code
stringlengths
4
4.48k
docstring
stringlengths
1
6.45k
_id
stringlengths
24
24
def test_itemmode(self): <NEW_LINE> <INDENT> for mode in MODES: <NEW_LINE> <INDENT> for root in ROOT1, ROOT2: <NEW_LINE> <INDENT> _c.FSQ_ROOT = root <NEW_LINE> self._cycle(item_mode=mode) <NEW_LINE> queue = normalize() <NEW_LINE> _c.FSQ_ITEM_MODE = mode <NEW_LINE> self._cycle(queue) <NEW_LINE> for down in True, False: <NEW_LINE> <INDENT> for is_t in True, False: <NEW_LINE> <INDENT> for uid, gid in ((UID, GID,), (UNAME, GNAME,)): <NEW_LINE> <INDENT> for quid, qgid in ((UID, GID,), (UNAME, GNAME,)): <NEW_LINE> <INDENT> for qm in MODES: <NEW_LINE> <INDENT> self._cycle(item_mode=mode, mode=qm, is_down=down, user=quid, is_triggered=is_t, group=qgid, item_user=uid, item_group=gid) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> <DEDENT> <DEDENT> <DEDENT> queue = normalize() <NEW_LINE> mode = ILLEGAL_MODE <NEW_LINE> self.assertRaises(TypeError, install, queue, item_mode=mode, is_down=True) <NEW_LINE> self.assertRaises(OSError, _valid_install, queue, item_mode=mode, is_down=True) <NEW_LINE> queue = self._install(item_mode=mode) <NEW_LINE> self.assertRaises(TypeError, uninstall, queue, item_mode=mode) <NEW_LINE> self.assertFalse(_valid_uninstall(queue))
Test installing with item modes for down/trigger-s
625941bbd6c5a10208143f06
def __init__(self, conf): <NEW_LINE> <INDENT> super(QNetwork, self).__init__(conf) <NEW_LINE> with tf.name_scope(self.name): <NEW_LINE> <INDENT> self.target_ph = tf.placeholder( "float32", [None], name = 'target') <NEW_LINE> if self.arch == "NIPS": <NEW_LINE> <INDENT> self.w4, self.b4, self.output_layer = self._fc('fc4', self.o3, self.num_actions, activation = "linear") <NEW_LINE> self.params = [self.w1, self.b1, self.w2, self.b2, self.w3, self.b3, self.w4, self.b4] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.w5, self.b5, self.output_layer = self._fc('fc5', self.o4, self.num_actions, activation = "linear") <NEW_LINE> self.params = [self.w1, self.b1, self.w2, self.b2, self.w3, self.b3, self.w4, self.b4, self.w5, self.b5] <NEW_LINE> <DEDENT> if "target" not in self.name: <NEW_LINE> <INDENT> output_selected_action = tf.reduce_sum(tf.mul(self.output_layer, self.selected_action_ph), reduction_indices = 1) <NEW_LINE> diff = tf.sub(self.target_ph, output_selected_action) <NEW_LINE> if self.clip_loss_delta > 0: <NEW_LINE> <INDENT> quadratic_part = tf.minimum(tf.abs(diff), tf.constant(self.clip_loss_delta)) <NEW_LINE> linear_part = tf.sub(tf.abs(diff), quadratic_part) <NEW_LINE> self.loss = tf.add(tf.nn.l2_loss(quadratic_part), tf.mul(tf.constant(self.clip_loss_delta), linear_part)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.loss = tf.nn.l2_loss(diff) <NEW_LINE> <DEDENT> with tf.control_dependencies(None): <NEW_LINE> <INDENT> grads = tf.gradients(self.loss, self.params) <NEW_LINE> self.clipped_grad_hist_op = None <NEW_LINE> if self.clip_norm_type == 'ignore': <NEW_LINE> <INDENT> self.get_gradients = grads <NEW_LINE> <DEDENT> elif self.clip_norm_type == 'global': <NEW_LINE> <INDENT> self.get_gradients = tf.clip_by_global_norm( grads, self.clip_norm)[0] <NEW_LINE> <DEDENT> elif self.clip_norm_type == 'local': <NEW_LINE> <INDENT> self.get_gradients = [tf.clip_by_norm( g, self.clip_norm) for g in grads] <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> self.params_ph = [] <NEW_LINE> for p in self.params: <NEW_LINE> <INDENT> self.params_ph.append(tf.placeholder(tf.float32, shape=p.get_shape(), name="shared_memory_for_{}".format( (p.name.split("/", 1)[1]).replace(":", "_")))) <NEW_LINE> <DEDENT> self.sync_with_shared_memory = [] <NEW_LINE> for i in xrange(len(self.params)): <NEW_LINE> <INDENT> self.sync_with_shared_memory.append( self.params[i].assign(self.params_ph[i]))
Set up remaining layers, loss function, gradient compute and apply ops, network parameter synchronization ops, and summary ops.
625941bb8da39b475bd64e36
def imu(self): <NEW_LINE> <INDENT> url = self._build_url( self.IMU_METHOD, [] ) <NEW_LINE> try: <NEW_LINE> <INDENT> response = requests.get(url, timeout=1.0) <NEW_LINE> return json.loads(response.content) <NEW_LINE> <DEDENT> except requests.exceptions.ConnectTimeout: <NEW_LINE> <INDENT> return None
Reads the values from the IMU (MPU-6050) Returns x, y and z accelerations, angular velocities and temperature with values from -32768 to 32767 and degrees C * 10
625941bb925a0f43d2549d33
def __init__(self, width, height, x=0, y=0, id=None): <NEW_LINE> <INDENT> self.width = width <NEW_LINE> self.height = height <NEW_LINE> self.x = x <NEW_LINE> self.y = y <NEW_LINE> super().__init__(id)
Init method
625941bb0a366e3fb873e6d6
def is_prime(num): <NEW_LINE> <INDENT> from math import sqrt <NEW_LINE> if num < 2: <NEW_LINE> <INDENT> return 0 <NEW_LINE> <DEDENT> elif num == 2: <NEW_LINE> <INDENT> return 1 <NEW_LINE> <DEDENT> for i in range(3, int(sqrt(num)) + 1, 2): <NEW_LINE> <INDENT> if num % i == 0: <NEW_LINE> <INDENT> return 0 <NEW_LINE> <DEDENT> <DEDENT> return 1
Determine whether num is a prime number.
625941bb5fc7496912cc3844
def restarize_events(events, durations, dt, t_max): <NEW_LINE> <INDENT> smpl_events = np.array(np.round_(np.divide(events, dt)), dtype=int) <NEW_LINE> smpl_durations = np.array(np.round_(np.divide(durations, dt)), dtype=int) <NEW_LINE> smpl_events = extend_sampled_events(smpl_events, smpl_durations) <NEW_LINE> if np.allclose(t_max % dt, 0): <NEW_LINE> <INDENT> bin_seq = np.zeros(int(t_max / dt) + 1) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> bin_seq = np.zeros(int(np.round((t_max + dt) / dt))) <NEW_LINE> <DEDENT> bin_seq[smpl_events] = 1 <NEW_LINE> return bin_seq
build a binary sequence of events. Each event start is approximated to the nearest time point on the time grid defined by dt and t_max.
625941bbec188e330fd5a664
def read_parameters(): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> output = {} <NEW_LINE> par_file = open(DIR_MCSRED+PAR_FILENAME, 'r') <NEW_LINE> line = par_file.readline().strip() <NEW_LINE> while line != "": <NEW_LINE> <INDENT> idx = line.index(',') <NEW_LINE> output[line[:idx]] = line[idx+1:] <NEW_LINE> line = par_file.readline().strip() <NEW_LINE> <DEDENT> return output <NEW_LINE> <DEDENT> except Exception as e: <NEW_LINE> <INDENT> pass
Get the last parameters that were used for mesoffset @returns: A dictionary where keys are parameter names, and values are values, or None if the file could not be found or was in the wrong format.
625941bb851cf427c661a3d1
def __colr__(self): <NEW_LINE> <INDENT> typename = C(type(self).__name__, 'blue') <NEW_LINE> filepath = C(self.filepath, 'cyan') <NEW_LINE> if not self.parts: <NEW_LINE> <INDENT> return C('{typ}(filepath={filepath!r}, parts={parts!r})'.format( typ=typename, filepath=filepath, parts=C(self.parts, 'cyan'), )) <NEW_LINE> <DEDENT> return C('\n '.join(( '{typ}(', 'filepath={fname!r},', 'parts=[', '{parts}', ']\n)' )).format( typ=typename, filepath=filepath, parts='\n '.join(C(p) for p in self.parts), ))
Format this TigerFile as a Colr when passed directly to Colr().
