code
stringlengths 4
4.48k
| docstring
stringlengths 1
6.45k
| _id
stringlengths 24
24
|
|---|---|---|
def test_attr(self): <NEW_LINE> <INDENT> ev = self._ev() <NEW_LINE> self.assertRaises(AttributeError, lambda: ev.foo) <NEW_LINE> self.assertRaises(KeyError, lambda: ev['foo']) <NEW_LINE> ev.foo = 'bar' <NEW_LINE> self.assertEqual('bar', ev.foo) <NEW_LINE> self.assertEqual('bar', ev['foo']) <NEW_LINE> self.assertRaises(AttributeError, lambda: ev.bar) <NEW_LINE> self.assertRaises(KeyError, lambda: ev['bar']) <NEW_LINE> ev['bar'] = 'foo' <NEW_LINE> self.assertEqual('foo', ev.bar) <NEW_LINE> self.assertEqual('foo', ev['bar'])
|
Attibutes and indexed keys are equivalent.
|
625941bd6fb2d068a760ef8d
|
def daterange(start, stop, steps): <NEW_LINE> <INDENT> delta = (stop - start) / steps <NEW_LINE> current = start <NEW_LINE> while current + delta <= stop: <NEW_LINE> <INDENT> yield current, current + delta <NEW_LINE> current += delta
|
A generator for stepping through time.
|
625941bdb57a9660fec33774
|
def test_bytes_rw(self): <NEW_LINE> <INDENT> jobj = self.read_file("testBytes.ser") <NEW_LINE> pobj = javaobj.loads(jobj) <NEW_LINE> _logger.debug("Read bytes: %s", pobj) <NEW_LINE> self.assertEqual(pobj, "HelloWorld") <NEW_LINE> self._try_marshalling(jobj, pobj)
|
Reads testBytes.ser and checks the serialization process
|
625941bd76d4e153a657ea23
|
def combine_moves(board_state_val, x, y, new_x, new_y, x2, y2, new_x2, new_y2): <NEW_LINE> <INDENT> board_state = copy.deepcopy(board_state_val) <NEW_LINE> player_val = board_state[x][y] <NEW_LINE> ai_val = board_state[x2][y2] <NEW_LINE> if new_x == new_x2 and new_y == new_y2: <NEW_LINE> <INDENT> piece_type1 = board_state[x][y] <NEW_LINE> piece_type2 = board_state[x2][y2] <NEW_LINE> if piece_type1 == "p" and piece_type2 == "P": <NEW_LINE> <INDENT> board_state[x][y] = "W" <NEW_LINE> board_state[x2][y2] = "W" <NEW_LINE> <DEDENT> elif piece_type1 == "k" and piece_type2 == "K": <NEW_LINE> <INDENT> board_state[y][x] = "W" <NEW_LINE> board_state[x2][y2] = "W" <NEW_LINE> <DEDENT> elif piece_type1 == "p" and piece_type2 == "K": <NEW_LINE> <INDENT> board_state[x][y] = "W" <NEW_LINE> board_state[new_x2][new_y2] = board_state[y2][x2] <NEW_LINE> board_state[x2][y2] = "W" <NEW_LINE> <DEDENT> elif piece_type1 == "k" and piece_type2 == "P": <NEW_LINE> <INDENT> board_state[x2][y2] = "W" <NEW_LINE> board_state[new_x][new_y] = board_state[y][x] <NEW_LINE> board_state[x][y] = "W" <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> board_state[new_x][new_y] = player_val <NEW_LINE> board_state[x][y] = "W" <NEW_LINE> board_state[new_x2][new_y2] = ai_val <NEW_LINE> board_state[x2][y2] = "W" <NEW_LINE> <DEDENT> if ai_val == "P" and new_x2 == 4: <NEW_LINE> <INDENT> board_state[new_x2][new_y2] = "K" <NEW_LINE> <DEDENT> if player_val == "p" and new_x == 0: <NEW_LINE> <INDENT> board_state[new_x][new_y] = "k" <NEW_LINE> <DEDENT> return board_state
|
Combines two move onto a given board state without any drawing functionality
Uses the rules of simultaneous movement in Apocalypse when combining the moves
:param board_state_val: **multi-dimensional list** Board state
:param x: **int** current x coord of the first piece to move
:param y: **int** current y coord of the first piece to move
:param new_x: **int** new x coord of the first piece to move
:param new_y: **int** new y coord of the first piece to move
:param x2: **int** current x coord of the second piece to move
:param y2: **int** current y coord of the second piece to move
:param new_x2: **int** new y coord of the second piece to move
:param new_y2: **int** new y coord of the second piece to move
:return: **multi-dimensional list** Board state with the moves combined
|
625941bdde87d2750b85fc82
|
def index_queryset(self, using=None): <NEW_LINE> <INDENT> return Test.objects.filter(pub_date__lte=datetime.datetime.now())
|
Used when the entire index for model is updated.
|
625941bd16aa5153ce36236b
|
def createProfile(colorSpace, colorTemp=-1): <NEW_LINE> <INDENT> if colorSpace not in ["LAB", "XYZ", "sRGB"]: <NEW_LINE> <INDENT> raise PyCMSError("Color space not supported for on-the-fly profile creation (%s)" % colorSpace) <NEW_LINE> <DEDENT> if colorSpace == "LAB": <NEW_LINE> <INDENT> if type(colorTemp) == type(5000.0): <NEW_LINE> <INDENT> colorTemp = int(colorTemp + 0.5) <NEW_LINE> <DEDENT> if type (colorTemp) != type (5000): <NEW_LINE> <INDENT> raise PyCMSError("Color temperature must be a positive integer, \"%s\" not valid" % colorTemp) <NEW_LINE> <DEDENT> <DEDENT> try: <NEW_LINE> <INDENT> return core.createProfile(colorSpace, colorTemp) <NEW_LINE> <DEDENT> except (TypeError, ValueError) as v: <NEW_LINE> <INDENT> raise PyCMSError(v)
|
ImageCms.createProfile(colorSpace, [colorTemp])
Returns a CmsProfile class object
colorSpace = string, the color space of the profile you wish to create.
Currently only "LAB", "XYZ", and "sRGB" are supported.
colorTemp = positive integer for the white point for the profile, in
degrees Kelvin (i.e. 5000, 6500, 9600, etc.). The default is for
D50 illuminant if omitted (5000k). colorTemp is ONLY applied to
LAB profiles, and is ignored for XYZ and sRGB.
If colorSpace not in ["LAB", "XYZ", "sRGB"], a PyCMSError is raised
If using LAB and colorTemp != a positive integer, a PyCMSError is raised.
If an error occurs while creating the profile, a PyCMSError is raised.
Use this function to create common profiles on-the-fly instead of
having to supply a profile on disk and knowing the path to it. It
returns a normal CmsProfile object that can be passed to
ImageCms.buildTransformFromOpenProfiles() to create a transform to apply
to images.
|
625941bdb5575c28eb68def1
|
def load_model(self, verbose, dummy, ratio): <NEW_LINE> <INDENT> if self.initialized: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> self.verbose = verbose <NEW_LINE> if self.verbose: <NEW_LINE> <INDENT> print("Initializing keras model...") <NEW_LINE> <DEDENT> keras_graph = Graph() <NEW_LINE> with keras_graph.as_default(): <NEW_LINE> <INDENT> config = ConfigProto() <NEW_LINE> if ratio: <NEW_LINE> <INDENT> config.gpu_options.per_process_gpu_memory_fraction = ratio <NEW_LINE> <DEDENT> self.session = Session(config=config) <NEW_LINE> with self.session.as_default(): <NEW_LINE> <INDENT> self.model = keras.models.load_model( self.model_path, custom_objects={'TorchBatchNorm2D': TorchBatchNorm2D}) <NEW_LINE> self.model.predict(dummy) <NEW_LINE> <DEDENT> <DEDENT> keras_graph.finalize() <NEW_LINE> self.initialized = True
|
Load the Keras Model
|
625941bd8e71fb1e9831d69d
|
def search(self, locationpath_string, details=False): <NEW_LINE> <INDENT> locationpath = parse(locationpath_string) <NEW_LINE> if details: <NEW_LINE> <INDENT> return [(str(x.locationpath), x.dump()) for x in self._search(locationpath)] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return [x.dump() for x in self._search(locationpath)]
|
Search target path and get json data list.
Args:
locationpath_string(str): XPath format search string.
details(bool): Return searched path with value,
default: False(value only).
Returns:
list: List of json data at target path (details=False).
With details True, list of set like
{target_path(str), dict or list at target path}.
Node:
This method must be implemented in RootBranch only.
|
625941bdec188e330fd5a697
|
def __init__(self, movie, ad_reel=None): <NEW_LINE> <INDENT> self.movie = movie <NEW_LINE> self.ad_reel = ad_reel
|
movie and ad_reel are initialised
|
625941bd44b2445a33931f92
|
def database_load(name): <NEW_LINE> <INDENT> accessfile = os.path.join(os.path.dirname(os.path.abspath(__file__)), '.mdcs') <NEW_LINE> if os.path.isfile(accessfile): <NEW_LINE> <INDENT> with open(accessfile) as fp: <NEW_LINE> <INDENT> access_info = json.load(fp) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> raise ValueError('No access info stored as ' + name) <NEW_LINE> <DEDENT> if name in access_info: <NEW_LINE> <INDENT> host = access_info[name]['host'] <NEW_LINE> user = access_info[name]['user'] <NEW_LINE> pswd = access_info[name]['pswd'] <NEW_LINE> cert = access_info[name]['cert'] <NEW_LINE> return MDCS(host, user, pswd=pswd, cert=cert) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise ValueError('No access info stored as ' + name)
|
Loads saved database system information based on the database's assigned
name. If password is not saved, a prompt will ask for it.
Parameters
----------
name : str
The name assigned to stored access information.
