source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(title, api):
if len(title) > api.MAX_LIST_TITLE_LENGTH:
raise ValueError('Title cannot be longer than {} characters'.format
(api.MAX_TASK_TITLE_LENGTH))
|
check_title_length
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(title, api):\n if len(title) > api.MAX_LIST_TITLE_LENGTH:\n raise ValueError('Title cannot be longer than {} characters'.format\n (api.MAX_TASK_TITLE_LENGTH))\n",
"role": "user"
},
{
"content": "check_title_length",
"role": "assistant"
}
] |
def x(client):
response = client.authenticated_request(client.api.Endpoints.LISTS)
return response.json()
|
get_lists
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(client):\n response = client.authenticated_request(client.api.Endpoints.LISTS)\n return response.json()\n",
"role": "user"
},
{
"content": "get_lists",
"role": "assistant"
}
] |
def x(client, list_id):
endpoint = '/'.join([client.api.Endpoints.LISTS, str(list_id)])
response = client.authenticated_request(endpoint)
return response.json()
|
get_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(client, list_id):\n endpoint = '/'.join([client.api.Endpoints.LISTS, str(list_id)])\n response = client.authenticated_request(endpoint)\n return response.json()\n",
"role": "user"
},
{
"content": "get_list",
"role": "assistant"
}
] |
def x(client, title):
_check_title_length(title, client.api)
data = {'title': title}
response = client.authenticated_request(client.api.Endpoints.LISTS,
method='POST', data=data)
return response.json()
|
create_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(client, title):\n _check_title_length(title, client.api)\n data = {'title': title}\n response = client.authenticated_request(client.api.Endpoints.LISTS,\n method='POST', data=data)\n return response.json()\n",
"role": "user"
},
{
"content": "create_list",
"role": "assistant"
}
] |
def x(client, list_id, revision, title=None, public=None):
if title is not None:
_check_title_length(title, client.api)
data = {'revision': revision, 'title': title, 'public': public}
data = {key: value for key, value in data.items() if value is not None}
endpoint = '/'.join([client.api.Endpoints.LISTS, str(list_id)])
response = client.authenticated_request(endpoint, 'PATCH', data=data)
return response.json()
|
update_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(client, list_id, revision, title=None, public=None):\n if title is not None:\n _check_title_length(title, client.api)\n data = {'revision': revision, 'title': title, 'public': public}\n data = {key: value for key, value in data.items() if value is not None}\n endpoint = '/'.join([client.api.Endpoints.LISTS, str(list_id)])\n response = client.authenticated_request(endpoint, 'PATCH', data=data)\n return response.json()\n",
"role": "user"
},
{
"content": "update_list",
"role": "assistant"
}
] |
def x(client, positions_obj_id):
return endpoint_helpers.get_endpoint_obj(client, client.api.Endpoints.
LIST_POSITIONS, positions_obj_id)
|
get_list_positions_obj
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(client, positions_obj_id):\n return endpoint_helpers.get_endpoint_obj(client, client.api.Endpoints.\n LIST_POSITIONS, positions_obj_id)\n",
"role": "user"
},
{
"content": "get_list_positions_obj",
"role": "assistant"
}
] |
def x(client, positions_obj_id, revision, values):
return _update_positions_obj(client, client.api.Endpoints.
LIST_POSITIONS, positions_obj_id, revision, values)
|
update_list_positions_obj
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(client, positions_obj_id, revision, values):\n return _update_positions_obj(client, client.api.Endpoints.\n LIST_POSITIONS, positions_obj_id, revision, values)\n",
"role": "user"
},
{
"content": "update_list_positions_obj",
"role": "assistant"
}
] |
def x(client, list_id):
params = {'list_id': int(list_id)}
response = client.authenticated_request(client.api.Endpoints.
TASK_POSITIONS, params=params)
return response.json()
|
get_task_positions_objs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(client, list_id):\n params = {'list_id': int(list_id)}\n response = client.authenticated_request(client.api.Endpoints.\n TASK_POSITIONS, params=params)\n return response.json()\n",
"role": "user"
},
{
"content": "get_task_positions_objs",
"role": "assistant"
}
] |
def x(client, task_id):
params = {'task_id': int(task_id)}
response = client.authenticated_request(client.api.Endpoints.
SUBTASK_POSITIONS, params=params)
return response.json()
|
get_task_subtask_positions_objs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(client, task_id):\n params = {'task_id': int(task_id)}\n response = client.authenticated_request(client.api.Endpoints.\n SUBTASK_POSITIONS, params=params)\n return response.json()\n",
"role": "user"
},
{
"content": "get_task_subtask_positions_objs",
"role": "assistant"
}
] |
def x(client, list_id):
params = {'list_id': int(list_id)}
response = client.authenticated_request(client.api.Endpoints.
SUBTASK_POSITIONS, params=params)
return response.json()
|
get_list_subtask_positions_objs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(client, list_id):\n params = {'list_id': int(list_id)}\n response = client.authenticated_request(client.api.Endpoints.\n SUBTASK_POSITIONS, params=params)\n return response.json()\n",
"role": "user"
},
{
"content": "get_list_subtask_positions_objs",
"role": "assistant"
}
] |
def x(title, api):
if len(title) > api.MAX_SUBTASK_TITLE_LENGTH:
raise ValueError('Title cannot be longer than {} characters'.format
(api.MAX_SUBTASK_TITLE_LENGTH))
|
check_title_length
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(title, api):\n if len(title) > api.MAX_SUBTASK_TITLE_LENGTH:\n raise ValueError('Title cannot be longer than {} characters'.format\n (api.MAX_SUBTASK_TITLE_LENGTH))\n",
"role": "user"
},
{
"content": "check_title_length",
"role": "assistant"
}
] |
def x(client, task_id, completed=False):
params = {'task_id': int(task_id), 'completed': completed}
response = client.authenticated_request(client.api.Endpoints.SUBTASKS,
params=params)
return response.json()
|
get_task_subtasks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(client, task_id, completed=False):\n params = {'task_id': int(task_id), 'completed': completed}\n response = client.authenticated_request(client.api.Endpoints.SUBTASKS,\n params=params)\n return response.json()\n",
"role": "user"
},
{
"content": "get_task_subtasks",
"role": "assistant"
}
] |
def x(client, list_id, completed=False):
params = {'list_id': int(list_id), 'completed': completed}
response = client.authenticated_request(client.api.Endpoints.SUBTASKS,
params=params)
return response.json()
|
get_list_subtasks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(client, list_id, completed=False):\n params = {'list_id': int(list_id), 'completed': completed}\n response = client.authenticated_request(client.api.Endpoints.SUBTASKS,\n params=params)\n return response.json()\n",
"role": "user"
},
{
"content": "get_list_subtasks",
"role": "assistant"
}
] |
def x(client, subtask_id):
endpoint = '/'.join([client.api.Endpoints.SUBTASKS, str(subtask_id)])
response = client.authenticated_request(endpoint)
return response.json()
|
get_subtask
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(client, subtask_id):\n endpoint = '/'.join([client.api.Endpoints.SUBTASKS, str(subtask_id)])\n response = client.authenticated_request(endpoint)\n return response.json()\n",
"role": "user"
},
{
"content": "get_subtask",
"role": "assistant"
}
] |
def x(client, task_id, title, completed=False):
_check_title_length(title, client.api)
data = {'task_id': int(task_id) if task_id else None, 'title': title,
'completed': completed}
data = {key: value for key, value in data.items() if value is not None}
response = client.authenticated_request(client.api.Endpoints.SUBTASKS,
'POST', data=data)
return response.json()
|
create_subtask
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(client, task_id, title, completed=False):\n _check_title_length(title, client.api)\n data = {'task_id': int(task_id) if task_id else None, 'title': title,\n 'completed': completed}\n data = {key: value for key, value in data.items() if value is not None}\n response = client.authenticated_request(client.api.Endpoints.SUBTASKS,\n 'POST', data=data)\n return response.json()\n",
"role": "user"
},
{
"content": "create_subtask",
"role": "assistant"
}
] |
def x(client, subtask_id, revision, title=None, completed=None):
if title is not None:
_check_title_length(title, client.api)
data = {'revision': int(revision), 'title': title, 'completed': completed}
data = {key: value for key, value in data.items() if value is not None}
endpoint = '/'.join([client.api.Endpoints.SUBTASKS, str(subtask_id)])
response = client.authenticated_request(endpoint, 'PATCH', data=data)
return response.json()
|
update_subtask
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(client, subtask_id, revision, title=None, completed=None):\n if title is not None:\n _check_title_length(title, client.api)\n data = {'revision': int(revision), 'title': title, 'completed': completed}\n data = {key: value for key, value in data.items() if value is not None}\n endpoint = '/'.join([client.api.Endpoints.SUBTASKS, str(subtask_id)])\n response = client.authenticated_request(endpoint, 'PATCH', data=data)\n return response.json()\n",
"role": "user"
},
{
"content": "update_subtask",
"role": "assistant"
}
] |
def x(client, subtask_id, revision):
params = {'revision': int(revision)}
endpoint = '/'.join([client.api.Endpoints.SUBTASKS, str(subtask_id)])
client.authenticated_request(endpoint, 'DELETE', params=params)
|
delete_subtask
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(client, subtask_id, revision):\n params = {'revision': int(revision)}\n endpoint = '/'.join([client.api.Endpoints.SUBTASKS, str(subtask_id)])\n client.authenticated_request(endpoint, 'DELETE', params=params)\n",
"role": "user"
},
{
"content": "delete_subtask",
"role": "assistant"
}
] |
def x(animation='elipses', text='', speed=0.2):
def x(func):
func.animation = animation
func.speed = speed
func.text = text
@wraps(func)
def x(*args, **kwargs):
animation = func.animation
text = func.text
if not isinstance(animation, (list, tuple)) and not hasattr(
animations, animation):
text = animation if text == '' else text
animation = 'elipses'
wait = Wait(animation=animation, text=text, speed=func.speed)
wait.start()
try:
ret = func(*args, **kwargs)
finally:
wait.stop()
sys.stdout.write('\n')
return ret
return wrapper
return decorator
|
wait
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(animation='elipses', text='', speed=0.2):\n\n def x(func):\n func.animation = animation\n func.speed = speed\n func.text = text\n\n @wraps(func)\n def x(*args, **kwargs):\n animation = func.animation\n text = func.text\n if not isinstance(animation, (list, tuple)) and not hasattr(\n animations, animation):\n text = animation if text == '' else text\n animation = 'elipses'\n wait = Wait(animation=animation, text=text, speed=func.speed)\n wait.start()\n try:\n ret = func(*args, **kwargs)\n finally:\n wait.stop()\n sys.stdout.write('\\n')\n return ret\n return wrapper\n return decorator\n",
"role": "user"
},
{
"content": "wait",
"role": "assistant"
}
] |
def x(func):
@wraps(func)
def x(*args, **kwargs):
wait = Wait()
wait.start()
try:
ret = func(*args, **kwargs)
finally:
wait.stop()
sys.stdout.write('\n')
return ret
return wrapper
|
simple_wait
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func):\n\n @wraps(func)\n def x(*args, **kwargs):\n wait = Wait()\n wait.start()\n try:\n ret = func(*args, **kwargs)\n finally:\n wait.stop()\n sys.stdout.write('\\n')\n return ret\n return wrapper\n",
"role": "user"
},
{
"content": "simple_wait",
"role": "assistant"
}
] |
def x(self):
self.thread = threading.Thread(target=self._animate)
self.thread.start()
return
|
start
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.thread = threading.Thread(target=self._animate)\n self.thread.start()\n return\n",
"role": "user"
},
{
"content": "start",
"role": "assistant"
}
] |
def x(self):
time.sleep(self.speed)
self._count = -9999
sys.stdout.write(self.reverser + '\r\x1b[K\x1b[A')
sys.stdout.flush()
return
|
stop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n time.sleep(self.speed)\n self._count = -9999\n sys.stdout.write(self.reverser + '\\r\\x1b[K\\x1b[A')\n sys.stdout.flush()\n return\n",
"role": "user"
},
{
"content": "stop",
"role": "assistant"
}
] |
def x(tup):
if not all(tuple(ts.shape[1:] == tup[0].shape[1:] for ts in tup[1:])):
raise ValueError('Timeseries to merge must have compatible shapes')
indices = np.vstack(tuple(ts.tspan for ts in tup)).argsort()
return np.vstack(tup)[indices]
|
merge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tup):\n if not all(tuple(ts.shape[1:] == tup[0].shape[1:] for ts in tup[1:])):\n raise ValueError('Timeseries to merge must have compatible shapes')\n indices = np.vstack(tuple(ts.tspan for ts in tup)).argsort()\n return np.vstack(tup)[indices]\n",
"role": "user"
},
{
"content": "merge",
"role": "assistant"
}
] |
def x(cls, source):
if isinstance(source, types.FunctionType):
_add_single_method(source.__name__, source)
else:
if isinstance(source, types.ModuleType):
mod = source
elif isinstance(source, types.StringTypes):
import os
import imp
path = os.path.abspath(source)
if os.path.isfile(path) and path[-3:] == '.py':
dir, file = os.path.split(path)
name = file[:-3]
module_info = imp.find_module(name, [dir])
mod = imp.load_module('nsim.' + name, *module_info)
elif os.path.isdir(path) and '__init__.py' in os.listdir(path):
module_info = imp.find_module('__init__', [path])
name = os.path.basename(path)
mod = imp.load_module('nsim.' + name, *module_info)
else:
raise Error('"%s" is not a file or directory' % source)
else:
raise ValueError('`source` argument not a function or module')
for name, obj in mod.__dict__.items():
if name[0] != '_' and isinstance(obj, types.FunctionType):
cls._add_single_method(name, obj)
