blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
d848497e2725038e7c5c3c27a5a34c1c10f46a9e
Python
danerlt/leetcode
/Python3/剑指Offer05.替换空格.py
UTF-8
780
3.53125
4
[]
no_license
# 请实现一个函数,把字符串 s 中的每个空格替换成"%20"。 # # # # 示例 1: # # 输入:s = "We are happy." # 输出:"We.are%20happy." # # # # 限制: # # 0 <= s 的长度 <= 10000 # # Related Topics 字符串 👍 360 👎 0 # leetcode submit region begin(Prohibit modification and deletion) class Solution: def replaceSpace(self, s: str) -> str: # 解题思路 # 创建一个list,循环字符串,如果为空格就append%20,否则就append字符 res = [] for char in s: if char == " ": res.append("%20") else: res.append(char) res = "".join(res) return res # leetcode submit region end(Prohibit modification and deletion)
true
6358917bdddb2fddd9cecada2b4568692d195e01
Python
msschambach/pythonbdd
/djangotodo/features/steps/api_create_todolist.py
UTF-8
2,634
2.859375
3
[]
no_license
import json from behave import given, when, then @given(u'an endpoint for creating a list exists') def step_impl(context): response = context.test.client.post('/api/lists/', data={}) response_content = response.content.decode('utf-8') assert response_content == '{"name":["This field is required."],"description":["This field is required."]}' @when(u'I send a payload with the name as "Homework to do" ' u'and a description as "A list of homework tasks to do"') def step_impl(context): response = context.test.client.post('/api/lists/', { "name": "Homework to do", "description": "A list of homework tasks to do" }) response_dict = json.loads(response.content.decode('utf-8')) context.list_id = response_dict.get('id') assert response_dict.get('name') == 'Homework to do' assert response_dict.get('description') == 'A list of homework tasks to do' @then(u'a list with the name "Homework to do" and ' u'description "A list of homework tasks to do" should be created') def step_impl(context): url = '/api/lists/{list_id}/'.format(list_id=context.list_id) response = context.test.client.get(url) assert response.status_code == 200 try: response_dict = json.loads(response.content) except ValueError as e: response_dict = [] print(e) print("content: " + response.content) assert response_dict.get('name') == 'Homework to do' assert response_dict.get('description') == 'A list of homework tasks to do' @when(u'I send a payload with the name as "Errands to run" ' u'and a description as "A list of errands to run"') def step_impl(context): response = context.test.client.post('/api/lists/', { "name": "Errands to run", "description": "A list of errands to run" }) response_dict = json.loads(response.content.decode('utf-8')) context.list_id = response_dict.get('id') assert response_dict.get('name') == 'Errands to run' assert response_dict.get('description') == 'A list of errands to run' @then(u'a list with the name "Errands to run" and ' u'description "A list of errands to run" should be created') def step_impl(context): url = '/api/lists/{list_id}/'.format(list_id=context.list_id) response = context.test.client.get(url) try: response_dict = json.loads(response.content) except ValueError as e: response_dict = [] print(e) print("content: " + response.content) assert response_dict.get('name') == 'Errands to run' assert response_dict.get('description') == 'A list of errands to run'
true
a3b0a205b212336c5efd269b34824d6198645d32
Python
gonzalob24/Learning_Central
/Python_Programming/PythonUhcl/Scripting/babynames.py
UTF-8
4,698
4.15625
4
[]
no_license
""" In python: Using the TXBabyNames.txt file. Write code to read it into a list. How many female records are there? Done How many male records are there? Done How many female records are there in 1910? Done How many male records are there in 1910? Done How many female records are there in 2012? Done How many male records are there in 2012? Done What are the total number of babies born in Texas in 2012? Done What are the total number of babies born in Texas with your name since 1910? Done What are the total number of babies born in Texas with your name between 1910 and 1960? Done What name was the most popular (had the highest count in one year) for males? Done What name was the most popular (had the highest count in one year) for females? Done What was the name for the males, and for the females? Done What year was the name for males? for females? Done In what year was your name the most popular (had the highest count)? Example name: Paul Write all this information out to a file. """ file_names = open("TXBabyNames.txt") # open_now = file_names.readline() # open_now = file_names.readlines() puts entire file in a list # read reads all of it # reaadline just reads the firts line # print(open_now) # to read line by line do a for loop female_sum = 0 male_sum = 0 female_sum_1910 = 0 male_sum_1910 = 0 female_sum_2012 = 0 male_sum_2012 = 0 tx_babies_2012 = 0 tx_babies_myname = 0 tx_babies_myname_1910_1960 = 0 popular_male_count = 0 popular_male_name = "" popular_male_name_year = 0 popular_female_count = 0 popular_female_name = "" popular_female_name_year = 0 popular_myname_count = 0 popular_myname_year = 0 for line in file_names: line = line.split(",") # total number of females if line[1] == "F": female_sum += int(line[4]) # total number of males if line[1] == "M": male_sum += int(line[4]) # total females in 1910 if int(line[2]) == 1910 and line[1] == "F": female_sum_1910 += int(line[4]) # total male records in 1910 if int(line[2]) == 1910 and line[1] == "M": male_sum_1910 += int(line[4]) # total females in 2012 if int(line[2]) == 2012 and line[1] == "F": female_sum_2012 += int(line[4]) # total male records in 2012 if int(line[2]) == 2012 and line[1] == "M": male_sum_2012 += int(line[4]) # babies born in TX in 2012 if line[0] == "TX" and int(line[2]) == 2012: tx_babies_2012 += int(line[4]) # TX babies born since 1910 with my name if line[0] == "TX" and line[3] == "Ira": tx_babies_myname += int(line[4]) # TX babies with my name between 1910 and 1960 if line[0] == "TX" and line[3] == "Gonzalo" and int(line[2]) in range(1910, 1961): tx_babies_myname_1910_1960 += int(line[4]) # most popular male name in one year if line[1] == "M": if popular_male_count < int(line[4]): popular_male_count = int(line[4]) popular_male_name = line[3] popular_male_name_year = line[2] # most popular female name in one year if line[1] == "F": if popular_female_count < int(line[4]): popular_female_count = int(line[4]) popular_female_name = line[3] popular_female_name_year = line[2] # most popular year for my name if line[3] == "Gonzalo": if popular_myname_count < int(line[4]): popular_myname_count = int(line[4]) popular_myname_year = line[2] print("There are a total of " + str(female_sum) + " female records.") print("There are a total of " + str(male_sum) + " male records.") print("There are a total of " + str(female_sum_1910) + " female records in 1910.") print("There are a total of " + str(male_sum_1910) + " male records in 1910.") print("There are a total of " + str(female_sum_2012) + " female records in 2012.") print("There are a total of " + str(male_sum_2012) + " male records in 2012.") print("There are a total of " + str(tx_babies_2012) + " Babies born in TX in 2012.") print("There are a total of " + str(tx_babies_myname) + " Babies born in TX in 1910 with my name.") print("There are a total of " + str(tx_babies_myname_1910_1960) + " Babies born in TX with my name from 1910 to 1960.") print("The most popular male name in a given year is " + popular_male_name + ". There were " + str(popular_male_count) + " in " + popular_male_name_year) print("The most popular female name in a given year is " + popular_female_name + ". There were " + str(popular_female_count) + " in " + popular_female_name_year) print("The year that my name was most famous was in " + popular_myname_year + ". There were " + str(popular_myname_count))
true
65d6a24181482ea120d0ab6caa9dc122e1f527f8
Python
leizhen10000/crawler
/demo/selenium/locate_element/__init__.py
UTF-8
2,813
3.5
4
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- """ # @Time : 2018/8/27 10:13 # @Author : Lei Zhen # @Contract: leizhen8080@gmail.com # @File : __init__.py.py # @Software: PyCharm # code is far away from bugs with the god animal protecting I love animals. They taste delicious. ┏┓ ┏┓ ┏┛┻━━━┛┻┓ ┃ ☃ ┃ ┃ ┳┛ ┗┳ ┃ ┃ ┻ ┃ ┗━┓ ┏━┛ ┃ ┗━━━┓ ┃ 神兽保佑 ┣┓ ┃ 永无BUG┏┛ ┗┓┓┏━┳┓┏┛ ┃┫┫ ┃┫┫ ┗┻┛ ┗┻┛ """ # 有很多中策略来定位页面中的元素,你在测试用例中可以使用最合适的方式 # Selenium 提供了以下的方法来定位元素 # find_element_by_id # find_element_by_name # find_element_by_xpath # find_element_by_link_text # find_element_by_partial_link_text # find_element_by_tag_name # find_element_by_class_name # find_element_by_css_selector # 上面都是查找单一的结果,要查找所有结果,改为 elements 就可以了 # find_elements_by_id # find_elements_by_name # find_elements_by_xpath # find_elements_by_link_text # find_elements_by_partial_link_text # find_elements_by_tag_name # find_elements_by_class_name # find_elements_by_css_selector # # 除了以上狗狗你哟给你的方法,还有两个私有方法可以有效的定位页面中的对象 # 分别为:find_element 和 find_elements # driver.find_element(By.XPATH, '//button[text()="Some text"]') # driver.find_elements(By,XPATH, '//button') # By 类中共有以下的不同属性 # ID = "id" # XPATH = "xpath" # LINK_TEXT = "link text" # PARTIAL_LINK_TEXT = 'partial link text' # NAME = 'name' # TAG_NAME = 'tag name' # CLASS_NAME = 'class name' # CSS_SELECTOR = 'css selector' from selenium import webdriver def locating_by_x(): driver = webdriver.Firefox() driver.find_element_by_xpath() # XPath 是一个用来定位 XML 文档中节点的语言 # XPath 扩展包含通过 id 和 name 属性来查找元素,并且可以解锁很多可能性,比如获取页面中第三个复选框 # 使用 XPath 来定位的主要原因是,不需要一个确定的 id 或者 name 属性来定位元素 # 可以使用绝对的位置(不建议使用)或者关联一个有id或者name属性的元素。 # XPath 定位器可以找到特殊的元素通过其他属性,而不仅仅是 id 和 name 属性 # 通过找到一个附近的元素,二者元素可以通过 id 和 name 属性定位到(一般来说是父级元素),然后再通过与该元素的层级关系,来定位需要的元素。 # 这看起来会大大方便,而且使得测试脚本更加健壮
true
a67af1f0027ef4bcf74805907d60dc1c609d7a64
Python
vstiern/wsb-hype-alert
/data_collector/src/aux_functions.py
UTF-8
810
3.359375
3
[]
no_license
"""Aux functions""" from pathlib import Path from configparser import ConfigParser # read file def get_config_section(section, file_name="config.ini"): """ Parse config file. :param section_name: Section header name as string. :param file_name: File name of config file. Defualt name provided. :return: Dictionary with config name as keys and config value as value. """ # create parser parser = ConfigParser() file_path = Path(__file__).parent.parent parser.read(file_path / file_name) config_dict = {} if parser.has_section(section): params = parser.items(section) for param in params: config_dict[param[0]] = param[1] else: raise Exception(f'Section: {section} not found in the {file_name}') return config_dict
true
9ad79d451ea71a61a26be9ba137208493ba2cbee
Python
narahahn/continuous_measurement
/example/IRs_image_source_model.py
UTF-8
3,424
2.875
3
[ "MIT" ]
permissive
""" Computes the impulse responses in a rectangular room using the mirror image sources model * frequency-independent reflection coefficients * fractional delay interpolation using the Lagrange polynomial """ import numpy as np import sfs import matplotlib.pyplot as plt import sounddevice as sd import soundfile as sf from scipy.signal import lfilter, freqz, bessel, butter, fftconvolve from matplotlib.patches import Rectangle from sys import path path.append('../') from utils import * from source import * # Constants c = 343 fs = 44100 # sample rate for boadband response # Room L = 10, 10.7, 12 # room dimensions coeffs = .8, .8, .7, .7, .6, .6 # wall reflection coefficients # Point source x0 = 5.2, 5.7, 2.5 # source position signal = ([1, 0, 0], fs) # signal for broadband response source_type = 'point' # 3D Image sources max_order = 6 # maximum order of image sources xs, wall_count = sfs.util.image_sources_for_box(x0, L, max_order) source_strength = np.prod(coeffs**wall_count, axis=1) # Circular microphone array R_mic = 0.2 # radius K_mic = 90 # number of microphones phi_mic = np.linspace(0, 2 * np.pi, num=K_mic, endpoint=False) x_mic = np.array([R_mic * np.cos(phi_mic) + 0.732, R_mic * np.sin(phi_mic) + 0.831, np.zeros_like(phi_mic) + 0.511]).T # Impulse responses #N = 4800 # FIR filter length N = int(2**(np.ceil(np.log2(np.max(np.linalg.norm(xs, axis=-1)) / c * fs)))) h = np.zeros((K_mic, N)) for ii, xi in enumerate(xs): waveform, shift, offset = impulse_response(xi, x_mic, source_type, fs) htemp, _, _ = construct_ir_matrix(waveform, shift, N) h += htemp * source_strength[ii] # Listening example s, _ = sf.read('50.flac') # SQAM male speech s = s[:3*fs, 0] y = fftconvolve(s, h[0, :]) # Plots phi_deg = np.rad2deg(phi_mic) time = np.arange(N)/fs*1000 Nf = N//2+1 freq = np.arange(Nf)*fs/(Nf) # IRs - linear scale plt.figure(figsize=(4, 10)) plt.pcolormesh(phi_deg, time, h.T, cmap='coolwarm') plt.colorbar() plt.clim(-0.002, 0.002) plt.axis('tight') plt.xlabel(r'$\phi$ / deg') plt.ylabel('$t$ / ms') plt.ylim(0, 100) # IRs - dB plt.figure(figsize=(4, 10)) plt.pcolormesh(phi_deg, time, db(h.T), cmap='Blues') plt.colorbar() plt.clim(-200, 0) plt.xlabel(r'$\phi$ / deg') plt.ylabel('$t$ / ms') plt.axis('tight') # Randomly selected IR - linear scale nn = np.random.randint(K_mic) plt.figure() plt.plot(time, h[nn, :]) plt.xlabel('$t$ / ms') #plt.ylim(-1, 1) # Randomly selected IR - dB plt.figure() plt.plot(time, db(h[nn, :])) plt.xlabel('$t$ / ms') plt.ylim(-120, 0) # Frequency response plt.figure() plt.semilogx(freq, db(np.fft.rfft(h[nn, :]))) plt.ylim(-60, 0) plt.xlabel('$f$ / Hz') plt.ylabel('Magnitude / dB') # Spectrogram plt.figure() plt.specgram(h[nn, :], NFFT=128, noverlap=64, Fs=fs, cmap='Blues', vmin=-180); plt.colorbar(label='dB') plt.xlabel('$t$ / s') plt.ylabel('$f$ / Hz') # plot mirror image sources plt.figure() plt.scatter(*xs.T, source_strength*20) plt.plot(x_mic[:, 0], x_mic[:, 1], 'g.') plt.gca().add_patch(Rectangle((0, 0), L[0], L[1], fill=False)) plt.xlabel('x / m') plt.ylabel('y / m') plt.axis('equal') plt.title('xy-plane') plt.figure() plt.scatter(xs[:, 0], xs[:, 2], source_strength*20) plt.plot(x_mic[:, 0], x_mic[:, 2], 'g.') plt.gca().add_patch(Rectangle((0, 0), L[0], L[2], fill=False)) plt.xlabel('x / m') plt.ylabel('z / m') plt.axis('equal') plt.title('xz-plane')
true
d15c10073dd452d8f4c7b999bc526f5e85fb4ab4
Python
chrisleewoo/soundbug
/iter_recurs.py
UTF-8
319
4.0625
4
[]
no_license
""" n! iterator vs recursively """ def factorial_iterative(n): for x in range(n): x *= x-n return x def factorial_recursive(n): # Base case: 1! = 1 if n == 1: return 1 # Recursive case: n! = n * (n-1)! else: return n * factorial_recursive(n-1)
true
714fcef9bda55ea216587cbd75ff696b37d74945
Python
change1q2/Learn
/pyweb/web_12_framework_v4/common/base_page.py
UTF-8
2,130
2.8125
3
[]
no_license
#!/usr/bin/env python3 #-*- coding:utf-8 -*- # email: wagyu2016@163.com # wechat: shoubian01 # author: 王雨泽 import logging import os from selenium.webdriver import ActionChains from selenium.webdriver.common.by import By from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from config.constant import img_path class BasePage: """basepage 当中跟具体的页面逻辑有关系吗??""" def __init__(self, driver): self.driver = driver def wait_element_visible(self, locator, timeout=30, poll_frequency=0.5): """等待元素可见""" wait = WebDriverWait(self.driver, timeout, poll_frequency=poll_frequency) return wait.until(EC.visibility_of_element_located(locator)) def wait_element_precence(self, locator, timeout=30, poll_frequency=0.5): """等待元素出现""" wait = WebDriverWait(self.driver, timeout, poll_frequency=poll_frequency) return wait.until(EC.presence_of_element_located(locator)) def wait_element_clickable(self, locator, timeout=30, poll_frequency=0.5): """等待元素可被点""" wait = WebDriverWait(self.driver, timeout, poll_frequency=poll_frequency) return wait.until(EC.element_to_be_clickable(locator)) def get_element(self, locator): """不需要显示等待""" try: return self.driver.find_element(*locator) except: # 截图保存 self.driver.save_screenshot(os.path.join(img_path, 'screenshot2020_02_07_21_34_30.png')) logging.error("元素定位失败") # 还有哪些逻辑可以封装在 basepage 当中。 #1, 窗口切换,iframe, alert 切换。 # 鼠标拖拽 def drag(self, src, target): """鼠标拖拽""" ac = ActionChains(self.driver) ac.drag_and_drop(src, target) ac.perform() # js 滚动到底部 def scroll_to(self, width, height): """窗口滚动""" js_code = 'window.scrollTo({}, {})'.format(width, height) self.driver.execute_script(js_code)
true
09727b253a93d91c09e2e2d206ff554b1c7c95a6
Python
kevin-ci/advent-of-code-2020
/chris/day-3/p2.py
UTF-8
383
3.21875
3
[ "MIT" ]
permissive
import functools from p1 import count_trees slopes = [ {'x': 1, 'y': 1}, {'x': 3, 'y': 1}, {'x': 5, 'y': 1}, {'x': 7, 'y': 1}, {'x': 1, 'y': 2}, ] with open('input.txt') as f: lines = f.read() all_trees = [] for slope in slopes: start = (0, 0) all_trees.append(count_trees(lines, start, slope)) total = functools.reduce(lambda x, y: x * y, all_trees) print(total)
true
144d07d7dce9f1777382b356eafea8ef2d1db955
Python
yy19970618/apriori
/genindex.py
UTF-8
4,677
2.59375
3
[]
no_license
import tensorflow.python as tf from tensorflow.python import keras from tensorflow.python.keras import layers from tensorflow.python.keras import models from tensorflow.python.keras.preprocessing.sequence import pad_sequences import os import numpy as np import sklearn.preprocessing as sp import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report def initConv(shape,dtype=None): res = np.zeros(shape) res[0], res[-1] = 1, 1 return tf.constant_initializer(res) def convolution(): inn = layers.Input(shape=(sequence_length,1)) cnns = [] for i,size in enumerate(filter_sizes): conv = layers.Conv1D(filters=8, kernel_size=(size), strides=size, padding='valid', activation='relu',kernel_initializer=initConv([size,8]))(inn) #if i%2: pool_size =int(conv.shape[1]/100) pool = layers.MaxPool1D(pool_size=(pool_size), padding='valid')(conv) #pool = MaxMin(pool_size)(conv) cnns.append(pool) outt = layers.concatenate(cnns) model = keras.Model(inputs=inn, outputs=outt,name='cnns') model.summary() return model ''' input: query features and data features query features: 支持度、下标、范围[将负载特征也用词向量进行编号] data features: 对1000条数据词嵌入的结果 1000*40*50 I will use CNN to extract data features in order to decrease paramters ''' tf.enable_eager_execution() filter_sizes=[5,50] embedding_dimension=50 sequence_length = 30000 ''' #单分类,效果还不错,正确率接近1 model = keras.Sequential([ layers.Input(shape=([sequence_length])), layers.Reshape((sequence_length,1)), convolution(), layers.Flatten(), layers.Dropout(0.1), layers.Dense(64,activation='relu'), layers.Dropout(0.1), layers.Dense(1, activation='sigmoid') ]) model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.BinaryCrossentropy(), metrics=['accuracy']) ''' model = keras.Sequential([ layers.Input(shape=([sequence_length])), layers.Reshape((sequence_length,1)), convolution(), layers.Flatten(), layers.Dropout(0.1), layers.Dense(64,activation='relu'), layers.Dropout(0.1), layers.Dense(4, activation='sigmoid') ]) model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.BinaryCrossentropy(), metrics=['accuracy']) model.summary() model.load_weights("./1/weight") x_test = np.loadtxt("test.csv", delimiter=',') y_test = np.loadtxt("testout.csv", delimiter=',') y_hat = model.predict(x_test) print(y_hat) test_loss, test_accuracy = model.evaluate(x_test,y_test) print(test_accuracy) print(test_loss) ''' input = np.loadtxt("numtrain.csv",delimiter=',') out = np.loadtxt("out1.csv", delimiter=',') input = sp.scale(input) output = out X_train, X_test, y_train, y_test = train_test_split(input, output, test_size=0.2) history = model.fit(X_train, y_train,epochs=500,validation_split=0.1) plt.plot(history.history['accuracy']) plt.plot(history.history['loss']) plt.plot(history.history['val_accuracy']) plt.legend(['training', 'loss','valiation'], loc='upper left') plt.show() tloss = [] taccu = [] for i in range(0,200): history = model.fit(X_train, y_train) #prediction = model.predict(X_test) #prediction = np.ceil(prediction) #model.save_weights("weight") test_loss, test_accuracy = model.evaluate(X_test,y_test) tloss.append(test_loss) taccu.append(test_accuracy) plt.plot(history.history['accuracy']) plt.plot(history.history['loss']) plt.show() plt.plot(np.linspace(0,200,200),tloss) plt.plot(np.linspace(0,200,200),taccu) plt.show() model.save_weights("./1/weight") #model = tf.keras.models.load_model('all_model.h5') model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.BinaryCrossentropy(), metrics=['accuracy']) model.save('all_model.h5') model = tf.keras.models.load_model('all_model.h5') print(tf.__version__) model = keras.models.Sequential([ keras.layers.Dense([100], input_shape=[1000,40,50]) ]) # tensorboard earlystopping logdir = './callbacks' if not os.path.exists(logdir): os.mkdir(logdir) output_model_file = os.path.join(logdir, "index_model.h5") callbacks =[ keras.callbacks.TensorBoard(logdir), keras.callbacks.ModelCheckpoint(output_model_file, save_best_only=True), keras.callbacks.EarlyStopping(patience=5, min_delta=1e-3) ] '''
true
6e2cd085d423d8062fdcdb3837adfbe2d5524bea
Python
AnnaPopovych/Automation
/lesson_3/DZ_3_1.py
UTF-8
149
3.25
3
[]
no_license
c = [-1, 2, -1, -1] def my_new_function(a): b = [] for i in a: b.append(abs(i)) b.sort() return b print(my_new_function())
true
54e60e4cac88c5037c545172ee0cdf3f92b35681
Python
lookfwd/bottlemem
/1.simple_server.py
UTF-8
3,217
2.625
3
[]
no_license
#!/usr/bin/env python3 import socket from time import sleep APP_PORT = 50000 LISTEN_BACKLOG = 1000000 LOGIN_SERVER = '52.17.32.15' LOGIN_PORT = 50001 def login(): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((LOGIN_SERVER, LOGIN_PORT)) s.sendall(('login').encode()) data = s.recv(1024) s.close() def initListening(): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind(('', APP_PORT)) s.listen(LISTEN_BACKLOG) return s ACCOUNTS = 10 SECURITIES = 10000 import threading lock = threading.RLock() import numpy as np accounts = [np.random.randint(0, 1000, SECURITIES) for i in range(ACCOUNTS)] def manage_account(account, action): group, buy, quantity, id = action if (not buy) and quantity > account[id]: return "can't sell" if buy: account[id] += quantity else: account[id] -= quantity return "ok" def business_logic(data): action = tuple(map(int, data.split())) login() group = action[0] with lock: return manage_account(accounts[group], action) from multiprocessing import Process, Queue answer_queue = Queue() answer_lock = threading.RLock() answer_registry = {} answer_cnt = [0] def answer_manager(): while True: call_id, answer = answer_queue.get() with answer_lock: queue = answer_registry.pop(call_id) queue.put(answer) import concurrent from concurrent.futures import ThreadPoolExecutor from threading import Thread answer_thread = Thread(target=answer_manager, args=() ) answer_thread.start() #answer_thread.join() processes = [] process_queues = [Queue() for i in range(ACCOUNTS)] def manage_account_process_thread(call_id, action, account, lock): login() with lock: answer = manage_account(account, action) answer_queue.put((call_id, answer)) def manage_account_process(id, queue): account = np.random.randint(0, 1000, SECURITIES) account_lock = threading.RLock() with concurrent.futures.ThreadPoolExecutor(max_workers=50) as executor: while True: call_id, action = queue.get() executor.submit(manage_account_process_thread, call_id, action, account, account_lock) for id in range(ACCOUNTS): p = Process(target=manage_account_process, args=(id, process_queues[id])) processes.append(p) p.start() #for i in range(ACCOUNTS): # processes[i].join() import queue def business_logic_with_proc(data): action = tuple(map(int, data.split())) group = action[0] my_queue = queue.Queue() with answer_lock: answer_cnt[0] += 1 my_answer_cnt = answer_cnt[0] answer_registry[my_answer_cnt] = my_queue process_queues[group].put((my_answer_cnt, action)) return my_queue.get() def serve(conn): request = conn.recv(1024) resp = business_logic_with_proc(request) conn.sendall(resp.encode()) conn.close() s = initListening() with concurrent.futures.ThreadPoolExecutor(max_workers=100) as executor: while True: conn, addr = s.accept() #serve(conn) executor.submit(serve, conn)
true
3433dbfc4cd79b584c7d56cc199f53ca2f18bca4
Python
kkristof200/py_dependencies
/kdependencies/models/installed_package.py
UTF-8
3,219
2.546875
3
[]
no_license
# --------------------------------------------------------------- Imports ---------------------------------------------------------------- # # System from typing import Optional, List # Local from .package import Package from .core import Utils # ---------------------------------------------------------------------------------------------------------------------------------------- # # ------------------------------------------------------- class: InstalledPackage -------------------------------------------------------- # class InstalledPackage(Package): # ------------------------------------------------------------- Init ------------------------------------------------------------- # def __init__( self, s: str, private: bool = False ): lines = s.split('\n') name = self.__get_var(lines, 'Name: ') if not name: self.invalid = True return self.invalid = False super().__init__(name, self.__get_var(lines, 'Version: '), private) self.summary = self.__get_var(lines, 'Summary: ') self.home_page = self.__get_var(lines, 'Home-page: ') self.author = self.__get_var(lines, 'Author: ') self.author_email = self.__get_var(lines, 'Author-email: ') self.license = self.__get_var(lines, 'License: ') self.location = self.__get_var(lines, 'Location: ') dependencies_str = self.__get_var(lines, 'Requires: ') self.requires = [d.replace('-', '_') for d in dependencies_str.split(',')] if dependencies_str else [] dependents_str = self.__get_var(lines, 'Required-by: ') self.required_by = [d.strip().replace('-', '_') for d in dependents_str.split(',')] if dependents_str else [] # -------------------------------------------------------- Public methods -------------------------------------------------------- # @classmethod def from_name(cls, name: str, private: bool = False) -> Optional: package = cls(Utils.get_pip_info_str(name), private=private) return package if not package.invalid else package def get_install_name(self, include_version: bool = False) -> Optional[str]: return super().get_install_name(include_version=include_version) if not self.private else '{} @ git+{}'.format(super().get_install_name(include_version=include_version), self.home_page) if self.home_page else None def get_install_command(self, include_version: bool = True) -> str: return 'python3 -m pip install -U {}'.format(self.versioned_name if include_version and not self.private else self.name if not self.private else 'git+{}'.format(self.home_page)) # ------------------------------------------------------- Private methods -------------------------------------------------------- # def __get_var(self, lines: List[str], sep: str) -> Optional[str]: try: res = [l for l in lines if sep in l][0].split(sep)[-1].strip() return res if res != 'None' else None except: return None # ---------------------------------------------------------------------------------------------------------------------------------------- #
true
