source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self): if self.channel_open: try: self.backend.cancel(self.consumer_tag) except KeyError: pass
cancel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.channel_open:\n try:\n self.backend.cancel(self.consumer_tag)\n except KeyError:\n pass\n", "role": "user" }, { "content": "cancel", "role": "assistant" } ]
def x(self): self.cancel() self.backend.close() self._closed = True
close
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.cancel()\n self.backend.close()\n self._closed = True\n", "role": "user" }, { "content": "close", "role": "assistant" } ]
def x(self, prefetch_size=0, prefetch_count=0, apply_global=False): return self.backend.qos(prefetch_size, prefetch_count, apply_global)
qos
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, prefetch_size=0, prefetch_count=0, apply_global=False):\n return self.backend.qos(prefetch_size, prefetch_count, apply_global)\n", "role": "user" }, { "content": "qos", "role": "assistant" } ]
def x(self): self.backend.exchange_declare(exchange=self.exchange, type=self. exchange_type, durable=self.durable, auto_delete=self.auto_delete)
declare
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.backend.exchange_declare(exchange=self.exchange, type=self.\n exchange_type, durable=self.durable, auto_delete=self.auto_delete)\n", "role": "user" }, { "content": "declare", "role": "assistant" } ]
def x(self, message_data, delivery_mode=None, priority=None, content_type= None, content_encoding=None, serializer=None): delivery_mode = delivery_mode or self.delivery_mode if not content_type: serializer = serializer or self.serializer content_type, content_encoding, message_data = serialization.encode( message_data, serializer=serializer) elif isinstance(message_data, unicode): if not content_encoding: content_encoding = 'utf-8' message_data = message_data.encode(content_encoding) elif not content_encoding: content_encoding = 'binary' return self.backend.prepare_message(message_data, delivery_mode, priority=priority, content_type=content_type, content_encoding= content_encoding)
create_message
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, message_data, delivery_mode=None, priority=None, content_type=\n None, content_encoding=None, serializer=None):\n delivery_mode = delivery_mode or self.delivery_mode\n if not content_type:\n serializer = serializer or self.serializer\n content_type, content_encoding, message_data = serialization.encode(\n message_data, serializer=serializer)\n elif isinstance(message_data, unicode):\n if not content_encoding:\n content_encoding = 'utf-8'\n message_data = message_data.encode(content_encoding)\n elif not content_encoding:\n content_encoding = 'binary'\n return self.backend.prepare_message(message_data, delivery_mode,\n priority=priority, content_type=content_type, content_encoding=\n content_encoding)\n", "role": "user" }, { "content": "create_message", "role": "assistant" } ]
def x(self, message_data, routing_key=None, delivery_mode=None, mandatory= False, immediate=False, priority=0, content_type=None, content_encoding =None, serializer=None, exchange=None): headers = None routing_key = routing_key or self.routing_key if self.exchange_type == 'headers': headers, routing_key = routing_key, '' exchange = exchange or self.exchange message = self.create_message(message_data, priority=priority, delivery_mode=delivery_mode, content_type=content_type, content_encoding=content_encoding, serializer=serializer) self.backend.publish(message, exchange=exchange, routing_key= routing_key, mandatory=mandatory, immediate=immediate, headers=headers)
send
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, message_data, routing_key=None, delivery_mode=None, mandatory=\n False, immediate=False, priority=0, content_type=None, content_encoding\n =None, serializer=None, exchange=None):\n headers = None\n routing_key = routing_key or self.routing_key\n if self.exchange_type == 'headers':\n headers, routing_key = routing_key, ''\n exchange = exchange or self.exchange\n message = self.create_message(message_data, priority=priority,\n delivery_mode=delivery_mode, content_type=content_type,\n content_encoding=content_encoding, serializer=serializer)\n self.backend.publish(message, exchange=exchange, routing_key=\n routing_key, mandatory=mandatory, immediate=immediate, headers=headers)\n", "role": "user" }, { "content": "send", "role": "assistant" } ]
def x(self, message_data, delivery_mode=None): self.publisher.send(message_data, delivery_mode=delivery_mode)
send
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, message_data, delivery_mode=None):\n self.publisher.send(message_data, delivery_mode=delivery_mode)\n", "role": "user" }, { "content": "send", "role": "assistant" } ]
def x(self): self.consumer.close() self.publisher.close() self._closed = True
close
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.consumer.close()\n self.publisher.close()\n self._closed = True\n", "role": "user" }, { "content": "close", "role": "assistant" } ]
def x(self, queue, **options): options.setdefault('routing_key', options.pop('binding_key', None)) consumer = Consumer(self.connection, queue=queue, backend=self.backend, **options) self.consumers.append(consumer) return consumer
add_consumer_from_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, queue, **options):\n options.setdefault('routing_key', options.pop('binding_key', None))\n consumer = Consumer(self.connection, queue=queue, backend=self.backend,\n **options)\n self.consumers.append(consumer)\n return consumer\n", "role": "user" }, { "content": "add_consumer_from_dict", "role": "assistant" } ]
def x(self, consumer): consumer.backend = self.backend self.consumers.append(consumer)
add_consumer
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, consumer):\n consumer.backend = self.backend\n self.consumers.append(consumer)\n", "role": "user" }, { "content": "add_consumer", "role": "assistant" } ]
def x(self, consumer, nowait=False): if consumer.queue not in self._open_consumers: callback = (consumer.callbacks and consumer._receive_callback or self._receive_callback) self.backend.declare_consumer(queue=consumer.queue, no_ack=consumer .no_ack, nowait=nowait, callback=callback, consumer_tag= consumer.consumer_tag) self._open_consumers[consumer.queue] = consumer.consumer_tag
declare_consumer
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, consumer, nowait=False):\n if consumer.queue not in self._open_consumers:\n callback = (consumer.callbacks and consumer._receive_callback or\n self._receive_callback)\n self.backend.declare_consumer(queue=consumer.queue, no_ack=consumer\n .no_ack, nowait=nowait, callback=callback, consumer_tag=\n consumer.consumer_tag)\n self._open_consumers[consumer.queue] = consumer.consumer_tag\n", "role": "user" }, { "content": "declare_consumer", "role": "assistant" } ]
def x(self): head = self.consumers[:-1] tail = self.consumers[-1] [self._declare_consumer(consumer, nowait=True) for consumer in head] self._declare_consumer(tail, nowait=False)
consume
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n head = self.consumers[:-1]\n tail = self.consumers[-1]\n [self._declare_consumer(consumer, nowait=True) for consumer in head]\n self._declare_consumer(tail, nowait=False)\n", "role": "user" }, { "content": "consume", "role": "assistant" } ]
def x(self, limit=None): self.consume() return self.backend.consume(limit=limit)
iterconsume
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, limit=None):\n self.consume()\n return self.backend.consume(limit=limit)\n", "role": "user" }, { "content": "iterconsume", "role": "assistant" } ]
def x(self): for consumer_tag in self._open_consumers.values(): try: self.backend.cancel(consumer_tag) except KeyError: pass self._open_consumers.clear()
cancel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for consumer_tag in self._open_consumers.values():\n try:\n self.backend.cancel(consumer_tag)\n except KeyError:\n pass\n self._open_consumers.clear()\n", "role": "user" }, { "content": "cancel", "role": "assistant" } ]
def x(source, destination=None, backup_dir=None): try: import pypandoc except ImportError: os.system('pip install pypandoc') import pypandoc destination = destination or os.path.splitext(source)[0] + '.rst' backup_dir = backup_dir or os.path.join(os.path.dirname(destination), 'bak' ) bak_name = os.path.basename(destination) + time.strftime( '.%Y%m%d%H%M%S.bak') bak_path = os.path.join(backup_dir, bak_name) if os.path.isfile(destination): if not os.path.isdir(os.path.dirname(bak_path)): os.mkdir(os.path.dirname(bak_path)) os.rename(destination, bak_path) try: pypandoc.convert(source, 'rst', format='md', outputfile=destination) except: if os.path.isfile(destination): os.remove(destination) if os.path.isfile(bak_path): os.rename(bak_path, destination) raise
convert_md_to_rst
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(source, destination=None, backup_dir=None):\n try:\n import pypandoc\n except ImportError:\n os.system('pip install pypandoc')\n import pypandoc\n destination = destination or os.path.splitext(source)[0] + '.rst'\n backup_dir = backup_dir or os.path.join(os.path.dirname(destination), 'bak'\n )\n bak_name = os.path.basename(destination) + time.strftime(\n '.%Y%m%d%H%M%S.bak')\n bak_path = os.path.join(backup_dir, bak_name)\n if os.path.isfile(destination):\n if not os.path.isdir(os.path.dirname(bak_path)):\n os.mkdir(os.path.dirname(bak_path))\n os.rename(destination, bak_path)\n try:\n pypandoc.convert(source, 'rst', format='md', outputfile=destination)\n except:\n if os.path.isfile(destination):\n os.remove(destination)\n if os.path.isfile(bak_path):\n os.rename(bak_path, destination)\n raise\n", "role": "user" }, { "content": "convert_md_to_rst", "role": "assistant" } ]
def x(base_path=None): if base_path: path = os.path.join(base_path, 'README.md') else: path = 'README.md' convert_md_to_rst(path) print('Successfully converted README.md to README.rst')
build_readme
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(base_path=None):\n if base_path:\n path = os.path.join(base_path, 'README.md')\n else:\n path = 'README.md'\n convert_md_to_rst(path)\n print('Successfully converted README.md to README.rst')\n", "role": "user" }, { "content": "build_readme", "role": "assistant" } ]
def x(self): self.current_situation = bitstrings.BitString([random.randrange(2) for _ in range(self.address_size + (1 << self.address_size))]) return self.current_situation
sense
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.current_situation = bitstrings.BitString([random.randrange(2) for\n _ in range(self.address_size + (1 << self.address_size))])\n return self.current_situation\n", "role": "user" }, { "content": "sense", "role": "assistant" } ]
def x(self, action): assert action in self.possible_actions self.remaining_cycles -= 1 index = int(bitstrings.BitString(self.current_situation[:self. address_size])) bit = self.current_situation[self.address_size + index] return action == bit
execute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, action):\n assert action in self.possible_actions\n self.remaining_cycles -= 1\n index = int(bitstrings.BitString(self.current_situation[:self.\n address_size]))\n bit = self.current_situation[self.address_size + index]\n return action == bit\n", "role": "user" }, { "content": "execute", "role": "assistant" } ]
def x(self): self.remaining_cycles = self.initial_training_cycles self.needle_index = random.randrange(self.input_size)
reset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.remaining_cycles = self.initial_training_cycles\n self.needle_index = random.randrange(self.input_size)\n", "role": "user" }, { "content": "reset", "role": "assistant" } ]
def x(self): haystack = bitstrings.BitString.random(self.input_size) self.needle_value = haystack[self.needle_index] return haystack
sense
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n haystack = bitstrings.BitString.random(self.input_size)\n self.needle_value = haystack[self.needle_index]\n return haystack\n", "role": "user" }, { "content": "sense", "role": "assistant" } ]
