2, len(counts))
total = float(sum(counts.values()))
assert total, 'There must be at least one non-zero count.'
try:
if method == ENTROPY1:
return -sum(count / len_data * math.log(count / len_data, n) for
count in itervalues(counts) if count)
elif method == ENTROPY2:
return -sum(count / len_data * math.log(count / len_data, n) for
count in itervalues(counts) if count) - (len(counts) - 1
) / float(total)
elif method == ENTROPY3:
return -sum(count / len_data * math.log(count / len_data, n) for
count in itervalues(counts) if count) - 100 * ((len(counts) -
1) / float(total))
else:
raise Exception('Unknown entropy method %s.' % method)
except Exception:
raise
|
entropy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, class_attr=None, method=DEFAULT_DISCRETE_METRIC):\n assert class_attr is None and isinstance(data, dict\n ) or class_attr is not None and isinstance(data, list)\n if isinstance(data, dict):\n counts = data\n else:\n counts = defaultdict(float)\n for record in data:\n counts[record.get(class_attr)] += 1.0\n len_data = float(sum(cnt for _, cnt in iteritems(counts)))\n n = max(2, len(counts))\n total = float(sum(counts.values()))\n assert total, 'There must be at least one non-zero count.'\n try:\n if method == ENTROPY1:\n return -sum(count / len_data * math.log(count / len_data, n) for\n count in itervalues(counts) if count)\n elif method == ENTROPY2:\n return -sum(count / len_data * math.log(count / len_data, n) for\n count in itervalues(counts) if count) - (len(counts) - 1\n ) / float(total)\n elif method == ENTROPY3:\n return -sum(count / len_data * math.log(count / len_data, n) for\n count in itervalues(counts) if count) - 100 * ((len(counts) -\n 1) / float(total))\n else:\n raise Exception('Unknown entropy method %s.' % method)\n except Exception:\n raise\n",
"role": "user"
},
{
"content": "entropy",
"role": "assistant"
}
] |
def x(data, class_attr=None, method=DEFAULT_CONTINUOUS_METRIC):
assert method in CONTINUOUS_METRICS, 'Unknown entropy variance metric: %s' % (
method,)
assert class_attr is None and isinstance(data, dict
) or class_attr is not None and isinstance(data, list)
if isinstance(data, dict):
lst = data
else:
lst = [record.get(class_attr) for record in data]
return get_variance(lst)
|
entropy_variance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, class_attr=None, method=DEFAULT_CONTINUOUS_METRIC):\n assert method in CONTINUOUS_METRICS, 'Unknown entropy variance metric: %s' % (\n method,)\n assert class_attr is None and isinstance(data, dict\n ) or class_attr is not None and isinstance(data, list)\n if isinstance(data, dict):\n lst = data\n else:\n lst = [record.get(class_attr) for record in data]\n return get_variance(lst)\n",
"role": "user"
},
{
"content": "entropy_variance",
"role": "assistant"
}
] |
def x(data, attr, class_attr, method=DEFAULT_DISCRETE_METRIC, only_sub=0,
prefer_fewer_values=False, entropy_func=None):
entropy_func = entropy_func or entropy
val_freq = defaultdict(float)
subset_entropy = 0.0
for record in data:
val_freq[record.get(attr)] += 1.0
for val in val_freq.keys():
val_prob = val_freq[val] / sum(val_freq.values())
data_subset = [record for record in data if record.get(attr) == val]
e = entropy_func(data_subset, class_attr, method=method)
subset_entropy += val_prob * e
if only_sub:
return subset_entropy
main_entropy = entropy_func(data, class_attr, method=method)
if prefer_fewer_values:
return main_entropy - subset_entropy, 1.0 / len(val_freq)
else:
return main_entropy - subset_entropy
|
get_gain
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, attr, class_attr, method=DEFAULT_DISCRETE_METRIC, only_sub=0,\n prefer_fewer_values=False, entropy_func=None):\n entropy_func = entropy_func or entropy\n val_freq = defaultdict(float)\n subset_entropy = 0.0\n for record in data:\n val_freq[record.get(attr)] += 1.0\n for val in val_freq.keys():\n val_prob = val_freq[val] / sum(val_freq.values())\n data_subset = [record for record in data if record.get(attr) == val]\n e = entropy_func(data_subset, class_attr, method=method)\n subset_entropy += val_prob * e\n if only_sub:\n return subset_entropy\n main_entropy = entropy_func(data, class_attr, method=method)\n if prefer_fewer_values:\n return main_entropy - subset_entropy, 1.0 / len(val_freq)\n else:\n return main_entropy - subset_entropy\n",
