code
stringlengths 4
4.48k
| docstring
stringlengths 1
6.45k
| _id
stringlengths 24
24
|
|---|---|---|
def cache_taxi_info(self): <NEW_LINE> <INDENT> vehicle_info_dict = publish_message_cache_model.get_all_taxi_info() <NEW_LINE> self.server.hmset( self.taxi_key, vehicle_info_dict ) <NEW_LINE> app_log.info('Taxi info Cached.')
|
Cache all taxi info to redis
|
625941bc0a366e3fb873e702
|
def __next(self): <NEW_LINE> <INDENT> from hask3.lang.type_system import typeof <NEW_LINE> from hask3.lang.hindley_milner import unify <NEW_LINE> if self.__is_evaluated: <NEW_LINE> <INDENT> raise StopIteration <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> next_iter = next(self.__tail) <NEW_LINE> if len(self.__head) > 0: <NEW_LINE> <INDENT> unify(typeof(self[0]), typeof(next_iter)) <NEW_LINE> <DEDENT> self.__head.append(next_iter) <NEW_LINE> <DEDENT> except StopIteration: <NEW_LINE> <INDENT> self.__is_evaluated = True
|
Evaluate the next element of the tail, and add it to the head.
|
625941bc3eb6a72ae02ec3bf
|
def process_request(self, request, spider): <NEW_LINE> <INDENT> print('===UserAgentMiddleware process_request==') <NEW_LINE> if self.ua: <NEW_LINE> <INDENT> print("********Current UserAgent:%s************") <NEW_LINE> custom_ua = self.ua.random <NEW_LINE> print('custom_ua:',custom_ua) <NEW_LINE> request.headers.setdefault(b'User-Agent', custom_ua)
|
scrapy设置随机ua
:param request:
:param spider:
:return:
|
625941bc4527f215b584c345
|
def ShouldSerializeBindings(self): <NEW_LINE> <INDENT> pass
|
ShouldSerializeBindings(self: PriorityBinding) -> bool
Returns a value that indicates whether serialization processes should serialize the effective
value of the System.Windows.Data.PriorityBinding.Bindings property on instances of this class.
Returns: true if the System.Windows.Data.PriorityBinding.Bindings property value should be serialized;
otherwise, false.
|
625941bc435de62698dfdb3d
|
def hetero_edge_masker_sampler(old_g, pct_masked_edges, negative_rate, edge_masking, use_cuda): <NEW_LINE> <INDENT> pos_samples = {} <NEW_LINE> neg_samples = {} <NEW_LINE> g = old_g.local_var() <NEW_LINE> for etype in g.etypes: <NEW_LINE> <INDENT> pos_samples[etype]=[] <NEW_LINE> t0=time.time() <NEW_LINE> u,v,eid=g.all_edges(form='all', etype=etype) <NEW_LINE> tedgefetch=time.time()-t0 <NEW_LINE> pos_samples[etype]=np.stack((u,v)).transpose() <NEW_LINE> if edge_masking: <NEW_LINE> <INDENT> lnum_sampled_edges = int(pct_masked_edges * len(eid)) <NEW_LINE> sampl_ids = np.random.choice(g.number_of_edges(etype), size=lnum_sampled_edges, replace=False) <NEW_LINE> sampled_edges = eid[sampl_ids] <NEW_LINE> g.edges[etype].data['mask'][sampled_edges] = 0 <NEW_LINE> <DEDENT> <DEDENT> t0 = time.time() <NEW_LINE> samples_d,labels_d=negative_sampling(g,pos_samples, negative_rate) <NEW_LINE> tnega = time.time() - t0 <NEW_LINE> link_labels_d = {} <NEW_LINE> for e in labels_d.keys(): <NEW_LINE> <INDENT> link_labels_d[e] = torch.from_numpy(labels_d[e]) <NEW_LINE> if use_cuda: <NEW_LINE> <INDENT> link_labels_d[e] = link_labels_d[e].cuda() <NEW_LINE> <DEDENT> <DEDENT> llabels_d = link_labels_d <NEW_LINE> return g,samples_d,llabels_d
|
This function masks some edges at random by setting the mask attribute to 0
:param old_g: The original graph
:param pct_masked_edges: The pct of edges to sample
:param negative_rate: The nbr of negative samples per edge
:param edge_masking: Whether to mask the sampled edges or not
:return: The altered graph, the positive and the negative samples.
|
625941bccb5e8a47e48b7998
|
def test_unix_time_date_object(self): <NEW_LINE> <INDENT> t = datetime.date(2013, 4, 1) <NEW_LINE> ret = fleming.unix_time(t) <NEW_LINE> self.assertEquals(ret, 1364774400)
|
Tests that the unix time function works on a date object.
|
625941bc63b5f9789fde6fd0
|
def _set_fibermap_columns(): <NEW_LINE> <INDENT> global fibermap_columns, fibermap_comments <NEW_LINE> for sv in (1, 2, 3): <NEW_LINE> <INDENT> survey = f'sv{sv:d}' <NEW_LINE> fibermap_columns[survey] = fibermap_columns['main'].copy() <NEW_LINE> for t in ('DESI', 'BGS', 'MWS', 'SCND'): <NEW_LINE> <INDENT> index_columns = [x[0] for x in fibermap_columns[survey]] <NEW_LINE> i = index_columns.index('{0}_TARGET'.format(t)) <NEW_LINE> row = ("{0}_{1}_TARGET".format(survey.upper(), t), 'i8', '', fibermap_columns[survey][i][3]) <NEW_LINE> fibermap_columns[survey].insert(index_columns.index('DESI_TARGET'), row) <NEW_LINE> <DEDENT> index_columns = [x[0] for x in fibermap_columns[survey]] <NEW_LINE> del fibermap_columns[survey][index_columns.index('SCND_TARGET')] <NEW_LINE> fibermap_comments[survey] = dict([(tmp[0], tmp[3]) for tmp in fibermap_columns[survey]]) <NEW_LINE> <DEDENT> fibermap_columns['cmx'] = fibermap_columns['main'].copy() <NEW_LINE> index_columns = [x[0] for x in fibermap_columns['cmx']] <NEW_LINE> row = ('CMX_TARGET', 'i8', '', 'Targeting bits for instrument commissioning') <NEW_LINE> fibermap_columns['cmx'].insert(index_columns.index('DESI_TARGET'), row) <NEW_LINE> index_columns = [x[0] for x in fibermap_columns['cmx']] <NEW_LINE> del fibermap_columns['cmx'][index_columns.index('SCND_TARGET')] <NEW_LINE> fibermap_comments['cmx'] = dict([(tmp[0], tmp[3]) for tmp in fibermap_columns['cmx']]) <NEW_LINE> return fibermap_columns
|
Prepare survey-specific list of columns.
Returns
-------
:class:`dict`
As a convenience, return the full set of survey-specific columns.
|
625941bcbaa26c4b54cb100d
|
def munsell_colour_to_xyY(munsell_colour): <NEW_LINE> <INDENT> specification = munsell_colour_to_munsell_specification(munsell_colour) <NEW_LINE> return munsell_specification_to_xyY(specification)
|
Converts given *Munsell* colour to *CIE xyY* colourspace.
Parameters
----------
munsell_colour : unicode
*Munsell* colour.
Returns
-------
ndarray, (3,)
*CIE xyY* colourspace array.
Notes
-----
- Output *CIE xyY* colourspace array is in domain [0, 1].
Examples
--------
>>> munsell_colour_to_xyY('4.2YR 8.1/5.3') # doctest: +ELLIPSIS
array([ 0.3873694..., 0.3575165..., 0.59362 ])
>>> munsell_colour_to_xyY('N8.9') # doctest: +ELLIPSIS
array([ 0.31006 , 0.31616 , 0.746134...])
|
625941bc85dfad0860c3ad44
|
def makematrix(letters, language, dictionary): <NEW_LINE> <INDENT> matrix = np.zeros((len(letters), len(letters))) <NEW_LINE> for (key, value) in dictionary.items(): <NEW_LINE> <INDENT> matrix[letters.find(key[0]), letters.find(key[1])] = value <NEW_LINE> <DEDENT> np.savetxt(language + ".csv", matrix, delimiter=",") <NEW_LINE> return matrix
|
takes dictionary and creates a numpy adjacency matrix
saves that matrix as a csv file for later prettification
|
625941bc925a0f43d2549d5e
|
def orcle_close(self): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> self.conn.close() <NEW_LINE> <DEDENT> except Exception as a: <NEW_LINE> <INDENT> print("数据库关闭时异常:%s"%a)
|
关闭orcle连接
|
625941bc71ff763f4b549571
|
def _parse_query_plan( plan: dict[str, Any]) -> tuple[list[str], list[str], list[str]]: <NEW_LINE> <INDENT> table_names: list[str] = [] <NEW_LINE> queries: list[str] = [] <NEW_LINE> functions: list[str] = [] <NEW_LINE> if plan.get('Relation Name'): <NEW_LINE> <INDENT> table_names.append(plan['Relation Name']) <NEW_LINE> <DEDENT> if 'Function Name' in plan: <NEW_LINE> <INDENT> if plan['Function Name'].startswith( 'crosstab'): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> queries.append(_get_subquery_from_crosstab_call( plan['Function Call'])) <NEW_LINE> <DEDENT> except ValueError: <NEW_LINE> <INDENT> table_names.append('_unknown_crosstab_sql') <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> functions.append(plan['Function Name']) <NEW_LINE> <DEDENT> <DEDENT> if 'Plans' in plan: <NEW_LINE> <INDENT> for child_plan in plan['Plans']: <NEW_LINE> <INDENT> t, q, f = _parse_query_plan(child_plan) <NEW_LINE> table_names.extend(t) <NEW_LINE> queries.extend(q) <NEW_LINE> functions.extend(f) <NEW_LINE> <DEDENT> <DEDENT> return table_names, queries, functions
|
Given a Postgres Query Plan object (parsed from the output of an EXPLAIN
query), returns a tuple with three items:
* A list of tables involved
* A list of remaining queries to parse
* A list of function names involved
|
625941bc10dbd63aa1bd2a91
|
def post(self, request, *args, **kwargs): <NEW_LINE> <INDENT> search = self.metric.search() <NEW_LINE> query = request.data.get('query') <NEW_LINE> search = search.update_from_dict(query) <NEW_LINE> try: <NEW_LINE> <INDENT> results = self.execute_search(search) <NEW_LINE> <DEDENT> except RequestError: <NEW_LINE> <INDENT> raise ValidationError('Misformed elasticsearch query.') <NEW_LINE> <DEDENT> return JsonResponse(results.to_dict())
|
For a bit of future proofing, accept custom elasticsearch aggregation queries in JSON form.
