source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(title, api): if len(title) > api.MAX_LIST_TITLE_LENGTH: raise ValueError('Title cannot be longer than {} characters'.format (api.MAX_TASK_TITLE_LENGTH))
check_title_length
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(title, api):\n if len(title) > api.MAX_LIST_TITLE_LENGTH:\n raise ValueError('Title cannot be longer than {} characters'.format\n (api.MAX_TASK_TITLE_LENGTH))\n", "role": "user" }, { "content": "check_title_length", "role": "assistant" } ]
def x(client): response = client.authenticated_request(client.api.Endpoints.LISTS) return response.json()
get_lists
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(client):\n response = client.authenticated_request(client.api.Endpoints.LISTS)\n return response.json()\n", "role": "user" }, { "content": "get_lists", "role": "assistant" } ]
def x(client, list_id): endpoint = '/'.join([client.api.Endpoints.LISTS, str(list_id)]) response = client.authenticated_request(endpoint) return response.json()
get_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(client, list_id):\n endpoint = '/'.join([client.api.Endpoints.LISTS, str(list_id)])\n response = client.authenticated_request(endpoint)\n return response.json()\n", "role": "user" }, { "content": "get_list", "role": "assistant" } ]
def x(client, title): _check_title_length(title, client.api) data = {'title': title} response = client.authenticated_request(client.api.Endpoints.LISTS, method='POST', data=data) return response.json()
create_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(client, title):\n _check_title_length(title, client.api)\n data = {'title': title}\n response = client.authenticated_request(client.api.Endpoints.LISTS,\n method='POST', data=data)\n return response.json()\n", "role": "user" }, { "content": "create_list", "role": "assistant" } ]
def x(client, list_id, revision, title=None, public=None): if title is not None: _check_title_length(title, client.api) data = {'revision': revision, 'title': title, 'public': public} data = {key: value for key, value in data.items() if value is not None} endpoint = '/'.join([client.api.Endpoints.LISTS, str(list_id)]) response = client.authenticated_request(endpoint, 'PATCH', data=data) return response.json()
update_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(client, list_id, revision, title=None, public=None):\n if title is not None:\n _check_title_length(title, client.api)\n data = {'revision': revision, 'title': title, 'public': public}\n data = {key: value for key, value in data.items() if value is not None}\n endpoint = '/'.join([client.api.Endpoints.LISTS, str(list_id)])\n response = client.authenticated_request(endpoint, 'PATCH', data=data)\n return response.json()\n", "role": "user" }, { "content": "update_list", "role": "assistant" } ]
def x(client, positions_obj_id): return endpoint_helpers.get_endpoint_obj(client, client.api.Endpoints. LIST_POSITIONS, positions_obj_id)
get_list_positions_obj
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(client, positions_obj_id):\n return endpoint_helpers.get_endpoint_obj(client, client.api.Endpoints.\n LIST_POSITIONS, positions_obj_id)\n", "role": "user" }, { "content": "get_list_positions_obj", "role": "assistant" } ]
def x(client, positions_obj_id, revision, values): return _update_positions_obj(client, client.api.Endpoints. LIST_POSITIONS, positions_obj_id, revision, values)
update_list_positions_obj
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(client, positions_obj_id, revision, values):\n return _update_positions_obj(client, client.api.Endpoints.\n LIST_POSITIONS, positions_obj_id, revision, values)\n", "role": "user" }, { "content": "update_list_positions_obj", "role": "assistant" } ]
def x(client, list_id): params = {'list_id': int(list_id)} response = client.authenticated_request(client.api.Endpoints. TASK_POSITIONS, params=params) return response.json()
get_task_positions_objs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(client, list_id):\n params = {'list_id': int(list_id)}\n response = client.authenticated_request(client.api.Endpoints.\n TASK_POSITIONS, params=params)\n return response.json()\n", "role": "user" }, { "content": "get_task_positions_objs", "role": "assistant" } ]
def x(client, task_id): params = {'task_id': int(task_id)} response = client.authenticated_request(client.api.Endpoints. SUBTASK_POSITIONS, params=params) return response.json()
get_task_subtask_positions_objs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(client, task_id):\n params = {'task_id': int(task_id)}\n response = client.authenticated_request(client.api.Endpoints.\n SUBTASK_POSITIONS, params=params)\n return response.json()\n", "role": "user" }, { "content": "get_task_subtask_positions_objs", "role": "assistant" } ]
def x(client, list_id): params = {'list_id': int(list_id)} response = client.authenticated_request(client.api.Endpoints. SUBTASK_POSITIONS, params=params) return response.json()
get_list_subtask_positions_objs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(client, list_id):\n params = {'list_id': int(list_id)}\n response = client.authenticated_request(client.api.Endpoints.\n SUBTASK_POSITIONS, params=params)\n return response.json()\n", "role": "user" }, { "content": "get_list_subtask_positions_objs", "role": "assistant" } ]
def x(title, api): if len(title) > api.MAX_SUBTASK_TITLE_LENGTH: raise ValueError('Title cannot be longer than {} characters'.format (api.MAX_SUBTASK_TITLE_LENGTH))
check_title_length
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(title, api):\n if len(title) > api.MAX_SUBTASK_TITLE_LENGTH:\n raise ValueError('Title cannot be longer than {} characters'.format\n (api.MAX_SUBTASK_TITLE_LENGTH))\n", "role": "user" }, { "content": "check_title_length", "role": "assistant" } ]
def x(client, task_id, completed=False): params = {'task_id': int(task_id), 'completed': completed} response = client.authenticated_request(client.api.Endpoints.SUBTASKS, params=params) return response.json()
get_task_subtasks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(client, task_id, completed=False):\n params = {'task_id': int(task_id), 'completed': completed}\n response = client.authenticated_request(client.api.Endpoints.SUBTASKS,\n params=params)\n return response.json()\n", "role": "user" }, { "content": "get_task_subtasks", "role": "assistant" } ]
def x(client, list_id, completed=False): params = {'list_id': int(list_id), 'completed': completed} response = client.authenticated_request(client.api.Endpoints.SUBTASKS, params=params) return response.json()
get_list_subtasks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(client, list_id, completed=False):\n params = {'list_id': int(list_id), 'completed': completed}\n response = client.authenticated_request(client.api.Endpoints.SUBTASKS,\n params=params)\n return response.json()\n", "role": "user" }, { "content": "get_list_subtasks", "role": "assistant" } ]
def x(client, subtask_id): endpoint = '/'.join([client.api.Endpoints.SUBTASKS, str(subtask_id)]) response = client.authenticated_request(endpoint) return response.json()
get_subtask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(client, subtask_id):\n endpoint = '/'.join([client.api.Endpoints.SUBTASKS, str(subtask_id)])\n response = client.authenticated_request(endpoint)\n return response.json()\n", "role": "user" }, { "content": "get_subtask", "role": "assistant" } ]
def x(client, task_id, title, completed=False): _check_title_length(title, client.api) data = {'task_id': int(task_id) if task_id else None, 'title': title, 'completed': completed} data = {key: value for key, value in data.items() if value is not None} response = client.authenticated_request(client.api.Endpoints.SUBTASKS, 'POST', data=data) return response.json()
create_subtask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(client, task_id, title, completed=False):\n _check_title_length(title, client.api)\n data = {'task_id': int(task_id) if task_id else None, 'title': title,\n 'completed': completed}\n data = {key: value for key, value in data.items() if value is not None}\n response = client.authenticated_request(client.api.Endpoints.SUBTASKS,\n 'POST', data=data)\n return response.json()\n", "role": "user" }, { "content": "create_subtask", "role": "assistant" } ]
def x(client, subtask_id, revision, title=None, completed=None): if title is not None: _check_title_length(title, client.api) data = {'revision': int(revision), 'title': title, 'completed': completed} data = {key: value for key, value in data.items() if value is not None} endpoint = '/'.join([client.api.Endpoints.SUBTASKS, str(subtask_id)]) response = client.authenticated_request(endpoint, 'PATCH', data=data) return response.json()
update_subtask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(client, subtask_id, revision, title=None, completed=None):\n if title is not None:\n _check_title_length(title, client.api)\n data = {'revision': int(revision), 'title': title, 'completed': completed}\n data = {key: value for key, value in data.items() if value is not None}\n endpoint = '/'.join([client.api.Endpoints.SUBTASKS, str(subtask_id)])\n response = client.authenticated_request(endpoint, 'PATCH', data=data)\n return response.json()\n", "role": "user" }, { "content": "update_subtask", "role": "assistant" } ]
def x(client, subtask_id, revision): params = {'revision': int(revision)} endpoint = '/'.join([client.api.Endpoints.SUBTASKS, str(subtask_id)]) client.authenticated_request(endpoint, 'DELETE', params=params)
delete_subtask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(client, subtask_id, revision):\n params = {'revision': int(revision)}\n endpoint = '/'.join([client.api.Endpoints.SUBTASKS, str(subtask_id)])\n client.authenticated_request(endpoint, 'DELETE', params=params)\n", "role": "user" }, { "content": "delete_subtask", "role": "assistant" } ]
def x(animation='elipses', text='', speed=0.2): def x(func): func.animation = animation func.speed = speed func.text = text @wraps(func) def x(*args, **kwargs): animation = func.animation text = func.text if not isinstance(animation, (list, tuple)) and not hasattr( animations, animation): text = animation if text == '' else text animation = 'elipses' wait = Wait(animation=animation, text=text, speed=func.speed) wait.start() try: ret = func(*args, **kwargs) finally: wait.stop() sys.stdout.write('\n') return ret return wrapper return decorator
wait
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(animation='elipses', text='', speed=0.2):\n\n def x(func):\n func.animation = animation\n func.speed = speed\n func.text = text\n\n @wraps(func)\n def x(*args, **kwargs):\n animation = func.animation\n text = func.text\n if not isinstance(animation, (list, tuple)) and not hasattr(\n animations, animation):\n text = animation if text == '' else text\n animation = 'elipses'\n wait = Wait(animation=animation, text=text, speed=func.speed)\n wait.start()\n try:\n ret = func(*args, **kwargs)\n finally:\n wait.stop()\n sys.stdout.write('\\n')\n return ret\n return wrapper\n return decorator\n", "role": "user" }, { "content": "wait", "role": "assistant" } ]
def x(func): @wraps(func) def x(*args, **kwargs): wait = Wait() wait.start() try: ret = func(*args, **kwargs) finally: wait.stop() sys.stdout.write('\n') return ret return wrapper
simple_wait
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func):\n\n @wraps(func)\n def x(*args, **kwargs):\n wait = Wait()\n wait.start()\n try:\n ret = func(*args, **kwargs)\n finally:\n wait.stop()\n sys.stdout.write('\\n')\n return ret\n return wrapper\n", "role": "user" }, { "content": "simple_wait", "role": "assistant" } ]
def x(self): self.thread = threading.Thread(target=self._animate) self.thread.start() return
start
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.thread = threading.Thread(target=self._animate)\n self.thread.start()\n return\n", "role": "user" }, { "content": "start", "role": "assistant" } ]
def x(self): time.sleep(self.speed) self._count = -9999 sys.stdout.write(self.reverser + '\r\x1b[K\x1b[A') sys.stdout.flush() return
stop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n time.sleep(self.speed)\n self._count = -9999\n sys.stdout.write(self.reverser + '\\r\\x1b[K\\x1b[A')\n sys.stdout.flush()\n return\n", "role": "user" }, { "content": "stop", "role": "assistant" } ]
def x(tup): if not all(tuple(ts.shape[1:] == tup[0].shape[1:] for ts in tup[1:])): raise ValueError('Timeseries to merge must have compatible shapes') indices = np.vstack(tuple(ts.tspan for ts in tup)).argsort() return np.vstack(tup)[indices]