|
add_analyses
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, source):\n if isinstance(source, types.FunctionType):\n _add_single_method(source.__name__, source)\n else:\n if isinstance(source, types.ModuleType):\n mod = source\n elif isinstance(source, types.StringTypes):\n import os\n import imp\n path = os.path.abspath(source)\n if os.path.isfile(path) and path[-3:] == '.py':\n dir, file = os.path.split(path)\n name = file[:-3]\n module_info = imp.find_module(name, [dir])\n mod = imp.load_module('nsim.' + name, *module_info)\n elif os.path.isdir(path) and '__init__.py' in os.listdir(path):\n module_info = imp.find_module('__init__', [path])\n name = os.path.basename(path)\n mod = imp.load_module('nsim.' + name, *module_info)\n else:\n raise Error('\"%s\" is not a file or directory' % source)\n else:\n raise ValueError('`source` argument not a function or module')\n for name, obj in mod.__dict__.items():\n if name[0] != '_' and isinstance(obj, types.FunctionType):\n cls._add_single_method(name, obj)\n",
"role": "user"
},
{
"content": "add_analyses",
"role": "assistant"
}
] |
def x(self):
return Timeseries(np.absolute(self), self.tspan, self.labels)
|
absolute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return Timeseries(np.absolute(self), self.tspan, self.labels)\n",
"role": "user"
},
{
"content": "absolute",
"role": "assistant"
}
] |
def x(self, deg=False):
if self.dtype.str[1] != 'c':
warnings.warn('angle() is intended for complex-valued timeseries',
RuntimeWarning, 1)
return Timeseries(np.angle(self, deg=deg), self.tspan, self.labels)
|
angle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, deg=False):\n if self.dtype.str[1] != 'c':\n warnings.warn('angle() is intended for complex-valued timeseries',\n RuntimeWarning, 1)\n return Timeseries(np.angle(self, deg=deg), self.tspan, self.labels)\n",
"role": "user"
},
{
"content": "angle",
"role": "assistant"
}
] |
def x(self, axis1, axis2):
if self.ndim <= 1 or axis1 == axis2:
return self
ar = np.asarray(self).swapaxes(axis1, axis2)
if axis1 != 0 and axis2 != 0:
labels = self.labels[:]
labels[axis1], labels[axis2] = labels[axis2], labels[axis1]
return Timeseries(ar, self.tspan, labels)
return ar
|
swapaxes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, axis1, axis2):\n if self.ndim <= 1 or axis1 == axis2:\n return self\n ar = np.asarray(self).swapaxes(axis1, axis2)\n if axis1 != 0 and axis2 != 0:\n labels = self.labels[:]\n labels[axis1], labels[axis2] = labels[axis2], labels[axis1]\n return Timeseries(ar, self.tspan, labels)\n return ar\n",
"role": "user"
},
{
"content": "swapaxes",
"role": "assistant"
}
] |
def x(self, *axes):
if self.ndim <= 1:
return self
ar = np.asarray(self).transpose(*axes)
if axes[0] != 0:
newlabels = [self.labels[ax] for ax in axes]
return Timeseries(ar, self.tspan, newlabels)
else:
return ar
|
transpose
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *axes):\n if self.ndim <= 1:\n return self\n ar = np.asarray(self).transpose(*axes)\n if axes[0] != 0:\n newlabels = [self.labels[ax] for ax in axes]\n return Timeseries(ar, self.tspan, newlabels)\n else:\n return ar\n",
"role": "user"
},
{
"content": "transpose",
"role": "assistant"
}
] |
def x(self, newshape, order='C'):
oldshape = self.shape
ar = np.asarray(self).reshape(newshape, order=order)
if newshape is -1 and len(oldshape) is 1 or isinstance(newshape,
numbers.Integral) and newshape == oldshape[0] or isinstance(newshape,
Sequence) and (newshape[0] == oldshape[0] or newshape[0] is -1 and
np.array(oldshape[1:]).prod() == np.array(newshape[1:]).prod()):
newlabels = [None] * ar.ndim
i = 1
while i < ar.ndim and i < self.ndim and ar.shape[i] == oldshape[i]:
newlabels[i] = self.labels[i]
i += 1
return Timeseries(ar, self.tspan, newlabels)
else:
return ar
|
reshape
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, newshape, order='C'):\n oldshape = self.shape\n ar = np.asarray(self).reshape(newshape, order=order)\n if newshape is -1 and len(oldshape) is 1 or isinstance(newshape,\n numbers.Integral) and newshape == oldshape[0] or isinstance(newshape,\n Sequence) and (newshape[0] == oldshape[0] or newshape[0] is -1 and \n np.array(oldshape[1:]).prod() == np.array(newshape[1:]).prod()):\n newlabels = [None] * ar.ndim\n i = 1\n while i < ar.ndim and i < self.ndim and ar.shape[i] == oldshape[i]:\n newlabels[i] = self.labels[i]\n i += 1\n return Timeseries(ar, self.tspan, newlabels)\n else:\n return ar\n",
"role": "user"
},
{
"content": "reshape",
"role": "assistant"
}
] |
def x(self, ts):
if ts.shape[1:] != self.shape[1:]:
raise ValueError('Timeseries to merge must have compatible shapes')
indices = np.vstack((self.tspan, ts.tspan)).argsort()
return np.vstack((self, ts))[indices]
|
merge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ts):\n if ts.shape[1:] != self.shape[1:]:\n raise ValueError('Timeseries to merge must have compatible shapes')\n indices = np.vstack((self.tspan, ts.tspan)).argsort()\n return np.vstack((self, ts))[indices]\n",
"role": "user"
},
{
"content": "merge",
"role": "assistant"
}
] |
def x(self, axis):
if axis == -1:
axis = self.ndim
array = np.expand_dims(self, axis)
if axis == 0:
return array
else:
new_labels = self.labels.insert(axis, None)
return Timeseries(array, self.tspan, new_labels)
|
expand_dims
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, axis):\n if axis == -1:\n axis = self.ndim\n array = np.expand_dims(self, axis)\n if axis == 0:\n return array\n else:\n new_labels = self.labels.insert(axis, None)\n return Timeseries(array, self.tspan, new_labels)\n",
"role": "user"
},
{
"content": "expand_dims",
"role": "assistant"
}
] |
def x(self, tup, axis=0):
if not isinstance(tup, Sequence):
tup = tup,
if tup is (None,) or len(tup) is 0:
return self
tup = (self,) + tuple(tup)
new_array = np.concatenate(tup, axis)
if not all(hasattr(ts, 'tspan') and hasattr(ts, 'labels') for ts in tup):
return new_array
if axis == 0:
starts = [ts.tspan[0] for ts in tup]
ends = [ts.tspan[-1] for ts in tup]
if not all(starts[i] > ends[i - 1] for i in range(1, len(starts))):
return new_array
else:
new_tspan = np.concatenate([ts.tspan for ts in tup])
else:
new_tspan = self.tspan
new_labels = [None]
for ax in range(1, new_array.ndim):
if ax == axis:
axislabels = []
for ts in tup:
if ts.labels[axis] is None:
axislabels.extend('' * ts.shape[axis])
else:
axislabels.extend(ts.labels[axis])
if all(lab == '' for lab in axislabels):
new_labels.append(None)
else:
new_labels.append(axislabels)
else:
axlabels = tup[0].labels[ax]
if not all(ts.labels[ax] == axlabels for ts in tup[1:]):
axlabels = None
new_labels.append(axlabels)
return self.__new__(self.__class__, new_array, new_tspan, new_labels)
|
concatenate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tup, axis=0):\n if not isinstance(tup, Sequence):\n tup = tup,\n if tup is (None,) or len(tup) is 0:\n return self\n tup = (self,) + tuple(tup)\n new_array = np.concatenate(tup, axis)\n if not all(hasattr(ts, 'tspan') and hasattr(ts, 'labels') for ts in tup):\n return new_array\n if axis == 0:\n starts = [ts.tspan[0] for ts in tup]\n ends = [ts.tspan[-1] for ts in tup]\n if not all(starts[i] > ends[i - 1] for i in range(1, len(starts))):\n return new_array\n else:\n new_tspan = np.concatenate([ts.tspan for ts in tup])\n else:\n new_tspan = self.tspan\n new_labels = [None]\n for ax in range(1, new_array.ndim):\n if ax == axis:\n axislabels = []\n for ts in tup:\n if ts.labels[axis] is None:\n axislabels.extend('' * ts.shape[axis])\n else:\n axislabels.extend(ts.labels[axis])\n if all(lab == '' for lab in axislabels):\n new_labels.append(None)\n else:\n new_labels.append(axislabels)\n else:\n axlabels = tup[0].labels[ax]\n if not all(ts.labels[ax] == axlabels for ts in tup[1:]):\n axlabels = None\n new_labels.append(axlabels)\n return self.__new__(self.__class__, new_array, new_tspan, new_labels)\n",
"role": "user"
},
{
"content": "concatenate",
"role": "assistant"
}
] |
def x(self, indices_or_sections, axis=0):
if not isinstance(indices_or_sections, numbers.Integral):
raise Error('splitting by array of indices is not yet implemented')
n = indices_or_sections
if self.shape[axis] % n != 0:
raise ValueError("Array split doesn't result in an equal division")
step = self.shape[axis] / n
pieces = []
start = 0
while start < self.shape[axis]:
stop = start + step
ix = [slice(None)] * self.ndim
ix[axis] = slice(start, stop)
ix = tuple(ix)
pieces.append(self[ix])
start += step
return pieces
|
split
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, indices_or_sections, axis=0):\n if not isinstance(indices_or_sections, numbers.Integral):\n raise Error('splitting by array of indices is not yet implemented')\n n = indices_or_sections\n if self.shape[axis] % n != 0:\n raise ValueError(\"Array split doesn't result in an equal division\")\n step = self.shape[axis] / n\n pieces = []\n start = 0\n while start < self.shape[axis]:\n stop = start + step\n ix = [slice(None)] * self.ndim\n ix[axis] = slice(start, stop)\n ix = tuple(ix)\n pieces.append(self[ix])\n start += step\n return pieces\n",
"role": "user"
},
{
"content": "split",
"role": "assistant"
}
] |
def x(dts, title=None, points=None, show=True):
if points is not None and len(dts.tspan) > points:
ix = np.linspace(0, len(dts.tspan) - 1, points).astype(np.int64)
dts = dts[ix, ...]
ts = distob.gather(dts)
return ts.plot(title, show)
|
plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dts, title=None, points=None, show=True):\n if points is not None and len(dts.tspan) > points:\n ix = np.linspace(0, len(dts.tspan) - 1, points).astype(np.int64)\n dts = dts[ix, ...]\n ts = distob.gather(dts)\n return ts.plot(title, show)\n",
"role": "user"
},
{
"content": "plot",
"role": "assistant"
}
] |
def x(dts, times=None, nbins=30, colormap=mpl.cm.Blues):
if times is None:
times = np.linspace(dts.tspan[0], dts.tspan[-1], num=4)
elif isinstance(times, numbers.Number):
times = np.array([times], dtype=np.float64)
indices = distob.gather(dts.tspan.searchsorted(times))
if indices[-1] == len(dts.tspan):
indices[-1] -= 1
nplots = len(indices)
fig = plt.figure()
n = np.zeros((nbins, nplots))
for i in range(nplots):
index = indices[i]
time = dts.tspan[index]
phases = distob.gather(dts.mod2pi()[index, 0, :])
ax = fig.add_subplot(1, nplots, i + 1, projection='polar')
n[:, i], bins, patches = ax.hist(phases, nbins, (-np.pi, np.pi),
density=True, histtype='bar')
ax.set_title('time = %d s' % time)
ax.set_xticklabels(['0', '$\\frac{\\pi}{4}$', '$\\frac{\\pi}{2}$',
'$\\frac{3\\pi}{4}$', '$\\pi$', '$\\frac{-3\\pi}{4}$',
'$\\frac{-\\pi}{2}$', '$\\frac{-\\pi}{4}$'])
nmin, nmax = n.min(), n.max()
norm = mpl.colors.Normalize(1.2 * nmin - 0.2 * nmax, 0.6 * nmin + 0.4 *
nmax, clip=True)
for i in range(nplots):
ax = fig.get_axes()[i]
ax.set_ylim(0, nmax)
for this_n, thispatch in zip(n[:, i], ax.patches):
color = colormap(norm(this_n))
thispatch.set_facecolor(color)
thispatch.set_edgecolor(color)
fig.show()
|
phase_histogram
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dts, times=None, nbins=30, colormap=mpl.cm.Blues):\n if times is None:\n times = np.linspace(dts.tspan[0], dts.tspan[-1], num=4)\n elif isinstance(times, numbers.Number):\n times = np.array([times], dtype=np.float64)\n indices = distob.gather(dts.tspan.searchsorted(times))\n if indices[-1] == len(dts.tspan):\n indices[-1] -= 1\n nplots = len(indices)\n fig = plt.figure()\n n = np.zeros((nbins, nplots))\n for i in range(nplots):\n index = indices[i]\n time = dts.tspan[index]\n phases = distob.gather(dts.mod2pi()[index, 0, :])\n ax = fig.add_subplot(1, nplots, i + 1, projection='polar')\n n[:, i], bins, patches = ax.hist(phases, nbins, (-np.pi, np.pi),\n density=True, histtype='bar')\n ax.set_title('time = %d s' % time)\n ax.set_xticklabels(['0', '$\\\\frac{\\\\pi}{4}$', '$\\\\frac{\\\\pi}{2}$',\n '$\\\\frac{3\\\\pi}{4}$', '$\\\\pi$', '$\\\\frac{-3\\\\pi}{4}$',\n '$\\\\frac{-\\\\pi}{2}$', '$\\\\frac{-\\\\pi}{4}$'])\n nmin, nmax = n.min(), n.max()\n norm = mpl.colors.Normalize(1.2 * nmin - 0.2 * nmax, 0.6 * nmin + 0.4 *\n nmax, clip=True)\n for i in range(nplots):\n ax = fig.get_axes()[i]\n ax.set_ylim(0, nmax)\n for this_n, thispatch in zip(n[:, i], ax.patches):\n color = colormap(norm(this_n))\n thispatch.set_facecolor(color)\n thispatch.set_edgecolor(color)\n fig.show()\n",
"role": "user"
},
{
"content": "phase_histogram",
"role": "assistant"
}
] |
def x(ts, nperseg=1500, noverlap=1200, plot=True):
ts = ts.squeeze()
if ts.ndim is 1:
ts = ts.reshape((-1, 1))
fs = (len(ts) - 1.0) / (ts.tspan[-1] - ts.tspan[0])
window = signal.hamming(nperseg, sym=False)
nfft = max(256, 2 ** np.int(np.log2(nperseg) + 1))
freqs, pxx = signal.welch(ts, fs, window, nperseg, noverlap, nfft,
detrend='linear', axis=0)
index = np.nonzero(freqs >= 2.0 * fs / nperseg)[0][0]
if index > 0:
freqs = freqs[index:]
pxx = pxx[index:]
freqs = freqs[:-1]
pxx = pxx[:-1]
if plot is True:
_plot_psd(ts, freqs, pxx)
return freqs, pxx
|
psd
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, nperseg=1500, noverlap=1200, plot=True):\n ts = ts.squeeze()\n if ts.ndim is 1:\n ts = ts.reshape((-1, 1))\n fs = (len(ts) - 1.0) / (ts.tspan[-1] - ts.tspan[0])\n window = signal.hamming(nperseg, sym=False)\n nfft = max(256, 2 ** np.int(np.log2(nperseg) + 1))\n freqs, pxx = signal.welch(ts, fs, window, nperseg, noverlap, nfft,\n detrend='linear', axis=0)\n index = np.nonzero(freqs >= 2.0 * fs / nperseg)[0][0]\n if index > 0:\n freqs = freqs[index:]\n pxx = pxx[index:]\n freqs = freqs[:-1]\n pxx = pxx[:-1]\n if plot is True:\n _plot_psd(ts, freqs, pxx)\n return freqs, pxx\n",
"role": "user"
},
{
"content": "psd",
"role": "assistant"
}
] |
def x(ts, cutoff_hz, order=3):
orig_ndim = ts.ndim
if ts.ndim is 1:
ts = ts[:, np.newaxis]
channels = ts.shape[1]
fs = (len(ts) - 1.0) / (ts.tspan[-1] - ts.tspan[0])
nyq = 0.5 * fs
cutoff = cutoff_hz / nyq
b, a = signal.butter(order, cutoff, btype='low')
if not np.all(np.abs(np.roots(a)) < 1.0):
raise ValueError('Filter will not be stable with these values.')