ae6a37eb234dc865c0599488930334fcdf3eb9ac
Python
dotcs/doimgr
/lib/validator.py
UTF-8
4,463
2.578125
3
[ "MIT" ]
permissive
import os import sys import logging import re class Validator(object): UNKNOWN = 0 BOOLEAN = 1 INTEGER = 2 STRING = 3 DATE = 4 FUNDER_ID = 5 MEMBER_ID = 6 URL = 7 MIME_TYPE = 8 ORCID = 9 ISSN = 10 TYPE = 11 DIRECTORY = 12 DOI = 13 def __init__(self): pass def __get_valid_values(self): valid_values = [ ('has-funder' , self.BOOLEAN ), ('funder' , self.FUNDER_ID ), ('prefix' , self.DOI ), ('member' , self.MEMBER_ID ), ('from-index-date' , self.DATE ), ('until-index-date' , self.DATE ), ('from-deposition-date' , self.DATE ), ('until-deposition-date' , self.DATE ), ('from-frist-deposit-date' , self.DATE ), ('until-first-deposit-date' , self.DATE ), ('from-pub-date' , self.DATE ), ('until-pub-date' , self.DATE ), ('has-license' , self.BOOLEAN ), ('license.url' , self.URL ), ('license.version' , self.STRING ), ('license.delay' , self.INTEGER ), ('has-full-text' , self.BOOLEAN ), ('full-text.version' , self.STRING ), ('full-text.type' , self.MIME_TYPE ), ('public-references' , self.UNKNOWN ), ('has-references' , self.BOOLEAN ), ('has-archive' , self.BOOLEAN ), ('archive' , self.STRING ), ('has-orcid' , self.BOOLEAN ), ('orcid' , self.ORCID ), ('issn' , self.ISSN ), ('type' , self.TYPE ), ('directory' , self.DIRECTORY ), ('doi' , self.DOI ), ('updates' , self.DOI ), ('is-update' , self.BOOLEAN ), ('has-update-policy' , self.BOOLEAN ), ] return valid_values def is_valid(self, key, value): valid_values = self.__get_valid_values() if key not in [v[0] for v in valid_values]: raise ValueError("Key {} is invalid an cannot be added to the \ filter list.".format(key)) for k, t in valid_values: if k == key: if not self.__is_valid(value, t): return False return True return False def __is_valid(self, value, type_): if type_ in (self.UNKNOWN, self.DIRECTORY): logging.debug("Datatype handling is unkown. Assuming it is valid.") return True elif type_ == self.BOOLEAN: return type(value) is type(True) elif type_ == self.INTEGER: return type(value) == type(0) elif type_ == self.STRING: return type(value) == type("string") elif type_ == self.DATE: if type(value) == type(0): # convert to string if necessary value = str(value) regex = re.compile("^\d{4}((-\d{2}){1,2})?$") return regex.match(value) is not None elif type_ == self.URL: return type(value) == type("string") and value.startswith('http://') elif type_ == self.MIME_TYPE: regex = re.compile("^.+/.+$") return regex.match(value) is not None elif type_ == self.ORCID: regex = re.compile("(http\:\/\/orcid\.org/)?\d{4}-\d{4}-\d{4}-\d{4}") return regex.match(value) is not None elif type_ == self.ISSN: regex = re.compile("^.{4}-.{4}$") return regex.match(value) is not None elif type_ == self.TYPE: # TODO: Wed Jun 4 21:04:32 CEST 2014, @fabi, comment: # implementation missing raise NotImplemented("Sanity check needs to be implemented") elif type_ in (self.DOI, self.FUNDER_ID, self.MEMBER_ID): regex = re.compile("(http\:\/\/dx\.doi\.org/)?10\.[\d\.]+(/*)?") return regex.match(value) is not None
true
44436bb8af3c5ecb6bad5bac4d6028a4fd9bebbf
Python
stijncoelus/python-diematic
/version2/test/read-regs.py
UTF-8
146
2.546875
3
[]
no_license
import json with open('reg-dump2.json') as data_file: data = json.loads(data_file.read()) print data for idx in data: print(data[idx])
true
b56bd5f33b41da1e0c5a168726191962cf3a49c6
Python
RiteshBhola/Assignment2_apr20
/q2.py
UTF-8
616
3.390625
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt h=0.1 x=np.arange(1,2+h,h) print(x) n=np.size(x) print(n) y=np.zeros(n) y[0]=1 def solution(t): return(t/(1+np.log(t))) def fun(y): return((y/t) - (y/t)**2) for i in range(0,n-1,1): t=x[i] y[i+1]=y[i]+h*fun(y[i]) abs_err=np.abs(y-solution(x)) rel_err=abs_err/solution(x) print("absolute error\n",abs_err) print("relative error\n",rel_err) plt.plot(x,y,"*r",label="Euler's method") x=np.arange(1,2+h,0.1*h) plt.plot(x,solution(x),"-b",label="Analytic Solution") plt.xlabel("$x$",fontsize=20) plt.ylabel("y(x)",fontsize=20) plt.legend() plt.show()
true
dfc77c81543d39ddafcfeb7c7628a5ca237a705f
Python
radRares1/AI
/lab4/UI.py
UTF-8
2,920
3.078125
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Wed Mar 25 22:06:06 2020 @author: Rares2 """ from Controller import Controller,PSO from Repo import Repo from hillClimb import HillController def main(): print("1.EA") print("2.Hill") print("3.PSO") choice = int(input("Choose a method")) if choice == 1: n = int(input("Size of the chromosome: ")) no = int(input("Size of initial population: ")) number = int(input("How many generations do you want: ")) repo = Repo(n,no) controller = Controller(repo) ok = controller.isFound() while number > 0 and ok==False: #print(len(controller.getPopulation())) controller.crossOver() #for item in controller.getPopulation(): # print(item.toString()) controller.mutation() #3print("mute") # for item in controller.getPopulation(): # print(item.toString()) controller.setScores() controller.selectTheBest() #print(controller.getCurrentSolution().toString()) ok = controller.isFound() if ok == True: print("true") number-=1 print("the best found solution is: ") print(controller.getCurrentSolution().toString()) elif choice == 2: n = int(input("Size of the chromosome: ")) number = int(input("How many generations do you want: ")) repo = Repo(n,no) controller = HillController(repo) ok=False while number > 0 and ok==False: controller.generateSolutions() controller.setScores() controller.selectTheBest() ok = controller.isFound() number-=1 print("the best found solution is: ") print(controller.getCurrentSolution().toString()) elif choice == 3: noGen = 100 popSize = 10 indSize = 4 best=0 w=1.0 c1=1.2 c2=0.7 neighbourhoodSize = 2 fitnessList=[] trials = [] trialCounter = 0 ctrl = PSO(popSize,neighbourhoodSize,indSize,w,c1,c2) for i in range(noGen): ctrl.iteration() if trialCounter<30: print(len(ctrl.getPop())) fitnessList.append(ctrl.getPop()[0].getPersonalBest()) trials.append(trialCounter) trialCounter+=1 pop = ctrl.getPop() for i in range(popSize): if(pop[i].getPersonalBest()<pop[best].getPersonalBest()): best = i print("Best so far:") print(pop[best]) main()
true
82da346a6f651892c930b722b3826732537ae90e
Python
foobarna/play-gae
/main.py
UTF-8
1,292
2.65625
3
[]
no_license
from blog import * class MainPage(webapp2.RequestHandler): def get(self): self.response.out.write("Hello ma'friend!") self.response.out.write("""<br><a href="/blog">Blog</a>""") self.response.out.write("""<br><a href="/rot13">Rot13</a>""") class Rot13Handler(BaseHandler): def render_str2(self, template, **params): t = jinja_env.get_template(template) return t.render(params) def rot13(self, text=""): new_text = "" for c in text: ascii = ord(c); if (ascii >= 65 and ascii <= 90): ascii += 13 if ascii > 90: ascii = 64 + ascii - 90 if (ascii >= 97 and ascii <= 122): ascii += 13 if ascii > 122: ascii = 96 + ascii - 122 new_text = new_text + chr(ascii) return new_text def get(self): self.render('rot13-form.html') def post(self): rot13 = "" text1 = self.request.get("text") if text1: rot13 = self.rot13(text1) self.render('rot13-form.html', text = rot13 ) app = webapp2.WSGIApplication([('/', MainPage), ("/blog", BlogFront), ("/blog/([0-9]+)", BlogPost), ("/blog/newpost", BlogNewPost), ("/blog/signup", BlogSignup), ("/blog/login", BlogLogin), ("/blog/logout", BlogLogout), ("/blog/welcome", BlogWelcome), ("/rot13", Rot13Handler)], debug=True)
true
a973846e7719135ef78bc769e774fef87c66ef20
Python
ansayyad/Python_scripts
/getthePhoneNumberfromstring.py
UTF-8
149
2.96875
3
[]
no_license
import re phonenumregex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d') mo = phonenumregex.search("My phone number is 704-048-9515") print(mo.group())
true
46b1d73348f44ff4cb00393c96576aa5b94a4d7d
Python
MaureenZOU/ECS277
/project1/config.py
UTF-8
1,674
2.609375
3
[]
no_license
import os import cv2 import numpy as np class Config(object): """ Holds the configuration for anything you want it to. To get the currently active config, call get_cfg(). To use, just do cfg.x instead of cfg['x']. I made this because doing cfg['x'] all the time is dumb. """ def __init__(self, config_dict): for key, val in config_dict.items(): self.__setattr__(key, val) def copy(self, new_config_dict={}): """ Copies this config into a new config object, making the changes given by new_config_dict. """ ret = Config(vars(self)) for key, val in new_config_dict.items(): ret.__setattr__(key, val) return ret def replace(self, new_config_dict): """ Copies new_config_dict into this config object. Note: new_config_dict can also be a config object. """ if isinstance(new_config_dict, Config): new_config_dict = vars(new_config_dict) for key, val in new_config_dict.items(): self.__setattr__(key, val) def print(self): for k, v in vars(self).items(): print(k, ' = ', v) cfg = Config({ # 'data_root': './data/neghip_64x64x64_uint8.raw', 'data_root': './data/baseline_7_7_7.npy', 'interpolation': 'linear', # linear|cubic 'vol_size': [10, 10, 10], 'sample_rate': 5, 'tff': cv2.COLORMAP_JET, 'transpose': (0,1,2), 'illu_intense': 0.1, 'illu_pos': np.array([20, 20, 20]), 'illumination': True, 'file_name': 'linear_standard_opacue2_[10,5,jet,0|1|2,0.1,20].png' }) def get_cfg(): return cfg
true
63692876e2ffd9cb2f454f010237571e5dccb5d4
Python
timvass/pyladies-ntk-praha
/lekce2-prvni-program/prvni-program-promenne.py
UTF-8
106
3.359375
3
[]
no_license
print(1) print(1 * 8) print('*' * 8) print('Soucet cisel 2 a 3 je', 2 + 3) print('Mama ma misu.' + ' Rej')
true
ca30c421ff3e9adc2fce634f06ca4d7b8647b987
Python
oliverdippel/Codewars
/Skyscraper7x7/Solver/Solution.py
UTF-8
5,799
3.3125
3
[]
no_license
class Solution: def __init__(self, boardsize): """The pure intent of this class is to sample problems""" self.boardsize = boardsize self.__board = self.sample_board(boardsize) self.clues = self.parse_clues_from_board(self.__board) def sample_board(self, problemsize): # TODO sample one permutation & and make use of updates (particularly StrategyStack) # -> wasnt there a non informative clue? in this case, simply sample some tuple clue and make all others # unifnormative - using the update strategies, the applicable tuples remain. # now sample another. repeat. if there is no solution available, start again? or make use of stack? # further, using only a fraction of the available clue information may indicate multiple solutions # there are two options # 1) ensure that only one solution is available (hard) - requires checking all possible choices in # StrategyStack - that is after given a clue and the CrossSolving strategy is applied. # 2) check a potential solution provided by any solver for visability - and return true, # if the provided solution is in accordance with the clues and that each row & col is # a valid permutation of the set of range(1, board.probsize +1). Jointly these two criteria should # guarantee the correctness of a board. return None # @staticmethod # def parse_clues_from_board(b): # """ # :param b: list of lists # :return: # """ # row_clues = Solution.find_row_clues(b) # col_clues = Solution.find_row_clues(list(zip(*b))) # return [*[clue[0] for clue in col_clues], # *[clue[1] for clue in row_clues], # *[clue[1] for clue in reversed(col_clues)], # *[clue[0] for clue in reversed(row_clues)]] @staticmethod def parse_clues_from_board(board): """ :param board: Skyscraper instance :return: """ def find_row_clues(b): """ :param b: list of lists! """ row_clues = list() for row in b: front = board._visible(row) back = board._visible(tuple(reversed(row))) row_clues.append((front, back)) return row_clues b = [list(board.downtown_row[i][0]) for i in range(board.probsize)] row_clues = find_row_clues(b) col_clues = find_row_clues(list(zip(*b))) # create a single line from the row & column clues. # by convention, the order is top, right, bottom, left # TODO carefull: different problemsizes return either tuple or list return [*[clue[0] for clue in col_clues], *[clue[1] for clue in row_clues], *[clue[1] for clue in reversed(col_clues)], *[clue[0] for clue in reversed(row_clues)]] @staticmethod def check_a_valid_solution(board, original_clue): """check if the proposed board - when interpreted for visibility matches the (possibly incomplete) original_clue. also ensures that all rows and columns are a set of range(1, board.probsize +1) and the board is thereby a valid cityblock.""" if not Solution.check_valid_board(board): return False b = [list(board.downtown_row[i][0]) for i in range(board.probsize)] interpreted = Solution.parse_clues_from_board(board) return all([True if o == i or o == 0 else False for o, i in zip(original_clue, interpreted)]) def check_valid_board(board): """Debug method: check that all rows and columns are a set of range(1, board.probsize +1) and the board is thereby a valid cityblock.""" b = [list(board.downtown_row[i][0]) for i in range(board.probsize)] numbers = set(range(1, board.probsize + 1)) return all([set(row) == numbers for row in b]) and \ all([set(col) == numbers for col in zip(*b)]) if __name__ == '__main__': from Skyscraper7x7.Solver.Solver import Skyscraper # (0) check the intpreted clue is the same as the kata's clue assert Solution.parse_clues_from_board(((3, 4, 2, 1), (1, 2, 3, 4), (2, 1, 4, 3), (4, 3, 1, 2))) == \ [2, 1, 3, 2, 3, 1, 2, 3, 3, 2, 2, 1, 1, 2, 4, 2] # (1) check the original board is obtainable from the parsed clue board = [[2, 1, 4, 3], [3, 4, 1, 2], [4, 2, 3, 1], [1, 3, 2, 4]] clue = Solution.parse_clues_from_board(board) board = tuple(tuple(row) for row in board) # conversion to meet kata's expectation assert Skyscraper(clue).solve() == board # (2) Check kata's incomplete clue matches the board (the brovided board is # a valid solution given the clue) # CAREFULL: if cannot assert: the kata provided 0's interpreted = Solution.parse_clues_from_Lists(((5, 6, 1, 4, 3, 2), (4, 1, 3, 2, 6, 5), (2, 3, 6, 1, 5, 4), (6, 5, 4, 3, 2, 1), (1, 2, 5, 6, 4, 3), (3, 4, 2, 5, 1, 6))) # interpreted = [2, 1, 3, 2, 2, 3, 4, 2, 3, 6, 3, 1, 1, 4, 2, 3, 3, 2, 4, 4, 1, 3, 2, 2] originalclu = [0, 0, 0, 2, 2, 0, 0, 0, 0, 6, 3, 0, 0, 4, 0, 0, 0, 0, 4, 4, 0, 3, 0, 0] # check that the original Clue with incomplete information matches # the intrepreted clue from the solution's board (which has complete info) assert all([True if o == i or o == 0 else False for o, i in zip(originalclu, interpreted)])
true
82dcb51aa8b8be3839406817919c45a25059c11f
Python
dadatomisin/cam2021
/mgrid/util_crc.py
UTF-8
5,513
2.78125
3
[]
no_license
import math from scipy import special import numpy as np from scipy.stats import poisson from collections.abc import Iterable # PI controller that takes as input kp, ki, current error and previous integral error def PI(Kp, Ki, err, prev_i_err): i_err = prev_i_err + err u = Kp*err + Ki*i_err return u, i_err # Aggregate demand from agents assuming proportional control def aggregate_demand(CR, mu, battery): demand = 0 for a,b in zip(mu, battery): tmp = poisson.ppf(CR, 1*a) - b demand += max(0, tmp) return demand # Aggregate demand from agents assuming PI control def aggregate_demand_PI(CR, mu, battery, i_err, Kp, Ki): demand = 0 for a,b,c in zip(mu, battery, i_err): err = poisson.ppf(CR, 1*a) - b tmp, _ = PI(Kp, Ki, err, c) demand += max(0, tmp) return demand # Define Supply Curve approximation function def supply_curve(Q, price, function='sigmoid'): supply = 0 error = True if function == 'sigmoid': error = False supply = Q + special.logit(price) elif function == 'linear': error = False supply = Q * price elif function == 'quadratic': error = False supply = Q * (price ** 1/2) if error: print('Function Type not not specified') return supply # Bisection search to find intersection of demand and supply curves def bisection_search(c, p, k, h, Q, mu, battery, i_err=0, Kp=1, Ki=0, sf='sigmoid', mode='basic'): tol = 1e-5 if sf == 'sigmoid': lb = 1e-20 ub = c - lb else: lb = 1e-20 ub = 1e2 iter_limit = 10000 for _ in range(iter_limit): mp = (ub + lb)/2 tmp = (p - mp + k)/(p - mp + k + (0.1*mp) + h) var1 = supply_curve(Q, mp, function=sf) if mode == 'basic': var2 = aggregate_demand(tmp, mu, battery) elif mode == 'PI': var2 = aggregate_demand_PI(tmp, mu, battery, i_err, Kp, Ki) var3 = var1 - var2 if abs(var3) < 1 or (ub - lb)/2 < tol: #print('converged') break if var3 > 0: ub = mp else: lb = mp return mp def crc(p, c, k, mu, n, battery, Q, i_err=0, Kp=1, Ki=0, gamma=1, h=0, capacity=1e2): z = np.zeros(n) a1 = np.zeros(n) new_i_err = np.zeros(n) space = capacity - battery cost = bisection_search(c, p, k, h, Q, mu, battery, i_err, Kp, Ki, sf='sigmoid', mode='PI') CR = (p - cost + k)/(p - cost + k + (0.1*cost) + h) for i in range(n): z[i] = min(poisson.ppf(CR, 1*mu[i]), capacity) err = poisson.ppf(CR, 1*mu[i]) - battery[i] u, new_i_err[i] = PI(Kp, Ki, err, i_err[i]) u = max(0, u) a1[i] = min(u, space[i]) return a1, z, cost, new_i_err def basic_crc(p, c, k, mu, n, battery, Q, gamma=1, h=0, capacity=1e2): z = np.zeros(n) a1 = np.zeros(n) new_i_err = np.zeros(n) space = capacity - battery cost = bisection_search(c, p, k, h, Q, mu, battery, sf='sigmoid') #cost = cost/c CR = (p - cost + k)/(p - cost + k + (0.1*cost) + h) for i in range(n): z[i] = min(poisson.ppf(CR, 1*mu[i]), capacity) err = poisson.ppf(CR, 1*mu[i]) - battery[i] u = max(0, err) a1[i] = min(u, space[i]) return a1, z, cost # Psuedo Reward v1 uses area under supply curve as effective cost and assumes ideal step function def psuedo_reward_v1(p, c, k, Q, n, demands, batteries, actions): rewards = np.zeros(n) total_order_quantity = actions.sum(-1) excess = max(0, total_order_quantity - Q) for agent in range(n): demand = demands[agent] battery = batteries[agent] supplied = min(demand, battery) * p # Penalty for Inability to Supply Sufficient Energy from Battery mismatch = max(0, demand - battery) * k if total_order_quantity == 0: # Proportional Cost of Exceeding Renewable Supply proportion_of_excess = 0 # Discharge of Battery modelled as a Holding Cost discharge = 0 else: # Proportional Cost of Exceeding Renewable Supply proportion_of_excess = max(0, (excess/total_order_quantity)*actions[agent]) * c # Discharge of Battery modelled as a Holding Cost discharge = max(0, battery - demand) * 0.1 * c * (excess/total_order_quantity) reward = supplied - (mismatch+proportion_of_excess+discharge) if isinstance(reward, Iterable): reward = sum(reward) rewards[agent] = reward return rewards # Pseudo Reward v2 uses the cost price found using bisection search def psuedo_reward_v2(p, c, k, Q, n, demands, batteries, actions): rewards = np.zeros(n) total_order_quantity = actions.sum(-1) excess = max(0, total_order_quantity - Q) for agent in range(n): demand = demands[agent] battery = batteries[agent] # Reward for Suplying Energy to User supplied = min(demand, battery) * p # Penalty for Inability to Supply Sufficient Energy from Battery mismatch = max(0, demand - battery) * k # Cost of Purchasing Energy cost = actions[agent]*c # Discharge Modelled as Holding Cost discharge = max(0, battery - demand) * 0.1 * c reward = supplied - (mismatch+cost+discharge) if isinstance(reward, Iterable): reward = sum(reward) rewards[agent] = reward return rewards
true
8537c53e8ef82e7e5c80b4bfa1e27c7b0ff15e7b
Python
ckloppers/PythonTraining
/exercises/day3/dice.py
UTF-8
552
4.1875
4
[]
no_license
import random # stats data structure stats = {1:0, 2:0, 3:0, 4:0, 5:0, 6:0} # method to roll dice def rollDice(): return random.randint(1, 6) # rolling the dice print 'Now rolling the die...' for roll in range(1, 10): currentRoll = rollDice() currentRollValueInDict = stats[currentRoll] stats[currentRoll] = currentRollValueInDict + 1 # Print out the stats keys = stats.keys() keys.sort() print 'Tally is:' for item in keys: print 'Number of ' + str(item) +'\'s: ' + str(stats[item])
true
e2479da6c35b2bf981144418f47b73126d946d7a
Python
diego2097/Retos_Programacion_3_CNYT
/src/main/BarPlot.py
UTF-8
349
3.1875
3
[]
no_license
import matplotlib.pyplot as plt import numpy as np def graficarProba(vector): print(vector) x = [] y = [] for i in range(len(vector)): x.append("Estado " + str(i+1)) for i in range(len(vector)): y.append(vector[i]) xx = np.array(x) yy = np.array(y) plt.bar(xx,yy,align="center") plt.show()
true
88495c33f3649022f8f4c78f6cbe20b124c08c13
Python
ymahajan98/CS771-Project
/hf_opt.py
UTF-8
28,747
2.78125
3
[]
no_license
""" Hessian Free Optimizer. Original Author: MoonLight, 2018 Modified by: rharish, 2018 """ import tensorflow as tf try: import colored_traceback.auto except ImportError: pass class clr: """Used for color debug output to console.""" OKGREEN = "\033[92m" WARNING = "\033[93m" FAIL = "\033[91m" ENDC = "\033[0m" BOLD = "\033[1m" class HFOptimizer(tf.train.Optimizer): """Tensorflow based Hessian-Free (Truncated Newton) optimizer. More details: (Martens, ICML 2010) and (Martens & Sutskever, ICML 2011). Methods to use: __init__: Creates Tensorflow graph and variables. minimize: Perfoms HF optimization. """ DUMPING_NUMERICAL_ERROR_STOP_FLOAT32 = 1e-4 CG_NUMERICAL_ERROR_STOP_FLOAT32 = 1e-20 DUMPING_NUMERICAL_ERROR_STOP_FLOAT64 = 1e-8 CG_NUMERICAL_ERROR_STOP_FLOAT64 = 1e-80 def __init__( self, learning_rate=1, cg_decay=0.95, damping=0.5, adjust_damping=True, batch_size=None, use_gauss_newton_matrix=True, preconditioner=False, prec_loss=None, gap=10, cg_max_iters=50, dtype=tf.float32, ): """Create Tensorflow graph and variables. learning_rate: float number Learning rate parameter for training neural network. cg_decay: float number Decay for previous result of computing delta with conjugate gradient method for the initialization of next iteration conjugate gradient. damping: float number Initial value of the Tikhonov damping coefficient. adjust_damping: bool Whether adjust damping parameter dynamically using Levenberg-Marquardt heuristic or not. batch_size: int number or None Used for Jacobian vector product (Rop) computation, necessary if used dynamic input batch size. use_gauss_newton_matrix: bool Whether use Gauss Newton Matrix (True) or Hessian matrix (False) in conjugate gradient computation. preconditioner: bool Martens preconditioner uses The Empirical Fisher Diagonal for its computation, don't use it with dynamically adjusting damping parameter, because it can cause numerical errors. Can be used only with Gauss Newton Matrix. prec_loss: Tensorflow tensor object Used for computing preconditioner; if using preconditioner it's better to set it explicitly. For this parameter use loss before reduce sum function over the batch inputs is applied. gap: int Size of window gap for which delta loss difference is computed, used for early stoping in conjugate gradient computation. cg_max_iters: int Number of maximum iterations of conjugate gradient computations. dtype: Tensorflow type Type of Tensorflow variables. """ super().