Returns
-------
MDCS
An MDCS object with the loaded database access information.
|
625941bd460517430c39407f
|
@blueprint.route('/ajax/editor/save', methods=['GET', 'POST']) <NEW_LINE> @PageView.logged <NEW_LINE> def save_post(): <NEW_LINE> <INDENT> data = request.get_json() <NEW_LINE> path = data['path'] <NEW_LINE> prefixes = current_app.config['WEB_EDITOR_PREFIXES'] <NEW_LINE> if prefixes == []: <NEW_LINE> <INDENT> raise Exception("Web editing is not configured") <NEW_LINE> <DEDENT> if prefixes is not None: <NEW_LINE> <INDENT> if not any([path.startswith(prefix) for prefix in prefixes]): <NEW_LINE> <INDENT> return json.dumps({'msg': ("Your post path must begin with one of {}").format(prefixes), 'success': False}) <NEW_LINE> <DEDENT> <DEDENT> kp = None <NEW_LINE> if path in current_repo: <NEW_LINE> <INDENT> kp = current_repo.post(path) <NEW_LINE> if g.user.username not in kp.headers['authors'] and g.user.username not in current_repo.config.editors: <NEW_LINE> <INDENT> return json.dumps({'msg': ("Post with path {} already exists and you are not an author!" "\nPlease try a different path").format(path), 'success': False}) <NEW_LINE> <DEDENT> <DEDENT> kp = kp or KnowledgePost(path=path) <NEW_LINE> headers = {} <NEW_LINE> headers['created_at'] = datetime.strptime(data['created_at'], '%Y-%m-%d').date() <NEW_LINE> headers['updated_at'] = datetime.strptime(data['updated_at'], '%Y-%m-%d').date() <NEW_LINE> headers['title'] = data['title'] <NEW_LINE> headers['path'] = data['path'] <NEW_LINE> headers['thumbnail'] = data.get('feed_image', '') <NEW_LINE> headers['authors'] = [auth.strip() for auth in data['author']] <NEW_LINE> headers['tldr'] = data['tldr'] <NEW_LINE> headers['tags'] = [tag.strip() for tag in data.get('tags', [])] <NEW_LINE> if 'proxy' in data: <NEW_LINE> <INDENT> headers['proxy'] = data['proxy'] <NEW_LINE> <DEDENT> kp.write(urlunquote(data['markdown']), headers=headers) <NEW_LINE> current_repo.add(kp, update=True, message=headers['title']) <NEW_LINE> update_index() <NEW_LINE> return json.dumps({'path': path})
|
Save the post
|
625941bda79ad161976cc038
|
def rainbow(strip, wait_ms=55, iterations=1): <NEW_LINE> <INDENT> for j in range(256*iterations): <NEW_LINE> <INDENT> for i in range(strip.count): <NEW_LINE> <INDENT> strip.setPixelColor(i, wheel((i+j) & 255)) <NEW_LINE> <DEDENT> strip.show() <NEW_LINE> time.sleep(wait_ms/1000.0)
|
Draw rainbow that fades across all pixels at once.
|
625941bd38b623060ff0ace1
|
def get_or_create_user(self, cas_data, **overrides): <NEW_LINE> <INDENT> user_model = get_user_model() <NEW_LINE> username = cas_data['username'] <NEW_LINE> try: <NEW_LINE> <INDENT> return user_model.objects.get(username=username) <NEW_LINE> <DEDENT> except user_model.DoesNotExist: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> if settings.get('auto_create_user'): <NEW_LINE> <INDENT> return self.create_user(cas_data, **overrides)
|
Get user.
``cas_data`` must contain a 'username' key. If the corresponding
user already exists, it will be returned as is; if it doesn't, a
new user record will be created and returned.
.. note:: The ``CAS.auto_create_user`` setting can be set to
``False`` to disable the auto-creation of users.
``overrides`` are passed through to :meth:`create_user`.
|
625941bd50812a4eaa59c217
|
def play(self): <NEW_LINE> <INDENT> open_movies_page(self.movies)
|
Use fresh_tomatoes.open_movies_page to generate the page, and open it in browser.
|
625941bd5fcc89381b1e15b0
|
def coords2Bearing(self, coordsA, coordsB): <NEW_LINE> <INDENT> startLat = math.radians(float(coordsA[0])) <NEW_LINE> startLong = math.radians(float(coordsA[1])) <NEW_LINE> endLat = math.radians(float(coordsB[0])) <NEW_LINE> endLong = math.radians(float(coordsB[1])) <NEW_LINE> dLong = endLong - startLong <NEW_LINE> dPhi = math.log(math.tan(endLat / 2.0 + math.pi / 4.0) / math.tan(startLat / 2.0 + math.pi / 4.0)) <NEW_LINE> if abs(dLong) > math.pi: <NEW_LINE> <INDENT> if dLong > 0.0: <NEW_LINE> <INDENT> dLong = -(2.0 * math.pi - dLong) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> dLong = (2.0 * math.pi + dLong) <NEW_LINE> <DEDENT> <DEDENT> return ((math.degrees(math.atan2(dLong, dPhi)) + 360.0) % 360.0)
|
Get a bearing given two sets of GPS coords, assuming A is the beginning coordinate in the line segment and B is the last coordinate received. Returns a floating point int.
|
625941bd377c676e9127209d
|
def calculate_spo2(self): <NEW_LINE> <INDENT> self.ir_ac2_sum += self.ir_ac ** 2 <NEW_LINE> self.red_ac2_sum += self.red_ac ** 2 <NEW_LINE> self.samples_recorded += 1 <NEW_LINE> if self.beats_detected == SPO2_N_BEATS: <NEW_LINE> <INDENT> self.ac_sq_ratio = 100.0 * math.log(self.red_ac2_sum/self.samples_recorded) / math.log(self.ir_ac2_sum/self.samples_recorded) <NEW_LINE> index = 0 <NEW_LINE> if self.ac_sq_ratio > 66: <NEW_LINE> <INDENT> index = self.ac_sq_ratio - 66 <NEW_LINE> <DEDENT> elif self.ac_sq_ratio > 50: <NEW_LINE> <INDENT> index = self.ac_sq_ratio - 50 <NEW_LINE> <DEDENT> self.samples_recorded = 0 <NEW_LINE> self.ir_ac2_sum = 0.0 <NEW_LINE> self.red_ac2_sum = 0.0 <NEW_LINE> self.beats_detected = 0.0 <NEW_LINE> self.spo2 = 0.0 <NEW_LINE> self.spo2 = spo2_lut[int(index)] <NEW_LINE> <DEDENT> return self.spo2
|
Calculates the SPO2 value (Not sure how reliable this is)
Source: https://github.com/oxullo/Arduino-MAX30100
|
625941bd2eb69b55b151c79f
|
def run_kmeans(term_freq_matrix, num_clusters, dist_metric, term_cond='centroids', num_iter=None): <NEW_LINE> <INDENT> centroids = term_freq_matrix[ ( numpy.random.choice(term_freq_matrix.shape[0], num_clusters, False) ), :] <NEW_LINE> iteration = 0 <NEW_LINE> terminate = False <NEW_LINE> assigned_clusters = None <NEW_LINE> while not terminate: <NEW_LINE> <INDENT> iteration += 1 <NEW_LINE> prev_centroid = centroids <NEW_LINE> distances = get_center_distances(term_freq_matrix, centroids, dist_metric) <NEW_LINE> assigned_clusters = numpy.array([dist.argmin() for dist in distances]) <NEW_LINE> centroids = get_cluster_centers(term_freq_matrix, assigned_clusters, num_clusters) <NEW_LINE> if iteration % 10 == 0: <NEW_LINE> <INDENT> logger.debug("Finished iteration {}".format(iteration)) <NEW_LINE> <DEDENT> if (centroids != prev_centroid).nnz == 0: <NEW_LINE> <INDENT> terminate = True <NEW_LINE> <DEDENT> <DEDENT> return assigned_clusters, iteration
|
Performs k means clustering on the term frequency matrix
:param csr_matrix term_freq_matrix: the term frequency matrix
:param int num_clusters: the number of article clusters
:param str dist_metric: the distance metric to use (`euclidean`,
`cosine`, or `jaccard`)
:param str term_cond: the termination condition (`centroids`, `sse`, `iter`)
- `centroids`: terminate when there is no change in centroid position
- `sse`: terminate when the SSE value increases in the next iteration
- `iter`: terminate when the maximum preset value of iterations is
complete
:param int num_iter: the number of iterations to terminate at if
``term_cond`` is set to `iter`
:return: the cluster assignments, number of iterations taken to complete
:rtype: numpy.ndarray, int
|
625941bd6fece00bbac2d62f
|
def __ne__(self, other: 'ConfigCACors') -> bool: <NEW_LINE> <INDENT> return not self == other
|
Return `true` when self and other are not equal, false otherwise.
|
625941bd287bf620b61d395a
|
def on_ffmpeg(self, event): <NEW_LINE> <INDENT> with wx.FileDialog(self, _("Choose the {} " "executable").format(self.ffmpeg), "", "", f"ffmpeg binary (*{self.ffmpeg})|*{self.ffmpeg}| " f"All files (*.*)|*.*", wx.FD_OPEN | wx.FD_FILE_MUST_EXIST) as dlgfile: <NEW_LINE> <INDENT> if dlgfile.ShowModal() == wx.ID_OK: <NEW_LINE> <INDENT> if os.path.basename(dlgfile.GetPath()) == self.ffmpeg: <NEW_LINE> <INDENT> self.ffmpegTxt.Clear() <NEW_LINE> ffmpegpath = PageThree.GETPATH(dlgfile.GetPath()) <NEW_LINE> self.ffmpegTxt.write(ffmpegpath) <NEW_LINE> self.parent.ffmpeg = ffmpegpath
|
Open filedialog to locate ffmpeg executable
|
625941bd498bea3a759b99a3
|
def key_pressed(self, key: str): <NEW_LINE> <INDENT> super().key_pressed(key) <NEW_LINE> if self.stage == Stage.character_selection: <NEW_LINE> <INDENT> if key == "KEY_RIGHT": <NEW_LINE> <INDENT> self.monsters[0].set_selected(False) <NEW_LINE> self.rotate_monsters(1) <NEW_LINE> self.monsters[0].set_selected(True) <NEW_LINE> <DEDENT> elif key == "KEY_LEFT": <NEW_LINE> <INDENT> self.monsters[0].set_selected(False) <NEW_LINE> self.rotate_monsters(-1) <NEW_LINE> self.monsters[0].set_selected(True) <NEW_LINE> <DEDENT> elif key == "\n" or key == " ": <NEW_LINE> <INDENT> self.select_monster(self.currently_selecting, self.monsters[0]) <NEW_LINE> <DEDENT> <DEDENT> elif self.stage == Stage.restart: <NEW_LINE> <INDENT> if key == "KEY_RIGHT": <NEW_LINE> <INDENT> self.restart_dialog.next_selection() <NEW_LINE> <DEDENT> if key == "KEY_LEFT": <NEW_LINE> <INDENT> self.restart_dialog.next_selection() <NEW_LINE> <DEDENT> if key == "\n" or key == " ": <NEW_LINE> <INDENT> if self.restart_dialog.selection == "Yes": <NEW_LINE> <INDENT> self.set_stage(Stage.character_selection) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> menu_scene = Scenes.Menu.MenuScene.MenuScene() <NEW_LINE> self.change_scene(menu_scene)
|
If we're in character selection, check move selection right or left based on user input.
If we're in restart section, move selection in the restart dialog.