dtype = ts.dtype
output = np.zeros((len(ts), channels), dtype)
for i in range(channels):
output[:, i] = signal.filtfilt(b, a, ts[:, i])
if orig_ndim is 1:
output = output[:, 0]
return Timeseries(output, ts.tspan, labels=ts.labels)
|
lowpass
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, cutoff_hz, order=3):\n orig_ndim = ts.ndim\n if ts.ndim is 1:\n ts = ts[:, np.newaxis]\n channels = ts.shape[1]\n fs = (len(ts) - 1.0) / (ts.tspan[-1] - ts.tspan[0])\n nyq = 0.5 * fs\n cutoff = cutoff_hz / nyq\n b, a = signal.butter(order, cutoff, btype='low')\n if not np.all(np.abs(np.roots(a)) < 1.0):\n raise ValueError('Filter will not be stable with these values.')\n dtype = ts.dtype\n output = np.zeros((len(ts), channels), dtype)\n for i in range(channels):\n output[:, i] = signal.filtfilt(b, a, ts[:, i])\n if orig_ndim is 1:\n output = output[:, 0]\n return Timeseries(output, ts.tspan, labels=ts.labels)\n",
"role": "user"
},
{
"content": "lowpass",
"role": "assistant"
}
] |
def x(ts, low_hz, high_hz, order=3):
orig_ndim = ts.ndim
if ts.ndim is 1:
ts = ts[:, np.newaxis]
channels = ts.shape[1]
fs = (len(ts) - 1.0) / (ts.tspan[-1] - ts.tspan[0])
nyq = 0.5 * fs
low = low_hz / nyq
high = high_hz / nyq
b, a = signal.butter(order, [low, high], btype='band')
if not np.all(np.abs(np.roots(a)) < 1.0):
raise ValueError('Filter will not be stable with these values.')
dtype = ts.dtype
output = np.zeros((len(ts), channels), dtype)
for i in range(channels):
output[:, i] = signal.filtfilt(b, a, ts[:, i])
if orig_ndim is 1:
output = output[:, 0]
return Timeseries(output, ts.tspan, labels=ts.labels)
|
bandpass
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, low_hz, high_hz, order=3):\n orig_ndim = ts.ndim\n if ts.ndim is 1:\n ts = ts[:, np.newaxis]\n channels = ts.shape[1]\n fs = (len(ts) - 1.0) / (ts.tspan[-1] - ts.tspan[0])\n nyq = 0.5 * fs\n low = low_hz / nyq\n high = high_hz / nyq\n b, a = signal.butter(order, [low, high], btype='band')\n if not np.all(np.abs(np.roots(a)) < 1.0):\n raise ValueError('Filter will not be stable with these values.')\n dtype = ts.dtype\n output = np.zeros((len(ts), channels), dtype)\n for i in range(channels):\n output[:, i] = signal.filtfilt(b, a, ts[:, i])\n if orig_ndim is 1:\n output = output[:, 0]\n return Timeseries(output, ts.tspan, labels=ts.labels)\n",
"role": "user"
},
{
"content": "bandpass",
"role": "assistant"
}
] |
def x(ts, freq_hz, bandwidth_hz=1.0):
orig_ndim = ts.ndim
if ts.ndim is 1:
ts = ts[:, np.newaxis]
channels = ts.shape[1]
fs = (len(ts) - 1.0) / (ts.tspan[-1] - ts.tspan[0])
nyq = 0.5 * fs
freq = freq_hz / nyq
bandwidth = bandwidth_hz / nyq
R = 1.0 - 3.0 * (bandwidth / 2.0)
K = (1.0 - 2.0 * R * np.cos(np.pi * freq) + R ** 2) / (2.0 - 2.0 * np.
cos(np.pi * freq))
b, a = np.zeros(3), np.zeros(3)
a[0] = 1.0
a[1] = -2.0 * R * np.cos(np.pi * freq)
a[2] = R ** 2
b[0] = K
b[1] = -2 * K * np.cos(np.pi * freq)
b[2] = K
if not np.all(np.abs(np.roots(a)) < 1.0):
raise ValueError('Filter will not be stable with these values.')
dtype = ts.dtype
output = np.zeros((len(ts), channels), dtype)
for i in range(channels):
output[:, i] = signal.filtfilt(b, a, ts[:, i])
if orig_ndim is 1:
output = output[:, 0]
return Timeseries(output, ts.tspan, labels=ts.labels)
|
notch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, freq_hz, bandwidth_hz=1.0):\n orig_ndim = ts.ndim\n if ts.ndim is 1:\n ts = ts[:, np.newaxis]\n channels = ts.shape[1]\n fs = (len(ts) - 1.0) / (ts.tspan[-1] - ts.tspan[0])\n nyq = 0.5 * fs\n freq = freq_hz / nyq\n bandwidth = bandwidth_hz / nyq\n R = 1.0 - 3.0 * (bandwidth / 2.0)\n K = (1.0 - 2.0 * R * np.cos(np.pi * freq) + R ** 2) / (2.0 - 2.0 * np.\n cos(np.pi * freq))\n b, a = np.zeros(3), np.zeros(3)\n a[0] = 1.0\n a[1] = -2.0 * R * np.cos(np.pi * freq)\n a[2] = R ** 2\n b[0] = K\n b[1] = -2 * K * np.cos(np.pi * freq)\n b[2] = K\n if not np.all(np.abs(np.roots(a)) < 1.0):\n raise ValueError('Filter will not be stable with these values.')\n dtype = ts.dtype\n output = np.zeros((len(ts), channels), dtype)\n for i in range(channels):\n output[:, i] = signal.filtfilt(b, a, ts[:, i])\n if orig_ndim is 1:\n output = output[:, 0]\n return Timeseries(output, ts.tspan, labels=ts.labels)\n",
"role": "user"
},
{
"content": "notch",
"role": "assistant"
}
] |
def x(ts):
output = signal.hilbert(signal.detrend(ts, axis=0), axis=0)
return Timeseries(output, ts.tspan, labels=ts.labels)
|
hilbert
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts):\n output = signal.hilbert(signal.detrend(ts, axis=0), axis=0)\n return Timeseries(output, ts.tspan, labels=ts.labels)\n",
"role": "user"
},
{
"content": "hilbert",
"role": "assistant"
}
] |
def x(ts):
output = np.abs(signal.hilbert(signal.detrend(ts, axis=0), axis=0))
return Timeseries(output, ts.tspan, labels=ts.labels)
|
hilbert_amplitude
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts):\n output = np.abs(signal.hilbert(signal.detrend(ts, axis=0), axis=0))\n return Timeseries(output, ts.tspan, labels=ts.labels)\n",
"role": "user"
},
{
"content": "hilbert_amplitude",
"role": "assistant"
}
] |
def x(ts):
output = np.angle(signal.hilbert(signal.detrend(ts, axis=0), axis=0))
return Timeseries(output, ts.tspan, labels=ts.labels)
|
hilbert_phase
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts):\n output = np.angle(signal.hilbert(signal.detrend(ts, axis=0), axis=0))\n return Timeseries(output, ts.tspan, labels=ts.labels)\n",
"role": "user"
},
{
"content": "hilbert_phase",
"role": "assistant"
}
] |
def x(ts, freqs=np.logspace(0, 2), wavelet=cwtmorlet, plot=True):
orig_ndim = ts.ndim
if ts.ndim is 1:
ts = ts[:, np.newaxis]
channels = ts.shape[1]
fs = (len(ts) - 1.0) / (1.0 * ts.tspan[-1] - ts.tspan[0])
x = signal.detrend(ts, axis=0)
dtype = wavelet(fs / freqs[0], fs / freqs[0]).dtype
coefs = np.zeros((len(ts), len(freqs), channels), dtype)
for i in range(channels):
coefs[:, :, i] = roughcwt(x[:, i], cwtmorlet, fs / freqs).T
if plot:
_plot_cwt(ts, coefs, freqs)
if orig_ndim is 1:
coefs = coefs[:, :, 0]
return coefs
|
cwt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, freqs=np.logspace(0, 2), wavelet=cwtmorlet, plot=True):\n orig_ndim = ts.ndim\n if ts.ndim is 1:\n ts = ts[:, np.newaxis]\n channels = ts.shape[1]\n fs = (len(ts) - 1.0) / (1.0 * ts.tspan[-1] - ts.tspan[0])\n x = signal.detrend(ts, axis=0)\n dtype = wavelet(fs / freqs[0], fs / freqs[0]).dtype\n coefs = np.zeros((len(ts), len(freqs), channels), dtype)\n for i in range(channels):\n coefs[:, :, i] = roughcwt(x[:, i], cwtmorlet, fs / freqs).T\n if plot:\n _plot_cwt(ts, coefs, freqs)\n if orig_ndim is 1:\n coefs = coefs[:, :, 0]\n return coefs\n",
"role": "user"
},
{
"content": "cwt",
"role": "assistant"
}
] |
def x(ts, freqs=np.logspace(0, 2), wavelet=cwtmorlet, plot=True):
if ts.ndim is 1 or ts.shape[1] is 1:
return cwt(ts, freqs, wavelet, plot)
import distob
vcwt = distob.vectorize(cwt)
coefs = vcwt(ts, freqs, wavelet, plot=False)
if plot:
_plot_cwt(ts, coefs, freqs)
return coefs
|
cwt_distributed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, freqs=np.logspace(0, 2), wavelet=cwtmorlet, plot=True):\n if ts.ndim is 1 or ts.shape[1] is 1:\n return cwt(ts, freqs, wavelet, plot)\n import distob\n vcwt = distob.vectorize(cwt)\n coefs = vcwt(ts, freqs, wavelet, plot=False)\n if plot:\n _plot_cwt(ts, coefs, freqs)\n return coefs\n",
"role": "user"
},
{
"content": "cwt_distributed",
"role": "assistant"
}
] |
def x(ts, coefs, freqs, tsize=1024, fsize=512):
import matplotlib.style
import matplotlib as mpl
mpl.style.use('classic')
import matplotlib.pyplot as plt
from scipy import interpolate
channels = ts.shape[1]
fig = plt.figure()
for i in range(channels):
rect = 0.1, 0.85 * (channels - i - 1
) / channels + 0.1, 0.8, 0.85 / channels
ax = fig.add_axes(rect)
logpowers = np.log((coefs[:, :, i] * coefs[:, :, i].conj()).real)
tmin, tmax = ts.tspan[0], ts.tspan[-1]
fmin, fmax = freqs[0], freqs[-1]
tgrid, fgrid = np.mgrid[tmin:tmax:tsize * 1.0j, fmin:fmax:fsize * 1.0j]
gd = interpolate.interpn((ts.tspan, freqs), logpowers, (tgrid, fgrid)
).T
ax.imshow(gd, cmap='gnuplot2', aspect='auto', origin='lower',
extent=(tmin, tmax, fmin, fmax))
ax.set_ylabel('freq (Hz)')
fig.axes[0].set_title(u'log(power spectral density)')
fig.axes[channels - 1].set_xlabel('time (s)')
fig.show()
|
plot_cwt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, coefs, freqs, tsize=1024, fsize=512):\n import matplotlib.style\n import matplotlib as mpl\n mpl.style.use('classic')\n import matplotlib.pyplot as plt\n from scipy import interpolate\n channels = ts.shape[1]\n fig = plt.figure()\n for i in range(channels):\n rect = 0.1, 0.85 * (channels - i - 1\n ) / channels + 0.1, 0.8, 0.85 / channels\n ax = fig.add_axes(rect)\n logpowers = np.log((coefs[:, :, i] * coefs[:, :, i].conj()).real)\n tmin, tmax = ts.tspan[0], ts.tspan[-1]\n fmin, fmax = freqs[0], freqs[-1]\n tgrid, fgrid = np.mgrid[tmin:tmax:tsize * 1.0j, fmin:fmax:fsize * 1.0j]\n gd = interpolate.interpn((ts.tspan, freqs), logpowers, (tgrid, fgrid)\n ).T\n ax.imshow(gd, cmap='gnuplot2', aspect='auto', origin='lower',\n extent=(tmin, tmax, fmin, fmax))\n ax.set_ylabel('freq (Hz)')\n fig.axes[0].set_title(u'log(power spectral density)')\n fig.axes[channels - 1].set_xlabel('time (s)')\n fig.show()\n",
"role": "user"
},
{
"content": "plot_cwt",
"role": "assistant"
}
] |
def x(dts, c=None, d=0.0):
if c is None:
c = dts.mean()
vmrt = distob.vectorize(analyses1.first_return_times)
all_intervals = vmrt(dts, c, d)
if hasattr(type(all_intervals), '__array_interface__'):
return np.ravel(all_intervals)
else:
return np.hstack([distob.gather(ilist) for ilist in all_intervals])
|
first_return_times
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dts, c=None, d=0.0):\n if c is None:\n c = dts.mean()\n vmrt = distob.vectorize(analyses1.first_return_times)\n all_intervals = vmrt(dts, c, d)\n if hasattr(type(all_intervals), '__array_interface__'):\n return np.ravel(all_intervals)\n else:\n return np.hstack([distob.gather(ilist) for ilist in all_intervals])\n",
"role": "user"
},
{
"content": "first_return_times",
"role": "assistant"
}
] |
def x(ts, freqs=None, ncycles=6, plot=True):
if ts.ndim <= 2:
return analyses1.variability_fp(ts, freqs, ncycles, plot)
else:
return distob.vectorize(analyses1.variability_fp)(ts, freqs,
ncycles, plot)
|
variability_fp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, freqs=None, ncycles=6, plot=True):\n if ts.ndim <= 2:\n return analyses1.variability_fp(ts, freqs, ncycles, plot)\n else:\n return distob.vectorize(analyses1.variability_fp)(ts, freqs,\n ncycles, plot)\n",
"role": "user"
},
{
"content": "variability_fp",
"role": "assistant"
}
] |
def x(ts, variability=None, threshold=0.0, minlength=1.0, plot=True):
if ts.ndim <= 2:
return analyses1.epochs_distributed(ts, variability, threshold,
minlength, plot)
else:
return distob.vectorize(analyses1.epochs)(ts, variability,
threshold, minlength, plot)
|
epochs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, variability=None, threshold=0.0, minlength=1.0, plot=True):\n if ts.ndim <= 2:\n return analyses1.epochs_distributed(ts, variability, threshold,\n minlength, plot)\n else:\n return distob.vectorize(analyses1.epochs)(ts, variability,\n threshold, minlength, plot)\n",
"role": "user"
},
{
"content": "epochs",
"role": "assistant"
}
] |
def x(ts, variability=None, threshold=0.0, minlength=1.0, proportion=0.75,
plot=True):
if ts.ndim <= 2:
return analyses1.epochs_joint(ts, variability, threshold, minlength,
plot)
else:
return distob.vectorize(analyses1.epochs_joint)(ts, variability,
threshold, minlength, plot)
|
epochs_joint
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, variability=None, threshold=0.0, minlength=1.0, proportion=0.75,\n plot=True):\n if ts.ndim <= 2:\n return analyses1.epochs_joint(ts, variability, threshold, minlength,\n plot)\n else:\n return distob.vectorize(analyses1.epochs_joint)(ts, variability,\n threshold, minlength, plot)\n",
"role": "user"
},
{
"content": "epochs_joint",
"role": "assistant"
}
] |
def x(dts, phi=0.0):
vperiods = distob.vectorize(analyses1.periods)
all_periods = vperiods(dts, phi)
if hasattr(type(all_periods), '__array_interface__'):
return np.ravel(all_periods)
else:
return np.hstack([distob.gather(plist) for plist in all_periods])
|
periods
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dts, phi=0.0):\n vperiods = distob.vectorize(analyses1.periods)\n all_periods = vperiods(dts, phi)\n if hasattr(type(all_periods), '__array_interface__'):\n return np.ravel(all_periods)\n else:\n return np.hstack([distob.gather(plist) for plist in all_periods])\n",
"role": "user"
},
{
"content": "periods",
"role": "assistant"
}
] |
def x(dts, axis=2):
return np.exp(1.0j * dts).mean(axis=axis).angle()
|
circmean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dts, axis=2):\n return np.exp(1.0j * dts).mean(axis=axis).angle()\n",
"role": "user"
},
{
"content": "circmean",
"role": "assistant"
}
] |
def x(dts, axis=2):
return np.abs(np.exp(1.0j * dts).mean(axis=axis))
|
order_param
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dts, axis=2):\n return np.abs(np.exp(1.0j * dts).mean(axis=axis))\n",
"role": "user"
},
{
"content": "order_param",
"role": "assistant"
}
] |
def x(dts, axis=2):
R = np.abs(np.exp(1.0j * dts).mean(axis=axis))
return np.sqrt(-2.0 * np.log(R))
|
circstd
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dts, axis=2):\n R = np.abs(np.exp(1.0j * dts).mean(axis=axis))\n return np.sqrt(-2.0 * np.log(R))\n",
"role": "user"
},
{
"content": "circstd",
"role": "assistant"
}
] |
def x(self, v, t):
ret = np.zeros(8)
ret[0] = v[4]
ret[4] = self.He1 * self.ke1 * (self.g1 * self.S(v[1] - v[2]) + self.u_mean
) - 2 * self.ke1 * v[4] - self.ke1 * self.ke1 * v[0]
ret[1] = v[5]
ret[5] = self.He2 * self.ke2 * (self.g2 * self.S(v[0]) + self.p_mean
) - 2 * self.ke2 * v[5] - self.ke2 * self.ke2 * v[1]
ret[2] = v[6]
ret[6] = self.Hi * self.ki * self.g4 * self.S(v[3]) - 2 * self.ki * v[6
] - self.ki * self.ki * v[2]
ret[3] = v[7]
ret[7] = self.He3 * self.ke3 * self.g3 * self.S(v[1] - v[2]
) - 2 * self.ke3 * v[7] - self.ke3 * self.ke3 * v[3]
return ret
|
f
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, v, t):\n ret = np.zeros(8)\n ret[0] = v[4]\n ret[4] = self.He1 * self.ke1 * (self.g1 * self.S(v[1] - v[2]) + self.u_mean\n ) - 2 * self.ke1 * v[4] - self.ke1 * self.ke1 * v[0]\n ret[1] = v[5]\n ret[5] = self.He2 * self.ke2 * (self.g2 * self.S(v[0]) + self.p_mean\n ) - 2 * self.ke2 * v[5] - self.ke2 * self.ke2 * v[1]\n ret[2] = v[6]\n ret[6] = self.Hi * self.ki * self.g4 * self.S(v[3]) - 2 * self.ki * v[6\n ] - self.ki * self.ki * v[2]\n ret[3] = v[7]\n ret[7] = self.He3 * self.ke3 * self.g3 * self.S(v[1] - v[2]\n ) - 2 * self.ke3 * v[7] - self.ke3 * self.ke3 * v[3]\n return ret\n",
"role": "user"
},
{
"content": "f",
"role": "assistant"
}
] |
def x(self, v, t):
ret = np.zeros((8, 1))
ret[4, 0] = self.ke1 * self.He1 * self.u_sdev
ret[5, 0] = self.ke2 * self.He2 * self.p_sdev
return ret
|
G
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, v, t):\n ret = np.zeros((8, 1))\n ret[4, 0] = self.ke1 * self.He1 * self.u_sdev\n ret[5, 0] = self.ke2 * self.He2 * self.p_sdev\n return ret\n",
"role": "user"
},
{
"content": "G",
"role": "assistant"
}
] |
def x(self, source_y, target_y, weight):
v_pyramidal = source_y[1] - source_y[2]
return np.array([0, 0, 0, 0, 0, 1.0, 0, 0]) * (weight * self.g1 * self.