"role": "user"
},
{
"content": "get_gain",
"role": "assistant"
}
] |
def x(data, class_attr):
if is_continuous(data[0][class_attr]):
return CDist(seq=[record[class_attr] for record in data])
else:
return most_frequent([record[class_attr] for record in data])
|
majority_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, class_attr):\n if is_continuous(data[0][class_attr]):\n return CDist(seq=[record[class_attr] for record in data])\n else:\n return most_frequent([record[class_attr] for record in data])\n",
"role": "user"
},
{
"content": "majority_value",
"role": "assistant"
}
] |
def x(lst):
lst = lst[:]
highest_freq = 0
most_freq = None
for val in unique(lst):
if lst.count(val) > highest_freq:
most_freq = val
highest_freq = lst.count(val)
return most_freq
|
most_frequent
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lst):\n lst = lst[:]\n highest_freq = 0\n most_freq = None\n for val in unique(lst):\n if lst.count(val) > highest_freq:\n most_freq = val\n highest_freq = lst.count(val)\n return most_freq\n",
"role": "user"
},
{
"content": "most_frequent",
"role": "assistant"
}
] |
def x(lst):
lst = lst[:]
unique_lst = []
for item in lst:
if unique_lst.count(item) <= 0:
unique_lst.append(item)
return unique_lst
|
unique
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lst):\n lst = lst[:]\n unique_lst = []\n for item in lst:\n if unique_lst.count(item) <= 0:\n unique_lst.append(item)\n return unique_lst\n",
"role": "user"
},
{
"content": "unique",
"role": "assistant"
}
] |
def x(data, attributes, class_attr, fitness, method):
best = -1e1000, None
for attr in attributes:
if attr == class_attr:
continue
gain = fitness(data, attr, class_attr, method=method)
best = max(best, (gain, attr))
return best[1]
|
choose_attribute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, attributes, class_attr, fitness, method):\n best = -1e1000, None\n for attr in attributes:\n if attr == class_attr:\n continue\n gain = fitness(data, attr, class_attr, method=method)\n best = max(best, (gain, attr))\n return best[1]\n",
"role": "user"
},
{
"content": "choose_attribute",
"role": "assistant"
}
] |
def x(data, attributes, class_attr, fitness_func, wrapper, **kwargs):
split_attr = kwargs.get('split_attr', None)
split_val = kwargs.get('split_val', None)
assert class_attr not in attributes
node = None
data = list(data) if isinstance(data, Data) else data
if wrapper.is_continuous_class:
stop_value = CDist(seq=[r[class_attr] for r in data])
stop = (wrapper.leaf_threshold is not None and stop_value.variance <=
wrapper.leaf_threshold)
else:
stop_value = DDist(seq=[r[class_attr] for r in data])
stop = len(stop_value.counts) <= 1
if not data or len(attributes) <= 0:
if wrapper:
wrapper.leaf_count += 1
return stop_value
elif stop:
if wrapper:
wrapper.leaf_count += 1
return stop_value
else:
best = choose_attribute(data, attributes, class_attr, fitness_func,
method=wrapper.metric)
node = Node(tree=wrapper, attr_name=best)
node.n += len(data)
for val in get_values(data, best):
subtree = create_decision_tree([r for r in data if r[best] ==
val], [attr for attr in attributes if attr != best],
class_attr, fitness_func, split_attr=best, split_val=val,
wrapper=wrapper)
if isinstance(subtree, Node):
node._branches[val] = subtree
elif isinstance(subtree, (CDist, DDist)):
node.set_leaf_dist(attr_value=val, dist=subtree)
else:
raise Exception('Unknown subtree type: %s' % (type(subtree),))
return node
|