:param key: Key that the user pressed.
:return: None
|
625941bd7c178a314d6ef34d
|
def test_successful(self): <NEW_LINE> <INDENT> url = '/%s/jobs/' % self.api <NEW_LINE> response = self.client.generic('GET', url) <NEW_LINE> self.assertEqual(response.status_code, status.HTTP_200_OK, response.content) <NEW_LINE> result = json.loads(response.content) <NEW_LINE> self.assertEqual(len(result['results']), 3) <NEW_LINE> for entry in result['results']: <NEW_LINE> <INDENT> expected = None <NEW_LINE> if entry['id'] == self.job1.id: <NEW_LINE> <INDENT> expected = self.job1 <NEW_LINE> <DEDENT> elif entry['id'] == self.job2.id: <NEW_LINE> <INDENT> expected = self.job2 <NEW_LINE> <DEDENT> elif entry['id'] == self.job3.id: <NEW_LINE> <INDENT> expected = self.job3 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.fail('Found unexpected result: %s' % entry['id']) <NEW_LINE> <DEDENT> self.assertEqual(entry['job_type']['name'], expected.job_type.name) <NEW_LINE> self.assertEqual(entry['job_type_rev']['job_type']['id'], expected.job_type.id) <NEW_LINE> self.assertEqual(entry['is_superseded'], expected.is_superseded)
|
Tests successfully calling the jobs view.
|
625941bdfff4ab517eb2f32d
|
def set_scint_fraction(self, isotope, fraction): <NEW_LINE> <INDENT> if isotope in self._fractions: <NEW_LINE> <INDENT> self._fractions[isotope] = fraction <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise("Isotope not part of the Te set.")
|
Set the fraction of an isotope in the scintillator.
|
625941bd9c8ee82313fbb668
|
@pytest.mark.skipif(sys.version_info[0] < 3, reason="Requires: Python 3+") <NEW_LINE> def test_dictionary_nested(): <NEW_LINE> <INDENT> encoded = bencode({'foo': 42, 'bar': {'sketch': 'parrot', 'foobar': 23}}) <NEW_LINE> assert encoded == 'd3:bard6:foobari23e6:sketch6:parrote3:fooi42ee'.encode('utf-8')
|
Test the handling of nested dictionaries.
|
625941bd3317a56b86939b59
|
def remove_chroms(inbam, outbam, rmchroms, log): <NEW_LINE> <INDENT> treatment = AlignmentFile(inbam, 'rb') <NEW_LINE> header = treatment.header <NEW_LINE> new_chroms = [] <NEW_LINE> chrnames = [] <NEW_LINE> tid_map = [-1 for i in range(len(header['SQ']))] <NEW_LINE> N = 0 <NEW_LINE> chr_to_remove_reason = {} <NEW_LINE> for i, seq in enumerate(header['SQ']): <NEW_LINE> <INDENT> keep = True <NEW_LINE> for chrom in rmchroms: <NEW_LINE> <INDENT> if chrom in seq['SN']: <NEW_LINE> <INDENT> keep = False <NEW_LINE> chr_to_remove_reason[seq['SN']] = chrom <NEW_LINE> break <NEW_LINE> <DEDENT> <DEDENT> if keep: <NEW_LINE> <INDENT> tid_map[i] = N <NEW_LINE> N += 1 <NEW_LINE> new_chroms.append(seq) <NEW_LINE> chrnames.append(seq['SN']) <NEW_LINE> <DEDENT> <DEDENT> new_header = {'SQ': new_chroms} <NEW_LINE> bam_writer = AlignmentFile(outbam, 'wb', header=new_header) <NEW_LINE> log_content = {chrom: 0 for chrom in rmchroms} <NEW_LINE> log_content['remaining'] = 0 <NEW_LINE> log_content['unmapped'] = 0 <NEW_LINE> log_content['total'] = 0 <NEW_LINE> for aln in treatment.fetch(until_eof=True): <NEW_LINE> <INDENT> log_content['total'] += 1 <NEW_LINE> if aln.is_unmapped: <NEW_LINE> <INDENT> log_content['unmapped'] += 1 <NEW_LINE> continue <NEW_LINE> <DEDENT> if aln.reference_name in chrnames: <NEW_LINE> <INDENT> aln.reference_id = tid_map[aln.reference_id] <NEW_LINE> if aln.is_paired and aln.is_proper_pair: <NEW_LINE> <INDENT> aln.next_reference_id = tid_map[aln.next_reference_id] <NEW_LINE> <DEDENT> bam_writer.write(aln) <NEW_LINE> log_content['remaining'] += 1 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> log_content[chr_to_remove_reason[aln.reference_name]] += 1 <NEW_LINE> <DEDENT> <DEDENT> bam_writer.close() <NEW_LINE> treatment.close() <NEW_LINE> with open(log, 'w') as f: <NEW_LINE> <INDENT> f.write('Readgroup\tcounts\n') <NEW_LINE> for icnt in log_content: <NEW_LINE> <INDENT> f.write('{}\t{}\n'.format(icnt, log_content[icnt]))
|
This function takes a bam-file and outputs
a bam-file in which the specified chromosomes
have been removed.
The function searches for matching chromosomes
using regular expressions.
For example, rmchroms=['chrM', '_random']
would remove 'chrM' as well as all random chromsomes.
E.g. chr1_KI270706v1_random.
|
625941bd45492302aab5e1b4
|
def getX(self): <NEW_LINE> <INDENT> return self.x
|
Returns the x-coordinate of Alien
|
625941bd5fc7496912cc3871
|
def get_file_list(dir): <NEW_LINE> <INDENT> rtn_list = [] <NEW_LINE> num_files = sum( (len(file_list) for _, _, file_list in os.walk(dir)) ) <NEW_LINE> logger.info('Scanning directory %s' % dir) <NEW_LINE> logger.info('Files to scan: %d' % num_files) <NEW_LINE> n = 0 <NEW_LINE> for dir_name, subdir_list, file_list in os.walk(dir): <NEW_LINE> <INDENT> for fname in file_list: <NEW_LINE> <INDENT> abs_fname = os.path.abspath(os.path.join(dir_name, fname)) <NEW_LINE> fstat = os.stat(abs_fname) <NEW_LINE> fhash = hash_file(abs_fname) <NEW_LINE> f = FileInfo(filename = abs_fname, mtime = fstat.st_mtime, size = fstat.st_size, hash = fhash) <NEW_LINE> rtn_list.append(f) <NEW_LINE> n += 1 <NEW_LINE> if n%100 == 0: <NEW_LINE> <INDENT> logger.info('Scan progress: %d / %d (%.1f%%)' % (n, num_files, n/num_files*100.)) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> logger.info('Scanning complete.') <NEW_LINE> return rtn_list
|
Scan directory tree and generate a list of files. File information
is saved in objects of class FileInfo.
|
625941bd0a50d4780f666d83
|
def _validate_predefined_entity_value(self, entity, entity_name, allowed_property_map, required_properties): <NEW_LINE> <INDENT> _assert_condition(not entity.HasField('key'), 'The %s entity has a key.' % entity_name) <NEW_LINE> property_map = {} <NEW_LINE> for prop in entity.property: <NEW_LINE> <INDENT> property_name = prop.name <NEW_LINE> _assert_condition(property_name in allowed_property_map, 'The %s entity property "%s" is not allowed.' % (entity_name, property_name)) <NEW_LINE> value = prop.value <NEW_LINE> hasser = '%s_value' % allowed_property_map[property_name] <NEW_LINE> _assert_condition( value.HasField(hasser), ('The %s entity property "%s" is the wrong type.' % (entity_name, property_name))) <NEW_LINE> _assert_condition(not value.HasField('meaning'), 'The %s entity property "%s" has a meaning.' % (entity_name, property_name)) <NEW_LINE> _assert_condition(not value.indexed, 'The %s entity property "%s" is indexed.' % (entity_name, property_name)) <NEW_LINE> property_map[property_name] = value <NEW_LINE> <DEDENT> for required_property_name in required_properties: <NEW_LINE> <INDENT> _assert_condition(required_property_name in property_map, 'The %s entity is missing required property "%s".' % (entity_name, required_property_name)) <NEW_LINE> <DEDENT> return property_map
|
Validates a predefined entity (e.g. a user or a point).
Args:
entity: the predefined entity (an entity_v4_pb.Entity)
entity_name: the name of the entity (used in error messages)
allowed_property_map: a dict whose keys are property names allowed in
the entity and values are the expected types of these properties
required_properties: a list of required property names
Returns:
a dict of entity_v4_pb2.Value objects keyed by property name
Raises:
ValidationError: if the entity is invalid
|
625941bd63f4b57ef0001013
|
def reverseList(self, head): <NEW_LINE> <INDENT> if head == None or head.next == None: <NEW_LINE> <INDENT> return head <NEW_LINE> <DEDENT> node = self.reverseList(head.next) <NEW_LINE> head.next.next = head <NEW_LINE> head.next = None <NEW_LINE> return node
|
:type head: ListNode
:rtype: ListNode
|
625941bd31939e2706e4cd61
|
def error_408(message = None): <NEW_LINE> <INDENT> if not isinstance(message, str) or len(message) < 1: <NEW_LINE> <INDENT> message = 'Request Timeout' <NEW_LINE> <DEDENT> return _error(code = 408, message = message)
|
JSON error handler for HTTP error 408
|
625941bdd164cc6175782c41
|
@should_show.command("fetch-data") <NEW_LINE> @click.option("--db-url", envvar="PGDATABASE") <NEW_LINE> @click.argument("filename", type=click.File("r")) <NEW_LINE> @click.argument("output", type=click.File("w")) <NEW_LINE> def fetch_training_data(filename, output, db_url=None): <NEW_LINE> <INDENT> r2dt.write_training_data(filename, db_url, output)
|
This builds a CSV file of training data to use for the model building. I
keep it separate so I can build a training csv and play with it interactivly
before committing the final modeling building logic to the pipeline.
|
625941bd07f4c71912b1137a
|
def test_add_needs_release(self): <NEW_LINE> <INDENT> bug = Bug("1", "kanban", MEDIUM, FIX_COMMITTED, "A title", merge_proposal="url", merge_proposal_status=MERGED, tags=["verified"]) <NEW_LINE> kanban_board = self.create_test_class() <NEW_LINE> kanban_board.add(bug) <NEW_LINE> self.assertEqual([bug], kanban_board.bugs) <NEW_LINE> self.assertEqual([], kanban_board.queued) <NEW_LINE> self.assertEqual([], kanban_board.in_progress) <NEW_LINE> self.assertEqual([], kanban_board.needs_review) <NEW_LINE> self.assertEqual([], kanban_board.needs_testing) <NEW_LINE> self.assertEqual([bug], kanban_board.needs_release) <NEW_LINE> self.assertEqual([], kanban_board.released)
|
A L{Bug} in the 'Needs release' category is stored in the
L{BugCollectionMixin.bugs} and the L{Story.needs_release} lists, in
the default story.