He2 * self.ke2 * self.S(v_pyramidal))
|
coupling
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, source_y, target_y, weight):\n v_pyramidal = source_y[1] - source_y[2]\n return np.array([0, 0, 0, 0, 0, 1.0, 0, 0]) * (weight * self.g1 * self.\n He2 * self.ke2 * self.S(v_pyramidal))\n",
"role": "user"
},
{
"content": "coupling",
"role": "assistant"
}
] |
def x(X):
X = numpy.array(X)
N = X.size
T = numpy.arange(1, N + 1)
Y = numpy.cumsum(X)
Ave_T = Y / T
S_T = numpy.zeros(N)
R_T = numpy.zeros(N)
for i in range(N):
S_T[i] = numpy.std(X[:i + 1])
X_T = Y - T * Ave_T[i]
R_T[i] = numpy.ptp(X_T[:i + 1])
R_S = R_T / S_T
R_S = numpy.log(R_S)[1:]
n = numpy.log(T)[1:]
A = numpy.column_stack((n, numpy.ones(n.size)))
[m, c] = numpy.linalg.lstsq(A, R_S)[0]
H = m
return H
|
hurst
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X):\n X = numpy.array(X)\n N = X.size\n T = numpy.arange(1, N + 1)\n Y = numpy.cumsum(X)\n Ave_T = Y / T\n S_T = numpy.zeros(N)\n R_T = numpy.zeros(N)\n for i in range(N):\n S_T[i] = numpy.std(X[:i + 1])\n X_T = Y - T * Ave_T[i]\n R_T[i] = numpy.ptp(X_T[:i + 1])\n R_S = R_T / S_T\n R_S = numpy.log(R_S)[1:]\n n = numpy.log(T)[1:]\n A = numpy.column_stack((n, numpy.ones(n.size)))\n [m, c] = numpy.linalg.lstsq(A, R_S)[0]\n H = m\n return H\n",
"role": "user"
},
{
"content": "hurst",
"role": "assistant"
}
] |
def x(X, Tau, D):
shape = X.size - Tau * (D - 1), D
strides = X.itemsize, Tau * X.itemsize
return numpy.lib.stride_tricks.as_strided(X, shape=shape, strides=strides)
|
embed_seq
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, Tau, D):\n shape = X.size - Tau * (D - 1), D\n strides = X.itemsize, Tau * X.itemsize\n return numpy.lib.stride_tricks.as_strided(X, shape=shape, strides=strides)\n",
"role": "user"
},
{
"content": "embed_seq",
"role": "assistant"
}
] |
def x(X, Band, Fs):
C = numpy.fft.fft(X)
C = abs(C)
Power = numpy.zeros(len(Band) - 1)
for Freq_Index in range(0, len(Band) - 1):
Freq = float(Band[Freq_Index])
Next_Freq = float(Band[Freq_Index + 1])
Power[Freq_Index] = sum(C[numpy.floor(Freq / Fs * len(X)):numpy.
floor(Next_Freq / Fs * len(X))])
Power_Ratio = Power / sum(Power)
return Power, Power_Ratio
|
bin_power
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, Band, Fs):\n C = numpy.fft.fft(X)\n C = abs(C)\n Power = numpy.zeros(len(Band) - 1)\n for Freq_Index in range(0, len(Band) - 1):\n Freq = float(Band[Freq_Index])\n Next_Freq = float(Band[Freq_Index + 1])\n Power[Freq_Index] = sum(C[numpy.floor(Freq / Fs * len(X)):numpy.\n floor(Next_Freq / Fs * len(X))])\n Power_Ratio = Power / sum(Power)\n return Power, Power_Ratio\n",
"role": "user"
},
{
"content": "bin_power",
"role": "assistant"
}
] |
def x(X, D=None):
if D is None:
D = numpy.diff(X)
D = D.tolist()
N_delta = 0
for i in range(1, len(D)):
if D[i] * D[i - 1] < 0:
N_delta += 1
n = len(X)
return numpy.log10(n) / (numpy.log10(n) + numpy.log10(n / n + 0.4 *
N_delta))
|
pfd
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, D=None):\n if D is None:\n D = numpy.diff(X)\n D = D.tolist()\n N_delta = 0\n for i in range(1, len(D)):\n if D[i] * D[i - 1] < 0:\n N_delta += 1\n n = len(X)\n return numpy.log10(n) / (numpy.log10(n) + numpy.log10(n / n + 0.4 *\n N_delta))\n",
"role": "user"
},
{
"content": "pfd",
"role": "assistant"
}
] |
def x(X, Kmax):
L = []
x = []
N = len(X)
for k in range(1, Kmax):
Lk = []
for m in range(0, k):
Lmk = 0
for i in range(1, int(numpy.floor((N - m) / k))):
Lmk += abs(X[m + i * k] - X[m + i * k - k])
Lmk = Lmk * (N - 1) / numpy.floor((N - m) / float(k)) / k
Lk.append(Lmk)
L.append(numpy.log(numpy.mean(Lk)))
x.append([numpy.log(float(1) / k), 1])
p, r1, r2, s = numpy.linalg.lstsq(x, L)
return p[0]
|
hfd
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, Kmax):\n L = []\n x = []\n N = len(X)\n for k in range(1, Kmax):\n Lk = []\n for m in range(0, k):\n Lmk = 0\n for i in range(1, int(numpy.floor((N - m) / k))):\n Lmk += abs(X[m + i * k] - X[m + i * k - k])\n Lmk = Lmk * (N - 1) / numpy.floor((N - m) / float(k)) / k\n Lk.append(Lmk)\n L.append(numpy.log(numpy.mean(Lk)))\n x.append([numpy.log(float(1) / k), 1])\n p, r1, r2, s = numpy.linalg.lstsq(x, L)\n return p[0]\n",
"role": "user"
},
{
"content": "hfd",
"role": "assistant"
}
] |
def x(X, D=None):
if D is None:
D = numpy.diff(X)
D = D.tolist()
D.insert(0, X[0])
D = numpy.array(D)
n = len(X)
M2 = float(sum(D ** 2)) / n
TP = sum(numpy.array(X) ** 2)
M4 = 0
for i in range(1, len(D)):
M4 += (D[i] - D[i - 1]) ** 2
M4 = M4 / n
return numpy.sqrt(M2 / TP), numpy.sqrt(float(M4) * TP / M2 / M2)
|
hjorth
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, D=None):\n if D is None:\n D = numpy.diff(X)\n D = D.tolist()\n D.insert(0, X[0])\n D = numpy.array(D)\n n = len(X)\n M2 = float(sum(D ** 2)) / n\n TP = sum(numpy.array(X) ** 2)\n M4 = 0\n for i in range(1, len(D)):\n M4 += (D[i] - D[i - 1]) ** 2\n M4 = M4 / n\n return numpy.sqrt(M2 / TP), numpy.sqrt(float(M4) * TP / M2 / M2)\n",
"role": "user"
},
{
"content": "hjorth",
"role": "assistant"
}
] |
def x(X, Band, Fs, Power_Ratio=None):
if Power_Ratio is None:
Power, Power_Ratio = bin_power(X, Band, Fs)
Spectral_Entropy = 0
for i in range(0, len(Power_Ratio) - 1):
Spectral_Entropy += Power_Ratio[i] * numpy.log(Power_Ratio[i])
Spectral_Entropy /= numpy.log(len(Power_Ratio))
return -1 * Spectral_Entropy
|
spectral_entropy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, Band, Fs, Power_Ratio=None):\n if Power_Ratio is None:\n Power, Power_Ratio = bin_power(X, Band, Fs)\n Spectral_Entropy = 0\n for i in range(0, len(Power_Ratio) - 1):\n Spectral_Entropy += Power_Ratio[i] * numpy.log(Power_Ratio[i])\n Spectral_Entropy /= numpy.log(len(Power_Ratio))\n return -1 * Spectral_Entropy\n",
"role": "user"
},
{
"content": "spectral_entropy",
"role": "assistant"
}
] |
def x(X, Tau, DE, W=None):
if W is None:
Y = embed_seq(X, Tau, DE)
W = numpy.linalg.svd(Y, compute_uv=0)
W /= sum(W)
return -1 * sum(W * numpy.log(W))
|
svd_entropy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, Tau, DE, W=None):\n if W is None:\n Y = embed_seq(X, Tau, DE)\n W = numpy.linalg.svd(Y, compute_uv=0)\n W /= sum(W)\n return -1 * sum(W * numpy.log(W))\n",
"role": "user"
},
{
"content": "svd_entropy",
"role": "assistant"
}
] |
def x(X, M, R):
N = len(X)
Em = embed_seq(X, 1, M)
A = numpy.tile(Em, (len(Em), 1, 1))
B = numpy.transpose(A, [1, 0, 2])
D = numpy.abs(A - B)
InRange = numpy.max(D, axis=2) <= R
Cm = InRange.mean(axis=0)
Dp = numpy.abs(numpy.tile(X[M:], (N - M, 1)) - numpy.tile(X[M:], (N - M,
1)).T)
Cmp = numpy.logical_and(Dp <= R, InRange[:-1, :-1]).mean(axis=0)
Phi_m, Phi_mp = numpy.sum(numpy.log(Cm)), numpy.sum(numpy.log(Cmp))
Ap_En = (Phi_m - Phi_mp) / (N - M)
return Ap_En
|
ap_entropy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, M, R):\n N = len(X)\n Em = embed_seq(X, 1, M)\n A = numpy.tile(Em, (len(Em), 1, 1))\n B = numpy.transpose(A, [1, 0, 2])\n D = numpy.abs(A - B)\n InRange = numpy.max(D, axis=2) <= R\n Cm = InRange.mean(axis=0)\n Dp = numpy.abs(numpy.tile(X[M:], (N - M, 1)) - numpy.tile(X[M:], (N - M,\n 1)).T)\n Cmp = numpy.logical_and(Dp <= R, InRange[:-1, :-1]).mean(axis=0)\n Phi_m, Phi_mp = numpy.sum(numpy.log(Cm)), numpy.sum(numpy.log(Cmp))\n Ap_En = (Phi_m - Phi_mp) / (N - M)\n return Ap_En\n",
"role": "user"
},
{
"content": "ap_entropy",
"role": "assistant"
}
] |
def x(X, M, R):
N = len(X)
Em = embed_seq(X, 1, M)
A = numpy.tile(Em, (len(Em), 1, 1))
B = numpy.transpose(A, [1, 0, 2])
D = numpy.abs(A - B)
InRange = numpy.max(D, axis=2) <= R
numpy.fill_diagonal(InRange, 0)
Cm = InRange.sum(axis=0)
Dp = numpy.abs(numpy.tile(X[M:], (N - M, 1)) - numpy.tile(X[M:], (N - M,
1)).T)
Cmp = numpy.logical_and(Dp <= R, InRange[:-1, :-1]).sum(axis=0)
Samp_En = numpy.log(numpy.sum(Cm + 1e-100) / numpy.sum(Cmp + 1e-100))
return Samp_En
|
samp_entropy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, M, R):\n N = len(X)\n Em = embed_seq(X, 1, M)\n A = numpy.tile(Em, (len(Em), 1, 1))\n B = numpy.transpose(A, [1, 0, 2])\n D = numpy.abs(A - B)\n InRange = numpy.max(D, axis=2) <= R\n numpy.fill_diagonal(InRange, 0)\n Cm = InRange.sum(axis=0)\n Dp = numpy.abs(numpy.tile(X[M:], (N - M, 1)) - numpy.tile(X[M:], (N - M,\n 1)).T)\n Cmp = numpy.logical_and(Dp <= R, InRange[:-1, :-1]).sum(axis=0)\n Samp_En = numpy.log(numpy.sum(Cm + 1e-100) / numpy.sum(Cmp + 1e-100))\n return Samp_En\n",
"role": "user"
},
{
"content": "samp_entropy",
"role": "assistant"
}
] |
def x(X, Ave=None, L=None):
X = numpy.array(X)
if Ave is None:
Ave = numpy.mean(X)
Y = numpy.cumsum(X)
Y -= Ave
if L is None:
L = numpy.floor(len(X) * 1 / 2 ** numpy.array(list(range(4, int(
numpy.log2(len(X))) - 4))))
F = numpy.zeros(len(L))
for i in range(0, len(L)):
n = int(L[i])
if n == 0:
print('time series is too short while the box length is too big')
print('abort')
exit()
for j in range(0, len(X), n):
if j + n < len(X):
c = list(range(j, j + n))
c = numpy.vstack([c, numpy.ones(n)]).T
y = Y[j:j + n]
F[i] += numpy.linalg.lstsq(c, y)[1]
F[i] /= len(X) / n * n
F = numpy.sqrt(F)
Alpha = numpy.linalg.lstsq(numpy.vstack([numpy.log(L), numpy.ones(len(L
))]).T, numpy.log(F))[0][0]
return Alpha
|
dfa
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, Ave=None, L=None):\n X = numpy.array(X)\n if Ave is None:\n Ave = numpy.mean(X)\n Y = numpy.cumsum(X)\n Y -= Ave\n if L is None:\n L = numpy.floor(len(X) * 1 / 2 ** numpy.array(list(range(4, int(\n numpy.log2(len(X))) - 4))))\n F = numpy.zeros(len(L))\n for i in range(0, len(L)):\n n = int(L[i])\n if n == 0:\n print('time series is too short while the box length is too big')\n print('abort')\n exit()\n for j in range(0, len(X), n):\n if j + n < len(X):\n c = list(range(j, j + n))\n c = numpy.vstack([c, numpy.ones(n)]).T\n y = Y[j:j + n]\n F[i] += numpy.linalg.lstsq(c, y)[1]\n F[i] /= len(X) / n * n\n F = numpy.sqrt(F)\n Alpha = numpy.linalg.lstsq(numpy.vstack([numpy.log(L), numpy.ones(len(L\n ))]).T, numpy.log(F))[0][0]\n return Alpha\n",
"role": "user"
},
{
"content": "dfa",
"role": "assistant"
}
] |
def x(x, n, tau):
PeSeq = []
Em = embed_seq(x, tau, n)
for i in range(0, len(Em)):
r = []
z = []
for j in range(0, len(Em[i])):
z.append(Em[i][j])
for j in range(0, len(Em[i])):
z.sort()
r.append(z.index(Em[i][j]))
z[z.index(Em[i][j])] = -1
PeSeq.append(r)
RankMat = []
while len(PeSeq) > 0:
RankMat.append(PeSeq.count(PeSeq[0]))
x = PeSeq[0]
for j in range(0, PeSeq.count(PeSeq[0])):
PeSeq.pop(PeSeq.index(x))
RankMat = numpy.array(RankMat)
RankMat = numpy.true_divide(RankMat, RankMat.sum())
EntropyMat = numpy.multiply(numpy.log2(RankMat), RankMat)
PE = -1 * EntropyMat.sum()
return PE
|
permutation_entropy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, n, tau):\n PeSeq = []\n Em = embed_seq(x, tau, n)\n for i in range(0, len(Em)):\n r = []\n z = []\n for j in range(0, len(Em[i])):\n z.append(Em[i][j])\n for j in range(0, len(Em[i])):\n z.sort()\n r.append(z.index(Em[i][j]))\n z[z.index(Em[i][j])] = -1\n PeSeq.append(r)\n RankMat = []\n while len(PeSeq) > 0:\n RankMat.append(PeSeq.count(PeSeq[0]))\n x = PeSeq[0]\n for j in range(0, PeSeq.count(PeSeq[0])):\n PeSeq.pop(PeSeq.index(x))\n RankMat = numpy.array(RankMat)\n RankMat = numpy.true_divide(RankMat, RankMat.sum())\n EntropyMat = numpy.multiply(numpy.log2(RankMat), RankMat)\n PE = -1 * EntropyMat.sum()\n return PE\n",
"role": "user"
},
{
"content": "permutation_entropy",
"role": "assistant"
}
] |
def x(x, y, n):
Wordlist = []