625941bb442bda511e8be2e3
def collect_file_system_types(device): <NEW_LINE> <INDENT> supported_types = set(get_supported_filesystems()) <NEW_LINE> if device.format.type: <NEW_LINE> <INDENT> supported_types.add(device.format.type) <NEW_LINE> <DEDENT> if device.exists and device.original_format.type: <NEW_LINE> <INDENT> supported_types.add(device.original_format.type) <NEW_LINE> <DEDENT> return sorted(supported_types)
Collect supported file system types for the given device. :param device: a device :return: a list of file system types
625941bb7d847024c06be178
def exist(self, board, word): <NEW_LINE> <INDENT> length = len(word) <NEW_LINE> rows, cols = len(board), len(board[0]) <NEW_LINE> def is_legal_coordinate(x, y): <NEW_LINE> <INDENT> if x < 0 or x > rows - 1: return False <NEW_LINE> if y < 0 or y > cols - 1: return False <NEW_LINE> return True <NEW_LINE> <DEDENT> def backtrace_from(coor, currArr, pos): <NEW_LINE> <INDENT> if coor in currArr: <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> x, y = coor[0], coor[1] <NEW_LINE> if not is_legal_coordinate(x,y) or board[x][y] != word[pos]: <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> if pos == length - 1: <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> neighbors = [[x-1,y], [x+1,y], [x,y-1], [x,y+1]] <NEW_LINE> res = False <NEW_LINE> for nextCoor in neighbors: <NEW_LINE> <INDENT> currArr.append(coor) <NEW_LINE> res = res or backtrace_from(nextCoor, currArr, pos+1) <NEW_LINE> currArr.pop() <NEW_LINE> <DEDENT> return res <NEW_LINE> <DEDENT> for i in range(rows): <NEW_LINE> <INDENT> for j in range(cols): <NEW_LINE> <INDENT> if backtrace_from([i,j], [], 0): <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return False
:type board: List[List[str]] :type word: str :rtype: bool
625941bb1b99ca400220a970
def lasonce(s: str = '3333') -> str: <NEW_LINE> <INDENT> return str(len(s)) + s[0]
:param s: A repeating string of the same number. :return: How many numbers there are of a certain number. Example: f('33333') -> '53' Invalid usage: f('33311')
625941bb167d2b6e31218a55
def move(self, uncoupled_groups=None, force=False): <NEW_LINE> <INDENT> uncoupled_groups = [GroupQuery._object(self.client, g) for g in uncoupled_groups or []] <NEW_LINE> return self.client.request('move_group', [self.id, {'uncoupled_groups': [g.id for g in uncoupled_groups]}, force])
Create group move job. Job will move group's node backend to uncoupled group's node backend. Uncoupled group will be replaces, source group node backend will be disabled. Args: uncoupled_groups: list of uncoupled group that should be merged together and replaced by source group. force: cancel all pending jobs of low priority (e.g. recover-dc and defragmentation). Returns: A json of created job (or a dict with a single error key and value).
625941bb8e71fb1e9831d66c
def make_public(self, ttl=1440): <NEW_LINE> <INDENT> headers = {'x-container-read': '.r:*', 'x-cdn-ttl': str(ttl)} <NEW_LINE> return self.make_request('POST', headers=headers)
Make container public @param ttl: time in seconds to set as the TTL @raises ResponseError
625941bb7047854f462a12cb
def _consensus_assignments( cmd, ref_taxa, min_consensus=0.51, output_no_hits=False, exp_seq_ids=None, unassignable_label=_get_default_unassignable_label()): <NEW_LINE> <INDENT> with tempfile.NamedTemporaryFile() as output: <NEW_LINE> <INDENT> cmd = cmd + [output.name] <NEW_LINE> _run_command(cmd) <NEW_LINE> obs_taxa = _import_blast_format_assignments( output.name, ref_taxa, unassignable_label=unassignable_label) <NEW_LINE> consensus = _compute_consensus_annotations( obs_taxa, min_consensus=min_consensus, unassignable_label=unassignable_label) <NEW_LINE> if output_no_hits is True: <NEW_LINE> <INDENT> consensus = _output_no_hits( consensus, exp_seq_ids, unassignable_label) <NEW_LINE> <DEDENT> if not consensus: <NEW_LINE> <INDENT> consensus = {'': ('', '')} <NEW_LINE> <DEDENT> result = pd.DataFrame.from_dict(consensus, 'index') <NEW_LINE> result.index.name = 'Feature ID' <NEW_LINE> result.columns = ['Taxon', 'Consensus'] <NEW_LINE> return result
Run command line subprocess and find consensus taxonomy.
625941bb99fddb7c1c9de251
def dump_reassemble_stream(self, client_ads, server_ads): <NEW_LINE> <INDENT> tcp_stream = self.dump_tcp_content() <NEW_LINE> reassemble_stream = TcpData( tcp_stream, client_ads, server_ads).reassemble_tcp() <NEW_LINE> return reassemble_stream
传入tcp Stream,对其进行过滤,返回无重传,无重流的tcpstream :param client_ads:获取client端的ip,port List :param server_ads:获取server端的ip,port List :return: 返回无重传,无重流的tcpstream List
625941bb76e4537e8c351536
def encrypt(self, text_decrypted): <NEW_LINE> <INDENT> if len(text_decrypted) % self.num != 0: <NEW_LINE> <INDENT> raise RuntimeError("待加密的长度需要是栏数的倍数") <NEW_LINE> <DEDENT> text_encrypted = str() <NEW_LINE> groups = ZhaLan.__divide_group(text_decrypted, self.num) <NEW_LINE> for order in range(self.num): <NEW_LINE> <INDENT> for each_group in groups: <NEW_LINE> <INDENT> text_encrypted += each_group[order] <NEW_LINE> <DEDENT> <DEDENT> return text_encrypted
栅栏密码的加密操作 :param text_decrypted: "WoShiZhongWenBuShiYingWen" :return: 栅栏数为 5 时的加密结果, "WZWSnohehgSoniWhnBYeiguin"
625941bb6e29344779a624d4
def is_set_max_noutput_items(self): <NEW_LINE> <INDENT> return _filter_swig.fractional_resampler_cc_sptr_is_set_max_noutput_items(self)
is_set_max_noutput_items(fractional_resampler_cc_sptr self) -> bool
625941bb1f5feb6acb0c4a13
def generate_examples_from_timelines(timelines, movies_df, min_timeline_len=3, max_context_len=100, max_context_movie_genre_len=320, train_data_fraction=0.9, random_seed=None, shuffle=True): <NEW_LINE> <INDENT> examples = [] <NEW_LINE> movies_dict = generate_movies_dict(movies_df) <NEW_LINE> progress_bar = tf.keras.utils.Progbar(len(timelines)) <NEW_LINE> for timeline in timelines.values(): <NEW_LINE> <INDENT> if len(timeline) < min_timeline_len: <NEW_LINE> <INDENT> progress_bar.add(1) <NEW_LINE> continue <NEW_LINE> <DEDENT> single_timeline_examples = generate_examples_from_single_timeline( timeline=timeline, movies_dict=movies_dict, max_context_len=max_context_len, max_context_movie_genre_len=max_context_movie_genre_len) <NEW_LINE> examples.extend(single_timeline_examples) <NEW_LINE> progress_bar.add(1) <NEW_LINE> <DEDENT> if shuffle: <NEW_LINE> <INDENT> random.seed(random_seed) <NEW_LINE> random.shuffle(examples) <NEW_LINE> <DEDENT> last_train_index = round(len(examples) * train_data_fraction) <NEW_LINE> train_examples = examples[:last_train_index] <NEW_LINE> test_examples = examples[last_train_index:] <NEW_LINE> return train_examples, test_examples
Convert user timelines to tf examples. Convert user timelines to tf examples by adding all possible context-label pairs in the examples pool. Args: timelines: The user timelines to process. movies_df: The dataframe of all movies. min_timeline_len: The minimum length of timeline. If the timeline length is less than min_timeline_len, empty examples list will be returned. max_context_len: The maximum length of the context. If the context history length is less than max_context_length, features will be padded with default values. max_context_movie_genre_len: The length of movie genre feature. train_data_fraction: Fraction of training data. random_seed: Seed for randomization. shuffle: Whether to shuffle the examples before splitting train and test data. Returns: train_examples: TF example list for training. test_examples: TF example list for testing.