|
625941bdff9c53063f47c0e8
|
def __init__(self, timestamp, fel, warehouse, name=""): <NEW_LINE> <INDENT> self.timestamp = timestamp <NEW_LINE> self.fel = fel <NEW_LINE> self.warehouse = warehouse <NEW_LINE> self.name = name
|
Initializes event object
:param event_data: data specific to the event instance
:param event_handler: a method to handle the event, takes event_data as a paramter
|
625941bd097d151d1a222d4f
|
def driverHandle(self): <NEW_LINE> <INDENT> return QVariant()
|
QVariant Solid.AudioInterface.driverHandle()
|
625941bd50812a4eaa59c218
|
def reset_session(self): <NEW_LINE> <INDENT> if not self.is_open(): <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> if self._active_result is not None: <NEW_LINE> <INDENT> self._active_result.fetch_all() <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> self.protocol.send_reset() <NEW_LINE> <DEDENT> except (InterfaceError, OperationalError) as err: <NEW_LINE> <INDENT> _LOGGER.warning("Warning: An error occurred while attempting to " "reset the session: {}".format(err))
|
Reset a sucessfully authenticated session.
|
625941bd0fa83653e4656eb0
|
def count_attribute_set(self, attr): <NEW_LINE> <INDENT> attr_present = 0 <NEW_LINE> for item in self.data: <NEW_LINE> <INDENT> if attr in item: <NEW_LINE> <INDENT> if item[attr]['values']: <NEW_LINE> <INDENT> attr_present += 1 <NEW_LINE> continue <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.unset[attr] += 1 <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return attr_present
|
count the number of items in the data
where the attribute `attr` is set
:param attr: str identifying a property
|
625941bd8da39b475bd64e64
|
def test_explicitly_set_in_schema_subqueryload(self): <NEW_LINE> <INDENT> u1, u2, u3, p11, p12, p21, p22, cm11, cm12, cm21, cm22, cm_empty = self._seed() <NEW_LINE> self.query_count = 0 <NEW_LINE> res = Comment.smart_query( filters=dict(post___public=True, post___user___name__like='Bi%'), schema={ 'post': { 'comments': SUBQUERY } } ).all() <NEW_LINE> self.assertEqual(self.query_count, 2) <NEW_LINE> _ = res[0].post <NEW_LINE> self.assertEqual(self.query_count, 2) <NEW_LINE> _ = res[0].post.user <NEW_LINE> self.assertEqual(self.query_count, 2) <NEW_LINE> _ = res[0].post.comments <NEW_LINE> self.assertEqual(self.query_count, 2)
|
here we explicitly set in schema that we additionally want to load
post___comments
|
625941bdf9cc0f698b1404f1
|
@cbook.deprecated("3.2") <NEW_LINE> def mx2num(mxdates): <NEW_LINE> <INDENT> scalar = False <NEW_LINE> if not np.iterable(mxdates): <NEW_LINE> <INDENT> scalar = True <NEW_LINE> mxdates = [mxdates] <NEW_LINE> <DEDENT> ret = epoch2num([m.ticks() for m in mxdates]) <NEW_LINE> if scalar: <NEW_LINE> <INDENT> return ret[0] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return ret
|
Convert mx :class:`datetime` instance (or sequence of mx
instances) to the new date format.
|
625941bda05bb46b383ec718
|
def set_working_volume(self, mount: Mount, tip_volume: int) -> None: <NEW_LINE> <INDENT> ...
|
Inform the hardware how much volume a pipette can aspirate.
This will set the limit of aspiration for the pipette, and is
necessary for backcompatibility.
|
625941bd82261d6c526ab38f
|
def test_write_only(self): <NEW_LINE> <INDENT> name = self.mktemp() <NEW_LINE> f = File(name, 'w') <NEW_LINE> f.close() <NEW_LINE> with self.assertRaises(ValueError): <NEW_LINE> <INDENT> f = h5py.File(name, 'r', userblock_size=512) <NEW_LINE> <DEDENT> with self.assertRaises(ValueError): <NEW_LINE> <INDENT> f = h5py.File(name, 'r+', userblock_size=512)
|
User block only allowed for write
|
625941bd3346ee7daa2b2c5d
|
def get_env(self): <NEW_LINE> <INDENT> env = {} <NEW_LINE> env['SSH_AUTH_SOCK'] = self._get_filename() <NEW_LINE> return env
|
Helper for the environnement under unix
:return:
a dict containing the ``SSH_AUTH_SOCK`` environnement variables
|
625941bd236d856c2ad446cd
|
def populateBbox(self, margin=0.1): <NEW_LINE> <INDENT> glist = self.getxmlelement('geolocationGrid/geolocationGridPointList') <NEW_LINE> lat = [] <NEW_LINE> lon = [] <NEW_LINE> for child in glist: <NEW_LINE> <INDENT> lat.append( float(child.find('latitude').text)) <NEW_LINE> lon.append( float(child.find('longitude').text)) <NEW_LINE> <DEDENT> self.product.bbox = [min(lat) - margin, max(lat) + margin, min(lon) - margin, max(lon) + margin] <NEW_LINE> print(self.product.bbox) <NEW_LINE> return
|
Populate the bounding box from metadata.
|
625941bd283ffb24f3c557fe
|
def connect_handler(data): <NEW_LINE> <INDENT> post_data = { 'username': username, 'password': password, 'connection_info': data} <NEW_LINE> resp = requests.post(GOALFEED_AUTH_ENDPOINT, post_data, timeout=30).json() <NEW_LINE> channel = pusher.subscribe('private-goals', resp['auth']) <NEW_LINE> channel.bind('goal', goal_handler)
|
Handle connection.
|
625941bd2ae34c7f2600d025
|
def handle(req): <NEW_LINE> <INDENT> if req=='train\n': <NEW_LINE> <INDENT> train() <NEW_LINE> print('Modelo entrenado') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> binary = os.fsencode(req) <NEW_LINE> image_64_decode = base64.decodebytes(binary) <NEW_LINE> result_file = 'image' <NEW_LINE> with open(result_file, 'wb') as file_handler: <NEW_LINE> <INDENT> file_handler.write(image_64_decode) <NEW_LINE> <DEDENT> Image.open(result_file).save(result_file + '.png', 'PNG') <NEW_LINE> os.remove(result_file) <NEW_LINE> image = Image.open(result_file + '.png') <NEW_LINE> image = np.asarray(image) <NEW_LINE> input_image=np.array([np.reshape(image,np.prod(image.shape)),]) <NEW_LINE> res = get_number(input_image) <NEW_LINE> print('La imagen tiene el numero: ',res) <NEW_LINE> <DEDENT> pass
|
handle a request to the function
Args:
req (str): request body
|
625941bd1d351010ab855a10
|
@given('two positive integer values 0 and 600') <NEW_LINE> def given1(context): <NEW_LINE> <INDENT> context.range_int = (0, 600)
|
Given two positive integer values 0 and 600').
|
625941bdac7a0e7691ed3fcc
|
def train_model_validation(filename_train_validation_set, filename_labels_train_validation_set, filter_density, dropout, input_shape, output_shape, file_path_model, filename_log, channel=1): <NEW_LINE> <INDENT> filenames_train, Y_train, filenames_validation, Y_validation, filenames_features, Y_train_validation = load_data(filename_labels_train_validation_set) <NEW_LINE> model_0 = model_switcher(filter_density, dropout, input_shape, output_shape) <NEW_LINE> batch_size = 256 <NEW_LINE> patience = 15 <NEW_LINE> model_train_validation(model_0, batch_size, patience, input_shape, filename_train_validation_set, filenames_train, Y_train, filenames_validation, Y_validation, file_path_model, filename_log, channel)
|
train model with validation
|
625941bd099cdd3c635f0b50
|
def repo(): <NEW_LINE> <INDENT> if 'SUDO_USER' in os.environ: <NEW_LINE> <INDENT> return os.path.expanduser('~{0}/.blueprints.git'. format(os.environ['SUDO_USER'])) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return os.path.expanduser('~/.blueprints.git')
|
Return the full path to the Git repository.
|
625941bd32920d7e50b280c1
|
def get_base_upgrade_order(packages): <NEW_LINE> <INDENT> upgrade_order = pisilinux.operations.upgrade.upgrade_base <NEW_LINE> order = upgrade_order(packages) <NEW_LINE> return list(order)
|
Return a list of packages of the system.base component that needs to be upgraded
or installed in install order -> list_of_strings
All the packages of the system.base component must be installed on the system
@param packages: list of package names -> list_of_strings
|
625941bd56ac1b37e62640c8
|
def copy_from(self, other): <NEW_LINE> <INDENT> if (self.parent is None) != (other.parent is None): <NEW_LINE> <INDENT> raise ValueError('cannot copy scopes of different structures') <NEW_LINE> <DEDENT> if other.parent is not None: <NEW_LINE> <INDENT> self.parent.copy_from(other.parent) <NEW_LINE> <DEDENT> self.isolated = other.isolated <NEW_LINE> self.modified = copy.copy(other.modified) <NEW_LINE> self.used = copy.copy(other.used) <NEW_LINE> self.params = copy.copy(other.params) <NEW_LINE> self.returned = copy.copy(other.returned)
|
Recursively copies the contents of this scope from another scope.
|
625941bdd4950a0f3b08c245
|
def checkDirs(self): <NEW_LINE> <INDENT> for folder in [MCBUP_LOGDIR,MCBUP_MASTER_STORE,MCBUP_WORKING_STORE]: <NEW_LINE> <INDENT> if not os.path.exists(folder): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> os.makedirs(folder) <NEW_LINE> <DEDENT> except OSError as e: <NEW_LINE> <INDENT> print("Unable to create logging directory {0:s} ".format(folder)) <NEW_LINE> sys.exit(1)
|
Checks if required directory structure exists, and if not - creates.
|
625941bdc432627299f04b37
|
def create_nite(data): <NEW_LINE> <INDENT> col = 'caldat' <NEW_LINE> if not len(data): return np.array([],dtype='S8') <NEW_LINE> dtype ='S%i'%(len(max(data[col], key=len))) <NEW_LINE> nite = data[col].values.astype(dtype) <NEW_LINE> nite = np.char.replace(nite,'-','') <NEW_LINE> return nite
|
Convert 'caldat' to 'nite'. This is the faster option since
it relies on NOAO to calculate the nite.
|
625941bdc4546d3d9de72925
|
def shoot(self, **kwargs): <NEW_LINE> <INDENT> self._validate_shoot_args() <NEW_LINE> options = self._lua.globals.util.serialize( self._lua.table(**self._parse_shoot_args(**kwargs))) <NEW_LINE> if not kwargs.get('stream', True): <NEW_LINE> <INDENT> return self._shoot_nonstreaming( options, wait=kwargs.get('wait', True), download=kwargs.get('download_after', False), remove=kwargs.get('remove_after', False)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return self._shoot_streaming(options, dng=kwargs.get('dng', False))
|
Shoot a picture
For all arguments where `None` is a legal type, it signifies that the
current value from the camera should be used and not be overriden.