Space = [[0, 0], [0, 1], [1, 0], [1, 1]]
Sample = [0, 1]
if n == 1:
Wordlist = Sample
if n == 2:
Wordlist = Space
elif n > 1:
Wordlist = Space
Buff = []
for k in range(0, n - 2):
Buff = []
for i in range(0, len(Wordlist)):
Buff.append(tuple(Wordlist[i]))
Buff = tuple(Buff)
Wordlist = []
for i in range(0, len(Buff)):
for j in range(0, len(Sample)):
Wordlist.append(list(Buff[i]))
Wordlist[len(Wordlist) - 1].append(Sample[j])
Wordlist.sort()
Input = [[], []]
Input[0] = x
Input[1] = y
SymbolicSeq = [[], []]
for i in range(0, 2):
Encoder = numpy.diff(Input[i])
for j in range(0, len(Input[i]) - 1):
if Encoder[j] > 0:
SymbolicSeq[i].append(1)
else:
SymbolicSeq[i].append(0)
Wm = []
Wm.append(embed_seq(SymbolicSeq[0], 1, n).tolist())
Wm.append(embed_seq(SymbolicSeq[1], 1, n).tolist())
Count = [[], []]
for i in range(0, 2):
for k in range(0, len(Wordlist)):
Count[i].append(Wm[i].count(Wordlist[k]))
Prob = [[], []]
for i in range(0, 2):
Sigma = 0
for j in range(0, len(Wordlist)):
Sigma += Count[i][j]
for k in range(0, len(Wordlist)):
Prob[i].append(numpy.true_divide(Count[i][k], Sigma))
Entropy = [[], []]
for i in range(0, 2):
for k in range(0, len(Wordlist)):
if Prob[i][k] == 0:
Entropy[i].append(0)
else:
Entropy[i].append(Prob[i][k] * numpy.log2(Prob[i][k]))
Rank = [[], []]
Buff = [[], []]
Buff[0] = tuple(Count[0])
Buff[1] = tuple(Count[1])
for i in range(0, 2):
Count[i].sort()
Count[i].reverse()
for k in range(0, len(Wordlist)):
Rank[i].append(Count[i].index(Buff[i][k]))
Count[i][Count[i].index(Buff[i][k])] = -1
IBS = 0
Z = 0
n = 0
for k in range(0, len(Wordlist)):
if (Buff[0][k] != 0) & (Buff[1][k] != 0):
F = -Entropy[0][k] - Entropy[1][k]
IBS += numpy.multiply(numpy.absolute(Rank[0][k] - Rank[1][k]), F)
Z += F
else:
n += 1
IBS = numpy.true_divide(IBS, Z)
IBS = numpy.true_divide(IBS, len(Wordlist) - n)
return IBS
|
information_based_similarity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, n):\n Wordlist = []\n Space = [[0, 0], [0, 1], [1, 0], [1, 1]]\n Sample = [0, 1]\n if n == 1:\n Wordlist = Sample\n if n == 2:\n Wordlist = Space\n elif n > 1:\n Wordlist = Space\n Buff = []\n for k in range(0, n - 2):\n Buff = []\n for i in range(0, len(Wordlist)):\n Buff.append(tuple(Wordlist[i]))\n Buff = tuple(Buff)\n Wordlist = []\n for i in range(0, len(Buff)):\n for j in range(0, len(Sample)):\n Wordlist.append(list(Buff[i]))\n Wordlist[len(Wordlist) - 1].append(Sample[j])\n Wordlist.sort()\n Input = [[], []]\n Input[0] = x\n Input[1] = y\n SymbolicSeq = [[], []]\n for i in range(0, 2):\n Encoder = numpy.diff(Input[i])\n for j in range(0, len(Input[i]) - 1):\n if Encoder[j] > 0:\n SymbolicSeq[i].append(1)\n else:\n SymbolicSeq[i].append(0)\n Wm = []\n Wm.append(embed_seq(SymbolicSeq[0], 1, n).tolist())\n Wm.append(embed_seq(SymbolicSeq[1], 1, n).tolist())\n Count = [[], []]\n for i in range(0, 2):\n for k in range(0, len(Wordlist)):\n Count[i].append(Wm[i].count(Wordlist[k]))\n Prob = [[], []]\n for i in range(0, 2):\n Sigma = 0\n for j in range(0, len(Wordlist)):\n Sigma += Count[i][j]\n for k in range(0, len(Wordlist)):\n Prob[i].append(numpy.true_divide(Count[i][k], Sigma))\n Entropy = [[], []]\n for i in range(0, 2):\n for k in range(0, len(Wordlist)):\n if Prob[i][k] == 0:\n Entropy[i].append(0)\n else:\n Entropy[i].append(Prob[i][k] * numpy.log2(Prob[i][k]))\n Rank = [[], []]\n Buff = [[], []]\n Buff[0] = tuple(Count[0])\n Buff[1] = tuple(Count[1])\n for i in range(0, 2):\n Count[i].sort()\n Count[i].reverse()\n for k in range(0, len(Wordlist)):\n Rank[i].append(Count[i].index(Buff[i][k]))\n Count[i][Count[i].index(Buff[i][k])] = -1\n IBS = 0\n Z = 0\n n = 0\n for k in range(0, len(Wordlist)):\n if (Buff[0][k] != 0) & (Buff[1][k] != 0):\n F = -Entropy[0][k] - Entropy[1][k]\n IBS += numpy.multiply(numpy.absolute(Rank[0][k] - Rank[1][k]), F)\n Z += F\n else:\n n += 1\n IBS = numpy.true_divide(IBS, Z)\n IBS = numpy.true_divide(IBS, len(Wordlist) - n)\n return IBS\n",
"role": "user"
},
{
"content": "information_based_similarity",
"role": "assistant"
}
] |
def x(x, tau, n, T, fs):
Em = embed_seq(x, tau, n)
M = len(Em)
A = numpy.tile(Em, (len(Em), 1, 1))
B = numpy.transpose(A, [1, 0, 2])
square_dists = (A - B) ** 2
D = numpy.sqrt(square_dists[:, :, :].sum(axis=2))
band = numpy.tri(D.shape[0], k=T) - numpy.tri(D.shape[0], k=-T - 1)
band[band == 1] = numpy.inf
neighbors = (D + band).argmin(axis=0)
inc = numpy.tile(numpy.arange(M), (M, 1))
row_inds = numpy.tile(numpy.arange(M), (M, 1)).T + inc
col_inds = numpy.tile(neighbors, (M, 1)) + inc.T
in_bounds = numpy.logical_and(row_inds <= M - 1, col_inds <= M - 1)
row_inds[-in_bounds] = 0
col_inds[-in_bounds] = 0
neighbor_dists = numpy.ma.MaskedArray(D[row_inds, col_inds], -in_bounds)
J = (-neighbor_dists.mask).sum(axis=1)
neighbor_dists[neighbor_dists == 0] = 1
d_ij = numpy.sum(numpy.log(neighbor_dists.data), axis=1)
mean_d = d_ij[J > 0] / J[J > 0]
x = numpy.arange(len(mean_d))
X = numpy.vstack((x, numpy.ones(len(mean_d)))).T
[m, c] = numpy.linalg.lstsq(X, mean_d)[0]
Lexp = fs * m
return Lexp
|
LLE
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, tau, n, T, fs):\n Em = embed_seq(x, tau, n)\n M = len(Em)\n A = numpy.tile(Em, (len(Em), 1, 1))\n B = numpy.transpose(A, [1, 0, 2])\n square_dists = (A - B) ** 2\n D = numpy.sqrt(square_dists[:, :, :].sum(axis=2))\n band = numpy.tri(D.shape[0], k=T) - numpy.tri(D.shape[0], k=-T - 1)\n band[band == 1] = numpy.inf\n neighbors = (D + band).argmin(axis=0)\n inc = numpy.tile(numpy.arange(M), (M, 1))\n row_inds = numpy.tile(numpy.arange(M), (M, 1)).T + inc\n col_inds = numpy.tile(neighbors, (M, 1)) + inc.T\n in_bounds = numpy.logical_and(row_inds <= M - 1, col_inds <= M - 1)\n row_inds[-in_bounds] = 0\n col_inds[-in_bounds] = 0\n neighbor_dists = numpy.ma.MaskedArray(D[row_inds, col_inds], -in_bounds)\n J = (-neighbor_dists.mask).sum(axis=1)\n neighbor_dists[neighbor_dists == 0] = 1\n d_ij = numpy.sum(numpy.log(neighbor_dists.data), axis=1)\n mean_d = d_ij[J > 0] / J[J > 0]\n x = numpy.arange(len(mean_d))\n X = numpy.vstack((x, numpy.ones(len(mean_d)))).T\n [m, c] = numpy.linalg.lstsq(X, mean_d)[0]\n Lexp = fs * m\n return Lexp\n",
"role": "user"
},
{
"content": "LLE",
"role": "assistant"
}
] |
def x(ts):
return np.pi - np.mod(np.pi - ts, 2 * np.pi)
|
mod2pi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts):\n return np.pi - np.mod(np.pi - ts, 2 * np.pi)\n",
"role": "user"
},
{
"content": "mod2pi",
"role": "assistant"
}
] |
def x(ts, phi=0.0):
ts = ts.squeeze()
if ts.ndim is not 1:
raise ValueError('Currently can only use on single variable timeseries'
)
ts = mod2pi(ts - phi)
tsa = ts[0:-1]
tsb = ts[1:]
p2 = np.pi / 2
zc = np.nonzero((tsa > -p2) & (tsa < 0) & (tsb >= 0) & (tsb < p2) | (
tsa < p2) & (tsa > 0) & (tsb <= 0) & (tsb > -p2))[0] + 1
va = ts[zc - 1]
vb = ts[zc]
ct = (np.abs(vb) * ts.tspan[zc - 1] + np.abs(va) * ts.tspan[zc]) / np.abs(
vb - va)
if ts[0] == 0.0:
zc = np.r_[np.array([0]), zc]
ct = np.r_[np.array([ts.tspan[0]]), ct]
pc = np.nonzero((tsa > p2) & (tsb < -p2) | (tsa < -p2) & (tsb > p2))[0] + 1
splice = np.searchsorted(pc, zc)
which_zc = np.r_[np.array([0]), np.nonzero(splice[0:-1] - splice[1:])[0
] + 1]
if ct.shape[0] is 0:
return ct
else:
return ct[which_zc]
|
phase_crossings
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, phi=0.0):\n ts = ts.squeeze()\n if ts.ndim is not 1:\n raise ValueError('Currently can only use on single variable timeseries'\n )\n ts = mod2pi(ts - phi)\n tsa = ts[0:-1]\n tsb = ts[1:]\n p2 = np.pi / 2\n zc = np.nonzero((tsa > -p2) & (tsa < 0) & (tsb >= 0) & (tsb < p2) | (\n tsa < p2) & (tsa > 0) & (tsb <= 0) & (tsb > -p2))[0] + 1\n va = ts[zc - 1]\n vb = ts[zc]\n ct = (np.abs(vb) * ts.tspan[zc - 1] + np.abs(va) * ts.tspan[zc]) / np.abs(\n vb - va)\n if ts[0] == 0.0:\n zc = np.r_[np.array([0]), zc]\n ct = np.r_[np.array([ts.tspan[0]]), ct]\n pc = np.nonzero((tsa > p2) & (tsb < -p2) | (tsa < -p2) & (tsb > p2))[0] + 1\n splice = np.searchsorted(pc, zc)\n which_zc = np.r_[np.array([0]), np.nonzero(splice[0:-1] - splice[1:])[0\n ] + 1]\n if ct.shape[0] is 0:\n return ct\n else:\n return ct[which_zc]\n",
"role": "user"
},
{
"content": "phase_crossings",
"role": "assistant"
}
] |
def x(ts, phi=0.0):
ts = np.squeeze(ts)
if ts.ndim <= 1:
return np.diff(phase_crossings(ts, phi))
else:
return np.hstack([ts[..., i].periods(phi) for i in range(ts.shape[-1])]
)
|
periods
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, phi=0.0):\n ts = np.squeeze(ts)\n if ts.ndim <= 1:\n return np.diff(phase_crossings(ts, phi))\n else:\n return np.hstack([ts[..., i].periods(phi) for i in range(ts.shape[-1])]\n )\n",
"role": "user"
},
{
"content": "periods",
"role": "assistant"
}
] |
def x(ts, axis=2):
return np.exp(1.0j * ts).mean(axis=axis).angle()
|
circmean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, axis=2):\n return np.exp(1.0j * ts).mean(axis=axis).angle()\n",
"role": "user"
},
{
"content": "circmean",
"role": "assistant"
}
] |
def x(ts, axis=2):
return np.abs(np.exp(1.0j * ts).mean(axis=axis))
|
order_param
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, axis=2):\n return np.abs(np.exp(1.0j * ts).mean(axis=axis))\n",
"role": "user"
},
{
"content": "order_param",
"role": "assistant"
}
] |
def x(points, width):
omega = 5.0
s = points / (2.0 * omega * width)
return wavelets.morlet(points, omega, s, complete=True)
|
cwtmorlet
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(points, width):\n omega = 5.0\n s = points / (2.0 * omega * width)\n return wavelets.morlet(points, omega, s, complete=True)\n",
"role": "user"
},
{
"content": "cwtmorlet",
"role": "assistant"
}
] |
def x(data, wavelet, widths):
out_dtype = wavelet(widths[0], widths[0]).dtype
output = np.zeros([len(widths), len(data)], dtype=out_dtype)
for ind, width in enumerate(widths):
wavelet_data = wavelet(min(3 * width, len(data)), width)
output[ind, :] = convolve(data, wavelet_data, mode='same')
return output
|
roughcwt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, wavelet, widths):\n out_dtype = wavelet(widths[0], widths[0]).dtype\n output = np.zeros([len(widths), len(data)], dtype=out_dtype)\n for ind, width in enumerate(widths):\n wavelet_data = wavelet(min(3 * width, len(data)), width)\n output[ind, :] = convolve(data, wavelet_data, mode='same')\n return output\n",
"role": "user"
},
{
"content": "roughcwt",
"role": "assistant"
}
] |
def x(ts, freqs=None, ncycles=6, plot=True):
if freqs is None:
freqs = np.logspace(np.log10(1.0), np.log10(60.0), 50)
else:
freqs = np.array(freqs)
orig_ndim = ts.ndim
if ts.ndim is 1:
ts = ts[:, np.newaxis]
channels = ts.shape[1]
n = len(ts)
dt = (1.0 * ts.tspan[-1] - ts.tspan[0]) / (n - 1)
fs = 1.0 / dt
dtype = ts.dtype
coefs = ts.cwt(freqs, wavelet=cwtmorlet, plot=False)
powers = np.square(np.abs(coefs, coefs), coefs).real.astype(dtype, copy
=False)
del coefs
max_power = np.max(powers, axis=1)
total_power = np.sum(powers, axis=1, keepdims=True)
rel_power = np.divide(powers, total_power, powers)
del powers
centroid_freq = np.tensordot(freqs, rel_power, axes=(0, 1))
del rel_power
hw = np.int64(np.ceil(0.5 * ncycles * fs / centroid_freq))
allchannels_variability = np.zeros((n, channels, 2), dtype)
for i in range(channels):
logvar_centfreq = np.zeros(n, dtype)
logvar_maxpower = np.zeros(n, dtype)
for j in range(n):
wstart = j - hw[j, i]
wend = j + hw[j, i]
if wstart >= 0 and wend < n:
logvar_centfreq[j] = np.log(centroid_freq[wstart:wend + 1].