create_decision_tree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, attributes, class_attr, fitness_func, wrapper, **kwargs):\n split_attr = kwargs.get('split_attr', None)\n split_val = kwargs.get('split_val', None)\n assert class_attr not in attributes\n node = None\n data = list(data) if isinstance(data, Data) else data\n if wrapper.is_continuous_class:\n stop_value = CDist(seq=[r[class_attr] for r in data])\n stop = (wrapper.leaf_threshold is not None and stop_value.variance <=\n wrapper.leaf_threshold)\n else:\n stop_value = DDist(seq=[r[class_attr] for r in data])\n stop = len(stop_value.counts) <= 1\n if not data or len(attributes) <= 0:\n if wrapper:\n wrapper.leaf_count += 1\n return stop_value\n elif stop:\n if wrapper:\n wrapper.leaf_count += 1\n return stop_value\n else:\n best = choose_attribute(data, attributes, class_attr, fitness_func,\n method=wrapper.metric)\n node = Node(tree=wrapper, attr_name=best)\n node.n += len(data)\n for val in get_values(data, best):\n subtree = create_decision_tree([r for r in data if r[best] ==\n val], [attr for attr in attributes if attr != best],\n class_attr, fitness_func, split_attr=best, split_val=val,\n wrapper=wrapper)\n if isinstance(subtree, Node):\n node._branches[val] = subtree\n elif isinstance(subtree, (CDist, DDist)):\n node.set_leaf_dist(attr_value=val, dist=subtree)\n else:\n raise Exception('Unknown subtree type: %s' % (type(subtree),))\n return node\n",
"role": "user"
},
{
"content": "create_decision_tree",
"role": "assistant"
}
] |
def x(self, k, count=1):
self.counts[k] += count
self.total += count
|
add
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, k, count=1):\n self.counts[k] += count\n self.total += count\n",
"role": "user"
},
{
"content": "add",
"role": "assistant"
}
] |
def x(self):
b = -1e1000, None
for k, c in iteritems(self.counts):
b = max(b, (c, k))
return b[1]
|
best
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n b = -1e1000, None\n for k, c in iteritems(self.counts):\n b = max(b, (c, k))\n return b[1]\n",
"role": "user"
},
{
"content": "best",
"role": "assistant"
}
] |
def x(self):
return [(k, self.counts[k] / float(self.total)) for k in iterkeys(self.
counts)]
|
probs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return [(k, self.counts[k] / float(self.total)) for k in iterkeys(self.\n counts)]\n",
"role": "user"
},
{
"content": "probs",
"role": "assistant"
}
] |
def x(self, dist):
assert isinstance(dist, DDist)
for k, c in iteritems(dist.counts):
self.counts[k] += c
self.total += dist.total
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dist):\n assert isinstance(dist, DDist)\n for k, c in iteritems(dist.counts):\n self.counts[k] += c\n self.total += dist.total\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self, x):
if self.mean is None:
return
return normdist(x=x, mu=self.mean, sigma=self.standard_deviation)
|
probability_lt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x):\n if self.mean is None:\n return\n return normdist(x=x, mu=self.mean, sigma=self.standard_deviation)\n",
"role": "user"
},
{
"content": "probability_lt",
"role": "assistant"
}
] |
def x(self, a, b):
if self.mean is None:
return
p1 = normdist(x=a, mu=self.mean, sigma=self.standard_deviation)
p2 = normdist(x=b, mu=self.mean, sigma=self.standard_deviation)
return abs(p1 - p2)
|
probability_in
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, a, b):\n if self.mean is None:\n return\n p1 = normdist(x=a, mu=self.mean, sigma=self.standard_deviation)\n p2 = normdist(x=b, mu=self.mean, sigma=self.standard_deviation)\n return abs(p1 - p2)\n",
"role": "user"
},
{
"content": "probability_in",
"role": "assistant"
}
] |
def x(self, x):
if self.mean is None:
return
p = normdist(x=x, mu=self.mean, sigma=self.standard_deviation)
return 1 - p
|
probability_gt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x):\n if self.mean is None:\n return\n p = normdist(x=x, mu=self.mean, sigma=self.standard_deviation)\n return 1 - p\n",
"role": "user"
},
{
"content": "probability_gt",
"role": "assistant"
}
] |
def x(self):
return type(self)([], order=list(self.header_modes), types=self.