Caution - this could be slow if a very large query is executed, so use with care!
|
625941bc925a0f43d2549d5f
|
def __init__(self, config=None, info=None, result=None, save_dir=None): <NEW_LINE> <INDENT> self.config = config <NEW_LINE> self.result = result <NEW_LINE> self.info = info <NEW_LINE> self.restore_dir = None <NEW_LINE> self.save_dir = save_dir
|
Parameters
----------
config : str
info : str
result : float
save_dir : str
|
625941bc7d43ff24873a2b88
|
def test_standard_deviation04(self): <NEW_LINE> <INDENT> input = numpy.array([1, 0], bool) <NEW_LINE> output = ndimage.standard_deviation(input) <NEW_LINE> self.failUnless(output == 0.5)
|
standard deviation 4
|
625941bc57b8e32f52483384
|
def return_images_from_scene(distorted_list_path, gt_path): <NEW_LINE> <INDENT> distorted_list_path_shuffled = tf.random.shuffle(distorted_list_path) <NEW_LINE> gt_image = decode_img(gt_path) <NEW_LINE> distorted_images_tensor = [] <NEW_LINE> for idx in range(config.n_frames): <NEW_LINE> <INDENT> distorted_images_tensor.append(decode_img(distorted_list_path_shuffled[idx])) <NEW_LINE> <DEDENT> distorted_images_tensor = tf.stack(distorted_images_tensor) <NEW_LINE> return distorted_images_tensor, gt_image
|
Function that return a stack of distorted images of a single scene and the correspondent ground truth.
It returns two tensors: one consisting of the distorted images (shape=(n_frames, h, w, 3)
and the second one is the gt_image (shape=(h, w, 3)
:param distorted_list_path: Tensor of strings
:param gt_path: Tensor of strings
|
625941bc01c39578d7e74d25
|
def _verified_reverse1(mapper, onesample): <NEW_LINE> <INDENT> dummy_axis_sample = np.asanyarray(onesample)[None] <NEW_LINE> rsample = mapper.reverse(dummy_axis_sample) <NEW_LINE> if not len(rsample) == 1: <NEW_LINE> <INDENT> warning("Reverse mapping single sample yielded multiple -- can lead to unintended behavior!") <NEW_LINE> <DEDENT> return rsample[0]
|
Replacement of Mapper.reverse1 with safety net
This function can be called instead of a direct call to a mapper's
``reverse1()``. It wraps a single sample into a dummy axis and calls
``reverse()``. Afterwards it verifies that the first axis of the
returned array has one item only, otherwise it will issue a warning.
This function is useful in any context where it is critical to ensure
that reverse mapping a single sample, yields exactly one sample -- which
isn't guaranteed due to the flexible nature of mappers.
Parameters
----------
mapper : Mapper instance
onesample : array-like
Single sample (in terms of the supplied mapper).
Returns
-------
array
Shape matches a single sample in terms of the mappers input space.
|
625941bc29b78933be1e559b
|
def _to_tensor(self, sample): <NEW_LINE> <INDENT> assert isinstance(sample, dict), "trainer expects samples to come in dicts for key-based usage" <NEW_LINE> assert self.task.input_key in sample, f"could not find input key '{self.task.input_key}' in sample dict" <NEW_LINE> input_val, target_val = sample[self.task.input_key], None <NEW_LINE> if isinstance(input_val, list): <NEW_LINE> <INDENT> if self.task.gt_key in sample and sample[self.task.gt_key] is not None: <NEW_LINE> <INDENT> gt_tensor = sample[self.task.gt_key] <NEW_LINE> assert isinstance(gt_tensor, list) and len(gt_tensor) == len(input_val), "target tensor should also be a list of the same length as input" <NEW_LINE> target_val = [None] * len(input_val) <NEW_LINE> for idx in range(len(input_val)): <NEW_LINE> <INDENT> input_val[idx], target_val[idx] = self._to_tensor({self.task.input_key: input_val[idx], self.task.gt_key: gt_tensor[idx]}) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> for idx in range(len(input_val)): <NEW_LINE> <INDENT> input_val[idx] = torch.FloatTensor(input_val[idx]) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> input_val = torch.FloatTensor(input_val) <NEW_LINE> if self.task.gt_key in sample and sample[self.task.gt_key] is not None: <NEW_LINE> <INDENT> gt_tensor = sample[self.task.gt_key] <NEW_LINE> assert len(gt_tensor) == len(input_val), "target tensor should be an array of the same length as input (== batch size)" <NEW_LINE> if isinstance(gt_tensor, torch.Tensor) and gt_tensor.dtype == torch.int64: <NEW_LINE> <INDENT> target_val = gt_tensor <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if self.task.multi_label: <NEW_LINE> <INDENT> assert isinstance(gt_tensor, torch.Tensor) and gt_tensor.shape == (len(input_val), len(self.task.class_names)), "gt tensor for multi-label classification should be 2d array (batch size x nbclasses)" <NEW_LINE> target_val = gt_tensor.float() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> target_val = [] <NEW_LINE> for class_name in gt_tensor: <NEW_LINE> <INDENT> assert isinstance(class_name, (int, torch.Tensor, str)), "expected gt tensor to be an array of names (string) or indices (int)" <NEW_LINE> if isinstance(class_name, (int, torch.Tensor)): <NEW_LINE> <INDENT> if isinstance(class_name, torch.Tensor): <NEW_LINE> <INDENT> assert torch.numel(class_name) == 1, "unexpected scalar label, got vector" <NEW_LINE> class_name = class_name.item() <NEW_LINE> <DEDENT> assert 0 <= class_name < len(self.task.class_names), "class name given as out-of-range index (%d) for class list" % class_name <NEW_LINE> target_val.append(class_name) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> assert class_name in self.task.class_names, "got unexpected label '%s' for a sample (unknown class)" % class_name <NEW_LINE> target_val.append(self.task.class_indices[class_name]) <NEW_LINE> <DEDENT> <DEDENT> target_val = torch.LongTensor(target_val) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> <DEDENT> return input_val, target_val
|
Fetches and returns tensors of input images and class labels from a batched sample dictionary.
|
625941bc091ae35668666e4f
|
def esc(word): <NEW_LINE> <INDENT> if len(word) != 0 and word[0] == '/': <NEW_LINE> <INDENT> return(word[1:len(word)]) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return(word)
|
Erases the potential '' at the beginning of word
|
625941bcd486a94d0b98e030
|
def test14_json_to_file10(self): <NEW_LINE> <INDENT> Base._Base__nb_objects = 0 <NEW_LINE> with self.assertRaises(TypeError): <NEW_LINE> <INDENT> Rectangle.save_to_file()
|
test json string into file
|
625941bcbd1bec0571d90522
|
def append_text(self, text: str): <NEW_LINE> <INDENT> self.view.run_command('insert', {'characters': text})
|
Appends given text to view.
|
625941bcadb09d7d5db6c67c
|
def __init__(self, context): <NEW_LINE> <INDENT> self.printer = BuddyPrinter() <NEW_LINE> self.context = context <NEW_LINE> self.name = self.getName()
|
@param context:
@since 0.0.1-beta
|
625941bc1f037a2d8b9460e9
|
def find_nice(x, round_val): <NEW_LINE> <INDENT> expv = math.floor(math.log10(x)) <NEW_LINE> f = x / math.pow(10, expv) <NEW_LINE> if (round_val): <NEW_LINE> <INDENT> if (f < 1.5): <NEW_LINE> <INDENT> nf = 1 <NEW_LINE> <DEDENT> elif (f < 3): <NEW_LINE> <INDENT> nf = 2 <NEW_LINE> <DEDENT> elif (f < 7): <NEW_LINE> <INDENT> nf = 5 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> nf = 10 <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> if (f <= 1): <NEW_LINE> <INDENT> nf = 1 <NEW_LINE> <DEDENT> elif (f <= 2): <NEW_LINE> <INDENT> nf = 2 <NEW_LINE> <DEDENT> elif (f <= 5): <NEW_LINE> <INDENT> nf = 5 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> nf = 10 <NEW_LINE> <DEDENT> <DEDENT> return nf * math.pow(10, expv)
|
Find a "nice" number that is approximately equal to 'x'.
Round the number if 'round_val'=1, or take ceiling otherwise.
|
625941bcd6c5a10208143f33
|
def _send_messages_to_player(self, player, *args, **kwargs): <NEW_LINE> <INDENT> while True: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> message = self._player_outgoing_messages[player].get(timeout=5) <NEW_LINE> self._message_stream.send_message(message=message, tcp_connection=player.tcp_connection) <NEW_LINE> <DEDENT> except queue.Empty: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> break
|
Monitor the outgoing message queue for a player,
sending data to the socket in the order given by the queue.
|
625941bc5166f23b2e1a5044
|
def __init__(self, max_reproduction_prob, clear_prob): <NEW_LINE> <INDENT> self.max_reproduction_prob = float(max_reproduction_prob) <NEW_LINE> self.clear_prob = float(clear_prob)
|
Initializes a Bacteria instance, saving the data attributes of the instance.