:param shutter_speed: Shutter speed in APEX96 (default: None)
:type shutter_speed: int/float/None
:param real_iso: Canon 'real' ISO (default: None)
:type real_iso: int/float/None
:param market_iso: Canon 'market' ISO (default: None)
:type market_iso: int/float/None
:param aperture: Aperture value in APEX96 (default: None)
:type aperture: int/float/None
:param isomode: Must conform to ISO value in Canon UI, shooting
mode must have manual ISO (default: None)
:type isomode: int/None
:param nd_filter: Toggle Neutral Density filter (default: None)
:type nd_filter: boolean/None
:param distance: Subject distance. If specified as an integer,
the value is interpreted as the distance in
milimeters. You can also pass a string that
contains a number followed by one of the
following units: 'mm', 'cm', 'm', 'ft' or 'in'
(default: None)
:type distance: str/unicode/int
:param dng: Dump raw framebuffer in DNG format
(default: False)
:type dng: boolean
:param wait: Wait for capture to complete (default: True)
:type wait: boolean
:param download_after: Download and return image data after capture
(default: False)
:type download_after: boolean
:param remove_after: Remove image data after shooting
(default: False)
:type remove_after: boolean
:param stream: Stream and return image data directly from
device (will not be saved on camera storage)
(default: True)
:type stream: boolean
|
625941bda4f1c619b28aff33
|
def mirror_targets(self, mirrorlist): <NEW_LINE> <INDENT> if not type(mirrorlist) is list: <NEW_LINE> <INDENT> mirrorlist = [mirrorlist] <NEW_LINE> <DEDENT> elif len(mirrorlist) > 3: <NEW_LINE> <INDENT> raise AttributeError("Mirror list has greater than 3 items") <NEW_LINE> <DEDENT> self['mirror_targets'] = mirrorlist <NEW_LINE> return self
|
Will set/update the mirror target list of the object.
Arguments:
mirror_targets -- a list of IPs that can have up to 3 items
|
625941bd55399d3f055885a7
|
def push(self, node: SearchNode, placed_by: SearchNode = None) -> bool: <NEW_LINE> <INDENT> if node.name in self.visited: <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> cost = 0.0 <NEW_LINE> if placed_by: <NEW_LINE> <INDENT> pcost = self.path_cost(placed_by) <NEW_LINE> wcost = placed_by.weight(node.name) <NEW_LINE> cost = pcost + wcost <NEW_LINE> <DEDENT> self.structure.append((node, placed_by, cost)) <NEW_LINE> self.structure.sort(key=lambda tup: tup[2]) <NEW_LINE> return True
|
Push node onto priority queue
:param node:
:param placed_by:
:return:
|
625941bd30bbd722463cbcb7
|
def connect(self): <NEW_LINE> <INDENT> self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) <NEW_LINE> server_address = (self.host, self.port) <NEW_LINE> try: <NEW_LINE> <INDENT> self.sock.settimeout(self.connect_timeout) <NEW_LINE> self.sock.connect(server_address) <NEW_LINE> <DEDENT> except socket.error: <NEW_LINE> <INDENT> _LOGGER.debug('Connection timeout: %s:%s', self.host, self.port) <NEW_LINE> return False <NEW_LINE> <DEDENT> self.sock.settimeout(None) <NEW_LINE> self.stream = self.sock.makefile(mode='rwb') <NEW_LINE> service_name = gssapi.Name( self.service_name, name_type=gssapi.NameType.hostbased_service ) <NEW_LINE> self.ctx = gssapi.SecurityContext(name=service_name, usage='initiate') <NEW_LINE> in_token = None <NEW_LINE> while not self.ctx.complete: <NEW_LINE> <INDENT> out_token = self.ctx.step(in_token) <NEW_LINE> if out_token: <NEW_LINE> <INDENT> out_encoded = base64.standard_b64encode(out_token) <NEW_LINE> self._write_line(out_encoded) <NEW_LINE> <DEDENT> if self.ctx.complete: <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> in_encoded = self._read_line() <NEW_LINE> in_token = base64.standard_b64decode(in_encoded) <NEW_LINE> if not in_token: <NEW_LINE> <INDENT> raise GSSError('No response from server.') <NEW_LINE> <DEDENT> <DEDENT> _LOGGER.debug('Successfully authenticated.') <NEW_LINE> return True
|
Connect and authenticate to the server.
|
625941bd6fb2d068a760ef8e
|
def insert(self, key, val): <NEW_LINE> <INDENT> if key in self._dict: <NEW_LINE> <INDENT> self._dict[key] = val <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self._dict[key] = val
|
:type key: str
:type val: int
:rtype: void
|
625941bda8370b7717052794
|
def sum_them_all(number): <NEW_LINE> <INDENT> pass
|
2. Given a number, return the sum of all digits from
zero to the number (inclusive).
|
625941bdb7558d58953c4e0d
|
def minPathSum(self, grid: List[List[int]]) -> int: <NEW_LINE> <INDENT> m, n = len(grid), len(grid[0]) <NEW_LINE> dp = [[None]*n for _ in range(m)] <NEW_LINE> for i in range(m): <NEW_LINE> <INDENT> for j in range(n): <NEW_LINE> <INDENT> if i==0 and j==0: dp[i][j]=grid[i][j] <NEW_LINE> else: <NEW_LINE> <INDENT> dp[i][j] = min(dp[i-1][j] if i>=1 else float('inf'), dp[i][j-1] if j>=1 else float('inf')) + grid[i][j] <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return dp[-1][-1]
|
Aim in this question being, to find shortest path.
We need to break it down and see which is shorter. Whether the left one or top one.
And we can conclude on our answer.
|
625941bd7b180e01f3dc46f7
|
def set_memory_limit(self, memory): <NEW_LINE> <INDENT> self._validate_memory_string(memory) <NEW_LINE> self.memory_limit = memory
|
Set memory limit (maximum) for this operator.
Args:
memory: a string which can be a number or a number followed by one of
"E", "P", "T", "G", "M", "K".
|
625941bde1aae11d1e749ba9
|
def __init__(self, plantype): <NEW_LINE> <INDENT> self.plantype = plantype
|
Constructor
|
625941bd0c0af96317bb80dc
|
@with_setup(pretest, posttest) <NEW_LINE> @retry_on_except() <NEW_LINE> def test_iter_overhead_hard(): <NEW_LINE> <INDENT> total = int(1e5) <NEW_LINE> with closing(MockIO()) as our_file: <NEW_LINE> <INDENT> a = 0 <NEW_LINE> with trange(total, file=our_file, leave=True, miniters=1, mininterval=0, maxinterval=0) as t: <NEW_LINE> <INDENT> with relative_timer() as time_tqdm: <NEW_LINE> <INDENT> for i in t: <NEW_LINE> <INDENT> a += i <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> assert a == (total * total - total) / 2.0 <NEW_LINE> a = 0 <NEW_LINE> with relative_timer() as time_bench: <NEW_LINE> <INDENT> for i in _range(total): <NEW_LINE> <INDENT> a += i <NEW_LINE> our_file.write(("%i" % a) * 40) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> assert_performance(125, 'trange', time_tqdm(), 'range', time_bench())
|
Test overhead of iteration based tqdm (hard)
|
625941bdf8510a7c17cf95ef
|
def colorPicker(self, event=None): <NEW_LINE> <INDENT> dlg = PsychoColorPicker(None) <NEW_LINE> dlg.ShowModal() <NEW_LINE> dlg.Destroy() <NEW_LINE> if event is not None: <NEW_LINE> <INDENT> event.Skip()
|
Open color-picker, sets clip-board to string [r,g,b].
Note: units are psychopy -1..+1 rgb units to three decimal places,
preserving 24-bit color.
|
625941bd6aa9bd52df036c97
|
def knoepfe_menü(user): <NEW_LINE> <INDENT> alle = { 'index': ('/', 'Startseite'), 'olymp': (reverse('Wettbewerbe:index'), 'Wettbewerbe'), 'ehemalige': (reverse('Ehemalige:index'), 'Ehemalige'), 'impressum': (reverse('impressum'), 'Impressum'), 'db': ('https://olymp.piokg.de/static/db.pdf', 'Datenbanklayout'), 'todo': ('/todo/', 'ToDo-Liste'), } <NEW_LINE> if user.username == 'admin': <NEW_LINE> <INDENT> return [alle[name] for name in ('index', 'olymp', 'ehemalige', 'todo', 'db')] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return [alle[name] for name in ('index', 'olymp', 'db', 'impressum')]
|
gibt Knöpfe für Menüleiste als Liste von Tupeln zurück
|
625941bdd10714528d5ffbd4
|
def _get_permutations_draw(draw, len): <NEW_LINE> <INDENT> result = itertools.permutations(draw, len) <NEW_LINE> return list(result)
|
Helper to get all permutations of a draw (list of letters), hint:
use itertools.permutations (order of letters matters)
|
625941bd5fc7496912cc3872
|
def draw_step_and_sigmoid(): <NEW_LINE> <INDENT> draw_function(f=lambda x: 1 / (1 + np.exp(-x)), save=False) <NEW_LINE> draw_function(f=lambda x: np.abs(x) / (2 * x) + 1 / 2, save=True, name="step and sigmoid", clear_plot=False)
|
Plot a smooth curve of the sigmoid and step function on the same figure.
|
625941bd187af65679ca5012
|
def get_oci_account(name, user_id): <NEW_LINE> <INDENT> response = handle_request( current_app.config['DATABASE_API_URL'], 'oci_accounts/', 'get', job_data={'name': name, 'user_id': user_id} ) <NEW_LINE> account = response.json() <NEW_LINE> if not account: <NEW_LINE> <INDENT> raise MashException( 'OCI account {account} not found. '.format( account=name ) ) <NEW_LINE> <DEDENT> return account
|
Get OCI account for given user.
|
625941bd9f2886367277a784
|
def wells_from(self, start, num, columnwise=False): <NEW_LINE> <INDENT> start = self.robotize(start) <NEW_LINE> if columnwise: <NEW_LINE> <INDENT> row, col = self.decompose(start) <NEW_LINE> num_rows = self.container_type.row_count() <NEW_LINE> start = col * num_rows + row <NEW_LINE> <DEDENT> return WellGroup(self.all_wells(columnwise).wells[start:start + num])
|
Return a WellGroup of Wells belonging to this Container starting from
the index indicated (in integer or string form) and including the number
of proceeding wells specified. Wells are counted from the starting well
rowwise unless columnwise is True.