var())
logvar_maxpower[j] = np.log(max_power[wstart:wend + 1].var())
else:
logvar_centfreq[j] = np.nan
logvar_maxpower[j] = np.nan
allchannels_variability[:, i, 0] = _rescale(logvar_centfreq)
allchannels_variability[:, i, 1] = _rescale(logvar_maxpower)
allchannels_variability = Timeseries(allchannels_variability, ts.tspan,
labels=ts.labels)
if plot:
_plot_variability(ts, allchannels_variability)
return allchannels_variability
|
variability_fp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, freqs=None, ncycles=6, plot=True):\n if freqs is None:\n freqs = np.logspace(np.log10(1.0), np.log10(60.0), 50)\n else:\n freqs = np.array(freqs)\n orig_ndim = ts.ndim\n if ts.ndim is 1:\n ts = ts[:, np.newaxis]\n channels = ts.shape[1]\n n = len(ts)\n dt = (1.0 * ts.tspan[-1] - ts.tspan[0]) / (n - 1)\n fs = 1.0 / dt\n dtype = ts.dtype\n coefs = ts.cwt(freqs, wavelet=cwtmorlet, plot=False)\n powers = np.square(np.abs(coefs, coefs), coefs).real.astype(dtype, copy\n =False)\n del coefs\n max_power = np.max(powers, axis=1)\n total_power = np.sum(powers, axis=1, keepdims=True)\n rel_power = np.divide(powers, total_power, powers)\n del powers\n centroid_freq = np.tensordot(freqs, rel_power, axes=(0, 1))\n del rel_power\n hw = np.int64(np.ceil(0.5 * ncycles * fs / centroid_freq))\n allchannels_variability = np.zeros((n, channels, 2), dtype)\n for i in range(channels):\n logvar_centfreq = np.zeros(n, dtype)\n logvar_maxpower = np.zeros(n, dtype)\n for j in range(n):\n wstart = j - hw[j, i]\n wend = j + hw[j, i]\n if wstart >= 0 and wend < n:\n logvar_centfreq[j] = np.log(centroid_freq[wstart:wend + 1].\n var())\n logvar_maxpower[j] = np.log(max_power[wstart:wend + 1].var())\n else:\n logvar_centfreq[j] = np.nan\n logvar_maxpower[j] = np.nan\n allchannels_variability[:, i, 0] = _rescale(logvar_centfreq)\n allchannels_variability[:, i, 1] = _rescale(logvar_maxpower)\n allchannels_variability = Timeseries(allchannels_variability, ts.tspan,\n labels=ts.labels)\n if plot:\n _plot_variability(ts, allchannels_variability)\n return allchannels_variability\n",
"role": "user"
},
{
"content": "variability_fp",
"role": "assistant"
}
] |
def x(ar):
max = np.nanmax(ar)
min = np.nanmin(ar)
midpoint = (max + min) / 2.0
return 2.0 * (ar - midpoint) / (max - min)
|
rescale
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ar):\n max = np.nanmax(ar)\n min = np.nanmin(ar)\n midpoint = (max + min) / 2.0\n return 2.0 * (ar - midpoint) / (max - min)\n",
"role": "user"
},
{
"content": "rescale",
"role": "assistant"
}
] |
def x():
if 'axes.prop_cycle' in plt.rcParams:
return [p['color'] for p in list(plt.rcParams['axes.prop_cycle'])]
else:
return plt.rcParams['axes.color_cycle']
|
get_color_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n if 'axes.prop_cycle' in plt.rcParams:\n return [p['color'] for p in list(plt.rcParams['axes.prop_cycle'])]\n else:\n return plt.rcParams['axes.color_cycle']\n",
"role": "user"
},
{
"content": "get_color_list",
"role": "assistant"
}
] |
def x(ts, variability, threshold=None, epochs=None):
import matplotlib.style
import matplotlib as mpl
mpl.style.use('classic')
import matplotlib.pyplot as plt
if variability.ndim is 1:
variability = variability[:, np.newaxis, np.newaxis]
elif variability.ndim is 2:
variability = variability[:, np.newaxis, :]
vmeasures = variability.shape[2]
channels = ts.shape[1]
dt = (1.0 * ts.tspan[-1] - ts.tspan[0]) / (len(ts) - 1)
fig = plt.figure()
ylabelprops = dict(rotation=0, horizontalalignment='right',
verticalalignment='center', x=-0.01)
for i in range(channels):
rect = 0.1, 0.85 * (channels - i - 1
) / channels + 0.1, 0.8, 0.85 / channels
axprops = dict()
if channels > 10:
axprops['yticks'] = []
ax = fig.add_axes(rect, **axprops)
ax.plot(ts.tspan, ts[:, i])
if ts.labels[1] is None:
ax.set_ylabel(u'channel %d' % i, **ylabelprops)
else:
ax.set_ylabel(ts.labels[1][i], **ylabelprops)
plt.setp(ax.get_xticklabels(), visible=False)
if i is channels - 1:
plt.setp(ax.get_xticklabels(), visible=True)
ax.set_xlabel('time (s)')
ax2 = ax.twinx()
if vmeasures > 1:
mean_v = np.nanmean(variability[:, i, :], axis=1)
ax2.plot(ts.tspan, mean_v, color='g')
colors = _get_color_list()
for j in range(vmeasures):
ax2.plot(ts.tspan, variability[:, i, j], linestyle='dotted',
color=colors[(3 + j) % len(colors)])
if i is 0:
ax2.legend(['variability (mean)'] + [('variability %d' % j) for
j in range(vmeasures)], loc='best')
else:
ax2.plot(ts.tspan, variability[:, i, 0])
ax2.legend(('variability',), loc='best')
if threshold is not None:
ax2.axhline(y=threshold, color='Gray', linestyle='dashed')
ax2.set_ylabel('variability')
ymin = np.nanmin(ts[:, i])
ymax = np.nanmax(ts[:, i])
tstart = ts.tspan[0]
if epochs:
for e in epochs[i]:
t1 = tstart + (e[0] - 1) * dt
ax.add_patch(mpl.patches.Rectangle((t1, ymin), (e[1] - e[0]
) * dt, ymax - ymin, alpha=0.2, color='green', ec='none'))
fig.axes[0].set_title(u'variability (threshold = %g)' % threshold)
fig.show()
|
plot_variability
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, variability, threshold=None, epochs=None):\n import matplotlib.style\n import matplotlib as mpl\n mpl.style.use('classic')\n import matplotlib.pyplot as plt\n if variability.ndim is 1:\n variability = variability[:, np.newaxis, np.newaxis]\n elif variability.ndim is 2:\n variability = variability[:, np.newaxis, :]\n vmeasures = variability.shape[2]\n channels = ts.shape[1]\n dt = (1.0 * ts.tspan[-1] - ts.tspan[0]) / (len(ts) - 1)\n fig = plt.figure()\n ylabelprops = dict(rotation=0, horizontalalignment='right',\n verticalalignment='center', x=-0.01)\n for i in range(channels):\n rect = 0.1, 0.85 * (channels - i - 1\n ) / channels + 0.1, 0.8, 0.85 / channels\n axprops = dict()\n if channels > 10:\n axprops['yticks'] = []\n ax = fig.add_axes(rect, **axprops)\n ax.plot(ts.tspan, ts[:, i])\n if ts.labels[1] is None:\n ax.set_ylabel(u'channel %d' % i, **ylabelprops)\n else:\n ax.set_ylabel(ts.labels[1][i], **ylabelprops)\n plt.setp(ax.get_xticklabels(), visible=False)\n if i is channels - 1:\n plt.setp(ax.get_xticklabels(), visible=True)\n ax.set_xlabel('time (s)')\n ax2 = ax.twinx()\n if vmeasures > 1:\n mean_v = np.nanmean(variability[:, i, :], axis=1)\n ax2.plot(ts.tspan, mean_v, color='g')\n colors = _get_color_list()\n for j in range(vmeasures):\n ax2.plot(ts.tspan, variability[:, i, j], linestyle='dotted',\n color=colors[(3 + j) % len(colors)])\n if i is 0:\n ax2.legend(['variability (mean)'] + [('variability %d' % j) for\n j in range(vmeasures)], loc='best')\n else:\n ax2.plot(ts.tspan, variability[:, i, 0])\n ax2.legend(('variability',), loc='best')\n if threshold is not None:\n ax2.axhline(y=threshold, color='Gray', linestyle='dashed')\n ax2.set_ylabel('variability')\n ymin = np.nanmin(ts[:, i])\n ymax = np.nanmax(ts[:, i])\n tstart = ts.tspan[0]\n if epochs:\n for e in epochs[i]:\n t1 = tstart + (e[0] - 1) * dt\n ax.add_patch(mpl.patches.Rectangle((t1, ymin), (e[1] - e[0]\n ) * dt, ymax - ymin, alpha=0.2, color='green', ec='none'))\n fig.axes[0].set_title(u'variability (threshold = %g)' % threshold)\n fig.show()\n",
"role": "user"
},
{
"content": "plot_variability",
"role": "assistant"
}
] |
def x(ts, variability=None, threshold=0.0, minlength=1.0, plot=True):
if variability is None:
variability = ts.variability_fp(plot=False)
orig_ndim = ts.ndim
if ts.ndim is 1:
ts = ts[:, np.newaxis]
if variability.ndim is 1:
variability = variability[:, np.newaxis, np.newaxis]
elif variability.ndim is 2:
variability = variability[:, np.newaxis, :]
channels = ts.shape[1]
n = len(ts)
dt = (1.0 * ts.tspan[-1] - ts.tspan[0]) / (n - 1)
fs = 1.0 / dt
allchannels_epochs = []
for i in range(channels):
v = variability[:, i, :]
v = np.nanmean(v, axis=1)
nonnan_ix = np.nonzero(~np.isnan(v))[0]
nonnans = slice(nonnan_ix.min(), nonnan_ix.max())
crit_freq = 1.0
b, a = signal.butter(3, 2.0 * crit_freq / fs)
v[nonnan_ix] = signal.filtfilt(b, a, v[nonnan_ix])
m = v[1:-1]
l = v[0:-2]
r = v[2:]
minima = np.nonzero(~np.isnan(m) & ~np.isnan(l) & ~np.isnan(r) & (m <=
threshold) & (m - l < 0) & (r - m > 0))[0] + 1
if len(minima) is 0:
print(u'Channel %d: no epochs found using threshold %g' % (i,
threshold))
allchannels_epochs.append([])
else:
minima = minima[np.argsort(v[minima])]
epochs = []
for m in minima:
overlap = False
for e in epochs:
if m >= e[0] and m <= e[1]:
overlap = True
break
if not overlap:
startix = m - 1
endix = m + 1
for startix in range(m - 1, 0, -1):
if np.isnan(v[startix]) or v[startix] > threshold:
startix += 1
break
for endix in range(m + 1, len(v), 1):
if np.isnan(v[endix]) or v[endix] > threshold:
break
if (endix - startix) * dt >= minlength:
epochs.append((startix, endix))
allchannels_epochs.append(epochs)
if plot:
_plot_variability(ts, variability, threshold, allchannels_epochs)
if orig_ndim is 1:
allchannels_epochs = allchannels_epochs[0]
return variability, allchannels_epochs
|
epochs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, variability=None, threshold=0.0, minlength=1.0, plot=True):\n if variability is None:\n variability = ts.variability_fp(plot=False)\n orig_ndim = ts.ndim\n if ts.ndim is 1:\n ts = ts[:, np.newaxis]\n if variability.ndim is 1:\n variability = variability[:, np.newaxis, np.newaxis]\n elif variability.ndim is 2:\n variability = variability[:, np.newaxis, :]\n channels = ts.shape[1]\n n = len(ts)\n dt = (1.0 * ts.tspan[-1] - ts.tspan[0]) / (n - 1)\n fs = 1.0 / dt\n allchannels_epochs = []\n for i in range(channels):\n v = variability[:, i, :]\n v = np.nanmean(v, axis=1)\n nonnan_ix = np.nonzero(~np.isnan(v))[0]\n nonnans = slice(nonnan_ix.min(), nonnan_ix.max())\n crit_freq = 1.0\n b, a = signal.butter(3, 2.0 * crit_freq / fs)\n v[nonnan_ix] = signal.filtfilt(b, a, v[nonnan_ix])\n m = v[1:-1]\n l = v[0:-2]\n r = v[2:]\n minima = np.nonzero(~np.isnan(m) & ~np.isnan(l) & ~np.isnan(r) & (m <=\n threshold) & (m - l < 0) & (r - m > 0))[0] + 1\n if len(minima) is 0:\n print(u'Channel %d: no epochs found using threshold %g' % (i,\n threshold))\n allchannels_epochs.append([])\n else:\n minima = minima[np.argsort(v[minima])]\n epochs = []\n for m in minima:\n overlap = False\n for e in epochs:\n if m >= e[0] and m <= e[1]:\n overlap = True\n break\n if not overlap:\n startix = m - 1\n endix = m + 1\n for startix in range(m - 1, 0, -1):\n if np.isnan(v[startix]) or v[startix] > threshold:\n startix += 1\n break\n for endix in range(m + 1, len(v), 1):\n if np.isnan(v[endix]) or v[endix] > threshold:\n break\n if (endix - startix) * dt >= minlength:\n epochs.append((startix, endix))\n allchannels_epochs.append(epochs)\n if plot:\n _plot_variability(ts, variability, threshold, allchannels_epochs)\n if orig_ndim is 1:\n allchannels_epochs = allchannels_epochs[0]\n return variability, allchannels_epochs\n",