:param float reproduction_prob: Probability of reproducing during a time step (0-1)
:param float clear_prob: Probability of being cleared from the body during a time step (0-1)
|
625941bc2c8b7c6e89b356ad
|
def _set_attribute(self, attribute_key, attribute_value, nullify = True): <NEW_LINE> <INDENT> model_class = self.__class__ <NEW_LINE> if not hasattr(model_class, attribute_key): <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> model_class_attribute_value = getattr(model_class, attribute_key) <NEW_LINE> data_type = model_class_attribute_value["type"] <NEW_LINE> cast_type = DATA_TYPE_CAST_TYPES_MAP.get(data_type, None) <NEW_LINE> if not cast_type: return <NEW_LINE> if nullify and attribute_value == "": attribute_value = None <NEW_LINE> attribute_value_casted = self._cast_safe(attribute_value, cast_type) <NEW_LINE> setattr(self, attribute_key, attribute_value_casted)
|
Sets the given model attribute for the given attribute key and value.
This method is used in order to create a safe way of setting attributes
avoiding empty values and providing safe casting "ways".
The target model for the attribute setting is the current instance
in which the method is being run.
:type attribute_key: String
:param attribute_key: The attribute key in the model.
:type attribute_value: Object
:param attribute_value: The value of the attribute to set.
:type nullify: bool
:param nullify: If the data to be processed should be nullified
in case empty string values are found.
|
625941bc442bda511e8be307
|
def reset(msg): <NEW_LINE> <INDENT> publish_status(b"GOING RESET") <NEW_LINE> from machine import reset <NEW_LINE> reset()
|
Resets the board
|
625941bcb57a9660fec3376c
|
def list_intervalValue(inputed_interval): <NEW_LINE> <INDENT> int_lower,int_upper=extract_value(inputed_interval) <NEW_LINE> elements_list=[] <NEW_LINE> if inputed_interval[0]=='[' and inputed_interval[-1]==']': elements_list=range(int_lower,int_upper+1) <NEW_LINE> elif inputed_interval[0]=='(' and inputed_interval[-1]==')': elements_list=range(int_lower+1,int_upper) <NEW_LINE> elif inputed_interval[0]=='(' and inputed_interval[-1]==']': elements_list=range(int_lower+1,int_upper+1) <NEW_LINE> else: elements_list=range(int_lower,int_upper) <NEW_LINE> return elements_list
|
returns a list that contains all the elements of the inputed interval
|
625941bcb5575c28eb68dee9
|
@click.group() <NEW_LINE> def radius(): <NEW_LINE> <INDENT> pass
|
RADIUS server configuration
|
625941bc7047854f462a12f7
|
def _compute_term_4(C, mag, R): <NEW_LINE> <INDENT> return ( (C['a16'] + C['a17'] * mag + C['a18'] * np.power(mag, 2) + C['a19'] * np.power(mag, 3)) * np.power(R, 3))
|
(a16 + a17.*M + a18.*M.*M + a19.*M.*M.*M).*(d(r).^3)
|
625941bc462c4b4f79d1d5bb
|
def __init__(self, minfo={}): <NEW_LINE> <INDENT> super(DisconnectRequestMessage, self).__init__(minfo) <NEW_LINE> self.Reliable = False <NEW_LINE> self.IsSystemMessage = True <NEW_LINE> self.IsForward = False <NEW_LINE> self.IsReliable = False
|
Constructor for the DisconnectRequestMessage class.
Args:
minfo (dict): Dictionary of values for message fields.
|
625941bc63d6d428bbe443da
|
def __init__(self, name, *args, **kwargs): <NEW_LINE> <INDENT> super(re, self).__init__(name) <NEW_LINE> self.regex = base_re.compile(self.name, *args, **kwargs)
|
Compile regex.
|
625941bcec188e330fd5a690
|
def list_trash(self, current_page=None, items_per_page=None): <NEW_LINE> <INDENT> url = _get_url(self.base_url, 'ListTrash', self.api_credentials, current_page=current_page, items_per_page=items_per_page) <NEW_LINE> return _get(self.http, url)
|
List all faxes in trash
Keyword arguments:
current_page -- The page which should be shown
items_per_page -- How many items are shown per page
|
625941bc3617ad0b5ed67de3
|
def sort_merged_annotations(merged_soup): <NEW_LINE> <INDENT> include_hr = plugin_prefs.get('appearance_hr_checkbox', False) <NEW_LINE> locations = merged_soup.findAll(location_sort=True) <NEW_LINE> locs = [loc['location_sort'] for loc in locations] <NEW_LINE> locs.sort() <NEW_LINE> sorted_soup = BeautifulSoup(ANNOTATIONS_HEADER) <NEW_LINE> dtc = 0 <NEW_LINE> for i, loc in enumerate(locs): <NEW_LINE> <INDENT> next_div = merged_soup.find(attrs={'location_sort': loc}) <NEW_LINE> sorted_soup.div.insert(dtc, next_div) <NEW_LINE> dtc += 1 <NEW_LINE> if include_hr and i < len(locs) - 1: <NEW_LINE> <INDENT> sorted_soup.div.insert(dtc, plugin_prefs.get('HORIZONTAL_RULE', '<hr width="80%" />')) <NEW_LINE> dtc += 1 <NEW_LINE> <DEDENT> <DEDENT> return sorted_soup
|
Input: a combined group of user annotations
Output: sorted by location
|
625941bcfb3f5b602dac357b
|
def _rescale_distributions(self): <NEW_LINE> <INDENT> max_height = 0 <NEW_LINE> for _, _, well in self._yield_wells(): <NEW_LINE> <INDENT> max_height = max(max_height, np.max(well.y)) <NEW_LINE> <DEDENT> scale_factor = self.max_dist_height / max_height <NEW_LINE> for _, _, well in self._yield_wells(): <NEW_LINE> <INDENT> well.y *= scale_factor
|
Scale all the distributions such that the tallest one has the desired
height.
|
625941bc5fcc89381b1e15a8
|
def matchTransforms( inType ): <NEW_LINE> <INDENT> selObjs = cmds.ls( selection=True, dag=False, ap=True ) <NEW_LINE> if len( selObjs ) == 0: <NEW_LINE> <INDENT> cmds.warning( 'No objects are selected. Select two objects and try again' ) <NEW_LINE> <DEDENT> elif len( selObjs ) > 2: <NEW_LINE> <INDENT> cmds.warning( 'To many objects are selected. Select only two objects and try again' ) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> cObj = selObjs[0] <NEW_LINE> tObj = selObjs[1] <NEW_LINE> MFnTrans = OpenMaya.MFnTransform() <NEW_LINE> childDagPath = NodeUtility.getDagPath( cObj ) <NEW_LINE> MFnTrans.setObject( childDagPath ) <NEW_LINE> targetMatrix = getMatrix( tObj, 'worldMatrix' ) <NEW_LINE> if inType == 'tran' or inType == 'all': <NEW_LINE> <INDENT> childTranslation = getMatrixTranslation( targetMatrix, OpenMaya.MSpace.kWorld ) <NEW_LINE> MFnTrans.setTranslation( childTranslation, OpenMaya.MSpace.kWorld ) <NEW_LINE> <DEDENT> if inType == 'rot' or inType == 'all': <NEW_LINE> <INDENT> childRotation = getMatrixRotation( targetMatrix, 'quat' ) <NEW_LINE> MFnTrans.setRotation( childRotation, OpenMaya.MSpace.kWorld )
|
@param inType: String. Type of matching to perform. 'tran', 'rot', or 'all'
|
625941bcd8ef3951e3243428
|
def reset(self): <NEW_LINE> <INDENT> self.rng = MT19937RNG(self.seed) <NEW_LINE> self.num = 0 <NEW_LINE> self.left = 0
|
Reset stream of random number generator.
|
625941bce64d504609d7472b
|
@api_view(['GET', 'POST']) <NEW_LINE> def snippet_list(request, format=None): <NEW_LINE> <INDENT> if request.method == 'GET': <NEW_LINE> <INDENT> snippets = Snippet.objects.all() <NEW_LINE> serializer = SnippetSerializer(snippets, many=True) <NEW_LINE> return Response(serializer.data) <NEW_LINE> <DEDENT> elif request.method == 'POST': <NEW_LINE> <INDENT> serializer = SnippetSerializer(data=request.DATA) <NEW_LINE> if serializer.is_valid(): <NEW_LINE> <INDENT> serializer.save() <NEW_LINE> return Response(serializer.data, status=status.HTTP_201_CREATED) <NEW_LINE> <DEDENT> return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)
|
List all snippets, or create a new snippet.
|
625941bc30dc7b7665901854
|
def test_is_accessible_by_with_local_site_and_other_site_admin(self): <NEW_LINE> <INDENT> user = User.objects.get(username='doc') <NEW_LINE> admin = User.objects.get(username='dopey') <NEW_LINE> local_site1 = LocalSite.objects.create(name='site1') <NEW_LINE> local_site1.users.add(user) <NEW_LINE> local_site2 = LocalSite.objects.create(name='site2') <NEW_LINE> local_site2.users.add(admin) <NEW_LINE> local_site2.admins.add(admin) <NEW_LINE> application = self.create_oauth_application(user=user, local_site=local_site1) <NEW_LINE> self.assertFalse(application.is_accessible_by(admin, local_site=local_site1))
|
Testing Application.is_accessible_by with LocalSite and other
LocalSite administrator
|
625941bc5fc7496912cc3869
|
def memcache_hosts_ports(self): <NEW_LINE> <INDENT> return sorted((m['host'], m['port']) for m in self.memcaches())
|
Return a list of tuples (host, port)
|
625941bc9f2886367277a77b
|
def can_attach(self, obj, sub_obj, relationship, *args, **kwargs): <NEW_LINE> <INDENT> if relationship == 'roles': <NEW_LINE> <INDENT> role_access = RoleAccess(self.user) <NEW_LINE> return role_access.can_attach(sub_obj, obj, 'members', *args, **kwargs) <NEW_LINE> <DEDENT> return super(UserAccess, self).can_attach(obj, sub_obj, relationship, *args, **kwargs)
|
Reverse obj and sub_obj, defer to RoleAccess if this is a role assignment.