def x(self, action): assert action in self.possible_actions self.remaining_cycles -= 1 return action == self.needle_value
execute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, action):\n assert action in self.possible_actions\n self.remaining_cycles -= 1\n return action == self.needle_value\n", "role": "user" }, { "content": "execute", "role": "assistant" } ]
def x(self): possible_actions = self.wrapped.get_possible_actions() if len(possible_actions) <= 20: try: possible_actions = list(set(possible_actions)) except TypeError: possible_actions = list(possible_actions) try: possible_actions.sort() except TypeError: pass self.logger.info('Possible actions:') for action in possible_actions: self.logger.info(' %s', action) else: self.logger.info('%d possible actions.', len(possible_actions)) return possible_actions
get_possible_actions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n possible_actions = self.wrapped.get_possible_actions()\n if len(possible_actions) <= 20:\n try:\n possible_actions = list(set(possible_actions))\n except TypeError:\n possible_actions = list(possible_actions)\n try:\n possible_actions.sort()\n except TypeError:\n pass\n self.logger.info('Possible actions:')\n for action in possible_actions:\n self.logger.info(' %s', action)\n else:\n self.logger.info('%d possible actions.', len(possible_actions))\n return possible_actions\n", "role": "user" }, { "content": "get_possible_actions", "role": "assistant" } ]
def x(self): situation = self.wrapped.sense() self.logger.debug('Situation: %s', situation) return situation
sense
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n situation = self.wrapped.sense()\n self.logger.debug('Situation: %s', situation)\n return situation\n", "role": "user" }, { "content": "sense", "role": "assistant" } ]
def x(self, action): self.logger.debug('Executing action: %s', action) reward = self.wrapped.execute(action) if reward: self.total_reward += reward self.steps += 1 self.logger.debug('Reward received on this step: %.5f', reward or 0) self.logger.debug('Average reward per step: %.5f', self.total_reward / self.steps) return reward
execute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, action):\n self.logger.debug('Executing action: %s', action)\n reward = self.wrapped.execute(action)\n if reward:\n self.total_reward += reward\n self.steps += 1\n self.logger.debug('Reward received on this step: %.5f', reward or 0)\n self.logger.debug('Average reward per step: %.5f', self.total_reward /\n self.steps)\n return reward\n", "role": "user" }, { "content": "execute", "role": "assistant" } ]
def x(self): more = self.wrapped.more() if not self.steps % 100: self.logger.info('Steps completed: %d', self.steps) self.logger.info('Average reward per step: %.5f', self.total_reward / (self.steps or 1)) if not more: self.logger.info('Run completed.') self.logger.info('Total steps: %d', self.steps) self.logger.info('Total reward received: %.5f', self.total_reward) self.logger.info('Average reward per step: %.5f', self.total_reward / (self.steps or 1)) return more
more
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n more = self.wrapped.more()\n if not self.steps % 100:\n self.logger.info('Steps completed: %d', self.steps)\n self.logger.info('Average reward per step: %.5f', self.total_reward /\n (self.steps or 1))\n if not more:\n self.logger.info('Run completed.')\n self.logger.info('Total steps: %d', self.steps)\n self.logger.info('Total reward received: %.5f', self.total_reward)\n self.logger.info('Average reward per step: %.5f', self.total_reward /\n (self.steps or 1))\n return more\n", "role": "user" }, { "content": "more", "role": "assistant" } ]
def x(self, action): reward = self.reward_function(action, self.classifications[self.steps]) self.total_reward += reward self.steps += 1 return reward
execute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, action):\n reward = self.reward_function(action, self.classifications[self.steps])\n self.total_reward += reward\n self.steps += 1\n return reward\n", "role": "user" }, { "content": "execute", "role": "assistant" } ]
def x(self): if bitstrings.using_numpy(): return numpy.array(self.classifications) else: return self.classifications
get_classifications
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if bitstrings.using_numpy():\n return numpy.array(self.classifications)\n else:\n return self.classifications\n", "role": "user" }, { "content": "get_classifications", "role": "assistant" } ]
def x(self, scenario): assert isinstance(scenario, scenarios.Scenario) return ClassifierSet(self, scenario.get_possible_actions())
new_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, scenario):\n assert isinstance(scenario, scenarios.Scenario)\n return ClassifierSet(self, scenario.get_possible_actions())\n", "role": "user" }, { "content": "new_model", "role": "assistant" } ]
def x(self, scenario): assert isinstance(scenario, scenarios.Scenario) model = self.new_model(scenario) model.run(scenario, learn=True) return model
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, scenario):\n assert isinstance(scenario, scenarios.Scenario)\n model = self.new_model(scenario)\n model.run(scenario, learn=True)\n return model\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self): total_weight = 0 total_prediction = 0 for rule in self._rules.values(): total_weight += rule.prediction_weight total_prediction += rule.prediction * rule.prediction_weight self._prediction = total_prediction / (total_weight or 1) self._prediction_weight = total_weight
compute_prediction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n total_weight = 0\n total_prediction = 0\n for rule in self._rules.values():\n total_weight += rule.prediction_weight\n total_prediction += rule.prediction * rule.prediction_weight\n self._prediction = total_prediction / (total_weight or 1)\n self._prediction_weight = total_weight\n", "role": "user" }, { "content": "compute_prediction", "role": "assistant" } ]
def x(self): if self._best_prediction is None and self._action_sets: self._best_prediction = max(action_set.prediction for action_set in self._action_sets.values()) return self._best_prediction
best_prediction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._best_prediction is None and self._action_sets:\n self._best_prediction = max(action_set.prediction for action_set in\n self._action_sets.values())\n return self._best_prediction\n", "role": "user" }, { "content": "best_prediction", "role": "assistant" } ]
def x(self): if self._best_actions is None: best_prediction = self.best_prediction self._best_actions = tuple(action for action, action_set in self. _action_sets.items() if action_set.prediction == best_prediction) return self._best_actions
best_actions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._best_actions is None:\n best_prediction = self.best_prediction\n self._best_actions = tuple(action for action, action_set in self.\n _action_sets.items() if action_set.prediction == best_prediction)\n return self._best_actions\n", "role": "user" }, { "content": "best_actions", "role": "assistant" } ]
def x(self): if self._selected_action is not None: raise ValueError('The action has already been selected.') strategy = self._algorithm.action_selection_strategy self._selected_action = strategy(self) return self._selected_action
select_action
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._selected_action is not None:\n raise ValueError('The action has already been selected.')\n strategy = self._algorithm.action_selection_strategy\n self._selected_action = strategy(self)\n return self._selected_action\n", "role": "user" }, { "content": "select_action", "role": "assistant" } ]
def x(self, action): assert action in self._action_sets if self._selected_action is not None: raise ValueError('The action has already been selected.') self._selected_action = action
set_selected_action
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, action):\n assert action in self._action_sets\n if self._selected_action is not None:\n raise ValueError('The action has already been selected.')\n self._selected_action = action\n", "role": "user" }, { "content": "set_selected_action", "role": "assistant" } ]
def x(self, payoff): if self._selected_action is None: raise ValueError('The action has not been selected yet.') if self._closed: raise ValueError( 'The payoff for this match set has alreadybeen applied.') self._payoff = float(payoff)
set_payoff
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, payoff):\n if self._selected_action is None:\n raise ValueError('The action has not been selected yet.')\n if self._closed:\n raise ValueError(\n 'The payoff for this match set has alreadybeen applied.')\n self._payoff = float(payoff)\n", "role": "user" }, { "content": "set_payoff", "role": "assistant" } ]
def x(self, predecessor): assert predecessor is None or isinstance(predecessor, MatchSet) if predecessor is not None: expectation = self._algorithm.get_future_expectation(self) predecessor.payoff += expectation
pay
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, predecessor):\n assert predecessor is None or isinstance(predecessor, MatchSet)\n if predecessor is not None:\n expectation = self._algorithm.get_future_expectation(self)\n predecessor.payoff += expectation\n", "role": "user" }, { "content": "pay", "role": "assistant" } ]
def x(self): if self._selected_action is None: raise ValueError('The action has not been selected yet.') if self._closed: raise ValueError( 'The payoff for this match set has alreadybeen applied.') self._algorithm.distribute_payoff(self) self._payoff = 0 self._algorithm.update(self) self._closed = True
apply_payoff
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._selected_action is None:\n raise ValueError('The action has not been selected yet.')\n if self._closed:\n raise ValueError(\n 'The payoff for this match set has alreadybeen applied.')\n self._algorithm.distribute_payoff(self)\n self._payoff = 0\n self._algorithm.update(self)\n self._closed = True\n", "role": "user" }, { "content": "apply_payoff", "role": "assistant" } ]
def x(self, situation): by_action = {} for condition, actions in self._population.items(): if not condition(situation): continue for action, rule in actions.items(): if action in by_action: by_action[action][condition] = rule else: by_action[action] = {condition: rule} match_set = MatchSet(self, situation, by_action) if self._algorithm.covering_is_required(match_set): rule = self._algorithm.cover(match_set) assert rule.condition(situation) replaced = self.add(rule) for replaced_rule in replaced: action = replaced_rule.action condition = replaced_rule.condition if action in by_action and condition in by_action[action]: del by_action[action][condition] if not by_action[action]: del by_action[action] if rule.action not in by_action: by_action[rule.action] = {} by_action[rule.action][rule.condition] = rule match_set = MatchSet(self, situation, by_action) return match_set
match
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, situation):\n by_action = {}\n for condition, actions in self._population.items():\n if not condition(situation):\n continue\n for action, rule in actions.items():\n if action in by_action:\n by_action[action][condition] = rule\n else:\n by_action[action] = {condition: rule}\n match_set = MatchSet(self, situation, by_action)\n if self._algorithm.covering_is_required(match_set):\n rule = self._algorithm.cover(match_set)\n assert rule.condition(situation)\n replaced = self.add(rule)\n for replaced_rule in replaced:\n action = replaced_rule.action\n condition = replaced_rule.condition\n if action in by_action and condition in by_action[action]:\n del by_action[action][condition]\n if not by_action[action]:\n del by_action[action]\n if rule.action not in by_action:\n by_action[rule.action] = {}\n by_action[rule.action][rule.condition] = rule\n match_set = MatchSet(self, situation, by_action)\n return match_set\n", "role": "user" }, { "content": "match", "role": "assistant" } ]