Parameters
----------
start : Well, int, str
Starting well specified as a Well object, a human-readable well
index or an integer well index
num : int
Number of wells to include
columnwise : bool, optional
Specifies whether the wells included should be counted columnwise
instead of the default rowwise.
|
625941bd3d592f4c4ed1cf6a
|
def binary_erosion(x, radius=3): <NEW_LINE> <INDENT> mask = disk(radius) <NEW_LINE> x = _binary_erosion(x, selem=mask) <NEW_LINE> return x
|
Return binary morphological erosion of an image,
see `skimage.morphology.binary_erosion <http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.binary_erosion>`__.
Parameters
-----------
x : 2D array
A binary image.
radius : int
For the radius of mask.
Returns
-------
numpy.array
A processed binary image.
|
625941bdeab8aa0e5d26da52
|
def test_token_null(self): <NEW_LINE> <INDENT> payload = {"token":'', 'oldPassword': '123456', 'newPassword': '654321'} <NEW_LINE> r2 = self.s.post(self.base_url, data=payload) <NEW_LINE> self.result = r2.json() <NEW_LINE> self.assertEqual(self.result['result'], False) <NEW_LINE> pwd = test_data.ua_emp_search(value="PASSWORD", type='β') <NEW_LINE> self.assertEqual(pwd, '508df4cb2f4d8f80519256258cfb975f')
|
空的token
|
625941bd85dfad0860c3ad4e
|
def set_thread_priority(self, *args, **kwargs): <NEW_LINE> <INDENT> return _howto_swig.chan_info_parser_sptr_set_thread_priority(self, *args, **kwargs)
|
set_thread_priority(chan_info_parser_sptr self, int priority) -> int
|
625941bd66673b3332b91f85
|
def p_multelsif(p): <NEW_LINE> <INDENT> getRule(p,'multelsif')
|
multelsif : elsif expr pthen compstmt multelsif
| empty
|
625941bd293b9510aa2c318d
|
def extract_data(self, GT_mask, s_idx): <NEW_LINE> <INDENT> data = np.array([]).reshape((-1, self.cn + 2)) <NEW_LINE> for i in range(1, self.cn + 1): <NEW_LINE> <INDENT> mask = (GT_mask == i) <NEW_LINE> idx = np.where(mask.flatten())[0].reshape((-1, 1)) <NEW_LINE> T1 = self.T1[s_idx, :, :][mask].reshape((-1, 1)) <NEW_LINE> T2 = self.T2[s_idx, :, :][mask].reshape((-1, 1)) <NEW_LINE> PD = self.PD[s_idx, :, :][mask].reshape((-1, 1)) <NEW_LINE> label = np.ones(T1.shape) * i <NEW_LINE> one_class = np.hstack((idx, T1, T2, PD, label)) <NEW_LINE> data = np.vstack((data, one_class)) <NEW_LINE> <DEDENT> new_idx = np.random.permutation(data.shape[0]) <NEW_LINE> return data[new_idx, :]
|
EXTRACT_DATA
On the basis of given indices of slices, extract
point value from T1, T2 and PD to for feature matrix.
Each point has 5 dimensions of information:
index (position in slice), T1 value, T2 value, PD value,
label (1 for CSF, 2 for GM, 3 for WM).
|
625941bd71ff763f4b54957b
|
def compare_yv(yv, control_yv, mode, is_control=False): <NEW_LINE> <INDENT> y, y_var = yv <NEW_LINE> if mode == 'ratio': <NEW_LINE> <INDENT> if is_control: <NEW_LINE> <INDENT> return np.ones_like(y), np.zeros_like(y_var) <NEW_LINE> <DEDENT> control_y, control_y_var = (1, 0) if control_yv is None else control_yv <NEW_LINE> return divide_var(y, y_var, control_y, control_y_var) <NEW_LINE> <DEDENT> elif mode == 'difference': <NEW_LINE> <INDENT> if is_control: <NEW_LINE> <INDENT> return np.zeros_like(y), np.zeros_like(y_var) <NEW_LINE> <DEDENT> control_y, control_y_var = (0, 0) if control_yv is None else control_yv <NEW_LINE> return minus_var(y, y_var, control_y, control_y_var) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise TypeError(f"Unsupported compare mode {mode}")
|
:return: c, c_var
|
625941bd925a0f43d2549d68
|
def load_latest_checkpoint_from_bucket(tensorboard_run, bucket, train_dir): <NEW_LINE> <INDENT> import numpy as np <NEW_LINE> checkpoints = gsutil_ls(bucket, filter=tensorboard_run) <NEW_LINE> if "BucketNotFoundException" in checkpoints: <NEW_LINE> <INDENT> raise ValueError( "ERROR: bucket not found, path={}".format(bucket)) <NEW_LINE> <DEDENT> if not checkpoints: <NEW_LINE> <INDENT> raise ValueError("Checkpoint not found, tensorboard_run={}".format(tensorboard_run)) <NEW_LINE> <DEDENT> steps = [re.findall(".*\.(\d+)\.zip$", f)[0] for f in checkpoints ] <NEW_LINE> if not steps: <NEW_LINE> <INDENT> raise ValueError("Checkpoint not found, tensorboard_run={}".format(tensorboard_run)) <NEW_LINE> <DEDENT> latest_step = np.max(np.asarray(steps).astype(int)) <NEW_LINE> if not latest_step: <NEW_LINE> <INDENT> raise ValueError("Checkpoint not found, tensorboard_run={}".format(tensorboard_run)) <NEW_LINE> <DEDENT> latest_checkpoint = [f for f in checkpoints if latest_step.astype(str) in f ] <NEW_LINE> print("latest checkpoint found, checkpoint={}".format(latest_checkpoint[0])) <NEW_LINE> zip_filename = os.path.basename(latest_checkpoint[0]) <NEW_LINE> return load_from_bucket(zip_filename, bucket, train_dir)
|
find latest zipped 'checkpoint' in bucket and download
similar to tf.train.latest_checkpoint()
Args:
tensorboard_run: filter for zip files from the same run
e.g. "y-tensorboard-run" for "my-tensorboard-run.6000.zip"
bucket: "gs://[bucket]"
train_dir: a diretory path to restore the checkpoint files,
usually TRAIN_LOG, e.g. "/my-project/log/my-tensorboard-run"
Return:
checkpoint_name, e.g. `/my-project/log/my-tensorboard-run/model.ckpt-6000`
|
625941bd1d351010ab855a11
|
def populateMethods(self): <NEW_LINE> <INDENT> self.retrieval_models = {} <NEW_LINE> all_doc_methods = None <NEW_LINE> if self.exp.get("doc_methods", None): <NEW_LINE> <INDENT> all_doc_methods = getDictOfTestingMethods(self.exp["doc_methods"]) <NEW_LINE> if self.exp["full_corpus"]: <NEW_LINE> <INDENT> all_files = ["ALL_FILES"] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> all_files = list(self.files_dict.keys()) <NEW_LINE> <DEDENT> self.generateRetrievalModels(all_doc_methods, all_files) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> all_doc_methods = self.files_dict["ALL_FILES"]["doc_methods"] <NEW_LINE> <DEDENT> if self.exp["full_corpus"]: <NEW_LINE> <INDENT> for model in self.files_dict["ALL_FILES"]["tfidf_models"]: <NEW_LINE> <INDENT> self.retrieval_models[model["method"]] = self.retrieval_class( model["actual_dir"], model["method"], logger=None, use_default_similarity=self.exp["use_default_similarity"], max_results=self.exp["max_results_recall"], save_terms=self.save_terms, multi_match_type=all_doc_methods[model["method"]].get("multi_match_type")) <NEW_LINE> <DEDENT> <DEDENT> self.main_all_doc_methods = all_doc_methods
|
Fills dict with all the test methods, parameters and options, including
the retrieval instances
|
625941bd7d43ff24873a2b92
|
def test_url_remote_http(self): <NEW_LINE> <INDENT> url = 'http://somewhere' <NEW_LINE> is_remote = is_remote_url(url) <NEW_LINE> self.assertTrue(is_remote)
|
verify that a remote http url is identified.
|
625941bdbe7bc26dc91cd4f9
|
def __init__(self): <NEW_LINE> <INDENT> self.GatewayId = None
|
:param GatewayId: 网关实例ID,目前我们支持的网关实例类型有,
专线网关实例ID,形如,`dcg-ltjahce6`;
Nat网关实例ID,形如,`nat-ltjahce6`;
VPN网关实例ID,形如,`vpn-ltjahce6`。
:type GatewayId: str
|
625941bd8a349b6b435e8068
|
def test_stage_single_bundle(self): <NEW_LINE> <INDENT> bundle = self.create_run_bundle( state=State.STAGED, metadata=dict(request_memory="0", request_time="", request_cpus=1, request_gpus=0), ) <NEW_LINE> self.save_bundle(bundle) <NEW_LINE> self.mock_worker_checkin(cpus=1, user_id=self.user_id) <NEW_LINE> self.bundle_manager._schedule_run_bundles() <NEW_LINE> bundle = self.bundle_manager._model.get_bundle(bundle.uuid) <NEW_LINE> self.assertEqual(bundle.state, State.STARTING)
|
When a worker with the right specs is available, a bundle should be staged.
|
625941bd21a7993f00bc7bdf
|
def _update(self, data): <NEW_LINE> <INDENT> for k, v in data.iteritems(): <NEW_LINE> <INDENT> new_value = v <NEW_LINE> if isinstance(v, dict): <NEW_LINE> <INDENT> new_value = type(self)(v) <NEW_LINE> <DEDENT> elif isinstance(v, list): <NEW_LINE> <INDENT> new_value = [(type(self)(e) if isinstance(e, dict) else e) for e in v] <NEW_LINE> <DEDENT> setattr(self, k, new_value)
|
Update the object with new data.
|
625941bd21a7993f00bc7be0
|
def submit_gradient(self, from_addr, model_id, grad): <NEW_LINE> <INDENT> ipfs_address = self.ipfs.store(grad) <NEW_LINE> self.get_transaction(from_addr).addGradient( model_id, IPFSAddress().to_ethereum(ipfs_address)) <NEW_LINE> return self.call.getNumGradientsforModel(model_id) - 1
|
This accepts gradients for a model from syft.nn and uploads them to
the blockchain (via IPFS), linked to a model by it's id.