|
625941bc57b8e32f52483385
|
def test_bcorp_get_tasks_prev_year_incomplete_filing_exists(session, client): <NEW_LINE> <INDENT> identifier = 'CP7654321' <NEW_LINE> b = factory_business(identifier, datetime.now() - datedelta.datedelta(years=2), last_ar_date='2018-03-03') <NEW_LINE> filings = factory_filing(b, AR_FILING_PREVIOUS_YEAR, datetime(2018, 8, 5, 7, 7, 58, 272362)) <NEW_LINE> print('test_get_all_business_filings - filing:', filings) <NEW_LINE> rv = client.get(f'/api/v1/businesses/{identifier}/tasks') <NEW_LINE> assert rv.status_code == HTTPStatus.OK
|
Assert that the one incomplete filing for previous year and a to-do for current year are returned.
|
625941bc8e05c05ec3eea25d
|
def count(self): <NEW_LINE> <INDENT> with self.connection: <NEW_LINE> <INDENT> rows = self.cursor.execute(f"SELECT * FROM {AdminsWorker.TABLE}").fetchall() <NEW_LINE> <DEDENT> return len(rows)
|
Получаем количество админов в таблице
|
625941bc9c8ee82313fbb660
|
def setup_loss(self): <NEW_LINE> <INDENT> with vs.variable_scope("loss"): <NEW_LINE> <INDENT> mask = tf.cast(self.c_masks, tf.bool) <NEW_LINE> unmasked_c_e = tf.nn.sparse_softmax_cross_entropy_with_logits(labels = self.a, logits = self.logits)*self.skew_mat <NEW_LINE> self.loss = tf.reduce_sum(tf.boolean_mask(unmasked_c_e, mask))/tf.cast(tf.reduce_sum(self.c_masks), tf.float32)
|
Set up your loss computation here
:return:
|
625941bc3539df3088e2e236
|
def __set__(self, instance, value): <NEW_LINE> <INDENT> if not isinstance(value, types.ListType): <NEW_LINE> <INDENT> value = [self.factory.load(data) for data in value.childNodes if data.nodeType == data.ELEMENT_NODE] <NEW_LINE> <DEDENT> value = filter(lambda x: isinstance(x, self.factory), value) <NEW_LINE> self.setValue(instance, value)
|
Ensure that attribute is array of objects with the
given factory type
|
625941bcf548e778e58cd468
|
def get_top(j): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> if len(j['data']['children']) < 1: <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> entry = None <NEW_LINE> for post in j['data']['children']: <NEW_LINE> <INDENT> if not post['data']['stickied']: <NEW_LINE> <INDENT> entry = post['data'] <NEW_LINE> break <NEW_LINE> <DEDENT> <DEDENT> return entry <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> return None
|
Get the top submission (excluding stickied posts) from a subreddit
listing.
|
625941bc91af0d3eaac9b901
|
def main(): <NEW_LINE> <INDENT> args = get_arguments() <NEW_LINE> file_parse(args.filename, args.columns) <NEW_LINE> return None
|
runs fxns for collapsing equivalent data. Uses arg parse to get file
and columns to be converted.
|
625941bc45492302aab5e1ac
|
def uniquePathsWithObstacles(self, og): <NEW_LINE> <INDENT> if len(og) == 0 or len(og[0]) == 0: <NEW_LINE> <INDENT> return 0 <NEW_LINE> <DEDENT> m, n =len(og), len(og[0]) <NEW_LINE> s = [[-1 for i in range(n)] for i in range(m)] <NEW_LINE> s[0][0] = 1 <NEW_LINE> for i in range(m): <NEW_LINE> <INDENT> for j in range(n): <NEW_LINE> <INDENT> if og[i][j] == 1: <NEW_LINE> <INDENT> s[i][j] = 0 <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> for i in range(m-1): <NEW_LINE> <INDENT> if s[i+1][0] == -1: <NEW_LINE> <INDENT> s[i+1][0] = s[i][0] <NEW_LINE> <DEDENT> <DEDENT> for i in range(n-1): <NEW_LINE> <INDENT> if s[0][i+1] == -1: <NEW_LINE> <INDENT> s[0][i+1] = s[0][i] <NEW_LINE> <DEDENT> <DEDENT> for i in range(1,m): <NEW_LINE> <INDENT> for j in range(1,n): <NEW_LINE> <INDENT> if s[i][j] == -1: <NEW_LINE> <INDENT> s[i][j] = s[i-1][j] + s[i][j-1] <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return s[-1][-1]
|
:type obstacleGrid: List[List[int]]
:rtype: int
|
625941bc50812a4eaa59c210
|
def encrypt(self, link_protocol, key, digest): <NEW_LINE> <INDENT> new_key = copy.copy(key) <NEW_LINE> new_digest = digest.copy() <NEW_LINE> header_size = link_protocol.circ_id_size.size + 1 <NEW_LINE> payload_without_digest = self.pack(link_protocol)[header_size:] <NEW_LINE> new_digest.update(payload_without_digest) <NEW_LINE> cell = RelayCell(self.circ_id, self.command, self.data, new_digest, self.stream_id, self.recognized, self.unused) <NEW_LINE> header, payload = split(cell.pack(link_protocol), header_size) <NEW_LINE> return header + new_key.update(payload), new_key, new_digest
|
Encrypts our cell content to be sent with the given key. This provides back
a tuple of the form...
::
(payload (bytes), new_key (CipherContext), new_digest (HASH))
:param int link_protocol: link protocol version
:param cryptography.hazmat.primitives.ciphers.CipherContext key:
key established with the relay we're sending this cell to
:param HASH digest: running digest held with the relay
:returns: **tuple** with our encrypted payload and updated key/digest
|
625941bc0a50d4780f666d7b
|
def getNonInstallableProfiles(self): <NEW_LINE> <INDENT> return [ 'tetrd.theme:uninstall', ]
|
Hide uninstall profile from site-creation and quickinstaller
|
625941bc50485f2cf553cc84
|
def deal_card(): <NEW_LINE> <INDENT> cards = [11, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10, 10] <NEW_LINE> card = random.choice(cards) <NEW_LINE> return card
|
Return a random card from deck
|
625941bcf9cc0f698b1404e9
|
@api_view(['POST']) <NEW_LINE> def change_responsible(request): <NEW_LINE> <INDENT> response_dict = dict() <NEW_LINE> if request.method == 'POST': <NEW_LINE> <INDENT> data = request.data <NEW_LINE> try: <NEW_LINE> <INDENT> responsible = Partnership.objects.get(id=data['responsible_id']) <NEW_LINE> disciples = Partnership.objects.filter(responsible=responsible).all() <NEW_LINE> try: <NEW_LINE> <INDENT> new_responsible = Partnership.objects.get(id=data['responsible_id']) <NEW_LINE> disciples.update(responsible=new_responsible) <NEW_LINE> response_dict['message'] = u"Ответственный был успешно изменен." <NEW_LINE> response_dict['status'] = True <NEW_LINE> <DEDENT> except Partnership.DoesNotExist: <NEW_LINE> <INDENT> response_dict['message'] = u"Такого ответственного не существует." <NEW_LINE> response_dict['status'] = False <NEW_LINE> <DEDENT> <DEDENT> except Partnership.DoesNotExist: <NEW_LINE> <INDENT> response_dict['message'] = u"Такого ответственного не существует." <NEW_LINE> response_dict['status'] = False <NEW_LINE> <DEDENT> <DEDENT> return Response(response_dict)
|
POST: (responsible_id, new_responsible_id)
|
625941bc4a966d76dd550ef8
|
def binary_crossentropy(y_pred, y_true): <NEW_LINE> <INDENT> with tf.name_scope("BinaryCrossentropy"): <NEW_LINE> <INDENT> return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits( logits=y_pred, labels=y_true))
|
Binary Crossentropy.
Computes sigmoid cross entropy between y_pred (logits) and y_true
(labels).
Measures the probability error in discrete classification tasks in which
each class is independent and not mutually exclusive. For instance,
one could perform multilabel classification where a picture can contain
both an elephant and a dog at the same time.
For brevity, let `x = logits`, `z = targets`. The logistic loss is
x - x * z + log(1 + exp(-x))
To ensure stability and avoid overflow, the implementation uses
max(x, 0) - x * z + log(1 + exp(-abs(x)))
`y_pred` and `y_true` must have the same type and shape.
Arguments:
y_pred: `Tensor` of `float` type. Predicted values.
y_true: `Tensor` of `float` type. Targets (labels).
|
625941bc0383005118ecf4d0
|
def size(self): <NEW_LINE> <INDENT> if self._data['size'] == -1: <NEW_LINE> <INDENT> return self._plot.opts['size'] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return self._data['size']
|
Return the size of this spot.
If the spot has no explicit size set, then return the ScatterPlotItem's default size instead.
|
625941bc3346ee7daa2b2c55
|
def build_special_air_table(tab_name): <NEW_LINE> <INDENT> fout_name = 'R' + tab_name + '.m' <NEW_LINE> with open(fout_name,'w') as fout: <NEW_LINE> <INDENT> fout.write('function val = R'+tab_name+'(alpha_deg)\n') <NEW_LINE> fout.write('% in: angle of attach, deg\n% out: Table '+tab_name+' value\n') <NEW_LINE> fout.write('TBL'+tab_name+'=[\n') <NEW_LINE> fout.write('-360 1.0;\n') <NEW_LINE> fout.write('360 1.0;];\n') <NEW_LINE> fout.write('val = interp1(TBL'+tab_name+'(:,1),TBL'+tab_name+'(:,2),alpha_deg);\n\nend\n')
|
Build special air table missing in the air file, but required in Y. Guilluame formulation.
By default all values of the special table are set to '1'.