625941bb63f4b57ef0000fe0
def remove_phantom_bytes(data): <NEW_LINE> <INDENT> data_stripped = [] <NEW_LINE> for index in range(0, len(data), 2): <NEW_LINE> <INDENT> data_stripped.append(data[index]) <NEW_LINE> <DEDENT> data_stripped_binarray = array('B') <NEW_LINE> data_stripped_binarray.fromlist(data_stripped) <NEW_LINE> return data_stripped_binarray
Remove every 2nd byte from the data
625941bb67a9b606de4a7d7b
def md5( str ): <NEW_LINE> <INDENT> m = hashlib.md5() <NEW_LINE> m.update( str ) <NEW_LINE> return m.hexdigest()
MD5加密字符串函数
625941bbd164cc6175782c0c
def __init__(self, serviceId=None, destRegion=None): <NEW_LINE> <INDENT> self.serviceId = serviceId <NEW_LINE> self.destRegion = destRegion
:param serviceId: (Optional) 跨地域备份同步服务ID :param destRegion: (Optional) 备份同步的目标地域
625941bb44b2445a33931f5f
def get_encryption_names(email): <NEW_LINE> <INDENT> encryption_names = [] <NEW_LINE> address = get_email(email) <NEW_LINE> if address and len(address) > 0: <NEW_LINE> <INDENT> query_results = get_contacts_crypto(address) <NEW_LINE> if query_results: <NEW_LINE> <INDENT> log_message("{} has {} address(es)".format(address, len(query_results))) <NEW_LINE> for contacts_encryption in query_results: <NEW_LINE> <INDENT> encryption_name = contacts_encryption.encryption_software.name <NEW_LINE> encryption_names.append(encryption_name) <NEW_LINE> log_message("{} encryption software: {}".format(email, encryption_name)) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> log_message("no encryption software for {}".format(email)) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> log_message("unable to get address from {}".format(email)) <NEW_LINE> <DEDENT> return encryption_names
Get a list of all the active encryption program names for this email. # Test extreme case. See unittests to see how to use this function. >>> get_encryption_names(None) []
625941bbb57a9660fec3373f
def get_token(self, username, password): <NEW_LINE> <INDENT> self.username = username <NEW_LINE> self.password = password <NEW_LINE> url_auth = f"https://{self.ip}:{self.port}/mgmt/shared/authn/login" <NEW_LINE> post_data = { 'username': username, 'password': password, 'loginProviderName': 'tmos' } <NEW_LINE> r = requests.post( url_auth, json.dumps(post_data), auth=(username, password), headers=self.headers, verify=False ) <NEW_LINE> try: <NEW_LINE> <INDENT> if r.status_code == 200: <NEW_LINE> <INDENT> self.f5token = r.json()['token']['token'] <NEW_LINE> self.headers['X-F5-Auth-Token'] = self.f5token <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise SystemExit(f'was not possible to generate a token, status code = {r.status_code}') <NEW_LINE> <DEDENT> <DEDENT> except requests.exceptions.HTTPError as err: <NEW_LINE> <INDENT> raise RuntimeError(err)
:param username: F5 username :param password: F5 password :return:
625941bb23849d37ff7b2f51
def graph_roc_curve(response, prediction, filename, verbose=False): <NEW_LINE> <INDENT> if verbose: <NEW_LINE> <INDENT> print('Generating ROC curve...') <NEW_LINE> <DEDENT> (fpr, tpr, thresholds) = sklearn.metrics.roc_curve(response, prediction) <NEW_LINE> roc_auc = sklearn.metrics.auc(fpr, tpr) <NEW_LINE> fig = plt.figure() <NEW_LINE> ax = fig.add_subplot(1,1,1) <NEW_LINE> ax.plot(fpr, tpr) <NEW_LINE> ax.plot([0,1], [0,1], 'k--') <NEW_LINE> ax.set_xlabel('False positive rate') <NEW_LINE> ax.set_ylabel('True positive rate') <NEW_LINE> ax.set_title('ROC curve for Bechdel test') <NEW_LINE> ax.legend(['AUC = %6.4f' % roc_auc], loc='lower right') <NEW_LINE> fig.savefig(filename) <NEW_LINE> plt.close(fig) <NEW_LINE> if verbose: <NEW_LINE> <INDENT> print('AUC of ROC: %6.4f' % roc_auc) <NEW_LINE> print('ROC graph output to %s.' % filename)
Generates an ROC graph.
625941bbb545ff76a8913cdd
def changeUri(self, gid, fileIndex, delUris, addUris, position=None): <NEW_LINE> <INDENT> if self.useSecret: <NEW_LINE> <INDENT> return self.server.aria2.changeUri("token:"+self.fixedSecret, gid, fileIndex, delUris, addUris, position) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return self.server.aria2.changeUri(gid, fileIndex, delUris, addUris, position)
This method removes URIs in delUris from and appends URIs in addUris to download denoted by gid. gid: string, GID. fileIndex: integer, file to affect (1-based) delUris: list, URIs to be removed addUris: list, URIs to be added position: integer, where URIs are inserted, after URIs have been removed return: This method returns a list which contains 2 integers. The first integer is the number of URIs deleted. The second integer is the number of URIs added.
625941bbe8904600ed9f1de8
def test_2_pence_known_case(self): <NEW_LINE> <INDENT> self.assertEqual(coin_sum_combos(2), 2)
test the known case for 2 pence 2 pence only has a limited combination of coin combos: 2p 1p + 1p
625941bb9f2886367277a74f
def getShutterOutputMode(self): <NEW_LINE> <INDENT> index = self._getSomethingSimple( self.at.getEnumerated, Features.ShutterOutputMode ) <NEW_LINE> return self._getSomethingWithIndex( self.at.getEnumStringByIndex, Features.ShutterOutputMode, index )
Gets the current value of ShutterOutputMode. Returns ------- str The current value of ShutterOutputMode.
625941bb31939e2706e4cd2e
def getWriterPlugIn(self): <NEW_LINE> <INDENT> return ProductWriterPlugIn(ProductWriter_getWriterPlugIn(self._obj))
Returns the plug-in which created this product writer. @return the product writer plug-in, should never be <code>null</code>
625941bb3617ad0b5ed67db7
def test_add_and_remove_child_node(): <NEW_LINE> <INDENT> document = Document() <NEW_LINE> root = Node('root') <NEW_LINE> node = Node('node') <NEW_LINE> document.add(root) <NEW_LINE> document.add(node) <NEW_LINE> assert node in document.roots <NEW_LINE> assert node not in root.children <NEW_LINE> root.children.append(node) <NEW_LINE> assert node not in document.roots <NEW_LINE> assert node in root.children <NEW_LINE> del root.children[0] <NEW_LINE> assert node in document.roots <NEW_LINE> assert node not in root.children <NEW_LINE> document.remove(node) <NEW_LINE> assert node not in document.roots <NEW_LINE> assert node not in root.children
Add and remove a child node.
625941bb7b25080760e3931a
def search(self, data): <NEW_LINE> <INDENT> current = self.head <NEW_LINE> found = False <NEW_LINE> while current and not found: <NEW_LINE> <INDENT> if current.data == data: <NEW_LINE> <INDENT> found = True <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> current = current.next <NEW_LINE> <DEDENT> <DEDENT> if not current: <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> return found
Searches the list for a node with payload data. Returns the node object or None if not found. Time complexity is O(n) in worst case.
625941bbadb09d7d5db6c651
def currentYearPRs(userID, minDistance, jsonData): <NEW_LINE> <INDENT> import pandas <NEW_LINE> from datetime import timedelta <NEW_LINE> df = pandas.DataFrame(jsonData, columns=["user_id", "start", "distance", "pace"]) <NEW_LINE> df["date"] = pandas.to_datetime(df["start"]) <NEW_LINE> df["month"] = df["date"].dt.month <NEW_LINE> df = df.loc[df["user_id"] == userID] <NEW_LINE> df = df.loc[df["distance"] > minDistance] <NEW_LINE> df = df.sort_values(by="date", ascending=True) <NEW_LINE> prevYearDf = df.loc[df["date"].dt.year == (pandas.to_datetime("today") - timedelta(days=365)).year] <NEW_LINE> prevYearMaxPace = round(prevYearDf["pace"].max(), 2) <NEW_LINE> if pandas.isnull(prevYearMaxPace): <NEW_LINE> <INDENT> prevYearMaxPace = 0 <NEW_LINE> <DEDENT> df = df.loc[df["date"].dt.year == pandas.to_datetime("today").year] <NEW_LINE> temp = df.groupby("month").max().add_prefix("max_") <NEW_LINE> paceArr = temp["max_pace"].tolist() <NEW_LINE> paceArr = [round(num, 2) for num in paceArr] <NEW_LINE> currentMax = prevYearMaxPace <NEW_LINE> timesPRd = 0 <NEW_LINE> for pace in paceArr: <NEW_LINE> <INDENT> if pace > currentMax: <NEW_LINE> <INDENT> timesPRd = timesPRd + 1 <NEW_LINE> <DEDENT> <DEDENT> return timesPRd
Inputs: userID: string minDistance: integer, the minimum number of kilometers to count a run toward bettering their pace jsonData: json data. If data is stored in a directory, open and load the data before passing it to this function. Outputs: An integer representing the number of times the user broke their record for fastest pace for minDistance kilometer runs
625941bbad47b63b2c509e45
def get_posts_num(group_id): <NEW_LINE> <INDENT> return int(vk.api_method("wall.get", owner_id="-"+group_id)["response"]["count"])
returns number of posts of the scpecified public or group
625941bb167d2b6e31218a56
def send_link(link, excludeid=None): <NEW_LINE> <INDENT> reg_ids = [] <NEW_LINE> query = GCMRegIdModel.query(GCMRegIdModel.userid == link.userid) <NEW_LINE> for reg_model in query: <NEW_LINE> <INDENT> reg_ids.append(reg_model.regid) <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> reg_ids.remove(excludeid) <NEW_LINE> <DEDENT> except ValueError: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> if len(reg_ids) < 1: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> _send(link.userid, reg_ids, to_dict(link))
Transmits the link specified by the sha to the users devices. Does not run in a separate thread because App-Engine did not seem to support that.
625941bb5510c4643540f2ac
def collapse_unweighted_edges(self, threshold=0.0000001, update_splits=False): <NEW_LINE> <INDENT> for e in self.postorder_edge_iter(): <NEW_LINE> <INDENT> if e.length <= threshold: <NEW_LINE> <INDENT> e.collapse() <NEW_LINE> <DEDENT> <DEDENT> if update_splits: <NEW_LINE> <INDENT> self.update_splits()
Collapse all edges with edge lengths less than or equal to ``threshold``.