__init__(True, "HFOptimizer") self.cg_decay = cg_decay self.prec_loss = prec_loss self.batch_size = batch_size self.use_prec = preconditioner self.learning_rate = learning_rate self.use_gnm = use_gauss_newton_matrix self.damping = tf.constant(damping) self.gap = gap self.cg_max_iters = cg_max_iters self.adjust_damping = adjust_damping self.damp_pl = tf.constant(0.0) self.dtype = dtype self.cg_num_err = HFOptimizer.CG_NUMERICAL_ERROR_STOP_FLOAT32 self.damp_num_err = HFOptimizer.DUMPING_NUMERICAL_ERROR_STOP_FLOAT32 if dtype == tf.float64: self.cg_num_err = HFOptimizer.CG_NUMERICAL_ERROR_STOP_FLOAT64 self.damp_num_err = ( HFOptimizer.DUMPING_NUMERICAL_ERROR_STOP_FLOAT64 ) if not self.use_gnm: self.damp_num_err = 1e-1 if not self.use_gnm and self.use_prec: self.use_prec = False print( clr.WARNING + "WARNING: You set preconditioner to True but " + "use_gauss_newton_matrix to False, " + "and it's prohibited, so we set preconditioner back to " + "False, if you ask why see more information " + "on (Martens & Sutskever, ICML 2011)." + clr.ENDC ) elif self.use_prec and self.use_gnm and self.prec_loss is None: print( clr.WARNING + "WARNING: If you use preconditioner it is " + "better to set prec_loss explicitly, because it can " + "cause graph making problem. (What's prec_loss see " + "in description)" + clr.ENDC ) def info(self): """Print initial settings of HF optimizer.""" print( clr.BOLD + clr.OKGREEN + "Hessian-Free Optimizer initial settings:" + clr.ENDC ) print(" CG delta decay: {}".format(self.cg_decay)) print(" Learning Rate: {}".format(self.learning_rate)) print(" Initial Tikhonov damping: {}".format(self.damping)) if self.adjust_damping: print( " Optimizer adjusts damping dynamically using " + "Levenberg-Marquardt heuristic." ) else: print(" Tikhonov damping is static.") if self.use_gnm: print(" Optimizer uses Gauss-Newton matrix for cg computation.") else: print(" Optimizer uses Hessian matrix for cg computation.") if self.use_prec: print(" Optimizer uses preconditioner.") print(" Gap of delta loss tracking: {}".format(self.gap)) print(" Max cg iterations: {}".format(self.cg_max_iters)) print(clr.OKGREEN + "Optimizer is ready for using." + clr.ENDC) def compute_gradients( self, loss, output, var_list=None, gate_gradients=tf.train.Optimizer.GATE_OP, aggregation_method=None, colocate_gradients_with_ops=False, grad_loss=None, ): """Compute gradients of `loss` for the variables in `var_list`. This is the first part of `minimize()`. It returns a list of (gradient, variable) pairs where "gradient" is the gradient for "variable". Note that "gradient" can be a `Tensor`, an `IndexedSlices`, or `None` if there is no gradient for the given variable. Args: loss: A Tensor containing the value to minimize or a callable taking no arguments which returns the value to minimize. output: Tensorflow tensor object Variable with respect to which the Hessian of the objective is positive-definite, implicitly defining the Gauss-Newton matrix. Typically, it is the activation of the output layer. var_list: Optional list or tuple of `tf.Variable` to update to minimize `loss`. Defaults to the list of variables collected in the graph under the key `GraphKeys.TRAINABLE_VARIABLES`. gate_gradients: How to gate the computation of gradients. Can be `GATE_NONE`, `GATE_OP`, or `GATE_GRAPH`. aggregation_method: Specifies the method used to combine gradient terms. Valid values are defined in the class `AggregationMethod`. colocate_gradients_with_ops: If True, try colocating gradients with the corresponding op. grad_loss: Optional. A `Tensor` holding the gradient computed for `loss`. Returns: A list of (gradient, variable) pairs. Variable is always present, but gradient can be `None`. Raises: TypeError: If `var_list` contains anything else than `Variable` objects. ValueError: If some arguments are invalid. @compatibility(eager) Eager execution not supported. @end_compatibility """ self.loss = loss self.output = output # Network weights if var_list is None: self.W = tf.trainable_variables() else: self.W = var_list return super().compute_gradients( loss=loss, var_list=var_list, gate_gradients=gate_gradients, aggregation_method=aggregation_method, colocate_gradients_with_ops=colocate_gradients_with_ops, grad_loss=grad_loss, ) def _create_slots(self, var_list): first_var = min(var_list, key=lambda x: x.name) self._create_non_slot_variable( initial_value=0, name="cg_step", colocate_with=first_var ) for w in var_list: self._zeros_slot(w, "delta", self._name) self._zeros_slot(w, "direction", self._name) self._zeros_slot(w, "residual", self._name) def minimize( self, loss, output, global_step=None, var_list=None, gate_gradients=tf.train.Optimizer.GATE_OP, aggregation_method=None, colocate_gradients_with_ops=False, name=None, grad_loss=None, verbose=False, ): """Add operations to minimize `loss` by updating `var_list`. This method simply combines calls `compute_gradients()` and `apply_gradients()`. If you want to process the gradient before applying them call `compute_gradients()` and `apply_gradients()` explicitly instead of using this function. Args: loss: A `Tensor` containing the value to minimize. output: Tensorflow tensor object Variable with respect to which the Hessian of the objective is positive-definite, implicitly defining the Gauss-Newton matrix. Typically, it is the activation of the output layer. global_step: Optional `Variable` to increment by one after the variables have been updated. var_list: Optional list or tuple of `Variable` objects to update to minimize `loss`. Defaults to the list of variables collected in the graph under the key `GraphKeys.TRAINABLE_VARIABLES`. gate_gradients: How to gate the computation of gradients. Can be `GATE_NONE`, `GATE_OP`, or `GATE_GRAPH`. aggregation_method: Specifies the method used to combine gradient terms. Valid values are defined in the class `AggregationMethod`. colocate_gradients_with_ops: If True, try colocating gradients with the corresponding op. name: Optional name for the returned operation. grad_loss: Optional. A `Tensor` holding the gradient computed for `loss`. verbose: bool If True prints CG iteration number. Returns: An Operation that updates the variables in `var_list`. If `global_step` was not `None`, that operation also increments `global_step`. Raises: ValueError: If some of the variables are not `Variable` objects. @compatibility(eager) Eager execution not supported. @end_compatibility """ self.verbose = verbose grads_and_vars = self.compute_gradients( loss, output, var_list=var_list, gate_gradients=gate_gradients, aggregation_method=aggregation_method, colocate_gradients_with_ops=colocate_gradients_with_ops, grad_loss=grad_loss, ) vars_with_grad = [v for g, v in grads_and_vars if g is not None] if not vars_with_grad: raise ValueError( "No gradients provided for any variable, check your graph for " "ops that do not support gradients, between variables %s and " "loss %s." % ([str(v) for _, v in grads_and_vars], loss) ) return self.apply_gradients( grads_and_vars, global_step=global_step, name=name ) def _apply_dense(self, grad, var): """Do nothing, as everything is done in __train.""" return tf.no_op() def apply_gradients(self, grads_and_vars, global_step=None, name=None): """Apply gradients to variables. This is the second part of `minimize()`. It returns an `Operation` that applies gradients. Args: grads_and_vars: List of (gradient, variable) pairs as returned by `compute_gradients()`. global_step: Optional `Variable` to increment by one after the variables have been updated. name: Optional name for the returned operation. Default to the name passed to the `Optimizer` constructor. Returns: An `Operation` that applies the specified gradients. If `global_step` was not None, that operation also increments `global_step`. Raises: TypeError: If `grads_and_vars` is malformed. ValueError: If none of the variables have gradients. RuntimeError: If you should use `_distributed_apply()` instead. """ super().apply_gradients(grads_and_vars, global_step, name) with tf.name_scope(name, self._name): grads = [grad for grad, var in grads_and_vars] cg_op, res_norm, dl = self.__conjugate_gradient(grads) self.ops = { "cg_update": cg_op, "res_norm": res_norm, "dl": dl, "set_delta_0": self.__update_delta_0(), "train": self.__train_op(), } return self.__train() def __train(self): """Perform main training operations.""" self.damp_pl = self.damping if self.adjust_damping: loss_before_cg = tf.identity(self.loss) else: loss_before_cg = tf.no_op() dl_track = tf.expand_dims(self.ops["dl"], axis=0) combined_op_1 = tf.group( loss_before_cg, dl_track[0], self.ops["set_delta_0"] ) with tf.control_dependencies([combined_op_1]): with tf.variable_scope("for_loop"): i = tf.constant(0) stop = tf.constant(False) def loop(i, stop, dl_track): if self.verbose: printer = tf.print( clr.OKGREEN + "\r[CG iteration: ", i, "]" + clr.ENDC ) else: printer = tf.no_op k = tf.maximum(self.gap, i // self.gap) rn = tf.identity(self.ops["res_norm"]) with tf.control_dependencies( [printer, rn, self.ops["cg_update"]] ): self.ops["cg_update"] = self.ops["cg_update"] stop = tf.cond( rn < self.cg_num_err, lambda: True, lambda: stop ) dl_track = tf.concat( [dl_track, tf.expand_dims(self.ops["dl"], axis=0)], axis=0, ) def early_stop(): margin = ( dl_track[i + 1] - dl_track[i + 1 - k] ) / dl_track[i + 1] return tf.cond( tf.logical_and( tf.debugging.is_nan(margin), margin < 1e-4 ), lambda: True, lambda: stop, ) stop = tf.cond(i > k, early_stop, lambda: stop) i += 1 return i, stop, dl_track i, stop, dl_track = tf.while_loop( lambda i, stop, dl_track: tf.logical_and( i < self.cg_max_iters, tf.logical_not(stop) ), loop, (i, stop, dl_track), shape_invariants=( i.get_shape(), stop.get_shape(), tf.TensorShape([None]), ), parallel_iterations=1, maximum_iterations=self.cg_max_iters, ) loop_vars = tf.group(i, stop, dl_track) if self.adjust_damping: self.damp_pl = tf.constant(0.0) dl = tf.identity(self.ops["dl"]) self.damp_pl = self.damping else: dl = tf.no_op() printer = tf.cond( stop, lambda: tf.print("Stopped"), lambda: tf.no_op() ) combined_op_2 = tf.group(printer, loop_vars, dl, self.ops["train"]) with tf.control_dependencies([combined_op_2]): if self.adjust_damping: loss_after_cg = tf.identity(self.loss) reduction_ratio = (loss_after_cg - loss_before_cg) / dl def elseif(): return tf.cond( tf.logical_and( reduction_ratio > 0.75, self.damping > self.damp_num_err, ), lambda: self.damping / 1.5, lambda: self.damping, ) self.damping = tf.cond( tf.logical_and( reduction_ratio < 0.25, self.damping > self.damp_num_err, ), lambda: self.damping * 1.5, elseif, ) return tf.group(combined_op_2, self.damping) def __conjugate_gradient(self, gradients): """Perform conjugate gradient method. It minimizes the quadratic equation and find best delta of network parameters. gradients: list of Tensorflow tensor objects Network gradients. return: Tensorflow tensor object Update operation for delta. return: Tensorflow tensor object Residual norm, used to prevent numerical errors. return: Tensorflow tensor object Delta loss. """ with tf.name_scope("conjugate_gradient"): cg_update_ops = [] prec = None if self.use_prec: if self.prec_loss is None: graph = tf.get_default_graph() lop = self.loss.op.node_def self.prec_loss = graph.get_tensor_by_name( lop.input[0] + ":0" ) batch_size = None if self.batch_size is None: self.prec_loss = tf.unstack(self.prec_loss) batch_size = self.prec_loss.get_shape()[0] else: self.prec_loss = [ tf.gather(self.prec_loss, i) for i in range(self.batch_size) ] batch_size = len(self.prec_loss) prec = [ [ g ** 2 for g in tf.gradients( tf.gather(self.prec_loss, i), self.W ) ] for i in range(batch_size) ] prec = [ (sum(tensor) + self.damping) ** (-0.75) for tensor in tf.transpose(tf.constant(prec)) ] Ax = None if self.use_gnm: Ax = self.__Gv([self.get_slot(w, "delta") for w in self.W]) else: Ax = self.__Hv( gradients, [self.get_slot(w, "delta") for w in self.W] ) b = [-grad for grad in gradients] bAx = [b - Ax for b, Ax in zip(b, Ax)] condition = tf.equal( self._get_non_slot_variable("cg_step", self.W[0].graph), 0 ) r = [ tf.cond(condition, lambda: tf.assign(r, bax), lambda: r) for r, bax in zip( [self.get_slot(w, "residual") for w in self.W], bAx ) ] d = None if self.use_prec: d = [ tf.cond(condition, lambda: tf.assign(d, p * r), lambda: d) for p, d, r in zip( prec, [self.get_slot(w, "direction") for w in self.W], r, ) ] else: d = [ tf.cond(condition, lambda: tf.assign(d, r), lambda: d) for d, r in zip( [self.get_slot(w, "direction") for w in self.W], r ) ] Ad = None if self.use_gnm: Ad = self.__Gv(d) else: Ad = self.__Hv(gradients, d) residual_norm = tf.reduce_sum([tf.reduce_sum(r ** 2) for r in r]) alpha = tf.reduce_sum( [tf.reduce_sum(d * ad) for d, ad in zip(d, Ad)] ) oalpha = alpha alpha = residual_norm / alpha if self.use_prec: beta = tf.reduce_sum( [ tf.reduce_sum(p * (r - alpha * ad) ** 2) for r, ad, p in zip(r, Ad, prec) ] ) else: beta = tf.reduce_sum( [ tf.reduce_sum((r - alpha * ad) ** 2) for r, ad in zip(r, Ad) ] ) self.beta = beta beta = beta / residual_norm for i, w in reversed(list(enumerate(self.W))): delta = self.get_slot(w, "delta") update_delta = tf.assign( delta, delta + alpha * d[i], name="update_delta" ) update_residual = tf.assign( self.get_slot(w, "residual"), r[i] - alpha * Ad[i], name="update_residual", ) p = 1.0 if self.use_prec: p = prec[i] update_direction = tf.assign( self.get_slot(w, "direction"), p * (r[i] - alpha * Ad[i]) + beta * d[i], name="update_direction", ) cg_update_ops.append(update_delta) cg_update_ops.append(update_residual) cg_update_ops.append(update_direction) cg_update_ops.append(tf.print("Old Alpha = ", oalpha)) cg_update_ops.append(tf.print("Alpha = ", alpha)) cg_update_ops.append(tf.print("Beta = ", beta)) cg_update_ops.append(tf.print("Res norm = ", residual_norm)) with tf.control_dependencies(cg_update_ops): cg_update_ops.append( tf.assign_add( self._get_non_slot_variable( "cg_step", self.W[0].graph ), 1, ) ) cg_op = tf.group(*cg_update_ops, name="cg_op") dl = tf.reduce_sum( [ tf.reduce_sum( 0.5 * (delta * ax) + grad * self.get_slot(w, "delta") ) for w, grad, ax in zip(self.W, gradients, Ax) ], name="dl", ) return cg_op, residual_norm, dl def __Hv(self, grads, vec): """Compute Hessian vector product. grads: list of Tensorflow tensor objects Network gradients. vec: list of Tensorflow tensor objects Vector that is multiplied by the Hessian. return: list of Tensorflow tensor objects Result of multiplying Hessian by vec. """ grad_v = [tf.reduce_sum(g * v) for g, v in zip(grads, vec)] Hv = tf.gradients(grad_v, self.W, stop_gradients=vec) Hv = [hv + self.damp_pl * v for hv, v in zip(Hv, vec)] return Hv def __Gv(self, vec): """Compute the product G by vec = JHJv (G is the Gauss-Newton matrix). vec: list of Tensorflow tensor objects Vector that is multiplied by the Gauss-Newton matrix. return: list of Tensorflow tensor objects Result of multiplying Gauss-Newton matrix by vec. """ Jv = self.__Rop(self.output, self.W, vec) Jv = tf.reshape(tf.stack(Jv), [-1, 1]) H = tf.transpose(tf.gradients(self.loss, self.output)[0]) if len(H.get_shape().as_list()) < 2: HJv = tf.gradients(H * Jv, self.output, stop_gradients=Jv)[0] JHJv = tf.gradients( tf.transpose(HJv) * self.output, self.W, stop_gradients=HJv ) else: HJv = tf.gradients( tf.matmul(H, Jv), self.output, stop_gradients=Jv )[0] JHJv = tf.gradients( tf.matmul(tf.transpose(HJv), self.output), self.W, stop_gradients=HJv, ) JHJv = [gv + self.damp_pl * v for gv, v in zip(JHJv, vec)] return JHJv def __Rop(self, f, x, vec): """Compute Jacobian vector product. f: Tensorflow tensor object Objective function. x: list of Tensorflow tensor objects Parameters with respect to which computes Jacobian matrix. vec: list of Tensorflow tensor objects Vector that is multiplied by the Jacobian. return: list of Tensorflow tensor objects Result of multiplying Jacobian (df/dx) by vec. """ r = None if self.batch_size is None: try: r = [ tf.reduce_sum( [ tf.reduce_sum(v * tf.gradients(f, x)[i]) for i, v in enumerate(vec) ] ) for f in tf.unstack(f) ] except ValueError: assert False, ( clr.FAIL + clr.BOLD + "Batch size is None, but used " "dynamic shape for network input, set proper " "batch_size in HFOptimizer initialization" + clr.ENDC ) else: if len(f.get_shape().as_list()) == 0: fn = tf.reshape(f, [1]) else: fn = f r = [ tf.reduce_sum( [ tf.reduce_sum(v * tf.gradients(tf.gather(fn, i), x)[j]) for j, v in enumerate(vec) ] ) for i in range(self.batch_size) ] assert r is not None, ( clr.FAIL + clr.BOLD + "Something went wrong in Rop computation" + clr.ENDC ) return r def __update_delta_0(self): """Update initial delta for conjugate gradient method. The old delta is multiplied by cg_decay. return: list of Tensorflow tensor objects Update initial delta operation. """ update_delta_0_ops = [] for w in self.W: delta = self.get_slot(w, "delta") update_delta = tf.assign(delta, self.cg_decay * delta) update_delta_0_ops.append(update_delta) update_delta_0_op = tf.group(*update_delta_0_ops) return update_delta_0_op def __train_op(self): """Perform main training operation, i.e. updates weights. return: list of Tensorflow tensor objects Main training operations """ update_ops = [] for w in reversed(self.W): with tf.control_dependencies(update_ops): update_ops.append( tf.assign( w, w + self.learning_rate * self.get_slot(w, "delta") ) ) training_op = tf.group(*update_ops) return training_op
true
c8286647c0781a4c8f8a8b3498f964443db5bb95
Python
lonesloane/Python-Snippets
/scripts_and_streams/commandline.py
UTF-8
472
3.03125
3
[]
no_license
__author__ = 'stephane' import sys class CommandLine(object): def __init__(self): pass @staticmethod def test_argv(): print('\n**********************') print( "sys.argv :") print('**********************') for argv in sys.argv: print(argv) def main(): commandline = CommandLine() # in the console, run commandline.py arg1 arg2 commandline.test_argv() if __name__ == "__main__": main()
true
1155c29909a8b37ddc4e9cf6ea7848b0e319fca5
Python
fonsecguilherme/Exercicios
/Lista_2/10.nPerfeitos.py
UTF-8
324
4.0625
4
[]
no_license
num = int(input("Digite o número a ser verificado: ")) divisor = 1 lista = [] while num > divisor: if num % divisor == 0: lista.append(divisor) divisor += 1 print("Divisores: " +str(lista)) resultado = sum(lista) if resultado == num: print("É n perfeito.") else: print("Não é n perfeito. ")
true
989f867d88442e2bd2018921a63d077e0f090ee3
Python
amolsawant844/SEM-4
/Python-basic-programs/Inheritance and polymorphism/use_of_super.py
UTF-8
410
3.953125
4
[]
no_license
class square: def __init__(self,x): self.x=x def area(self): print("area of square=",self.x*self.x) class rectangle(square): def __init__(self,x,y): super().__init__(x) self.y=y def area(self): super().area() print("area of rectangle",self.x*self.y) a,b=[float(x) for x in input("enter two values:").split()] r=rectangle(a,b) r.area()
true
529036edfadc357e3844ad532b7a172c24c815a0
Python
mjgpy3/CoopDataManager
/Source/Model/schema.py
UTF-8
4,133
2.828125
3
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
#!/usr/bin/env python # Created by Michael Gilliland # Date: Wed Aug 22 10:32:15 EDT 2012 # # """ Represents the database's structure """ import model_abstraction as m def build_model_structure(model_structure): """ This is where the model's structure is coded using abstractions from the model_abstraction.py file """ tables = [] transaction_tables = [] name = 'test2.db' # Semester Attributes fall_or_spring_FOS = m.Attribute('FallOrSpring', 'TEXT', ['Fall', 'Spring']) year_FOS = m.Attribute('Year', 'INTEGER') # Semester Table semester_table = m.Table('Semester', [fall_or_spring_FOS, year_FOS]) semester_table.primary_key = [fall_or_spring_FOS, year_FOS] tables.append(semester_table) # Parent Attributes last_name_P = m.Attribute('LastName', 'TEXT') first_name_P = m.Attribute('FirstName', 'TEXT') # Parent Table parent_table = m.Table('Parent', [last_name_P, first_name_P]) parent_table.primary_key = [last_name_P, first_name_P] tables.append(parent_table) # Student Attributes last_name_S = m.Attribute('LastName', 'TEXT') first_name_S = m.Attribute('FirstName', 'TEXT') parent_id_1_S = m.Attribute('Parent1Id', 'INTEGER') parent_id_2_S = m.Attribute('Parent2Id', 'INTEGER') grade_S = m.Attribute('Grade', 'TEXT') # Student Table student_table = m.Table('Student', [last_name_S, first_name_S, parent_id_1_S, parent_id_2_S, grade_S]) student_table.primary_key = [last_name_S, first_name_S] student_table.set_reference(parent_id_1_S, parent_table) student_table.set_reference(parent_id_2_S, parent_table) tables.append(student_table) # Class Attributes name_C = m.Attribute('Name', 'TEXT') hour_C = m.Attribute('Hour', 'TEXT') cost_C = m.Attribute('Cost', 'INTEGER') grade_min_C = m.Attribute('GradeMin', 'TEXT', ['Nurs', 'Pre-K', 'K', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12']) grade_max_C = m.Attribute('GradeMax', 'TEXT', ['Nurs', 'Pre-K', 'K', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12']) max_number_of_students_C = m.Attribute('MaxNumberOfStudents', 'INTEGER') semester_id_C = m.Attribute('SemesterId', 'INTEGER') # Class Table class_table = m.Table('Class', [name_C, hour_C, cost_C, grade_min_C, grade_max_C, max_number_of_students_C, semester_id_C]) class_table.primary_key = [name_C, semester_id_C] class_table.set_reference(semester_id_C, semester_table) tables.append(class_table) # IsEnrolledIn Attributes student_id_I = m.Attribute('StudentId', 'INTEGER') class_id_I = m.Attribute('ClassId', 'INTEGER') # IsEnrolledIn Table is_enrolled_in_table = m.Table('Enrollment', [student_id_I, class_id_I]) is_enrolled_in_table.primary_key = [student_id_I, class_id_I] is_enrolled_in_table.set_reference(student_id_I, student_table) is_enrolled_in_table.set_reference(class_id_I, class_table) transaction_tables.append(is_enrolled_in_table) # Teaches Attributes parent_id_T = m.Attribute('ParentId', 'INTEGER') class_id_T = m.Attribute('ClassId', 'INTEGER') # Teaches Table teaches_table = m.Table('Teacher', [parent_id_T, class_id_T]) teaches_table.primary_key = [parent_id_T, class_id_T] teaches_table.set_reference(parent_id_T, parent_table) teaches_table.set_reference(class_id_T, class_table) transaction_tables.append(teaches_table) # IsHelperFor Attributes parent_id_IHF = m.Attribute('ParentId', 'INTEGER') class_id_IHF = m.Attribute('ClassId', 'INTEGER') # Teaches Table is_helper_for_table = m.Table('Helper', [parent_id_IHF, class_id_IHF]) is_helper_for_table.primary_key = [parent_id_IHF, class_id_IHF] is_helper_for_table.set_reference(parent_id_IHF, parent_table) is_helper_for_table.set_reference(class_id_IHF, class_table) transaction_tables.append(is_helper_for_table) # Generate Structure model_structure.name = name model_structure.tables = tables model_structure.transaction_tables = transaction_tables return model_structure
true
5122d8ee3230c2b065eb22731d55b0e0616df91e
Python
kmsmith137/ch_frb_l1
/rpc_server_async.py
UTF-8
5,354
2.671875
3
[]
no_license
from __future__ import print_function import sys import threading import time import random import zmq import msgpack ''' A python prototype of how an async version of the RPC server might work. One desired property is that the server respond to client requests quickly, because we don't want requested data to drop out of the ring buffer while we're servicing some other client's request. Therefore, we want the RPC server to have one or more workers that are actually writing files to disk, and then the RPC server itself just has to poll on the client socket waiting for requests, and the worker socket waiting for replies; when it gets one it forwards it to the client. In C++, if we use shared_ptrs to keep the assembled_chunks alive, then we need to work a little harder. The RPC server will receive client requests and retrieve shared_ptrs for the assembled_chunks to be written out. It needs to communicate those shared_ptrs to the worker threads, in such a way that the shared_ptr stays alive. Perhaps we should use a (mutex-protected) std::queue of shared_ptrs (or a struct including the shared_ptr and other function args) to pass them between the RPC server and worker threads. We could still use ZMQ for the messaging, but the server to worker request would just be an empty message saying "grab work from the queue"; the reply could stay the same and go via ZMQ. Otherwise, the RPC server would have to keep like a map of the requests to shared_ptrs, removing them when the request completed. ''' class Worker(threading.Thread): def __init__(self, context): threading.Thread.__init__(self) self.context = context def run(self): socket = self.context.socket(zmq.DEALER) socket.connect('inproc://backend') print('Worker started') try: while True: msgs = socket.recv_multipart() #print('Worker received request:', msgs) client = msgs[0] msg = msgs[1] req = msgpack.unpackb(msg) beam, chunk, filename = req # Do work print('Worker writing beam', beam, 'chunk', chunk, '...') time.sleep(random.random() * 3) success,error_message = True, 'Success' reply = [beam, chunk, filename, success, error_message] print('Worker sending reply...') msg = msgpack.packb(reply) socket.send_multipart((client, msg)) except: import traceback print('Exception in worker:') traceback.print_exc() socket.close() if __name__ == '__main__': context = zmq.Context() socket = context.socket(zmq.ROUTER) socket.setsockopt(zmq.ROUTER_MANDATORY, 1) socket.bind('tcp://127.0.0.1:5555') # For a server with a (local) pool of workers, see # zmq-guide.html#The-Asynchronous-Client-Server-Pattern # ie, http://zguide.zeromq.org/py:asyncsrv # Backend socket, for talking to workers. Note 'inproc' transport. backend = context.socket(zmq.DEALER) backend.bind('inproc://backend') workers = [] for i in range(2): worker = Worker(context) worker.start() workers.append(worker) poll = zmq.Poller() poll.register(socket, zmq.POLLIN) poll.register(backend, zmq.POLLIN) while True: # Wait for next request from client, or reply from Worker print('Polling...') timeout = None events = poll.poll(timeout) for s,flag in events: if s == backend: print('Received result from worker') msgs = backend.recv_multipart() client = msgs[0] msg = msgs[1] # Proxy socket.send_multipart((client, msg)) continue if s != socket: print('Polled socket is neither backend nor frontend:', s) continue # Client message print('Received request from client') msgs = socket.recv_multipart() client = msgs[0] msg = msgs[1] up = msgpack.Unpacker() up.feed(msg) funcname = up.next() print('Function name:', funcname) if funcname == 'write_chunks': args = up.next() print('Args:', args) beams, min_chunk, max_chunk, fn_pat = args # For each beam x chunk, send a request to the worker pool. for chunk in range(min_chunk, max_chunk): print('Sending request to worker...') beam, filename = 1, 'filename.msgpack' req = msgpack.packb((beam, chunk, filename)) backend.send_multipart((client, req)) elif funcname == 'get_statistics': reply = msgpack.packb([{'hello':42, 'world':43},{'yo':100},]) print('Client:', client) #socket.send_multipart([client, reply]) socket.send(client, zmq.SNDMORE); socket.send(reply); else: print('Unknown funcname', funcname) continue
true
de87c0ad3d901c823b69a2734c3940b5c18d25d0
Python
ScottLiao920/SAUVC2019_MECATRON
/pass_gate.py
UTF-8
1,861
2.734375
3
[]
no_license
import time import cv2 import movement import localizer from camera_module import camera_thread import gesture_detection camera_front = camera_thread(0) camera_front.start() camera_down = camera_thread(1) camera_down.start() def pass_gate(pos): fwd_count = 25 find_count = 25 while True: t1 = time.time() img = camera_front.read() img_down = camera_down.read() pos[0], pos[1], pos[2] = localizer.get_pos(img_down, pos[0], pos[1], pos[2]) coords = gesture_detection.get_coord_from_detection(img) # x,y,width,height,category cv2.imshow('pass_gate_img', img) print(coords) if find_count and len(coords) is 0: movement.turn_left() find_count -= 1 elif len(coords) is 0: movement.turn_right() if len(coords) is 2 and coords[0][4] is 0: x1, x2, y1, y2 = coords[0][0], coords[1][0], coords[0][1], coords[1][1] if ((x1 + x2) // 2) < 800: movement.turn_left() continue elif ((x1 + x2) // 2) > 720: movement.turn_right() continue if not 100 < ((y1 + y2) // 2) < 200: if (y1 + y2) // 2 < 100: movement.move_up() continue else: movement.move_down() continue movement.move_fwd() if (coords[0][3] + coords[1][3]) // 2 > 180: if fwd_count: fwd_count -= 1 movement.move_fwd() else: movement.stop() break t2 = time.time() print("fps:", 1 / (t2 - t1)) print("Gate passed!") camera_front.release() return localizer.get_pos(img_down, pos[0], pos[1], pos[2])
true
0b7e60cf314c6285990cc57201e058920f096b5f
Python
qicst23/Daily
/Others/brute_force_1.py
UTF-8
718
3.8125
4
[ "MIT" ]
permissive
""" 输入正整数n,按照从小到大顺序输出所有形如abcde/fghij=n的表达式,其中a~j恰好是数字0~9的一个排列,2<=n<=79 样例输入:62 样例输出: 79546/01283=62 94736/01528=62 """ def brute_force_1(n): a = 01234 while a * n <= 98765: if validate(a, a * n): # print result as required print '%05d' % (a*n) + '/' + '%05d' % a + '=' + str(n) a += 1 def validate(a, b): '''validate whether a and b has 10 different digits''' digit_set = set() for i in range(5): digit_set.add(a % 10) a = a / 10 digit_set.add(b % 10) b = b / 10 return digit_set == set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
true
a2fffb4e728c3441d3293c1153c1fd7905b3698f
Python
amangour30/BINC
/motiondetect.py
UTF-8
5,337
2.96875
3
[ "BSD-2-Clause" ]
permissive