"role": "user"
},
{
"content": "epochs",
"role": "assistant"
}
] |
def x(ts, variability=None, threshold=0.0, minlength=1.0, plot=True):
import distob
if ts.ndim is 1:
ts = ts[:, np.newaxis]
if variability is None:
dts = distob.scatter(ts, axis=1)
vepochs = distob.vectorize(epochs)
results = vepochs(dts, None, threshold, minlength, plot=False)
else:
def x(pair):
return epochs(pair[0], pair[1], threshold, minlength, plot=False)
allpairs = [(ts[:, i], variability[:, i]) for i in range(ts.shape[1])]
vf = distob.vectorize(f)
results = vf(allpairs)
vars, allchannels_epochs = zip(*results)
variability = distob.hstack(vars)
if plot:
_plot_variability(ts, variability, threshold, allchannels_epochs)
return variability, allchannels_epochs
|
epochs_distributed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, variability=None, threshold=0.0, minlength=1.0, plot=True):\n import distob\n if ts.ndim is 1:\n ts = ts[:, np.newaxis]\n if variability is None:\n dts = distob.scatter(ts, axis=1)\n vepochs = distob.vectorize(epochs)\n results = vepochs(dts, None, threshold, minlength, plot=False)\n else:\n\n def x(pair):\n return epochs(pair[0], pair[1], threshold, minlength, plot=False)\n allpairs = [(ts[:, i], variability[:, i]) for i in range(ts.shape[1])]\n vf = distob.vectorize(f)\n results = vf(allpairs)\n vars, allchannels_epochs = zip(*results)\n variability = distob.hstack(vars)\n if plot:\n _plot_variability(ts, variability, threshold, allchannels_epochs)\n return variability, allchannels_epochs\n",
"role": "user"
},
{
"content": "epochs_distributed",
"role": "assistant"
}
] |
def x(ts, variability=None, threshold=0.0, minlength=1.0, proportion=0.75,
plot=True):
variability, allchannels_epochs = ts.epochs_distributed(variability,
threshold, minlength, plot=False)
orig_ndim = ts.ndim
if ts.ndim is 1:
ts = ts[:, np.newaxis]
allchannels_epochs = [allchannels_epochs]
variability = variability[:, np.newaxis]
channels = ts.shape[1]
dt = (1.0 * ts.tspan[-1] - ts.tspan[0]) / (len(ts) - 1)
starts = [(e[0], 1) for channel in allchannels_epochs for e in channel]
ends = [(e[1], -1) for channel in allchannels_epochs for e in channel]
all = sorted(starts + ends)
joint_epochs = []
in_joint_epoch = False
joint_start = 0.0
inside_count = 0
for bound in all:
inside_count += bound[1]
if not in_joint_epoch and 1.0 * inside_count / channels >= proportion:
in_joint_epoch = True
joint_start = bound[0]
if in_joint_epoch and 1.0 * inside_count / channels < proportion:
in_joint_epoch = False
joint_end = bound[0]
if (joint_end - joint_start) * dt >= minlength:
joint_epochs.append((joint_start, joint_end))
if plot:
joint_epochs_repeated = [joint_epochs] * channels
_plot_variability(ts, variability, threshold, joint_epochs_repeated)
return variability, joint_epochs
|
epochs_joint
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, variability=None, threshold=0.0, minlength=1.0, proportion=0.75,\n plot=True):\n variability, allchannels_epochs = ts.epochs_distributed(variability,\n threshold, minlength, plot=False)\n orig_ndim = ts.ndim\n if ts.ndim is 1:\n ts = ts[:, np.newaxis]\n allchannels_epochs = [allchannels_epochs]\n variability = variability[:, np.newaxis]\n channels = ts.shape[1]\n dt = (1.0 * ts.tspan[-1] - ts.tspan[0]) / (len(ts) - 1)\n starts = [(e[0], 1) for channel in allchannels_epochs for e in channel]\n ends = [(e[1], -1) for channel in allchannels_epochs for e in channel]\n all = sorted(starts + ends)\n joint_epochs = []\n in_joint_epoch = False\n joint_start = 0.0\n inside_count = 0\n for bound in all:\n inside_count += bound[1]\n if not in_joint_epoch and 1.0 * inside_count / channels >= proportion:\n in_joint_epoch = True\n joint_start = bound[0]\n if in_joint_epoch and 1.0 * inside_count / channels < proportion:\n in_joint_epoch = False\n joint_end = bound[0]\n if (joint_end - joint_start) * dt >= minlength:\n joint_epochs.append((joint_start, joint_end))\n if plot:\n joint_epochs_repeated = [joint_epochs] * channels\n _plot_variability(ts, variability, threshold, joint_epochs_repeated)\n return variability, joint_epochs\n",
"role": "user"
},
{
"content": "epochs_joint",
"role": "assistant"
}
] |
def x(ts, title=None, show=True):
ts = _remove_pi_crossings(ts)
fig = plt.figure()
ylabelprops = dict(rotation=0, horizontalalignment='right',
verticalalignment='center', x=-0.01)
if ts.ndim > 2:
num_subplots = ts.shape[ts.ndim - 1]
if title is None:
title = u'time series at each node'
for i in range(num_subplots):
ax = fig.add_subplot(num_subplots, 1, i + 1)
ax.plot(ts.tspan, ts[..., i])
if ts.labels[-1] is not None:
ax.set_ylabel(ts.labels[-1][i], **ylabelprops)
else:
ax.set_ylabel('node ' + str(i), **ylabelprops)
plt.setp(ax.get_xticklabels(), visible=False)
fig.axes[0].set_title(title)
plt.setp(fig.axes[num_subplots - 1].get_xticklabels(), visible=True)
fig.axes[num_subplots - 1].set_xlabel('time (s)')
else:
if ts.ndim is 1:
ts = ts.reshape((-1, 1))
num_ax = ts.shape[1]
if title is None:
title = u'time series'
axprops = dict()
if num_ax > 10:
axprops['yticks'] = []
colors = _get_color_list()
for i in range(num_ax):
rect = 0.1, 0.85 * (num_ax - i - 1
) / num_ax + 0.1, 0.8, 0.85 / num_ax
ax = fig.add_axes(rect, **axprops)
ax.plot(ts.tspan, ts[..., i], color=colors[i % len(colors)])
plt.setp(ax.get_xticklabels(), visible=False)
if ts.labels[1] is not None:
ax.set_ylabel(ts.labels[1][i], **ylabelprops)
fig.axes[0].set_title(title)
plt.setp(fig.axes[num_ax - 1].get_xticklabels(), visible=True)
fig.axes[num_ax - 1].set_xlabel('time (s)')
if show:
fig.show()
return fig
|
plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, title=None, show=True):\n ts = _remove_pi_crossings(ts)\n fig = plt.figure()\n ylabelprops = dict(rotation=0, horizontalalignment='right',\n verticalalignment='center', x=-0.01)\n if ts.ndim > 2:\n num_subplots = ts.shape[ts.ndim - 1]\n if title is None:\n title = u'time series at each node'\n for i in range(num_subplots):\n ax = fig.add_subplot(num_subplots, 1, i + 1)\n ax.plot(ts.tspan, ts[..., i])\n if ts.labels[-1] is not None:\n ax.set_ylabel(ts.labels[-1][i], **ylabelprops)\n else:\n ax.set_ylabel('node ' + str(i), **ylabelprops)\n plt.setp(ax.get_xticklabels(), visible=False)\n fig.axes[0].set_title(title)\n plt.setp(fig.axes[num_subplots - 1].get_xticklabels(), visible=True)\n fig.axes[num_subplots - 1].set_xlabel('time (s)')\n else:\n if ts.ndim is 1:\n ts = ts.reshape((-1, 1))\n num_ax = ts.shape[1]\n if title is None:\n title = u'time series'\n axprops = dict()\n if num_ax > 10:\n axprops['yticks'] = []\n colors = _get_color_list()\n for i in range(num_ax):\n rect = 0.1, 0.85 * (num_ax - i - 1\n ) / num_ax + 0.1, 0.8, 0.85 / num_ax\n ax = fig.add_axes(rect, **axprops)\n ax.plot(ts.tspan, ts[..., i], color=colors[i % len(colors)])\n plt.setp(ax.get_xticklabels(), visible=False)\n if ts.labels[1] is not None:\n ax.set_ylabel(ts.labels[1][i], **ylabelprops)\n fig.axes[0].set_title(title)\n plt.setp(fig.axes[num_ax - 1].get_xticklabels(), visible=True)\n fig.axes[num_ax - 1].set_xlabel('time (s)')\n if show:\n fig.show()\n return fig\n",
"role": "user"
},
{
"content": "plot",
"role": "assistant"
}
] |
def x(ts):
orig_ts = ts
if ts.ndim is 1:
ts = ts[:, np.newaxis, np.newaxis]
elif ts.ndim is 2:
ts = ts[:, np.newaxis]
tsmax = ts.max(axis=0)
tsmin = ts.min(axis=0)
phase_vars = np.transpose(np.nonzero((np.abs(tsmax - np.pi) < 0.01) & (
np.abs(tsmin + np.pi) < 0.01)))
if len(phase_vars) is 0:
return orig_ts
else:
ts = ts.copy()
for v in phase_vars:
ts1 = np.asarray(ts[:, v[0], v[1]])
ts1a = ts1[0:-1]
ts1b = ts1[1:]
p2 = np.pi / 2
pc = np.nonzero((ts1a > p2) & (ts1b < -p2) | (ts1a < -p2) & (
ts1b > p2))[0] + 1
ts1[pc] = np.nan
ts[:, v[0], v[1]] = ts1
return ts
|
remove_pi_crossings
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts):\n orig_ts = ts\n if ts.ndim is 1:\n ts = ts[:, np.newaxis, np.newaxis]\n elif ts.ndim is 2:\n ts = ts[:, np.newaxis]\n tsmax = ts.max(axis=0)\n tsmin = ts.min(axis=0)\n phase_vars = np.transpose(np.nonzero((np.abs(tsmax - np.pi) < 0.01) & (\n np.abs(tsmin + np.pi) < 0.01)))\n if len(phase_vars) is 0:\n return orig_ts\n else:\n ts = ts.copy()\n for v in phase_vars:\n ts1 = np.asarray(ts[:, v[0], v[1]])\n ts1a = ts1[0:-1]\n ts1b = ts1[1:]\n p2 = np.pi / 2\n pc = np.nonzero((ts1a > p2) & (ts1b < -p2) | (ts1a < -p2) & (\n ts1b > p2))[0] + 1\n ts1[pc] = np.nan\n ts[:, v[0], v[1]] = ts1\n return ts\n",
"role": "user"
},
{
"content": "remove_pi_crossings",
"role": "assistant"
}
] |
def x(filename, varname=None, fs=1.0):
import scipy.io as sio
if varname is None:
mat_dict = sio.loadmat(filename)
if len(mat_dict) > 1:
raise ValueError(
'Must specify varname: file contains more than one variable. ')
else:
mat_dict = sio.loadmat(filename, variable_names=(varname,))
array = mat_dict.popitem()[1]
return Timeseries(array, fs=fs)
|
timeseries_from_mat
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, varname=None, fs=1.0):\n import scipy.io as sio\n if varname is None:\n mat_dict = sio.loadmat(filename)\n if len(mat_dict) > 1:\n raise ValueError(\n 'Must specify varname: file contains more than one variable. ')\n else:\n mat_dict = sio.loadmat(filename, variable_names=(varname,))\n array = mat_dict.popitem()[1]\n return Timeseries(array, fs=fs)\n",
"role": "user"
},
{
"content": "timeseries_from_mat",
"role": "assistant"
}
] |
def x(ts, filename):
import scipy.io as sio
tspan = ts.tspan
fs = (1.0 * len(tspan) - 1) / (tspan[-1] - tspan[0])
mat_dict = {'data': np.asarray(ts), 'fs': fs, 'labels': ts.labels[1]}
sio.savemat(filename, mat_dict, do_compression=True)
return
|
save_mat
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ts, filename):\n import scipy.io as sio\n tspan = ts.tspan\n fs = (1.0 * len(tspan) - 1) / (tspan[-1] - tspan[0])\n mat_dict = {'data': np.asarray(ts), 'fs': fs, 'labels': ts.labels[1]}\n sio.savemat(filename, mat_dict, do_compression=True)\n return\n",
"role": "user"
},
{
"content": "save_mat",
"role": "assistant"
}
] |
def x(filename):
if not path.isfile(filename):
raise Error("file not found: '%s'" % filename)
is_edf_bdf = filename[-4:].lower() in ['.edf', '.bdf']
if is_edf_bdf:
try:
import edflib
return _load_edflib(filename)
except ImportError:
print('python-edf not installed. trying python-biosig instead...')