merge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tup):\n if not all(tuple(ts.shape[1:] == tup[0].shape[1:] for ts in tup[1:])):\n raise ValueError('Timeseries to merge must have compatible shapes')\n indices = np.vstack(tuple(ts.tspan for ts in tup)).argsort()\n return np.vstack(tup)[indices]\n", "role": "user" }, { "content": "merge", "role": "assistant" } ]
def x(cls, source): if isinstance(source, types.FunctionType): _add_single_method(source.__name__, source) else: if isinstance(source, types.ModuleType): mod = source elif isinstance(source, types.StringTypes): import os import imp path = os.path.abspath(source) if os.path.isfile(path) and path[-3:] == '.py': dir, file = os.path.split(path) name = file[:-3] module_info = imp.find_module(name, [dir]) mod = imp.load_module('nsim.' + name, *module_info) elif os.path.isdir(path) and '__init__.py' in os.listdir(path): module_info = imp.find_module('__init__', [path]) name = os.path.basename(path) mod = imp.load_module('nsim.' + name, *module_info) else: raise Error('"%s" is not a file or directory' % source) else: raise ValueError('`source` argument not a function or module') for name, obj in mod.__dict__.items(): if name[0] != '_' and isinstance(obj, types.FunctionType): cls._add_single_method(name, obj)
add_analyses
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, source):\n if isinstance(source, types.FunctionType):\n _add_single_method(source.__name__, source)\n else:\n if isinstance(source, types.ModuleType):\n mod = source\n elif isinstance(source, types.StringTypes):\n import os\n import imp\n path = os.path.abspath(source)\n if os.path.isfile(path) and path[-3:] == '.py':\n dir, file = os.path.split(path)\n name = file[:-3]\n module_info = imp.find_module(name, [dir])\n mod = imp.load_module('nsim.' + name, *module_info)\n elif os.path.isdir(path) and '__init__.py' in os.listdir(path):\n module_info = imp.find_module('__init__', [path])\n name = os.path.basename(path)\n mod = imp.load_module('nsim.' + name, *module_info)\n else:\n raise Error('\"%s\" is not a file or directory' % source)\n else:\n raise ValueError('`source` argument not a function or module')\n for name, obj in mod.__dict__.items():\n if name[0] != '_' and isinstance(obj, types.FunctionType):\n cls._add_single_method(name, obj)\n", "role": "user" }, { "content": "add_analyses", "role": "assistant" } ]
def x(self): return Timeseries(np.absolute(self), self.tspan, self.labels)
absolute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return Timeseries(np.absolute(self), self.tspan, self.labels)\n", "role": "user" }, { "content": "absolute", "role": "assistant" } ]
def x(self, deg=False): if self.dtype.str[1] != 'c': warnings.warn('angle() is intended for complex-valued timeseries', RuntimeWarning, 1) return Timeseries(np.angle(self, deg=deg), self.tspan, self.labels)
angle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, deg=False):\n if self.dtype.str[1] != 'c':\n warnings.warn('angle() is intended for complex-valued timeseries',\n RuntimeWarning, 1)\n return Timeseries(np.angle(self, deg=deg), self.tspan, self.labels)\n", "role": "user" }, { "content": "angle", "role": "assistant" } ]
def x(self, axis1, axis2): if self.ndim <= 1 or axis1 == axis2: return self ar = np.asarray(self).swapaxes(axis1, axis2) if axis1 != 0 and axis2 != 0: labels = self.labels[:] labels[axis1], labels[axis2] = labels[axis2], labels[axis1] return Timeseries(ar, self.tspan, labels) return ar
swapaxes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, axis1, axis2):\n if self.ndim <= 1 or axis1 == axis2:\n return self\n ar = np.asarray(self).swapaxes(axis1, axis2)\n if axis1 != 0 and axis2 != 0:\n labels = self.labels[:]\n labels[axis1], labels[axis2] = labels[axis2], labels[axis1]\n return Timeseries(ar, self.tspan, labels)\n return ar\n", "role": "user" }, { "content": "swapaxes", "role": "assistant" } ]
def x(self, *axes): if self.ndim <= 1: return self ar = np.asarray(self).transpose(*axes) if axes[0] != 0: newlabels = [self.labels[ax] for ax in axes] return Timeseries(ar, self.tspan, newlabels) else: return ar
transpose
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *axes):\n if self.ndim <= 1:\n return self\n ar = np.asarray(self).transpose(*axes)\n if axes[0] != 0:\n newlabels = [self.labels[ax] for ax in axes]\n return Timeseries(ar, self.tspan, newlabels)\n else:\n return ar\n", "role": "user" }, { "content": "transpose", "role": "assistant" } ]
def x(self, newshape, order='C'): oldshape = self.shape ar = np.asarray(self).reshape(newshape, order=order) if newshape is -1 and len(oldshape) is 1 or isinstance(newshape, numbers.Integral) and newshape == oldshape[0] or isinstance(newshape, Sequence) and (newshape[0] == oldshape[0] or newshape[0] is -1 and np.array(oldshape[1:]).prod() == np.array(newshape[1:]).prod()): newlabels = [None] * ar.ndim i = 1 while i < ar.ndim and i < self.ndim and ar.shape[i] == oldshape[i]: newlabels[i] = self.labels[i] i += 1 return Timeseries(ar, self.tspan, newlabels) else: return ar
reshape
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, newshape, order='C'):\n oldshape = self.shape\n ar = np.asarray(self).reshape(newshape, order=order)\n if newshape is -1 and len(oldshape) is 1 or isinstance(newshape,\n numbers.Integral) and newshape == oldshape[0] or isinstance(newshape,\n Sequence) and (newshape[0] == oldshape[0] or newshape[0] is -1 and \n np.array(oldshape[1:]).prod() == np.array(newshape[1:]).prod()):\n newlabels = [None] * ar.ndim\n i = 1\n while i < ar.ndim and i < self.ndim and ar.shape[i] == oldshape[i]:\n newlabels[i] = self.labels[i]\n i += 1\n return Timeseries(ar, self.tspan, newlabels)\n else:\n return ar\n", "role": "user" }, { "content": "reshape", "role": "assistant" } ]
def x(self, ts): if ts.shape[1:] != self.shape[1:]: raise ValueError('Timeseries to merge must have compatible shapes') indices = np.vstack((self.tspan, ts.tspan)).argsort() return np.vstack((self, ts))[indices]
merge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ts):\n if ts.shape[1:] != self.shape[1:]:\n raise ValueError('Timeseries to merge must have compatible shapes')\n indices = np.vstack((self.tspan, ts.tspan)).argsort()\n return np.vstack((self, ts))[indices]\n", "role": "user" }, { "content": "merge", "role": "assistant" } ]
def x(self, axis): if axis == -1: axis = self.ndim array = np.expand_dims(self, axis) if axis == 0: return array else: new_labels = self.labels.insert(axis, None) return Timeseries(array, self.tspan, new_labels)
expand_dims
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, axis):\n if axis == -1:\n axis = self.ndim\n array = np.expand_dims(self, axis)\n if axis == 0:\n return array\n else:\n new_labels = self.labels.insert(axis, None)\n return Timeseries(array, self.tspan, new_labels)\n", "role": "user" }, { "content": "expand_dims", "role": "assistant" } ]
def x(self, tup, axis=0): if not isinstance(tup, Sequence): tup = tup, if tup is (None,) or len(tup) is 0: return self tup = (self,) + tuple(tup) new_array = np.concatenate(tup, axis) if not all(hasattr(ts, 'tspan') and hasattr(ts, 'labels') for ts in tup): return new_array if axis == 0: starts = [ts.tspan[0] for ts in tup] ends = [ts.tspan[-1] for ts in tup] if not all(starts[i] > ends[i - 1] for i in range(1, len(starts))): return new_array else: new_tspan = np.concatenate([ts.tspan for ts in tup]) else: new_tspan = self.tspan new_labels = [None] for ax in range(1, new_array.ndim): if ax == axis: axislabels = [] for ts in tup: if ts.labels[axis] is None: axislabels.extend('' * ts.shape[axis]) else: axislabels.extend(ts.labels[axis]) if all(lab == '' for lab in axislabels): new_labels.append(None) else: new_labels.append(axislabels) else: axlabels = tup[0].labels[ax] if not all(ts.labels[ax] == axlabels for ts in tup[1:]): axlabels = None new_labels.append(axlabels) return self.__new__(self.__class__, new_array, new_tspan, new_labels)
concatenate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tup, axis=0):\n if not isinstance(tup, Sequence):\n tup = tup,\n if tup is (None,) or len(tup) is 0:\n return self\n tup = (self,) + tuple(tup)\n new_array = np.concatenate(tup, axis)\n if not all(hasattr(ts, 'tspan') and hasattr(ts, 'labels') for ts in tup):\n return new_array\n if axis == 0:\n starts = [ts.tspan[0] for ts in tup]\n ends = [ts.tspan[-1] for ts in tup]\n if not all(starts[i] > ends[i - 1] for i in range(1, len(starts))):\n return new_array\n else:\n new_tspan = np.concatenate([ts.tspan for ts in tup])\n else:\n new_tspan = self.tspan\n new_labels = [None]\n for ax in range(1, new_array.ndim):\n if ax == axis:\n axislabels = []\n for ts in tup:\n if ts.labels[axis] is None:\n axislabels.extend('' * ts.shape[axis])\n else:\n axislabels.extend(ts.labels[axis])\n if all(lab == '' for lab in axislabels):\n new_labels.append(None)\n else:\n new_labels.append(axislabels)\n else:\n axlabels = tup[0].labels[ax]\n if not all(ts.labels[ax] == axlabels for ts in tup[1:]):\n axlabels = None\n new_labels.append(axlabels)\n return self.__new__(self.__class__, new_array, new_tspan, new_labels)\n", "role": "user" }, { "content": "concatenate", "role": "assistant" } ]
def x(self, indices_or_sections, axis=0): if not isinstance(indices_or_sections, numbers.Integral): raise Error('splitting by array of indices is not yet implemented') n = indices_or_sections if self.shape[axis] % n != 0: raise ValueError("Array split doesn't result in an equal division") step = self.shape[axis] / n pieces = [] start = 0 while start < self.shape[axis]: stop = start + step ix = [slice(None)] * self.ndim ix[axis] = slice(start, stop) ix = tuple(ix) pieces.append(self[ix]) start += step return pieces
split
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, indices_or_sections, axis=0):\n if not isinstance(indices_or_sections, numbers.Integral):\n raise Error('splitting by array of indices is not yet implemented')\n n = indices_or_sections\n if self.shape[axis] % n != 0:\n raise ValueError(\"Array split doesn't result in an equal division\")\n step = self.shape[axis] / n\n pieces = []\n start = 0\n while start < self.shape[axis]:\n stop = start + step\n ix = [slice(None)] * self.ndim\n ix[axis] = slice(start, stop)\n ix = tuple(ix)\n pieces.append(self[ix])\n start += step\n return pieces\n", "role": "user" }, { "content": "split", "role": "assistant" } ]
def x(dts, title=None, points=None, show=True): if points is not None and len(dts.tspan) > points: ix = np.linspace(0, len(dts.tspan) - 1, points).astype(np.int64) dts = dts[ix, ...] ts = distob.gather(dts) return ts.plot(title, show)
plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dts, title=None, points=None, show=True):\n if points is not None and len(dts.tspan) > points:\n ix = np.linspace(0, len(dts.tspan) - 1, points).astype(np.int64)\n dts = dts[ix, ...]\n ts = distob.gather(dts)\n return ts.plot(title, show)\n", "role": "user" }, { "content": "plot", "role": "assistant" } ]
def x(dts, times=None, nbins=30, colormap=mpl.cm.Blues): if times is None: times = np.linspace(dts.tspan[0], dts.tspan[-1], num=4) elif isinstance(times, numbers.Number): times = np.array([times], dtype=np.float64) indices = distob.gather(dts.tspan.searchsorted(times)) if indices[-1] == len(dts.tspan): indices[-1] -= 1 nplots = len(indices) fig = plt.figure() n = np.zeros((nbins, nplots)) for i in range(nplots): index = indices[i] time = dts.tspan[index] phases = distob.gather(dts.mod2pi()[index, 0, :]) ax = fig.add_subplot(1, nplots, i + 1, projection='polar') n[:, i], bins, patches = ax.hist(phases, nbins, (-np.pi, np.pi), density=True, histtype='bar') ax.set_title('time = %d s' % time) ax.set_xticklabels(['0', '$\\frac{\\pi}{4}$', '$\\frac{\\pi}{2}$', '$\\frac{3\\pi}{4}$', '$\\pi$', '$\\frac{-3\\pi}{4}$', '$\\frac{-\\pi}{2}$', '$\\frac{-\\pi}{4}$']) nmin, nmax = n.min(), n.max() norm = mpl.colors.Normalize(1.2 * nmin - 0.2 * nmax, 0.6 * nmin + 0.4 * nmax, clip=True) for i in range(nplots): ax = fig.get_axes()[i] ax.set_ylim(0, nmax) for this_n, thispatch in zip(n[:, i], ax.patches): color = colormap(norm(this_n)) thispatch.set_facecolor(color) thispatch.set_edgecolor(color) fig.show()
phase_histogram