625941bb4e696a04525c930b
def __init__(self, lattice_sizes, monotonicities, output_min, output_max, unimodalities=None): <NEW_LINE> <INDENT> lattice_lib.verify_hyperparameters( lattice_sizes=lattice_sizes, monotonicities=monotonicities, unimodalities=unimodalities, output_min=output_min, output_max=output_max) <NEW_LINE> self.lattice_sizes = lattice_sizes <NEW_LINE> self.monotonicities = monotonicities <NEW_LINE> self.output_min = output_min <NEW_LINE> self.output_max = output_max <NEW_LINE> self.unimodalities = unimodalities
Initializes an instance of `LinearInitializer`. Args: lattice_sizes: Lattice sizes of `tfl.layers.Lattice` to initialize. monotonicities: Monotonic dimensions for initialization. Does not need to match `monotonicities` of `tfl.layers.Lattice`. output_min: Minimum layer output after initialization. output_max: Maximum layer output after initialization. unimodalities: None or unimodal dimensions after initialization. Does not need to match `unimodalities` of `tfl.layers.Lattice`. Raises: ValueError: If there is a mismatch between `monotonicities` and `lattice_sizes`.
625941bb8e05c05ec3eea231
def make_original_jobs_from_counts(jobs_arr_arr, eg_array, fur_array, num_levels): <NEW_LINE> <INDENT> result_jobs_arr = np.zeros(eg_array.size) <NEW_LINE> eg = 0 <NEW_LINE> for job_arr in jobs_arr_arr: <NEW_LINE> <INDENT> eg += 1 <NEW_LINE> this_job_list = np.repeat((np.arange(len(job_arr)) + 1), job_arr) <NEW_LINE> np.put(result_jobs_arr, np.where((eg_array == eg) & (fur_array == 0))[0][:sum(job_arr)], this_job_list) <NEW_LINE> np.put(result_jobs_arr, np.where(result_jobs_arr == 0)[0], num_levels + 1) <NEW_LINE> <DEDENT> return result_jobs_arr.astype(int)
Short_Form This function grabs jobs from standalone job count arrays (normally stovepiped) for each employee group and inserts those jobs into a proposed integrated list, or a standalone list. Each eg (employee group) is assigned jobs from their standalone list in order top to bottom. Resut is a combined list of jobs with each eg maintaining ordered independent stovepipe jobs within the combined list of jobs jobs_arr_arr is an array of arrays, likely output[0] from make_array_of_job_lists function. Order of job count arrays within jobs_arr_arr input must match emp group codes order (1, 2, 3, etc.). If total group counts of job(s) is less than slots available to that group, remaining slots will be assigned (remain) a zero job number (0). eg_array is list (order sequence) of employee group codes from proposed list with length equal to length of proposed list. Result of this function is ultimately merged into long form for no bump no flush routine. employees who are originally marked as furloughed are assigned the furlough level number which is 1 greater than the number of job levels.
625941bb30dc7b7665901829
def test_bind_new_file(self): <NEW_LINE> <INDENT> url_list = ['http://pulpserver'] <NEW_LINE> repolib.bind(self.TEST_REPO_FILENAME, self.TEST_MIRROR_LIST_FILENAME, self.TEST_KEYS_DIR, self.TEST_CERT_DIR, REPO_ID, REPO_NAME, url_list, {}, CLIENTCERT, ENABLED, self.LOCK) <NEW_LINE> self.assertTrue(os.path.exists(self.TEST_REPO_FILENAME)) <NEW_LINE> self.assertTrue(not os.path.exists(self.TEST_MIRROR_LIST_FILENAME)) <NEW_LINE> repo_file = RepoFile(self.TEST_REPO_FILENAME) <NEW_LINE> repo_file.load() <NEW_LINE> self.assertEqual(1, len(repo_file.all_repos())) <NEW_LINE> loaded = repo_file.get_repo(REPO_ID) <NEW_LINE> self.assertTrue(loaded is not None) <NEW_LINE> self.assertEqual(loaded['name'], REPO_NAME) <NEW_LINE> self.assertTrue(loaded['enabled']) <NEW_LINE> self.assertEqual(loaded['gpgcheck'], '0') <NEW_LINE> self.assertEqual(loaded['gpgkey'], None) <NEW_LINE> self.assertEqual(loaded['baseurl'], url_list[0]) <NEW_LINE> self.assertTrue('mirrorlist' not in loaded) <NEW_LINE> path = loaded['sslclientcert'] <NEW_LINE> f = open(path) <NEW_LINE> content = f.read() <NEW_LINE> f.close() <NEW_LINE> self.assertEqual(CLIENTCERT, content) <NEW_LINE> self.assertTrue(loaded['sslverify'], '1') <NEW_LINE> self.assertEqual(loaded['sslcacert'], DEFAULT_CA_PATH)
Tests binding a repo when the underlying .repo file does not exist.
625941bb6fece00bbac2d5fb
def swapPairs(self, head): <NEW_LINE> <INDENT> if not head or not head.next: return head <NEW_LINE> dummy = ListNode(0) <NEW_LINE> dummy.next = head <NEW_LINE> l1 = dummy <NEW_LINE> l2 = head <NEW_LINE> while l2 and l2.next: <NEW_LINE> <INDENT> node = l2.next.next <NEW_LINE> l1.next = l2.next <NEW_LINE> l2.next.next = l2 <NEW_LINE> l2.next = node <NEW_LINE> l1 = l2 <NEW_LINE> l2 = node <NEW_LINE> <DEDENT> return dummy.next
:type head: ListNode :rtype: ListNode
625941bb046cf37aa974cc0a
def test_add_cart(self): <NEW_LINE> <INDENT> pass
Test case for add_cart Create a cart # noqa: E501
625941bb8e71fb1e9831d66d
def _get_schema(self, endpoint): <NEW_LINE> <INDENT> data = None <NEW_LINE> if os.path.exists(self._context.schema_loc): <NEW_LINE> <INDENT> with io.open(self._context.schema_loc, 'rb') as f: <NEW_LINE> <INDENT> fdata = f.read() <NEW_LINE> data = {} <NEW_LINE> if fdata: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> data = json.loads(fdata) <NEW_LINE> <DEDENT> except TypeError: <NEW_LINE> <INDENT> data = json.loads(fdata.decode('utf-8')) <NEW_LINE> <DEDENT> <DEDENT> if self._version in data: <NEW_LINE> <INDENT> return data[self._version] <NEW_LINE> <DEDENT> data[self._version] = self.read_endpoint(endpoint, sensitive=True) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> data = {self._version: self.read_endpoint(endpoint, sensitive=True)} <NEW_LINE> <DEDENT> with io.open(self._context.schema_loc, 'wb+') as f: <NEW_LINE> <INDENT> jdata = json.dumps(data) <NEW_LINE> try: <NEW_LINE> <INDENT> f.write(jdata) <NEW_LINE> <DEDENT> except TypeError: <NEW_LINE> <INDENT> f.write(jdata.encode('utf-8')) <NEW_LINE> <DEDENT> <DEDENT> return data[self._version]
Tries to access cached schema, if not available, pulls new schema from the remote box.
625941bb9f2886367277a750
def solve( A, x0, b, nb_iter_max, epsilon, Prec = None ) : <NEW_LINE> <INDENT> rk = b - A.dot(x0) <NEW_LINE> error = rk.dot(rk) <NEW_LINE> error_init = b.dot(b) <NEW_LINE> if (Prec is None): <NEW_LINE> <INDENT> pk = rk <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> pk = Prec.solve(rk) <NEW_LINE> <DEDENT> zk = pk <NEW_LINE> xk = x0.copy() <NEW_LINE> iter = 0 <NEW_LINE> while ( iter < nb_iter_max ) and ( error > epsilon*epsilon*error_init): <NEW_LINE> <INDENT> Apk = A.dot(pk) <NEW_LINE> rkdzk = rk.dot(zk) <NEW_LINE> alpha = rkdzk/Apk.dot(pk) <NEW_LINE> xk = xk + alpha * pk <NEW_LINE> rk = rk - alpha * Apk <NEW_LINE> error = rk.dot(rk) <NEW_LINE> if (Prec is None) : <NEW_LINE> <INDENT> zk = rk <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> zk = Prec.solve(rk) <NEW_LINE> <DEDENT> betak = rk.dot(zk)/rkdzk <NEW_LINE> pk = zk + betak*pk <NEW_LINE> iter += 1 <NEW_LINE> <DEDENT> return xk, iter, error
Résoud un système linéaire par gradient conjugué. Le gradient conjugué peut être conjugué si on passe un préconditionneur via Prec. Le préconditionneur doit posséder dans ce cas une méthode solve. Les arguments d'entrée sont : A : La matrice Lhs x0: La solution initiale b : Le second membre nb_iter_max : Le nombre maximal d'itérations avant que le gc s'arrête. epsilon : L'erreur relative faite sur la solution -> ||rk||/||b||avec rk = b-A.xk Prec ( optionnel ) : Le préconditionneur
625941bb15fb5d323cde09cb
def get_paginated_response(self, data): <NEW_LINE> <INDENT> return Response( { "meta": {"count": self.count}, "links": { "first": self.get_first_link(), "previous": self.get_previous_link(), "next": self.get_next_link(), "last": self.get_last_link(), }, "data": data, } )
Returns paginated response.
625941bbfb3f5b602dac3550
def start(self): <NEW_LINE> <INDENT> if self.is_runnning: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> debug(DEBUG, '%s start', self) <NEW_LINE> self.is_runnning = True
Starts the media engine.
625941bb50485f2cf553cc58
def print_first_word(words): <NEW_LINE> <INDENT> first_word = words.pop(0) <NEW_LINE> print(first_word)
Print first word after popping it off
625941bb498bea3a759b9970
def get_all_attributes(self): <NEW_LINE> <INDENT> return self.entries[0].attributes_names
Return all the attributes. :return: All the attributes.