# import the necessary packages import argparse import datetime import imutils import time import cv2 import RPi.GPIO as GPIO import pigpio from PIL import Image import numpy as np from activation_functions import sigmoid_function, tanh_function from cost_functions import sum_squared_error from neuralnet import NeuralNet from tools import Instance servos = [24,17] pi=pigpio.pi() basewidth = 256 height = 192 #~ #~ def updateTop(angle): #~ dutyTop = float(angle) / 10.0 + 2.5 #~ pwmTop.ChangeDutyCycle(dutyTop) #~ #~ def updateBottom(angle): #~ dutyBottom = float(angle) / 10.0 + 2.5 #~ pwmBottom.ChangeDutyCycle(dutyBottom) def goToBin(bin): if bin is 1: pi.set_servo_pulsewidth(servos[1], 500) elif bin is 2: pi.set_servo_pulsewidth(servos[1], 1500) elif bin is 3: pi.set_servo_pulsewidth(servos[1], 2500) time.sleep(2) def drop(): pi.set_servo_pulsewidth(servos[0], 1500) time.sleep(2) pi.set_servo_pulsewidth(servos[0], 500) time.sleep(2) def dropIn(bin): goToBin(bin) drop() def findBin(frame): image=cv2.cvtColor(frame,cv2.COLOR_BGR2RGB) pil_im = Image.fromarray(image) #~ img1 = pil_im.resize((basewidth, height), Image.ANTIALIAS) pil_im.thumbnail((256, 256), Image.ANTIALIAS) img2 = pil_im.convert('1') #~ pixels = img2.load() pixels1 = np.asarray(img2.getdata(),dtype=np.bool) outstr = "outimg" +".bmp" img2.save(outstr) array01 = [] count = 0 Tot = 0 for item in pixels1: Tot += 1 if not item: array01.append(1) count += 1 else: array01.append(0) testitem = [] testitem.append(Instance(array01, [0])) # load a stored network configuration network = NeuralNet.load_from_file( "plastic122.pkl" ) arr = network.print_test(testitem) print('Value returned by neural network plastic: ' + str(arr[0])) network2 = NeuralNet.load_from_file( "metal122.pkl" ) arr2 = network2.print_test(testitem) print('Value returned by neural network metal: ' + str(arr2[0])) network3 = NeuralNet.load_from_file( "paper122.pkl" ) arr3 = network3.print_test(testitem) print('Value returned by neural network paper: ' + str(arr3[0])) pl = arr[0] me = arr2[0] pa = arr3[0] if((pl > pa and pl > me) or pl > 0.5 or (pa < 0.42 and me < 0.09) ): return 1 #plastic elif((me > pa and me > pl) or me > 0.13): return 3 #metal else: return 2 #paper #~ else: #~ return 3 #metal def process(frame): bin=findBin(frame) print "found bin:" print bin dropIn(bin) while True: print "starting motion detection" # construct the argument parser and parse the arguments #~ ap = argparse.ArgumentParser() #ap.add_argument("-v", "--video", help="path to the video file") #~ ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size") #~ args = vars(ap.parse_args()) # if the video argument is None, then we are reading from webcam #~ if args.get("video", None) is None: camera = cv2.VideoCapture(0) time.sleep(0.25) # otherwise, we are reading from a video file #~ else: #~ camera = cv2.VideoCapture(args["video"]) # initialize the first frame in the video stream firstFrame = None status="Unoccupied" # loop over the frames of the video while True: # grab the current frame and initialize the occupied/unoccupied # text (grabbed, frame) = camera.read() text = "Unoccupied" origFrame=frame # if the frame could not be grabbed, then we have reached the end # of the video if not grabbed: break # resize the frame, convert it to grayscale, and blur it frame = imutils.resize(frame, width=500) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (21, 21), 0) # if the first frame is None, initialize it if firstFrame is None: firstFrame = gray continue # compute the absolute difference between the current frame and # first frame frameDelta = cv2.absdiff(firstFrame, gray) thresh = cv2.threshold(frameDelta, 100, 255, cv2.THRESH_BINARY)[1] # dilate the thresholded image to fill in holes, then find contours # on thresholded image thresh = cv2.dilate(thresh, None, iterations=2) (cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # loop over the contours for c in cnts: # if the contour is too small, ignore it #~ if cv2.contourArea(c) < args["min_area"]: #~ continue # compute the bounding box for the contour, draw it on the frame, # and update the text (x, y, w, h) = cv2.boundingRect(c) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) text = "Occupied" # draw the text and timestamp on the frame #cv2.putText(frame, "Room Status: {}".format(text), (10, 20), # cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) #cv2.putText(frame, datetime.datetime.now().strftime("%A %d %B %Y %I:%M:%S%p"), # (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1) # show the frame and record if the user presses a key #cv2.imshow("Security Feed", frame) #cv2.imshow("Thresh", thresh) #cv2.imshow("Frame Delta", frameDelta) key = cv2.waitKey(1) & 0xFF if text is not status: print text status=text if status is "Occupied": process(origFrame) camera.release() break else: print 0 # if the `q` key is pressed, break from the lop if key == ord("q"): break
true
2ff8713bfa650b1ca0c0ee6f6bd67b0bd4b03e03
Python
SoapClancy/Python_Project_common_package
/Ploting/adjust_Func.py
UTF-8
3,107
2.65625
3
[]
no_license
from matplotlib import pyplot as plt from typing import Sequence, Iterable LINESTYLE_STR = [ ('solid', 'solid'), # Same as (0, ()) or '-' ('dotted', 'dotted'), # Same as (0, (1, 1)) or '.' ('dashed', 'dashed'), # Same as '--' ('dashdot', 'dashdot')] # Same as '-.' LINESTYLE_TUPLE = [ ('solid', 'solid'), # Same as (0, ()) or '-' ('loosely dotted', (0, (1, 10))), ('dotted', (0, (1, 1))), ('densely dotted', (0, (1, 1))), ('loosely dashed', (0, (5, 10))), ('dashed', (0, (5, 5))), ('densely dashed', (0, (5, 1))), ('loosely dashdotted', (0, (3, 10, 1, 10))), ('dashdotted', (0, (3, 5, 1, 5))), ('densely dashdotted', (0, (3, 1, 1, 1))), ('dashdotdotted', (0, (3, 5, 1, 5, 1, 5))), ('loosely dashdotdotted', (0, (3, 10, 1, 10, 1, 10))), ('densely dashdotdotted', (0, (3, 1, 1, 1, 1, 1)))] def reassign_linestyles_recursively_in_ax(ax, simple_linestyles: bool = True): if simple_linestyles: linestyle_str_len = LINESTYLE_STR.__len__() for i in range(ax.lines.__len__()): ax.lines[i].set_linestyle(LINESTYLE_STR[i % linestyle_str_len][1]) else: linestyle_tuple_len = LINESTYLE_TUPLE.__len__() for i in range(ax.lines.__len__()): ax.lines[i].set_linestyle(LINESTYLE_TUPLE[i % linestyle_tuple_len][1]) ax.legend(prop={'size': 10}) return ax def adjust_legend_in_ax(ax, *, protocol=None, **kwargs): assert (protocol in (None, 'Outside center right')) kwargs.setdefault('ncol', 1) kwargs.setdefault('prop', {'size': 10}) if protocol == 'Outside center right': ax.legend(bbox_to_anchor=(1, 0.5), loc="center left", **kwargs) else: kwargs.setdefault('loc', 'upper center') ax.legend(**kwargs) return ax def adjust_legend_order_in_ax(ax, *, new_order_of_labels: Sequence[str]): handles, labels = ax.get_legend_handles_labels() assert (handles.__len__() == new_order_of_labels.__len__()), "Check 'new_order_of_labels' length" hl = sorted(zip(handles, labels), key=lambda x: [x[1] == y for y in new_order_of_labels], reverse=True) handles, labels = zip(*hl) ax.legend(handles, labels, ncol=ax.get_legend().__getattribute__('_ncol'), loc=ax.get_legend().__getattribute__('_loc'), prop={'size': 10}) return ax def adjust_lim_label_ticks(ax, **kwargs): for key, item in kwargs.items(): if key == 'x_lim': func = ax.set_xlim elif key == 'y_lim': func = ax.set_ylim elif key == 'x_ticks': func = ax.set_xticks elif key == 'y_ticks': func = ax.set_yticks elif key == 'x_label': func = ax.set_xlabel elif key == 'y_label': func = ax.set_ylabel elif key == 'x_tick_labels': func = ax.set_xticklabels elif key == 'y_tick_labels': func = ax.set_yticklabels else: raise Exception("Unsupported keyword(s)") func(item) return ax
true
204ec6aed1f3198f7b4cb5fcb10b1f64b958f6d7
Python
youki-cao/Gomoku-AI
/Code_AI_Gomoku/gomoku.py
UTF-8
2,491
3.046875
3
[]
no_license
# encoding: utf-8 import os,sys curPath = os.path.abspath(os.path.dirname(__file__)) sys.path.append(curPath) import numpy, pygame import Chessboard class Gomoku(): def __init__(self): self.screen = pygame.display.set_mode((800, 600)) pygame.display.set_caption("五子棋") self.clock = pygame.time.Clock() self.font = pygame.font.Font(r"ncsj.ttf", 24) self.going = True self.chessboard = Chessboard.Chessboard() def getStyle(self): background = pygame.image.load('bg.png').convert() mouse_cursor = pygame.image.load('white.png').convert_alpha() button = pygame.image.load('button.png').convert() pic1 = pygame.image.load('pic1.png').convert() while True: for event in pygame.event.get(): if event.type == pygame.MOUSEBUTTONDOWN: x, y = pygame.mouse.get_pos() x+= mouse_cursor.get_width() / 2 y-= mouse_cursor.get_height() / 2 self.screen.blit(pic1, (0, 0)) if x>400 and x<520 and y>300 and y<360: return '3' self.screen.blit(pic1, (0, 0)) pygame.display.update() return '4' self.screen.blit(background, (0, 0)) self.screen.blit(button, (400, 300)) x, y = pygame.mouse.get_pos() x-= mouse_cursor.get_width() / 2 y-= mouse_cursor.get_height() / 2 self.screen.blit(mouse_cursor, (x, y)) pygame.display.update() def loop(self): while self.going: self.update() self.draw() self.clock.tick(60) pygame.quit() def update(self, table): for e in pygame.event.get(): if e.type == pygame.QUIT: self.going = False elif e.type == pygame.MOUSEBUTTONDOWN: self.chessboard.handle_key_event(e, table) # return (x, y) def draw(self): self.screen.fill((255, 255, 255)) self.chessboard.draw(self.screen) if self.chessboard.game_over: self.screen.blit(self.font.render("{0} Win".format("Black" if self.chessboard.winner == 'b' else "White"), True, (0, 0, 0)), (500, 10)) pygame.display.update() if __name__ == '__main__': game = Gomoku() game.loop()
true
657983693374ed1338cab92efc041e937a8a2e32
Python
Nedgang/adt_project
/analysis.py
UTF-8
5,853
2.984375
3
[ "MIT" ]
permissive
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Usage: Options: Authors: MARIJON Pierre, PICARD DRUET David, PIVERT Jérome. """ ########## # IMPORT # ########## # EXISTANT LIBRARY import glob import sys # SPECIFIC LIBRARY # Our command line analyser/checker import cli_parser # Our tool to split text import tokenization # Used to remove words which are not terms import filtration # Extract mails differents parts import mail_parser # Terms stemming import stemming # Detect which language is used in the email import language_detection # Manage stop words import stop_word # Smart terms counter (both simple and complex terms) import terms_counter # Create stockage structure import tag2terms from collections import defaultdict import frequency_term_validator import math ######## # MAIN # ######## def main(arg): """ Main function of analyse """ # Read database tagterms = tag2terms.Tag2Terms() tagterms.read_file(arg["input"]) # Just print tag if arg["print_tag"]: print_tag(tagterms) return 0 # Get all terms is in tag if arg["all_terms"]: print_all_terms(tagterms, arg["query"], arg["threshold"]) return 0 # Terms is in some tag have bonus if arg["best_terms"]: print_best_terms(tagterms, arg["query"], arg["threshold"]) return 0 # Print just terms is in all tag if arg["strict_terms"]: print_strict_terms(tagterms, arg["query"], arg["threshold"]) return 0 # Print the keyword of database if arg["keywords"]: print_keywords(tagterms, arg["keywords"]) return 0 if arg["comparative_frequency"]: print_keywords_upper_freq(tagterms, arg["comparative_frequency"], arg["threshold"]) def print_tag(tagterms): """ Print all tag in data base """ for tag in sorted(tagterms.get_tag()): print(tag) def print_all_terms(tagterms, query, threshold): """ Print all terms is in query tag """ # Take all terms all_terms = dict() for tag in query: all_terms.update(tagterms.get_terms_score(tag)) # Remove terms with score lower threshold selected_terms = {k: v for (k,v) in all_terms.items() if v > threshold} # Sorted terms by score sorted_terms = list() [sorted_terms.append((k,v)) for v,k in sorted([(v,k) for k,v in selected_terms.items()], reverse=True)] print(sorted_terms) def print_best_terms(tagterms, query, threshold, bonus=1.5): """ If terms is presente in one another tag increasse score """ # If found terms in another tag we have bonus in enrich terms enrich_terms = defaultdict(int) for tag in query: # build list of tag without actual tag tag_list_without_current = list(query) tag_list_without_current.remove(tag) # read terms is in tag for terms in tagterms.get_terms_score(tag).keys(): if __terms_is_in_tag(tagterms, terms, tag_list_without_current) : enrich_terms[terms] += tagterms.get_terms_score(tag)[terms] * bonus else: enrich_terms[terms] += tagterms.get_terms_score(tag)[terms] * bonus # Remove terms with score lower threshold selected_terms = {k: v for (k,v) in enrich_terms.items() if v > threshold} # Sorted terms by score sorted_terms = list() [sorted_terms.append((k,v)) for v,k in sorted([(v,k) for k,v in selected_terms.items()], reverse=True)] print(sorted_terms) def __terms_is_in_tag(tagterms, terms, tags): """ Read a list of tag if terms is in terms associated to this tag return True, if not return False """ for tag in tags: if terms in tagterms.get_terms(tag): return True return False def print_strict_terms(tagterms, query, threshold): """ Print just terms is in all tag query """ # Find selected terms list_of_set = list() for tag in query: list_of_set.append(set(tagterms.get_terms(tag).keys())) keep_terms = set.intersection(*list_of_set) all_terms = dict() for tag in query: all_terms.update(tagterms.get_terms_score(tag)) # Select terms if is in keep_terms and thresohld is upper threshold selected_terms = {k: v for (k,v) in all_terms.items() if k in keep_terms and v > threshold} # Sorte terms by score sorted_terms = list() [sorted_terms.append((k,v)) for v,k in sorted([(v,k) for k,v in selected_terms.items()], reverse=True)] print(sorted_terms) def print_keywords(tagterms, n): """ Print the n first keywords reprensenting the corpus """ sorted_terms = list() # Get global score terms dict_global_terms = tagterms.get_global_score() # Sort terms by score [sorted_terms.append((k,v)) for v,k in sorted([(v,k) for k,v in dict_global_terms.items()], reverse=True)] # print just first terms of sorted list print(sorted_terms[0:n]) def print_keywords_upper_freq(tagterms, ref_freq_file, threshold): ref_freq_usage = frequency_term_validator.load_reference(ref_freq_file) dict_global_terms = tagterms.get_global_score() number_of_word = 0 for v in dict_global_terms.values(): number_of_word += v local_freq_usage = {k: v/number_of_word for (k,v) in dict_global_terms.items() if not (' ' in k)} all_terms = frequency_term_validator.filter_by_frequency(local_freq_usage, ref_freq_usage) selected_terms = {k: v for (k,v) in all_terms.items() if k in all_terms and v > threshold} sorted_terms = list() [sorted_terms.append((k,v)) for v,k in sorted([(v,k) for k,v in selected_terms.items()], reverse=True)] print(sorted_terms) ########## # LAUNCH # ########## if __name__ == "__main__": arg = cli_parser.analysis_read_args(sys.argv[1:]) if(arg is None): sys.exit(1) main(arg)
true
15e26548f03dae2020a0ec1fdd1174d17ee66eba
Python
deekew33/bogged-again
/polls/boggedagain/tensorclassifier.py
UTF-8
3,368
2.734375
3
[]
no_license
from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import tensorflow as tf import os, pickle, random, nltk, math, sqlite3, time import matplotlib.pyplot as plt def get_num_words_per_sample(sample_texts): """Returns the median number of words per sample given corpus. # Arguments sample_texts: list, sample texts. # Returns int, median number of words per sample. """ num_words = [len(s.split()) for s in sample_texts] return np.median(num_words) def plot_sample_length_distribution(sample_texts): """Plots the sample length distribution. # Arguments samples_texts: list, sample texts. """ plt.hist([len(s) for s in sample_texts], 50) plt.xlabel('Length of a sample') plt.ylabel('Number of samples') plt.title('Sample length distribution') plt.show() def loaddata(seed=123): category_list = ['AD','B','CS','LC','LG','LL','LS','M','R','RL','RM','SD','SS','T','TW'] news= [] labels = [] newstext = [] for category in category_list: for entry in os.scandir(f'../../trainer/TheStreet/{category}/'): if not entry.name.startswith('.') and entry.is_file() and entry.name.find('labeled') != -1: with open(f'../../trainer/{category}/{entry.name}') as f: data = f.read() news.append([data, category, entry.name]) print(entry.name) random.seed(seed) random.shuffle(news) for entry in news: newstext.append(entry[0]) labels.append(entry[1]) train_index = math.ceil(len(newstext) / 2) train_texts=newstext[0:train_index] test_texts=newstext[train_index:] train_labels=labels[0:train_index] test_labels=labels[train_index:] return ((train_texts, np.array(train_labels)), (test_texts, np.array(test_labels))) def _get_last_layer_units_and_activation(num_classes): """Gets the # units and activation function for the last network layer. # Arguments num_classes: int, number of classes. # Returns units, activation values. """ if num_classes == 2: activation = 'sigmoid' units = 1 else: activation = 'softmax' units = num_classes return units, activation from tensorflow.python.keras import models from tensorflow.python.keras.layers import Dense from tensorflow.python.keras.layers import Dropout def mlp_model(layers, units, dropout_rate, input_shape, num_classes): """Creates an instance of a multi-layer perceptron model. # Arguments layers: int, number of `Dense` layers in the model. units: int, output dimension of the layers. dropout_rate: float, percentage of input to drop at Dropout layers. input_shape: tuple, shape of input to the model. num_classes: int, number of output classes. # Returns An MLP model instance. """ op_units, op_activation = _get_last_layer_units_and_activation(num_classes) model = models.Sequential() model.add(Dropout(rate=dropout_rate, input_shape=input_shape)) for _ in range(layers-1): model.add(Dense(units=units, activation='relu')) model.add(Dropout(rate=dropout_rate)) model.add(Dense(units=op_units, activation=op_activation)) return model
true
faea34a9bed62284ec2c8c946b6d34effece9935
Python
clouds56/binary_reader
/app/sqlite3_file.py
UTF-8
5,900
2.625
3
[]
no_license
import binary_reader.sqlite3_schema as sqlite3 class SQLiteFile: def __init__(self, file): self.file = file self.pages = {} self.load() def load(self): self.file.seek(0) self.config = self.readbin("header_schema", self.file.read(100)) self.tables = self.load_btree(0) def load_btree(self, index): if isinstance(index, str): for _, v in self.tables: if v[1] == index: print("found", v) return self.load_btree(v[3]-1) return [] page = self.load_btree_page(index) rows = [] page_type = page.header['page_type'] if page_type == 13: for c, p in zip(page.cells, page.payloads): rows.append((c['rowid'], p['column_contents'])) elif page_type == 5: for c in page.cells: print("load btree page %s -> %s, %s" % (index+1, c['left_child_page'], c['rowid'])) rows += self.load_btree(c['left_child_page']-1) print("load btree page %s -> %s, -1" % (index+1, page.header['right_most_page'])) rows += self.load_btree(page.header['right_most_page']-1) else: print("unknown page type %s" % page_type) return rows def load_btree_page(self, index): if index in self.pages: return self.pages[index] self.file.seek(index * self.config['page_size']) self.pages[index] = Page(self.config, self.file.read(self.config['page_size']), index, file=self.file) return self.pages[index] @staticmethod def readbin(schema, bin_, *, cache=None): if cache is None: cache = {} if isinstance(schema, str): schema = sqlite3.schemas[schema].format return dict(sqlite3.read_schema_list(schema, bin_, table=sqlite3.format_table, cache=cache)) class Page: def __init__(self, config, page_bin, index, *, file=None): self.config = config self.page_bin = page_bin self.index = index self.load(index == 0) self.load_cells() self.load_cells_payload(file) def load(self, first=False): self.header = SQLiteFile.readbin("page_header_schema", self.page_bin[100:] if first else self.page_bin) return self def load_cells(self): self.cells = [] cache = self.header.copy() cache['config'] = self.config for i in self.header['cell_offset_array']: self.cells.append(SQLiteFile.readbin("cell_header_schema", self.page_bin[i:], cache=cache)) return self def load_overflows(self, file, cell=None): if cell is None: for i in self.cells: self.load_overflows(file, i) elif cell['payload_size'] > cell['local_payload_size']: cell['overflow_pages'], cell['full_payload'] = self.load_overflow(file, cell['payload_size'], cell['overflow_page'] - 1, size=cell['local_payload_size'], acc=[cell['payload']]) def load_overflow(self, file, total_size, acc_page, size=0, acc=None): if acc is None: acc = [] if not isinstance(acc_page, list): acc_page = [acc_page] if acc_page[-1] == 0: return acc_page, acc file.seek(acc_page[-1] * self.config['page_size']) page_bin = file.read(self.config['page_size']) page_header = SQLiteFile.readbin("page_overflow_header_schema", page_bin) # print("load overflow %s -> %s" % (acc_page, page_header)) offset = page_header['offset'] content = page_bin[offset:max(offset + total_size - size, 0)] acc.append(content) acc_page.append(page_header['next_page'] - 1) size += len(content) if size >= total_size: return acc_page, acc return self.load_overflow(file, total_size, acc_page, acc) def load_cells_payload(self, file=None): self.payloads = [] for i in self.cells: if 'payload' not in i: self.payloads.append(None) continue payload = i['payload'] if i['payload_size'] > i['local_payload_size']: if 'full_payload' not in i and file is not None: self.load_overflows(file, i) if 'full_payload' in i: payload = b''.join(i['full_payload']) else: print("overflow not loaded %s" % i) self.payloads.append(SQLiteFile.readbin("record_format_schema", payload)) return self def _init_test(): import sqlite3 conn = sqlite3.connect('example.db') c = conn.cursor() # Create table c.execute('''CREATE TABLE stocks (date text, trans text, symbol text, qty real, price real)''') # Insert a row of data for i in range(1000): c.execute("INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT%s',100,10.14)" % ("142857" * i + "!")) # Save (commit) the changes conn.commit() # We can also close the connection if we are done with it. # Just be sure any changes have been committed or they will be lost. conn.close() def _test(): "" ## # create_test_db() file = SQLiteFile(open("example.db", "rb")) ## file.load_btree(0) ## rows = file.load_btree("stocks") ## import csv with open("stocks.csv", "w", encoding="utf-8") as fout: writer = csv.writer(fout, delimiter=",", lineterminator="\n", quotechar='"', doublequote=True, strict=True) for _, v in sorted(rows): writer.writerow(v)
true
d09eb4876bbbb4b04b05aa2feaddd1ab429b9dda
Python
aliabbas1987/python-practice
/practice/functions/myMath.py
UTF-8
105
2.671875
3
[]
no_license
''' Created on Apr 2, 2020 @author: Ali Abbas ''' def sum(x,y): return x+y def sub(x,y): return x-y
true
e396ecdd25e23b59be46310bf8220793f6a2f5da
Python
YilinWphysics/Assignments
/Nbody_project/ThirdPart_Periodic.py
UTF-8
1,235
2.578125
3
[]
no_license
from functions import * ############## Periodic B.C's ################## summary = open("Summary.txt", "a") Q3_periodic_E = open("Q3_periodic_E.txt", "w") n=int(2e5) # now use hundreds of thousands of particles grid_size = 500 soften = 10 mass = 1/n v_x = 0 # initial v in x-direction v_y = 0 # initial v in y-direction system = Particles(mass, v_x, v_y, n, grid_size, soften) dt = 80 fig = plt.figure() ax = fig.add_subplot(111, autoscale_on = False, xlim = (0, grid_size), ylim = (0, grid_size)) particles_plot = ax.imshow(system.grid, origin='lower', vmin=system.grid.min(), vmax=system.grid.max(), cmap=plt.get_cmap('cividis')) plt.colorbar(particles_plot) count = 0 def animation_plot(i): global system, ax, fig, dt, Q3_periodic_E, count print(count) for i in range(10): system.evolve(dt) system.energy() Q3_periodic_E.write(f"{system.E}") count+=1 particles_plot.set_data(system.grid) particles_plot.set_clim(system.grid.min(), system.grid.max()) particles_plot.set_cmap(plt.get_cmap("cividis")) return particles_plot, animation_periodic = anmt.FuncAnimation(fig, animation_plot, frames = 200, interval = 10) animation_periodic.save("Question3_periodic.gif", writer = "imagemagick") #plt.show()
true
9384bf6881753dc361f7abe62fdde109534d45e8
Python
StopTheCCP/CCP-Database-Leak
/TranslateCSV.py
UTF-8
1,353
2.921875
3
[]
no_license
import os import time # https://pypi.org/project/google-trans-new/ from google_trans_new import google_translator def TranslateCnToEn(textCn:str) -> str: # ref https://github.com/lushan88a/google_trans_new translator = google_translator(url_suffix='us') textEn = translator.translate(textCn.strip(), lang_src='zh', lang_tgt='en') return textEn def ProcessFile(inputFilePath:str, outputFilePath:str): with open(outputFilePath, 'w', encoding='utf-8') as outputFile: with open(inputFilePath, 'r', encoding='utf-8') as inputFile: # n = line number n = 0 for line in inputFile: n += 1 if n % 1000 == 0: t = time.localtime() currentTime = time.strftime('%H:%M:%S', t) print(f'[{currentTime}] Processing row {n}') translatedText = TranslateCnToEn(line) outputFile.write(translatedText + '\n') if __name__ == '__main__': time1 = time.time() inputFilePath = 'Data/shanghai-ccp-member.csv' outputFilePath = 'Data/shanghai-ccp-member-en.csv' if os.path.exists(outputFilePath): os.remove(outputFilePath) ProcessFile(inputFilePath, outputFilePath) time2 = time.time() duration = time2 - time1 print(f'Translation seconds = {duration}')
true
4d2a5b2449e57a71c6c9b0142d9a38287d50424a
Python
BitKnitting/FitHome_EDA
/test_find_dates.py
UTF-8
612
2.8125
3
[]
no_license
########################################################### # test_find_dates.py # Simple test that validates we can connect to the mongo db # and read records. It returns the dates in the mongo db # where there are power readings in ISODate format. ########################################################### from errors.errors import handle_exception from readings.readings import PowerReadings try: p = PowerReadings() collection = p.get_connection_to_collection() iso_days_list = p.get_isodate_list(collection) [print(n) for n in iso_days_list] except Exception as e: handle_exception(e)
true
fd65ee8237801ecbcf6616866eb9f5fcbc8cabe2
Python
efaguy27/engg-3130-final
/autonomous-learning-library-master/all/approximation/approximation.py
UTF-8
4,822
2.84375
3
[ "MIT" ]
permissive