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dts, times=None, nbins=30, colormap=mpl.cm.Blues):\n if times is None:\n times = np.linspace(dts.tspan[0], dts.tspan[-1], num=4)\n elif isinstance(times, numbers.Number):\n times = np.array([times], dtype=np.float64)\n indices = distob.gather(dts.tspan.searchsorted(times))\n if indices[-1] == len(dts.tspan):\n indices[-1] -= 1\n nplots = len(indices)\n fig = plt.figure()\n n = np.zeros((nbins, nplots))\n for i in range(nplots):\n index = indices[i]\n time = dts.tspan[index]\n phases = distob.gather(dts.mod2pi()[index, 0, :])\n ax = fig.add_subplot(1, nplots, i + 1, projection='polar')\n n[:, i], bins, patches = ax.hist(phases, nbins, (-np.pi, np.pi),\n density=True, histtype='bar')\n ax.set_title('time = %d s' % time)\n ax.set_xticklabels(['0', '$\\\\frac{\\\\pi}{4}$', '$\\\\frac{\\\\pi}{2}$',\n '$\\\\frac{3\\\\pi}{4}$', '$\\\\pi$', '$\\\\frac{-3\\\\pi}{4}$',\n '$\\\\frac{-\\\\pi}{2}$', '$\\\\frac{-\\\\pi}{4}$'])\n nmin, nmax = n.min(), n.max()\n norm = mpl.colors.Normalize(1.2 * nmin - 0.2 * nmax, 0.6 * nmin + 0.4 *\n nmax, clip=True)\n for i in range(nplots):\n ax = fig.get_axes()[i]\n ax.set_ylim(0, nmax)\n for this_n, thispatch in zip(n[:, i], ax.patches):\n color = colormap(norm(this_n))\n thispatch.set_facecolor(color)\n thispatch.set_edgecolor(color)\n fig.show()\n", "role": "user" }, { "content": "phase_histogram", "role": "assistant" } ]
def x(ts, nperseg=1500, noverlap=1200, plot=True): ts = ts.squeeze() if ts.ndim is 1: ts = ts.reshape((-1, 1)) fs = (len(ts) - 1.0) / (ts.tspan[-1] - ts.tspan[0]) window = signal.hamming(nperseg, sym=False) nfft = max(256, 2 ** np.int(np.log2(nperseg) + 1)) freqs, pxx = signal.welch(ts, fs, window, nperseg, noverlap, nfft, detrend='linear', axis=0) index = np.nonzero(freqs >= 2.0 * fs / nperseg)[0][0] if index > 0: freqs = freqs[index:] pxx = pxx[index:] freqs = freqs[:-1] pxx = pxx[:-1] if plot is True: _plot_psd(ts, freqs, pxx) return freqs, pxx
psd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, nperseg=1500, noverlap=1200, plot=True):\n ts = ts.squeeze()\n if ts.ndim is 1:\n ts = ts.reshape((-1, 1))\n fs = (len(ts) - 1.0) / (ts.tspan[-1] - ts.tspan[0])\n window = signal.hamming(nperseg, sym=False)\n nfft = max(256, 2 ** np.int(np.log2(nperseg) + 1))\n freqs, pxx = signal.welch(ts, fs, window, nperseg, noverlap, nfft,\n detrend='linear', axis=0)\n index = np.nonzero(freqs >= 2.0 * fs / nperseg)[0][0]\n if index > 0:\n freqs = freqs[index:]\n pxx = pxx[index:]\n freqs = freqs[:-1]\n pxx = pxx[:-1]\n if plot is True:\n _plot_psd(ts, freqs, pxx)\n return freqs, pxx\n", "role": "user" }, { "content": "psd", "role": "assistant" } ]
def x(ts, cutoff_hz, order=3): orig_ndim = ts.ndim if ts.ndim is 1: ts = ts[:, np.newaxis] channels = ts.shape[1] fs = (len(ts) - 1.0) / (ts.tspan[-1] - ts.tspan[0]) nyq = 0.5 * fs cutoff = cutoff_hz / nyq b, a = signal.butter(order, cutoff, btype='low') if not np.all(np.abs(np.roots(a)) < 1.0): raise ValueError('Filter will not be stable with these values.') dtype = ts.dtype output = np.zeros((len(ts), channels), dtype) for i in range(channels): output[:, i] = signal.filtfilt(b, a, ts[:, i]) if orig_ndim is 1: output = output[:, 0] return Timeseries(output, ts.tspan, labels=ts.labels)
lowpass
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, cutoff_hz, order=3):\n orig_ndim = ts.ndim\n if ts.ndim is 1:\n ts = ts[:, np.newaxis]\n channels = ts.shape[1]\n fs = (len(ts) - 1.0) / (ts.tspan[-1] - ts.tspan[0])\n nyq = 0.5 * fs\n cutoff = cutoff_hz / nyq\n b, a = signal.butter(order, cutoff, btype='low')\n if not np.all(np.abs(np.roots(a)) < 1.0):\n raise ValueError('Filter will not be stable with these values.')\n dtype = ts.dtype\n output = np.zeros((len(ts), channels), dtype)\n for i in range(channels):\n output[:, i] = signal.filtfilt(b, a, ts[:, i])\n if orig_ndim is 1:\n output = output[:, 0]\n return Timeseries(output, ts.tspan, labels=ts.labels)\n", "role": "user" }, { "content": "lowpass", "role": "assistant" } ]
def x(ts, low_hz, high_hz, order=3): orig_ndim = ts.ndim if ts.ndim is 1: ts = ts[:, np.newaxis] channels = ts.shape[1] fs = (len(ts) - 1.0) / (ts.tspan[-1] - ts.tspan[0]) nyq = 0.5 * fs low = low_hz / nyq high = high_hz / nyq b, a = signal.butter(order, [low, high], btype='band') if not np.all(np.abs(np.roots(a)) < 1.0): raise ValueError('Filter will not be stable with these values.') dtype = ts.dtype output = np.zeros((len(ts), channels), dtype) for i in range(channels): output[:, i] = signal.filtfilt(b, a, ts[:, i]) if orig_ndim is 1: output = output[:, 0] return Timeseries(output, ts.tspan, labels=ts.labels)
bandpass
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, low_hz, high_hz, order=3):\n orig_ndim = ts.ndim\n if ts.ndim is 1:\n ts = ts[:, np.newaxis]\n channels = ts.shape[1]\n fs = (len(ts) - 1.0) / (ts.tspan[-1] - ts.tspan[0])\n nyq = 0.5 * fs\n low = low_hz / nyq\n high = high_hz / nyq\n b, a = signal.butter(order, [low, high], btype='band')\n if not np.all(np.abs(np.roots(a)) < 1.0):\n raise ValueError('Filter will not be stable with these values.')\n dtype = ts.dtype\n output = np.zeros((len(ts), channels), dtype)\n for i in range(channels):\n output[:, i] = signal.filtfilt(b, a, ts[:, i])\n if orig_ndim is 1:\n output = output[:, 0]\n return Timeseries(output, ts.tspan, labels=ts.labels)\n", "role": "user" }, { "content": "bandpass", "role": "assistant" } ]
def x(ts, freq_hz, bandwidth_hz=1.0): orig_ndim = ts.ndim if ts.ndim is 1: ts = ts[:, np.newaxis] channels = ts.shape[1] fs = (len(ts) - 1.0) / (ts.tspan[-1] - ts.tspan[0]) nyq = 0.5 * fs freq = freq_hz / nyq bandwidth = bandwidth_hz / nyq R = 1.0 - 3.0 * (bandwidth / 2.0) K = (1.0 - 2.0 * R * np.cos(np.pi * freq) + R ** 2) / (2.0 - 2.0 * np. cos(np.pi * freq)) b, a = np.zeros(3), np.zeros(3) a[0] = 1.0 a[1] = -2.0 * R * np.cos(np.pi * freq) a[2] = R ** 2 b[0] = K b[1] = -2 * K * np.cos(np.pi * freq) b[2] = K if not np.all(np.abs(np.roots(a)) < 1.0): raise ValueError('Filter will not be stable with these values.') dtype = ts.dtype output = np.zeros((len(ts), channels), dtype) for i in range(channels): output[:, i] = signal.filtfilt(b, a, ts[:, i]) if orig_ndim is 1: output = output[:, 0] return Timeseries(output, ts.tspan, labels=ts.labels)
notch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, freq_hz, bandwidth_hz=1.0):\n orig_ndim = ts.ndim\n if ts.ndim is 1:\n ts = ts[:, np.newaxis]\n channels = ts.shape[1]\n fs = (len(ts) - 1.0) / (ts.tspan[-1] - ts.tspan[0])\n nyq = 0.5 * fs\n freq = freq_hz / nyq\n bandwidth = bandwidth_hz / nyq\n R = 1.0 - 3.0 * (bandwidth / 2.0)\n K = (1.0 - 2.0 * R * np.cos(np.pi * freq) + R ** 2) / (2.0 - 2.0 * np.\n cos(np.pi * freq))\n b, a = np.zeros(3), np.zeros(3)\n a[0] = 1.0\n a[1] = -2.0 * R * np.cos(np.pi * freq)\n a[2] = R ** 2\n b[0] = K\n b[1] = -2 * K * np.cos(np.pi * freq)\n b[2] = K\n if not np.all(np.abs(np.roots(a)) < 1.0):\n raise ValueError('Filter will not be stable with these values.')\n dtype = ts.dtype\n output = np.zeros((len(ts), channels), dtype)\n for i in range(channels):\n output[:, i] = signal.filtfilt(b, a, ts[:, i])\n if orig_ndim is 1:\n output = output[:, 0]\n return Timeseries(output, ts.tspan, labels=ts.labels)\n", "role": "user" }, { "content": "notch", "role": "assistant" } ]
def x(ts): output = signal.hilbert(signal.detrend(ts, axis=0), axis=0) return Timeseries(output, ts.tspan, labels=ts.labels)
hilbert
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts):\n output = signal.hilbert(signal.detrend(ts, axis=0), axis=0)\n return Timeseries(output, ts.tspan, labels=ts.labels)\n", "role": "user" }, { "content": "hilbert", "role": "assistant" } ]
def x(ts): output = np.abs(signal.hilbert(signal.detrend(ts, axis=0), axis=0)) return Timeseries(output, ts.tspan, labels=ts.labels)
hilbert_amplitude
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts):\n output = np.abs(signal.hilbert(signal.detrend(ts, axis=0), axis=0))\n return Timeseries(output, ts.tspan, labels=ts.labels)\n", "role": "user" }, { "content": "hilbert_amplitude", "role": "assistant" } ]
def x(ts): output = np.angle(signal.hilbert(signal.detrend(ts, axis=0), axis=0)) return Timeseries(output, ts.tspan, labels=ts.labels)
hilbert_phase
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts):\n output = np.angle(signal.hilbert(signal.detrend(ts, axis=0), axis=0))\n return Timeseries(output, ts.tspan, labels=ts.labels)\n", "role": "user" }, { "content": "hilbert_phase", "role": "assistant" } ]
def x(ts, freqs=np.logspace(0, 2), wavelet=cwtmorlet, plot=True): orig_ndim = ts.ndim if ts.ndim is 1: ts = ts[:, np.newaxis] channels = ts.shape[1] fs = (len(ts) - 1.0) / (1.0 * ts.tspan[-1] - ts.tspan[0]) x = signal.detrend(ts, axis=0) dtype = wavelet(fs / freqs[0], fs / freqs[0]).dtype coefs = np.zeros((len(ts), len(freqs), channels), dtype) for i in range(channels): coefs[:, :, i] = roughcwt(x[:, i], cwtmorlet, fs / freqs).T if plot: _plot_cwt(ts, coefs, freqs) if orig_ndim is 1: coefs = coefs[:, :, 0] return coefs
cwt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, freqs=np.logspace(0, 2), wavelet=cwtmorlet, plot=True):\n orig_ndim = ts.ndim\n if ts.ndim is 1:\n ts = ts[:, np.newaxis]\n channels = ts.shape[1]\n fs = (len(ts) - 1.0) / (1.0 * ts.tspan[-1] - ts.tspan[0])\n x = signal.detrend(ts, axis=0)\n dtype = wavelet(fs / freqs[0], fs / freqs[0]).dtype\n coefs = np.zeros((len(ts), len(freqs), channels), dtype)\n for i in range(channels):\n coefs[:, :, i] = roughcwt(x[:, i], cwtmorlet, fs / freqs).T\n if plot:\n _plot_cwt(ts, coefs, freqs)\n if orig_ndim is 1:\n coefs = coefs[:, :, 0]\n return coefs\n", "role": "user" }, { "content": "cwt", "role": "assistant" } ]
def x(ts, freqs=np.logspace(0, 2), wavelet=cwtmorlet, plot=True): if ts.ndim is 1 or ts.shape[1] is 1: return cwt(ts, freqs, wavelet, plot) import distob vcwt = distob.vectorize(cwt) coefs = vcwt(ts, freqs, wavelet, plot=False) if plot: _plot_cwt(ts, coefs, freqs) return coefs
cwt_distributed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, freqs=np.logspace(0, 2), wavelet=cwtmorlet, plot=True):\n if ts.ndim is 1 or ts.shape[1] is 1:\n return cwt(ts, freqs, wavelet, plot)\n import distob\n vcwt = distob.vectorize(cwt)\n coefs = vcwt(ts, freqs, wavelet, plot=False)\n if plot:\n _plot_cwt(ts, coefs, freqs)\n return coefs\n", "role": "user" }, { "content": "cwt_distributed", "role": "assistant" } ]
def x(ts, coefs, freqs, tsize=1024, fsize=512): import matplotlib.style import matplotlib as mpl mpl.style.use('classic') import matplotlib.pyplot as plt from scipy import interpolate channels = ts.shape[1] fig = plt.figure() for i in range(channels): rect = 0.1, 0.85 * (channels - i - 1 ) / channels + 0.1, 0.8, 0.85 / channels ax = fig.add_axes(rect) logpowers = np.log((coefs[:, :, i] * coefs[:, :, i].conj()).real) tmin, tmax = ts.tspan[0], ts.tspan[-1] fmin, fmax = freqs[0], freqs[-1] tgrid, fgrid = np.mgrid[tmin:tmax:tsize * 1.0j, fmin:fmax:fsize * 1.0j] gd = interpolate.interpn((ts.tspan, freqs), logpowers, (tgrid, fgrid) ).T ax.imshow(gd, cmap='gnuplot2', aspect='auto', origin='lower', extent=(tmin, tmax, fmin, fmax)) ax.set_ylabel('freq (Hz)') fig.axes[0].set_title(u'log(power spectral density)') fig.axes[channels - 1].set_xlabel('time (s)') fig.show()
plot_cwt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, coefs, freqs, tsize=1024, fsize=512):\n import matplotlib.style\n import matplotlib as mpl\n mpl.style.use('classic')\n import matplotlib.pyplot as plt\n from scipy import interpolate\n channels = ts.shape[1]\n fig = plt.figure()\n for i in range(channels):\n rect = 0.1, 0.85 * (channels - i - 1\n ) / channels + 0.1, 0.8, 0.85 / channels\n ax = fig.add_axes(rect)\n logpowers = np.log((coefs[:, :, i] * coefs[:, :, i].conj()).real)\n tmin, tmax = ts.tspan[0], ts.tspan[-1]\n fmin, fmax = freqs[0], freqs[-1]\n tgrid, fgrid = np.mgrid[tmin:tmax:tsize * 1.0j, fmin:fmax:fsize * 1.0j]\n gd = interpolate.interpn((ts.tspan, freqs), logpowers, (tgrid, fgrid)\n ).T\n ax.imshow(gd, cmap='gnuplot2', aspect='auto', origin='lower',\n extent=(tmin, tmax, fmin, fmax))\n ax.set_ylabel('freq (Hz)')\n fig.axes[0].set_title(u'log(power spectral density)')\n fig.axes[channels - 1].set_xlabel('time (s)')\n fig.show()\n", "role": "user" }, { "content": "plot_cwt", "role": "assistant" } ]
def x(dts, c=None, d=0.0): if c is None: c = dts.mean() vmrt = distob.vectorize(analyses1.first_return_times) all_intervals = vmrt(dts, c, d) if hasattr(type(all_intervals), '__array_interface__'): return np.ravel(all_intervals) else: return np.hstack([distob.gather(ilist) for ilist in all_intervals])
first_return_times
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dts, c=None, d=0.0):\n if c is None:\n c = dts.mean()\n vmrt = distob.vectorize(analyses1.first_return_times)\n all_intervals = vmrt(dts, c, d)\n if hasattr(type(all_intervals), '__array_interface__'):\n return np.ravel(all_intervals)\n else:\n return np.hstack([distob.gather(ilist) for ilist in all_intervals])\n", "role": "user" }, { "content": "first_return_times", "role": "assistant" } ]