Input:
tab_name : numeric name of the table. 3 or 4 digits (ex 1525 or 536). No leading zeros on the name.
|
625941bccc40096d6159583d
|
def CallReader(self, readFunc, parents, state): <NEW_LINE> <INDENT> getattr(self, readFunc)(parents, state)
|
Call the function specified by name string readFunc on self
with arguments parents and state: i.e.
self.readFunc(parents, state)
Params:
self: Object to call readFunc callable on
readFunc: String name of a callable bound to self
parents: Arbitrary argument to be passed to the callable
state: Arbitrary argument to be passed to the callable
|
625941bc92d797404e304075
|
def set_subsections_needed(self, subsections): <NEW_LINE> <INDENT> self._subsections_needed = subsections
|
Marks the subsections that need to be generated;
if this is given then the others are ignored. ::
r = Report()
r.set_subsections_needed(['estimator'])
with r.subsection('estimator') as sub:
# ok
with r.subsection('model') as sub:
# ignored
|
625941bc56ac1b37e62640c0
|
def get_semantic_name(model, rc_loc, comb_type): <NEW_LINE> <INDENT> if model == 'kernelcomb' and rc_loc != -1: <NEW_LINE> <INDENT> semantic_model_name = 'TAI' <NEW_LINE> <DEDENT> elif model == 'kernelcomb' and rc_loc == -1 and comb_type == 'w_avg': <NEW_LINE> <INDENT> semantic_model_name = 'TWI' <NEW_LINE> <DEDENT> elif model == 'simplecomb' and comb_type == 'w_avg': <NEW_LINE> <INDENT> semantic_model_name = 'bi-TW' <NEW_LINE> <DEDENT> elif model == 'simplecomb' and comb_type == 'avg': <NEW_LINE> <INDENT> semantic_model_name = 'bi-SA' <NEW_LINE> <DEDENT> elif model == 'mcnet': <NEW_LINE> <INDENT> semantic_model_name = 'MC-Net' <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print('{model, rc_loc, comb_type} = {%s, %d, %s} does not have a name' % (model, rc_loc, comb_type)) <NEW_LINE> semantic_model_name = 'Unknown' <NEW_LINE> <DEDENT> return semantic_model_name
|
Generate the semantic name of the architecture determined by the given arguments.
|
625941bc7047854f462a12f8
|
def clean_cache(key): <NEW_LINE> <INDENT> if key == 'all': <NEW_LINE> <INDENT> cache.clear() <NEW_LINE> <DEDENT> elif key != 'all' and cache.get(key): <NEW_LINE> <INDENT> cache.delete(key) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> pass
|
在发布文章后删除首页,归档,分类,标签缓存,
在更新文章后删除对应文章缓存
在添加说说,更改友链页后删除对应缓存
:param key: cache prefix
|
625941bcb545ff76a8913d09
|
def _frame_annotation(times, show_date, show_text): <NEW_LINE> <INDENT> is_sequence = isinstance(show_text, (list, tuple, np.ndarray)) <NEW_LINE> if is_sequence and (len(show_text) == 1): <NEW_LINE> <INDENT> show_text, is_sequence = show_text[0], False <NEW_LINE> <DEDENT> elif is_sequence and (len(show_text) < len(times)): <NEW_LINE> <INDENT> raise ValueError(f'Annotations supplied via `show_text` must have ' f'either a length of 1, or a length >= the number ' f'of timesteps in `ds` (n={len(times)})') <NEW_LINE> <DEDENT> times_list = (times.dt.strftime(show_date).values if show_date else [None] * len(times)) <NEW_LINE> text_list = show_text if is_sequence else [show_text] * len(times) <NEW_LINE> annotation_list = ['\n'.join([str(i) for i in (a, b) if i]) for a, b in zip(times_list, text_list)] <NEW_LINE> return annotation_list
|
Creates a custom annotation for the top-right of the animation
by converting a `xarray.DataArray` of times into strings, and
combining this with a custom text annotation. Handles cases
where `show_date=False/None`, `show_text=False/None`, or where
`show_text` is a list of strings.
|
625941bc009cb60464c6329f
|
def _update_json(cur_dct, tmp_dct, json_name): <NEW_LINE> <INDENT> js_data = _stream_json(name_jsfile=json_name, mode='r') <NEW_LINE> flag_update = False <NEW_LINE> for key in cur_dct.keys(): <NEW_LINE> <INDENT> _print_mono_str(33,'*') <NEW_LINE> print('Изменения ',key,':') <NEW_LINE> key_nmb = int(key[4:]) - 1 <NEW_LINE> if len(cur_dct[key]) != len(tmp_dct[key]): <NEW_LINE> <INDENT> if len(cur_dct[key]) > len(tmp_dct[key]): <NEW_LINE> <INDENT> print('- Появилась новая команда: ', cur_dct[key][-1]) <NEW_LINE> _refresh_json(nmb_prm=key_nmb, wrk_dct=cur_dct, key_dct=key, js_data=js_data, js_name=json_name) <NEW_LINE> flag_update = True <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print('- Удалена последняя команда: ', tmp_dct[key][-1]) <NEW_LINE> print('- Текущая команда: ', cur_dct[key][-1]) <NEW_LINE> _refresh_json(nmb_prm=key_nmb, wrk_dct=cur_dct, key_dct=key, js_data=js_data, js_name=json_name) <NEW_LINE> flag_update = True <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> if cur_dct[key] != tmp_dct[key]: <NEW_LINE> <INDENT> print('- Изменение послед. команды: ') <NEW_LINE> print('- Было: ',tmp_dct[key][-1]) <NEW_LINE> print('- Стало: ', cur_dct[key][-1]) <NEW_LINE> _refresh_json(nmb_prm=key_nmb, wrk_dct=cur_dct, key_dct=key, js_data=js_data, js_name=json_name) <NEW_LINE> flag_update = True <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print('нет.') <NEW_LINE> <DEDENT> <DEDENT> except IndexError as ind_err: <NEW_LINE> <INDENT> print('- Ошибка, все команды удалены', ind_err) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> if flag_update is True: <NEW_LINE> <INDENT> tmp_dct.clear() <NEW_LINE> tmp_dct = cur_dct.copy() <NEW_LINE> <DEDENT> print('json обновлен')
|
:param cur_dct: рабочий словарь с данными из пользовательских файлов
:param tmp_dct: копия рабочего словаря для поиска разницы
:param json_name: имя файла типа json
|
625941bc099cdd3c635f0b48
|
def get_start_date(self): <NEW_LINE> <INDENT> active_handle = self.get_active('Family') <NEW_LINE> active = self.db.get_family_from_handle(active_handle) <NEW_LINE> event = get_marriage_or_fallback(self.db, active) <NEW_LINE> return event.get_date_object() if event else None
|
Get the start date for a family, usually a marriage date, or
something close to marriage.
|
625941bca219f33f34628859
|
def test_get_country_business_area_code(self): <NEW_LINE> <INDENT> area_code = "10101" <NEW_LINE> with schema_context(SCHEMA_NAME): <NEW_LINE> <INDENT> country_uat = CountryFactory(name="UAT") <NEW_LINE> self.mapper.countries = {"UAT": country_uat} <NEW_LINE> country = CountryFactory(business_area_code=area_code) <NEW_LINE> res = self.mapper._get_country(area_code) <NEW_LINE> <DEDENT> self.assertEqual(res, country) <NEW_LINE> self.assertCountEqual(self.mapper.countries, { area_code: country, "UAT": country_uat })
|
Check that we get country that matches business area code
|
625941bc851cf427c661a3fe
|
def test_file_no_contents(self): <NEW_LINE> <INDENT> files = open("/Users/Kipyegon/Desktop/Amity/storage/file/people.txt", "w") <NEW_LINE> files.write("") <NEW_LINE> files.close() <NEW_LINE> self.assertEqual(self.amity.load_people(), "The file has no contents") <NEW_LINE> os.remove("/Users/Kipyegon/Desktop/Amity/storage/file/people.txt")
|
test it has no contents
|
625941bc377c676e91272096
|
def release_readlock(lockdir_name): <NEW_LINE> <INDENT> if os.path.exists(lockdir_name) and os.path.isdir(lockdir_name): <NEW_LINE> <INDENT> os.rmdir(lockdir_name)
|
Release a previously obtained readlock.
Parameters
----------
lockdir_name : str
Name of the previously obtained readlock
|
625941bcf7d966606f6a9eed
|
def deploy_stack(environment, debug, machines, deploy_charm): <NEW_LINE> <INDENT> client = client_from_config(environment, None, debug=debug) <NEW_LINE> running_domains = dict() <NEW_LINE> if client.env.provider == 'maas': <NEW_LINE> <INDENT> for machine in machines: <NEW_LINE> <INDENT> name, URI = machine.split('@') <NEW_LINE> if verify_libvirt_domain(URI, name, LIBVIRT_DOMAIN_RUNNING): <NEW_LINE> <INDENT> print("%s is already running" % name) <NEW_LINE> running_domains = {machine: True} <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> running_domains = {machine: False} <NEW_LINE> print("Attempting to start %s at %s" % (name, URI)) <NEW_LINE> status_msg = start_libvirt_domain(URI, name) <NEW_LINE> print("%s" % status_msg) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> client.destroy_environment() <NEW_LINE> client.bootstrap() <NEW_LINE> try: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> client.get_status() <NEW_LINE> <DEDENT> except CannotConnectEnv: <NEW_LINE> <INDENT> print("Status got Unable to connect to env. Retrying...") <NEW_LINE> client.get_status() <NEW_LINE> <DEDENT> client.wait_for_started() <NEW_LINE> if deploy_charm: <NEW_LINE> <INDENT> series = client.env.get_option('default-series', 'trusty') <NEW_LINE> charm_path = local_charm_path( 'dummy-source', juju_ver=client.version, series=series) <NEW_LINE> client.deploy(charm_path, series=series) <NEW_LINE> client.wait_for_started() <NEW_LINE> <DEDENT> <DEDENT> except subprocess.CalledProcessError as e: <NEW_LINE> <INDENT> if getattr(e, 'stderr', None) is not None: <NEW_LINE> <INDENT> sys.stderr.write(e.stderr) <NEW_LINE> <DEDENT> raise <NEW_LINE> <DEDENT> <DEDENT> finally: <NEW_LINE> <INDENT> client.destroy_environment() <NEW_LINE> if client.env.provider == 'maas': <NEW_LINE> <INDENT> sleep(90) <NEW_LINE> for machine, running in running_domains.items(): <NEW_LINE> <INDENT> name, URI = machine.split('@') <NEW_LINE> if running: <NEW_LINE> <INDENT> print("WARNING: %s at %s was running when deploy_job " "started. Shutting it down to ensure a clean " "environment." % (name, URI)) <NEW_LINE> <DEDENT> status_msg = stop_libvirt_domain(URI, name) <NEW_LINE> print("%s" % status_msg)
|
"Deploy a test stack in the specified environment.