def x(self, rule): assert isinstance(rule, ClassifierRule) condition = rule.condition action = rule.action if condition not in self._population: self._population[condition] = {} if action in self._population[condition]: existing_rule = self._population[condition][action] existing_rule.numerosity += rule.numerosity else: self._population[condition][action] = rule return self._algorithm.prune(self)
add
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rule):\n assert isinstance(rule, ClassifierRule)\n condition = rule.condition\n action = rule.action\n if condition not in self._population:\n self._population[condition] = {}\n if action in self._population[condition]:\n existing_rule = self._population[condition][action]\n existing_rule.numerosity += rule.numerosity\n else:\n self._population[condition][action] = rule\n return self._algorithm.prune(self)\n", "role": "user" }, { "content": "add", "role": "assistant" } ]
def x(self, rule, count=1): assert isinstance(rule, ClassifierRule) assert isinstance(count, int) and count >= 0 rule = self.get(rule) if rule is None: return False rule.numerosity -= count if rule.numerosity <= 0: rule.numerosity = 0 del self._population[rule.condition][rule.action] if not self._population[rule.condition]: del self._population[rule.condition] return True return False
discard
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rule, count=1):\n assert isinstance(rule, ClassifierRule)\n assert isinstance(count, int) and count >= 0\n rule = self.get(rule)\n if rule is None:\n return False\n rule.numerosity -= count\n if rule.numerosity <= 0:\n rule.numerosity = 0\n del self._population[rule.condition][rule.action]\n if not self._population[rule.condition]:\n del self._population[rule.condition]\n return True\n return False\n", "role": "user" }, { "content": "discard", "role": "assistant" } ]
def x(self, rule, default=None): assert isinstance(rule, ClassifierRule) if (rule.condition not in self._population or rule.action not in self. _population[rule.condition]): return default return self._population[rule.condition][rule.action]
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rule, default=None):\n assert isinstance(rule, ClassifierRule)\n if (rule.condition not in self._population or rule.action not in self.\n _population[rule.condition]):\n return default\n return self._population[rule.condition][rule.action]\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self, scenario, learn=True): assert isinstance(scenario, scenarios.Scenario) previous_match_set = None while scenario.more(): situation = scenario.sense() match_set = self.match(situation) match_set.select_action() reward = scenario.execute(match_set.selected_action) if learn: assert reward is not None if scenario.is_dynamic: if previous_match_set is not None: match_set.pay(previous_match_set) previous_match_set.apply_payoff() match_set.payoff = reward previous_match_set = match_set else: match_set.payoff = reward match_set.apply_payoff() if learn and previous_match_set is not None: previous_match_set.apply_payoff()
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, scenario, learn=True):\n assert isinstance(scenario, scenarios.Scenario)\n previous_match_set = None\n while scenario.more():\n situation = scenario.sense()\n match_set = self.match(situation)\n match_set.select_action()\n reward = scenario.execute(match_set.selected_action)\n if learn:\n assert reward is not None\n if scenario.is_dynamic:\n if previous_match_set is not None:\n match_set.pay(previous_match_set)\n previous_match_set.apply_payoff()\n match_set.payoff = reward\n previous_match_set = match_set\n else:\n match_set.payoff = reward\n match_set.apply_payoff()\n if learn and previous_match_set is not None:\n previous_match_set.apply_payoff()\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(system, user, local, include_missing): if not (system or user or local): system = user = local = True for path in get_configfile_paths(system=system, user=user, local=local, only_existing=not include_missing): click.echo(path)
ls
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(system, user, local, include_missing):\n if not (system or user or local):\n system = user = local = True\n for path in get_configfile_paths(system=system, user=user, local=local,\n only_existing=not include_missing):\n click.echo(path)\n", "role": "user" }, { "content": "ls", "role": "assistant" } ]
def x(config_file, profile): try: section = load_profile_from_files([config_file] if config_file else None, profile) click.echo('Configuration file: {}'.format(config_file if config_file else 'auto-detected')) click.echo('Profile: {}'.format(profile if profile else 'auto-detected')) click.echo('---') for key, val in section.items(): click.echo('{} = {}'.format(key, val)) except (ValueError, ConfigFileReadError, ConfigFileParseError) as e: click.echo(e)
inspect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(config_file, profile):\n try:\n section = load_profile_from_files([config_file] if config_file else\n None, profile)\n click.echo('Configuration file: {}'.format(config_file if\n config_file else 'auto-detected'))\n click.echo('Profile: {}'.format(profile if profile else\n 'auto-detected'))\n click.echo('---')\n for key, val in section.items():\n click.echo('{} = {}'.format(key, val))\n except (ValueError, ConfigFileReadError, ConfigFileParseError) as e:\n click.echo(e)\n", "role": "user" }, { "content": "inspect", "role": "assistant" } ]
def x(config_file, profile): if config_file: click.echo('Using configuration file: {}'.format(config_file)) else: config_file = get_configfile_path() if config_file: click.echo('Found existing configuration file: {}'.format( config_file)) else: config_file = get_default_configfile_path() click.echo( 'Configuration file not found; the default location is: {}' .format(config_file)) config_file = default_text_input('Configuration file path', config_file ) config_file = os.path.expanduser(config_file) config_base = os.path.dirname(config_file) if config_base and not os.path.exists(config_base): if click.confirm('Configuration file path does not exist. Create it?', abort=True): try: os.makedirs(config_base) except Exception as e: click.echo('Error creating configuration path: {}'.format(e)) return 1 try: config = load_config_from_files([config_file]) except: config = get_default_config() if profile: click.echo('Using profile: {}'.format(profile)) else: existing = config.sections() if existing: profiles = 'create new or choose from: {}'.format(', '.join( existing)) default_profile = '' else: profiles = 'create new' default_profile = 'prod' profile = default_text_input('Profile (%s)' % profiles, default_profile, optional=False) if not config.has_section(profile): config.add_section(profile) variables = 'endpoint token client solver proxy'.split() prompts = ['API endpoint URL', 'Authentication token', 'Default client class (qpu or sw)', 'Default solver'] for var, prompt in zip(variables, prompts): default_val = config.get(profile, var, fallback=None) val = default_text_input(prompt, default_val) if val: val = os.path.expandvars(val) if val != default_val: config.set(profile, var, val) try: with open(config_file, 'w') as fp: config.write(fp) except Exception as e: click.echo('Error writing to configuration file: {}'.format(e)) return 2 click.echo('Configuration saved.') return 0
create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(config_file, profile):\n if config_file:\n click.echo('Using configuration file: {}'.format(config_file))\n else:\n config_file = get_configfile_path()\n if config_file:\n click.echo('Found existing configuration file: {}'.format(\n config_file))\n else:\n config_file = get_default_configfile_path()\n click.echo(\n 'Configuration file not found; the default location is: {}'\n .format(config_file))\n config_file = default_text_input('Configuration file path', config_file\n )\n config_file = os.path.expanduser(config_file)\n config_base = os.path.dirname(config_file)\n if config_base and not os.path.exists(config_base):\n if click.confirm('Configuration file path does not exist. Create it?',\n abort=True):\n try:\n os.makedirs(config_base)\n except Exception as e:\n click.echo('Error creating configuration path: {}'.format(e))\n return 1\n try:\n config = load_config_from_files([config_file])\n except:\n config = get_default_config()\n if profile:\n click.echo('Using profile: {}'.format(profile))\n else:\n existing = config.sections()\n if existing:\n profiles = 'create new or choose from: {}'.format(', '.join(\n existing))\n default_profile = ''\n else:\n profiles = 'create new'\n default_profile = 'prod'\n profile = default_text_input('Profile (%s)' % profiles,\n default_profile, optional=False)\n if not config.has_section(profile):\n config.add_section(profile)\n variables = 'endpoint token client solver proxy'.split()\n prompts = ['API endpoint URL', 'Authentication token',\n 'Default client class (qpu or sw)', 'Default solver']\n for var, prompt in zip(variables, prompts):\n default_val = config.get(profile, var, fallback=None)\n val = default_text_input(prompt, default_val)\n if val:\n val = os.path.expandvars(val)\n if val != default_val:\n config.set(profile, var, val)\n try:\n with open(config_file, 'w') as fp:\n config.write(fp)\n except Exception as e:\n click.echo('Error writing to configuration file: {}'.format(e))\n return 2\n click.echo('Configuration saved.')\n return 0\n", "role": "user" }, { "content": "create", "role": "assistant" } ]
def x(config_file, profile, solver_def, request_timeout, polling_timeout, output): config = dict(config_file=config_file, profile=profile, solver=solver_def) if request_timeout is not None: config.update(request_timeout=request_timeout) if polling_timeout is not None: config.update(polling_timeout=polling_timeout) try: client = Client.from_config(**config) except Exception as e: raise CLIError('Invalid configuration: {}'.format(e), code=1) if config_file: output('Using configuration file: {config_file}', config_file= config_file) if profile: output('Using profile: {profile}', profile=profile) output('Using endpoint: {endpoint}', endpoint=client.endpoint) t0 = timer() try: solver = client.get_solver() except SolverAuthenticationError: raise CLIError( 'Authentication error. Check credentials in your configuration file.' , 2) except SolverNotFoundError: raise CLIError('Solver not available.', 6) except (InvalidAPIResponseError, UnsupportedSolverError): raise CLIError('Invalid or unexpected API response.', 3) except RequestTimeout: raise CLIError('API connection timed out.', 4) except requests.exceptions.SSLError as e: if 'CERTIFICATE_VERIFY_FAILED' in str(e): raise CLIError( 'Certificate verification failed. Please check that your API endpoint is correct. If you are connecting to a private or third-party D-Wave system that uses self-signed certificate(s), please see https://support.dwavesys.com/hc/en-us/community/posts/360018930954.' , 5) raise CLIError('Unexpected SSL error while fetching solver: {!r}'. format(e), 5) except Exception as e: raise CLIError('Unexpected error while fetching solver: {!r}'. format(e), 5) t1 = timer() output('Using solver: {solver_id}', solver_id=solver.id) try: future = solver.sample_ising({(0): 1}, {}) timing = future.timing except RequestTimeout: raise CLIError('API connection timed out.', 8) except PollingTimeout: raise CLIError('Polling timeout exceeded.', 9) except Exception as e: raise CLIError('Sampling error: {!r}'.format(e), 10) finally: output('Submitted problem ID: {problem_id}', problem_id=future.id) t2 = timer() output('\nWall clock time:') output(' * Solver definition fetch: {wallclock_solver_definition:.3f} ms', wallclock_solver_definition=(t1 - t0) * 1000.0) output(' * Problem submit and results fetch: {wallclock_sampling:.3f} ms', wallclock_sampling=(t2 - t1) * 1000.0) output(' * Total: {wallclock_total:.3f} ms', wallclock_total=(t2 - t0) * 1000.0) if timing.items(): output('\nQPU timing:') for component, duration in timing.items(): output(' * %(name)s = {%(name)s} us' % {'name': component}, **{ component: duration}) else: output('\nQPU timing data not available.')