import os import torch from torch.nn import utils from all.logging import DummyWriter from .target import TrivialTarget from .checkpointer import PeriodicCheckpointer DEFAULT_CHECKPOINT_FREQUENCY = 200 class Approximation(): ''' Base function approximation object. This defines a Pytorch-based function approximation object that wraps key functionality useful for reinforcement learning, including decaying learning rates, model checkpointing, loss scaling, gradient clipping, target networks, and tensorboard logging. This enables increased code reusability and simpler Agent implementations. Args: model (:torch.nn.Module:): A Pytorch module representing the model used to approximate the function. This could be a convolution network, a fully connected network, or any other Pytorch-compatible model. optimizer (:torch.optim.Optimizer:): A optimizer initialized with the model parameters, e.g. SGD, Adam, RMSprop, etc. checkpointer: (:all.approximation.checkpointer.Checkpointer): A Checkpointer object that periodically saves the model and its parameters to the disk. Default: A PeriodicCheckpointer that saves the model once every 200 updates. clip_grad: (float, optional): If non-zero, clips the norm of the gradient to this value in order prevent large updates and improve stability. See torch.nn.utils.clip_grad. loss_scaling: (float, optional): Multiplies the loss by this value before performing a backwards pass. Useful when used with multi-headed networks with shared feature layers. name: (str, optional): The name of the function approximator used for logging. scheduler: (:torch.optim.lr_scheduler._LRScheduler:, optional): A learning rate scheduler initialized with the given optimizer. step() will be called after every update. target: (:all.approximation.target.TargetNetwork, optional): A target network object to be used during optimization. A target network updates more slowly than the base model that is being optimizing, allowing for a more stable optimization target. writer: (:all.logging.Writer:, optional): A Writer object used for logging. The standard object logs to tensorboard, however, other types of Writer objects may be implemented by the user. ''' def __init__( self, model, optimizer, checkpointer=None, clip_grad=0, loss_scaling=1, name='approximation', scheduler=None, target=None, writer=DummyWriter(), ): self.model = model self.device = next(model.parameters()).device self._target = target or TrivialTarget() self._scheduler = scheduler self._target.init(model) self._updates = 0 self._optimizer = optimizer self._loss_scaling = loss_scaling self._cache = [] self._clip_grad = clip_grad self._writer = writer self._name = name if checkpointer is None: checkpointer = PeriodicCheckpointer(DEFAULT_CHECKPOINT_FREQUENCY) self._checkpointer = checkpointer self._checkpointer.init( self.model, os.path.join(writer.log_dir, name + '.pt') ) def __call__(self, *inputs): ''' Run a forward pass of the model. ''' return self.model(*inputs) def eval(self, *inputs): '''Run a forward pass of the model in no_grad mode.''' with torch.no_grad(): return self.model(*inputs) def target(self, *inputs): '''Run a forward pass of the target network.''' return self._target(*inputs) def reinforce(self, loss): loss = self._loss_scaling * loss self._writer.add_loss(self._name, loss.detach()) loss.backward() self.step() return self def step(self): '''Given that a backward pass has been made, run an optimization step.''' if self._clip_grad != 0: utils.clip_grad_norm_(self.model.parameters(), self._clip_grad) self._optimizer.step() self._optimizer.zero_grad() self._target.update() if self._scheduler: self._writer.add_schedule(self._name + '/lr', self._optimizer.param_groups[0]['lr']) self._scheduler.step() self._checkpointer() return self def zero_grad(self): self._optimizer.zero_grad() return self
true
66c4576055eb6d6cdeb90a47765fa5c9d39c3d32
Python
springdew84/my-test-py
/zookeeper/main.py
UTF-8
1,524
2.59375
3
[]
no_license
# -*- coding:utf-8 -*- import sys #from kazoo.client import KazooClient import logging logging.basicConfig(level=logging.ERROR) # local service dir LOCAL_SERVICE = '/services/local-service' class PyZooConn(object): # init function include connection method def __init__(self): #self.zk = KazooClient(hosts='localhost:2181') self.zk.start() # get node data def get_data(self, param): result = self.zk.get(param) return result def get_children(self, param): result = self.zk.get_children(param) return result # create a node and input a value in this node def create_node(self, node, value): self.zk.create(node, value) # delete a node def delete_node(self, param): self.zk.delete(param) # close the connection def close(self): self.zk.stop() if __name__ == '__main__': servicePort = str(sys.argv[1]) # print "delete zk local service node " + servicePort pz = PyZooConn() # pz.create_node("/test", "a value") services = pz.get_children(LOCAL_SERVICE) # curl "https://ws.it4.dealmoon.net/health" for data in services: servicePath = LOCAL_SERVICE + "/" + data # print servicePath service = pz.get_data(servicePath) serviceStr = str(service) if (servicePort in serviceStr): # print "delete" + servicePort pz.delete_node(servicePath) # print "delete zk service node:" + servicePath pz.close()
true
ab5278dad18421b0282ffa17476bbd8fc0983994
Python
hzcheng/wikipedia-like-web-search-engine
/hadoop/mapreduce/map1.py
UTF-8
805
3.390625
3
[]
no_license
#!/usr/bin/python3 ''' Map file to read each document and and get the term frequency of each word. output: word docid ''' import sys, re # get the set of stop words. stopwords = set() with open('./stopwords.txt','r') as f: for line in f: stopwords.add(line.strip()) line_counter = -1 for line in sys.stdin: line_counter = (line_counter + 1) % 3 if line_counter == 0: # read the first line of the document ID docid = line.strip() word_counter = {} else: # read the title and body for word in line.strip().split(): word = re.sub(r'[^a-zA-Z0-9]+', '', word).lower() if word and word not in stopwords: # word is not empty and not in stop words print('{} {}'.format(word, docid))
true
d5511012cba12e11a29148b694d9ace3023be3ff
Python
tatsumanu/Mc_Gyver
/main.py
UTF-8
3,245
3.234375
3
[]
no_license
import pygame import os from pygame.locals import * from fonctions import load_image, create_a_text_object, message, victory from classes import Player, Map, Object pygame.init() # variables name = '' menu = 1 sprite = 32 play_game = True # creating the screen game window window = pygame.display.set_mode((480, 480)) pygame.display.set_caption('Mac Gyver et le labyrinthe infernal!') # loading images floor, wall = load_image('floor.png'), load_image('wall.png') syringe = load_image('seringue.png') intro = load_image('macgyver.jpg') # creating player class object mc_gyver = Player(0, 0, load_image('MacGyver.png')) guardian = Player(14, 14, load_image('Gardien.png')) # creating map class object map = Map(0, 0, mc_gyver) # loading the map map.loading() # creating elements of the object class aiguille = Object('aiguille', load_image('aiguille.png'), map) tube = Object('tube', load_image('tube_plastique.png'), map) ether = Object('ether', load_image('ether.png'), map) # main loop while play_game: # intro loop while menu: pygame.time.Clock().tick(30) window.blit(intro, (0, 0)) message("Appuyer sur une touche", window) pygame.display.update() for event in pygame.event.get(): if event.type == QUIT: quit() elif event.type == KEYDOWN: menu = 0 # game loop while mc_gyver.alive: pygame.time.Clock().tick(30) # checking the events for event in pygame.event.get(): if event.type == QUIT: quit() if event.type == KEYDOWN: old_pos = mc_gyver.x, mc_gyver.y if event.key == K_DOWN: new_pos = (mc_gyver.x, mc_gyver.y + sprite) mc_gyver.move(old_pos, new_pos, map) if event.key == K_UP: new_pos = (mc_gyver.x, mc_gyver.y - sprite) mc_gyver.move(old_pos, new_pos, map) if event.key == K_LEFT: new_pos = (mc_gyver.x - sprite, mc_gyver.y) mc_gyver.move(old_pos, new_pos, map) if event.key == K_RIGHT: new_pos = (mc_gyver.x + sprite, mc_gyver.y) mc_gyver.move(old_pos, new_pos, map) # Printing the floor, walls, Mc Gyver, guardian and objects window.blit(floor, (0, 0)) [window.blit(wall, pos) for pos in list(map.wall_pos)] window.blit(guardian.image, (guardian.x, guardian.y)) window.blit(mc_gyver.image, (mc_gyver.x, mc_gyver.y)) ether.print_object(window, mc_gyver) aiguille.print_object(window, mc_gyver) tube.print_object(window, mc_gyver) # checking victory/defeat conditions mc_gyver.alive, mc_gyver.kill_the_guardian = mc_gyver.facing_the_end((mc_gyver.x, mc_gyver.y)) # screen update pygame.display.update() if mc_gyver.kill_the_guardian is True: victory(window, syringe) else: message('GAME OVER !', window) pygame.display.update() for event in pygame.event.get(): if event.type == QUIT: quit() elif event.type == KEYDOWN: quit() quit()
true
a037e286ed68afa9a83056bd334cf235235d959f
Python
dr-dos-ok/Code_Jam_Webscraper
/solutions_python/Problem_199/1798.py
UTF-8
1,178
2.9375
3
[]
no_license
class TestCase: def __init__(self, n, data, f): self.n = n self.data = data self.flip = f self.result = conv(self.data, self.flip) def p(self): return 'Case #{}: {}\n'.format(self.n,self.result) def map(strarry): v = strarry.split(' ') r = [] for u in v: r.append(int(u)) return r def conv(d, f): print (len(d)) s = list(str(d)) count = 0 for i in range(len(d)-f+1): if s[i] == '-': count=count+1 for j in range(f): s[i+j] = '+' if s[i+j] == '-' else '-' return count if complete("".join(s)) else 'IMPOSSIBLE' def complete(d): for i in range(len(d)): if d[i] == '-': return False return True # print '{} -> {}'.format(882,conv(882)) # print '{} -> {}'.format(110,conv(110)) inFile = 'A-large.in' outFile = inFile.replace('.in', '.out') inf = open(inFile, 'r') outf = open(outFile, 'w') data = inf.readlines() noTests = int(data[0]) i=1 for d in data[1:]: row = d.split(' ') tc = TestCase(i, row[0], int(row[1])) outf.write(tc.p()) print tc.p() i=i+1 outf.close() inf.close()
true
6baa9f7403a1e35b71bd96f8d1aaa062e074fffa
Python
guoweiyu/NinaTools
/ninapro_example.py
UTF-8
1,232
2.546875
3
[]
no_license
from ninaeval.config import config_parser, config_setup from ninaeval.utils.nina_data import NinaDataParser DATA_PATH = "all_data/" MODEL_PATH = "all_models/" def main(): # Reads JSON file via --json, or command line arguments: config_param = config_parser.parse_config() feat_extractor = config_setup.get_feat_extract(config_param.features)() classifier = config_setup.get_model(config_param.model)(MODEL_PATH, feat_extractor) dataset = config_setup.get_dataset(config_param.data)(DATA_PATH, feat_extractor, False) if not dataset.load_dataset(): data_parser = NinaDataParser(DATA_PATH) print("Loading Ninapro data from processed directory...") loaded_nina = data_parser.load_processed_data() print("Extracting dataset features for training, and testing...") dataset.create_dataset(loaded_nina) print("Training classifier on training dataset...") classifier.train_model(dataset.train_features, dataset.train_labels, dataset.test_features, dataset.test_labels) print("Testing classifier on testing dataset...") print(classifier.perform_inference(dataset.test_features, dataset.test_labels)) if __name__ == "__main__": main()
true
1224da19d1f36dc206f4e34ef17fdf69c93db33a
Python
Aasthaengg/IBMdataset
/Python_codes/p04044/s238246335.py
UTF-8
79
2.953125
3
[]
no_license
n,l=map(int,input().split());print(*sorted([input() for _ in range(n)]),sep='')
true
2676c72e15e3bf83670f74d910e48981ad88e4ae
Python
neu-vi/ezflow
/ezflow/functional/criterion/sequence.py
UTF-8
1,446
2.734375
3
[ "MIT" ]
permissive
import torch import torch.nn as nn from ...config import configurable from ..registry import FUNCTIONAL_REGISTRY @FUNCTIONAL_REGISTRY.register() class SequenceLoss(nn.Module): """ Sequence loss for optical flow estimation. Used in **RAFT** (https://arxiv.org/abs/2003.12039) Parameters ---------- gamma : float Weight for the loss max_flow : float Maximum flow magnitude """ @configurable def __init__(self, gamma=0.8, max_flow=400): super(SequenceLoss, self).__init__() self.gamma = gamma self.max_flow = max_flow @classmethod def from_config(cls, cfg): return {"gamma": cfg.GAMMA, "max_flow": cfg.MAX_FLOW} def forward(self, pred, label): assert ( label.shape[1] == 3 ), "Incorrect channel dimension. Set append valid mask to True in DataloaderCreator to append the valid data mask in the target label." n_preds = len(pred) flow_loss = 0.0 flow, valid = label[:, :2, :, :], label[:, 2:, :, :] valid = torch.squeeze(valid, dim=1) mag = torch.sqrt(torch.sum(flow**2, dim=1)) valid = (valid >= 0.5) & (mag < self.max_flow) for i in range(n_preds): i_weight = self.gamma ** (n_preds - i - 1) i_loss = torch.abs(pred[i] - flow) flow_loss += i_weight * torch.mean((valid[:, None] * i_loss)) return flow_loss
true
22cdb807dc1dd63bc932174edb664cad72ea3b26
Python
guard1000/2018_SKKU_Problem-Solving-Algorithms
/11주차_함수_코드.py
UTF-8
2,861
4.25
4
[]
no_license
#1 def ormchasun(x,y,z): if x>y: x,y = y,x if y>z: y,z = z,y if x>y: x,y = y,x print(x,y,z) a = int(input('첫번째 정수 : ')) b = int(input('두번째 정수 : ')) c = int(input('세번째 정수 : ')) print('입력:',a,b,c) print('오름차순:', end=' ') ormchasun(a,b,c) #2 버블정렬 def bubble_sort(data): for i in range(len(data)-1): #각 실행 한번 될 때 마다 가장 큰 녀석을 찾음. for j in range(len(data)-1): if data[j]>data[j+1]: data[j],data[j+1] = data[j+1], data[j] print(data) return data data = [53,27,90,16,76,31,40,55,19,15] bubble_sort(data) #3 def BinarySearch(data, target, low, high): # data 리스트, 타겟, 처음과 끝을 받아 옵시다. if low> high: # 당연히 low가 high보다 크면 뭔가 잘못된거죠? return False else: mid = (low + high) // 2 # 중간 값이 들어있는곳의 위치를 정해줍니다. if target == data[mid]: # 중간 값과 타겟을 비교해서 같다면, print('hit') # hit 을 출력 return True elif target < data[mid]: # 타겟 < 중간 값 이라면, print('miss') return BinarySearch(data, target, low, mid-1) else: # 타겟 > 중간 값 이라면, print('miss') return BinarySearch(data, target, mid+1, high) data = [6,13,14,25,33,43,51,53,64,72,84,93,95,96,97] BinarySearch(data, 33, 0, len(data)-1) #과제 def Input_and_Sort(): #10개의 숫자를 받아 정렬한 리스트를 리턴하는 함수 a_list=[] for i in range(10): a=int(input('숫자를 입력하세요')) a_list.append(a) a_list.sort() return a_list def BinarySearch(data, target, low, high): #이진 탐색 함수 if low>high: return False else: mid = (low + high) // 2 if target == data[mid]: print('hit') return True elif target < data[mid]: print('miss') return BinarySearch(data, target, low, mid-1) else: print('miss') return BinarySearch(data, target, mid+1, high) data= Input_and_Sort() #data에 정렬된 숫자들의 리스트를 대입 print(data) #정렬이 잘 되었는지 확인차 출력 target = data[3] #타겟은 3번 인덱스의 값 BinarySearch(data, target, 0, len(data)-1 )
true
5c483e217fdf7695a57918289a605142c247bf92
Python
mossbanay/Codeeval-solutions
/swap-case.py
UTF-8
129
3.234375
3
[ "MIT" ]
permissive
import sys with open(sys.argv[1]) as input_file: for line in input_file.readlines(): print(line.strip().swapcase())
true
c0cb45f081a0dd765b30d3f77aa64a5506fc7db1
Python
RajanaGoutham/Python
/Natural Language Interface Database/Query.py
UTF-8
2,444
2.78125
3
[]
no_license
class Query: import pymysql f=open("StopWords.txt","r") list1=[] for k in f: k=k.replace('"','') list1.append(k.strip()) #print(list1) q=input("Enter Question:\n") arr=[] qn=q.split(" ") for i in qn: #print(i) if i not in list1: arr.append(i) '''creating query''' def query_gen(arr,dict1,com,comp): From="com" a="" b="" n1="none" ticker="" where="" for i in arr: if 'wh' in i: select ="select" dict3=dict1.keys() #print(dict3) elif i in dict3: a=i b=dict1[i] if dict1[i]=="Profiles": ticker="prof_ticker" elif dict1[i]=="Statistics": ticker="stat_ticker" else: ticker="Fin_ticker" elif i in com: n1=i From=i if n1=="none": return select+" "+a+" "+"from"+" "+b return select+" "+a+" "+"from"+" "+b+" "+"where"+" "+ticker+"='"+n1+"'" '''creating dict for tables in Database''' dict1={"stat_ticker" :"Statistics","marketcap":"Statistics","enterprise_value" :"Statistics","return_on_assets" : "Statistics","total_cash" : "Statistics","operating_cash_flow" :"Statistics","levered_free_cash_flow" :"Statistics","total_debt" : "Statistics","current_ratio" :"Statistics","gross_profit" :"Statistics","proffit_margin" :"Statistics","prof_ticker" :"Profiles","name" : "Profiles","Address" : "Profiles","phonenum" :"Profiles","website" : "Profiles","sector" : "Profiles","industry" :"Profiles","full_time" :"Profiles","bus_summ" :"Profiles","Fin_ticker" : "Finances","Total_Revenue": "Finances","Cost_of_Revenue": "Finances","Income_Before_Tax" : "Finances","Net_Income" : "Finances"} f=open("ticker.txt",'r') Tickername=list(f) symbols=[] n=[] for i in Tickername: j=i.split(":") symbols.append(j[0].strip()) n.append(j[1].strip()) que=query_gen(arr,dict1,symbols,n) conn=pymysql.connect("localhost","root","Msit@0066","yahoo") #try: cur=conn.cursor() cur.execute(que) print(que) rows=cur.fetchall() '''printing rows for given question''' for i in rows: print(i) #except: #print("Invalid Quary") conn.close()
true
3bff4959e123dacd5922127ff96480f51469ffdd
Python
jakudapi/aoc2016
/day08-1.py
UTF-8
3,792
4.1875
4
[]
no_license
""" --- Day 8: Two-Factor Authentication --- You come across a door implementing what you can only assume is an implementation of two-factor authentication after a long game of requirements telephone. To get past the door, you first swipe a keycard (no problem; there was one on a nearby desk). Then, it displays a code on a little screen, and you type that code on a keypad. Then, presumably, the door unlocks. Unfortunately, the screen has been smashed. After a few minutes, you've taken everything apart and figured out how it works. Now you just have to work out what the screen would have displayed. The magnetic strip on the card you swiped encodes a series of instructions for the screen; these instructions are your puzzle input. The screen is 50 pixels wide and 6 pixels tall, all of which start off, and is capable of three somewhat peculiar operations: rect AxB turns on all of the pixels in a rectangle at the top-left of the screen which is A wide and B tall. rotate row y=A by B shifts all of the pixels in row A (0 is the top row) right by B pixels. Pixels that would fall off the right end appear at the left end of the row. rotate column x=A by B shifts all of the pixels in column A (0 is the left column) down by B pixels. Pixels that would fall off the bottom appear at the top of the column. For example, here is a simple sequence on a smaller screen: rect 3x2 creates a small rectangle in the top-left corner: ###.... ###.... ....... rotate column x=1 by 1 rotates the second column down by one pixel: #.#.... ###.... .#..... rotate row y=0 by 4 rotates the top row right by four pixels: ....#.# ###.... .#..... rotate column x=1 by 1 again rotates the second column down by one pixel, causing the bottom pixel to wrap back to the top: .#..#.# #.#.... .#..... As you can see, this display technology is extremely powerful, and will soon dominate the tiny-code-displaying-screen market. That's what the advertisement on the back of the display tries to convince you, anyway. There seems to be an intermediate check of the voltage used by the display: after you swipe your card, if the screen did work, how many pixels should be lit? """ from time import time import numpy as np def shifter(array, amount): """ array: np.array[int] amount: int. times to shift OUTPUT- returns np.array[int] """ amount = amount % len(array) return np.concatenate((array[-amount:], array[:-amount])) def rect(screen, num_cols, num_rows): """ screen: np.array representing the screen num_cols: int. num_rowls: int OUTPUT- none """ screen[:num_rows, :num_cols] = 1 # turns pixels on def rotate(screen, axis, index, shift): """ screen: np.array representing the screen axis: str. either "row" or "column index: int. what "row" or "column" shift: int. how much to shift (wraps around end) OUTPUT- none """ if axis == 'row': screen[index] = shifter(screen[index], shift) elif axis == 'column': screen[:,index] = shifter(screen[:,index], shift) with open("day08input.txt") as fp: screen = np.zeros((6,50), dtype=np.int) #initialize blank screen. 6 rows, 50 cols. for line in fp: instruction = line.rstrip("\n").split(" ") # split line into list of words if instruction[0] == 'rect': coordinates = instruction[1].split('x') # ie '12x3' => ['12','3'] rect(screen, num_cols=int(coordinates[0]), num_rows=int(coordinates[1])) print(screen) elif instruction[0] == "rotate": index = int(instruction[2].split('=')[1]) # 'x=32'=> ['x','32']=> 32 rotate(screen, axis=instruction[1], index=index, shift=int(instruction[4])) print(screen) print("Pixels on: {}".format(screen.sum()))
true
923ca8285e370c66dbcc7b211f094f2c0589725c
Python
Sayak09/IPL_Powerplay_ScorePrediction
/predictor.py
UTF-8
3,474
2.546875
3
[]
no_license
def predictRuns(testInput): prediction = 0 import tensorflow as tf import pandas as pd model = tf.keras.models.load_model("model.h5",compile=False) df2=pd.read_csv(testInput) ven=df2.iloc[:,0].values inn=df2.iloc[:,1].values bat_team=df2.iloc[:,2].values bowl_team=df2.iloc[:,3].values bat=df2.iloc[:,4].values bowl=df2.iloc[:,5].values c=0 for i in bat[0]: if i==',': c+=1 d=0 for i in bowl[0]: if i==',': d+=1 no_of_bowlers=float(d+1) no_of_wickets=float(c-1) innings=float(inn[0]) if bat_team == "Kolkata Knight Riders": bat_no=6 elif bat_team == "Royal Challengers Bangalore": bat_no=0 elif bat_team == "Chennai Super Kings": bat_no=1 elif bat_team == "Punjab Kings": bat_no=9 elif bat_team == "Rajasthan Royals": bat_no=10 elif bat_team == "Delhi Capitals": bat_no=2 elif bat_team == "Sunrisers Hyderabad": bat_no=4 elif bat_team == "Mumbai Indians": bat_no=7 else: bat_no=5 if bowl_team == "Kolkata Knight Riders": bowl_no=6 elif bowl_team == "Royal Challengers Bangalore": bowl_no=0 elif bowl_team == "Chennai Super Kings": bowl_no=1 elif bowl_team == "Punjab Kings": bowl_no=9 elif bowl_team == "Rajasthan Royals": bowl_no=10 elif bowl_team == "Delhi Capitals": bowl_no=2 elif bowl_team == "Sunrisers Hyderabad": bowl_no=4 elif bowl_team == "Mumbai Indians": bowl_no=7 else: bowl_no=5 if ven == "Ahmedabad" or ven=="Narendra Modi Stadium": ven_no=26 elif ven == "Mumbai" or ven=="Wankhede Stadium": ven_no=5 elif ven == "Kolkata" or ven=="Eden Gardens": ven_no=4 elif ven == "Chennai" or ven=="MA Chidambaram Stadium, Chepauk" or ven=="MA Chidambaram Stadium, Chepauk , Chennai" or ven=="MA Chidambaram Stadium": ven_no=8 elif ven == "Delhi" or ven=="Feroz Shah Kotla" or ven=="Arun Jaitley Stadium": ven_no=3 else: ven_no=1 b=[] for i in range(0,11): if i==(bat_no): b.append(1) else: b.append(0) b1=[] for i in range(0,11): if i==(bowl_no): b1.append(1) else: b1.append(0) v=[] for i in range(1,27): if i==(ven_no): v.append(1) else: v.append(0) arr=[] arr.append(innings) arr.append(5.6) for i in v: arr.append(i) for i in b: arr.append(i) for i in b1: arr.append(i) arr.append(no_of_wickets) arr.append(no_of_bowlers) prediction=int(model.predict([arr])) if (prediction>=0 and prediction<10): prediction+=30 elif (prediction>=10 and prediction<20): prediction+=20 elif (prediction>=20 and prediction<25): prediction+=15 elif (prediction>=25 and prediction<=27): prediction+=10 elif (prediction>27 and prediction<=30): prediction+=8 elif (prediction>30 and prediction<=32): prediction+=4 else: prediction=prediction return prediction
true
5dc8faa80f3118cb685f25c6b60f573e25f2e9eb
Python
lemonade512/DotFiles
/cli/system_info.py
UTF-8
869
2.84375
3
[]
no_license
""" Tools for retrieving information about user's system. The install script in this repository aims to support as many environments as possible, and each environment has its own tools for package management and configuration. The tools in this file are meant to detect information about the current system in a portable fashion that works with both Python 2 and Python 3. """ import logging import platform def get_platform(): if platform.uname()[0] == "Darwin": return "darwin" elif platform.uname()[0] == "Linux": linux_distro = platform.dist()[0] if linux_distro == "Ubuntu": return "debian" return linux_distro else: logging.error("Unkown platform {}".format(platform.platform())) return None if __name__ == "__main__": print("Operating system detected: {}".format(get_platform()))
true
5395b967f59fe2531d62f9b55389e19ae8e1f32b
Python
karolmikolajczuk/Hackerrank-Python
/merge_the_tools.py
UTF-8
1,491
3.765625
4
[]
no_license
#split string into groups def get_substrings(text, nr_of_substr, k): #create a list with precised size list_of_strings = [] #iterate through whole string for index in range(0, nr_of_substr*k, k): list_of_strings.append(text[index:index+k]) #return the list return list_of_strings #distinct sub string def no_duplicate(substring): print("no_duplicate function") print(substring) list_of_chars = [] list_of_added = [] for char in substring: if char in list_of_added: continue list_of_chars.append(char) list_of_added.append(char) return ''.join(str(char) for char in list_of_chars) #invoke `main` function for code def merge_the_tools(string, k): #logging print("###Length of given string={}\n###Split={}\n###Dividing={}".format(len(string), k, len(string)/k)) #get number of groups - sub strings number_of_substrings = int(len(string)/k) #get string splitted into sub-strings list_of_substrings = get_substrings(string, number_of_substrings, k) #distinct list_results = [] for l in list_of_substrings: list_results.append(no_duplicate(l)) #dla kazdego pod stringa for sub_string in list_results: print(sub_string) if __name__ == '__main__': #get data string = str(input()) split = int(input()) #invoke function for printing distincted substrings merge_the_tools(string, split)
true
0ce6b06bcfe644b5eb3ae501121141fda74b8034
Python
adrianstaniec/advent_of_code
/10/sol.py
UTF-8
878
3.375
3
[]
no_license
from collections import Counter adapters = [] while True: try: adapters.append(int(input())) except Exception as e: break print(adapters) adapters.sort() adapters = [0] + adapters + [adapters[-1] + 3] print(adapters) diffs = [adapters[i + 1] - adapters[i] for i in range(len(adapters) - 1)] # diffs = [1] + diffs + [3] print(diffs) counter = Counter(diffs) print(counter) print("--- Part One ---") print(counter[1] * counter[3]) print("--- Part Two ---") def arrangements_from_subsequent_unit_differences(x): if 0 <= x and x <= 6: return {0: 1, 1: 1, 2: 2, 3: 4, 4: 7, 5: 13, 6: 25}[x] else: raise NotImplemented n_arrangements = 1 cnt = 0 for d in diffs: if d == 1: cnt += 1 elif d == 3: n_arrangements *= arrangements_from_subsequent_unit_differences(cnt) cnt = 0 print(n_arrangements)
true
dfbaae8eaa94b21495e8861ffcb641699cc3f194
Python
gkaframanis/roommates-bill
/reports.py
UTF-8
1,686
3.375
3
[]
no_license
import webbrowser from fpdf import FPDF import os class PdfReport: """ Creates a Pdf file that contains data about the flatmates such as their names, their due amount and the period of the bill. """ def __init__(self, filename): self.filename = filename def generate(self, bill, *roommates): # unit: using points (pt) pdf = FPDF(orientation="P", unit="pt", format="A4") # Add a new page pdf.add_page(orientation="P") # Add icon pdf.image(name="./files/house.png", w=30, h=30, type="png") # Add some text pdf.set_font(family="Times", size=24, style="B") # We write in cells | When w=0 it means it takes up the whole line. | ln=1 so the next cell will be added under this cell. pdf.cell(w=0, h=40, txt="The Bill of the Roommates", border=0, align="C", ln=1) pdf.cell(w=0, h=40, txt=f"Total Bill: {bill.amount} $", border=0, align="C", ln=1) # Change the font for the rest of the text. pdf.set_font(family="Times", size=14, style="B") # Starts from the left side of the cell by default. pdf.cell(w=250, h=25, txt=f"Period: {bill.period}", border=0, ln=1) for roommate in roommates: pdf.set_font(family="Times", size=12) pdf.cell(w=200, h=25, txt=f"{roommate.name} - {roommate.pays(bill, *roommates)} $", ln=1) # Change my current dir to files and output it in there. os.chdir("files") pdf.output(self.filename) # Open the pdf file automatically to the default web browser pdf viewer. webbrowser.open(f"file://{os.path.realpath(self.filename)}")