TODO: modify syft.nn to actually have a "getGradients()" method call so
that there can be checks that keep people from uploading junk.
Currently any python object could be uploaded (which is obviously
dangerous).
|
625941bd29b78933be1e55a5
|
def function(self, data): <NEW_LINE> <INDENT> deg = sp.diags(a1ifmat(data.sum(1))**-.5, 0) <NEW_LINE> lap = deg @ data @ deg <NEW_LINE> return lap
|
Normalized Symmetric Graph Laplacian
Parameters
----------
data : :obj:`sp.csr_matrix` or :obj:`np.ndarray`
Graph affinity/similarity matrix.
Returns
-------
:obj:`sp.csr_matrix`
Sparse representation of a symmetric graph laplacian matrix
|
625941bd091ae35668666e58
|
def print_warning(content): <NEW_LINE> <INDENT> print(COLOR_YELLOW_FORMAT % (WARNING_INFO % content))
|
Print warning information to screen
|
625941bd4c3428357757c21f
|
def part(self, channel): <NEW_LINE> <INDENT> self.irc.send(self.encode('PART {0}'.format(channel)))
|
Leaves channel
|
625941bd24f1403a92600a5e
|
@register.inclusion_tag('cclikes/inclusion_tags/cclikes_extender.html', takes_context=True) <NEW_LINE> def likes(context, obj, template=None): <NEW_LINE> <INDENT> if template is None: <NEW_LINE> <INDENT> template = 'cclikes/inclusion_tags/cclikes.html' <NEW_LINE> <DEDENT> request = context['request'] <NEW_LINE> import_js = False <NEW_LINE> if not hasattr(request, '_django_likes_js_imported'): <NEW_LINE> <INDENT> setattr(request, '_django_likes_js_imported', 1) <NEW_LINE> import_js = True <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> model_name = obj._meta.model_name <NEW_LINE> <DEDENT> except AttributeError: <NEW_LINE> <INDENT> model_name = obj._meta.module_name <NEW_LINE> <DEDENT> context.update({ 'template': template, 'content_obj': obj, 'likes_enabled': likes_enabled(obj, request), 'can_vote': can_vote(obj, request.user, request), 'content_type': "-".join((obj._meta.app_label, model_name)), 'import_js': import_js }) <NEW_LINE> return context <NEW_LINE> def inclusion_tag(self, filename, func=None, takes_context=None, name=None): <NEW_LINE> <INDENT> def dec(func): <NEW_LINE> <INDENT> params, varargs, varkw, defaults = getargspec(func) <NEW_LINE> function_name = (name or getattr(func, '_decorated_function', func).__name__) <NEW_LINE> @functools.wraps(func) <NEW_LINE> def compile_func(parser, token): <NEW_LINE> <INDENT> bits = token.split_contents()[1:] <NEW_LINE> args, kwargs = parse_bits( parser, bits, params, varargs, varkw, defaults, takes_context, function_name, ) <NEW_LINE> return InclusionNode( func, takes_context, args, kwargs, filename, ) <NEW_LINE> <DEDENT> self.tag(function_name, compile_func) <NEW_LINE> return func <NEW_LINE> <DEDENT> return dec
|
Register a callable as an inclusion tag:
@register.inclusion_tag('results.html')
def show_results(poll):
choices = poll.choice_set.all()
return {'choices': choices}
|
625941bd94891a1f4081b99d
|
def start_interpreter(self, namespace): <NEW_LINE> <INDENT> self.clear() <NEW_LINE> if self.interpreter is not None: <NEW_LINE> <INDENT> self.interpreter.closing() <NEW_LINE> <DEDENT> self.interpreter = Interpreter( namespace, self.exitfunc, SysOutput, WidgetProxy, self.debug ) <NEW_LINE> self.interpreter.stdout_write.data_avail.connect(self.stdout_avail) <NEW_LINE> self.interpreter.stderr_write.data_avail.connect(self.stderr_avail) <NEW_LINE> self.interpreter.widget_proxy.sig_set_readonly.connect(self.setReadOnly) <NEW_LINE> self.interpreter.widget_proxy.sig_new_prompt.connect(self.new_prompt) <NEW_LINE> self.interpreter.widget_proxy.sig_edit.connect(self.edit_script) <NEW_LINE> self.interpreter.widget_proxy.sig_wait_input.connect(self.wait_input) <NEW_LINE> if self.multithreaded: <NEW_LINE> <INDENT> self.interpreter.start() <NEW_LINE> <DEDENT> banner = create_banner(self.message) <NEW_LINE> self.write(banner, prompt=True) <NEW_LINE> for cmd in self.commands: <NEW_LINE> <INDENT> self.run_command(cmd, history=False, new_prompt=False) <NEW_LINE> <DEDENT> self.new_prompt(self.interpreter.p1) <NEW_LINE> self.refresh.emit() <NEW_LINE> return self.interpreter
|
Start Python interpreter
|
625941bd796e427e537b04b8
|
def issue_date(self): <NEW_LINE> <INDENT> pattern = r'^\s*dated as of (.*)\s*$' <NEW_LINE> m = re.search(pattern, self.content, flags= re.IGNORECASE|re.MULTILINE) <NEW_LINE> if m: <NEW_LINE> <INDENT> print('date string', m.group(1)) <NEW_LINE> return dateparser.parse(m.group(1)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return None
|
DATED AS OF SEPTEMBER 13, 1994
|
625941bd656771135c3eb761
|
def _create_event_ch(self, events, n_samples=None): <NEW_LINE> <INDENT> n_dropped = len(events[:, 0]) - len(set(events[:, 0])) <NEW_LINE> if n_dropped > 0: <NEW_LINE> <INDENT> warn(str(n_dropped) + " events will be dropped because they " "occur on the same time sample as another event. " "`mne.io.Raw` objects store events on an event channel, " "which cannot represent two events on the same sample. You " "can extract the original event structure using " "`mne.io.eeglab.read_events_eeglab`. Then, you can e.g. " "subset the extracted events for constructing epochs.") <NEW_LINE> <DEDENT> if n_samples is None: <NEW_LINE> <INDENT> n_samples = self.last_samp - self.first_samp + 1 <NEW_LINE> <DEDENT> events = np.array(events, int) <NEW_LINE> if events.ndim != 2 or events.shape[1] != 3: <NEW_LINE> <INDENT> raise ValueError("[n_events x 3] shaped array required") <NEW_LINE> <DEDENT> self._event_ch = _synthesize_stim_channel(events, n_samples)
|
Create the event channel.
|
625941bd6e29344779a62509
|
def map_(f): <NEW_LINE> <INDENT> return lambda xs: list(map(f, xs))
|
The list obtained by applying f
to each element of xs.
|
625941bd29b78933be1e55a6
|
def user_input(connection: connect_server.GameConnection, game_state: connectfour.GameState) -> connectfour.GameState: <NEW_LINE> <INDENT> user_command = input() <NEW_LINE> while c4_shared_function.game_move(game_state, user_command) is None: <NEW_LINE> <INDENT> user_command = input() <NEW_LINE> <DEDENT> connect_server.input_user_command(connection, user_command) <NEW_LINE> game_state = c4_shared_function.game_move(game_state, user_command) <NEW_LINE> print(c4_shared_function.board(game_state)) <NEW_LINE> return game_state
|
Asks for the user command. If user command is invalid, no changes will be done on the game state.
If valid, sends the user command to the server, updates the game state, and prints out the
updated game board. User will be promtp continuously until command is valid.
|
625941bdde87d2750b85fc84
|
def parseIntegratedTestScriptCommands(source_path, keywords): <NEW_LINE> <INDENT> keywords_re = re.compile( to_bytes("(%s)(.*)\n" % ("|".join(re.escape(k) for k in keywords),))) <NEW_LINE> f = open(source_path, 'rb') <NEW_LINE> try: <NEW_LINE> <INDENT> data = f.read() <NEW_LINE> if not data.endswith(to_bytes('\n')): <NEW_LINE> <INDENT> data = data + to_bytes('\n') <NEW_LINE> <DEDENT> line_number = 1 <NEW_LINE> last_match_position = 0 <NEW_LINE> for match in keywords_re.finditer(data): <NEW_LINE> <INDENT> match_position = match.start() <NEW_LINE> line_number += data.count(to_bytes('\n'), last_match_position, match_position) <NEW_LINE> last_match_position = match_position <NEW_LINE> keyword,ln = match.groups() <NEW_LINE> yield (line_number, to_string(keyword.decode('utf-8')), to_string(ln.decode('utf-8'))) <NEW_LINE> <DEDENT> <DEDENT> finally: <NEW_LINE> <INDENT> f.close()
|
parseIntegratedTestScriptCommands(source_path) -> commands
Parse the commands in an integrated test script file into a list of
(line_number, command_type, line).
|
625941bd1f037a2d8b9460f3
|
def part1() -> int: <NEW_LINE> <INDENT> coords = list(all_coords) <NEW_LINE> def calculate_areas( coords: List[Tuple[int, int]], min_x: int, min_y: int, max_x: int, max_y: int) -> Dict[Tuple[int, int], int]: <NEW_LINE> <INDENT> coords_and_area = {c: 0 for c in coords} <NEW_LINE> for x in range(min_x, max_x): <NEW_LINE> <INDENT> for y in range(min_y, max_y): <NEW_LINE> <INDENT> if (x, y) in coords: <NEW_LINE> <INDENT> coords_and_area[x, y] += 1 <NEW_LINE> continue <NEW_LINE> <DEDENT> manhattan_distances = [] <NEW_LINE> for cx, cy in coords: <NEW_LINE> <INDENT> manhattan_distances.append( (cx, cy, abs(x - cx) + abs(y - cy))) <NEW_LINE> <DEDENT> manhattan_distances.sort(key=lambda c: c[2]) <NEW_LINE> if manhattan_distances[0][2] != manhattan_distances[1][2]: <NEW_LINE> <INDENT> cx, cy = manhattan_distances[0][:2] <NEW_LINE> coords_and_area[cx, cy] += 1 <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return coords_and_area <NEW_LINE> <DEDENT> areas = calculate_areas(coords, min_x, min_y, max_x, max_y) <NEW_LINE> areas2 = calculate_areas(coords, min_x, min_y, max_x + 1, max_y + 1) <NEW_LINE> for (x, y), area in areas2.items(): <NEW_LINE> <INDENT> if area != areas[x, y]: <NEW_LINE> <INDENT> coords.remove((x, y)) <NEW_LINE> <DEDENT> <DEDENT> _min_x, _min_y, _max_x, _max_y = calculate_grid_size(coords) <NEW_LINE> areas3 = calculate_areas(coords, _min_x - 1, _min_y - 1, _max_x, _max_y) <NEW_LINE> for (x, y), area in areas3.items(): <NEW_LINE> <INDENT> if area != areas[x, y]: <NEW_LINE> <INDENT> coords.remove((x, y)) <NEW_LINE> <DEDENT> <DEDENT> area_sizes = [areas[x, y] for x, y in coords] <NEW_LINE> return max(area_sizes)
|
Using only the Manhattan distance, determine the area around each
coordinate by counting the number of integer X,Y locations that are closest
to that coordinate (and aren't tied in distance to any other coordinate).