ping
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(config_file, profile, solver_def, request_timeout, polling_timeout,\n output):\n config = dict(config_file=config_file, profile=profile, solver=solver_def)\n if request_timeout is not None:\n config.update(request_timeout=request_timeout)\n if polling_timeout is not None:\n config.update(polling_timeout=polling_timeout)\n try:\n client = Client.from_config(**config)\n except Exception as e:\n raise CLIError('Invalid configuration: {}'.format(e), code=1)\n if config_file:\n output('Using configuration file: {config_file}', config_file=\n config_file)\n if profile:\n output('Using profile: {profile}', profile=profile)\n output('Using endpoint: {endpoint}', endpoint=client.endpoint)\n t0 = timer()\n try:\n solver = client.get_solver()\n except SolverAuthenticationError:\n raise CLIError(\n 'Authentication error. Check credentials in your configuration file.'\n , 2)\n except SolverNotFoundError:\n raise CLIError('Solver not available.', 6)\n except (InvalidAPIResponseError, UnsupportedSolverError):\n raise CLIError('Invalid or unexpected API response.', 3)\n except RequestTimeout:\n raise CLIError('API connection timed out.', 4)\n except requests.exceptions.SSLError as e:\n if 'CERTIFICATE_VERIFY_FAILED' in str(e):\n raise CLIError(\n 'Certificate verification failed. Please check that your API endpoint is correct. If you are connecting to a private or third-party D-Wave system that uses self-signed certificate(s), please see https://support.dwavesys.com/hc/en-us/community/posts/360018930954.'\n , 5)\n raise CLIError('Unexpected SSL error while fetching solver: {!r}'.\n format(e), 5)\n except Exception as e:\n raise CLIError('Unexpected error while fetching solver: {!r}'.\n format(e), 5)\n t1 = timer()\n output('Using solver: {solver_id}', solver_id=solver.id)\n try:\n future = solver.sample_ising({(0): 1}, {})\n timing = future.timing\n except RequestTimeout:\n raise CLIError('API connection timed out.', 8)\n except PollingTimeout:\n raise CLIError('Polling timeout exceeded.', 9)\n except Exception as e:\n raise CLIError('Sampling error: {!r}'.format(e), 10)\n finally:\n output('Submitted problem ID: {problem_id}', problem_id=future.id)\n t2 = timer()\n output('\\nWall clock time:')\n output(' * Solver definition fetch: {wallclock_solver_definition:.3f} ms',\n wallclock_solver_definition=(t1 - t0) * 1000.0)\n output(' * Problem submit and results fetch: {wallclock_sampling:.3f} ms',\n wallclock_sampling=(t2 - t1) * 1000.0)\n output(' * Total: {wallclock_total:.3f} ms', wallclock_total=(t2 - t0) *\n 1000.0)\n if timing.items():\n output('\\nQPU timing:')\n for component, duration in timing.items():\n output(' * %(name)s = {%(name)s} us' % {'name': component}, **{\n component: duration})\n else:\n output('\\nQPU timing data not available.')\n", "role": "user" }, { "content": "ping", "role": "assistant" } ]
def x(config_file, profile, solver_def, json_output, request_timeout, polling_timeout): now = utcnow() info = dict(datetime=now.isoformat(), timestamp=datetime_to_timestamp( now), code=0) def x(fmt, **kwargs): info.update(kwargs) if not json_output: click.echo(fmt.format(**kwargs)) def x(): if json_output: click.echo(json.dumps(info)) try: _ping(config_file, profile, solver_def, request_timeout, polling_timeout, output) except CLIError as error: output('Error: {error} (code: {code})', error=str(error), code= error.code) sys.exit(error.code) except Exception as error: output('Unhandled error: {error}', error=str(error)) sys.exit(127) finally: flush()
ping
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(config_file, profile, solver_def, json_output, request_timeout,\n polling_timeout):\n now = utcnow()\n info = dict(datetime=now.isoformat(), timestamp=datetime_to_timestamp(\n now), code=0)\n\n def x(fmt, **kwargs):\n info.update(kwargs)\n if not json_output:\n click.echo(fmt.format(**kwargs))\n\n def x():\n if json_output:\n click.echo(json.dumps(info))\n try:\n _ping(config_file, profile, solver_def, request_timeout,\n polling_timeout, output)\n except CLIError as error:\n output('Error: {error} (code: {code})', error=str(error), code=\n error.code)\n sys.exit(error.code)\n except Exception as error:\n output('Unhandled error: {error}', error=str(error))\n sys.exit(127)\n finally:\n flush()\n", "role": "user" }, { "content": "ping", "role": "assistant" } ]
def x(config_file, profile, solver_def, list_solvers): with Client.from_config(config_file=config_file, profile=profile, solver=solver_def) as client: try: solvers = client.get_solvers(**client.default_solver) except SolverNotFoundError: click.echo('Solver(s) {} not found.'.format(solver_def)) return 1 if list_solvers: for solver in solvers: click.echo(solver.id) return for solver in solvers: click.echo('Solver: {}'.format(solver.id)) click.echo(' Parameters:') for name, val in sorted(solver.parameters.items()): click.echo(' {}: {}'.format(name, strtrunc(val) if val else '?')) solver.properties.pop('parameters', None) click.echo(' Properties:') for name, val in sorted(solver.properties.items()): click.echo(' {}: {}'.format(name, strtrunc(val))) click.echo(' Derived properties:') for name in sorted(solver.derived_properties): click.echo(' {}: {}'.format(name, strtrunc(getattr( solver, name)))) click.echo()
solvers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(config_file, profile, solver_def, list_solvers):\n with Client.from_config(config_file=config_file, profile=profile,\n solver=solver_def) as client:\n try:\n solvers = client.get_solvers(**client.default_solver)\n except SolverNotFoundError:\n click.echo('Solver(s) {} not found.'.format(solver_def))\n return 1\n if list_solvers:\n for solver in solvers:\n click.echo(solver.id)\n return\n for solver in solvers:\n click.echo('Solver: {}'.format(solver.id))\n click.echo(' Parameters:')\n for name, val in sorted(solver.parameters.items()):\n click.echo(' {}: {}'.format(name, strtrunc(val) if val else\n '?'))\n solver.properties.pop('parameters', None)\n click.echo(' Properties:')\n for name, val in sorted(solver.properties.items()):\n click.echo(' {}: {}'.format(name, strtrunc(val)))\n click.echo(' Derived properties:')\n for name in sorted(solver.derived_properties):\n click.echo(' {}: {}'.format(name, strtrunc(getattr(\n solver, name))))\n click.echo()\n", "role": "user" }, { "content": "solvers", "role": "assistant" } ]
def x(config_file, profile, solver_def, biases, couplings, random_problem, num_reads, verbose): def x(s, maxlen=100): click.echo(s if verbose else strtrunc(s, maxlen)) try: client = Client.from_config(config_file=config_file, profile= profile, solver=solver_def) except Exception as e: click.echo('Invalid configuration: {}'.format(e)) return 1 if config_file: echo('Using configuration file: {}'.format(config_file)) if profile: echo('Using profile: {}'.format(profile)) echo('Using endpoint: {}'.format(client.endpoint)) try: solver = client.get_solver() except SolverAuthenticationError: click.echo( 'Authentication error. Check credentials in your configuration file.' ) return 1 except (InvalidAPIResponseError, UnsupportedSolverError): click.echo('Invalid or unexpected API response.') return 2 except SolverNotFoundError: click.echo('Solver with the specified features does not exist.') return 3 echo('Using solver: {}'.format(solver.id)) if random_problem: linear, quadratic = generate_random_ising_problem(solver) else: try: linear = ast.literal_eval(biases) if biases else [] except Exception as e: click.echo('Invalid biases: {}'.format(e)) try: quadratic = ast.literal_eval(couplings) if couplings else {} except Exception as e: click.echo('Invalid couplings: {}'.format(e)) echo('Using qubit biases: {!r}'.format(linear)) echo('Using qubit couplings: {!r}'.format(quadratic)) echo('Number of samples: {}'.format(num_reads)) try: result = solver.sample_ising(linear, quadratic, num_reads=num_reads ).result() except Exception as e: click.echo(e) return 4 if verbose: click.echo('Result: {!r}'.format(result)) echo('Samples: {!r}'.format(result['samples'])) echo('Occurrences: {!r}'.format(result['occurrences'])) echo('Energies: {!r}'.format(result['energies']))
sample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(config_file, profile, solver_def, biases, couplings, random_problem,\n num_reads, verbose):\n\n def x(s, maxlen=100):\n click.echo(s if verbose else strtrunc(s, maxlen))\n try:\n client = Client.from_config(config_file=config_file, profile=\n profile, solver=solver_def)\n except Exception as e:\n click.echo('Invalid configuration: {}'.format(e))\n return 1\n if config_file:\n echo('Using configuration file: {}'.format(config_file))\n if profile:\n echo('Using profile: {}'.format(profile))\n echo('Using endpoint: {}'.format(client.endpoint))\n try:\n solver = client.get_solver()\n except SolverAuthenticationError:\n click.echo(\n 'Authentication error. Check credentials in your configuration file.'\n )\n return 1\n except (InvalidAPIResponseError, UnsupportedSolverError):\n click.echo('Invalid or unexpected API response.')\n return 2\n except SolverNotFoundError:\n click.echo('Solver with the specified features does not exist.')\n return 3\n echo('Using solver: {}'.format(solver.id))\n if random_problem:\n linear, quadratic = generate_random_ising_problem(solver)\n else:\n try:\n linear = ast.literal_eval(biases) if biases else []\n except Exception as e:\n click.echo('Invalid biases: {}'.format(e))\n try:\n quadratic = ast.literal_eval(couplings) if couplings else {}\n except Exception as e:\n click.echo('Invalid couplings: {}'.format(e))\n echo('Using qubit biases: {!r}'.format(linear))\n echo('Using qubit couplings: {!r}'.format(quadratic))\n echo('Number of samples: {}'.format(num_reads))\n try:\n result = solver.sample_ising(linear, quadratic, num_reads=num_reads\n ).result()\n except Exception as e:\n click.echo(e)\n return 4\n if verbose:\n click.echo('Result: {!r}'.format(result))\n echo('Samples: {!r}'.format(result['samples']))\n echo('Occurrences: {!r}'.format(result['occurrences']))\n echo('Energies: {!r}'.format(result['energies']))\n", "role": "user" }, { "content": "sample", "role": "assistant" } ]
def x(samplerate, params, num_samples=256): amplitude = params['mod_amplitude'] frequency = params['mod_frequency'] def x(): start_time = 0 while True: time = start_time + np.arange(num_samples) / samplerate start_time += num_samples / samplerate output = amplitude * np.cos(2 * np.pi * frequency * time) yield output return lambda p=producer(): next(p)
get_input_callback
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samplerate, params, num_samples=256):\n amplitude = params['mod_amplitude']\n frequency = params['mod_frequency']\n\n def x():\n start_time = 0\n while True:\n time = start_time + np.arange(num_samples) / samplerate\n start_time += num_samples / samplerate\n output = amplitude * np.cos(2 * np.pi * frequency * time)\n yield output\n return lambda p=producer(): next(p)\n", "role": "user" }, { "content": "get_input_callback", "role": "assistant" } ]
def x(resampler, samplerate, params): def x(outdata, frames, time, _): last_fmphase = getattr(callback, 'last_fmphase', 0) df = params['fm_gain'] * resampler.read(frames) df = np.pad(df, (0, frames - len(df)), mode='constant') t = time.outputBufferDacTime + np.arange(frames) / samplerate phase = 2 * np.pi * params['carrier_frequency'] * t fmphase = last_fmphase + 2 * np.pi * np.cumsum(df) / samplerate outdata[:, 0] = params['output_volume'] * np.cos(phase + fmphase) callback.last_fmphase = fmphase[-1] return callback
get_playback_callback
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(resampler, samplerate, params):\n\n def x(outdata, frames, time, _):\n last_fmphase = getattr(callback, 'last_fmphase', 0)\n df = params['fm_gain'] * resampler.read(frames)\n df = np.pad(df, (0, frames - len(df)), mode='constant')\n t = time.outputBufferDacTime + np.arange(frames) / samplerate\n phase = 2 * np.pi * params['carrier_frequency'] * t\n fmphase = last_fmphase + 2 * np.pi * np.cumsum(df) / samplerate\n outdata[:, 0] = params['output_volume'] * np.cos(phase + fmphase)\n callback.last_fmphase = fmphase[-1]\n return callback\n", "role": "user" }, { "content": "get_playback_callback", "role": "assistant" } ]
def x(source_samplerate, target_samplerate, params, converter_type): from time import sleep ratio = target_samplerate / source_samplerate with sr.CallbackResampler(get_input_callback(source_samplerate, params), ratio, converter_type) as resampler, sd.OutputStream(channels=1, samplerate=target_samplerate, callback=get_playback_callback( resampler, target_samplerate, params)): print('Playing back... Ctrl+C to stop.') try: while True: sleep(1) except KeyboardInterrupt: print('Aborting.')