625941bbd99f1b3c44c67455
def test_return_job_status(self): <NEW_LINE> <INDENT> with mock.patch('data.views.export_csv.AsyncResult', spec=celery.result.AsyncResult) as mock_status: <NEW_LINE> <INDENT> mock_status.return_value.state = celery.states.PENDING <NEW_LINE> mock_status.return_value.info = dict() <NEW_LINE> response = self.admin_client.get(self.base_url + 'fake-id/') <NEW_LINE> self.assertEqual({'status': celery.states.PENDING, 'info': {}}, response.data) <NEW_LINE> mock_status.return_value.state = celery.states.STARTED <NEW_LINE> response = self.admin_client.get(self.base_url + 'fake-id/') <NEW_LINE> self.assertEqual({'status': celery.states.STARTED, 'info': {}}, response.data) <NEW_LINE> mock_status.return_value.state = celery.states.SUCCESS <NEW_LINE> mock_status.return_value.get.return_value = 'filepath-here.tar.gz' <NEW_LINE> response = self.admin_client.get(self.base_url + 'fake-id/') <NEW_LINE> self.assertEqual({'status': celery.states.SUCCESS, 'result': 'http://testserver/download/filepath-here.tar.gz'}, response.data) <NEW_LINE> mock_status.return_value.state = celery.states.FAILURE <NEW_LINE> mock_status.return_value.get.return_value = 'error msg here' <NEW_LINE> response = self.admin_client.get(self.base_url + 'fake-id/') <NEW_LINE> self.assertEqual({'status': celery.states.FAILURE, 'error': 'error msg here'}, response.data)
Test that GETs return job status
625941bb92d797404e304049
def show_editor_buffer(self, editor_buffer): <NEW_LINE> <INDENT> self.active_tab.show_editor_buffer(editor_buffer)
Show this EditorBuffer in the current window.
625941bb462c4b4f79d1d590
def create_new_coordinates(data, new_tweet): <NEW_LINE> <INDENT> coordinates = data.get('coordinates') <NEW_LINE> if coordinates: <NEW_LINE> <INDENT> for value in coordinates: <NEW_LINE> <INDENT> longitude, latitude = value.get('coordinates') <NEW_LINE> new_coordinate = Coordinate(longitude=longitude, latitude=latitude, tweet_id_str=new_tweet.tweet_id_str, tweet=new_tweet ) <NEW_LINE> session.add(new_coordinate) <NEW_LINE> session.commit()
insert new hashtags into db
625941bba8370b7717052760
def init_platform(): <NEW_LINE> <INDENT> initializer = None <NEW_LINE> try: <NEW_LINE> <INDENT> initializer = globals()[_system + "Initializer"] <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> if initializer: <NEW_LINE> <INDENT> logger.debug("Running initializer for %s" % (platform.system(),)) <NEW_LINE> initializer() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> logger.debug("Initializer not found for %s" % (platform.system(),))
Returns the right initializer for the platform we are running in, or None if no proper initializer is found
625941bb5e10d32532c5eded
def dict_deep_overlay(*data, list_replace=False): <NEW_LINE> <INDENT> if len(data) == 1: <NEW_LINE> <INDENT> return data[0] <NEW_LINE> <DEDENT> elif len(data) != 2: <NEW_LINE> <INDENT> head = dict_deep_overlay(data[0], data[1], list_replace=list_replace) <NEW_LINE> return dict_deep_overlay(head, *data[2:], list_replace=list_replace) <NEW_LINE> <DEDENT> original, overlay = data <NEW_LINE> if isinstance(original, (list, tuple)) and isinstance(overlay, dict): <NEW_LINE> <INDENT> for key, item in overlay.items(): <NEW_LINE> <INDENT> assert isinstance(key, int) <NEW_LINE> original[key] = dict_deep_overlay(original[key], item) <NEW_LINE> <DEDENT> <DEDENT> elif not isinstance(original, type(overlay)): <NEW_LINE> <INDENT> return overlay <NEW_LINE> <DEDENT> elif isinstance(overlay, dict): <NEW_LINE> <INDENT> for key, item in overlay.items(): <NEW_LINE> <INDENT> _dict_deep_overlay_item(original, key, item, list_replace) <NEW_LINE> <DEDENT> <DEDENT> elif isinstance(overlay, list) and not list_replace: <NEW_LINE> <INDENT> raise ValueError("Cannot implicitly merge two lists, use key* or key+ " + "when inheriting: (list1: %s, list2: %s)" % (str(original), str(overlay))) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return overlay <NEW_LINE> <DEDENT> return original
Overlay dictionaries deeply
625941bba17c0f6771cbdf13
def _step(self, challenge=''): <NEW_LINE> <INDENT> log.debug('GSSAPI step challenge="{0}"'.format(challenge)) <NEW_LINE> return deferToThread(kerberos.authGSSClientStep, self._context, challenge)
Processes a single GSSAPI client-side step using the supplied server data. @param challenge: a string containing the base64-encoded server data (which may be empty for the first step). @return: a result code
625941bbc432627299f04b04
def addAtIndex(self, index, val): <NEW_LINE> <INDENT> if index == self.length: <NEW_LINE> <INDENT> self.addAtTail(val) <NEW_LINE> <DEDENT> elif index > self.length: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> index_before = index -1 <NEW_LINE> start_index =0 <NEW_LINE> starting_node = self.head <NEW_LINE> while starting_node.next != None and start_index != index_before: <NEW_LINE> <INDENT> starting_node = starting_node.next <NEW_LINE> start_index += 1 <NEW_LINE> <DEDENT> before = starting_node <NEW_LINE> new_node = Node(val) <NEW_LINE> after = before.next <NEW_LINE> before.next = new_node <NEW_LINE> new_node.next = after <NEW_LINE> self.length += 1
Add a node of value val before the index-th node in the linked list. If index equals to the length of linked list, the node will be appended to the end of linked list. If index is greater than the length, the node will not be inserted. :type index: int :type val: int :rtype: void
625941bb63b5f9789fde6fa6
def numbers(x: int) -> int: <NEW_LINE> <INDENT> for x in range(1, connectfour.BOARD_COLUMNS+1): <NEW_LINE> <INDENT> print(x, end = " ") <NEW_LINE> <DEDENT> print("")
Prints numbers on top of the columns of the game board.
625941bbc4546d3d9de728f1
def get_builds(self, id_user): <NEW_LINE> <INDENT> raise NotImplementedError('%s.get_builds' % class_name(self))
Возвращает список зданий. <id_user> - ID пользователя
625941bb4c3428357757c1ea
def system_node_reboot(self, node): <NEW_LINE> <INDENT> return self.request( "system-node-reboot", { 'node': [ node, 'node', [ basestring, 'None' ], False ], }, { } )
Reboot the specified node. Only an admin can reboot the node. If attempted by a user with insufficient privileges EAPIPRIVILEGE is returned. :param node: The textual name of a node.
625941bb45492302aab5e180
def _browser_url(service: ServiceCall) -> None: <NEW_LINE> <INDENT> webbrowser.open(service.data[ATTR_URL])
Browse to URL.