try:
import biosig
return _load_biosig(filename)
except ImportError:
message = """To load timeseries from file, ensure python-biosig is installed
e.g. on Ubuntu or Debian type `apt-get install python-biosig`
or get it from http://biosig.sf.net/download.html"""
if is_edf_bdf:
message += """
(For EDF/BDF files, can instead install python-edf:
https://bitbucket.org/cleemesser/python-edf/ )"""
raise Error(message)
|
timeseries_from_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n if not path.isfile(filename):\n raise Error(\"file not found: '%s'\" % filename)\n is_edf_bdf = filename[-4:].lower() in ['.edf', '.bdf']\n if is_edf_bdf:\n try:\n import edflib\n return _load_edflib(filename)\n except ImportError:\n print('python-edf not installed. trying python-biosig instead...')\n try:\n import biosig\n return _load_biosig(filename)\n except ImportError:\n message = \"\"\"To load timeseries from file, ensure python-biosig is installed\n e.g. on Ubuntu or Debian type `apt-get install python-biosig`\n or get it from http://biosig.sf.net/download.html\"\"\"\n if is_edf_bdf:\n message += \"\"\"\n(For EDF/BDF files, can instead install python-edf:\n https://bitbucket.org/cleemesser/python-edf/ )\"\"\"\n raise Error(message)\n",
"role": "user"
},
{
"content": "timeseries_from_file",
"role": "assistant"
}
] |
def x(filename):
import edflib
e = edflib.EdfReader(filename, annotations_mode='all')
if np.ptp(e.get_samples_per_signal()) != 0:
raise Error('channels have differing numbers of samples')
if np.ptp(e.get_signal_freqs()) != 0:
raise Error('channels have differing sample rates')
n = e.samples_in_file(0)
m = e.signals_in_file
channelnames = e.get_signal_text_labels()
dt = 1.0 / e.samplefrequency(0)
ar = np.zeros((n, m), dtype=np.float32)
buf = np.zeros((n,), dtype=np.float64)
for i in range(m):
e.read_phys_signal(i, 0, n, buf)
ar[:, i] = buf
tspan = np.arange(0, (n - 1 + 0.5) * dt, dt, dtype=np.float32)
return Timeseries(ar, tspan, labels=[None, channelnames])
|
load_edflib
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n import edflib\n e = edflib.EdfReader(filename, annotations_mode='all')\n if np.ptp(e.get_samples_per_signal()) != 0:\n raise Error('channels have differing numbers of samples')\n if np.ptp(e.get_signal_freqs()) != 0:\n raise Error('channels have differing sample rates')\n n = e.samples_in_file(0)\n m = e.signals_in_file\n channelnames = e.get_signal_text_labels()\n dt = 1.0 / e.samplefrequency(0)\n ar = np.zeros((n, m), dtype=np.float32)\n buf = np.zeros((n,), dtype=np.float64)\n for i in range(m):\n e.read_phys_signal(i, 0, n, buf)\n ar[:, i] = buf\n tspan = np.arange(0, (n - 1 + 0.5) * dt, dt, dtype=np.float32)\n return Timeseries(ar, tspan, labels=[None, channelnames])\n",
"role": "user"
},
{
"content": "load_edflib",
"role": "assistant"
}
] |
def x(filename):
import edflib
e = edflib.EdfReader(filename, annotations_mode='all')
return e.read_annotations()
|
annotations_from_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n import edflib\n e = edflib.EdfReader(filename, annotations_mode='all')\n return e.read_annotations()\n",
"role": "user"
},
{
"content": "annotations_from_file",
"role": "assistant"
}
] |
def x(out_arr, ufunc, method, i, inputs, **kwargs):
shape = out_arr.shape
ndim = out_arr.ndim
if ndim is 0 or shape[0] is 0:
return out_arr
candidates = [a.tspan for a in inputs if hasattr(a, 'tspan') and a.
shape[0] == shape[0]]
starts = [tspan[0] for tspan in candidates]
ends = [tspan[-1] for tspan in candidates]
if len(set(starts)) != 1 or len(set(ends)) != 1:
return out_arr
else:
new_tspan = candidates[0]
new_labels = [None]
for i in range(1, ndim):
candidates = [a.labels[i] for a in inputs if hasattr(a, 'labels') and
a.shape[i] == shape[i] and a.labels[i] is not None]
if len(candidates) is 1:
new_labels.append(candidates[0])
elif len(candidates) > 1 and all(labs[j] == candidates[0][j] for
labs in candidates[1:] for j in range(shape[i])):
new_labels.append(candidates[0])
else:
new_labels.append(None)
if isinstance(out_arr, np.ndarray):
return Timeseries(out_arr, new_tspan, new_labels)
elif isinstance(out_arr, distob.RemoteArray):
return _rts_from_ra(out_arr, new_tspan, new_labels)
elif isinstance(out_arr, distob.DistArray) and all(isinstance(ra,
RemoteTimeseries) for ra in out_arr._subarrays):
return _dts_from_da(out_arr, new_tspan, new_labels)
else:
return out_arr
|
ufunc_wrap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(out_arr, ufunc, method, i, inputs, **kwargs):\n shape = out_arr.shape\n ndim = out_arr.ndim\n if ndim is 0 or shape[0] is 0:\n return out_arr\n candidates = [a.tspan for a in inputs if hasattr(a, 'tspan') and a.\n shape[0] == shape[0]]\n starts = [tspan[0] for tspan in candidates]\n ends = [tspan[-1] for tspan in candidates]\n if len(set(starts)) != 1 or len(set(ends)) != 1:\n return out_arr\n else:\n new_tspan = candidates[0]\n new_labels = [None]\n for i in range(1, ndim):\n candidates = [a.labels[i] for a in inputs if hasattr(a, 'labels') and\n a.shape[i] == shape[i] and a.labels[i] is not None]\n if len(candidates) is 1:\n new_labels.append(candidates[0])\n elif len(candidates) > 1 and all(labs[j] == candidates[0][j] for\n labs in candidates[1:] for j in range(shape[i])):\n new_labels.append(candidates[0])\n else:\n new_labels.append(None)\n if isinstance(out_arr, np.ndarray):\n return Timeseries(out_arr, new_tspan, new_labels)\n elif isinstance(out_arr, distob.RemoteArray):\n return _rts_from_ra(out_arr, new_tspan, new_labels)\n elif isinstance(out_arr, distob.DistArray) and all(isinstance(ra,\n RemoteTimeseries) for ra in out_arr._subarrays):\n return _dts_from_da(out_arr, new_tspan, new_labels)\n else:\n return out_arr\n",
"role": "user"
},
{
"content": "ufunc_wrap",
"role": "assistant"
}
] |
def x(ra, tspan, labels, block=True):
def x(a, tspan, labels):
from nsim import Timeseries
return Timeseries(a, tspan, labels)
return distob.call(_convert, ra, tspan, labels, prefer_local=False,
block=block)
|
rts_from_ra
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ra, tspan, labels, block=True):\n\n def x(a, tspan, labels):\n from nsim import Timeseries\n return Timeseries(a, tspan, labels)\n return distob.call(_convert, ra, tspan, labels, prefer_local=False,\n block=block)\n",
"role": "user"
},
{
"content": "rts_from_ra",
"role": "assistant"
}
] |
def x(da, tspan, labels):
sublabels = labels[:]
new_subarrays = []
for i, ra in enumerate(da._subarrays):
if isinstance(ra, RemoteTimeseries):
new_subarrays.append(ra)
else:
if labels[da._distaxis]:
sublabels[da._distaxis] = labels[da._distaxis][da._si[i]:da
._si[i + 1]]
new_subarrays.append(_rts_from_ra(ra, tspan, sublabels, False))
new_subarrays = [distob.convert_result(ar) for ar in new_subarrays]
da._subarrays = new_subarrays
da.__class__ = DistTimeseries
da.tspan = tspan
da.labels = labels
da.t = _Timeslice(da)
return da
|
dts_from_da
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(da, tspan, labels):\n sublabels = labels[:]\n new_subarrays = []\n for i, ra in enumerate(da._subarrays):\n if isinstance(ra, RemoteTimeseries):\n new_subarrays.append(ra)\n else:\n if labels[da._distaxis]:\n sublabels[da._distaxis] = labels[da._distaxis][da._si[i]:da\n ._si[i + 1]]\n new_subarrays.append(_rts_from_ra(ra, tspan, sublabels, False))\n new_subarrays = [distob.convert_result(ar) for ar in new_subarrays]\n da._subarrays = new_subarrays\n da.__class__ = DistTimeseries\n da.tspan = tspan\n da.labels = labels\n da.t = _Timeslice(da)\n return da\n",
"role": "user"
},
{
"content": "dts_from_da",
"role": "assistant"
}
] |
def x(f, G, y0, name='NewModel', modelType=ItoModel, T=60.0, dt=0.005,
repeat=1, identical=True):
NewModel = newmodel(f, G, y0, name, modelType)
if repeat == 1:
return Simulation(NewModel(), T, dt)
else:
return RepeatedSim(NewModel, T, dt, repeat, identical)
|
newsim
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f, G, y0, name='NewModel', modelType=ItoModel, T=60.0, dt=0.005,\n repeat=1, identical=True):\n NewModel = newmodel(f, G, y0, name, modelType)\n if repeat == 1:\n return Simulation(NewModel(), T, dt)\n else:\n return RepeatedSim(NewModel, T, dt, repeat, identical)\n",
"role": "user"
},
{
"content": "newsim",
"role": "assistant"
}
] |
def x(f, G, y0, name='NewModel', modelType=ItoModel):
if not issubclass(modelType, Model):
raise SimTypeError('modelType must be a subclass of nsim.Model')
if not callable(f) or G is not None and not callable(G):
raise SimTypeError('f and G must be functions of y and t.')
if G is not None and f.__globals__ is not G.__globals__:
raise SimValueError('f and G must be defined in the same place')
if modelType is ODEModel and G is not None and not np.all(G == 0.0):
raise SimValueError('For an ODEModel, noise matrix G should be None')
if G is None or modelType is ODEModel:
newclass = type(name, (ODEModel,), dict())
setattr(newclass, 'f', staticmethod(__clone_function(f, 'f')))
else:
newclass = type(name, (modelType,), dict())
setattr(newclass, 'f', staticmethod(__clone_function(f, 'f')))
setattr(newclass, 'G', staticmethod(__clone_function(G, 'G')))
setattr(newclass, 'y0', copy.deepcopy(y0))
globals_used = [x for x in f.__globals__ if x in f.__code__.co_names or
G is not None and x in G.__code__.co_names]
for x in globals_used:
if G is None:
setattr(newclass, x, __AccessDict(x, newclass.f.__globals__))
else:
setattr(newclass, x, __AccessDicts(x, newclass.f.__globals__,
newclass.G.__globals__))
newclass.__module__ = '__main__'
import __main__
__main__.__dict__[name] = newclass
return newclass
|
newmodel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f, G, y0, name='NewModel', modelType=ItoModel):\n if not issubclass(modelType, Model):\n raise SimTypeError('modelType must be a subclass of nsim.Model')\n if not callable(f) or G is not None and not callable(G):\n raise SimTypeError('f and G must be functions of y and t.')\n if G is not None and f.__globals__ is not G.__globals__:\n raise SimValueError('f and G must be defined in the same place')\n if modelType is ODEModel and G is not None and not np.all(G == 0.0):\n raise SimValueError('For an ODEModel, noise matrix G should be None')\n if G is None or modelType is ODEModel:\n newclass = type(name, (ODEModel,), dict())\n setattr(newclass, 'f', staticmethod(__clone_function(f, 'f')))\n else:\n newclass = type(name, (modelType,), dict())\n setattr(newclass, 'f', staticmethod(__clone_function(f, 'f')))\n setattr(newclass, 'G', staticmethod(__clone_function(G, 'G')))\n setattr(newclass, 'y0', copy.deepcopy(y0))\n globals_used = [x for x in f.__globals__ if x in f.__code__.co_names or\n G is not None and x in G.__code__.co_names]\n for x in globals_used:\n if G is None:\n setattr(newclass, x, __AccessDict(x, newclass.f.__globals__))\n else:\n setattr(newclass, x, __AccessDicts(x, newclass.f.__globals__,\n newclass.G.__globals__))\n newclass.__module__ = '__main__'\n import __main__\n __main__.__dict__[name] = newclass\n return newclass\n",
"role": "user"
},
{
"content": "newmodel",
"role": "assistant"
}
] |
def x(f, name=None):
if not isinstance(f, types.FunctionType):
raise SimTypeError('Given parameter is not a function.')
if name is None:
name = f.__name__
newglobals = f.__globals__.copy()
globals_used = [x for x in f.__globals__ if x in f.__code__.co_names]
for x in globals_used:
gv = f.__globals__[x]
if isinstance(gv, types.FunctionType):
newglobals[x] = __clone_function(gv)
elif isinstance(gv, types.ModuleType):
newglobals[x] = gv
else:
newglobals[x] = copy.deepcopy(gv)
newfunc = types.FunctionType(f.__code__, newglobals, name, f.
__defaults__, f.__closure__)
return newfunc
|
clone_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f, name=None):\n if not isinstance(f, types.FunctionType):\n raise SimTypeError('Given parameter is not a function.')\n if name is None:\n name = f.__name__\n newglobals = f.__globals__.copy()\n globals_used = [x for x in f.__globals__ if x in f.__code__.co_names]\n for x in globals_used:\n gv = f.__globals__[x]\n if isinstance(gv, types.FunctionType):\n newglobals[x] = __clone_function(gv)\n elif isinstance(gv, types.ModuleType):\n newglobals[x] = gv\n else:\n newglobals[x] = copy.deepcopy(gv)\n newfunc = types.FunctionType(f.__code__, newglobals, name, f.\n __defaults__, f.__closure__)\n return newfunc\n",
"role": "user"
},
{
"content": "clone_function",
"role": "assistant"
}
] |
def x(self, axis):
if axis <= self._distaxis:
subaxis = axis
new_distaxis = self._distaxis + 1
else:
subaxis = axis - 1
new_distaxis = self._distaxis
new_subts = [rts.expand_dims(subaxis) for rts in self._subarrays]
if axis == 0:
return distob.DistArray(new_subts, new_distaxis)
else:
axislabels = self.labels[self._distaxis]
return DistTimeseries(new_subts, new_distaxis, axislabels)
|
expand_dims
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, axis):\n if axis <= self._distaxis:\n subaxis = axis\n new_distaxis = self._distaxis + 1\n else:\n subaxis = axis - 1\n new_distaxis = self._distaxis\n new_subts = [rts.expand_dims(subaxis) for rts in self._subarrays]\n if axis == 0:\n return distob.DistArray(new_subts, new_distaxis)\n else:\n axislabels = self.labels[self._distaxis]\n return DistTimeseries(new_subts, new_distaxis, axislabels)\n",
"role": "user"
},
{
"content": "expand_dims",
"role": "assistant"
}
] |
def x(self):
da = distob.vectorize(np.absolute)(self)
return _dts_from_da(da, self.tspan, self.labels)
|
absolute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n da = distob.vectorize(np.absolute)(self)\n return _dts_from_da(da, self.tspan, self.labels)\n",
"role": "user"
},
{
"content": "absolute",
"role": "assistant"
}
] |
def x(self, deg=False):
if self.dtype.str[1] != 'c':
warnings.warn('angle() is intended for complex-valued timeseries',
RuntimeWarning, 1)
da = distob.vectorize(np.angle)(self, deg)
return _dts_from_da(da, self.tspan, self.labels)
|
angle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, deg=False):\n if self.dtype.str[1] != 'c':\n warnings.warn('angle() is intended for complex-valued timeseries',\n RuntimeWarning, 1)\n da = distob.vectorize(np.angle)(self, deg)\n return _dts_from_da(da, self.tspan, self.labels)\n",
"role": "user"
},
{
"content": "angle",
"role": "assistant"
}
] |
def x(self, source_y, target_y, weight):
return np.ones_like(target_y) * np.mean(source_y) * weight
|
coupling
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, source_y, target_y, weight):\n return np.ones_like(target_y) * np.mean(source_y) * weight\n",
"role": "user"
},
{
"content": "coupling",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.