true
28b61fe2976dac91882bd5ec26cb8f2f9173abc8
Python
aletcherhartman/pong.py
/Old Files/paddel.py
UTF-8
818
3.078125
3
[]
no_license
VIPERimport pygame import math class paddel(object): """docstring for paddel""" def __init__(self, arg): self.X = 30 self.Y = 30 self.change_x = 0 self.change_y = 0 def makePaddel(self): paddel = paddel() # Hide the mouse cursor pygame.mouse.set_visible(0) # Draw the paddelangle pygame.draw.paddel(screen, WHITE, [paddel.X, paddel.Y, 30, 60]) def playerMotion(self): pos = pygame.mouse.get_pos() paddel.Y = pos[1] def compMotion(self,ballY): paddelY = math.abs(ball.y - ball.y*0.2); if paddelY-paddelX/2<0 paddel.y += paddel.change_y if paddelY+paddelX/2>height paddel.y -= paddel.change_y return paddel
true
f8923e83f1b39622aa29a578535efbf72f79ba10
Python
suzySun345/algorithm011-class02
/Week_02/589.n叉树的前序遍历.py
UTF-8
640
3.28125
3
[]
no_license
# # @lc app=leetcode.cn id=589 lang=python # # [589] N叉树的前序遍历 # # @lc code=start """ # Definition for a Node. class Node(object): def __init__(self, val=None, children=None): self.val = val self.children = children """ class Solution(object): def preorder(self, root): """ :type root: Node :rtype: List[int] """ res = [] q = [root] if root != None: while q: node = q.pop() res.append(node.val) q += [child for child in node.children[::-1] if child] return res # @lc code=end
true
690875d333af22341eafc7f466fe7a048d383b42
Python
ritesh-deshmukh/Algorithms-and-Data-Structures
/180Geeks/Arrays/Kadane's Algorithm.py
UTF-8
472
4.40625
4
[]
no_license
# Given an array containing both negative and positive integers. Find the contiguous sub-array with maximum sum. # arr = [1,2,3] arr = [-1,-2,-3,-4] size = len(arr) def max_subarray(arr, size): max_arr = arr[0] curr_max = arr[0] for i in range(1,size): curr_max = max(arr[i], curr_max + arr[i]) max_arr = max(max_arr, curr_max) return max_arr print(f"Given array: {arr}") print(f"Sub-array with maximum sum: {max_subarray(arr,size)}")
true
d184ee8c4a3efedb1f76eb88b3b1eff928a30e0f
Python
pshevade/Udacity_project_2
/tournament.py
UTF-8
19,354
3.3125
3
[]
no_license
#!/usr/bin/env python # # tournament.py -- implementation of a Swiss-system tournament # import psycopg2 import random import math import bleach def connect(): """Connect to the PostgreSQL database. Returns a database connection.""" DB = psycopg2.connect("dbname=swiss_style") return DB, DB.cursor() def executeQuery(query, values=None): """ Connect to database and execute the query that is passed Parameter 'values' can be a list of n elements, or can be None, in which case the query is fully described as is """ rows = ['empty'] DB_connection, cur = connect() if values is not None: cur.execute(query, values) else: cur.execute(query) DB_connection.commit() try: rows = cur.fetchall() except psycopg2.ProgrammingError: pass DB_connection.close() return rows def registerTournament(name): """ Register a tournament, of the name give by parameter 'name'""" bleach.clean(name) query = "INSERT INTO tournaments (tournament_name) values (%s) RETURNING tournament_id;" values = (name,) row = executeQuery(query, values) return row[0][0] # row will only have one element, the tournament_id def deleteMatches(): """ Remove all the match records from the database.""" query = "DELETE FROM swiss_pairs" executeQuery(query) query = "DELETE FROM match_list" executeQuery(query) query = "DELETE FROM bye_list" executeQuery(query) def deleteTournaments(): """ Remove all tournaments from database """ query = "DELETE FROM tournaments" executeQuery(query) def deletePlayers(): """ Remove all the player records from the database.""" sub_query = "SELECT player_id from players" rows = executeQuery(sub_query) for row in rows: deleteSpecificPlayer(row[0]) def deleteSpecificPlayer(player_id): """ Deletes a specific player, based on the player_id""" query = "DELETE FROM players where player_id = %s" values = (player_id, ) executeQuery(query, values) def countPlayers(): """ Count all players, across all tournaments Returns the number of players currently registered.""" query = "SELECT count(*) from players;" row = executeQuery(query) return row[0][0] def countPlayersInTournament(tournament): """ Count all players in a given tournament""" # Sanitize input, in case it comes from web app/environment bleach.clean(tournament) tournament_id = getTournamentID(tournament) query = "SELECT count(*) from tournament_contestants where tournament_id = %s" values = (tournament_id, ) rows = executeQuery(query, values) return rows[0][0] def registerPlayer(name, tournament="Default"): """Adds a player to the tournament database. The database assigns a unique serial id number for the player. (This should be handled by your SQL database schema, not in your Python code.) Args: name: the player's full name (need not be unique). Logic - 1. check if tournament exists, else create it. 1b. if tournament doesn't exist, create it 2. register players 3. register player and tournament in tournament_contestants """ # Sanitize input, in case it comes from web app/environment bleach.clean(name) bleach.clean(tournament) # 1. check if tournament exists: tournament_id = getTournamentID(tournament) # 1b. if tournament does not exist, register/create it if tournament_id == -1: tournament_id = registerTournament(tournament) # 2. register player query = "INSERT INTO players (player_name) values (%s) RETURNING player_id;" values = (name, ) row = executeQuery(query, values) player_id = row[0][0] # 3. register player and tournament in tournament_contestants registerContestants(player_id, tournament_id) return player_id def getTournamentID(tournament): """ Return's the tournament_id value from tournaments database when given the tournament's name as the parameter 'tournament' If no tournament exists of the name, returns a -1 to recognize this """ # Sanitize input, in case it comes from web app/environment bleach.clean(tournament) query = "select tournament_id from tournaments where tournament_name = %s" values = (tournament, ) rows = executeQuery(query, values) # 1.b if no tournament doesn't exit, create it if len(rows) is not 0: tournament_id = rows[0][0] else: print("No tournament exits, may need to create tournament {0}".format(tournament)) tournament_id = -1 return tournament_id def playerStandings(tournament="Default"): """Returns a list of the players and their win records, sorted by wins. The first entry in the list should be the player in first place, or a player tied for first place if there is currently a tie. Returns: A list of tuples, each of which contains (id, name, wins, matches): id: the player's unique id (assigned by the database) name: the player's full name (as registered) wins: the number of matches the player has won matches: the number of matches the player has played """ # Sanitize input, in case it comes from web app/environment bleach.clean(tournament) tournament_id = getTournamentID(tournament) standings = [] # Find the players are tied by points query = "SELECT a.player_id, b.player_id from getMatchesAndWins as a, getMatchesAndWins as b where a.player_points = b.player_points and a.player_id < b.player_id order by a.player_points" tied_players_rows = executeQuery(query) # Resolve them based on OMW. reordered_rows = [] for tied_players in tied_players_rows: tied_players = resolveOMW(tied_players[0], tied_players[1]) reordered_rows.append(tied_players) # Get the player standings ranked by wins and player_points query = "SELECT player_id, player_name, wins, matches, player_points from getMatchesAndWins where tournament_id = %s" values = (tournament_id,) standings_rows = executeQuery(query, values) # Rearrange the standings based on the tied pairs that need to be reordered based on OMW for tied_pair in reordered_rows: # Find the index where the player_id in tied_pair is in standings for standings in standings_rows: if tied_pair[0] == standings[0]: index_p1 = standings_rows.index(standings) if tied_pair[1] == standings[0]: index_p2 = standings_rows.index(standings) # Swap the rows in case they are incorrectly ordered based on OMW if index_p1 > index_p2: standings_rows[index_p1], standings_rows[index_p2] = standings_rows[index_p2], standings_rows[index_p1] # We only need player_id, player_name, wins, matches to return player_standings = [] for row in standings_rows: player_standings.append((row[0], row[1], row[2], row[3])) return player_standings def printStandings(standings): print("Player ID".ljust(10)+"Player Name".ljust(20)+"Wins".ljust(10)+"Matches".ljust(10)) for row in standings: print(str(row[0]).ljust(10)+str(row[1]).ljust(20)+str(row[2]).ljust(10)+str(row[3]).ljust(10)) def reportMatch(winner, loser, tied=0, tournament="Default"): """Records the outcome of a single match between two players. Args: winner: the id number of the player who won loser: the id number of the player who lost tied: in case the match is a tie, then winner, loser are just tied players tournament: defaults to "Default", this will allow to report matches per tournament name """ # Sanitize input, in case it comes from web app/environment bleach.clean(tournament) bleach.clean(winner) bleach.clean(loser) bleach.clean(tied) tournament_id = getTournamentID(tournament) if tied == 0: values_report_match = (tournament_id, winner, loser, winner, tied) query2 = "UPDATE tournament_contestants set player_points = player_points + 2 where player_id = %s" values2 = (winner,) executeQuery(query2, values2) else: values_report_match = (tournament_id, winner, loser, -1, tied) query2 = "UPDATE tournament_contestants set player_points = player_points + 1 where player_id = %s" values2 = (winner,) executeQuery(query2, values2) values2 = (loser,) executeQuery(query2, values2) query_report_match = "INSERT into match_list (tournament_id, player1_id, player2_id, winner_id, tied) values (%s, %s, %s, %s, %s)" rows = executeQuery(query_report_match, values_report_match) def getPlayerId(name): """ Returns player_id based on the player's name given by parameter 'name' """ # Sanitize input, in case it comes from web app/environment bleach.clean(name) query = "select player_id from players where player_name = %s;" values = (name, ) rows = executeQuery(query, values) if len(rows) > 0: return rows[0][0] else: return 'Not found' def registerContestants(player, tournament): """ Registers the contestants per tournament Done for the case when multiple tournaments exist """ # Sanitize input, in case it comes from web app/environment bleach.clean(player) bleach.clean(tournament) query = "INSERT INTO tournament_contestants values (%s, %s);" values = (tournament, player, ) executeQuery(query, values) def swissPairings(tournament="Default"): """ Generate the swiss pairings for a given tournament. if tournament is not given, then creates swiss pairs out of the default tournament playerStandings Logic: 1. get tournament_id and calculate total rounds and total matches possible 2. for tournament_id, check if each player has played the same number of matches 3. if each player has played the same number of matches, check if matches played = max if odd players, then total players = n+1 where n is registered players (so one player can get a bye) note: total rounds = log(2) n where n players or = log(2) (n+1) where n players and n odd total matches = (log(2) n) x n/2 where n players or = log(2) (n+1) x (n+1)/2 where n players and n odd 4. if odd number of players, give a player a bye in that round (making sure only one bye per player per tournament) 5. generate swiss pairing by sorting players by wins """ # Sanitize input, in case it comes from web app/environment bleach.clean(tournament) # 1. get tournament_id and calculate total rounds and total matches possible player_pairs = [] count_players = countPlayersInTournament(tournament) tournament_id = getTournamentID(tournament) # check if count_players is odd, need to allocate a "space" for bye in that case if count_players<0: print("We don't have any players!") else: total_rounds = round(math.log(count_players, 2)) total_matches = round(total_rounds * count_players/2) # 2. for tournament_id, check if each player has played the same number of matches standings = playerStandings(tournament) # We get player_id, player_name, matches_played, wins # Rows contains a list of tuples (player_id, matches played) # We first separate the matches played of all players into a list matches_played = [row[3] for row in standings] # Then we check if all the elements (matches played of all players) is the same all_played_same_matches = all(x == matches_played[0] for x in matches_played) if all_played_same_matches: # 3. if each player has played the same number of matches, check if matches played = max if matches_played[0] == total_matches: print("We have played all the matches possible in this Swiss Style Tournament") else: # 4. if odd number of players, give a player a bye in that round # (making sure only one bye per player per tournament) players_by_wins_bye = giveBye(standings, tournament_id) # 5. generate swiss pairing by sorting players by their standings/bye player_pairs = getPlayerPairs(players_by_wins_bye) query = "INSERT into swiss_pairs values (%s, %s, %s, %s)" # The current round number is calculated by 2 ^ (matches played/total players/2) for pair in player_pairs: values = (tournament_id, pair[0], pair[2], 2**round(matches_played[0]/(count_players/2)),) executeQuery(query, values) else: print("We have players who still haven't played in this round, as follows: ") for row in rows: print("Player ID: {0} has played {1} matches".format(row[0], row[1])) return player_pairs def giveBye(standings, tournament_id): """ In case of making swiss pairs for an odd number of players in the tournament, one player needs to be given a bye. This function figures out which player hasn't been given a bye yet, and gives that player a bye The list of players with a bye is stored in the database. Only one bye per player per tournament """ # get players by the player_id (0th element) & their wins (2nd element) players_by_wins_rows = [(row[0], row[1]) for row in standings] # Only need to give a bye in case there are odd number of players if len(players_by_wins_rows) %2 is not 0: for player_count in range(0, len(players_by_wins_rows)): # Check if player has already been given a bye query = "select * from bye_list where player_id = %s and tournament_id = %s" values = (players_by_wins_rows[player_count][0], tournament_id, ) bye_rows = executeQuery(query, values) # if bye has NOT been given to the player yet, bye_rows will be empty if len(bye_rows) == 0: # if player hasn't gotten a bye, give a bye, and insert this record query = "insert into bye_list values (%s, %s)" values = (tournament_id, players_by_wins_rows[player_count][0]) insert_bye_row = executeQuery(query, values) bye_player = players_by_wins_rows.pop(player_count) players_by_wins_rows.append(bye_player) players_by_wins_rows.append((None, 'bye')) break return players_by_wins_rows def getPlayerPairs(players): """ Returns a list of tuples """ # check if we need a bye, i.e if the number of players is odd players.reverse() player_pairs = [] while len(players) > 0: player_pairs.append((players.pop() + players.pop())) return player_pairs def resolveOMW(player1, player2, tournament="Default"): """ Input: player1 : player's id player2 : player's id player1 and player 2 are ordered (i.e. if player of id 7 is ranked above id 3, player1 = 7, player2 = 3) Logic: 1. get all players player1 has played with 2. get all players player2 has played with 3. make a list of players both players have played with 4. add both players themselves to the list of common players - this is done to make sure we find out who won the match(es) between those two players as well as for player2, calculate all the players from common list they have won against 5. Find out who won matches between player 1 and common list, and then between player 2 and common list 6. See how many games against common opponents has player1 won and player2 won 7. if player 2 has won more games than player 1, swap their order """ # Sanitize input, in case it comes from web app/environment bleach.clean(tournament) # 1. get all players player1 has played with tournament_id = getTournamentID(tournament) query = "SELECT player2_id from match_list where player1_id = %s and tournament_id = %s" values = (player1, tournament_id, ) rows = executeQuery(query, values) players_p1_played_with = [row[0] for row in rows] query = "SELECT player1_id from match_list where player2_id = %s and tournament_id = %s" values = (player1, tournament_id, ) rows = executeQuery(query, values) players_p1_played_with+= [row[0] for row in rows] # 2. get all players player2 has played with query = "SELECT player2_id from match_list where player1_id = %s and tournament_id = %s" values = (player2, tournament_id, ) rows = executeQuery(query, values) players_p2_played_with = [row[0] for row in rows] query = "SELECT player1_id from match_list where player2_id = %s and tournament_id = %s" values = (player2, tournament_id, ) rows = executeQuery(query, values) players_p2_played_with+=[row[0] for row in rows] # 3. make a list of players both players have played with common_players_list = list(frozenset(players_p1_played_with).intersection(players_p2_played_with)) # 4. add both players themselves to the list of common players # - this is done to make sure we find out who won the match(es) between those # two players as well common_players_list.append(player1) common_players_list.append(player2) # 5. Find out who won matches between player 1 and common list, and then # between player 2 and common list player1_vs_common_matches = [] # contains the winner id between player1 and corresponding common player player2_vs_common_matches = [] # contains the winner id between player2 and corresponding common player for common_player in common_players_list: query = "SELECT winner_id from match_list where player1_id = %s and player2_id = %s" \ "or player2_id = %s and player1_id = %s" values = (player1, common_player, player1, common_player,) rows = executeQuery(query, values) player1_vs_common_matches += [row[0] for row in rows] values = (player2, common_player, player2, common_player,) rows = executeQuery(query, values) player2_vs_common_matches += [row[0] for row in rows] # 6. See how many games against common opponents has player1 won and player2 won # From the list of winner_ids for matches between player1 and # common list (and player2 and common list), we count how often winner_id = player1_id # and how often winner_id = player2_id matches_p1_won_against_common = player1_vs_common_matches.count(player1) matches_p2_won_against_common = player2_vs_common_matches.count(player2) # 7. if player 2 has won more games than player 1, swap their order if matches_p1_won_against_common < matches_p2_won_against_common: return (player2, player1) else: return (player1, player2)
true
1fec056289fb0e90174ab903bc40bc546e70bda7
Python
junyang10734/leetcode-python
/713.py
UTF-8
566
3.359375
3
[]
no_license
# 713. Subarray Product Less Than K # Two pointers (sliding window) # https://blog.csdn.net/fuxuemingzhu/article/details/83047699 # running time: faster than 63.76% class Solution: def numSubarrayProductLessThanK(self, nums: List[int], k: int) -> int: N = len(nums) prod = 1 l, r = 0, 0 res = 0 while r < N: prod *= nums[r] while l <= r and prod >= k: prod /= nums[l] l += 1 res += r - l + 1 r += 1 return res
true
f8bbcea5255c7796fa2552f2481dc2df2171b9c3
Python
adambemski/Python-Snake-Game
/conf.py
UTF-8
472
2.765625
3
[]
no_license
import configparser config = configparser.ConfigParser() config.read('config.ini') display_horizontal_size_x = int(config['display']['horizontal_size_x']) display_vertical_size_y = int(config['display']['vertical_size_y']) x1 = int(config['snake']['start_point_x']) y1 = int(config['snake']['start_point_y']) snake_size = int(config['snake']['size']) game_speed = int(config['game']['speed']) black = (0, 0, 0) red = (255, 0, 0) green = (0, 255, 0) blue = (0, 0, 255)
true
6faaffb98e148510c93f045a379622d7925d62bb
Python
moritzschaefer/unsupervised-text-detection
/src/predict_test_img.py
UTF-8
6,902
2.875
3
[]
no_license
#!/usr/bin/env python3 ''' This is the central main file combining all the prediction functionality. It fetches images from config.TEST_IMAGE_PATH and predicts the parts with text contained and the characters contained. TODO: integrate better character_recognition from notebook TODO2: save outputs as: for each input image - One json containing coordinates of text regions and recognized characters (along with positions and sizes) - The original image (png) overlayed with bounding boxes of detected text and printed recognized characters - npy of text detection - npy of character recognition ''' import os from multiprocessing.pool import Pool import pickle import logging import glob import cv2 import numpy as np from skimage.transform import pyramid_gaussian from character_training import load_model import feature_extraction import config from character_recognition import character_recognition, filter_good_characters logging.basicConfig(level=logging.INFO) def sliding_window(img, model, step_size=1): ''' Yield all windows in an image ''' for y in range(0, img.shape[0]-32, step_size): for x in range(0, img.shape[1]-32, step_size): yield (x, y, img[y:min(y+32, img.shape[0]), x:min(x+32, img.shape[1]), :], model) def async_predict(args): x, y, window, model = args features = feature_extraction.\ get_features_for_window(window) # reshape it so it contains a single sample try: v = model.predict_proba(features[1].flatten().reshape(1, -1)) except Exception as e: print(x, y, e) return x, y, 0 return x, y, v[0][1] def get_prediction_values(img, model, step_size=1): ''' Calculate the text_recognition probabilities for each pixel for each layer :return: A list of tuples (img with layer dimensions, prediction values) ''' layers = [] for i, layer_img in enumerate(get_all_layers(img)): pool = Pool(processes=8) padded_img = cv2.copyMakeBorder(layer_img, 32, 32, 32, 32, cv2.BORDER_REFLECT) values = np.zeros(shape=[padded_img.shape[0], padded_img.shape[1]], dtype='float') pixel_counter = 0 logging.info('started for layer {}'.format(i)) for x, y, v in pool.imap(async_predict, sliding_window(padded_img.astype('float32'), model, step_size), 8): values[y:y+step_size+32, x:x+step_size+32] += v if (pixel_counter) % 100 == 0: logging.info("pixel_counter: {}/{} from layer {}". format(pixel_counter, ((padded_img.shape[0] - 31) * (padded_img.shape[1] - 31)) // step_size**2, i)) pixel_counter += 1 pool.close() pool.join() layers.append((layer_img.astype('float32'), values[32:-32, 32:-32])) logging.info('finished layer {}'.format(i)) return layers # return all Scaling image of a Image,save into Layer Matrix def get_all_layers(img): for (i, resized) in enumerate( pyramid_gaussian(img, downscale=config.LAYER_DOWNSCALE, max_layer=config.NUM_LAYERS)): # if the image is too small, break from the loop if resized.shape[0] < 32 or resized.shape[1] < 32: break yield resized def predict_images(step_size=1, plot=True, character=True): ''' Predict all images in config.TEST_IMAGE_PATH Save the predictions in TEST_IMAGE_PATH ''' text_model = pickle.load(open(config.TEXT_MODEL_PATH, 'rb')) # get model if character: character_model = load_model() dictionary = np.load(config.DICT_PATH) # get dictionary image_files = glob.glob(os.path.join(config.TEST_IMAGE_PATH, '*.png')) for filename in image_files: img = cv2.imread(filename) logging.info('started computation for img {}'. format(filename.split('/')[-1].split('.')[0])) predicted_layers = get_prediction_values(img, text_model, step_size) texts = [] for layer, (layer_img, layer_predictions) in \ enumerate(predicted_layers): # compute if plot: cv2.imshow("image 1", layer_img) cv2.imshow("image 2", layer_predictions/layer_predictions.max()) cv2.waitKey(0) cv2.destroyAllWindows() np.save('{}/{}_layer_{}_prediction.npy'.format( config.TEST_IMAGE_PATH, filename.split('/')[-1].split('.')[0], layer), layer_predictions) if character: print('Calculate Characters for layer {}'.format( layer_img.shape)) layer_texts = character_recognition(layer_img, layer_predictions, dictionary, character_model) texts.extend(filter_good_characters(layer_texts, layer)) if texts: pickle.dump(texts, open('{}/{}_character_predictions.pkl'.format( config.TEST_IMAGE_PATH, filename.split('/')[-1].split('.')[0]), 'wb')) # combine_probability_layers(img, predicted_layers) def combine_probability_layers(img, layers): ''' Return a combined image of all probabilities ''' text_probability_image = np.zeros(img.shape, float) for y in range(0, img.shape[0]): for x in range(0, img.shape[1]): max_probability = 0 for layer in layers: # x and y in the layer which correspond to position in # original image trans_y = (layer.shape[0]/img.shape[0]) * y trans_x = (layer.shape[1]/img.shape[1]) * y window = layer[max(0, trans_y-32): min(trans_y+1, layer.shape[0]), max(0, trans_x-32): min(trans_x+1, layer.shape[1])] max_probability = max(max_probability, window.max()) text_probability_image[y, x] = max_probability cv2.imshow("image 1", img) cv2.imshow("image 2", text_probability_image) cv2.waitKey(0) return text_probability_image if __name__ == "__main__": predict_images(config.STEP_SIZE, plot=False, character=True)
true
627f206ab368c13e5fe88654fee79007ee5dcc31
Python
JuneKim/algorithm
/ProblemSolving/LeetCode/1935_Maximum Number of Words You Can Type.py
UTF-8
891
3.359375
3
[]
no_license
# runtime: 93.91%, memory: 56.52% class Solution: def canBeTypedWords(self, text: str, brokenLetters: str) -> int: li_txt = text.split(" ") myCnt = 0 for txt in li_txt: is_found = False for broken in brokenLetters: if broken in txt: is_found = True break if not is_found: myCnt += 1 return myCnt data = [[ "hello world", "ad"], ["leet code", "lt"], [ "leet code", "e"]] result = [1,1,0] sol = Solution() is_success = True for _idx, _data in enumerate(data): ret = sol.canBeTypedWords(_data[0], _data[1]) if result[_idx] != ret: print (f"Failed. {_idx}") print (f"Output:{ret}") print (f"Expected:{result[_idx]}") is_success = False if is_success: print ("Success!!")