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(source_samplerate, target_samplerate, params, converter_type):\n from time import sleep\n ratio = target_samplerate / source_samplerate\n with sr.CallbackResampler(get_input_callback(source_samplerate, params),\n ratio, converter_type) as resampler, sd.OutputStream(channels=1,\n samplerate=target_samplerate, callback=get_playback_callback(\n resampler, target_samplerate, params)):\n print('Playing back... Ctrl+C to stop.')\n try:\n while True:\n sleep(1)\n except KeyboardInterrupt:\n print('Aborting.')\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(self, **params): properties = self.properties if self.software or not params: return properties['num_reads_range'][1] _, duration = properties['problem_run_duration_range'] annealing_time = params.get('annealing_time', properties[ 'default_annealing_time']) readout_thermalization = params.get('readout_thermalization', properties['default_readout_thermalization']) programming_thermalization = params.get('programming_thermalization', properties['default_programming_thermalization']) return min(properties['num_reads_range'][1], int((duration - programming_thermalization) / (annealing_time + readout_thermalization)))
max_num_reads
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **params):\n properties = self.properties\n if self.software or not params:\n return properties['num_reads_range'][1]\n _, duration = properties['problem_run_duration_range']\n annealing_time = params.get('annealing_time', properties[\n 'default_annealing_time'])\n readout_thermalization = params.get('readout_thermalization',\n properties['default_readout_thermalization'])\n programming_thermalization = params.get('programming_thermalization',\n properties['default_programming_thermalization'])\n return min(properties['num_reads_range'][1], int((duration -\n programming_thermalization) / (annealing_time +\n readout_thermalization)))\n", "role": "user" }, { "content": "max_num_reads", "role": "assistant" } ]
def x(self, linear, quadratic, **params): return self._sample('ising', linear, quadratic, params)
sample_ising
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, linear, quadratic, **params):\n return self._sample('ising', linear, quadratic, params)\n", "role": "user" }, { "content": "sample_ising", "role": "assistant" } ]
def x(self, qubo, **params): linear = {i1: v for (i1, i2), v in uniform_iterator(qubo) if i1 == i2} quadratic = {(i1, i2): v for (i1, i2), v in uniform_iterator(qubo) if i1 != i2} return self._sample('qubo', linear, quadratic, params)
sample_qubo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, qubo, **params):\n linear = {i1: v for (i1, i2), v in uniform_iterator(qubo) if i1 == i2}\n quadratic = {(i1, i2): v for (i1, i2), v in uniform_iterator(qubo) if \n i1 != i2}\n return self._sample('qubo', linear, quadratic, params)\n", "role": "user" }, { "content": "sample_qubo", "role": "assistant" } ]
def x(self, type_, linear, quadratic, params): if not self.check_problem(linear, quadratic): raise ValueError('Problem graph incompatible with solver.') combined_params = dict(self._params) combined_params.update(params) for key in combined_params: if key not in self.parameters and not key.startswith('x_'): raise KeyError('{} is not a parameter of this solver.'.format(key)) self._format_params(type_, combined_params) body = json.dumps({'solver': self.id, 'data': encode_bqm_as_qp(self, linear, quadratic), 'type': type_, 'params': combined_params}) _LOGGER.trace('Encoded sample request: %s', body) future = Future(solver=self, id_=None, return_matrix=self.return_matrix, submission_data=(type_, linear, quadratic, params)) _LOGGER.debug('Submitting new problem to: %s', self.id) self.client._submit(body, future) return future
sample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, type_, linear, quadratic, params):\n if not self.check_problem(linear, quadratic):\n raise ValueError('Problem graph incompatible with solver.')\n combined_params = dict(self._params)\n combined_params.update(params)\n for key in combined_params:\n if key not in self.parameters and not key.startswith('x_'):\n raise KeyError('{} is not a parameter of this solver.'.format(key))\n self._format_params(type_, combined_params)\n body = json.dumps({'solver': self.id, 'data': encode_bqm_as_qp(self,\n linear, quadratic), 'type': type_, 'params': combined_params})\n _LOGGER.trace('Encoded sample request: %s', body)\n future = Future(solver=self, id_=None, return_matrix=self.return_matrix,\n submission_data=(type_, linear, quadratic, params))\n _LOGGER.debug('Submitting new problem to: %s', self.id)\n self.client._submit(body, future)\n return future\n", "role": "user" }, { "content": "sample", "role": "assistant" } ]
def x(self, type_, params): if 'initial_state' in params: initial_state = params['initial_state'] if isinstance(initial_state, Mapping): initial_state_list = [3] * self.properties['num_qubits'] low = -1 if type_ == 'ising' else 0 for v, val in initial_state.items(): if val == 3: continue if val <= 0: initial_state_list[v] = low else: initial_state_list[v] = 1 params['initial_state'] = initial_state_list
format_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, type_, params):\n if 'initial_state' in params:\n initial_state = params['initial_state']\n if isinstance(initial_state, Mapping):\n initial_state_list = [3] * self.properties['num_qubits']\n low = -1 if type_ == 'ising' else 0\n for v, val in initial_state.items():\n if val == 3:\n continue\n if val <= 0:\n initial_state_list[v] = low\n else:\n initial_state_list[v] = 1\n params['initial_state'] = initial_state_list\n", "role": "user" }, { "content": "format_params", "role": "assistant" } ]
def x(self, linear, quadratic): for key, value in uniform_iterator(linear): if value != 0 and key not in self.nodes: return False for key, value in uniform_iterator(quadratic): if value != 0 and tuple(key) not in self.edges: return False return True
check_problem
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, linear, quadratic):\n for key, value in uniform_iterator(linear):\n if value != 0 and key not in self.nodes:\n return False\n for key, value in uniform_iterator(quadratic):\n if value != 0 and tuple(key) not in self.edges:\n return False\n return True\n", "role": "user" }, { "content": "check_problem", "role": "assistant" } ]
def x(self, id_): future = Future(self, id_, self.return_matrix, None) self.client._poll(future) return future
retrieve_problem
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, id_):\n future = Future(self, id_, self.return_matrix, None)\n self.client._poll(future)\n return future\n", "role": "user" }, { "content": "retrieve_problem", "role": "assistant" } ]
def x(identifier): if isinstance(identifier, str): return ConverterType[identifier] if isinstance(identifier, ConverterType): return identifier return ConverterType(identifier)
get_converter_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(identifier):\n if isinstance(identifier, str):\n return ConverterType[identifier]\n if isinstance(identifier, ConverterType):\n return identifier\n return ConverterType(identifier)\n", "role": "user" }, { "content": "get_converter_type", "role": "assistant" } ]
def x(input_data, ratio, converter_type='sinc_best', verbose=False): from samplerate.lowlevel import src_simple from samplerate.exceptions import ResamplingError input_data = np.require(input_data, requirements='C', dtype=np.float32) if input_data.ndim == 2: num_frames, channels = input_data.shape output_shape = int(num_frames * ratio), channels elif input_data.ndim == 1: num_frames, channels = input_data.size, 1 output_shape = int(num_frames * ratio), else: raise ValueError('rank > 2 not supported') output_data = np.empty(output_shape, dtype=np.float32) converter_type = _get_converter_type(converter_type) error, input_frames_used, output_frames_gen = src_simple(input_data, output_data, ratio, converter_type.value, channels) if error != 0: raise ResamplingError(error) if verbose: info = ( 'samplerate info:\n{} input frames used\n{} output frames generated\n' .format(input_frames_used, output_frames_gen)) print(info) return output_data[:output_frames_gen, :] if channels > 1 else output_data[ :output_frames_gen]
resample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input_data, ratio, converter_type='sinc_best', verbose=False):\n from samplerate.lowlevel import src_simple\n from samplerate.exceptions import ResamplingError\n input_data = np.require(input_data, requirements='C', dtype=np.float32)\n if input_data.ndim == 2:\n num_frames, channels = input_data.shape\n output_shape = int(num_frames * ratio), channels\n elif input_data.ndim == 1:\n num_frames, channels = input_data.size, 1\n output_shape = int(num_frames * ratio),\n else:\n raise ValueError('rank > 2 not supported')\n output_data = np.empty(output_shape, dtype=np.float32)\n converter_type = _get_converter_type(converter_type)\n error, input_frames_used, output_frames_gen = src_simple(input_data,\n output_data, ratio, converter_type.value, channels)\n if error != 0:\n raise ResamplingError(error)\n if verbose:\n info = (\n 'samplerate info:\\n{} input frames used\\n{} output frames generated\\n'\n .format(input_frames_used, output_frames_gen))\n print(info)\n return output_data[:output_frames_gen, :] if channels > 1 else output_data[\n :output_frames_gen]\n", "role": "user" }, { "content": "resample", "role": "assistant" } ]
def x(self, new_ratio): from samplerate.lowlevel import src_set_ratio return src_set_ratio(self._state, new_ratio)
set_ratio
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, new_ratio):\n from samplerate.lowlevel import src_set_ratio\n return src_set_ratio(self._state, new_ratio)\n", "role": "user" }, { "content": "set_ratio", "role": "assistant" } ]