625941bb187af65679ca4fde
def lnprob(c, xs, ys, sigma): <NEW_LINE> <INDENT> guess = series(c, xs) <NEW_LINE> return -sum((guess-ys)**2)/(2* sigma**2)
log-likelihood for coefficients c given data, assuming gaussian errors
625941bb6fb2d068a760ef5a
def where(self , condition , *arguments): <NEW_LINE> <INDENT> condition = str(condition).strip() <NEW_LINE> conditions = condition.split(' ') <NEW_LINE> where = '' <NEW_LINE> for v in conditions: <NEW_LINE> <INDENT> where += self.filterColumn(v) + ' ' <NEW_LINE> <DEDENT> where = len(self._where) > 0 and ' AND ( ' + where + ') ' or ' ( ' +where + ') ' <NEW_LINE> self._where.append( where ) <NEW_LINE> for v in arguments: <NEW_LINE> <INDENT> self._param['where'].append(v) <NEW_LINE> <DEDENT> return self
与查询条件
625941bbbe7bc26dc91cd4c5
def _update_scores(key_id, key_info, known_keys_list): <NEW_LINE> <INDENT> key_info["score"] = sum([score for source, (score, reason) in key_info.get('scores', {}).iteritems() if source != 'Known encryption keys']) <NEW_LINE> if key_id in known_keys_list: <NEW_LINE> <INDENT> score, reason = _score_validity(known_keys_list[key_id]["validity"], local=True) <NEW_LINE> if score == 0: <NEW_LINE> <INDENT> score += 9 <NEW_LINE> reason = _('Encryption key has been imported') <NEW_LINE> <DEDENT> key_info["on_keychain"] = True <NEW_LINE> key_info['score'] += score <NEW_LINE> key_info['scores']['Known encryption keys'] = [score, reason] <NEW_LINE> <DEDENT> if "keysize" in key_info: <NEW_LINE> <INDENT> bits = int(key_info["keysize"]) <NEW_LINE> score = bits // 1024 <NEW_LINE> key_info['score'] += score <NEW_LINE> if bits >= 4096: <NEW_LINE> <INDENT> key_strength = _('Encryption key is very strong') <NEW_LINE> <DEDENT> elif bits >= 3072: <NEW_LINE> <INDENT> key_strength = _('Encryption key is strong') <NEW_LINE> <DEDENT> elif bits >= 2048: <NEW_LINE> <INDENT> key_strength = _('Encryption key is average') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> key_strength = _('Encryption key is weak') <NEW_LINE> <DEDENT> key_info['scores']['Encryption key strength'] = [score, key_strength] <NEW_LINE> <DEDENT> sc, reason = max([(abs(score), reason) for score, reason in key_info['scores'].values()]) <NEW_LINE> key_info['score_reason'] = '%s' % reason <NEW_LINE> log_score = math.log(3 * abs(key_info['score']), 3) <NEW_LINE> key_info['score_stars'] = (max(1, min(int(round(log_score)), 5)) * (-1 if (key_info['score'] < 0) else 1))
Update scores and score explanations
625941bba8ecb033257d2f96
def exists_in_cf(self, current_cf_stacks): <NEW_LINE> <INDENT> for stack in current_cf_stacks: <NEW_LINE> <INDENT> if str(stack.stack_name) == self.cf_stack_name: <NEW_LINE> <INDENT> return stack <NEW_LINE> <DEDENT> <DEDENT> return False
Check if this stack exists in CloudFormation
625941bbec188e330fd5a665
def get_client(api_version, **kwargs): <NEW_LINE> <INDENT> cli_kwargs = { 'username': kwargs.get('os_username'), 'password': kwargs.get('os_password'), 'tenant_name': kwargs.get('os_tenant_name'), 'token': kwargs.get('os_auth_token'), 'auth_url': kwargs.get('os_auth_url'), 'endpoint': kwargs.get('tuskar_url'), } <NEW_LINE> client = Client(api_version, **cli_kwargs) <NEW_LINE> if client: <NEW_LINE> <INDENT> return client <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise ValueError("Need correct set of parameters")
Get an authtenticated client, based on the credentials in the keyword args. :param api_version: the API version to use (only '2' is valid) :param kwargs: keyword args containing credentials, either: * os_auth_token: pre-existing token to re-use * tuskar_url: tuskar API endpoint or: * os_username: name of user * os_password: user's password * os_auth_url: endpoint to authenticate against * os_tenant_{name|id}: name or ID of tenant
625941bb8a43f66fc4b53f29
def prep(): <NEW_LINE> <INDENT> parser = argparse.ArgumentParser(description='How to run plunder.') <NEW_LINE> parser.add_argument('-q', '--query', help='Your query to search', dest="query", default=".php?id=1") <NEW_LINE> parser.add_argument('-v', '--version', action='version', version=__version__) <NEW_LINE> parser.add_argument('-j','--json', help='Output in JSON file, otherwise output to screen only.', dest="json_out", action='store_true', default=False) <NEW_LINE> args = parser.parse_args() <NEW_LINE> return args
Get the args and set them. args ---- q or query for the search parameters you want to send v or version for the current version j or json to output to a json file
625941bb67a9b606de4a7d7c
def fsl_reverse_xfm(self, in_file=None, out_file=None): <NEW_LINE> <INDENT> invmat = [self.fsl_laucher, 'convert_xfm', '-omat', out_file, '-inverse', in_file, ] <NEW_LINE> logging.debug(' '.join(invmat)) <NEW_LINE> subprocess.call(invmat)
Runs FSL convert xfm with with invert options :param in_file: matrix transform :param out_file: inverse matrix transform :return: convert_xfm -omat <outmat> -inverse <inmat>
625941bb4d74a7450ccd4083
def fit(self,Y,X,weights = None): <NEW_LINE> <INDENT> n,m = np.shape(X) <NEW_LINE> if weights is not None: <NEW_LINE> <INDENT> w = np.sqrt(weights) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> w = np.ones(n) <NEW_LINE> weights = w <NEW_LINE> <DEDENT> X_w = (X.T*w).T <NEW_LINE> Y_w = Y*w <NEW_LINE> if self.theta is None: <NEW_LINE> <INDENT> self.init_params(m) <NEW_LINE> <DEDENT> theta_recovery = self.theta <NEW_LINE> var_recovery = self.var <NEW_LINE> log_like_before = self.log_likelihood(X,Y,weights) <NEW_LINE> if self.solver == "cholesky": <NEW_LINE> <INDENT> part_one = np.dot(X_w.T,X_w) <NEW_LINE> part_two = np.dot(X_w.T,Y_w) <NEW_LINE> self.theta = cholesky_solver_least_squares(part_one, part_two) <NEW_LINE> <DEDENT> elif self.solver == "qr": <NEW_LINE> <INDENT> Q,R = np.linalg.qr(X_w) <NEW_LINE> self.theta = qr_solver(Q,R,Y_w) <NEW_LINE> <DEDENT> elif self.solver == "lapack_solver": <NEW_LINE> <INDENT> self.theta = lstsq_wrapper(Y_w,X_w) <NEW_LINE> <DEDENT> vec_1 = (Y_w - np.dot(X_w,self.theta)) <NEW_LINE> self.var = np.dot(vec_1,vec_1)/np.sum(weights) <NEW_LINE> log_like_after = self.log_likelihood(X,Y,weights) <NEW_LINE> delta_log_like = ( log_like_after - log_like_before)/n <NEW_LINE> if delta_log_like < self.stop_learning: <NEW_LINE> <INDENT> self.theta = theta_recovery <NEW_LINE> self.var = var_recovery <NEW_LINE> delta_log_like = 0 <NEW_LINE> <DEDENT> delta = self.theta - theta_recovery <NEW_LINE> self.delta_param_norm = np.sum(np.dot(delta.T,delta)) <NEW_LINE> self.delta_log_like = delta_log_like
Fits weighted regression, updates coefficients and variance Parameters: ----------- X: numpy array of size 'n x m' Explanatory variables Y: numpy array of size 'n x 1' Target variable can take only values 0 or 1 weights: numpy array of size 'n x 1' Weights for observations
625941bb7d847024c06be179
def message_post(self, cr, uid, thread_id, context=None, **kwargs): <NEW_LINE> <INDENT> partner_id = self._message_post_get_pid(cr, uid, thread_id, context=context) <NEW_LINE> return self.pool.get('res.partner').message_post(cr, uid, partner_id, context=context, **kwargs)
Redirect the posting of message on res.users to the related partner. This is done because when giving the context of Chatter on the various mailboxes, we do not have access to the current partner_id.
625941bbd10714528d5ffba0
@click.group(name='product') <NEW_LINE> def product_cli(): <NEW_LINE> <INDENT> pass
Product related commands.
625941bb1d351010ab8559dd
def init(t_nrow, t_ncol, t_nAction=4): <NEW_LINE> <INDENT> nState = t_nrow * t_ncol <NEW_LINE> Qtable = np.zeros((nState, t_nAction), dtype=np.float32) <NEW_LINE> States = np.empty((nState,2), np.int16) <NEW_LINE> for i in range(t_nrow): <NEW_LINE> <INDENT> for j in range(t_ncol): <NEW_LINE> <INDENT> index = i * t_ncol + j <NEW_LINE> States[index] = i, j <NEW_LINE> <DEDENT> <DEDENT> movements = np.array([[+1,0], [0,+1], [0,-1], [-1,0]], np.int16) <NEW_LINE> rewards = np.array([-100,-1000,+1000,+1], np.int16) <NEW_LINE> return Qtable, movements, States, rewards
| DOWN Right LEFT UP --------|---------------------------------------- (0, 0) | (0, 1) | (., .) |
625941bb3eb6a72ae02ec395
def get_search_index(self, index): <NEW_LINE> <INDENT> raise NotImplementedError
Returns a yokozuna search index or None.
625941bb3346ee7daa2b2c2a
def launch_slave(self): <NEW_LINE> <INDENT> pass
For multi-node services, the master node is responsible for starting/stopping all slave nodes. Launch slave is the method called when the master monitor needs to start up a new slave.
625941bbab23a570cc250040
def load_value(self, review_request_details): <NEW_LINE> <INDENT> return review_request_details.extra_data.get(self.field_id)
Loads a value from the review request or draft. By default, this loads the value as-is from the extra_data field. This can be overridden if you need to deserialize the value in some way. This must use ``review_request_details`` instead of ``self.review_request_details``.
625941bbcdde0d52a9e52ef0
@pytest.fixture(scope='session') <NEW_LINE> def headers(): <NEW_LINE> <INDENT> return {'AUTHORIZATION': http_auth(username, password)}
Return headers valid for a test request.
625941bb5fc7496912cc3846
def test_package_is_uploaded_with_releases_using_cache(default_repo): <NEW_LINE> <INDENT> default_repo._releases_json_data = {"fake": {"0.1": [{"filename": "fake.whl"}]}} <NEW_LINE> package = pretend.stub( safe_name="fake", basefilename="fake.whl", metadata=pretend.stub(version="0.1"), ) <NEW_LINE> assert default_repo.package_is_uploaded(package) is True
Return True when the package is in the releases cache.