header_types.copy(), modes=self.header_modes.copy())
|
copy_no_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return type(self)([], order=list(self.header_modes), types=self.\n header_types.copy(), modes=self.header_modes.copy())\n",
"role": "user"
},
{
"content": "copy_no_data",
"role": "assistant"
}
] |
def x(self, name, value):
if name not in self.header_types:
return False
t = self.header_types[name]
if t == ATTR_TYPE_DISCRETE:
return isinstance(value, int)
elif t == ATTR_TYPE_CONTINUOUS:
return isinstance(value, (float, Decimal))
return True
|
is_valid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, value):\n if name not in self.header_types:\n return False\n t = self.header_types[name]\n if t == ATTR_TYPE_DISCRETE:\n return isinstance(value, int)\n elif t == ATTR_TYPE_CONTINUOUS:\n return isinstance(value, (float, Decimal))\n return True\n",
"role": "user"
},
{
"content": "is_valid",
"role": "assistant"
}
] |
def x(self):
if not self.filename or self.header_types:
return
rows = csv.reader(open(self.filename))
header = next(rows)
self.header_types = {}
self._class_attr_name = None
self.header_order = []
for el in header:
matches = ATTR_HEADER_PATTERN.findall(el)
assert matches, 'Invalid header element: %s' % (el,)
el_name, el_type, el_mode = matches[0]
el_name = el_name.strip()
self.header_order.append(el_name)
self.header_types[el_name] = el_type
if el_mode == ATTR_MODE_CLASS:
assert self._class_attr_name is None, 'Multiple class attributes are not supported.'
self._class_attr_name = el_name
else:
assert self.header_types[el_name
] != ATTR_TYPE_CONTINUOUS, 'Non-class continuous attributes are not supported.'
assert self._class_attr_name, 'A class attribute must be specified.'
|
read_header
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self.filename or self.header_types:\n return\n rows = csv.reader(open(self.filename))\n header = next(rows)\n self.header_types = {}\n self._class_attr_name = None\n self.header_order = []\n for el in header:\n matches = ATTR_HEADER_PATTERN.findall(el)\n assert matches, 'Invalid header element: %s' % (el,)\n el_name, el_type, el_mode = matches[0]\n el_name = el_name.strip()\n self.header_order.append(el_name)\n self.header_types[el_name] = el_type\n if el_mode == ATTR_MODE_CLASS:\n assert self._class_attr_name is None, 'Multiple class attributes are not supported.'\n self._class_attr_name = el_name\n else:\n assert self.header_types[el_name\n ] != ATTR_TYPE_CONTINUOUS, 'Non-class continuous attributes are not supported.'\n assert self._class_attr_name, 'A class attribute must be specified.'\n",
"role": "user"
},
{
"content": "read_header",
"role": "assistant"
}
] |
def x(self, row):
clean_row = {}
if isinstance(row, (tuple, list)):
assert self.header_order, 'No attribute order specified.'
assert len(row) == len(self.header_order
), 'Row length does not match header length.'