def x(self, input_data, ratio, end_of_input=False, verbose=False): from samplerate.lowlevel import src_process from samplerate.exceptions import ResamplingError input_data = np.require(input_data, requirements='C', dtype=np.float32) if input_data.ndim == 2: num_frames, channels = input_data.shape output_shape = int(num_frames * ratio), channels elif input_data.ndim == 1: num_frames, channels = input_data.size, 1 output_shape = int(num_frames * ratio), else: raise ValueError('rank > 2 not supported') if channels != self._channels: raise ValueError('Invalid number of channels in input data.') output_data = np.empty(output_shape, dtype=np.float32) error, input_frames_used, output_frames_gen = src_process(self._state, input_data, output_data, ratio, end_of_input) if error != 0: raise ResamplingError(error) if verbose: info = ( 'samplerate info:\n{} input frames used\n{} output frames generated\n' .format(input_frames_used, output_frames_gen)) print(info) return output_data[:output_frames_gen, :] if channels > 1 else output_data[ :output_frames_gen]
process
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, input_data, ratio, end_of_input=False, verbose=False):\n from samplerate.lowlevel import src_process\n from samplerate.exceptions import ResamplingError\n input_data = np.require(input_data, requirements='C', dtype=np.float32)\n if input_data.ndim == 2:\n num_frames, channels = input_data.shape\n output_shape = int(num_frames * ratio), channels\n elif input_data.ndim == 1:\n num_frames, channels = input_data.size, 1\n output_shape = int(num_frames * ratio),\n else:\n raise ValueError('rank > 2 not supported')\n if channels != self._channels:\n raise ValueError('Invalid number of channels in input data.')\n output_data = np.empty(output_shape, dtype=np.float32)\n error, input_frames_used, output_frames_gen = src_process(self._state,\n input_data, output_data, ratio, end_of_input)\n if error != 0:\n raise ResamplingError(error)\n if verbose:\n info = (\n 'samplerate info:\\n{} input frames used\\n{} output frames generated\\n'\n .format(input_frames_used, output_frames_gen))\n print(info)\n return output_data[:output_frames_gen, :] if channels > 1 else output_data[\n :output_frames_gen]\n", "role": "user" }, { "content": "process", "role": "assistant" } ]
def x(self): from samplerate.lowlevel import ffi, src_callback_new, src_delete from samplerate.exceptions import ResamplingError state, handle, error = src_callback_new(self._callback, self. _converter_type.value, self._channels) if error != 0: raise ResamplingError(error) self._state = ffi.gc(state, src_delete) self._handle = handle
create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n from samplerate.lowlevel import ffi, src_callback_new, src_delete\n from samplerate.exceptions import ResamplingError\n state, handle, error = src_callback_new(self._callback, self.\n _converter_type.value, self._channels)\n if error != 0:\n raise ResamplingError(error)\n self._state = ffi.gc(state, src_delete)\n self._handle = handle\n", "role": "user" }, { "content": "create", "role": "assistant" } ]
def x(self, ratio): from samplerate.lowlevel import src_set_ratio if self._state is None: self._create() src_set_ratio(self._state, ratio) self.ratio = ratio
set_starting_ratio
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ratio):\n from samplerate.lowlevel import src_set_ratio\n if self._state is None:\n self._create()\n src_set_ratio(self._state, ratio)\n self.ratio = ratio\n", "role": "user" }, { "content": "set_starting_ratio", "role": "assistant" } ]
def x(self): from samplerate.lowlevel import src_reset if self._state is None: self._create() src_reset(self._state)
reset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n from samplerate.lowlevel import src_reset\n if self._state is None:\n self._create()\n src_reset(self._state)\n", "role": "user" }, { "content": "reset", "role": "assistant" } ]
def x(self, num_frames): from samplerate.lowlevel import src_callback_read, src_error from samplerate.exceptions import ResamplingError if self._state is None: self._create() if self._channels > 1: output_shape = num_frames, self._channels elif self._channels == 1: output_shape = num_frames, output_data = np.empty(output_shape, dtype=np.float32) ret = src_callback_read(self._state, self._ratio, num_frames, output_data) if ret == 0: error = src_error(self._state) if error: raise ResamplingError(error) return output_data[:ret, :] if self._channels > 1 else output_data[:ret]
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, num_frames):\n from samplerate.lowlevel import src_callback_read, src_error\n from samplerate.exceptions import ResamplingError\n if self._state is None:\n self._create()\n if self._channels > 1:\n output_shape = num_frames, self._channels\n elif self._channels == 1:\n output_shape = num_frames,\n output_data = np.empty(output_shape, dtype=np.float32)\n ret = src_callback_read(self._state, self._ratio, num_frames, output_data)\n if ret == 0:\n error = src_error(self._state)\n if error:\n raise ResamplingError(error)\n return output_data[:ret, :] if self._channels > 1 else output_data[:ret]\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(seq): m = get_mean(seq) return sum((v - m) ** 2 for v in seq) / float(len(seq))
get_variance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq):\n m = get_mean(seq)\n return sum((v - m) ** 2 for v in seq) / float(len(seq))\n", "role": "user" }, { "content": "get_variance", "role": "assistant" } ]
def x(seq, correct): assert len(seq) == len(correct) diffs = [abs(a - b) for a, b in zip(seq, correct)] return sum(diffs) / float(len(diffs))
mean_absolute_error
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq, correct):\n assert len(seq) == len(correct)\n diffs = [abs(a - b) for a, b in zip(seq, correct)]\n return sum(diffs) / float(len(diffs))\n", "role": "user" }, { "content": "mean_absolute_error", "role": "assistant" } ]
def x(seq): s = float(sum(seq)) return [(v / s) for v in seq]
normalize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq):\n s = float(sum(seq))\n return [(v / s) for v in seq]\n", "role": "user" }, { "content": "normalize", "role": "assistant" } ]
def x(x, mu, sigma): t = x - mu y = 0.5 * erfcc(-t / (sigma * math.sqrt(2.0))) if y > 1.0: y = 1.0 return y
normcdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, mu, sigma):\n t = x - mu\n y = 0.5 * erfcc(-t / (sigma * math.sqrt(2.0)))\n if y > 1.0:\n y = 1.0\n return y\n", "role": "user" }, { "content": "normcdf", "role": "assistant" } ]
def x(x, mu, sigma): u = (x - mu) / abs(sigma) y = 1 / (math.sqrt(2 * pi) * abs(sigma)) * math.exp(-u * u / 2) return y
normpdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, mu, sigma):\n u = (x - mu) / abs(sigma)\n y = 1 / (math.sqrt(2 * pi) * abs(sigma)) * math.exp(-u * u / 2)\n return y\n", "role": "user" }, { "content": "normpdf", "role": "assistant" } ]
def x(data, class_attr=None, method=DEFAULT_DISCRETE_METRIC): assert class_attr is None and isinstance(data, dict ) or class_attr is not None and isinstance(data, list) if isinstance(data, dict): counts = data else: counts = defaultdict(float) for record in data: counts[record.get(class_attr)] += 1.0 len_data = float(sum(cnt for _, cnt in iteritems(counts))) n = max(2, len(counts)) total = float(sum(counts.values())) assert total, 'There must be at least one non-zero count.' try: if method == ENTROPY1: return -sum(count / len_data * math.log(count / len_data, n) for count in itervalues(counts) if count) elif method == ENTROPY2: return -sum(count / len_data * math.log(count / len_data, n) for count in itervalues(counts) if count) - (len(counts) - 1 ) / float(total) elif method == ENTROPY3: return -sum(count / len_data * math.log(count / len_data, n) for count in itervalues(counts) if count) - 100 * ((len(counts) - 1) / float(total)) else: raise Exception('Unknown entropy method %s.' % method) except Exception: raise
entropy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, class_attr=None, method=DEFAULT_DISCRETE_METRIC):\n assert class_attr is None and isinstance(data, dict\n ) or class_attr is not None and isinstance(data, list)\n if isinstance(data, dict):\n counts = data\n else:\n counts = defaultdict(float)\n for record in data:\n counts[record.get(class_attr)] += 1.0\n len_data = float(sum(cnt for _, cnt in iteritems(counts)))\n n = max(2, len(counts))\n total = float(sum(counts.values()))\n assert total, 'There must be at least one non-zero count.'\n try:\n if method == ENTROPY1:\n return -sum(count / len_data * math.log(count / len_data, n) for\n count in itervalues(counts) if count)\n elif method == ENTROPY2:\n return -sum(count / len_data * math.log(count / len_data, n) for\n count in itervalues(counts) if count) - (len(counts) - 1\n ) / float(total)\n elif method == ENTROPY3:\n return -sum(count / len_data * math.log(count / len_data, n) for\n count in itervalues(counts) if count) - 100 * ((len(counts) -\n 1) / float(total))\n else:\n raise Exception('Unknown entropy method %s.' % method)\n except Exception:\n raise\n", "role": "user" }, { "content": "entropy", "role": "assistant" } ]
def x(data, class_attr=None, method=DEFAULT_CONTINUOUS_METRIC): assert method in CONTINUOUS_METRICS, 'Unknown entropy variance metric: %s' % ( method,) assert class_attr is None and isinstance(data, dict ) or class_attr is not None and isinstance(data, list) if isinstance(data, dict): lst = data else: lst = [record.get(class_attr) for record in data] return get_variance(lst)
entropy_variance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, class_attr=None, method=DEFAULT_CONTINUOUS_METRIC):\n assert method in CONTINUOUS_METRICS, 'Unknown entropy variance metric: %s' % (\n method,)\n assert class_attr is None and isinstance(data, dict\n ) or class_attr is not None and isinstance(data, list)\n if isinstance(data, dict):\n lst = data\n else:\n lst = [record.get(class_attr) for record in data]\n return get_variance(lst)\n", "role": "user" }, { "content": "entropy_variance", "role": "assistant" } ]
def x(data, attr, class_attr, method=DEFAULT_DISCRETE_METRIC, only_sub=0, prefer_fewer_values=False, entropy_func=None): entropy_func = entropy_func or entropy val_freq = defaultdict(float) subset_entropy = 0.0 for record in data: val_freq[record.get(attr)] += 1.0 for val in val_freq.keys(): val_prob = val_freq[val] / sum(val_freq.values()) data_subset = [record for record in data if record.get(attr) == val] e = entropy_func(data_subset, class_attr, method=method) subset_entropy += val_prob * e if only_sub: return subset_entropy main_entropy = entropy_func(data, class_attr, method=method) if prefer_fewer_values: return main_entropy - subset_entropy, 1.0 / len(val_freq) else: return main_entropy - subset_entropy