625941bb4e4d5625662d429d
def circle(x, y, center_x, center_y, radius): <NEW_LINE> <INDENT> r = np.sqrt((x - center_x)**2 + (y - center_y)**2) <NEW_LINE> circle_draw = np.zeros_like(r) <NEW_LINE> circle_draw[r < radius] = 1 <NEW_LINE> return circle_draw
uniform density circle :param x: x-coordinates :param y: y-coordinates :param center_x: center of x-coordinates :param center_y: center of y-coordinates :param radius: radius of circle :return:
625941bb01c39578d7e74d03
def startOfSequence(self): <NEW_LINE> <INDENT> pass
QXmlSerializer.startOfSequence()
625941bbec188e330fd5a666
def put(self, key, value): <NEW_LINE> <INDENT> if key in self.cache: <NEW_LINE> <INDENT> item = self.cache[key] <NEW_LINE> item.value = value <NEW_LINE> self.queue.remove(item) <NEW_LINE> self.queue.add_front(item) <NEW_LINE> return <NEW_LINE> <DEDENT> if len(self.cache) == self.capacity: <NEW_LINE> <INDENT> item_to_remove = self.queue.remove_last() <NEW_LINE> self.cache.pop(item_to_remove.key) <NEW_LINE> <DEDENT> item = Node(key, value) <NEW_LINE> self.cache[key] = item <NEW_LINE> self.queue.add_front(item)
:type key: int :type value: int :rtype: None
625941bb090684286d50eba2
def __init__(self, jobject=None, options=None): <NEW_LINE> <INDENT> if jobject is None: <NEW_LINE> <INDENT> jobject = DatabaseUtils.new_instance("weka.experiment.DatabaseUtils") <NEW_LINE> <DEDENT> self.enforce_type(jobject, "weka.experiment.DatabaseUtils") <NEW_LINE> super(DatabaseUtils, self).__init__(jobject=jobject, options=options)
Initializes a DatabaseUtils object from scratch or uses the provided JB_Object. :param jobject: the JB_Object to use :type jobject: JB_Object :param options: the list of commandline options to use :type options: list
625941bbd10714528d5ffba1
def reset_weights(self, W): <NEW_LINE> <INDENT> logger.fatal("not implemented yet") <NEW_LINE> return
reset the layer framework weight tensor
625941bb23849d37ff7b2f52
def last_event(self): <NEW_LINE> <INDENT> for attr_name in ('challenge2', 'response', 'challenge1', 'action'): <NEW_LINE> <INDENT> event = getattr(self, attr_name, None) <NEW_LINE> if event is not None: <NEW_LINE> <INDENT> return event <NEW_LINE> <DEDENT> <DEDENT> return None
Gets the last event that was done in this game Return: Action or Response object that was done last, or None if N/A
625941bb1f037a2d8b9460c0
def __str__(self): <NEW_LINE> <INDENT> return yaml.dump(self.config, default_flow_style=False)
returns the config object as a string.
625941bb167d2b6e31218a57
@subscriber(InternalServerError) <NEW_LINE> def log_internal_server_error(event: InternalServerError): <NEW_LINE> <INDENT> request = event.request <NEW_LINE> user_context = get_logging_user_context(event.request) <NEW_LINE> request.raven.user_context(user_context) <NEW_LINE> request.raven.captureException()
Catch 500 errors and send them to Sentry with additional details.
625941bb099cdd3c635f0b1d
def __init__(self, data_dir, receptive_fields, sample_size=0, sample_rate=8000, in_channels=256, batch_size=1, shuffle=True): <NEW_LINE> <INDENT> dataset = Dataset(data_dir, sample_rate, in_channels) <NEW_LINE> super(DataLoader, self).__init__(dataset, batch_size, shuffle) <NEW_LINE> if sample_size <= receptive_fields: <NEW_LINE> <INDENT> raise Exception("sample_size has to be bigger than receptive_fields") <NEW_LINE> <DEDENT> self.sample_size = sample_size <NEW_LINE> self.receptive_fields = receptive_fields <NEW_LINE> self.collate_fn = self._collate_fn
DataLoader for WaveNet :param data_dir: :param receptive_fields: integer. size(length) of receptive fields :param sample_size: integer. number of timesteps to train at once. sample size has to be bigger than receptive fields. |-- receptive field --|---------------------| |------- samples -------------------| |---------------------|-- outputs --| :param sample_rate: sound sampling rates :param in_channels: number of input channels :param batch_size: :param shuffle:
625941bb7b25080760e3931b
def test_edit_categories_no_disclaimer(self): <NEW_LINE> <INDENT> response = self.client.get(self.describe_edit_url) <NEW_LINE> doc = pq(response.content) <NEW_LINE> assert doc('#addon-categories-edit div.addon-app-cats').length == 1 <NEW_LINE> assert doc('#addon-categories-edit > p').length == 0
Ensure that there is a not disclaimer for non-creatured add-ons.
625941bbc4546d3d9de728f2
def linear_search(test_list,search_value): <NEW_LINE> <INDENT> test_len=len(test_list) <NEW_LINE> for index in range(0,test_len): <NEW_LINE> <INDENT> if(test_list[index]==search_value): <NEW_LINE> <INDENT> return(index) <NEW_LINE> <DEDENT> <DEDENT> print("List doesn't contain the value")
Performs a simple linear search
625941bbd58c6744b4257b22
def _element_constructor_(self, *args, **kwds): <NEW_LINE> <INDENT> from train_track.free_group import FreeGroup_class <NEW_LINE> if len(args)!=1: <NEW_LINE> <INDENT> return self.element_class(self, *args, **kwds) <NEW_LINE> <DEDENT> x = args[0] <NEW_LINE> if x==1 or x == [] or x == (): <NEW_LINE> <INDENT> return self.one() <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> P = x.parent() <NEW_LINE> <DEDENT> except AttributeError: <NEW_LINE> <INDENT> return self.element_class(self, x, **kwds) <NEW_LINE> <DEDENT> if isinstance(P, FreeGroup_class): <NEW_LINE> <INDENT> names = set(P._names[abs(i)-1] for i in x.Tietze()) <NEW_LINE> if names.issubset(self._names): <NEW_LINE> <INDENT> return self([i.sign()*(self._names.index(P._names[abs(i)-1])+1) for i in x.Tietze()]) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise ValueError('generators of %s not in the group'%x) <NEW_LINE> <DEDENT> <DEDENT> return self.element_class(self, x, **kwds)
TESTS:: sage: from train_track import * sage: G.<a,b> = FreeGroup() sage: G([1, 2, 1]) # indirect doctest a*b*a sage: G([1, 2, -2, 1, 1, -2]) # indirect doctest a^3*b^-1 sage: G( G.gap().GeneratorsOfGroup()[0] ) a sage: type(_) <class 'train_track.free_group.FreeGroup_class_with_category.element_class'> Check that conversion between free groups follow the convention that names are preserved:: sage: F = FreeGroup('a,b') sage: G = FreeGroup('b,a') sage: G(F.gen(0)) a sage: F(G.gen(0)) b sage: a,b = F.gens() sage: G(a^2*b^-3*a^-1) a^2*b^-3*a^-1 Check that :trac:`17246` is fixed:: sage: F = FreeGroup(0) sage: F([]) 1 Check that 0 isn't considered the identity:: sage: F = FreeGroup('x') sage: F(0) Traceback (most recent call last): ... TypeError: 'sage.rings.integer.Integer' object is not iterable
625941bbd18da76e23532393
def __init__(self): <NEW_LINE> <INDENT> simulation_manager.SimulationManager.__init__(self)
Constructor
625941bb6e29344779a624d6
def verifyPassword_async(self, _cb, name, pw, current=None): <NEW_LINE> <INDENT> pass
Verify the password of a user. You can use this to verify a user's credentials. Arguments: name User name. See RegisteredUser.name. pw User password. Returns: User ID of registered user (See RegisteredUser.userid), -1 for failed authentication or -2 for unknown usernames.
625941bb85dfad0860c3ad1a
def squareAt(self, point, orientation=None): <NEW_LINE> <INDENT> sqSize = self.squareSize <NEW_LINE> x = point.x() // sqSize.width() <NEW_LINE> y = point.y() // sqSize.height() <NEW_LINE> if (x < 0) or (x > 13) or (y < 0) or (y > 13): <NEW_LINE> <INDENT> return QPoint() <NEW_LINE> <DEDENT> elif orientation == 'b': <NEW_LINE> <INDENT> return QPoint(self.board.files - (y + 1), self.board.ranks - (x + 1)) <NEW_LINE> <DEDENT> elif orientation == 'y': <NEW_LINE> <INDENT> return QPoint(self.board.files - (x + 1), y) <NEW_LINE> <DEDENT> elif orientation == 'g': <NEW_LINE> <INDENT> return QPoint(y, x) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return QPoint(x, self.board.ranks - (y + 1))
Returns square (file, rank) of type QPoint that contains point.