:param environment: The name of the desired environment.
|
625941bcc432627299f04b30
|
def getDelays(self,vel): <NEW_LINE> <INDENT> dlay = self.D / (1000.0 * vel) <NEW_LINE> dlayStep = np.around(dlay / self.dt).astype(np.int64) <NEW_LINE> maxDlay = np.int64(np.max(dlayStep)) <NEW_LINE> return dlayStep, maxDlay
|
Return maximum delay and delay steps in samples
|
625941bcb830903b967e97fa
|
def AtomDiag(*args, **kwargs): <NEW_LINE> <INDENT> if len(args) > 0: h = args[0] <NEW_LINE> elif 'h' in kwargs: h = kwargs['h'] <NEW_LINE> else: <NEW_LINE> <INDENT> raise RuntimeError("You must provide a Hamiltonian!") <NEW_LINE> <DEDENT> if not isinstance(h, Operator): <NEW_LINE> <INDENT> raise RuntimeError("The Hamiltonian must be an Operator object!") <NEW_LINE> <DEDENT> if any(abs(term[-1].imag) > 0 for term in h): <NEW_LINE> <INDENT> return AtomDiagComplex(*args, **kwargs) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return AtomDiagReal(*args, **kwargs)
|
Lightweight exact diagonalization solver
|
625941bc097d151d1a222d48
|
def test_rows_nonzero(): <NEW_LINE> <INDENT> rows_nonzero = [] <NEW_LINE> for i in range(len(placement_map)): <NEW_LINE> <INDENT> if len(set(placement_map[i])) > 1 and 0 in placement_map[i]: <NEW_LINE> <INDENT> rows_nonzero.append(i) <NEW_LINE> <DEDENT> <DEDENT> return rows_nonzero
|
cycles through all rows in placement_map and returns
a list of all row indecies that aren't all zero values
|
625941bc462c4b4f79d1d5bc
|
def check_name_availability( self, location, capacity_parameters, **kwargs ): <NEW_LINE> <INDENT> cls = kwargs.pop('cls', None) <NEW_LINE> error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } <NEW_LINE> error_map.update(kwargs.pop('error_map', {})) <NEW_LINE> api_version = "2021-01-01" <NEW_LINE> content_type = kwargs.pop("content_type", "application/json") <NEW_LINE> accept = "application/json" <NEW_LINE> url = self.check_name_availability.metadata['url'] <NEW_LINE> path_format_arguments = { 'location': self._serialize.url("location", location, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } <NEW_LINE> url = self._client.format_url(url, **path_format_arguments) <NEW_LINE> query_parameters = {} <NEW_LINE> query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') <NEW_LINE> header_parameters = {} <NEW_LINE> header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') <NEW_LINE> header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') <NEW_LINE> body_content_kwargs = {} <NEW_LINE> body_content = self._serialize.body(capacity_parameters, 'CheckCapacityNameAvailabilityParameters') <NEW_LINE> body_content_kwargs['content'] = body_content <NEW_LINE> request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) <NEW_LINE> pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) <NEW_LINE> response = pipeline_response.http_response <NEW_LINE> if response.status_code not in [200]: <NEW_LINE> <INDENT> map_error(status_code=response.status_code, response=response, error_map=error_map) <NEW_LINE> error = self._deserialize(_models.ErrorResponse, response) <NEW_LINE> raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) <NEW_LINE> <DEDENT> deserialized = self._deserialize('CheckCapacityNameAvailabilityResult', pipeline_response) <NEW_LINE> if cls: <NEW_LINE> <INDENT> return cls(pipeline_response, deserialized, {}) <NEW_LINE> <DEDENT> return deserialized
|
Check the name availability in the target location.
:param location: The region name which the operation will lookup into.
:type location: str
:param capacity_parameters: The name of the capacity.
:type capacity_parameters: ~azure.mgmt.powerbidedicated.models.CheckCapacityNameAvailabilityParameters
:keyword callable cls: A custom type or function that will be passed the direct response
:return: CheckCapacityNameAvailabilityResult, or the result of cls(response)
:rtype: ~azure.mgmt.powerbidedicated.models.CheckCapacityNameAvailabilityResult
:raises: ~azure.core.exceptions.HttpResponseError
|
625941bc3d592f4c4ed1cf61
|
def set_timer(self, *args, **kwargs) -> _Timer: <NEW_LINE> <INDENT> return _Timer(self, *args, **kwargs)
|
timer(*args, **kwargs) -> _Timer
Set a new timer registered with this event dispatcher. Arguments are
passed unchanged to _Timer().
|
625941bd0c0af96317bb80d4
|
def __init__(self): <NEW_LINE> <INDENT> self.swagger_types = { 'kind': 'str', 'api_version': 'str', 'metadata': 'V1ObjectMeta', 'conditions': 'list[V1ComponentCondition]' } <NEW_LINE> self.attribute_map = { 'kind': 'kind', 'api_version': 'apiVersion', 'metadata': 'metadata', 'conditions': 'conditions' } <NEW_LINE> self._kind = None <NEW_LINE> self._api_version = None <NEW_LINE> self._metadata = None <NEW_LINE> self._conditions = None
|
V1ComponentStatus - a model defined in Swagger
:param dict swaggerTypes: The key is attribute name
and the value is attribute type.
:param dict attributeMap: The key is attribute name
and the value is json key in definition.
|
625941bd1f5feb6acb0c4a40
|
def test_inventoryregularendpointpost(self): <NEW_LINE> <INDENT> pass
|
Test case for inventoryregularendpointpost
Create Physical (Port) Endpoint # noqa: E501
|
625941bc26238365f5f0ed56
|
def __init__(self, gym_env, obs_type): <NEW_LINE> <INDENT> self.gym_env = gym_env <NEW_LINE> self.episode_return = None <NEW_LINE> self.episode_step = None <NEW_LINE> self.obs_type = obs_type <NEW_LINE> if obs_type == "image": <NEW_LINE> <INDENT> self.obs_shape = gym_env.observation_space.shape <NEW_LINE> <DEDENT> elif obs_type in ["VKB", "absVKB"]: <NEW_LINE> <INDENT> self.obs_shape = self.gym_env.obs_shape
|
:param gym_env:
:param obs_type: image, KB or VKB
|
625941bd91f36d47f21ac3db
|
def map_parcel_data_to_vacant_table(merged_parcel_data): <NEW_LINE> <INDENT> logging.debug('map data to columns') <NEW_LINE> for column, source in vacant_table_fields.items(): <NEW_LINE> <INDENT> if column == source: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> elif source == 'TODO': <NEW_LINE> <INDENT> logging.debug('-- TODO implement field %s' % column) <NEW_LINE> <DEDENT> elif type(source) == str: <NEW_LINE> <INDENT> merged_parcel_data[column] = merged_parcel_data[source] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> merged_parcel_data[column] = merged_parcel_data.apply(source, axis=1)
|
Map aggregated parcel data to the fields used by the vacancy app.
Mapping occurs in-place.
Arguments:
merged_parcel_data -- output of merging Prcl with other parcel related dataframes
|
625941bd56b00c62f0f14543
|
def make_abstract_dist(req): <NEW_LINE> <INDENT> if req.editable: <NEW_LINE> <INDENT> return IsSDist(req) <NEW_LINE> <DEDENT> elif req.link and req.link.is_wheel: <NEW_LINE> <INDENT> return IsWheel(req) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return IsSDist(req)
|
Factory to make an abstract dist object.
Preconditions: Either an editable req with a source_dir, or satisfied_by or
a wheel link, or a non-editable req with a source_dir.
:return: A concrete DistAbstraction.
|
625941bd627d3e7fe0d68d3a
|
def get_K_in_pixel_coordinates(self, width=None, height=None): <NEW_LINE> <INDENT> w = width or self.width <NEW_LINE> h = height or self.height <NEW_LINE> f = self.focal * max(w, h) <NEW_LINE> return np.array([[f, 0, 0.5 * (w - 1)], [0, f, 0.5 * (h - 1)], [0, 0, 1.0]])
|
The calibration matrix that maps to pixel coordinates.
Coordinates (0,0) correspond to the center of the top-left pixel,
and (width - 1, height - 1) to the center of bottom-right pixel.
You can optionally pass the width and height of the image, in case
you are using a resized versior of the original image.
|
625941bdf9cc0f698b1404ea
|
@app.route("/name", methods=["GET"]) <NEW_LINE> def getData(): <NEW_LINE> <INDENT> data = { "name": "Yi Zhao" } <NEW_LINE> return jsonify(data)
|
Returns the data dictionary below to the caller as JSON
|
625941bd8e7ae83300e4aeb8
|
def __init__(self, project_id: str, service_account_key_file: Optional[str] = None) -> None: <NEW_LINE> <INDENT> credentials = cloud_auth.get_credentials(service_account_key_file) <NEW_LINE> self.client = storage.Client(project=project_id, credentials=credentials)
|
Initialize new instance of CloudStorageUtils.
Args:
project_id: GCP project id.
service_account_key_file: File containing service account key. If not
passed the default credential will be used. There are following ways to
create service accounts -
1) Use `build_service_client` method from `cloud_auth` module.