def x(ts, freqs=None, ncycles=6, plot=True): if ts.ndim <= 2: return analyses1.variability_fp(ts, freqs, ncycles, plot) else: return distob.vectorize(analyses1.variability_fp)(ts, freqs, ncycles, plot)
variability_fp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, freqs=None, ncycles=6, plot=True):\n if ts.ndim <= 2:\n return analyses1.variability_fp(ts, freqs, ncycles, plot)\n else:\n return distob.vectorize(analyses1.variability_fp)(ts, freqs,\n ncycles, plot)\n", "role": "user" }, { "content": "variability_fp", "role": "assistant" } ]
def x(ts, variability=None, threshold=0.0, minlength=1.0, plot=True): if ts.ndim <= 2: return analyses1.epochs_distributed(ts, variability, threshold, minlength, plot) else: return distob.vectorize(analyses1.epochs)(ts, variability, threshold, minlength, plot)
epochs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, variability=None, threshold=0.0, minlength=1.0, plot=True):\n if ts.ndim <= 2:\n return analyses1.epochs_distributed(ts, variability, threshold,\n minlength, plot)\n else:\n return distob.vectorize(analyses1.epochs)(ts, variability,\n threshold, minlength, plot)\n", "role": "user" }, { "content": "epochs", "role": "assistant" } ]
def x(ts, variability=None, threshold=0.0, minlength=1.0, proportion=0.75, plot=True): if ts.ndim <= 2: return analyses1.epochs_joint(ts, variability, threshold, minlength, plot) else: return distob.vectorize(analyses1.epochs_joint)(ts, variability, threshold, minlength, plot)
epochs_joint
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, variability=None, threshold=0.0, minlength=1.0, proportion=0.75,\n plot=True):\n if ts.ndim <= 2:\n return analyses1.epochs_joint(ts, variability, threshold, minlength,\n plot)\n else:\n return distob.vectorize(analyses1.epochs_joint)(ts, variability,\n threshold, minlength, plot)\n", "role": "user" }, { "content": "epochs_joint", "role": "assistant" } ]
def x(dts, phi=0.0): vperiods = distob.vectorize(analyses1.periods) all_periods = vperiods(dts, phi) if hasattr(type(all_periods), '__array_interface__'): return np.ravel(all_periods) else: return np.hstack([distob.gather(plist) for plist in all_periods])
periods
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dts, phi=0.0):\n vperiods = distob.vectorize(analyses1.periods)\n all_periods = vperiods(dts, phi)\n if hasattr(type(all_periods), '__array_interface__'):\n return np.ravel(all_periods)\n else:\n return np.hstack([distob.gather(plist) for plist in all_periods])\n", "role": "user" }, { "content": "periods", "role": "assistant" } ]
def x(dts, axis=2): return np.exp(1.0j * dts).mean(axis=axis).angle()
circmean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dts, axis=2):\n return np.exp(1.0j * dts).mean(axis=axis).angle()\n", "role": "user" }, { "content": "circmean", "role": "assistant" } ]
def x(dts, axis=2): return np.abs(np.exp(1.0j * dts).mean(axis=axis))
order_param
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dts, axis=2):\n return np.abs(np.exp(1.0j * dts).mean(axis=axis))\n", "role": "user" }, { "content": "order_param", "role": "assistant" } ]
def x(dts, axis=2): R = np.abs(np.exp(1.0j * dts).mean(axis=axis)) return np.sqrt(-2.0 * np.log(R))
circstd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dts, axis=2):\n R = np.abs(np.exp(1.0j * dts).mean(axis=axis))\n return np.sqrt(-2.0 * np.log(R))\n", "role": "user" }, { "content": "circstd", "role": "assistant" } ]
def x(self, v, t): ret = np.zeros(8) ret[0] = v[4] ret[4] = self.He1 * self.ke1 * (self.g1 * self.S(v[1] - v[2]) + self.u_mean ) - 2 * self.ke1 * v[4] - self.ke1 * self.ke1 * v[0] ret[1] = v[5] ret[5] = self.He2 * self.ke2 * (self.g2 * self.S(v[0]) + self.p_mean ) - 2 * self.ke2 * v[5] - self.ke2 * self.ke2 * v[1] ret[2] = v[6] ret[6] = self.Hi * self.ki * self.g4 * self.S(v[3]) - 2 * self.ki * v[6 ] - self.ki * self.ki * v[2] ret[3] = v[7] ret[7] = self.He3 * self.ke3 * self.g3 * self.S(v[1] - v[2] ) - 2 * self.ke3 * v[7] - self.ke3 * self.ke3 * v[3] return ret
f
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, v, t):\n ret = np.zeros(8)\n ret[0] = v[4]\n ret[4] = self.He1 * self.ke1 * (self.g1 * self.S(v[1] - v[2]) + self.u_mean\n ) - 2 * self.ke1 * v[4] - self.ke1 * self.ke1 * v[0]\n ret[1] = v[5]\n ret[5] = self.He2 * self.ke2 * (self.g2 * self.S(v[0]) + self.p_mean\n ) - 2 * self.ke2 * v[5] - self.ke2 * self.ke2 * v[1]\n ret[2] = v[6]\n ret[6] = self.Hi * self.ki * self.g4 * self.S(v[3]) - 2 * self.ki * v[6\n ] - self.ki * self.ki * v[2]\n ret[3] = v[7]\n ret[7] = self.He3 * self.ke3 * self.g3 * self.S(v[1] - v[2]\n ) - 2 * self.ke3 * v[7] - self.ke3 * self.ke3 * v[3]\n return ret\n", "role": "user" }, { "content": "f", "role": "assistant" } ]
def x(self, v, t): ret = np.zeros((8, 1)) ret[4, 0] = self.ke1 * self.He1 * self.u_sdev ret[5, 0] = self.ke2 * self.He2 * self.p_sdev return ret
G
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, v, t):\n ret = np.zeros((8, 1))\n ret[4, 0] = self.ke1 * self.He1 * self.u_sdev\n ret[5, 0] = self.ke2 * self.He2 * self.p_sdev\n return ret\n", "role": "user" }, { "content": "G", "role": "assistant" } ]
def x(self, source_y, target_y, weight): v_pyramidal = source_y[1] - source_y[2] return np.array([0, 0, 0, 0, 0, 1.0, 0, 0]) * (weight * self.g1 * self. He2 * self.ke2 * self.S(v_pyramidal))
coupling
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, source_y, target_y, weight):\n v_pyramidal = source_y[1] - source_y[2]\n return np.array([0, 0, 0, 0, 0, 1.0, 0, 0]) * (weight * self.g1 * self.\n He2 * self.ke2 * self.S(v_pyramidal))\n", "role": "user" }, { "content": "coupling", "role": "assistant" } ]
def x(X): X = numpy.array(X) N = X.size T = numpy.arange(1, N + 1) Y = numpy.cumsum(X) Ave_T = Y / T S_T = numpy.zeros(N) R_T = numpy.zeros(N) for i in range(N): S_T[i] = numpy.std(X[:i + 1]) X_T = Y - T * Ave_T[i] R_T[i] = numpy.ptp(X_T[:i + 1]) R_S = R_T / S_T R_S = numpy.log(R_S)[1:] n = numpy.log(T)[1:] A = numpy.column_stack((n, numpy.ones(n.size))) [m, c] = numpy.linalg.lstsq(A, R_S)[0] H = m return H
hurst
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X):\n X = numpy.array(X)\n N = X.size\n T = numpy.arange(1, N + 1)\n Y = numpy.cumsum(X)\n Ave_T = Y / T\n S_T = numpy.zeros(N)\n R_T = numpy.zeros(N)\n for i in range(N):\n S_T[i] = numpy.std(X[:i + 1])\n X_T = Y - T * Ave_T[i]\n R_T[i] = numpy.ptp(X_T[:i + 1])\n R_S = R_T / S_T\n R_S = numpy.log(R_S)[1:]\n n = numpy.log(T)[1:]\n A = numpy.column_stack((n, numpy.ones(n.size)))\n [m, c] = numpy.linalg.lstsq(A, R_S)[0]\n H = m\n return H\n", "role": "user" }, { "content": "hurst", "role": "assistant" } ]
def x(X, Tau, D): shape = X.size - Tau * (D - 1), D strides = X.itemsize, Tau * X.itemsize return numpy.lib.stride_tricks.as_strided(X, shape=shape, strides=strides)
embed_seq
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, Tau, D):\n shape = X.size - Tau * (D - 1), D\n strides = X.itemsize, Tau * X.itemsize\n return numpy.lib.stride_tricks.as_strided(X, shape=shape, strides=strides)\n", "role": "user" }, { "content": "embed_seq", "role": "assistant" } ]
def x(X, Band, Fs): C = numpy.fft.fft(X) C = abs(C) Power = numpy.zeros(len(Band) - 1) for Freq_Index in range(0, len(Band) - 1): Freq = float(Band[Freq_Index]) Next_Freq = float(Band[Freq_Index + 1]) Power[Freq_Index] = sum(C[numpy.floor(Freq / Fs * len(X)):numpy. floor(Next_Freq / Fs * len(X))]) Power_Ratio = Power / sum(Power) return Power, Power_Ratio
bin_power
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, Band, Fs):\n C = numpy.fft.fft(X)\n C = abs(C)\n Power = numpy.zeros(len(Band) - 1)\n for Freq_Index in range(0, len(Band) - 1):\n Freq = float(Band[Freq_Index])\n Next_Freq = float(Band[Freq_Index + 1])\n Power[Freq_Index] = sum(C[numpy.floor(Freq / Fs * len(X)):numpy.\n floor(Next_Freq / Fs * len(X))])\n Power_Ratio = Power / sum(Power)\n return Power, Power_Ratio\n", "role": "user" }, { "content": "bin_power", "role": "assistant" } ]
def x(X, D=None): if D is None: D = numpy.diff(X) D = D.tolist() N_delta = 0 for i in range(1, len(D)): if D[i] * D[i - 1] < 0: N_delta += 1 n = len(X) return numpy.log10(n) / (numpy.log10(n) + numpy.log10(n / n + 0.4 * N_delta))
pfd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, D=None):\n if D is None:\n D = numpy.diff(X)\n D = D.tolist()\n N_delta = 0\n for i in range(1, len(D)):\n if D[i] * D[i - 1] < 0:\n N_delta += 1\n n = len(X)\n return numpy.log10(n) / (numpy.log10(n) + numpy.log10(n / n + 0.4 *\n N_delta))\n", "role": "user" }, { "content": "pfd", "role": "assistant" } ]
def x(X, Kmax): L = [] x = [] N = len(X) for k in range(1, Kmax): Lk = [] for m in range(0, k): Lmk = 0 for i in range(1, int(numpy.floor((N - m) / k))): Lmk += abs(X[m + i * k] - X[m + i * k - k]) Lmk = Lmk * (N - 1) / numpy.floor((N - m) / float(k)) / k Lk.append(Lmk) L.append(numpy.log(numpy.mean(Lk))) x.append([numpy.log(float(1) / k), 1]) p, r1, r2, s = numpy.linalg.lstsq(x, L) return p[0]
hfd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, Kmax):\n L = []\n x = []\n N = len(X)\n for k in range(1, Kmax):\n Lk = []\n for m in range(0, k):\n Lmk = 0\n for i in range(1, int(numpy.floor((N - m) / k))):\n Lmk += abs(X[m + i * k] - X[m + i * k - k])\n Lmk = Lmk * (N - 1) / numpy.floor((N - m) / float(k)) / k\n Lk.append(Lmk)\n L.append(numpy.log(numpy.mean(Lk)))\n x.append([numpy.log(float(1) / k), 1])\n p, r1, r2, s = numpy.linalg.lstsq(x, L)\n return p[0]\n", "role": "user" }, { "content": "hfd", "role": "assistant" } ]
def x(X, D=None): if D is None: D = numpy.diff(X) D = D.tolist() D.insert(0, X[0]) D = numpy.array(D) n = len(X) M2 = float(sum(D ** 2)) / n TP = sum(numpy.array(X) ** 2) M4 = 0 for i in range(1, len(D)): M4 += (D[i] - D[i - 1]) ** 2 M4 = M4 / n return numpy.sqrt(M2 / TP), numpy.sqrt(float(M4) * TP / M2 / M2)
hjorth
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, D=None):\n if D is None:\n D = numpy.diff(X)\n D = D.tolist()\n D.insert(0, X[0])\n D = numpy.array(D)\n n = len(X)\n M2 = float(sum(D ** 2)) / n\n TP = sum(numpy.array(X) ** 2)\n M4 = 0\n for i in range(1, len(D)):\n M4 += (D[i] - D[i - 1]) ** 2\n M4 = M4 / n\n return numpy.sqrt(M2 / TP), numpy.sqrt(float(M4) * TP / M2 / M2)\n", "role": "user" }, { "content": "hjorth", "role": "assistant" } ]
def x(X, Band, Fs, Power_Ratio=None): if Power_Ratio is None: Power, Power_Ratio = bin_power(X, Band, Fs) Spectral_Entropy = 0 for i in range(0, len(Power_Ratio) - 1): Spectral_Entropy += Power_Ratio[i] * numpy.log(Power_Ratio[i]) Spectral_Entropy /= numpy.log(len(Power_Ratio)) return -1 * Spectral_Entropy
spectral_entropy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, Band, Fs, Power_Ratio=None):\n if Power_Ratio is None:\n Power, Power_Ratio = bin_power(X, Band, Fs)\n Spectral_Entropy = 0\n for i in range(0, len(Power_Ratio) - 1):\n Spectral_Entropy += Power_Ratio[i] * numpy.log(Power_Ratio[i])\n Spectral_Entropy /= numpy.log(len(Power_Ratio))\n return -1 * Spectral_Entropy\n", "role": "user" }, { "content": "spectral_entropy", "role": "assistant" } ]
def x(X, Tau, DE, W=None): if W is None: Y = embed_seq(X, Tau, DE) W = numpy.linalg.svd(Y, compute_uv=0) W /= sum(W) return -1 * sum(W * numpy.log(W))
svd_entropy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, Tau, DE, W=None):\n if W is None:\n Y = embed_seq(X, Tau, DE)\n W = numpy.linalg.svd(Y, compute_uv=0)\n W /= sum(W)\n return -1 * sum(W * numpy.log(W))\n", "role": "user" }, { "content": "svd_entropy", "role": "assistant" } ]
def x(X, M, R): N = len(X) Em = embed_seq(X, 1, M) A = numpy.tile(Em, (len(Em), 1, 1)) B = numpy.transpose(A, [1, 0, 2]) D = numpy.abs(A - B) InRange = numpy.max(D, axis=2) <= R Cm = InRange.mean(axis=0) Dp = numpy.abs(numpy.tile(X[M:], (N - M, 1)) - numpy.tile(X[M:], (N - M, 1)).T) Cmp = numpy.logical_and(Dp <= R, InRange[:-1, :-1]).mean(axis=0) Phi_m, Phi_mp = numpy.sum(numpy.log(Cm)), numpy.sum(numpy.log(Cmp)) Ap_En = (Phi_m - Phi_mp) / (N - M) return Ap_En
ap_entropy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, M, R):\n N = len(X)\n Em = embed_seq(X, 1, M)\n A = numpy.tile(Em, (len(Em), 1, 1))\n B = numpy.transpose(A, [1, 0, 2])\n D = numpy.abs(A - B)\n InRange = numpy.max(D, axis=2) <= R\n Cm = InRange.mean(axis=0)\n Dp = numpy.abs(numpy.tile(X[M:], (N - M, 1)) - numpy.tile(X[M:], (N - M,\n 1)).T)\n Cmp = numpy.logical_and(Dp <= R, InRange[:-1, :-1]).mean(axis=0)\n Phi_m, Phi_mp = numpy.sum(numpy.log(Cm)), numpy.sum(numpy.log(Cmp))\n Ap_En = (Phi_m - Phi_mp) / (N - M)\n return Ap_En\n", "role": "user" }, { "content": "ap_entropy", "role": "assistant" } ]