625941bba05bb46b383ec6e5
def __init__(self, data_pin, clock_pin, latch_pin, L0_pin, L1_pin, L2_pin, L3_pin, debug=True): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> self.data = data_pin <NEW_LINE> self.clock = clock_pin <NEW_LINE> self.latch = latch_pin <NEW_LINE> self.Lv = [L0_pin, L1_pin, L2_pin, L3_pin] <NEW_LINE> self.da = None <NEW_LINE> self.cl = None <NEW_LINE> self.la = None <NEW_LINE> self.lv = [None, None, None, None] <NEW_LINE> self.debug = debug <NEW_LINE> <DEDENT> except Exception as E: <NEW_LINE> <INDENT> if self.debug: <NEW_LINE> <INDENT> print("4x4x4 LED Cube __init__ error: ",E)
constructor 4x4x4 LED cube
625941bb4f88993c3716bf2d
def _convert_dataset(image_list, layer_list, bboxes_list, tfrecord_dir): <NEW_LINE> <INDENT> with tf.Graph().as_default(): <NEW_LINE> <INDENT> with tf.Session() as sess: <NEW_LINE> <INDENT> if not os.path.exists(tfrecord_dir): <NEW_LINE> <INDENT> os.makedirs(tfrecord_dir) <NEW_LINE> <DEDENT> output_filename = os.path.join(tfrecord_dir, "train.tfrecord") <NEW_LINE> tfrecord_writer = tf.python_io.TFRecordWriter(output_filename) <NEW_LINE> length = len(image_list) <NEW_LINE> for i in range(length): <NEW_LINE> <INDENT> image_data = Image.open(image_list[i], 'r') <NEW_LINE> image_data = image_data.tobytes() <NEW_LINE> label = layer_list[i] <NEW_LINE> bboxes = bboxes_list[i] <NEW_LINE> example = image_to_tfexample(image_data, label, bboxes) <NEW_LINE> tfrecord_writer.write(example.SerializeToString()) <NEW_LINE> sys.stdout.write('\r>> Converting image %d/%d' % (i + 1, length)) <NEW_LINE> sys.stdout.flush() <NEW_LINE> <DEDENT> sys.stdout.write('\n') <NEW_LINE> sys.stdout.flush()
Convert data to TFRecord format.
625941bbcad5886f8bd26ea3
def GetComment(self): <NEW_LINE> <INDENT> return _ITKCommonBasePython.itkSimpleFilterWatcher_GetComment(self)
GetComment(self) -> string
625941bb711fe17d82542232
def transform_ner_from_standoff(file): <NEW_LINE> <INDENT> command_line = ''.join(['./' + dirs['standoff2other_path']['path'] + 'standoff2conll.py ', dirs['annotated']['path'], ' ', ' > ' + dirs['transformed']['path'] + 'documents.tsv']) <NEW_LINE> os.system(command_line)
Entry point for data transformation. Entry point as to transform annotated Brat files (standoff format) to Stanford's NER training format. While the library is executed externally given python3 vs. python2 compatibility issues, note that the library version of the entry point call is left commented below for future reference. Args: file: A string with the directory to be transformed.
625941bb9c8ee82313fbb635
def Write( self, Channel, MessageBuffer): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> res = self.__m_dllBasic.CAN_Write(Channel, byref(MessageBuffer)) <NEW_LINE> return TPCANStatus(res) <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> print("Exception on PCANBasic.Write") <NEW_LINE> raise
Transmits a CAN message Parameters: Channel : A TPCANHandle representing a PCAN Channel MessageBuffer: A TPCANMsg representing the CAN message to be sent Returns: A TPCANStatus error code
625941bb004d5f362079a1f7
def state_to_cookie(state, name, path, encryption_key): <NEW_LINE> <INDENT> cookie_data = "" if state.delete else state.urlstate(encryption_key) <NEW_LINE> max_age = 0 if state.delete else STATE_COOKIE_MAX_AGE <NEW_LINE> satosa_logging(logger, logging.DEBUG, "Saving state as cookie, secure: %s, max-age: %s, path: %s" % (STATE_COOKIE_SECURE, STATE_COOKIE_MAX_AGE, path), state) <NEW_LINE> cookie = SimpleCookie() <NEW_LINE> cookie[name] = cookie_data <NEW_LINE> cookie[name]["secure"] = STATE_COOKIE_SECURE <NEW_LINE> cookie[name]["path"] = path <NEW_LINE> cookie[name]["max-age"] = max_age <NEW_LINE> return cookie
Saves a state to a cookie :type state: satosa.state.State :type name: str :type path: str :type encryption_key: str :rtype: http.cookies.SimpleCookie :param state: The state to save :param name: Name identifier of the cookie :param path: Endpoint path the cookie will be associated to :param encryption_key: Key to encrypt the state information :return: A cookie
625941bbbe8e80087fb20b09
def get_debug_info_bytes(self): <NEW_LINE> <INDENT> return self.debug_info.file.getvalue()
Get the .debug_info bytes as a python string.
625941bb5510c4643540f2ad
def index(request): <NEW_LINE> <INDENT> if request.user.is_authenticated: <NEW_LINE> <INDENT> return redirect('post:list') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return redirect('member:signup')
유저가 로그인했을 경우 post:list로 이동 로그인하지 않았을 경우 member:signup으로 이동 테스트 작성 1. index URL로 접근했을 때, 로그인 하지 않앗을 경우 member:signup으로 가는지 확인 2. 위와 같은데 로그인 했을 경우 post:list로 가는지 확인
625941bb5166f23b2e1a501a
def generate_list_embeddings(self): <NEW_LINE> <INDENT> with open(self.path_model + self.name_dataset + "_model.lf", "rb") as file_model: <NEW_LINE> <INDENT> dict_model = pickle.load(file_model) <NEW_LINE> <DEDENT> self.w2v = dict_model["word2vec"] <NEW_LINE> self.dict_issue = {} <NEW_LINE> try: <NEW_LINE> <INDENT> self.list_chunck <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> nb_files_per_chunck = int(len(self.list_classes) / (os.cpu_count() * 2)) <NEW_LINE> if nb_files_per_chunck < 1: <NEW_LINE> <INDENT> nb_files_per_chunck = 2 <NEW_LINE> <DEDENT> self.list_chunck = [self.list_classes[i:i + nb_files_per_chunck] for i in range(0, len(self.list_classes), nb_files_per_chunck)] <NEW_LINE> <DEDENT> self.list_vocab = [] <NEW_LINE> for word in self.w2v.vocab: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> int(word) <NEW_LINE> self.list_vocab.append(int(word)) <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> <DEDENT> new_list_classes = [] <NEW_LINE> with Pool(os.cpu_count()) as mp: <NEW_LINE> <INDENT> for res in tqdm(mp.imap(Embedding.clear_list, zip(self.list_chunck, repeat(self.list_vocab))), total=len(self.list_chunck)): <NEW_LINE> <INDENT> new_list_classes += res.tolist() <NEW_LINE> <DEDENT> <DEDENT> logger.info(str(len(self.list_classes) - len(new_list_classes)) + " elements are removed due to not enought examples") <NEW_LINE> self.list_classes = new_list_classes <NEW_LINE> f = h5py.File(self.path_data + self.name_dataset + "_embedding.lf", "w") <NEW_LINE> f.create_dataset('list_classes', data=self.list_classes) <NEW_LINE> f.close()
Filter the list of patterns according to the learned embeddings. The word2vec model requires at least a minimum of examples per word to be learned. We remove the words excluded of the word2vec learning.
625941bb55399d3f05588574
def get_safe_name(string): <NEW_LINE> <INDENT> result = [] <NEW_LINE> for c in string: <NEW_LINE> <INDENT> if c.isalnum(): <NEW_LINE> <INDENT> result.append(c) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> result.append("_") <NEW_LINE> <DEDENT> <DEDENT> return "".join(result)
Creates C++ identifier from string
625941bb23849d37ff7b2f53
def setup_database(): <NEW_LINE> <INDENT> with sqlite3.connect(DB_STRING) as c: <NEW_LINE> <INDENT> c.execute("CREATE TABLE user_string (session_id, value)")
Create the `user_string` table in the database on server startup
625941bb31939e2706e4cd30
def sim_distance(self, p1, p2): <NEW_LINE> <INDENT> si = {} <NEW_LINE> for item in self.train[p1]: <NEW_LINE> <INDENT> if item in self.train[p2]: <NEW_LINE> <INDENT> si[item] = 1 <NEW_LINE> <DEDENT> <DEDENT> if len(si) == 0: return 0 <NEW_LINE> sum_of_squares = sum([pow(self.train[p1][item] - self.train[p2][item], 2) for item in self.train[p1] if item in self.train[p2]]) <NEW_LINE> return 1 / (1 + sqrt(sum_of_squares))
欧几里得距离计算相似度
625941bb3617ad0b5ed67db9
def forward(self, input: torch.Tensor, target: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor: <NEW_LINE> <INDENT> if mask is not None: <NEW_LINE> <INDENT> if input.dim() != mask.dim(): <NEW_LINE> <INDENT> raise AssertionError(f"dim of input ({input.shape}) is different from mask ({mask.shape})") <NEW_LINE> <DEDENT> if not (input.shape[0] == mask.shape[0] or mask.shape[0] == 1): <NEW_LINE> <INDENT> raise AssertionError(f" batch size of mask ({mask.shape}) must be 1 or equal to input ({input.shape})") <NEW_LINE> <DEDENT> if target.dim() > 1: <NEW_LINE> <INDENT> if mask.shape[1] != 1: <NEW_LINE> <INDENT> raise AssertionError(f"mask ({mask.shape}) must have only 1 channel") <NEW_LINE> <DEDENT> if input.shape[2:] != mask.shape[2:]: <NEW_LINE> <INDENT> raise AssertionError(f"spatial size of input ({input.shape}) is different from mask ({mask.shape})") <NEW_LINE> <DEDENT> <DEDENT> input = input * mask <NEW_LINE> target = target * mask <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> warnings.warn("no mask value specified for the MaskedDiceLoss.") <NEW_LINE> <DEDENT> return super().forward(input=input, target=target)
Args: input: the shape should be BNH[WD]. target: the shape should be BNH[WD]. mask: the shape should B1H[WD] or 11H[WD].
625941bb377c676e9127206b