get_gain
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, attr, class_attr, method=DEFAULT_DISCRETE_METRIC, only_sub=0,\n prefer_fewer_values=False, entropy_func=None):\n entropy_func = entropy_func or entropy\n val_freq = defaultdict(float)\n subset_entropy = 0.0\n for record in data:\n val_freq[record.get(attr)] += 1.0\n for val in val_freq.keys():\n val_prob = val_freq[val] / sum(val_freq.values())\n data_subset = [record for record in data if record.get(attr) == val]\n e = entropy_func(data_subset, class_attr, method=method)\n subset_entropy += val_prob * e\n if only_sub:\n return subset_entropy\n main_entropy = entropy_func(data, class_attr, method=method)\n if prefer_fewer_values:\n return main_entropy - subset_entropy, 1.0 / len(val_freq)\n else:\n return main_entropy - subset_entropy\n", "role": "user" }, { "content": "get_gain", "role": "assistant" } ]
def x(data, class_attr): if is_continuous(data[0][class_attr]): return CDist(seq=[record[class_attr] for record in data]) else: return most_frequent([record[class_attr] for record in data])
majority_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, class_attr):\n if is_continuous(data[0][class_attr]):\n return CDist(seq=[record[class_attr] for record in data])\n else:\n return most_frequent([record[class_attr] for record in data])\n", "role": "user" }, { "content": "majority_value", "role": "assistant" } ]
def x(lst): lst = lst[:] highest_freq = 0 most_freq = None for val in unique(lst): if lst.count(val) > highest_freq: most_freq = val highest_freq = lst.count(val) return most_freq
most_frequent
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lst):\n lst = lst[:]\n highest_freq = 0\n most_freq = None\n for val in unique(lst):\n if lst.count(val) > highest_freq:\n most_freq = val\n highest_freq = lst.count(val)\n return most_freq\n", "role": "user" }, { "content": "most_frequent", "role": "assistant" } ]
def x(lst): lst = lst[:] unique_lst = [] for item in lst: if unique_lst.count(item) <= 0: unique_lst.append(item) return unique_lst
unique
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lst):\n lst = lst[:]\n unique_lst = []\n for item in lst:\n if unique_lst.count(item) <= 0:\n unique_lst.append(item)\n return unique_lst\n", "role": "user" }, { "content": "unique", "role": "assistant" } ]
def x(data, attributes, class_attr, fitness, method): best = -1e1000, None for attr in attributes: if attr == class_attr: continue gain = fitness(data, attr, class_attr, method=method) best = max(best, (gain, attr)) return best[1]
choose_attribute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, attributes, class_attr, fitness, method):\n best = -1e1000, None\n for attr in attributes:\n if attr == class_attr:\n continue\n gain = fitness(data, attr, class_attr, method=method)\n best = max(best, (gain, attr))\n return best[1]\n", "role": "user" }, { "content": "choose_attribute", "role": "assistant" } ]
def x(data, attributes, class_attr, fitness_func, wrapper, **kwargs): split_attr = kwargs.get('split_attr', None) split_val = kwargs.get('split_val', None) assert class_attr not in attributes node = None data = list(data) if isinstance(data, Data) else data if wrapper.is_continuous_class: stop_value = CDist(seq=[r[class_attr] for r in data]) stop = (wrapper.leaf_threshold is not None and stop_value.variance <= wrapper.leaf_threshold) else: stop_value = DDist(seq=[r[class_attr] for r in data]) stop = len(stop_value.counts) <= 1 if not data or len(attributes) <= 0: if wrapper: wrapper.leaf_count += 1 return stop_value elif stop: if wrapper: wrapper.leaf_count += 1 return stop_value else: best = choose_attribute(data, attributes, class_attr, fitness_func, method=wrapper.metric) node = Node(tree=wrapper, attr_name=best) node.n += len(data) for val in get_values(data, best): subtree = create_decision_tree([r for r in data if r[best] == val], [attr for attr in attributes if attr != best], class_attr, fitness_func, split_attr=best, split_val=val, wrapper=wrapper) if isinstance(subtree, Node): node._branches[val] = subtree elif isinstance(subtree, (CDist, DDist)): node.set_leaf_dist(attr_value=val, dist=subtree) else: raise Exception('Unknown subtree type: %s' % (type(subtree),)) return node
create_decision_tree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, attributes, class_attr, fitness_func, wrapper, **kwargs):\n split_attr = kwargs.get('split_attr', None)\n split_val = kwargs.get('split_val', None)\n assert class_attr not in attributes\n node = None\n data = list(data) if isinstance(data, Data) else data\n if wrapper.is_continuous_class:\n stop_value = CDist(seq=[r[class_attr] for r in data])\n stop = (wrapper.leaf_threshold is not None and stop_value.variance <=\n wrapper.leaf_threshold)\n else:\n stop_value = DDist(seq=[r[class_attr] for r in data])\n stop = len(stop_value.counts) <= 1\n if not data or len(attributes) <= 0:\n if wrapper:\n wrapper.leaf_count += 1\n return stop_value\n elif stop:\n if wrapper:\n wrapper.leaf_count += 1\n return stop_value\n else:\n best = choose_attribute(data, attributes, class_attr, fitness_func,\n method=wrapper.metric)\n node = Node(tree=wrapper, attr_name=best)\n node.n += len(data)\n for val in get_values(data, best):\n subtree = create_decision_tree([r for r in data if r[best] ==\n val], [attr for attr in attributes if attr != best],\n class_attr, fitness_func, split_attr=best, split_val=val,\n wrapper=wrapper)\n if isinstance(subtree, Node):\n node._branches[val] = subtree\n elif isinstance(subtree, (CDist, DDist)):\n node.set_leaf_dist(attr_value=val, dist=subtree)\n else:\n raise Exception('Unknown subtree type: %s' % (type(subtree),))\n return node\n", "role": "user" }, { "content": "create_decision_tree", "role": "assistant" } ]
def x(self, k, count=1): self.counts[k] += count self.total += count
add
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, k, count=1):\n self.counts[k] += count\n self.total += count\n", "role": "user" }, { "content": "add", "role": "assistant" } ]
def x(self): b = -1e1000, None for k, c in iteritems(self.counts): b = max(b, (c, k)) return b[1]
best
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n b = -1e1000, None\n for k, c in iteritems(self.counts):\n b = max(b, (c, k))\n return b[1]\n", "role": "user" }, { "content": "best", "role": "assistant" } ]
def x(self): return [(k, self.counts[k] / float(self.total)) for k in iterkeys(self. counts)]
probs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return [(k, self.counts[k] / float(self.total)) for k in iterkeys(self.\n counts)]\n", "role": "user" }, { "content": "probs", "role": "assistant" } ]
def x(self, dist): assert isinstance(dist, DDist) for k, c in iteritems(dist.counts): self.counts[k] += c self.total += dist.total
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dist):\n assert isinstance(dist, DDist)\n for k, c in iteritems(dist.counts):\n self.counts[k] += c\n self.total += dist.total\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self, x): if self.mean is None: return return normdist(x=x, mu=self.mean, sigma=self.standard_deviation)
probability_lt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x):\n if self.mean is None:\n return\n return normdist(x=x, mu=self.mean, sigma=self.standard_deviation)\n", "role": "user" }, { "content": "probability_lt", "role": "assistant" } ]
def x(self, a, b): if self.mean is None: return p1 = normdist(x=a, mu=self.mean, sigma=self.standard_deviation) p2 = normdist(x=b, mu=self.mean, sigma=self.standard_deviation) return abs(p1 - p2)
probability_in
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, a, b):\n if self.mean is None:\n return\n p1 = normdist(x=a, mu=self.mean, sigma=self.standard_deviation)\n p2 = normdist(x=b, mu=self.mean, sigma=self.standard_deviation)\n return abs(p1 - p2)\n", "role": "user" }, { "content": "probability_in", "role": "assistant" } ]
def x(self, x): if self.mean is None: return p = normdist(x=x, mu=self.mean, sigma=self.standard_deviation) return 1 - p
probability_gt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x):\n if self.mean is None:\n return\n p = normdist(x=x, mu=self.mean, sigma=self.standard_deviation)\n return 1 - p\n", "role": "user" }, { "content": "probability_gt", "role": "assistant" } ]
def x(self): return type(self)([], order=list(self.header_modes), types=self. header_types.copy(), modes=self.header_modes.copy())
copy_no_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return type(self)([], order=list(self.header_modes), types=self.\n header_types.copy(), modes=self.header_modes.copy())\n", "role": "user" }, { "content": "copy_no_data", "role": "assistant" } ]
def x(self, name, value): if name not in self.header_types: return False t = self.header_types[name] if t == ATTR_TYPE_DISCRETE: return isinstance(value, int) elif t == ATTR_TYPE_CONTINUOUS: return isinstance(value, (float, Decimal)) return True
is_valid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, value):\n if name not in self.header_types:\n return False\n t = self.header_types[name]\n if t == ATTR_TYPE_DISCRETE:\n return isinstance(value, int)\n elif t == ATTR_TYPE_CONTINUOUS:\n return isinstance(value, (float, Decimal))\n return True\n", "role": "user" }, { "content": "is_valid", "role": "assistant" } ]
def x(self): if not self.filename or self.header_types: return rows = csv.reader(open(self.filename)) header = next(rows) self.header_types = {} self._class_attr_name = None self.header_order = [] for el in header: matches = ATTR_HEADER_PATTERN.findall(el) assert matches, 'Invalid header element: %s' % (el,) el_name, el_type, el_mode = matches[0] el_name = el_name.strip() self.header_order.append(el_name) self.header_types[el_name] = el_type if el_mode == ATTR_MODE_CLASS: assert self._class_attr_name is None, 'Multiple class attributes are not supported.' self._class_attr_name = el_name else: assert self.header_types[el_name ] != ATTR_TYPE_CONTINUOUS, 'Non-class continuous attributes are not supported.' assert self._class_attr_name, 'A class attribute must be specified.'