def x(X, M, R): N = len(X) Em = embed_seq(X, 1, M) A = numpy.tile(Em, (len(Em), 1, 1)) B = numpy.transpose(A, [1, 0, 2]) D = numpy.abs(A - B) InRange = numpy.max(D, axis=2) <= R numpy.fill_diagonal(InRange, 0) Cm = InRange.sum(axis=0) Dp = numpy.abs(numpy.tile(X[M:], (N - M, 1)) - numpy.tile(X[M:], (N - M, 1)).T) Cmp = numpy.logical_and(Dp <= R, InRange[:-1, :-1]).sum(axis=0) Samp_En = numpy.log(numpy.sum(Cm + 1e-100) / numpy.sum(Cmp + 1e-100)) return Samp_En
samp_entropy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, M, R):\n N = len(X)\n Em = embed_seq(X, 1, M)\n A = numpy.tile(Em, (len(Em), 1, 1))\n B = numpy.transpose(A, [1, 0, 2])\n D = numpy.abs(A - B)\n InRange = numpy.max(D, axis=2) <= R\n numpy.fill_diagonal(InRange, 0)\n Cm = InRange.sum(axis=0)\n Dp = numpy.abs(numpy.tile(X[M:], (N - M, 1)) - numpy.tile(X[M:], (N - M,\n 1)).T)\n Cmp = numpy.logical_and(Dp <= R, InRange[:-1, :-1]).sum(axis=0)\n Samp_En = numpy.log(numpy.sum(Cm + 1e-100) / numpy.sum(Cmp + 1e-100))\n return Samp_En\n", "role": "user" }, { "content": "samp_entropy", "role": "assistant" } ]
def x(X, Ave=None, L=None): X = numpy.array(X) if Ave is None: Ave = numpy.mean(X) Y = numpy.cumsum(X) Y -= Ave if L is None: L = numpy.floor(len(X) * 1 / 2 ** numpy.array(list(range(4, int( numpy.log2(len(X))) - 4)))) F = numpy.zeros(len(L)) for i in range(0, len(L)): n = int(L[i]) if n == 0: print('time series is too short while the box length is too big') print('abort') exit() for j in range(0, len(X), n): if j + n < len(X): c = list(range(j, j + n)) c = numpy.vstack([c, numpy.ones(n)]).T y = Y[j:j + n] F[i] += numpy.linalg.lstsq(c, y)[1] F[i] /= len(X) / n * n F = numpy.sqrt(F) Alpha = numpy.linalg.lstsq(numpy.vstack([numpy.log(L), numpy.ones(len(L ))]).T, numpy.log(F))[0][0] return Alpha
dfa
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, Ave=None, L=None):\n X = numpy.array(X)\n if Ave is None:\n Ave = numpy.mean(X)\n Y = numpy.cumsum(X)\n Y -= Ave\n if L is None:\n L = numpy.floor(len(X) * 1 / 2 ** numpy.array(list(range(4, int(\n numpy.log2(len(X))) - 4))))\n F = numpy.zeros(len(L))\n for i in range(0, len(L)):\n n = int(L[i])\n if n == 0:\n print('time series is too short while the box length is too big')\n print('abort')\n exit()\n for j in range(0, len(X), n):\n if j + n < len(X):\n c = list(range(j, j + n))\n c = numpy.vstack([c, numpy.ones(n)]).T\n y = Y[j:j + n]\n F[i] += numpy.linalg.lstsq(c, y)[1]\n F[i] /= len(X) / n * n\n F = numpy.sqrt(F)\n Alpha = numpy.linalg.lstsq(numpy.vstack([numpy.log(L), numpy.ones(len(L\n ))]).T, numpy.log(F))[0][0]\n return Alpha\n", "role": "user" }, { "content": "dfa", "role": "assistant" } ]
def x(x, n, tau): PeSeq = [] Em = embed_seq(x, tau, n) for i in range(0, len(Em)): r = [] z = [] for j in range(0, len(Em[i])): z.append(Em[i][j]) for j in range(0, len(Em[i])): z.sort() r.append(z.index(Em[i][j])) z[z.index(Em[i][j])] = -1 PeSeq.append(r) RankMat = [] while len(PeSeq) > 0: RankMat.append(PeSeq.count(PeSeq[0])) x = PeSeq[0] for j in range(0, PeSeq.count(PeSeq[0])): PeSeq.pop(PeSeq.index(x)) RankMat = numpy.array(RankMat) RankMat = numpy.true_divide(RankMat, RankMat.sum()) EntropyMat = numpy.multiply(numpy.log2(RankMat), RankMat) PE = -1 * EntropyMat.sum() return PE
permutation_entropy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, n, tau):\n PeSeq = []\n Em = embed_seq(x, tau, n)\n for i in range(0, len(Em)):\n r = []\n z = []\n for j in range(0, len(Em[i])):\n z.append(Em[i][j])\n for j in range(0, len(Em[i])):\n z.sort()\n r.append(z.index(Em[i][j]))\n z[z.index(Em[i][j])] = -1\n PeSeq.append(r)\n RankMat = []\n while len(PeSeq) > 0:\n RankMat.append(PeSeq.count(PeSeq[0]))\n x = PeSeq[0]\n for j in range(0, PeSeq.count(PeSeq[0])):\n PeSeq.pop(PeSeq.index(x))\n RankMat = numpy.array(RankMat)\n RankMat = numpy.true_divide(RankMat, RankMat.sum())\n EntropyMat = numpy.multiply(numpy.log2(RankMat), RankMat)\n PE = -1 * EntropyMat.sum()\n return PE\n", "role": "user" }, { "content": "permutation_entropy", "role": "assistant" } ]
def x(x, y, n): Wordlist = [] Space = [[0, 0], [0, 1], [1, 0], [1, 1]] Sample = [0, 1] if n == 1: Wordlist = Sample if n == 2: Wordlist = Space elif n > 1: Wordlist = Space Buff = [] for k in range(0, n - 2): Buff = [] for i in range(0, len(Wordlist)): Buff.append(tuple(Wordlist[i])) Buff = tuple(Buff) Wordlist = [] for i in range(0, len(Buff)): for j in range(0, len(Sample)): Wordlist.append(list(Buff[i])) Wordlist[len(Wordlist) - 1].append(Sample[j]) Wordlist.sort() Input = [[], []] Input[0] = x Input[1] = y SymbolicSeq = [[], []] for i in range(0, 2): Encoder = numpy.diff(Input[i]) for j in range(0, len(Input[i]) - 1): if Encoder[j] > 0: SymbolicSeq[i].append(1) else: SymbolicSeq[i].append(0) Wm = [] Wm.append(embed_seq(SymbolicSeq[0], 1, n).tolist()) Wm.append(embed_seq(SymbolicSeq[1], 1, n).tolist()) Count = [[], []] for i in range(0, 2): for k in range(0, len(Wordlist)): Count[i].append(Wm[i].count(Wordlist[k])) Prob = [[], []] for i in range(0, 2): Sigma = 0 for j in range(0, len(Wordlist)): Sigma += Count[i][j] for k in range(0, len(Wordlist)): Prob[i].append(numpy.true_divide(Count[i][k], Sigma)) Entropy = [[], []] for i in range(0, 2): for k in range(0, len(Wordlist)): if Prob[i][k] == 0: Entropy[i].append(0) else: Entropy[i].append(Prob[i][k] * numpy.log2(Prob[i][k])) Rank = [[], []] Buff = [[], []] Buff[0] = tuple(Count[0]) Buff[1] = tuple(Count[1]) for i in range(0, 2): Count[i].sort() Count[i].reverse() for k in range(0, len(Wordlist)): Rank[i].append(Count[i].index(Buff[i][k])) Count[i][Count[i].index(Buff[i][k])] = -1 IBS = 0 Z = 0 n = 0 for k in range(0, len(Wordlist)): if (Buff[0][k] != 0) & (Buff[1][k] != 0): F = -Entropy[0][k] - Entropy[1][k] IBS += numpy.multiply(numpy.absolute(Rank[0][k] - Rank[1][k]), F) Z += F else: n += 1 IBS = numpy.true_divide(IBS, Z) IBS = numpy.true_divide(IBS, len(Wordlist) - n) return IBS
information_based_similarity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, n):\n Wordlist = []\n Space = [[0, 0], [0, 1], [1, 0], [1, 1]]\n Sample = [0, 1]\n if n == 1:\n Wordlist = Sample\n if n == 2:\n Wordlist = Space\n elif n > 1:\n Wordlist = Space\n Buff = []\n for k in range(0, n - 2):\n Buff = []\n for i in range(0, len(Wordlist)):\n Buff.append(tuple(Wordlist[i]))\n Buff = tuple(Buff)\n Wordlist = []\n for i in range(0, len(Buff)):\n for j in range(0, len(Sample)):\n Wordlist.append(list(Buff[i]))\n Wordlist[len(Wordlist) - 1].append(Sample[j])\n Wordlist.sort()\n Input = [[], []]\n Input[0] = x\n Input[1] = y\n SymbolicSeq = [[], []]\n for i in range(0, 2):\n Encoder = numpy.diff(Input[i])\n for j in range(0, len(Input[i]) - 1):\n if Encoder[j] > 0:\n SymbolicSeq[i].append(1)\n else:\n SymbolicSeq[i].append(0)\n Wm = []\n Wm.append(embed_seq(SymbolicSeq[0], 1, n).tolist())\n Wm.append(embed_seq(SymbolicSeq[1], 1, n).tolist())\n Count = [[], []]\n for i in range(0, 2):\n for k in range(0, len(Wordlist)):\n Count[i].append(Wm[i].count(Wordlist[k]))\n Prob = [[], []]\n for i in range(0, 2):\n Sigma = 0\n for j in range(0, len(Wordlist)):\n Sigma += Count[i][j]\n for k in range(0, len(Wordlist)):\n Prob[i].append(numpy.true_divide(Count[i][k], Sigma))\n Entropy = [[], []]\n for i in range(0, 2):\n for k in range(0, len(Wordlist)):\n if Prob[i][k] == 0:\n Entropy[i].append(0)\n else:\n Entropy[i].append(Prob[i][k] * numpy.log2(Prob[i][k]))\n Rank = [[], []]\n Buff = [[], []]\n Buff[0] = tuple(Count[0])\n Buff[1] = tuple(Count[1])\n for i in range(0, 2):\n Count[i].sort()\n Count[i].reverse()\n for k in range(0, len(Wordlist)):\n Rank[i].append(Count[i].index(Buff[i][k]))\n Count[i][Count[i].index(Buff[i][k])] = -1\n IBS = 0\n Z = 0\n n = 0\n for k in range(0, len(Wordlist)):\n if (Buff[0][k] != 0) & (Buff[1][k] != 0):\n F = -Entropy[0][k] - Entropy[1][k]\n IBS += numpy.multiply(numpy.absolute(Rank[0][k] - Rank[1][k]), F)\n Z += F\n else:\n n += 1\n IBS = numpy.true_divide(IBS, Z)\n IBS = numpy.true_divide(IBS, len(Wordlist) - n)\n return IBS\n", "role": "user" }, { "content": "information_based_similarity", "role": "assistant" } ]
def x(x, tau, n, T, fs): Em = embed_seq(x, tau, n) M = len(Em) A = numpy.tile(Em, (len(Em), 1, 1)) B = numpy.transpose(A, [1, 0, 2]) square_dists = (A - B) ** 2 D = numpy.sqrt(square_dists[:, :, :].sum(axis=2)) band = numpy.tri(D.shape[0], k=T) - numpy.tri(D.shape[0], k=-T - 1) band[band == 1] = numpy.inf neighbors = (D + band).argmin(axis=0) inc = numpy.tile(numpy.arange(M), (M, 1)) row_inds = numpy.tile(numpy.arange(M), (M, 1)).T + inc col_inds = numpy.tile(neighbors, (M, 1)) + inc.T in_bounds = numpy.logical_and(row_inds <= M - 1, col_inds <= M - 1) row_inds[-in_bounds] = 0 col_inds[-in_bounds] = 0 neighbor_dists = numpy.ma.MaskedArray(D[row_inds, col_inds], -in_bounds) J = (-neighbor_dists.mask).sum(axis=1) neighbor_dists[neighbor_dists == 0] = 1 d_ij = numpy.sum(numpy.log(neighbor_dists.data), axis=1) mean_d = d_ij[J > 0] / J[J > 0] x = numpy.arange(len(mean_d)) X = numpy.vstack((x, numpy.ones(len(mean_d)))).T [m, c] = numpy.linalg.lstsq(X, mean_d)[0] Lexp = fs * m return Lexp
LLE
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, tau, n, T, fs):\n Em = embed_seq(x, tau, n)\n M = len(Em)\n A = numpy.tile(Em, (len(Em), 1, 1))\n B = numpy.transpose(A, [1, 0, 2])\n square_dists = (A - B) ** 2\n D = numpy.sqrt(square_dists[:, :, :].sum(axis=2))\n band = numpy.tri(D.shape[0], k=T) - numpy.tri(D.shape[0], k=-T - 1)\n band[band == 1] = numpy.inf\n neighbors = (D + band).argmin(axis=0)\n inc = numpy.tile(numpy.arange(M), (M, 1))\n row_inds = numpy.tile(numpy.arange(M), (M, 1)).T + inc\n col_inds = numpy.tile(neighbors, (M, 1)) + inc.T\n in_bounds = numpy.logical_and(row_inds <= M - 1, col_inds <= M - 1)\n row_inds[-in_bounds] = 0\n col_inds[-in_bounds] = 0\n neighbor_dists = numpy.ma.MaskedArray(D[row_inds, col_inds], -in_bounds)\n J = (-neighbor_dists.mask).sum(axis=1)\n neighbor_dists[neighbor_dists == 0] = 1\n d_ij = numpy.sum(numpy.log(neighbor_dists.data), axis=1)\n mean_d = d_ij[J > 0] / J[J > 0]\n x = numpy.arange(len(mean_d))\n X = numpy.vstack((x, numpy.ones(len(mean_d)))).T\n [m, c] = numpy.linalg.lstsq(X, mean_d)[0]\n Lexp = fs * m\n return Lexp\n", "role": "user" }, { "content": "LLE", "role": "assistant" } ]
def x(ts): return np.pi - np.mod(np.pi - ts, 2 * np.pi)
mod2pi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts):\n return np.pi - np.mod(np.pi - ts, 2 * np.pi)\n", "role": "user" }, { "content": "mod2pi", "role": "assistant" } ]
def x(ts, phi=0.0): ts = ts.squeeze() if ts.ndim is not 1: raise ValueError('Currently can only use on single variable timeseries' ) ts = mod2pi(ts - phi) tsa = ts[0:-1] tsb = ts[1:] p2 = np.pi / 2 zc = np.nonzero((tsa > -p2) & (tsa < 0) & (tsb >= 0) & (tsb < p2) | ( tsa < p2) & (tsa > 0) & (tsb <= 0) & (tsb > -p2))[0] + 1 va = ts[zc - 1] vb = ts[zc] ct = (np.abs(vb) * ts.tspan[zc - 1] + np.abs(va) * ts.tspan[zc]) / np.abs( vb - va) if ts[0] == 0.0: zc = np.r_[np.array([0]), zc] ct = np.r_[np.array([ts.tspan[0]]), ct] pc = np.nonzero((tsa > p2) & (tsb < -p2) | (tsa < -p2) & (tsb > p2))[0] + 1 splice = np.searchsorted(pc, zc) which_zc = np.r_[np.array([0]), np.nonzero(splice[0:-1] - splice[1:])[0 ] + 1] if ct.shape[0] is 0: return ct else: return ct[which_zc]
phase_crossings
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, phi=0.0):\n ts = ts.squeeze()\n if ts.ndim is not 1:\n raise ValueError('Currently can only use on single variable timeseries'\n )\n ts = mod2pi(ts - phi)\n tsa = ts[0:-1]\n tsb = ts[1:]\n p2 = np.pi / 2\n zc = np.nonzero((tsa > -p2) & (tsa < 0) & (tsb >= 0) & (tsb < p2) | (\n tsa < p2) & (tsa > 0) & (tsb <= 0) & (tsb > -p2))[0] + 1\n va = ts[zc - 1]\n vb = ts[zc]\n ct = (np.abs(vb) * ts.tspan[zc - 1] + np.abs(va) * ts.tspan[zc]) / np.abs(\n vb - va)\n if ts[0] == 0.0:\n zc = np.r_[np.array([0]), zc]\n ct = np.r_[np.array([ts.tspan[0]]), ct]\n pc = np.nonzero((tsa > p2) & (tsb < -p2) | (tsa < -p2) & (tsb > p2))[0] + 1\n splice = np.searchsorted(pc, zc)\n which_zc = np.r_[np.array([0]), np.nonzero(splice[0:-1] - splice[1:])[0\n ] + 1]\n if ct.shape[0] is 0:\n return ct\n else:\n return ct[which_zc]\n", "role": "user" }, { "content": "phase_crossings", "role": "assistant" } ]
def x(ts, phi=0.0): ts = np.squeeze(ts) if ts.ndim <= 1: return np.diff(phase_crossings(ts, phi)) else: return np.hstack([ts[..., i].periods(phi) for i in range(ts.shape[-1])] )
periods
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, phi=0.0):\n ts = np.squeeze(ts)\n if ts.ndim <= 1:\n return np.diff(phase_crossings(ts, phi))\n else:\n return np.hstack([ts[..., i].periods(phi) for i in range(ts.shape[-1])]\n )\n", "role": "user" }, { "content": "periods", "role": "assistant" } ]
def x(ts, axis=2): return np.exp(1.0j * ts).mean(axis=axis).angle()
circmean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, axis=2):\n return np.exp(1.0j * ts).mean(axis=axis).angle()\n", "role": "user" }, { "content": "circmean", "role": "assistant" } ]