2) Use `gcloud` command line utility as documented here -
https://cloud.google.com/iam/docs/creating-managing-service-account-keys
|
625941bd4f6381625f11492a
|
def Register_GetDR2(): <NEW_LINE> <INDENT> return _x64dbgapi.Register_GetDR2()
|
Register_GetDR2() -> duint
|
625941bd507cdc57c6306bc0
|
def user_data(self, access_token): <NEW_LINE> <INDENT> params = {'access_token': access_token} <NEW_LINE> url = GITHUB_API_URL + '/user?' + urllib.urlencode(params) <NEW_LINE> try: <NEW_LINE> <INDENT> return simplejson.load(urllib.urlopen(url)) <NEW_LINE> <DEDENT> except ValueError: <NEW_LINE> <INDENT> return None
|
Loads user data from service
|
625941bd0a366e3fb873e704
|
def format_value(self, value, format_target): <NEW_LINE> <INDENT> if self.type.type != ColumnType.count and self.type.type != ColumnType.measure: <NEW_LINE> <INDENT> return value <NEW_LINE> <DEDENT> if format_target not in POSSIBLE_FORMAT_TARGETS: <NEW_LINE> <INDENT> raise ValueError("Unknown format target") <NEW_LINE> <DEDENT> if value is None or value == "": <NEW_LINE> <INDENT> return "" <NEW_LINE> <DEDENT> if isinstance(value, str): <NEW_LINE> <INDENT> number_str = util.remove_unit(value.strip()) <NEW_LINE> number = Decimal(number_str) <NEW_LINE> <DEDENT> elif isinstance(value, Decimal): <NEW_LINE> <INDENT> number = value <NEW_LINE> number_str = util.print_decimal(number) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise TypeError("Unexpected number type " + str(type(value))) <NEW_LINE> <DEDENT> if number.is_nan(): <NEW_LINE> <INDENT> return "NaN" <NEW_LINE> <DEDENT> elif number == inf: <NEW_LINE> <INDENT> return "Inf" <NEW_LINE> <DEDENT> elif number == -inf: <NEW_LINE> <INDENT> return "-Inf" <NEW_LINE> <DEDENT> if self.scale_factor is not None: <NEW_LINE> <INDENT> number *= self.scale_factor <NEW_LINE> <DEDENT> assert number.is_finite() <NEW_LINE> if ( self.number_of_significant_digits is None and self.type.type != ColumnType.measure and format_target == "tooltip_stochastic" ): <NEW_LINE> <INDENT> return util.print_decimal(round(number, DEFAULT_TOOLTIP_PRECISION)) <NEW_LINE> <DEDENT> number_of_significant_digits = self.get_number_of_significant_digits( format_target ) <NEW_LINE> max_dec_digits = ( self.type.max_decimal_digits if self.type.type == ColumnType.measure else 0 ) <NEW_LINE> if number_of_significant_digits is not None: <NEW_LINE> <INDENT> current_significant_digits = _get_significant_digits(number_str) <NEW_LINE> return _format_number( number, current_significant_digits, number_of_significant_digits, max_dec_digits, format_target, ) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return util.print_decimal(number)
|
Format a value nicely for human-readable output (including rounding).
@param value: the value to format
@param format_target the target the value should be formatted for
@return: a formatted String representation of the given value.
|
625941bd3c8af77a43ae368a
|
def get(bot, module=False, default=False): <NEW_LINE> <INDENT> if module: <NEW_LINE> <INDENT> fn = mod_name % (bot, str(module)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> fn = db_name % bot <NEW_LINE> <DEDENT> module_filename = os.path.join(os.path.expanduser('~/.code'), fn) <NEW_LINE> if not os.path.exists(module_filename): <NEW_LINE> <INDENT> return default <NEW_LINE> <DEDENT> with open(module_filename, 'r') as f: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> data = json.loads(f.read()) <NEW_LINE> if 'list' in data: <NEW_LINE> <INDENT> data = data['list'] <NEW_LINE> <DEDENT> <DEDENT> except ValueError: <NEW_LINE> <INDENT> data = str(f.read()) <NEW_LINE> <DEDENT> <DEDENT> return data
|
get(code.default, modulename)
|
625941bd1d351010ab855a09
|
def get_buildings(self): <NEW_LINE> <INDENT> url = f'{self.API_URL}/buildings/' <NEW_LINE> headers = { 'accept': 'application/json', 'Authorization': self._token, } <NEW_LINE> try: <NEW_LINE> <INDENT> response = requests.request("GET", url, headers=headers) <NEW_LINE> if response.status_code != 200: <NEW_LINE> <INDENT> return None, [f'Expected 200 response from BETTER but got {response.status_code}: {response.content}'] <NEW_LINE> <DEDENT> <DEDENT> except Exception as e: <NEW_LINE> <INDENT> return None, [f'Unexpected error creating BETTER portfolio: {e}'] <NEW_LINE> <DEDENT> return response.json(), []
|
Get list of all buildings
:return: tuple(list[dict], list[str]), list of buildings followed by list of errors
|
625941bd4527f215b584c347
|
def flush_account(self): <NEW_LINE> <INDENT> self._shutdown_connecting_dtp() <NEW_LINE> if self.data_channel is not None: <NEW_LINE> <INDENT> if not self.data_channel.transfer_in_progress(): <NEW_LINE> <INDENT> self.data_channel.close() <NEW_LINE> self.data_channel = None <NEW_LINE> <DEDENT> <DEDENT> username = self.username <NEW_LINE> if self.authenticated and username: <NEW_LINE> <INDENT> self.on_logout(username) <NEW_LINE> <DEDENT> self.authenticated = False <NEW_LINE> self.username = "" <NEW_LINE> self.password = "" <NEW_LINE> self.attempted_logins = 0 <NEW_LINE> self._current_type = 'a' <NEW_LINE> self._restart_position = 0 <NEW_LINE> self._quit_pending = False <NEW_LINE> self._in_dtp_queue = None <NEW_LINE> self._rnfr = None <NEW_LINE> self._out_dtp_queue = None
|
Flush account information by clearing attributes that need
to be reset on a REIN or new USER command.
|
625941bd8da39b475bd64e5d
|
def perform_hit_test(bbx_start, h, w, point): <NEW_LINE> <INDENT> if (bbx_start[0] <= point[0] and bbx_start[0] + h >= point[0] and bbx_start[1] + w >= point[1] and bbx_start[1] <= point[1]): <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return False
|
Check if a point is in the bounding box.
|
625941bdcb5e8a47e48b799a
|
def __init__(self, parent_item, item_list, tree_name = AUTO_TREE): <NEW_LINE> <INDENT> self.start_offset = c_int(0) <NEW_LINE> self.old_tree = c_void_p(0) <NEW_LINE> self._params = PSpush_tree_params(pointer(parent_item.pointer), None, pointer(self.start_offset), pointer(self.old_tree)) <NEW_LINE> self._pop_params = PSpop_tree_params(pointer(self.start_offset), pointer(self.old_tree)) <NEW_LINE> self._subitems = [parent_item] + item_list <NEW_LINE> self._tree_name = tree_name
|
@summary: A constructor.
@param parent_item: The subtree's parent item.
@param item_list: The subtree's children - A list of items.
@param tree_name: Used by Wireshark for remembering which trees are expanded. Put AUTO_TREE for the name of parent_item. (default: AUTO_TREE)
|
625941bd9b70327d1c4e0cc0
|
@register.assignment_tag <NEW_LINE> def get_most_commented_posts(count=5): <NEW_LINE> <INDENT> return Post.published.annotate( total_comments=Count('comments') ).order_by('-total_comments')[:count]
|
可以用来解决标签内部无法嵌套的问题
<h3>Most commented posts</h3>
{% get_most_commented_posts as most_commented_posts %}
<ul>
{% for post in most_commented_posts %}
<li>
<a href="{{ post.get_absolute_url }}">{{ post.title }}</a>
</li>
{% endfor %}
</ul>
:param count:
:return:
|
625941bd71ff763f4b549573
|
def thread_to_dict(thread): <NEW_LINE> <INDENT> parsed = {'name': thread.xpath('.//a')[0].text} <NEW_LINE> parsed['url'] = thread.xpath('.//a')[0].attrib['href'] <NEW_LINE> raw_last_change = thread.xpath('.//span[@title]' )[0].attrib['title'] <NEW_LINE> last_change = date_parse(raw_last_change) <NEW_LINE> parsed['month'] = last_change.month <NEW_LINE> info = thread.xpath('.//div[contains(@style,"right")]')[0] <NEW_LINE> parsed['seen'] = int(info.xpath('.//span[@class]')[3].text.split()[0]) <NEW_LINE> parsed['posts'] = int(info.xpath('.//span[@class]')[4].text.split()[0]) <NEW_LINE> return parsed
|
Serialize Group thread into Python dictionary
|
625941bdc4546d3d9de7291e
|
def _build(self, recipe: Recipe, src_dir: str) -> None: <NEW_LINE> <INDENT> script = recipe.functions["build"] <NEW_LINE> if not script: <NEW_LINE> <INDENT> self.adapter.debug("Skipping build (nothing to do)") <NEW_LINE> return <NEW_LINE> <DEDENT> self.adapter.info("Building artifacts") <NEW_LINE> epoch = int(recipe.timestamp.timestamp()) <NEW_LINE> for filename in util.list_tree(src_dir): <NEW_LINE> <INDENT> os.utime(filename, (epoch, epoch)) <NEW_LINE> <DEDENT> mount_src = "/src" <NEW_LINE> repo_src = "/repo" <NEW_LINE> uid = os.getuid() <NEW_LINE> pre_script: List[str] = [] <NEW_LINE> build_deps = [] <NEW_LINE> host_deps = [] <NEW_LINE> for dep in recipe.makedepends: <NEW_LINE> <INDENT> if dep.kind == DependencyKind.Build: <NEW_LINE> <INDENT> build_deps.append(dep.package) <NEW_LINE> <DEDENT> elif dep.kind == DependencyKind.Host: <NEW_LINE> <INDENT> host_deps.append(dep.package) <NEW_LINE> <DEDENT> <DEDENT> if build_deps: <NEW_LINE> <INDENT> pre_script.extend( ( "export DEBIAN_FRONTEND=noninteractive", "apt-get update -qq", "apt-get install -qq --no-install-recommends" ' -o Dpkg::Options::="--force-confdef"' ' -o Dpkg::Options::="--force-confold"' " -- " + " ".join(build_deps), ) ) <NEW_LINE> <DEDENT> if host_deps: <NEW_LINE> <INDENT> opkg_conf_path = "$SYSROOT/etc/opkg/opkg.conf" <NEW_LINE> pre_script.extend( ( 'echo -n "dest root /', "arch all 100", "arch armv7-3.2 160", "src/gz entware https://bin.entware.net/armv7sf-k3.2", "arch rmall 200", "src/gz toltec-rmall file:///repo/rmall", f'" > "{opkg_conf_path}"', ) ) <NEW_LINE> if recipe.arch != "rmall": <NEW_LINE> <INDENT> pre_script.extend( ( f'echo -n "arch {recipe.arch} 250', f"src/gz toltec-{recipe.arch} file:///repo/{recipe.arch}", f'" >> "{opkg_conf_path}"', ) ) <NEW_LINE> <DEDENT> pre_script.extend( ( "opkg update --verbosity=0", "opkg install --verbosity=0 --no-install-recommends" " -- " + " ".join(host_deps), ) ) <NEW_LINE> <DEDENT> logs = bash.run_script_in_container( self.docker, image=self.IMAGE_PREFIX + recipe.image, mounts=[ docker.types.Mount( type="bind", source=os.path.abspath(src_dir), target=mount_src, ), docker.types.Mount( type="bind", source=os.path.abspath(self.repo_dir), target=repo_src, ), ], variables={ **recipe.variables, **recipe.custom_variables, "srcdir": mount_src, }, script="\n".join( ( *pre_script, f'cd "{mount_src}"', script, f'chown -R {uid}:{uid} "{mount_src}"', ) ), ) <NEW_LINE> self._print_logs(logs, "build()")
|
Build artifacts for a recipe.