itr = zip(self.header_order, row)
else:
assert isinstance(row, dict)
itr = iteritems(row)
for el_name, el_value in itr:
if self.header_types[el_name] == ATTR_TYPE_DISCRETE:
clean_row[el_name] = int(el_value)
elif self.header_types[el_name] == ATTR_TYPE_CONTINUOUS:
clean_row[el_name] = float(el_value)
else:
clean_row[el_name] = el_value
return clean_row
|
validate_row
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, row):\n clean_row = {}\n if isinstance(row, (tuple, list)):\n assert self.header_order, 'No attribute order specified.'\n assert len(row) == len(self.header_order\n ), 'Row length does not match header length.'\n itr = zip(self.header_order, row)\n else:\n assert isinstance(row, dict)\n itr = iteritems(row)\n for el_name, el_value in itr:\n if self.header_types[el_name] == ATTR_TYPE_DISCRETE:\n clean_row[el_name] = int(el_value)\n elif self.header_types[el_name] == ATTR_TYPE_CONTINUOUS:\n clean_row[el_name] = float(el_value)\n else:\n clean_row[el_name] = el_value\n return clean_row\n",
"role": "user"
},
{
"content": "validate_row",
"role": "assistant"
}
] |
def x(self, ratio=0.5, leave_one_out=False):
a_labels = set()
a = self.copy_no_data()
b = self.copy_no_data()
for row in self:
if leave_one_out and not self.is_continuous_class:
label = row[self.class_attribute_name]
if label not in a_labels:
a_labels.add(label)
a.data.append(row)
else:
b.data.append(row)
elif not a:
a.data.append(row)
elif not b:
b.data.append(row)
elif random.random() <= ratio:
a.data.append(row)
else:
b.data.append(row)
return a, b
|
split
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ratio=0.5, leave_one_out=False):\n a_labels = set()\n a = self.copy_no_data()\n b = self.copy_no_data()\n for row in self:\n if leave_one_out and not self.is_continuous_class:\n label = row[self.class_attribute_name]\n if label not in a_labels:\n a_labels.add(label)\n a.data.append(row)\n else:\n b.data.append(row)\n elif not a:\n a.data.append(row)\n elif not b:\n b.data.append(row)\n elif random.random() <= ratio:\n a.data.append(row)\n else:\n b.data.append(row)\n return a, b\n",
"role": "user"
},
{
"content": "split",
"role": "assistant"
}
] |
def x(self, record):
if self.attr_name is None:
return
attr = self.attr_name
attr_value = record[attr]
attr_values = self.get_values(attr)
if attr_value in attr_values:
return attr_value
else:
policy = self.tree.missing_value_policy.get(attr)
assert policy, 'No missing value policy specified for attribute %s.' % (
attr,)
if policy == USE_NEAREST:
assert self.tree.data.header_types[attr] in (ATTR_TYPE_DISCRETE,
ATTR_TYPE_CONTINUOUS
), 'The use-nearest policy is invalid for nominal types.'
nearest = 1e1000, None
for _value in attr_values:
nearest = min(nearest, (abs(_value - attr_value), _value))
_, nearest_value = nearest
return nearest_value
else:
raise Exception('Unknown missing value policy: %s' % (policy,))
|
get_attribute_value_for_node
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, record):\n if self.attr_name is None:\n return\n attr = self.attr_name\n attr_value = record[attr]\n attr_values = self.get_values(attr)\n if attr_value in attr_values:\n return attr_value\n else:\n policy = self.tree.missing_value_policy.get(attr)\n assert policy, 'No missing value policy specified for attribute %s.' % (\n attr,)\n if policy == USE_NEAREST:\n assert self.tree.data.header_types[attr] in (ATTR_TYPE_DISCRETE,\n ATTR_TYPE_CONTINUOUS\n ), 'The use-nearest policy is invalid for nominal types.'\n nearest = 1e1000, None\n for _value in attr_values:\n nearest = min(nearest, (abs(_value - attr_value), _value))\n _, nearest_value = nearest\n return nearest_value\n else:\n raise Exception('Unknown missing value policy: %s' % (policy,))\n",
"role": "user"
},
{
"content": "get_attribute_value_for_node",
"role": "assistant"
}
] |
def x(self, attr_name):
ret = list(self._attr_value_cdist[attr_name].keys()) + list(self.