def x(ts, axis=2): return np.abs(np.exp(1.0j * ts).mean(axis=axis))
order_param
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, axis=2):\n return np.abs(np.exp(1.0j * ts).mean(axis=axis))\n", "role": "user" }, { "content": "order_param", "role": "assistant" } ]
def x(points, width): omega = 5.0 s = points / (2.0 * omega * width) return wavelets.morlet(points, omega, s, complete=True)
cwtmorlet
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(points, width):\n omega = 5.0\n s = points / (2.0 * omega * width)\n return wavelets.morlet(points, omega, s, complete=True)\n", "role": "user" }, { "content": "cwtmorlet", "role": "assistant" } ]
def x(data, wavelet, widths): out_dtype = wavelet(widths[0], widths[0]).dtype output = np.zeros([len(widths), len(data)], dtype=out_dtype) for ind, width in enumerate(widths): wavelet_data = wavelet(min(3 * width, len(data)), width) output[ind, :] = convolve(data, wavelet_data, mode='same') return output
roughcwt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, wavelet, widths):\n out_dtype = wavelet(widths[0], widths[0]).dtype\n output = np.zeros([len(widths), len(data)], dtype=out_dtype)\n for ind, width in enumerate(widths):\n wavelet_data = wavelet(min(3 * width, len(data)), width)\n output[ind, :] = convolve(data, wavelet_data, mode='same')\n return output\n", "role": "user" }, { "content": "roughcwt", "role": "assistant" } ]
def x(ts, freqs=None, ncycles=6, plot=True): if freqs is None: freqs = np.logspace(np.log10(1.0), np.log10(60.0), 50) else: freqs = np.array(freqs) orig_ndim = ts.ndim if ts.ndim is 1: ts = ts[:, np.newaxis] channels = ts.shape[1] n = len(ts) dt = (1.0 * ts.tspan[-1] - ts.tspan[0]) / (n - 1) fs = 1.0 / dt dtype = ts.dtype coefs = ts.cwt(freqs, wavelet=cwtmorlet, plot=False) powers = np.square(np.abs(coefs, coefs), coefs).real.astype(dtype, copy =False) del coefs max_power = np.max(powers, axis=1) total_power = np.sum(powers, axis=1, keepdims=True) rel_power = np.divide(powers, total_power, powers) del powers centroid_freq = np.tensordot(freqs, rel_power, axes=(0, 1)) del rel_power hw = np.int64(np.ceil(0.5 * ncycles * fs / centroid_freq)) allchannels_variability = np.zeros((n, channels, 2), dtype) for i in range(channels): logvar_centfreq = np.zeros(n, dtype) logvar_maxpower = np.zeros(n, dtype) for j in range(n): wstart = j - hw[j, i] wend = j + hw[j, i] if wstart >= 0 and wend < n: logvar_centfreq[j] = np.log(centroid_freq[wstart:wend + 1]. var()) logvar_maxpower[j] = np.log(max_power[wstart:wend + 1].var()) else: logvar_centfreq[j] = np.nan logvar_maxpower[j] = np.nan allchannels_variability[:, i, 0] = _rescale(logvar_centfreq) allchannels_variability[:, i, 1] = _rescale(logvar_maxpower) allchannels_variability = Timeseries(allchannels_variability, ts.tspan, labels=ts.labels) if plot: _plot_variability(ts, allchannels_variability) return allchannels_variability
variability_fp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, freqs=None, ncycles=6, plot=True):\n if freqs is None:\n freqs = np.logspace(np.log10(1.0), np.log10(60.0), 50)\n else:\n freqs = np.array(freqs)\n orig_ndim = ts.ndim\n if ts.ndim is 1:\n ts = ts[:, np.newaxis]\n channels = ts.shape[1]\n n = len(ts)\n dt = (1.0 * ts.tspan[-1] - ts.tspan[0]) / (n - 1)\n fs = 1.0 / dt\n dtype = ts.dtype\n coefs = ts.cwt(freqs, wavelet=cwtmorlet, plot=False)\n powers = np.square(np.abs(coefs, coefs), coefs).real.astype(dtype, copy\n =False)\n del coefs\n max_power = np.max(powers, axis=1)\n total_power = np.sum(powers, axis=1, keepdims=True)\n rel_power = np.divide(powers, total_power, powers)\n del powers\n centroid_freq = np.tensordot(freqs, rel_power, axes=(0, 1))\n del rel_power\n hw = np.int64(np.ceil(0.5 * ncycles * fs / centroid_freq))\n allchannels_variability = np.zeros((n, channels, 2), dtype)\n for i in range(channels):\n logvar_centfreq = np.zeros(n, dtype)\n logvar_maxpower = np.zeros(n, dtype)\n for j in range(n):\n wstart = j - hw[j, i]\n wend = j + hw[j, i]\n if wstart >= 0 and wend < n:\n logvar_centfreq[j] = np.log(centroid_freq[wstart:wend + 1].\n var())\n logvar_maxpower[j] = np.log(max_power[wstart:wend + 1].var())\n else:\n logvar_centfreq[j] = np.nan\n logvar_maxpower[j] = np.nan\n allchannels_variability[:, i, 0] = _rescale(logvar_centfreq)\n allchannels_variability[:, i, 1] = _rescale(logvar_maxpower)\n allchannels_variability = Timeseries(allchannels_variability, ts.tspan,\n labels=ts.labels)\n if plot:\n _plot_variability(ts, allchannels_variability)\n return allchannels_variability\n", "role": "user" }, { "content": "variability_fp", "role": "assistant" } ]
def x(ar): max = np.nanmax(ar) min = np.nanmin(ar) midpoint = (max + min) / 2.0 return 2.0 * (ar - midpoint) / (max - min)
rescale
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ar):\n max = np.nanmax(ar)\n min = np.nanmin(ar)\n midpoint = (max + min) / 2.0\n return 2.0 * (ar - midpoint) / (max - min)\n", "role": "user" }, { "content": "rescale", "role": "assistant" } ]
def x(): if 'axes.prop_cycle' in plt.rcParams: return [p['color'] for p in list(plt.rcParams['axes.prop_cycle'])] else: return plt.rcParams['axes.color_cycle']
get_color_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n if 'axes.prop_cycle' in plt.rcParams:\n return [p['color'] for p in list(plt.rcParams['axes.prop_cycle'])]\n else:\n return plt.rcParams['axes.color_cycle']\n", "role": "user" }, { "content": "get_color_list", "role": "assistant" } ]
def x(ts, variability, threshold=None, epochs=None): import matplotlib.style import matplotlib as mpl mpl.style.use('classic') import matplotlib.pyplot as plt if variability.ndim is 1: variability = variability[:, np.newaxis, np.newaxis] elif variability.ndim is 2: variability = variability[:, np.newaxis, :] vmeasures = variability.shape[2] channels = ts.shape[1] dt = (1.0 * ts.tspan[-1] - ts.tspan[0]) / (len(ts) - 1) fig = plt.figure() ylabelprops = dict(rotation=0, horizontalalignment='right', verticalalignment='center', x=-0.01) for i in range(channels): rect = 0.1, 0.85 * (channels - i - 1 ) / channels + 0.1, 0.8, 0.85 / channels axprops = dict() if channels > 10: axprops['yticks'] = [] ax = fig.add_axes(rect, **axprops) ax.plot(ts.tspan, ts[:, i]) if ts.labels[1] is None: ax.set_ylabel(u'channel %d' % i, **ylabelprops) else: ax.set_ylabel(ts.labels[1][i], **ylabelprops) plt.setp(ax.get_xticklabels(), visible=False) if i is channels - 1: plt.setp(ax.get_xticklabels(), visible=True) ax.set_xlabel('time (s)') ax2 = ax.twinx() if vmeasures > 1: mean_v = np.nanmean(variability[:, i, :], axis=1) ax2.plot(ts.tspan, mean_v, color='g') colors = _get_color_list() for j in range(vmeasures): ax2.plot(ts.tspan, variability[:, i, j], linestyle='dotted', color=colors[(3 + j) % len(colors)]) if i is 0: ax2.legend(['variability (mean)'] + [('variability %d' % j) for j in range(vmeasures)], loc='best') else: ax2.plot(ts.tspan, variability[:, i, 0]) ax2.legend(('variability',), loc='best') if threshold is not None: ax2.axhline(y=threshold, color='Gray', linestyle='dashed') ax2.set_ylabel('variability') ymin = np.nanmin(ts[:, i]) ymax = np.nanmax(ts[:, i]) tstart = ts.tspan[0] if epochs: for e in epochs[i]: t1 = tstart + (e[0] - 1) * dt ax.add_patch(mpl.patches.Rectangle((t1, ymin), (e[1] - e[0] ) * dt, ymax - ymin, alpha=0.2, color='green', ec='none')) fig.axes[0].set_title(u'variability (threshold = %g)' % threshold) fig.show()
plot_variability
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, variability, threshold=None, epochs=None):\n import matplotlib.style\n import matplotlib as mpl\n mpl.style.use('classic')\n import matplotlib.pyplot as plt\n if variability.ndim is 1:\n variability = variability[:, np.newaxis, np.newaxis]\n elif variability.ndim is 2:\n variability = variability[:, np.newaxis, :]\n vmeasures = variability.shape[2]\n channels = ts.shape[1]\n dt = (1.0 * ts.tspan[-1] - ts.tspan[0]) / (len(ts) - 1)\n fig = plt.figure()\n ylabelprops = dict(rotation=0, horizontalalignment='right',\n verticalalignment='center', x=-0.01)\n for i in range(channels):\n rect = 0.1, 0.85 * (channels - i - 1\n ) / channels + 0.1, 0.8, 0.85 / channels\n axprops = dict()\n if channels > 10:\n axprops['yticks'] = []\n ax = fig.add_axes(rect, **axprops)\n ax.plot(ts.tspan, ts[:, i])\n if ts.labels[1] is None:\n ax.set_ylabel(u'channel %d' % i, **ylabelprops)\n else:\n ax.set_ylabel(ts.labels[1][i], **ylabelprops)\n plt.setp(ax.get_xticklabels(), visible=False)\n if i is channels - 1:\n plt.setp(ax.get_xticklabels(), visible=True)\n ax.set_xlabel('time (s)')\n ax2 = ax.twinx()\n if vmeasures > 1:\n mean_v = np.nanmean(variability[:, i, :], axis=1)\n ax2.plot(ts.tspan, mean_v, color='g')\n colors = _get_color_list()\n for j in range(vmeasures):\n ax2.plot(ts.tspan, variability[:, i, j], linestyle='dotted',\n color=colors[(3 + j) % len(colors)])\n if i is 0:\n ax2.legend(['variability (mean)'] + [('variability %d' % j) for\n j in range(vmeasures)], loc='best')\n else:\n ax2.plot(ts.tspan, variability[:, i, 0])\n ax2.legend(('variability',), loc='best')\n if threshold is not None:\n ax2.axhline(y=threshold, color='Gray', linestyle='dashed')\n ax2.set_ylabel('variability')\n ymin = np.nanmin(ts[:, i])\n ymax = np.nanmax(ts[:, i])\n tstart = ts.tspan[0]\n if epochs:\n for e in epochs[i]:\n t1 = tstart + (e[0] - 1) * dt\n ax.add_patch(mpl.patches.Rectangle((t1, ymin), (e[1] - e[0]\n ) * dt, ymax - ymin, alpha=0.2, color='green', ec='none'))\n fig.axes[0].set_title(u'variability (threshold = %g)' % threshold)\n fig.show()\n", "role": "user" }, { "content": "plot_variability", "role": "assistant" } ]
def x(ts, variability=None, threshold=0.0, minlength=1.0, plot=True): if variability is None: variability = ts.variability_fp(plot=False) orig_ndim = ts.ndim if ts.ndim is 1: ts = ts[:, np.newaxis] if variability.ndim is 1: variability = variability[:, np.newaxis, np.newaxis] elif variability.ndim is 2: variability = variability[:, np.newaxis, :] channels = ts.shape[1] n = len(ts) dt = (1.0 * ts.tspan[-1] - ts.tspan[0]) / (n - 1) fs = 1.0 / dt allchannels_epochs = [] for i in range(channels): v = variability[:, i, :] v = np.nanmean(v, axis=1) nonnan_ix = np.nonzero(~np.isnan(v))[0] nonnans = slice(nonnan_ix.min(), nonnan_ix.max()) crit_freq = 1.0 b, a = signal.butter(3, 2.0 * crit_freq / fs) v[nonnan_ix] = signal.filtfilt(b, a, v[nonnan_ix]) m = v[1:-1] l = v[0:-2] r = v[2:] minima = np.nonzero(~np.isnan(m) & ~np.isnan(l) & ~np.isnan(r) & (m <= threshold) & (m - l < 0) & (r - m > 0))[0] + 1 if len(minima) is 0: print(u'Channel %d: no epochs found using threshold %g' % (i, threshold)) allchannels_epochs.append([]) else: minima = minima[np.argsort(v[minima])] epochs = [] for m in minima: overlap = False for e in epochs: if m >= e[0] and m <= e[1]: overlap = True break if not overlap: startix = m - 1 endix = m + 1 for startix in range(m - 1, 0, -1): if np.isnan(v[startix]) or v[startix] > threshold: startix += 1 break for endix in range(m + 1, len(v), 1): if np.isnan(v[endix]) or v[endix] > threshold: break if (endix - startix) * dt >= minlength: epochs.append((startix, endix)) allchannels_epochs.append(epochs) if plot: _plot_variability(ts, variability, threshold, allchannels_epochs) if orig_ndim is 1: allchannels_epochs = allchannels_epochs[0] return variability, allchannels_epochs
epochs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, variability=None, threshold=0.0, minlength=1.0, plot=True):\n if variability is None:\n variability = ts.variability_fp(plot=False)\n orig_ndim = ts.ndim\n if ts.ndim is 1:\n ts = ts[:, np.newaxis]\n if variability.ndim is 1:\n variability = variability[:, np.newaxis, np.newaxis]\n elif variability.ndim is 2:\n variability = variability[:, np.newaxis, :]\n channels = ts.shape[1]\n n = len(ts)\n dt = (1.0 * ts.tspan[-1] - ts.tspan[0]) / (n - 1)\n fs = 1.0 / dt\n allchannels_epochs = []\n for i in range(channels):\n v = variability[:, i, :]\n v = np.nanmean(v, axis=1)\n nonnan_ix = np.nonzero(~np.isnan(v))[0]\n nonnans = slice(nonnan_ix.min(), nonnan_ix.max())\n crit_freq = 1.0\n b, a = signal.butter(3, 2.0 * crit_freq / fs)\n v[nonnan_ix] = signal.filtfilt(b, a, v[nonnan_ix])\n m = v[1:-1]\n l = v[0:-2]\n r = v[2:]\n minima = np.nonzero(~np.isnan(m) & ~np.isnan(l) & ~np.isnan(r) & (m <=\n threshold) & (m - l < 0) & (r - m > 0))[0] + 1\n if len(minima) is 0:\n print(u'Channel %d: no epochs found using threshold %g' % (i,\n threshold))\n allchannels_epochs.append([])\n else:\n minima = minima[np.argsort(v[minima])]\n epochs = []\n for m in minima:\n overlap = False\n for e in epochs:\n if m >= e[0] and m <= e[1]:\n overlap = True\n break\n if not overlap:\n startix = m - 1\n endix = m + 1\n for startix in range(m - 1, 0, -1):\n if np.isnan(v[startix]) or v[startix] > threshold:\n startix += 1\n break\n for endix in range(m + 1, len(v), 1):\n if np.isnan(v[endix]) or v[endix] > threshold:\n break\n if (endix - startix) * dt >= minlength:\n epochs.append((startix, endix))\n allchannels_epochs.append(epochs)\n if plot:\n _plot_variability(ts, variability, threshold, allchannels_epochs)\n if orig_ndim is 1:\n allchannels_epochs = allchannels_epochs[0]\n return variability, allchannels_epochs\n", "role": "user" }, { "content": "epochs", "role": "assistant" } ]