|
625941bd82261d6c526ab388
|
def check_category(filterfunction): <NEW_LINE> <INDENT> has_category = [] <NEW_LINE> classes = (checks.TeeChecker, checks.UnitChecker) <NEW_LINE> for klass in classes: <NEW_LINE> <INDENT> categories = getattr(klass, 'categories', None) <NEW_LINE> has_category.append(categories is not None and filterfunction.__name__ in categories) <NEW_LINE> <DEDENT> return True in has_category
|
Checks whether ``filterfunction`` has defined a category or not.
|
625941bd10dbd63aa1bd2a93
|
def CutVideo(fileName, startTime, endTime): <NEW_LINE> <INDENT> fvd.GetVideoSection(fileName, startTime, endTime)
|
Cuts the video files
|
625941bd01c39578d7e74d27
|
def parse(self, handle): <NEW_LINE> <INDENT> alphabet = self.alphabet <NEW_LINE> records = GenBankScanner(debug=0).parse_cds_features(handle, alphabet) <NEW_LINE> return records
|
Start parsing the file, and return a SeqRecord generator.
|
625941bd29b78933be1e559d
|
def spectrum(H, wlist, c_ops, a_op, b_op, solver="es", use_pinv=False): <NEW_LINE> <INDENT> if debug: <NEW_LINE> <INDENT> print(inspect.stack()[0][3]) <NEW_LINE> <DEDENT> if solver == "es": <NEW_LINE> <INDENT> return _spectrum_es(H, wlist, c_ops, a_op, b_op) <NEW_LINE> <DEDENT> elif solver == "pi": <NEW_LINE> <INDENT> return _spectrum_pi(H, wlist, c_ops, a_op, b_op, use_pinv) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise ValueError("Unrecognized choice of solver" + "%s (use es or pi)." % solver)
|
Calculate the spectrum of the correlation function
:math:`\lim_{t \to \infty} \left<A(t+\tau)B(t)\right>`,
i.e., the Fourier transform of the correlation function:
.. math::
S(\omega) = \int_{-\infty}^{\infty}
\lim_{t \to \infty} \left<A(t+\tau)B(t)\right>
e^{-i\omega\tau} d\tau.
using the solver indicated by the `solver` parameter. Note: this spectrum
is only defined for stationary statistics (uses steady state rho0)
Parameters
----------
H : :class:`qutip.qobj`
system Hamiltonian.
wlist : array_like
list of frequencies for :math:`\omega`.
c_ops : list
list of collapse operators.
a_op : Qobj
operator A.
b_op : Qobj
operator B.
solver : str
choice of solver (`es` for exponential series and
`pi` for psuedo-inverse).
use_pinv : bool
For use with the `pi` solver: if `True` use numpy's pinv method,
otherwise use a generic solver.
Returns
-------
spectrum : array
An array with spectrum :math:`S(\omega)` for the frequencies
specified in `wlist`.
|
625941bdbde94217f3682ce2
|
def setUp(self): <NEW_LINE> <INDENT> self.app = create_app() <NEW_LINE> self.client = self.app.test_client <NEW_LINE> self.database_name = "trivia" <NEW_LINE> self.database_path = "postgres://{}/{}".format( 'zicsx:23321@localhost:5433', self.database_name) <NEW_LINE> setup_db(self.app, self.database_path) <NEW_LINE> with self.app.app_context(): <NEW_LINE> <INDENT> self.db = SQLAlchemy() <NEW_LINE> self.db.init_app(self.app) <NEW_LINE> self.db.create_all() <NEW_LINE> <DEDENT> self.new_question = { 'question': 'Who is the director of the movie Parasite (2019) ?', 'answer': 'Bong Joon-ho', 'difficulty': 1, 'category': '5' }
|
Define test variables and initialize app.
|
625941bdbf627c535bc130bb
|
def discover(self): <NEW_LINE> <INDENT> new = [] <NEW_LINE> for d in self.appdirs: <NEW_LINE> <INDENT> for f in os.listdir(d): <NEW_LINE> <INDENT> if f.endswith(".py") or f.endswith(".sql"): <NEW_LINE> <INDENT> name = os.path.splitext(f)[0] <NEW_LINE> path = os.path.join(d, f) <NEW_LINE> if name not in self.apps: <NEW_LINE> <INDENT> self.apps[name] = Application(name) <NEW_LINE> new.append(name) <NEW_LINE> <DEDENT> self.apps[name].link(path) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> for name in new: <NEW_LINE> <INDENT> self.apps[name].init(self.db, self)
|
Search for new applications in the list of directories specified
in the constructor
|
625941bddc8b845886cb5420
|
def values_to_json(values_env: Env.Bindings[Value.Base], namespace: str = "") -> Dict[str, Any]: <NEW_LINE> <INDENT> if namespace and not namespace.endswith("."): <NEW_LINE> <INDENT> namespace += "." <NEW_LINE> <DEDENT> ans = {} <NEW_LINE> for item in values_env: <NEW_LINE> <INDENT> v = item.value <NEW_LINE> if isinstance(v, Value.Base): <NEW_LINE> <INDENT> j = v.json <NEW_LINE> <DEDENT> elif isinstance(item.value, Tree.Decl): <NEW_LINE> <INDENT> j = str(item.value.type) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> assert isinstance(item.value, Type.Base) <NEW_LINE> j = str(item.value) <NEW_LINE> <DEDENT> ans[(namespace if not item.name.startswith("_") else "") + item.name] = j <NEW_LINE> <DEDENT> return ans
|
Convert a ``WDL.Env.Bindings[WDL.Value.Base]`` to a dict which ``json.dumps`` to
Cromwell-style JSON.
:param namespace: prefix this namespace to each key (e.g. workflow name)
|
625941bdd268445f265b4d5b
|
def test_bad_values(self): <NEW_LINE> <INDENT> good_mime = ('text', 'plain') <NEW_LINE> self.assertOK([(good_mime, hlh.ParamsCI())]) <NEW_LINE> self.assertOK([(good_mime, hlh.ParamsCI([('q', 1)]))]) <NEW_LINE> self.assertRaisesInternalError([(('text', ''), hlh.ParamsCI())]) <NEW_LINE> self.assertRaisesInternalError([(('', 'plain'), hlh.ParamsCI())]) <NEW_LINE> self.assertRaisesInternalError([(('', ''), hlh.ParamsCI())]) <NEW_LINE> self.assertRaisesInternalError([((';', ';'), hlh.ParamsCI())]) <NEW_LINE> self.assertRaisesInternalError([(('text', ';'), hlh.ParamsCI())]) <NEW_LINE> self.assertRaisesInternalError([((';', 'plain'), hlh.ParamsCI())]) <NEW_LINE> self.assertRaisesInternalError([( good_mime, hlh.ParamsCI([('', '')]))]) <NEW_LINE> self.assertRaisesInternalError([( good_mime, hlh.ParamsCI([('q', 'a')]))]) <NEW_LINE> self.assertRaisesInternalError([( good_mime, hlh.ParamsCI([('q', '5')]))]) <NEW_LINE> self.assertRaisesInternalError([(good_mime,)]) <NEW_LINE> self.assertRaisesInternalError([good_mime])
|
Should not allow bad values
|
625941bd24f1403a92600a56
|
def loadXML(xml_string, normalize = True): <NEW_LINE> <INDENT> if normalize: <NEW_LINE> <INDENT> xml_string = xml_string.replace("\n"," ").replace(" ","") <NEW_LINE> <DEDENT> parser = ET.XMLParser(encoding = 'utf-8') <NEW_LINE> return ET.fromstring(xml_string, parser = parser)
|
Load XML from string
|
625941bd71ff763f4b549574
|
def pc_noutput_items(self): <NEW_LINE> <INDENT> return _blocks_swig0.file_meta_source_sptr_pc_noutput_items(self)
|
pc_noutput_items(file_meta_source_sptr self) -> float
|
625941bdd58c6744b4257b4d
|
def set_settlement_origin(self, settlement_origin_prefix, random_string=True): <NEW_LINE> <INDENT> is_set = None <NEW_LINE> try: <NEW_LINE> <INDENT> self.logger.info('Start: set settlement origin') <NEW_LINE> self._business_admin_page.set_settlement_origin(settlement_origin_prefix, random_string) <NEW_LINE> is_set = True <NEW_LINE> <DEDENT> except WebDriverException as exp: <NEW_LINE> <INDENT> is_set = False <NEW_LINE> self.logger.error(exp.msg) <NEW_LINE> raise <NEW_LINE> <DEDENT> finally: <NEW_LINE> <INDENT> self.logger.info('End: set settlement origin') <NEW_LINE> return is_set
|
Returning set settlement origin
Implementing logging for set settlement origin functionality
:param settlement_origin_prefix:
:param random_string:
:return:
|
625941bdcc0a2c11143dcd7d
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.