_attr_value_counts[attr_name].keys()) + list(self._branches.keys())
ret = set(ret)
return ret
|
get_values
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, attr_name):\n ret = list(self._attr_value_cdist[attr_name].keys()) + list(self.\n _attr_value_counts[attr_name].keys()) + list(self._branches.keys())\n ret = set(ret)\n return ret\n",
"role": "user"
},
{
"content": "get_values",
"role": "assistant"
}
] |
def x(self):
best = -1e1000, None
for attr in self.attributes:
best = max(best, (self.get_gain(attr), attr))
best_gain, best_attr = best
return best_attr
|
get_best_splitting_attr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n best = -1e1000, None\n for attr in self.attributes:\n best = max(best, (self.get_gain(attr), attr))\n best_gain, best_attr = best\n return best_attr\n",
"role": "user"
},
{
"content": "get_best_splitting_attr",
"role": "assistant"
}
] |
def x(self, attr_name=None, attr_value=None):
is_con = self.tree.data.is_continuous_class
if is_con:
if attr_name is None:
var = self._class_cdist.variance
else:
var = self._attr_value_cdist[attr_name][attr_value].variance
if self.tree.metric == VARIANCE1 or attr_name is None:
return var
elif self.tree.metric == VARIANCE2:
unique_value_count = len(self._attr_value_counts[attr_name])
attr_total = float(self._attr_value_count_totals[attr_name])
return var * (unique_value_count / attr_total)
else:
if attr_name is None:
total = float(self._class_ddist.total)
counts = self._class_ddist.counts
unique_value_count = len(self._class_ddist.counts)
attr_total = total
else:
total = float(self._attr_value_counts[attr_name][attr_value])
counts = self._attr_class_value_counts[attr_name][attr_value]
unique_value_count = len(self._attr_value_counts[attr_name])
attr_total = float(self._attr_value_count_totals[attr_name])
assert total, 'There must be at least one non-zero count.'
n = max(2, len(counts))
if self._tree.metric == ENTROPY1:
return -sum(count / total * math.log(count / total, n) for
count in itervalues(counts))
elif self._tree.metric == ENTROPY2:
return -sum(count / total * math.log(count / total, n) for
count in itervalues(counts)) + unique_value_count / attr_total
elif self._tree.metric == ENTROPY3:
return -sum(count / total * math.log(count / total, n) for
count in itervalues(counts)) + 100 * (unique_value_count /
attr_total)
|
get_entropy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, attr_name=None, attr_value=None):\n is_con = self.tree.data.is_continuous_class\n if is_con:\n if attr_name is None:\n var = self._class_cdist.variance\n else:\n var = self._attr_value_cdist[attr_name][attr_value].variance\n if self.tree.metric == VARIANCE1 or attr_name is None:\n return var\n elif self.tree.metric == VARIANCE2:\n unique_value_count = len(self._attr_value_counts[attr_name])\n attr_total = float(self._attr_value_count_totals[attr_name])\n return var * (unique_value_count / attr_total)\n else:\n if attr_name is None:\n total = float(self._class_ddist.total)\n counts = self._class_ddist.counts\n unique_value_count = len(self._class_ddist.counts)\n attr_total = total\n else:\n total = float(self._attr_value_counts[attr_name][attr_value])\n counts = self._attr_class_value_counts[attr_name][attr_value]\n unique_value_count = len(self._attr_value_counts[attr_name])\n attr_total = float(self._attr_value_count_totals[attr_name])\n assert total, 'There must be at least one non-zero count.'\n n = max(2, len(counts))\n if self._tree.metric == ENTROPY1:\n return -sum(count / total * math.log(count / total, n) for\n count in itervalues(counts))\n elif self._tree.metric == ENTROPY2:\n return -sum(count / total * math.log(count / total, n) for\n count in itervalues(counts)) + unique_value_count / attr_total\n elif self._tree.metric == ENTROPY3:\n return -sum(count / total * math.log(count / total, n) for\n count in itervalues(counts)) + 100 * (unique_value_count /\n attr_total)\n",