def x(ts, variability=None, threshold=0.0, minlength=1.0, plot=True): import distob if ts.ndim is 1: ts = ts[:, np.newaxis] if variability is None: dts = distob.scatter(ts, axis=1) vepochs = distob.vectorize(epochs) results = vepochs(dts, None, threshold, minlength, plot=False) else: def x(pair): return epochs(pair[0], pair[1], threshold, minlength, plot=False) allpairs = [(ts[:, i], variability[:, i]) for i in range(ts.shape[1])] vf = distob.vectorize(f) results = vf(allpairs) vars, allchannels_epochs = zip(*results) variability = distob.hstack(vars) if plot: _plot_variability(ts, variability, threshold, allchannels_epochs) return variability, allchannels_epochs
epochs_distributed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, variability=None, threshold=0.0, minlength=1.0, plot=True):\n import distob\n if ts.ndim is 1:\n ts = ts[:, np.newaxis]\n if variability is None:\n dts = distob.scatter(ts, axis=1)\n vepochs = distob.vectorize(epochs)\n results = vepochs(dts, None, threshold, minlength, plot=False)\n else:\n\n def x(pair):\n return epochs(pair[0], pair[1], threshold, minlength, plot=False)\n allpairs = [(ts[:, i], variability[:, i]) for i in range(ts.shape[1])]\n vf = distob.vectorize(f)\n results = vf(allpairs)\n vars, allchannels_epochs = zip(*results)\n variability = distob.hstack(vars)\n if plot:\n _plot_variability(ts, variability, threshold, allchannels_epochs)\n return variability, allchannels_epochs\n", "role": "user" }, { "content": "epochs_distributed", "role": "assistant" } ]
def x(ts, variability=None, threshold=0.0, minlength=1.0, proportion=0.75, plot=True): variability, allchannels_epochs = ts.epochs_distributed(variability, threshold, minlength, plot=False) orig_ndim = ts.ndim if ts.ndim is 1: ts = ts[:, np.newaxis] allchannels_epochs = [allchannels_epochs] variability = variability[:, np.newaxis] channels = ts.shape[1] dt = (1.0 * ts.tspan[-1] - ts.tspan[0]) / (len(ts) - 1) starts = [(e[0], 1) for channel in allchannels_epochs for e in channel] ends = [(e[1], -1) for channel in allchannels_epochs for e in channel] all = sorted(starts + ends) joint_epochs = [] in_joint_epoch = False joint_start = 0.0 inside_count = 0 for bound in all: inside_count += bound[1] if not in_joint_epoch and 1.0 * inside_count / channels >= proportion: in_joint_epoch = True joint_start = bound[0] if in_joint_epoch and 1.0 * inside_count / channels < proportion: in_joint_epoch = False joint_end = bound[0] if (joint_end - joint_start) * dt >= minlength: joint_epochs.append((joint_start, joint_end)) if plot: joint_epochs_repeated = [joint_epochs] * channels _plot_variability(ts, variability, threshold, joint_epochs_repeated) return variability, joint_epochs
epochs_joint
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, variability=None, threshold=0.0, minlength=1.0, proportion=0.75,\n plot=True):\n variability, allchannels_epochs = ts.epochs_distributed(variability,\n threshold, minlength, plot=False)\n orig_ndim = ts.ndim\n if ts.ndim is 1:\n ts = ts[:, np.newaxis]\n allchannels_epochs = [allchannels_epochs]\n variability = variability[:, np.newaxis]\n channels = ts.shape[1]\n dt = (1.0 * ts.tspan[-1] - ts.tspan[0]) / (len(ts) - 1)\n starts = [(e[0], 1) for channel in allchannels_epochs for e in channel]\n ends = [(e[1], -1) for channel in allchannels_epochs for e in channel]\n all = sorted(starts + ends)\n joint_epochs = []\n in_joint_epoch = False\n joint_start = 0.0\n inside_count = 0\n for bound in all:\n inside_count += bound[1]\n if not in_joint_epoch and 1.0 * inside_count / channels >= proportion:\n in_joint_epoch = True\n joint_start = bound[0]\n if in_joint_epoch and 1.0 * inside_count / channels < proportion:\n in_joint_epoch = False\n joint_end = bound[0]\n if (joint_end - joint_start) * dt >= minlength:\n joint_epochs.append((joint_start, joint_end))\n if plot:\n joint_epochs_repeated = [joint_epochs] * channels\n _plot_variability(ts, variability, threshold, joint_epochs_repeated)\n return variability, joint_epochs\n", "role": "user" }, { "content": "epochs_joint", "role": "assistant" } ]
def x(ts, title=None, show=True): ts = _remove_pi_crossings(ts) fig = plt.figure() ylabelprops = dict(rotation=0, horizontalalignment='right', verticalalignment='center', x=-0.01) if ts.ndim > 2: num_subplots = ts.shape[ts.ndim - 1] if title is None: title = u'time series at each node' for i in range(num_subplots): ax = fig.add_subplot(num_subplots, 1, i + 1) ax.plot(ts.tspan, ts[..., i]) if ts.labels[-1] is not None: ax.set_ylabel(ts.labels[-1][i], **ylabelprops) else: ax.set_ylabel('node ' + str(i), **ylabelprops) plt.setp(ax.get_xticklabels(), visible=False) fig.axes[0].set_title(title) plt.setp(fig.axes[num_subplots - 1].get_xticklabels(), visible=True) fig.axes[num_subplots - 1].set_xlabel('time (s)') else: if ts.ndim is 1: ts = ts.reshape((-1, 1)) num_ax = ts.shape[1] if title is None: title = u'time series' axprops = dict() if num_ax > 10: axprops['yticks'] = [] colors = _get_color_list() for i in range(num_ax): rect = 0.1, 0.85 * (num_ax - i - 1 ) / num_ax + 0.1, 0.8, 0.85 / num_ax ax = fig.add_axes(rect, **axprops) ax.plot(ts.tspan, ts[..., i], color=colors[i % len(colors)]) plt.setp(ax.get_xticklabels(), visible=False) if ts.labels[1] is not None: ax.set_ylabel(ts.labels[1][i], **ylabelprops) fig.axes[0].set_title(title) plt.setp(fig.axes[num_ax - 1].get_xticklabels(), visible=True) fig.axes[num_ax - 1].set_xlabel('time (s)') if show: fig.show() return fig
plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, title=None, show=True):\n ts = _remove_pi_crossings(ts)\n fig = plt.figure()\n ylabelprops = dict(rotation=0, horizontalalignment='right',\n verticalalignment='center', x=-0.01)\n if ts.ndim > 2:\n num_subplots = ts.shape[ts.ndim - 1]\n if title is None:\n title = u'time series at each node'\n for i in range(num_subplots):\n ax = fig.add_subplot(num_subplots, 1, i + 1)\n ax.plot(ts.tspan, ts[..., i])\n if ts.labels[-1] is not None:\n ax.set_ylabel(ts.labels[-1][i], **ylabelprops)\n else:\n ax.set_ylabel('node ' + str(i), **ylabelprops)\n plt.setp(ax.get_xticklabels(), visible=False)\n fig.axes[0].set_title(title)\n plt.setp(fig.axes[num_subplots - 1].get_xticklabels(), visible=True)\n fig.axes[num_subplots - 1].set_xlabel('time (s)')\n else:\n if ts.ndim is 1:\n ts = ts.reshape((-1, 1))\n num_ax = ts.shape[1]\n if title is None:\n title = u'time series'\n axprops = dict()\n if num_ax > 10:\n axprops['yticks'] = []\n colors = _get_color_list()\n for i in range(num_ax):\n rect = 0.1, 0.85 * (num_ax - i - 1\n ) / num_ax + 0.1, 0.8, 0.85 / num_ax\n ax = fig.add_axes(rect, **axprops)\n ax.plot(ts.tspan, ts[..., i], color=colors[i % len(colors)])\n plt.setp(ax.get_xticklabels(), visible=False)\n if ts.labels[1] is not None:\n ax.set_ylabel(ts.labels[1][i], **ylabelprops)\n fig.axes[0].set_title(title)\n plt.setp(fig.axes[num_ax - 1].get_xticklabels(), visible=True)\n fig.axes[num_ax - 1].set_xlabel('time (s)')\n if show:\n fig.show()\n return fig\n", "role": "user" }, { "content": "plot", "role": "assistant" } ]
def x(ts): orig_ts = ts if ts.ndim is 1: ts = ts[:, np.newaxis, np.newaxis] elif ts.ndim is 2: ts = ts[:, np.newaxis] tsmax = ts.max(axis=0) tsmin = ts.min(axis=0) phase_vars = np.transpose(np.nonzero((np.abs(tsmax - np.pi) < 0.01) & ( np.abs(tsmin + np.pi) < 0.01))) if len(phase_vars) is 0: return orig_ts else: ts = ts.copy() for v in phase_vars: ts1 = np.asarray(ts[:, v[0], v[1]]) ts1a = ts1[0:-1] ts1b = ts1[1:] p2 = np.pi / 2 pc = np.nonzero((ts1a > p2) & (ts1b < -p2) | (ts1a < -p2) & ( ts1b > p2))[0] + 1 ts1[pc] = np.nan ts[:, v[0], v[1]] = ts1 return ts
remove_pi_crossings
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts):\n orig_ts = ts\n if ts.ndim is 1:\n ts = ts[:, np.newaxis, np.newaxis]\n elif ts.ndim is 2:\n ts = ts[:, np.newaxis]\n tsmax = ts.max(axis=0)\n tsmin = ts.min(axis=0)\n phase_vars = np.transpose(np.nonzero((np.abs(tsmax - np.pi) < 0.01) & (\n np.abs(tsmin + np.pi) < 0.01)))\n if len(phase_vars) is 0:\n return orig_ts\n else:\n ts = ts.copy()\n for v in phase_vars:\n ts1 = np.asarray(ts[:, v[0], v[1]])\n ts1a = ts1[0:-1]\n ts1b = ts1[1:]\n p2 = np.pi / 2\n pc = np.nonzero((ts1a > p2) & (ts1b < -p2) | (ts1a < -p2) & (\n ts1b > p2))[0] + 1\n ts1[pc] = np.nan\n ts[:, v[0], v[1]] = ts1\n return ts\n", "role": "user" }, { "content": "remove_pi_crossings", "role": "assistant" } ]
def x(filename, varname=None, fs=1.0): import scipy.io as sio if varname is None: mat_dict = sio.loadmat(filename) if len(mat_dict) > 1: raise ValueError( 'Must specify varname: file contains more than one variable. ') else: mat_dict = sio.loadmat(filename, variable_names=(varname,)) array = mat_dict.popitem()[1] return Timeseries(array, fs=fs)
timeseries_from_mat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, varname=None, fs=1.0):\n import scipy.io as sio\n if varname is None:\n mat_dict = sio.loadmat(filename)\n if len(mat_dict) > 1:\n raise ValueError(\n 'Must specify varname: file contains more than one variable. ')\n else:\n mat_dict = sio.loadmat(filename, variable_names=(varname,))\n array = mat_dict.popitem()[1]\n return Timeseries(array, fs=fs)\n", "role": "user" }, { "content": "timeseries_from_mat", "role": "assistant" } ]
def x(ts, filename): import scipy.io as sio tspan = ts.tspan fs = (1.0 * len(tspan) - 1) / (tspan[-1] - tspan[0]) mat_dict = {'data': np.asarray(ts), 'fs': fs, 'labels': ts.labels[1]} sio.savemat(filename, mat_dict, do_compression=True) return
save_mat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ts, filename):\n import scipy.io as sio\n tspan = ts.tspan\n fs = (1.0 * len(tspan) - 1) / (tspan[-1] - tspan[0])\n mat_dict = {'data': np.asarray(ts), 'fs': fs, 'labels': ts.labels[1]}\n sio.savemat(filename, mat_dict, do_compression=True)\n return\n", "role": "user" }, { "content": "save_mat", "role": "assistant" } ]
def x(filename): if not path.isfile(filename): raise Error("file not found: '%s'" % filename) is_edf_bdf = filename[-4:].lower() in ['.edf', '.bdf'] if is_edf_bdf: try: import edflib return _load_edflib(filename) except ImportError: print('python-edf not installed. trying python-biosig instead...') try: import biosig return _load_biosig(filename) except ImportError: message = """To load timeseries from file, ensure python-biosig is installed e.g. on Ubuntu or Debian type `apt-get install python-biosig` or get it from http://biosig.sf.net/download.html""" if is_edf_bdf: message += """ (For EDF/BDF files, can instead install python-edf: https://bitbucket.org/cleemesser/python-edf/ )""" raise Error(message)
timeseries_from_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n if not path.isfile(filename):\n raise Error(\"file not found: '%s'\" % filename)\n is_edf_bdf = filename[-4:].lower() in ['.edf', '.bdf']\n if is_edf_bdf:\n try:\n import edflib\n return _load_edflib(filename)\n except ImportError:\n print('python-edf not installed. trying python-biosig instead...')\n try:\n import biosig\n return _load_biosig(filename)\n except ImportError:\n message = \"\"\"To load timeseries from file, ensure python-biosig is installed\n e.g. on Ubuntu or Debian type `apt-get install python-biosig`\n or get it from http://biosig.sf.net/download.html\"\"\"\n if is_edf_bdf:\n message += \"\"\"\n(For EDF/BDF files, can instead install python-edf:\n https://bitbucket.org/cleemesser/python-edf/ )\"\"\"\n raise Error(message)\n", "role": "user" }, { "content": "timeseries_from_file", "role": "assistant" } ]
def x(filename): import edflib e = edflib.EdfReader(filename, annotations_mode='all') if np.ptp(e.get_samples_per_signal()) != 0: raise Error('channels have differing numbers of samples') if np.ptp(e.get_signal_freqs()) != 0: raise Error('channels have differing sample rates') n = e.samples_in_file(0) m = e.signals_in_file channelnames = e.get_signal_text_labels() dt = 1.0 / e.samplefrequency(0) ar = np.zeros((n, m), dtype=np.float32) buf = np.zeros((n,), dtype=np.float64) for i in range(m): e.read_phys_signal(i, 0, n, buf) ar[:, i] = buf tspan = np.arange(0, (n - 1 + 0.5) * dt, dt, dtype=np.float32) return Timeseries(ar, tspan, labels=[None, channelnames])