read_header
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.filename or self.header_types:\n return\n rows = csv.reader(open(self.filename))\n header = next(rows)\n self.header_types = {}\n self._class_attr_name = None\n self.header_order = []\n for el in header:\n matches = ATTR_HEADER_PATTERN.findall(el)\n assert matches, 'Invalid header element: %s' % (el,)\n el_name, el_type, el_mode = matches[0]\n el_name = el_name.strip()\n self.header_order.append(el_name)\n self.header_types[el_name] = el_type\n if el_mode == ATTR_MODE_CLASS:\n assert self._class_attr_name is None, 'Multiple class attributes are not supported.'\n self._class_attr_name = el_name\n else:\n assert self.header_types[el_name\n ] != ATTR_TYPE_CONTINUOUS, 'Non-class continuous attributes are not supported.'\n assert self._class_attr_name, 'A class attribute must be specified.'\n", "role": "user" }, { "content": "read_header", "role": "assistant" } ]
def x(self, row): clean_row = {} if isinstance(row, (tuple, list)): assert self.header_order, 'No attribute order specified.' assert len(row) == len(self.header_order ), 'Row length does not match header length.' itr = zip(self.header_order, row) else: assert isinstance(row, dict) itr = iteritems(row) for el_name, el_value in itr: if self.header_types[el_name] == ATTR_TYPE_DISCRETE: clean_row[el_name] = int(el_value) elif self.header_types[el_name] == ATTR_TYPE_CONTINUOUS: clean_row[el_name] = float(el_value) else: clean_row[el_name] = el_value return clean_row
validate_row
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, row):\n clean_row = {}\n if isinstance(row, (tuple, list)):\n assert self.header_order, 'No attribute order specified.'\n assert len(row) == len(self.header_order\n ), 'Row length does not match header length.'\n itr = zip(self.header_order, row)\n else:\n assert isinstance(row, dict)\n itr = iteritems(row)\n for el_name, el_value in itr:\n if self.header_types[el_name] == ATTR_TYPE_DISCRETE:\n clean_row[el_name] = int(el_value)\n elif self.header_types[el_name] == ATTR_TYPE_CONTINUOUS:\n clean_row[el_name] = float(el_value)\n else:\n clean_row[el_name] = el_value\n return clean_row\n", "role": "user" }, { "content": "validate_row", "role": "assistant" } ]
def x(self, ratio=0.5, leave_one_out=False): a_labels = set() a = self.copy_no_data() b = self.copy_no_data() for row in self: if leave_one_out and not self.is_continuous_class: label = row[self.class_attribute_name] if label not in a_labels: a_labels.add(label) a.data.append(row) else: b.data.append(row) elif not a: a.data.append(row) elif not b: b.data.append(row) elif random.random() <= ratio: a.data.append(row) else: b.data.append(row) return a, b
split
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ratio=0.5, leave_one_out=False):\n a_labels = set()\n a = self.copy_no_data()\n b = self.copy_no_data()\n for row in self:\n if leave_one_out and not self.is_continuous_class:\n label = row[self.class_attribute_name]\n if label not in a_labels:\n a_labels.add(label)\n a.data.append(row)\n else:\n b.data.append(row)\n elif not a:\n a.data.append(row)\n elif not b:\n b.data.append(row)\n elif random.random() <= ratio:\n a.data.append(row)\n else:\n b.data.append(row)\n return a, b\n", "role": "user" }, { "content": "split", "role": "assistant" } ]
def x(self, record): if self.attr_name is None: return attr = self.attr_name attr_value = record[attr] attr_values = self.get_values(attr) if attr_value in attr_values: return attr_value else: policy = self.tree.missing_value_policy.get(attr) assert policy, 'No missing value policy specified for attribute %s.' % ( attr,) if policy == USE_NEAREST: assert self.tree.data.header_types[attr] in (ATTR_TYPE_DISCRETE, ATTR_TYPE_CONTINUOUS ), 'The use-nearest policy is invalid for nominal types.' nearest = 1e1000, None for _value in attr_values: nearest = min(nearest, (abs(_value - attr_value), _value)) _, nearest_value = nearest return nearest_value else: raise Exception('Unknown missing value policy: %s' % (policy,))
get_attribute_value_for_node
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, record):\n if self.attr_name is None:\n return\n attr = self.attr_name\n attr_value = record[attr]\n attr_values = self.get_values(attr)\n if attr_value in attr_values:\n return attr_value\n else:\n policy = self.tree.missing_value_policy.get(attr)\n assert policy, 'No missing value policy specified for attribute %s.' % (\n attr,)\n if policy == USE_NEAREST:\n assert self.tree.data.header_types[attr] in (ATTR_TYPE_DISCRETE,\n ATTR_TYPE_CONTINUOUS\n ), 'The use-nearest policy is invalid for nominal types.'\n nearest = 1e1000, None\n for _value in attr_values:\n nearest = min(nearest, (abs(_value - attr_value), _value))\n _, nearest_value = nearest\n return nearest_value\n else:\n raise Exception('Unknown missing value policy: %s' % (policy,))\n", "role": "user" }, { "content": "get_attribute_value_for_node", "role": "assistant" } ]
def x(self, attr_name): ret = list(self._attr_value_cdist[attr_name].keys()) + list(self. _attr_value_counts[attr_name].keys()) + list(self._branches.keys()) ret = set(ret) return ret
get_values
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, attr_name):\n ret = list(self._attr_value_cdist[attr_name].keys()) + list(self.\n _attr_value_counts[attr_name].keys()) + list(self._branches.keys())\n ret = set(ret)\n return ret\n", "role": "user" }, { "content": "get_values", "role": "assistant" } ]
def x(self): best = -1e1000, None for attr in self.attributes: best = max(best, (self.get_gain(attr), attr)) best_gain, best_attr = best return best_attr
get_best_splitting_attr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n best = -1e1000, None\n for attr in self.attributes:\n best = max(best, (self.get_gain(attr), attr))\n best_gain, best_attr = best\n return best_attr\n", "role": "user" }, { "content": "get_best_splitting_attr", "role": "assistant" } ]
def x(self, attr_name=None, attr_value=None): is_con = self.tree.data.is_continuous_class if is_con: if attr_name is None: var = self._class_cdist.variance else: var = self._attr_value_cdist[attr_name][attr_value].variance if self.tree.metric == VARIANCE1 or attr_name is None: return var elif self.tree.metric == VARIANCE2: unique_value_count = len(self._attr_value_counts[attr_name]) attr_total = float(self._attr_value_count_totals[attr_name]) return var * (unique_value_count / attr_total) else: if attr_name is None: total = float(self._class_ddist.total) counts = self._class_ddist.counts unique_value_count = len(self._class_ddist.counts) attr_total = total else: total = float(self._attr_value_counts[attr_name][attr_value]) counts = self._attr_class_value_counts[attr_name][attr_value] unique_value_count = len(self._attr_value_counts[attr_name]) attr_total = float(self._attr_value_count_totals[attr_name]) assert total, 'There must be at least one non-zero count.' n = max(2, len(counts)) if self._tree.metric == ENTROPY1: return -sum(count / total * math.log(count / total, n) for count in itervalues(counts)) elif self._tree.metric == ENTROPY2: return -sum(count / total * math.log(count / total, n) for count in itervalues(counts)) + unique_value_count / attr_total elif self._tree.metric == ENTROPY3: return -sum(count / total * math.log(count / total, n) for count in itervalues(counts)) + 100 * (unique_value_count / attr_total)
get_entropy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, attr_name=None, attr_value=None):\n is_con = self.tree.data.is_continuous_class\n if is_con:\n if attr_name is None:\n var = self._class_cdist.variance\n else:\n var = self._attr_value_cdist[attr_name][attr_value].variance\n if self.tree.metric == VARIANCE1 or attr_name is None:\n return var\n elif self.tree.metric == VARIANCE2:\n unique_value_count = len(self._attr_value_counts[attr_name])\n attr_total = float(self._attr_value_count_totals[attr_name])\n return var * (unique_value_count / attr_total)\n else:\n if attr_name is None:\n total = float(self._class_ddist.total)\n counts = self._class_ddist.counts\n unique_value_count = len(self._class_ddist.counts)\n attr_total = total\n else:\n total = float(self._attr_value_counts[attr_name][attr_value])\n counts = self._attr_class_value_counts[attr_name][attr_value]\n unique_value_count = len(self._attr_value_counts[attr_name])\n attr_total = float(self._attr_value_count_totals[attr_name])\n assert total, 'There must be at least one non-zero count.'\n n = max(2, len(counts))\n if self._tree.metric == ENTROPY1:\n return -sum(count / total * math.log(count / total, n) for\n count in itervalues(counts))\n elif self._tree.metric == ENTROPY2:\n return -sum(count / total * math.log(count / total, n) for\n count in itervalues(counts)) + unique_value_count / attr_total\n elif self._tree.metric == ENTROPY3:\n return -sum(count / total * math.log(count / total, n) for\n count in itervalues(counts)) + 100 * (unique_value_count /\n attr_total)\n", "role": "user" }, { "content": "get_entropy", "role": "assistant" } ]
def x(self, attr_name): subset_entropy = 0.0 for value in iterkeys(self._attr_value_counts[attr_name]): value_prob = self.get_value_prob(attr_name, value) e = self.get_entropy(attr_name, value) subset_entropy += value_prob * e return self.main_entropy - subset_entropy
get_gain
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, attr_name):\n subset_entropy = 0.0\n for value in iterkeys(self._attr_value_counts[attr_name]):\n value_prob = self.get_value_prob(attr_name, value)\n e = self.get_entropy(attr_name, value)\n subset_entropy += value_prob * e\n return self.main_entropy - subset_entropy\n", "role": "user" }, { "content": "get_gain", "role": "assistant" } ]
def x(self, attr_name, attr_value): assert not self.tree.data.is_continuous_class, 'Discrete distributions are only maintained for ' + 'discrete class types.' ddist = DDist() cls_counts = self._attr_class_value_counts[attr_name][attr_value] for cls_value, cls_count in iteritems(cls_counts): ddist.add(cls_value, count=cls_count) return ddist
get_value_ddist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, attr_name, attr_value):\n assert not self.tree.data.is_continuous_class, 'Discrete distributions are only maintained for ' + 'discrete class types.'\n ddist = DDist()\n cls_counts = self._attr_class_value_counts[attr_name][attr_value]\n for cls_value, cls_count in iteritems(cls_counts):\n ddist.add(cls_value, count=cls_count)\n return ddist\n", "role": "user" }, { "content": "get_value_ddist", "role": "assistant" } ]
def x(self, attr_name, value): if attr_name not in self._attr_value_count_totals: return n = self._attr_value_counts[attr_name][value] d = self._attr_value_count_totals[attr_name] return n / float(d)
get_value_prob
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, attr_name, value):\n if attr_name not in self._attr_value_count_totals:\n return\n n = self._attr_value_counts[attr_name][value]\n d = self._attr_value_count_totals[attr_name]\n return n / float(d)\n", "role": "user" }, { "content": "get_value_prob", "role": "assistant" } ]
def x(self, record, depth=0): if not self.ready_to_predict: raise NodeNotReadyToPredict attr_value = self._get_attribute_value_for_node(record) if self.attr_name: if attr_value in self._branches: try: return self._branches[attr_value].predict(record, depth= depth + 1) except NodeNotReadyToPredict: pass if self.attr_name: if self._tree.data.is_continuous_class: return self._attr_value_cdist[self.attr_name][attr_value].copy() else: return self.get_value_ddist(self.attr_name, attr_value) elif self._tree.data.is_continuous_class: assert self._class_cdist is not None return self._class_cdist.copy() else: return self._class_ddist.copy()
predict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, record, depth=0):\n if not self.ready_to_predict:\n raise NodeNotReadyToPredict\n attr_value = self._get_attribute_value_for_node(record)\n if self.attr_name:\n if attr_value in self._branches:\n try:\n return self._branches[attr_value].predict(record, depth=\n depth + 1)\n except NodeNotReadyToPredict:\n pass\n if self.attr_name:\n if self._tree.data.is_continuous_class:\n return self._attr_value_cdist[self.attr_name][attr_value].copy()\n else:\n return self.get_value_ddist(self.attr_name, attr_value)\n elif self._tree.data.is_continuous_class:\n assert self._class_cdist is not None\n return self._class_cdist.copy()\n else:\n return self._class_ddist.copy()\n", "role": "user" }, { "content": "predict", "role": "assistant" } ]