What is the size of the largest area that isn't infinite?
|
625941bd7047854f462a1301
|
def _VerifyValues(self, tensor_in_sizes, filter_in_sizes, stride, padding, expected): <NEW_LINE> <INDENT> total_size_1 = 1 <NEW_LINE> total_size_2 = 1 <NEW_LINE> for s in tensor_in_sizes: <NEW_LINE> <INDENT> total_size_1 *= s <NEW_LINE> <DEDENT> for s in filter_in_sizes: <NEW_LINE> <INDENT> total_size_2 *= s <NEW_LINE> <DEDENT> x1 = np.array([f for f in range(1, total_size_1 + 1)]) <NEW_LINE> x1 = x1.astype(np.uint8).reshape(tensor_in_sizes) <NEW_LINE> x1_min = 0.0 <NEW_LINE> x1_max = 255.0 <NEW_LINE> x2 = np.array([f for f in range(1, total_size_2 + 1)]).astype(np.uint8) <NEW_LINE> x2 = x2.astype(np.uint8).reshape(filter_in_sizes) <NEW_LINE> x2_min = 0.0 <NEW_LINE> x2_max = 255.0 <NEW_LINE> with self.test_session(use_gpu=False) as sess: <NEW_LINE> <INDENT> t1 = tf.constant(x1, shape=tensor_in_sizes, dtype=tf.quint8) <NEW_LINE> t2 = tf.constant(x2, shape=filter_in_sizes, dtype=tf.quint8) <NEW_LINE> conv = tf.contrib.quantization.quantized_conv2d(t1, t2, out_type=tf.qint32, strides=[1, stride, stride, 1], padding=padding, min_input=x1_min, max_input=x1_max, min_filter=x2_min, max_filter=x2_max) <NEW_LINE> value = sess.run(conv) <NEW_LINE> <DEDENT> quantized_output = value[0] <NEW_LINE> output_min = value[1] <NEW_LINE> output_max = value[2] <NEW_LINE> float_output = self._QuantizedOutputToFloat(quantized_output, output_min, output_max) <NEW_LINE> self.assertArrayNear(expected, float_output.flatten(), 1.0) <NEW_LINE> self.assertEqual(value[0].shape, conv[0].get_shape())
|
Verifies the output values of the convolution function.
Args:
tensor_in_sizes: Input tensor dimensions in
[batch, input_rows, input_cols, input_depth].
filter_in_sizes: Filter tensor dimensions in
[kernel_rows, kernel_cols, input_depth, output_depth].
stride: Stride.
padding: Padding type.
expected: An array containing the expected operation outputs.
|
625941bdfbf16365ca6f60b3
|
def _test_delete_subnet_with_ports(self, mode): <NEW_LINE> <INDENT> slaac_network = self.create_network() <NEW_LINE> subnet_slaac = self.create_subnet(slaac_network, **{'ipv6_ra_mode': mode, 'ipv6_address_mode': mode}) <NEW_LINE> port = self.create_port(slaac_network) <NEW_LINE> self.assertIsNotNone(port['fixed_ips'][0]['ip_address']) <NEW_LINE> self.subnets_client.delete_subnet(subnet_slaac['id']) <NEW_LINE> self.subnets.pop() <NEW_LINE> subnets = self.subnets_client.list_subnets() <NEW_LINE> subnet_ids = [subnet['id'] for subnet in subnets['subnets']] <NEW_LINE> self.assertNotIn(subnet_slaac['id'], subnet_ids, "Subnet wasn't deleted") <NEW_LINE> self.assertRaisesRegex( lib_exc.Conflict, "There are one or more ports still in use on the network", self.networks_client.delete_network, slaac_network['id'])
|
Create subnet and delete it with existing ports
|
625941bd63d6d428bbe443e4
|
def max(self) -> Key: <NEW_LINE> <INDENT> if self.is_empty(): <NEW_LINE> <INDENT> raise NoSuchElementException("Priority queue underflow") <NEW_LINE> <DEDENT> assert self._pq[1] is not None <NEW_LINE> return self._pq[1]
|
Returns a largest key on this priority queue.
:return: a largest key on the priority queue
:raises NoSuchElementException: if this priority queue is empty
|
625941bd4e696a04525c9341
|
def find_operands(entity_list, lemma): <NEW_LINE> <INDENT> if lemma.name in all_axioms.keys(): <NEW_LINE> <INDENT> operands = lemma.infer_operands(entity_list=entity_list) <NEW_LINE> if operands is None: <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> elif operands is False: <NEW_LINE> <INDENT> perms = list(itertools.permutations(entity_list, r=lemma.input_no)) <NEW_LINE> random.shuffle(perms) <NEW_LINE> return perms <NEW_LINE> <DEDENT> elif isinstance(operands, list): <NEW_LINE> <INDENT> random.shuffle(operands) <NEW_LINE> return operands <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise NotImplementedError <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> raise NotImplementedError
|
Given the lemma and the entity, find operands that can be applied with the given lemma.
:param lemma:
:return: operands for the lemma
|
625941bda79ad161976cc03a
|
def update_search_parameters(self, selected_gender, selected_category, selected_subcategory): <NEW_LINE> <INDENT> self.model.set_gender(selected_gender) <NEW_LINE> self.model.set_category(selected_category) <NEW_LINE> self.model.set_subcategory(selected_subcategory) <NEW_LINE> self.model.fetch_results()
|
Pass parameters selected by user to the model
:return: N/A
|
625941bd090684286d50ebd7
|
def __init__(__self__, *, destination_vault_arn: pulumi.Input[str], lifecycle: Optional[pulumi.Input['PlanRuleCopyActionLifecycleArgs']] = None): <NEW_LINE> <INDENT> pulumi.set(__self__, "destination_vault_arn", destination_vault_arn) <NEW_LINE> if lifecycle is not None: <NEW_LINE> <INDENT> pulumi.set(__self__, "lifecycle", lifecycle)
|
:param pulumi.Input[str] destination_vault_arn: An Amazon Resource Name (ARN) that uniquely identifies the destination backup vault for the copied backup.
:param pulumi.Input['PlanRuleCopyActionLifecycleArgs'] lifecycle: The lifecycle defines when a protected resource is copied over to a backup vault and when it expires. Fields documented above.
|
625941bd57b8e32f5248338e
|
def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False): <NEW_LINE> <INDENT> w, b = initialize_with_zeros(num_px * num_px * 3) <NEW_LINE> parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost = False) <NEW_LINE> w = parameters["w"] <NEW_LINE> b = parameters["b"] <NEW_LINE> Y_prediction_test = predict(w, b, X_test) <NEW_LINE> Y_prediction_train = predict(w, b, X_train) <NEW_LINE> print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100)) <NEW_LINE> print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100)) <NEW_LINE> d = {"costs": costs, "Y_prediction_test": Y_prediction_test, "Y_prediction_train" : Y_prediction_train, "w" : w, "b" : b, "learning_rate" : learning_rate, "num_iterations": num_iterations} <NEW_LINE> return d
|
Builds the logistic regression model by calling the function you've implemented previously
Arguments:
X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)
Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)
Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
num_iterations -- hyperparameter representing the number of iterations to optimize the parameters
learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()
print_cost -- Set to true to print the cost every 100 iterations
Returns:
d -- dictionary containing information about the model.
|
625941bd5fcc89381b1e15b2
|
def __init__(self, root_directory, sha1_chunk=10): <NEW_LINE> <INDENT> self._root_dir = os.path.abspath(os.path.expanduser(root_directory)) <NEW_LINE> self._sha1_chunk = sha1_chunk <NEW_LINE> self._log.debug("Initializing FileSet under root dir: %s", self._root_dir) <NEW_LINE> self._element_map = {} <NEW_LINE> self._element_map_lock = multiprocessing.RLock() <NEW_LINE> self._discover_data_elements() <NEW_LINE> self._new_elem_added = False
|
Initialize a new or existing file set from a root directory.
:param root_directory: Directory that this file set is based in. For
relative path resolution, see the ``work_relative`` parameter
description.
:type root_directory: str
:param sha1_chunk: Number of segments to split data element SHA1 sum
into when saving element serializations.
:type sha1_chunk: int
|
625941bd2eb69b55b151c7a1
|
def get_activations( self, x: np.ndarray, layer: Union[int, str], batch_size: int = 128, framework: bool = False ) -> np.ndarray: <NEW_LINE> <INDENT> raise NotImplementedError
|
Return the output of the specified layer for input `x`. `layer` is specified by layer index (between 0 and
`nb_layers - 1`) or by name. The number of layers can be determined by counting the results returned by
calling `layer_names`.
:param x: Input for computing the activations.
:param layer: Layer for computing the activations.
:param batch_size: Size of batches.
:param framework: If true, return the intermediate tensor representation of the activation.
:return: The output of `layer`, where the first dimension is the batch size corresponding to `x`.
:raises `NotImplementedException`: This method is not supported for detector-classifiers.
|
625941bd7c178a314d6ef34f
|
def get_reddit_data(subreddit, date): <NEW_LINE> <INDENT> titles = [] <NEW_LINE> url = "https://web.archive.org/web/" + date + "/reddit.com/" + subreddit <NEW_LINE> print(url) <NEW_LINE> driver.get(url) <NEW_LINE> try: <NEW_LINE> <INDENT> sitetable = driver.find_element_by_id("siteTable") <NEW_LINE> posts = sitetable.find_elements_by_tag_name("div") <NEW_LINE> for post in posts: <NEW_LINE> <INDENT> if len(post.find_elements_by_class_name("title")) > 0: <NEW_LINE> <INDENT> title = post.find_element_by_class_name("title").text <NEW_LINE> titles.append(title) <NEW_LINE> <DEDENT> <DEDENT> titles = set(titles) <NEW_LINE> return titles <NEW_LINE> <DEDENT> except NoSuchElementException: <NEW_LINE> <INDENT> return ['0'] * 26
|
Gets top 26 frontpage titles from 'subreddit' on 'date
:param subreddit: ex: 'r/bitcoin'
:param date: in 'YYYYMMDD'
:return titles: a list of strings of titles
|
625941bd956e5f7376d70d64
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.