"role": "user"
},
{
"content": "get_entropy",
"role": "assistant"
}
] |
def x(self, attr_name):
subset_entropy = 0.0
for value in iterkeys(self._attr_value_counts[attr_name]):
value_prob = self.get_value_prob(attr_name, value)
e = self.get_entropy(attr_name, value)
subset_entropy += value_prob * e
return self.main_entropy - subset_entropy
|
get_gain
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, attr_name):\n subset_entropy = 0.0\n for value in iterkeys(self._attr_value_counts[attr_name]):\n value_prob = self.get_value_prob(attr_name, value)\n e = self.get_entropy(attr_name, value)\n subset_entropy += value_prob * e\n return self.main_entropy - subset_entropy\n",
"role": "user"
},
{
"content": "get_gain",
"role": "assistant"
}
] |
def x(self, attr_name, attr_value):
assert not self.tree.data.is_continuous_class, 'Discrete distributions are only maintained for ' + 'discrete class types.'
ddist = DDist()
cls_counts = self._attr_class_value_counts[attr_name][attr_value]
for cls_value, cls_count in iteritems(cls_counts):
ddist.add(cls_value, count=cls_count)
return ddist
|
get_value_ddist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, attr_name, attr_value):\n assert not self.tree.data.is_continuous_class, 'Discrete distributions are only maintained for ' + 'discrete class types.'\n ddist = DDist()\n cls_counts = self._attr_class_value_counts[attr_name][attr_value]\n for cls_value, cls_count in iteritems(cls_counts):\n ddist.add(cls_value, count=cls_count)\n return ddist\n",
"role": "user"
},
{
"content": "get_value_ddist",
"role": "assistant"
}
] |
def x(self, attr_name, value):
if attr_name not in self._attr_value_count_totals:
return
n = self._attr_value_counts[attr_name][value]
d = self._attr_value_count_totals[attr_name]
return n / float(d)
|
get_value_prob
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, attr_name, value):\n if attr_name not in self._attr_value_count_totals:\n return\n n = self._attr_value_counts[attr_name][value]\n d = self._attr_value_count_totals[attr_name]\n return n / float(d)\n",
"role": "user"
},
{
"content": "get_value_prob",
"role": "assistant"
}
] |
def x(self, record, depth=0):
if not self.ready_to_predict:
raise NodeNotReadyToPredict
attr_value = self._get_attribute_value_for_node(record)
if self.attr_name:
if attr_value in self._branches:
try:
return self._branches[attr_value].predict(record, depth=
depth + 1)
except NodeNotReadyToPredict:
pass
if self.attr_name:
if self._tree.data.is_continuous_class:
return self._attr_value_cdist[self.attr_name][attr_value].copy()
else:
return self.get_value_ddist(self.attr_name, attr_value)
elif self._tree.data.is_continuous_class:
assert self._class_cdist is not None
return self._class_cdist.copy()
else:
return self._class_ddist.copy()
|
predict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, record, depth=0):\n if not self.ready_to_predict:\n raise NodeNotReadyToPredict\n attr_value = self._get_attribute_value_for_node(record)\n if self.attr_name:\n if attr_value in self._branches:\n try:\n return self._branches[attr_value].predict(record, depth=\n depth + 1)\n except NodeNotReadyToPredict:\n pass\n if self.attr_name:\n if self._tree.data.is_continuous_class:\n return self._attr_value_cdist[self.attr_name][attr_value].copy()\n else:\n return self.get_value_ddist(self.attr_name, attr_value)\n elif self._tree.data.is_continuous_class:\n assert self._class_cdist is not None\n return self._class_cdist.copy()\n else:\n return self._class_ddist.copy()\n",
"role": "user"
},
{
"content": "predict",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.