load_edflib
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n import edflib\n e = edflib.EdfReader(filename, annotations_mode='all')\n if np.ptp(e.get_samples_per_signal()) != 0:\n raise Error('channels have differing numbers of samples')\n if np.ptp(e.get_signal_freqs()) != 0:\n raise Error('channels have differing sample rates')\n n = e.samples_in_file(0)\n m = e.signals_in_file\n channelnames = e.get_signal_text_labels()\n dt = 1.0 / e.samplefrequency(0)\n ar = np.zeros((n, m), dtype=np.float32)\n buf = np.zeros((n,), dtype=np.float64)\n for i in range(m):\n e.read_phys_signal(i, 0, n, buf)\n ar[:, i] = buf\n tspan = np.arange(0, (n - 1 + 0.5) * dt, dt, dtype=np.float32)\n return Timeseries(ar, tspan, labels=[None, channelnames])\n", "role": "user" }, { "content": "load_edflib", "role": "assistant" } ]
def x(filename): import edflib e = edflib.EdfReader(filename, annotations_mode='all') return e.read_annotations()
annotations_from_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n import edflib\n e = edflib.EdfReader(filename, annotations_mode='all')\n return e.read_annotations()\n", "role": "user" }, { "content": "annotations_from_file", "role": "assistant" } ]
def x(out_arr, ufunc, method, i, inputs, **kwargs): shape = out_arr.shape ndim = out_arr.ndim if ndim is 0 or shape[0] is 0: return out_arr candidates = [a.tspan for a in inputs if hasattr(a, 'tspan') and a. shape[0] == shape[0]] starts = [tspan[0] for tspan in candidates] ends = [tspan[-1] for tspan in candidates] if len(set(starts)) != 1 or len(set(ends)) != 1: return out_arr else: new_tspan = candidates[0] new_labels = [None] for i in range(1, ndim): candidates = [a.labels[i] for a in inputs if hasattr(a, 'labels') and a.shape[i] == shape[i] and a.labels[i] is not None] if len(candidates) is 1: new_labels.append(candidates[0]) elif len(candidates) > 1 and all(labs[j] == candidates[0][j] for labs in candidates[1:] for j in range(shape[i])): new_labels.append(candidates[0]) else: new_labels.append(None) if isinstance(out_arr, np.ndarray): return Timeseries(out_arr, new_tspan, new_labels) elif isinstance(out_arr, distob.RemoteArray): return _rts_from_ra(out_arr, new_tspan, new_labels) elif isinstance(out_arr, distob.DistArray) and all(isinstance(ra, RemoteTimeseries) for ra in out_arr._subarrays): return _dts_from_da(out_arr, new_tspan, new_labels) else: return out_arr
ufunc_wrap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(out_arr, ufunc, method, i, inputs, **kwargs):\n shape = out_arr.shape\n ndim = out_arr.ndim\n if ndim is 0 or shape[0] is 0:\n return out_arr\n candidates = [a.tspan for a in inputs if hasattr(a, 'tspan') and a.\n shape[0] == shape[0]]\n starts = [tspan[0] for tspan in candidates]\n ends = [tspan[-1] for tspan in candidates]\n if len(set(starts)) != 1 or len(set(ends)) != 1:\n return out_arr\n else:\n new_tspan = candidates[0]\n new_labels = [None]\n for i in range(1, ndim):\n candidates = [a.labels[i] for a in inputs if hasattr(a, 'labels') and\n a.shape[i] == shape[i] and a.labels[i] is not None]\n if len(candidates) is 1:\n new_labels.append(candidates[0])\n elif len(candidates) > 1 and all(labs[j] == candidates[0][j] for\n labs in candidates[1:] for j in range(shape[i])):\n new_labels.append(candidates[0])\n else:\n new_labels.append(None)\n if isinstance(out_arr, np.ndarray):\n return Timeseries(out_arr, new_tspan, new_labels)\n elif isinstance(out_arr, distob.RemoteArray):\n return _rts_from_ra(out_arr, new_tspan, new_labels)\n elif isinstance(out_arr, distob.DistArray) and all(isinstance(ra,\n RemoteTimeseries) for ra in out_arr._subarrays):\n return _dts_from_da(out_arr, new_tspan, new_labels)\n else:\n return out_arr\n", "role": "user" }, { "content": "ufunc_wrap", "role": "assistant" } ]
def x(ra, tspan, labels, block=True): def x(a, tspan, labels): from nsim import Timeseries return Timeseries(a, tspan, labels) return distob.call(_convert, ra, tspan, labels, prefer_local=False, block=block)
rts_from_ra
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ra, tspan, labels, block=True):\n\n def x(a, tspan, labels):\n from nsim import Timeseries\n return Timeseries(a, tspan, labels)\n return distob.call(_convert, ra, tspan, labels, prefer_local=False,\n block=block)\n", "role": "user" }, { "content": "rts_from_ra", "role": "assistant" } ]
def x(da, tspan, labels): sublabels = labels[:] new_subarrays = [] for i, ra in enumerate(da._subarrays): if isinstance(ra, RemoteTimeseries): new_subarrays.append(ra) else: if labels[da._distaxis]: sublabels[da._distaxis] = labels[da._distaxis][da._si[i]:da ._si[i + 1]] new_subarrays.append(_rts_from_ra(ra, tspan, sublabels, False)) new_subarrays = [distob.convert_result(ar) for ar in new_subarrays] da._subarrays = new_subarrays da.__class__ = DistTimeseries da.tspan = tspan da.labels = labels da.t = _Timeslice(da) return da
dts_from_da
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(da, tspan, labels):\n sublabels = labels[:]\n new_subarrays = []\n for i, ra in enumerate(da._subarrays):\n if isinstance(ra, RemoteTimeseries):\n new_subarrays.append(ra)\n else:\n if labels[da._distaxis]:\n sublabels[da._distaxis] = labels[da._distaxis][da._si[i]:da\n ._si[i + 1]]\n new_subarrays.append(_rts_from_ra(ra, tspan, sublabels, False))\n new_subarrays = [distob.convert_result(ar) for ar in new_subarrays]\n da._subarrays = new_subarrays\n da.__class__ = DistTimeseries\n da.tspan = tspan\n da.labels = labels\n da.t = _Timeslice(da)\n return da\n", "role": "user" }, { "content": "dts_from_da", "role": "assistant" } ]
def x(f, G, y0, name='NewModel', modelType=ItoModel, T=60.0, dt=0.005, repeat=1, identical=True): NewModel = newmodel(f, G, y0, name, modelType) if repeat == 1: return Simulation(NewModel(), T, dt) else: return RepeatedSim(NewModel, T, dt, repeat, identical)
newsim
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f, G, y0, name='NewModel', modelType=ItoModel, T=60.0, dt=0.005,\n repeat=1, identical=True):\n NewModel = newmodel(f, G, y0, name, modelType)\n if repeat == 1:\n return Simulation(NewModel(), T, dt)\n else:\n return RepeatedSim(NewModel, T, dt, repeat, identical)\n", "role": "user" }, { "content": "newsim", "role": "assistant" } ]
def x(f, G, y0, name='NewModel', modelType=ItoModel): if not issubclass(modelType, Model): raise SimTypeError('modelType must be a subclass of nsim.Model') if not callable(f) or G is not None and not callable(G): raise SimTypeError('f and G must be functions of y and t.') if G is not None and f.__globals__ is not G.__globals__: raise SimValueError('f and G must be defined in the same place') if modelType is ODEModel and G is not None and not np.all(G == 0.0): raise SimValueError('For an ODEModel, noise matrix G should be None') if G is None or modelType is ODEModel: newclass = type(name, (ODEModel,), dict()) setattr(newclass, 'f', staticmethod(__clone_function(f, 'f'))) else: newclass = type(name, (modelType,), dict()) setattr(newclass, 'f', staticmethod(__clone_function(f, 'f'))) setattr(newclass, 'G', staticmethod(__clone_function(G, 'G'))) setattr(newclass, 'y0', copy.deepcopy(y0)) globals_used = [x for x in f.__globals__ if x in f.__code__.co_names or G is not None and x in G.__code__.co_names] for x in globals_used: if G is None: setattr(newclass, x, __AccessDict(x, newclass.f.__globals__)) else: setattr(newclass, x, __AccessDicts(x, newclass.f.__globals__, newclass.G.__globals__)) newclass.__module__ = '__main__' import __main__ __main__.__dict__[name] = newclass return newclass
newmodel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f, G, y0, name='NewModel', modelType=ItoModel):\n if not issubclass(modelType, Model):\n raise SimTypeError('modelType must be a subclass of nsim.Model')\n if not callable(f) or G is not None and not callable(G):\n raise SimTypeError('f and G must be functions of y and t.')\n if G is not None and f.__globals__ is not G.__globals__:\n raise SimValueError('f and G must be defined in the same place')\n if modelType is ODEModel and G is not None and not np.all(G == 0.0):\n raise SimValueError('For an ODEModel, noise matrix G should be None')\n if G is None or modelType is ODEModel:\n newclass = type(name, (ODEModel,), dict())\n setattr(newclass, 'f', staticmethod(__clone_function(f, 'f')))\n else:\n newclass = type(name, (modelType,), dict())\n setattr(newclass, 'f', staticmethod(__clone_function(f, 'f')))\n setattr(newclass, 'G', staticmethod(__clone_function(G, 'G')))\n setattr(newclass, 'y0', copy.deepcopy(y0))\n globals_used = [x for x in f.__globals__ if x in f.__code__.co_names or\n G is not None and x in G.__code__.co_names]\n for x in globals_used:\n if G is None:\n setattr(newclass, x, __AccessDict(x, newclass.f.__globals__))\n else:\n setattr(newclass, x, __AccessDicts(x, newclass.f.__globals__,\n newclass.G.__globals__))\n newclass.__module__ = '__main__'\n import __main__\n __main__.__dict__[name] = newclass\n return newclass\n", "role": "user" }, { "content": "newmodel", "role": "assistant" } ]
def x(f, name=None): if not isinstance(f, types.FunctionType): raise SimTypeError('Given parameter is not a function.') if name is None: name = f.__name__ newglobals = f.__globals__.copy() globals_used = [x for x in f.__globals__ if x in f.__code__.co_names] for x in globals_used: gv = f.__globals__[x] if isinstance(gv, types.FunctionType): newglobals[x] = __clone_function(gv) elif isinstance(gv, types.ModuleType): newglobals[x] = gv else: newglobals[x] = copy.deepcopy(gv) newfunc = types.FunctionType(f.__code__, newglobals, name, f. __defaults__, f.__closure__) return newfunc
clone_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f, name=None):\n if not isinstance(f, types.FunctionType):\n raise SimTypeError('Given parameter is not a function.')\n if name is None:\n name = f.__name__\n newglobals = f.__globals__.copy()\n globals_used = [x for x in f.__globals__ if x in f.__code__.co_names]\n for x in globals_used:\n gv = f.__globals__[x]\n if isinstance(gv, types.FunctionType):\n newglobals[x] = __clone_function(gv)\n elif isinstance(gv, types.ModuleType):\n newglobals[x] = gv\n else:\n newglobals[x] = copy.deepcopy(gv)\n newfunc = types.FunctionType(f.__code__, newglobals, name, f.\n __defaults__, f.__closure__)\n return newfunc\n", "role": "user" }, { "content": "clone_function", "role": "assistant" } ]
def x(self, axis): if axis <= self._distaxis: subaxis = axis new_distaxis = self._distaxis + 1 else: subaxis = axis - 1 new_distaxis = self._distaxis new_subts = [rts.expand_dims(subaxis) for rts in self._subarrays] if axis == 0: return distob.DistArray(new_subts, new_distaxis) else: axislabels = self.labels[self._distaxis] return DistTimeseries(new_subts, new_distaxis, axislabels)
expand_dims
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, axis):\n if axis <= self._distaxis:\n subaxis = axis\n new_distaxis = self._distaxis + 1\n else:\n subaxis = axis - 1\n new_distaxis = self._distaxis\n new_subts = [rts.expand_dims(subaxis) for rts in self._subarrays]\n if axis == 0:\n return distob.DistArray(new_subts, new_distaxis)\n else:\n axislabels = self.labels[self._distaxis]\n return DistTimeseries(new_subts, new_distaxis, axislabels)\n", "role": "user" }, { "content": "expand_dims", "role": "assistant" } ]
def x(self): da = distob.vectorize(np.absolute)(self) return _dts_from_da(da, self.tspan, self.labels)
absolute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n da = distob.vectorize(np.absolute)(self)\n return _dts_from_da(da, self.tspan, self.labels)\n", "role": "user" }, { "content": "absolute", "role": "assistant" } ]
def x(self, deg=False): if self.dtype.str[1] != 'c': warnings.warn('angle() is intended for complex-valued timeseries', RuntimeWarning, 1) da = distob.vectorize(np.angle)(self, deg) return _dts_from_da(da, self.tspan, self.labels)
angle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, deg=False):\n if self.dtype.str[1] != 'c':\n warnings.warn('angle() is intended for complex-valued timeseries',\n RuntimeWarning, 1)\n da = distob.vectorize(np.angle)(self, deg)\n return _dts_from_da(da, self.tspan, self.labels)\n", "role": "user" }, { "content": "angle", "role": "assistant" } ]
def x(self, source_y, target_y, weight): return np.ones_like(target_y) * np.mean(source_y) * weight
coupling
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, source_y, target_y, weight):\n return np.ones_like(target_y) * np.mean(source_y) * weight\n", "role": "user" }, { "content": "coupling", "role": "assistant" } ]