true
1e3764a9f3c93441200d68821f85546165e6d58b
Python
CodeTest-StudyGroup/Code-Test-Study
/JangWoojin/[5]백준/2014_소수의 곱.py
UTF-8
354
2.90625
3
[]
no_license
import sys from heapq import heappush, heappop, heapify input = sys.stdin.readline k, n = map(int, input().split()) primes = list(map(int, input().split())) hq = primes.copy() heapify(hq) num = 0 for _ in range(n): num = heappop(hq) for prime in primes: heappush(hq, prime * num) if num % prime == 0: break print(num)
true
0916f474067ac371f65f4f46279de8176a141a7e
Python
2q45/Python-crash-course
/2-12.py
UTF-8
277
4
4
[]
no_license
bicycles = [1,2,3,4] print(f"My first bicycle was a {bicycles[1]}") print(f"{bicycles}") print(bicycles[1]) print(bicycles[3]) print(bicycles[0]) names = ["faiz","Akshat","Avi","Dhruv","Krishna"] print(f"\n{names[0]},\n{names[1]},\n{names[2]},\n{names[3]},\n{names[4]},\n")
true
c95bd9f3627aa0128458a805c0c085c0b4ad3359
Python
BoChenGroup/EnsLM
/mATM/losses/LossFunctions.py
UTF-8
4,434
3.484375
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- """ --------------------------------------------------------------------- -- Author: Jhosimar George Arias Figueroa --------------------------------------------------------------------- Loss functions used for training our model """ import math import torch import numpy as np from torch import nn from torch.nn import functional as F class LossFunctions: eps = 1e-8 def mean_squared_error(self, real, predictions): """Mean Squared Error between the true and predicted outputs loss = (1/n)*Σ(real - predicted)^2 Args: real: (array) corresponding array containing the true labels predictions: (array) corresponding array containing the predicted labels Returns: output: (array/float) depending on average parameters the result will be the mean of all the sample losses or an array with the losses per sample """ loss = (real - predictions).pow(2) return loss.sum(-1).mean() def reconstruction_loss(self, real, predicted, rec_type='mse' ): """Reconstruction loss between the true and predicted outputs mse = (1/n)*Σ(real - predicted)^2 bce = (1/n) * -Σ(real*log(predicted) + (1 - real)*log(1 - predicted)) Args: real: (array) corresponding array containing the true labels predictions: (array) corresponding array containing the predicted labels Returns: output: (array/float) depending on average parameters the result will be the mean of all the sample losses or an array with the losses per sample """ if rec_type == 'mse': loss = (real - predicted).pow(2) elif rec_type == 'bce': loss = F.binary_cross_entropy(predicted, real, reduction='none') elif rec_type == 'nse': loss = -(real * (predicted + 1e-10).log()) else: raise "invalid loss function... try bce or mse..." return loss.sum(-1).mean() def log_normal(self, x, mu, var): """Logarithm of normal distribution with mean=mu and variance=var log(x|μ, σ^2) = loss = -0.5 * Σ log(2π) + log(σ^2) + ((x - μ)/σ)^2 Args: x: (array) corresponding array containing the input mu: (array) corresponding array containing the mean var: (array) corresponding array containing the variance Returns: output: (array/float) depending on average parameters the result will be the mean of all the sample losses or an array with the losses per sample """ if self.eps > 0.0: var = var + self.eps return -0.5 * torch.sum(torch.log(var) + torch.pow(x - mu, 2) / var, dim=-1) # return -0.5 * torch.sum( # np.log(2.0 * np.pi) + torch.log(var) + torch.pow(x - mu, 2) / var, dim=-1) def gaussian_loss(self, z, z_mu, z_var, z_mu_prior, z_var_prior): """Variational loss when using labeled data without considering reconstruction loss loss = log q(z|x,y) - log p(z) - log p(y) Args: z: (array) array containing the gaussian latent variable z_mu: (array) array containing the mean of the inference model z_var: (array) array containing the variance of the inference model z_mu_prior: (array) array containing the prior mean of the generative model z_var_prior: (array) array containing the prior variance of the generative mode Returns: output: (array/float) depending on average parameters the result will be the mean of all the sample losses or an array with the losses per sample """ loss = self.log_normal(z, z_mu, z_var) - self.log_normal(z, z_mu_prior, z_var_prior) return loss.mean() def entropy(self, logits, targets): """Entropy loss loss = (1/n) * -Σ targets*log(predicted) Args: logits: (array) corresponding array containing the logits of the categorical variable real: (array) corresponding array containing the true labels Returns: output: (array/float) depending on average parameters the result will be the mean of all the sample losses or an array with the losses per sample """ log_q = F.log_softmax(logits, dim=-1) return -torch.mean(torch.sum(targets * log_q, dim=-1))
true
2309c6c9ad2b06b974aa744de3dae14d93af98be
Python
mkebrahimpour/DataStructures_Python
/thinkpython/functions.py
UTF-8
304
3.765625
4
[]
no_license
# Math Functions import math print math print math.sqrt(4) # New Functions def print_lyrics(bruce): print "--------------------------------" print "I'm a lumberjack, and I'm okay." print "I sleep all night and I work all day." print "Printing Argument:",bruce print_lyrics('Spam\t' * 4)
true
e1ad8077724054a52c0a4b2c321b202a7b095488
Python
JMass1/curso_python
/desafios/DESAFIO 70.py
UTF-8
904
3.921875
4
[]
no_license
#PROGRAMA PARA CADASTRAR PRODUTOS E PREÇOS preco = soma = count = mpreco = 0 nome = saida = nbarato = '' while True: print('-'*20) print('CADASTRE UM PRODUTO') print('-'*20) nome = str(input('Nome do Produto: ')).strip() preco = int(input('Preço do Produto: ')) print('-'*20) soma += preco if preco > 1000: count += 1 if mpreco == 0: nbarato = nome mpreco = preco if mpreco > preco: nbarato = nome mpreco = preco saida = str(input('Quer Continuar [S/N]?')).strip().upper() while saida != 'S' and saida != 'N': saida = str(input('Quer Continuar [S/N]?')).strip().upper() if saida == 'N': break print('-------FIM DO POGRAMA-------') print(f'Total gasto em compras: {soma}.') print(f'Ao todo temos {count} produtos com valor maior que R$1000.') print(f'O produto de menor preço é: {nbarato}.')
true
b10684eb18ffd376faa3187343e1632913ec1b8d
Python
Spirent/cf-netsecopen-tests
/cf_common/CfRunTest.py
UTF-8
102,933
2.703125
3
[ "MIT" ]
permissive
import json import logging import time import sys import os import numpy as np import pandas as pd import pathlib import sys import math from dataclasses import dataclass script_version = 1.80 project_dir = pathlib.Path().absolute().parent sys.path.append(str(project_dir)) from cf_common.CfClient import * class RollingStats: """Creates rolling window statistics object Inputs are sample window size and number of digits to round values too. For example: - transactions per second window size can be 2 or higher with 0 round digits - time to first byte can have 1 round digit, best is to use the same window size """ def __init__(self, sample_window_size, round_digits): # initiate list with sample size count of zeros self.sample_size = sample_window_size self.round_digits = round_digits self.list = [0] * self.sample_size self.current_value = 0 self.avg_val = 0 self.avg_val_last = 0 self.increase_avg = 0 self.variance = 0.000 self.avg_max_load_variance = 0.00 self.new_high = False self.highest_value = 0 self.not_high_count = 0 self.stable = False self.stable_count = 0 def update(self, new_value): """Updates Rolling List and returns current variance :param new_value: new single value of for example TPS or TTFB :return: variance """ self.current_value = new_value if len(self.list) == self.sample_size: self.list.pop(0) self.list.append(self.current_value) self.avg_val = sum(self.list) / len(self.list) self.avg_val = round(self.avg_val, self.round_digits) if self.round_digits == 0: self.avg_val = int(self.avg_val) max_var = max(self.list) - min(self.list) self.variance = (max_var / self.avg_val) if self.avg_val != 0 else 0 self.variance = round(self.variance, 3) # check if new value value is the new high for later use self.check_if_highest() return self.variance def reset(self): """Resets rolling window back to all 0 Can be used after load increase on stat as current load that tracks if load is stable after increase Don't use on reported rolling stat as it will have high increase after its set to all 0 :return: None """ self.list = [0] * self.sample_size def check_if_stable(self, max_var_reference): """Checks if load is stable in current list If its stable also check the increase since a load change was last completed. :param max_var_reference: user/test configured reference value, e.g. 0.03 for 3% :return: True if stable, False if not """ if self.variance <= max_var_reference: self.stable = True self.stable_count += 1 self.increase_since_last_load_change() return True else: self.stable = False self.stable_count = 0 return False def increase_since_last_load_change(self): """Sets increase_avg, the increase since last load This function can be called from check_if_stable. The set result can be used by a function to determine by how much to increase the load. After load change call load_increase_complete to set the value for the next round. :return: None """ if self.avg_val_last != 0: self.increase_avg = ( (self.avg_val - self.avg_val_last) / self.avg_val_last ) * 100 self.increase_avg = round(self.increase_avg, 2) else: self.avg_val_last = 1 def load_increase_complete(self): """set last load change value Use in combination with increase_since_last_load_change :return: None """ self.avg_val_last = self.avg_val def check_if_highest(self): """Checks and sets highest value reference Can be called by update function to track if the current update is the new highest value :return: True if new high, False if not higher vs. previous """ if self.highest_value < self.avg_val: self.highest_value = self.avg_val self.new_high = True self.not_high_count = 0 else: self.new_high = False self.not_high_count += 1 self.avg_max_load_variance = ( (self.avg_val / self.highest_value) if self.highest_value != 0 else 0 ) self.avg_max_load_variance = round(self.avg_max_load_variance, 2) if self.new_high: return True if not self.new_high: return False @dataclass class RunData: """Data class with default values used by RunTest""" test_id: str = 'test_id' type_v2: str = 'test_type' in_name: str = 'test_name' in_run: str = 'Y' in_load_type: str = 'loadspec_type' in_start_load: int = 7 in_incr_low: int = 7 in_incr_med: int = 5 in_incr_high: int = 3 in_duration: int = 1800 in_startup: int = 5 in_rampup: int = 10 in_rampdown: int = 10 in_shutdown: int = 10 in_sustain_period: int = 30 in_kpi_1: str = 'tps' in_kpi_2: str = 'cps' in_kpi_and_or: str = 'AND' in_threshold_low: float = 20.0 in_threshold_med: float = 5.0 in_threshold_high: float = 1.0 variance_sample_size: int = 3 in_max_variance: float = 0.03 in_ramp_low: int = 60 in_ramp_med: int = 40 in_ramp_high: int = 20 in_ramp_seek: bool = False in_ramp_seek_kpi: str = 'cps' in_ramp_seek_value: int = 1000 in_ramp_step: int = 5 ramp_seek_complete: bool = True living_simusers_max_bool: bool = False living_simusers_max: int = 1 simuser_birth_rate_max_bool: bool = False simuser_birth_rate_max: int = 450 sslTls_simuser_birth_rate_max: int = 30 simuser_birth_rate_max_capacity: float = 1 in_goal_seek: bool = False first_steady_interval: bool = True test_config: dict = None queue_id: str = 'id' queue_info: dict = None queue_capacity: int = 60 core_count: int = 6 port_count: int = 1 client_port_count: int = 1 server_port_count: int = 1 client_core_count: int = 3 client_portSystemId : str = '' in_capacity_adjust: any = 1 load_constraints: dict = None test_run: dict = None test_run_update: dict = None id: dict = None score: str = '' grade: str = '' run_id: str = 'Test_name' status: str = 'status' # main run status 'running' name: str = 'name' type_v1: str = 'type_v1' sub_status: str = None created_at: str = None updated_at: str = None started_at: str = None finished_at: str = None run_link: str = 'runlink' report_link = None sub_status = None # subStatus - none while running or not started progress: int = 0 # progress - 0-100 time_elapsed: int = 0 # timeElapsed - seconds time_remaining: int = 0 # timeRemaining - seconds c_rx_bandwidth: int = 0 c_rx_packet_count: int = 0 c_rx_packet_rate: int = 0 c_rx_byte_rate: int = 0 c_tx_bandwidth: int = 0 c_tx_packet_count: int = 0 c_tx_packet_rate: int = 0 c_tx_byte_rate: int = 0 c_total_byte_rate: int = 0 c_total_packet_count: int = 0 c_http_aborted_txns: int = 0 c_http_aborted_txns_sec: int = 0 c_http_attempted_txns: int = 0 c_http_attempted_txns_sec: int = 0 c_http_successful_txns: int = 0 c_http_successful_txns_sec: int = 0 c_http_unsuccessful_txns: int = 0 c_http_unsuccessful_txns_sec: int = 0 c_loadspec_avg_idle: int = 0 c_loadspec_avg_cpu: int = 0 c_memory_main_size: int = 0 c_memory_main_used: int = 0 c_memory_packetmem_used: int = 0 c_memory_rcv_queue_length: int = 0 c_mem_per_conn: int = 55 c_simusers_alive: int = 0 c_simusers_animating: int = 0 c_simusers_blocking: int = 0 c_simusers_sleeping: int = 0 c_tcp_avg_ttfb: int = 0 c_tcp_avg_tt_synack: int = 0 c_tcp_cumulative_attempted_conns: int = 0 c_tcp_cumulative_established_conns: int = 0 c_url_avg_response_time: int = 0 c_tcp_attempted_conn_rate: int = 0 c_tcp_established_conn_rate: int = 0 c_tcp_attempted_conns: int = 0 c_tcp_established_conns: int = 0 c_current_load: int = 0 c_desired_load: int = 0 c_total_bandwidth: int = 0 c_memory_percent_used: int = 0 c_current_desired_load_variance: float = 0.0 c_current_max_load_variance: float = 0.0 c_transaction_error_percentage: float = 0.0 s_rx_bandwidth: int = 0 s_rx_packet_count: int = 0 s_rx_packet_rate: int = 0 s_tx_bandwidth: int = 0 s_tx_packet_count: int = 0 s_tx_packet_rate: int = 0 s_memory_main_size: int = 0 s_memory_main_used: int = 0 s_memory_packetmem_used: int = 0 s_memory_rcv_queue_length: int = 0 s_memory_avg_cpu: int = 0 s_tcp_closed_error: int = 0 s_tcp_closed: int = 0 s_tcp_closed_reset: int = 0 s_memory_percent_used: int = 0 first_ramp_load_increase: bool = True first_goal_load_increase: bool = True minimum_goal_seek_count: int = 1 goal_seek_count: int = 0 max_load_reached: bool = False max_load: int = 0 stop: bool = False # test loop control phase: str = None # time phase of test: ramp up, steady ramp down # rolling statistics rolling_sample_size: int = 3 max_var_reference: float = 0.03 rolling_tps: RollingStats = None rolling_ttfb: RollingStats = None rolling_current_load: RollingStats = None rolling_count_since_goal_seek: RollingStats = None rolling_cps: RollingStats = None rolling_conns: RollingStats = None rolling_bw: RollingStats = None kpi_1: any = None kpi_2: any = None kpi_1_stable: bool = True kpi_2_stable: bool = True kpi_1_list: list = None kpi_2_list: list = None ramp_seek_kpi: any = None start_time: any = None timer: any = None time_to_run: int = 0 time_to_start: int = 0 time_to_activity: int = 0 time_to_stop_start: int = 0 time_to_stop: int = 0 test_started: bool = False class CfOpenConns: def __init__(self, rt): self.c_startup_load: int = 0 self.c_startup_mem: int = 0 self.c_new_conns_mem: int = 0 self.inc_conns_within_c_mem: int = 0 self.rt = rt # the CfRunTest object self.disabled = True self.got_startup_data = False self.first_new_load = True self.changed_load_highest = 0 # power of 2 dividing the distance between starting open conns load and max load # (e.g.2**5 = 32 steps from current to max) self.steps_to_max = 3 self.current_step = 1 self.tracker_mapper = ( ("setpoint", "c_desired_load"), ("load", "c_current_load"), ("memory", "c_memory_main_used"), ("cps", "c_tcp_established_conn_rate"), ) self.tracker = {} def enable(self): self.disabled = False log.info("CfOpenConns enabled") def expect_unused(self, unused_point): log.warning(f"CfOpenConns surprise used: {unused_point}") def set_startup_data(self): if ( self.disabled or self.got_startup_data or self.rt.rd.c_http_successful_txns_sec == 0 ): return self.got_startup_data = True self.c_startup_mem = self.rt.rd.c_memory_main_used self.c_startup_load = self.rt.rd.c_current_load self.c_new_conns_mem = self.rt.rd.c_memory_main_size - self.c_startup_mem log.info( f"CfOpenConns -- c_startup_mem: {self.c_startup_mem}; c_startup_load: " f"{self.c_startup_load}; c_conns_mem: {self.c_new_conns_mem}" ) def capture_goal_seek_iteration(self): if self.disabled: return t = time.time() self.tracker[t] = {} for key, data_name in self.tracker_mapper: exec(f"self.tracker[t]['{key}'] = self.rt.rd.{data_name}") log.debug(f"CfOpenConns -- {t-self.rt.rd.start_time:.2f}: {self.tracker[t]}") def skip_goal_seek(self): if self.disabled: return False if self.disabled: return False current = self.rt.rd.c_current_load desired = self.rt.rd.c_desired_load ratio = current / desired log.info( f"CfOpenConns -- current/desired load: {current:,}/{desired:,} " f"({ratio:.1%})" ) diff = abs(ratio - 1) allowed = 0.015 if diff > allowed: log.info(f"Skip load update, diff>allowed: {diff:.1%}>{allowed:.1%}") return True return False def dump_iteration_data(self, csv_file): if self.disabled: return field_names = ["time"] + [x[0] for x in self.tracker_mapper] dw = csv.DictWriter(csv_file, field_names) dw.writeheader() for time_key in self.tracker: row_dict = {"time": f"{time_key - self.rt.rd.start_time:.2f}"} row_dict.update(self.tracker[time_key]) dw.writerow(row_dict) def is_load_type_conns(self): return not self.disabled def get_new_load(self): if ( self.rt.rd.c_current_desired_load_variance >= 1.0 and self.rt.rd.c_memory_percent_used < 100 and self.rt.rd.s_memory_percent_used < 100 ): pass else: self.rt.rd.max_load_reached = True if ( self.rt.rd.rolling_conns.increase_avg == 0 and self.rt.rd.c_memory_percent_used > 99.5 ): self.rt.rd.max_load_reached = True if self.rt.rd.max_load_reached: log.info("CfOpenConns -- No more load increase; stop seeking.") return False if self.first_new_load: if self.rt.rd.c_current_load - self.c_startup_load > 0 and self.rt.rd.c_memory_main_used - self.c_startup_mem > 100: self.first_new_load = False self.rt.rd.c_mem_per_conn = (self.rt.rd.c_memory_main_used - self.c_startup_mem) / ( self.rt.rd.c_current_load - self.c_startup_load ) self.inc_conns_within_c_mem = int( 0.96 * self.c_new_conns_mem / self.rt.rd.c_mem_per_conn ) else: self.inc_conns_within_c_mem = 5000 log.info( f"CfOpenConns -- c_mem_per_conn: {self.rt.rd.c_mem_per_conn}; " f"self.inc_conns_within_c_mem: {self.inc_conns_within_c_mem}" ) if self.rt.rd.c_memory_percent_used > 97: self.current_step = 0 self.inc_conns_within_c_mem = self.rt.rd.in_incr_high * self.rt.rd.in_capacity_adjust elif self.current_step > self.steps_to_max and self.rt.rd.c_memory_percent_used <= 97: self.current_step = 1 self.c_new_conns_mem = self.rt.rd.c_memory_main_size - self.rt.rd.c_memory_main_used self.inc_conns_within_c_mem = int(self.c_new_conns_mem / self.rt.rd.c_mem_per_conn) if self.current_step <= self.steps_to_max: binary_deductor = 1 / (2 ** self.current_step) # bincurrent_stepary deductor generates a progression like this: 1/2, 1/4, 1/8, ..., 0 new_load = self.rt.rd.c_current_load + int(binary_deductor * self.inc_conns_within_c_mem) log.info( f"CfOpenConns -- current_step: {self.current_step}; " f"cur load: {self.rt.rd.c_current_load}, new_load: {new_load}, add load: {binary_deductor * self.inc_conns_within_c_mem}" ) self.current_step += 1 if new_load < self.changed_load_highest: new_load = self.changed_load_highest else: self.changed_load_highest = new_load return new_load class CfRunTest: def __init__(self, cf, rd, test_details, result_file, temp_file_dir): log.info(f"script version: {script_version}") self.cf = cf # CfClient instance self.rd = rd #log.info(f"self.rd is: {self.rd}") self.ocj = CfOpenConns(self) # special behavior for open conns tests self.result_file = result_file self.temp_dir = temp_file_dir self.test = test_details def init_sequence(self, cf, rd, test_details): self.init_input_csv(rd, test_details) rd.test_config = self.get_test_config(cf, rd) rd.queue_id = rd.test_config["config"]["queue"]["id"] rd.queue_info = self.get_queue(cf, rd.queue_id) log.info(f"queue info: \n{json.dumps(rd.queue_info, indent=4)}") if not self.init_capacity_adj(rd): return False self.software_version_lookup(rd.queue_info) self.get_report_info(rd) self.result_file.make_report_dir(self.report_dir) self.result_file.make_report_csv_file(self.report_name) self.init_simuser_birth_rate_max(rd) self.init_update_config_load(rd) self.update_config_load_controller(cf, rd) rd.test_run = self.start_test_run(cf, rd) self.init_test_run(rd, cf.controller_ip) self.init_rolling_stats(rd) # create entry in result file at the start of test self.save_results(rd) return True def init_input_csv(self, rd, test_details): rd.test_id = test_details["id"] rd.type_v2 = test_details["type"] rd.in_name = test_details["name"] rd.in_run = test_details["run"] rd.in_load_type = test_details["load_type"] rd.in_start_load = test_details["start_load"] rd.in_incr_low = int(test_details["incr_low"]) rd.in_incr_med = int(test_details["incr_med"]) rd.in_incr_high = int(test_details["incr_high"]) rd.in_duration = int(test_details["duration"]) rd.in_startup = int(test_details["startup"]) rd.in_rampup = int(test_details["rampup"]) rd.in_rampdown = int(test_details["rampdown"]) rd.in_shutdown = int(test_details["shutdown"]) rd.in_sustain_period = int(test_details["sustain_period"]) rd.in_kpi_1 = test_details.get("kpi_1", "tps") rd.in_kpi_2 = test_details.get("kpi_2", "cps") rd.in_kpi_and_or = self.return_bool_true(test_details.get("kpi_and_or"), "AND") rd.in_threshold_low = float(test_details["low_threshold"]) rd.in_threshold_med = float(test_details["med_threshold"]) rd.in_threshold_high = float(test_details["high_threshold"]) rd.in_sustain_period = int(test_details["sustain_period"]) rd.variance_sample_size = int(test_details["variance_sample_size"]) rd.in_max_variance = float(test_details["max_variance"]) rd.in_ramp_low = int(test_details.get("ramp_low", 60)) rd.in_ramp_med = int(test_details.get("ramp_med", 40)) rd.in_ramp_high = int(test_details.get("ramp_high", 20)) rd.in_capacity_adjust = test_details.get("capacity_adj", 1) rd.in_ramp_seek = self.if_in_set_true(test_details, "ramp_seek", {"true", "y", "yes"}) rd.in_ramp_seek_kpi = test_details.get("ramp_kpi", "tps") rd.in_ramp_seek_value = int(test_details.get("ramp_value", 1)) rd.in_ramp_step = int(test_details.get("ramp_step", 1)) if not rd.in_ramp_seek: rd.ramp_seek_complete = True else: rd.ramp_seek_complete = False rd.living_simusers_max_bool = int(self.check_if_number( test_details.get("living_simusers_max", False))) rd.living_simusers_max = self.return_int_if_present( rd.living_simusers_max_bool, test_details.get("living_simusers_max", False)) rd.in_goal_seek = test_details["goal_seek"] if rd.in_goal_seek.lower() in {"true", "y", "yes"}: rd.in_goal_seek = True rd.first_steady_interval = False else: rd.in_goal_seek = False rd.start_time = time.time() rd.timer = time.time() - rd.start_time def init_simuser_birth_rate_max(self, rd): if not (rd.type_v2 == "open_connections" and rd.in_load_type == "simusers"): self.test["simuser_birth_rate_max"] = "none" return if "CF400" in self.device_model: rd.simuser_birth_rate_max_capacity = 3 self.sslTls_enabled = rd.test_config.get("config", {}).get("protocol", {}).get("supplemental", {}).get("sslTls", {}).get("enabled", False) if self.sslTls_enabled: self.test["simuser_birth_rate_max"] = rd.sslTls_simuser_birth_rate_max * rd.simuser_birth_rate_max_capacity else: self.test["simuser_birth_rate_max"] = rd.simuser_birth_rate_max * rd.simuser_birth_rate_max_capacity rd.simuser_birth_rate_max_bool = self.check_if_number( self.test.get("simuser_birth_rate_max", False)) rd.simuser_birth_rate_max = self.return_int_if_present( rd.simuser_birth_rate_max_bool, self.test.get("simuser_birth_rate_max", False)) def init_capacity_adj(self, rd): rd.queue_capacity = int(rd.queue_info["capacity"]) log.info(f"queue_capacity: {rd.queue_capacity}") if len(rd.queue_info["computeGroups"]) > 0: rd.core_count,rd.port_count = self.core_count_lookup_cg(rd.queue_info) log.info(f"core_count cg and port count cg: {rd.core_count, rd.port_count}") # self.capacity_adj_cg(rd) else: rd.core_count,rd.port_count = self.core_count_lookup_spr(rd.queue_info) log.info(f"core_count cg and port count cg: {rd.core_count, rd.port_count}") # self.capacity_adj_spr(rd) if not self.check_config(rd): return False if self.test["type"] == "advanced_mixed_traffic": rd.client_port_count = len(rd.test_config["config"]["relationships"]) rd.server_port_count = len(rd.test_config["config"]["relationships"]) rd.client_portSystemId = rd.test_config["config"]["relationships"][0]["client"]["portSystemId"] else: rd.client_port_count = len(rd.test_config["config"]["interfaces"]["client"]) rd.server_port_count = len(rd.test_config["config"]["interfaces"]["server"]) rd.client_portSystemId = rd.test_config["config"]["interfaces"]["client"][0]["portSystemId"] self.device_ip = rd.client_portSystemId.split("/", 1)[0] log.info(f"client_port_count: {rd.client_port_count}") log.info(f"server_port_count: {rd.server_port_count}") rd.client_core_count = int( rd.core_count / rd.port_count * rd.client_port_count ) log.info(f"client_core_count: {rd.client_core_count}") rd.in_capacity_adjust = self.check_capacity_adjust( rd.in_capacity_adjust, rd.in_load_type, rd.client_port_count, rd.client_core_count, ) log.info(f"in_capacity_adjust: {rd.in_capacity_adjust}") rd.load_constraints = {"enabled": False} return True def check_config(self, rd): if self.test["type"] == "advanced_mixed_traffic": interfaces = rd.test_config["config"]["relationships"] information = "relationships" else: interfaces = rd.test_config["config"]["interfaces"] information = "interfaces" if len(interfaces) == 0: errormsg = f"No subnets/{information} assigned in test" log.debug(errormsg) print(errormsg) return False return True # def capacity_adj_cg(self, rd): # rd.core_count = self.core_count_lookup_cg(rd.queue_info) # log.info(f"core_count: {rd.core_count}") # rd.client_port_count = len(rd.test_config["config"]["interfaces"]["client"]) # log.info(f"client_port_count: {rd.client_port_count}") # rd.server_port_count = len(rd.test_config["config"]["interfaces"]["server"]) # log.info(f"server_port_count: {rd.server_port_count}") # rd.client_core_count = int( # rd.core_count # / (rd.client_port_count + rd.server_port_count) # * rd.client_port_count # ) # log.info(f"client_core_count: {rd.client_core_count}") # rd.in_capacity_adjust = self.check_capacity_adjust( # rd.in_capacity_adjust, # rd.in_load_type, # rd.client_port_count, # rd.client_core_count, # ) # log.info(f"in_capacity_adjust: {rd.in_capacity_adjust}") # rd.load_constraints = {"enabled": False} def init_update_config_load(self, rd): if not self.update_config_load(rd): report_error = f"unknown load_type with test type" log.debug(report_error) print(report_error) def init_test_run(self, rd, controller_ip): if not rd.test_started: report_error = f"test did not start\n{json.dumps(rd.test_run, indent=4)}" log.debug(report_error) print(report_error) rd.test_run_update = None rd.id = rd.test_run.get("id") rd.queue_id = rd.test_run.get("queueId") rd.score = rd.test_run.get("score") rd.grade = rd.test_run.get("grade") rd.run_id = rd.test_run.get("runId") rd.status = rd.test_run.get("status") # main run status 'running' rd.name = rd.test_run.get("test", {}).get("name") rd.type_v1 = rd.test_run.get("test", {}).get("type") rd.sub_status = rd.test_run.get("subStatus") rd.created_at = rd.test_run.get("createdAt") rd.updated_at = rd.test_run.get("updatedAt") rd.started_at = rd.test_run.get("startedAt") rd.finished_at = rd.test_run.get("finishedAt") rd.progress = rd.test_run.get("progress") rd.time_elapsed = rd.test_run.get("timeElapsed") rd.time_remaining = rd.test_run.get("timeRemaining") rd.run_link = ( "https://" + controller_ip + "/#livecharts/" + rd.type_v1 + "/" + rd.id ) print(f"Live charts: {rd.run_link}") def init_rolling_stats(self, rd): # rolling statistics rd.rolling_sample_size = rd.variance_sample_size rd.max_var_reference = rd.in_max_variance rd.rolling_tps = RollingStats(rd.rolling_sample_size, 0) rd.rolling_ttfb = RollingStats(rd.rolling_sample_size, 1) rd.rolling_current_load = RollingStats(rd.rolling_sample_size, 0) rd.rolling_count_since_goal_seek = RollingStats( rd.rolling_sample_size, 1 ) # round to 1 for > 0 avg rd.rolling_cps = RollingStats(rd.rolling_sample_size, 0) rd.rolling_conns = RollingStats(rd.rolling_sample_size, 0) rd.rolling_bw = RollingStats(rd.rolling_sample_size, 0) rd.kpi_1 = rd.rolling_tps rd.kpi_2 = rd.rolling_cps rd.kpi_1_stable = True rd.kpi_2_stable = True rd.kpi_1_list = [] rd.kpi_2_list = [] rd.ramp_seek_kpi = rd.rolling_tps @staticmethod def if_in_set_true(dict_var, dict_key, in_set): if dict_key in dict_var: var = dict_var[dict_key] if var.lower() in in_set: return True return False @staticmethod def check_if_number(in_value): if in_value == False or in_value == None: return False if isinstance(in_value, int) or isinstance(in_value, float): return True if isinstance(in_value, str): if in_value.isdigit(): return True return False @staticmethod def return_int_if_present(present, value): if present: return int(value) def get_test_config(self, cf, rd): response = None try: response = cf.get_test( rd.type_v2, rd.test_id, self.temp_dir / "running_test_config.json" ) log.debug(f"{json.dumps(response, indent=4)}") except Exception as detailed_exception: log.error( f"Exception occurred when retrieving the test: " f"\n<{detailed_exception}>" ) return response def get_queue(self, cf, queue_id): response = None try: response = cf.get_queue(queue_id) # log.debug(f"{json.dumps(response, indent=4)}") except Exception as detailed_exception: log.error( f"Exception occurred when retrieving test queue information: " f"\n<{detailed_exception}>" ) return response @staticmethod def core_count_lookup_cg(queue_info): cores = 0 ports = 0 for cg in queue_info["computeGroups"]: cores = cores + int(cg["cores"]) ports = ports + len(cg["ports"]) return cores,ports @staticmethod def core_count_lookup_spr(queue_info): cores = 0 ports = 0 for port in queue_info["ports"]: cores = cores + int(port["cores"]) ports = queue_info["portCount"] return cores,ports def software_version_lookup(self, queue_info): self.model = "" self.software_version = "" self.divide_by_1000 = True for device in queue_info["devices"]: if device["ip"] == self.device_ip: self.device_info = device self.software_version = device["slots"][0]["computeGroups"][0]["software"] break if "l4l7lxc" in self.software_version: self.software_version = self.software_version.split("l4l7lxc")[1] self.model = "lxc" if "l4l7Vm" in self.software_version: self.software_version = self.software_version.split("l4l7Vm")[1] self.model = "lxc" software_version_list = self.software_version.split(".") software_version_list = [int(i) for i in software_version_list] if self.model == "lxc": if software_version_list[0] <= 4: self.divide_by_1000 = False elif software_version_list[0] == 5 and software_version_list[1] < 7: self.divide_by_1000 = False else: if software_version_list[0] <= 19: self.divide_by_1000 = False elif software_version_list[0] == 20: if software_version_list[1] == 0: self.divide_by_1000 = False elif software_version_list[1] == 1 and software_version_list[2] == 0: self.divide_by_1000 = False log.info(f"software version: {self.software_version}") log.info(f"divide_by_1000: {self.divide_by_1000}") print(f"software version: {self.software_version}") def get_report_info(self, rd): self.device_mode = "" self.device_description = self.device_info["description"][4:] self.device_profile = self.device_info["slots"][0]["profile"] self.device_model = self.device_info["slots"][0]["model"][4:] for profile_info in ["Functional-", "Performance-", "Maximum-"]: if profile_info in self.device_profile: self.device_profile = self.device_profile.split(profile_info)[-1].strip("\n") break if "cfv" in self.device_description.lower(): #waiting for issue CF-17490 fixing self.device_model = f"{self.device_model.rsplit('-', 1)[0]}-vCores-{rd.client_core_count*2}" self.report_dir = self.device_model else: self.report_dir = "_".join((self.device_model, self.device_profile)) self.report_name = "_".join((self.device_ip, self.software_version)) def update_startload_rampup_for_ec_sha384_on_cfv(self, rd): update_flag = False sslTls_hash = [] if rd.in_goal_seek and "cfv" in self.device_description.lower(): sslTls_hash = rd.test_config.get("config", {}).get("protocol", {}).get("supplemental", {}).get("sslTls", {}).get("ciphers", []) if sslTls_hash: for each_hash in sslTls_hash: if "SHA384" in each_hash and "ECDHE" in each_hash: update_flag = True break if update_flag: if int(rd.in_start_load) < 8: rd.in_start_load = 8 if self.test_type == "cps": if int(rd.in_rampup) < 120: rd.in_rampup = 120 if self.test_type == "tput": if int(rd.in_rampup) < 180: rd.in_rampup = 180 if int(rd.in_duration) < int(rd.in_startup) + int(rd.in_rampup) + int(rd.in_rampdown) + int(rd.in_shutdown): rd.in_duration = int(rd.in_startup) + int(rd.in_rampup) + int(rd.in_rampdown) + int(rd.in_shutdown) + 60 return @staticmethod def check_capacity_adjust( cap_adjust, load_type, client_port_count, client_core_count ): if cap_adjust.lower() == "auto": if load_type.lower() in {"simusers", "simusers/second"}: return client_core_count else: return client_port_count else: return int(cap_adjust) def update_config_load(self, rd): load_type = rd.in_load_type.lower() test_type = self.test_type(rd) if test_type in {"tput", "emix", "amt"} and load_type == "simusers": load_key = "bandwidth" rd.in_load_type = "SimUsers" elif test_type in {"tput", "emix", "amt"} and load_type == "bandwidth": load_key = "bandwidth" rd.in_load_type = "Bandwidth" elif test_type == "tput" and load_type == "simusers/second": load_key = "bandwidth" rd.in_load_type = "SimUsers/Second" elif test_type == "cps" and load_type == "connections/second": load_key = "connectionsPerSecond" rd.in_load_type = "Connections/Second" elif test_type == "cps" and load_type == "simusers": load_key = "connectionsPerSecond" rd.in_load_type = "SimUsers" elif test_type == "cps" and load_type == "simusers/second": load_key = "connectionsPerSecond" rd.in_load_type = "SimUsers/Second" elif test_type == "conns" and load_type == "simusers": self.ocj.expect_unused('test_type == "conns" and load_type == "simusers"') load_key = "connections" rd.in_load_type = "SimUsers" elif test_type == "conns" and load_type == "connections": load_key = "connections" rd.in_load_type = "Connections" else: return False if test_type == "conns" and rd.in_goal_seek: self.ocj.enable() self.update_startload_rampup_for_ec_sha384_on_cfv(rd) rd.in_start_load = int(rd.in_start_load) * rd.in_capacity_adjust self.update_load_constraints(rd) load_update = { "config": { "loadSpecification": { "duration": int(rd.in_duration), "startup": int(rd.in_startup), "rampup": int(rd.in_rampup), "rampdown": int(rd.in_rampdown), "shutdown": int(rd.in_shutdown), load_key: int(rd.in_start_load), "type": rd.in_load_type, "constraints": rd.load_constraints, # "constraints": {"enabled": False}, } } } with open((self.temp_dir / "test_load_update.json"), "w") as f: json.dump(load_update, f, indent=4) return True def update_config_load_controller(self, cf, rd): response = cf.update_test( rd.type_v2, rd.test_id, self.temp_dir / "test_load_update.json" ) log.info(f"{json.dumps(response, indent=4)}") rd.test_config = self.get_test_config(cf, rd) def update_load_constraints(self, rd): living = {"enabled": False} open_connections = {"enabled": False} birth_rate = {"enabled": False} connections_rate = {"enabled": False} constraints = False if rd.living_simusers_max_bool: constraints = True living = { "enabled": True, "max": rd.living_simusers_max } if rd.simuser_birth_rate_max_bool: constraints = True birth_rate = { "enabled": True, "max": rd.simuser_birth_rate_max * rd.in_capacity_adjust } if constraints: rd.load_constraints = { "enabled": True, "living": living, "openConnections": open_connections, "birthRate": birth_rate, "connectionsRate": connections_rate, } def test_type(self, rd): if rd.type_v2 == "http_throughput": test_type = "tput" elif rd.type_v2 == "http_connections_per_second": test_type = "cps" elif rd.type_v2 == "open_connections": test_type = "conns" elif rd.type_v2 == "emix": test_type = "emix" elif rd.type_v2 == "advanced_mixed_traffic": test_type = "amt" else: test_type = "tput" self.test_type = test_type return test_type def start_test_run(self, cf, rd): try: response = cf.start_test(rd.test_id) log.info(f"{json.dumps(response, indent=4)}") rd.test_started = True except Exception as detailed_exception: log.error( f"Exception occurred when starting the test: " f"\n<{detailed_exception}>" ) rd.test_started = False return response def update_test_run(self, cf, rd): rd.test_run_update = cf.get_test_run(rd.id) rd.status = rd.test_run_update.get("status") # main run status 'running' rd.sub_status = rd.test_run_update.get("subStatus") rd.score = rd.test_run_update.get("score") rd.grade = rd.test_run_update.get("grade") rd.started_at = rd.test_run_update.get("startedAt") rd.finished_at = rd.test_run_update.get("finishedAt") rd.progress = rd.test_run_update.get("progress") rd.time_elapsed = rd.test_run_update.get("timeElapsed") rd.time_remaining = rd.test_run_update.get("timeRemaining") update_test_run_log = ( f"Status: {rd.status} sub status: {rd.sub_status} " f" elapsed: {rd.time_elapsed} remaining: {rd.time_remaining}" ) log.debug(update_test_run_log) return True def update_phase(self, rd): """updates test phase based on elapsed time vs. loadspec configuration If goal seeking is enabled and the test is in steady phase, the phase will be set to goalseek :return: None """ phase = None steady_duration = rd.in_duration - ( rd.in_startup + rd.in_rampup + rd.in_rampdown + rd.in_shutdown ) if 0 <= rd.time_elapsed <= rd.in_startup: phase = "startup" elif rd.in_startup <= rd.time_elapsed <= (rd.in_startup + rd.in_rampup): phase = "rampup" elif ( (rd.in_startup + rd.in_rampup) <= rd.time_elapsed <= (rd.in_duration - (rd.in_rampdown + rd.in_shutdown)) ): phase = "steady" if rd.first_steady_interval: phase = "rampup" rd.first_steady_interval = False elif ( (rd.in_startup + rd.in_rampup + steady_duration) <= rd.time_elapsed <= (rd.in_duration - rd.in_shutdown) ): phase = "rampdown" elif ( (rd.in_duration - rd.in_shutdown) <= rd.time_elapsed <= rd.in_duration ): phase = "shutdown" elif rd.in_duration <= rd.time_elapsed: phase = "finished" log.info(f"test phase: {phase}") rd.phase = phase # Override phase if ramp seek is enabled if rd.in_ramp_seek and rd.phase == "steady" and not rd.ramp_seek_complete: rd.phase = "rampseek" log.info(f"ramp seek phase: {rd.phase}") # Override phase if goal seeking is enabled elif rd.in_goal_seek and rd.phase == "steady": rd.phase = "goalseek" log.info(f"goal seek phase: {rd.phase}") def update_run_stats(self, cf, rd): get_run_stats = cf.fetch_test_run_statistics(rd.id) #log.debug(f'{get_run_stats}') #log.debug(json.dumps(get_run_stats, indent=4)) self.update_client_stats(rd, get_run_stats) self.update_server_stats(rd, get_run_stats) def update_client_stats(self, rd, get_run_stats): client_stats = {} for i in get_run_stats["client"]: if "type" in i and "subType" in i and "value" in i: type = i["type"] sub_type = i["subType"] value = i["value"] if not type in client_stats: client_stats[type] = {} client_stats[type][sub_type] = value elif "type" in i and "value" in i: type = i["type"] value = i["value"] client_stats[type] = value self.assign_client_run_stats(rd, client_stats) def update_server_stats(self, rd, get_run_stats): server_stats = {} for i in get_run_stats["server"]: if "type" in i and "subType" in i and "value" in i: type = i["type"] sub_type = i["subType"] value = i["value"] if not type in server_stats: server_stats[type] = {} server_stats[type][sub_type] = value elif "type" in i and "value" in i: type = i["type"] value = i["value"] server_stats[type] = value self.assign_server_run_stats(rd, server_stats) def assign_client_run_stats(self, rd, client_stats): rd.c_rx_bandwidth = client_stats.get("driver", {}).get("rxBandwidth", 0) rd.c_rx_packet_count = client_stats.get("driver", {}).get("rxPacketCount", 0) rd.c_rx_packet_rate = client_stats.get("driver", {}).get("rxPacketRate", 0) rd.c_tx_bandwidth = client_stats.get("driver", {}).get("txBandwidth", 0) rd.c_tx_packet_count = client_stats.get("driver", {}).get("txPacketCount", 0) rd.c_tx_packet_rate = client_stats.get("driver", {}).get("txPacketRate", 0) rd.c_rx_byte_rate = client_stats.get("sum", {}).get("rxByteRate", 0) rd.c_tx_byte_rate = client_stats.get("sum", {}).get("txByteRate", 0) rd.c_http_aborted_txns = client_stats.get("http", {}).get("abortedTxns", 0) rd.c_http_aborted_txns_sec = client_stats.get("http", {}).get( "abortedTxnsPerSec", 0 ) rd.c_http_attempted_txns = client_stats.get("sum", {}).get("attemptedTxns", 0) rd.c_http_attempted_txns_sec = client_stats.get("sum", {}).get( "attemptedTxnsPerSec", 0 ) rd.c_http_successful_txns = client_stats.get("sum", {}).get( "successfulTxns", 0 ) rd.c_http_successful_txns_sec = client_stats.get("sum", {}).get( "successfulTxnsPerSec", 0 ) rd.c_http_unsuccessful_txns = client_stats.get("sum", {}).get( "unsuccessfulTxns", 0 ) rd.c_http_unsuccessful_txns_sec = client_stats.get("sum", {}).get( "unsuccessfulTxnsPerSec", 0 ) rd.c_loadspec_avg_idle = client_stats.get("loadspec", {}).get( "averageIdleTime", 0 ) rd.c_loadspec_avg_cpu = round( client_stats.get("loadspec", {}).get("cpuUtilized", 0), 1 ) rd.c_memory_main_size = client_stats.get("memory", {}).get("mainPoolSize", 0) rd.c_memory_main_used = client_stats.get("memory", {}).get("mainPoolUsed", 0) rd.c_memory_packetmem_used = client_stats.get("memory", {}).get( "packetMemoryUsed", 0 ) rd.c_memory_rcv_queue_length = client_stats.get("memory", {}).get( "rcvQueueLength", 0 ) rd.c_simusers_alive = client_stats.get("simusers", {}).get("simUsersAlive", 0) rd.c_simusers_animating = client_stats.get("simusers", {}).get( "simUsersAnimating", 0 ) rd.c_simusers_blocking = client_stats.get("simusers", {}).get( "simUsersBlocking", 0 ) rd.c_simusers_sleeping = client_stats.get("simusers", {}).get( "simUsersSleeping", 0 ) rd.c_simusers_suspending = client_stats.get("simusers", {}).get( "simUsersSuspending", 0 ) rd.c_current_load = client_stats.get("sum", {}).get("currentLoadSpecCount", 0) rd.c_desired_load = client_stats.get("sum", {}).get("desiredLoadSpecCount", 0) rd.c_tcp_avg_ttfb = round( client_stats.get("tcp", {}).get("averageTimeToFirstByte", 0), 1 ) rd.c_tcp_avg_tt_synack = round( client_stats.get("tcp", {}).get("averageTimeToSynAck", 0), 1 ) rd.c_tcp_cumulative_attempted_conns = client_stats.get("tcp", {}).get( "cummulativeAttemptedConns", 0 ) rd.c_tcp_cumulative_established_conns = client_stats.get("tcp", {}).get( "cummulativeEstablishedConns", 0 ) rd.c_url_avg_response_time = round( client_stats.get("url", {}).get("averageRespTimePerUrl", 0), 1 ) if self.divide_by_1000: rd.c_url_avg_response_time = round(rd.c_url_avg_response_time / 1000, 3) rd.c_tcp_attempted_conn_rate = client_stats.get("sum", {}).get( "attemptedConnRate", 0 ) rd.c_tcp_established_conn_rate = client_stats.get("sum", {}).get( "establishedConnRate", 0 ) rd.c_tcp_attempted_conns = client_stats.get("sum", {}).get( "attemptedConns", 0 ) rd.c_tcp_established_conns = client_stats.get("sum", {}).get( "currentEstablishedConns", 0 ) rd.time_elapsed = client_stats.get("timeElapsed", 0) rd.time_remaining = client_stats.get("timeRemaining", 0) rd.c_total_bandwidth = rd.c_rx_bandwidth + rd.c_tx_bandwidth rd.c_total_byte_rate = rd.c_rx_byte_rate + rd.c_tx_byte_rate rd.c_total_packet_count = rd.c_rx_packet_count + rd.c_tx_packet_count if rd.c_memory_main_size > 0 and rd.c_memory_main_used > 0: rd.c_memory_percent_used = round(100 * rd.c_memory_main_used / rd.c_memory_main_size, 2 ) if rd.c_current_load > 0 and rd.c_desired_load > 0: rd.c_current_desired_load_variance = round( rd.c_current_load / rd.c_desired_load, 2 ) if rd.c_http_successful_txns > 0: rd.c_transaction_error_percentage = ( rd.c_http_unsuccessful_txns + rd.c_http_aborted_txns ) / rd.c_http_successful_txns if rd.phase in ["rampup", "goalseek"]: self.ocj.set_startup_data() return True def assign_server_run_stats(self, rd, server_stats): rd.s_rx_bandwidth = server_stats.get("driver", {}).get("rxBandwidth", 0) rd.s_rx_packet_count = server_stats.get("driver", {}).get("rxPacketCount", 0) rd.s_rx_packet_rate = server_stats.get("driver", {}).get("rxPacketRate", 0) rd.s_tx_bandwidth = server_stats.get("driver", {}).get("txBandwidth", 0) rd.s_tx_packet_count = server_stats.get("driver", {}).get("txPacketCount", 0) rd.s_tx_packet_rate = server_stats.get("driver", {}).get("txPacketRate", 0) rd.s_memory_main_size = server_stats.get("memory", {}).get("mainPoolSize", 0) rd.s_memory_main_used = server_stats.get("memory", {}).get("mainPoolUsed", 0) rd.s_memory_packetmem_used = server_stats.get("memory", {}).get( "packetMemoryUsed", 0 ) rd.s_memory_rcv_queue_length = server_stats.get("memory", {}).get( "rcvQueueLength", 0 ) rd.s_memory_avg_cpu = round( server_stats.get("memory", {}).get("cpuUtilized", 0), 1 ) rd.s_tcp_closed_error = server_stats.get("sum", {}).get("closedWithError", 0) rd.s_tcp_closed = server_stats.get("sum", {}).get("closedWithNoError", 0) rd.s_tcp_closed_reset = server_stats.get("sum", {}).get("closedWithReset", 0) if rd.s_memory_main_size > 0 and rd.s_memory_main_used > 0: rd.s_memory_percent_used = round(100 * rd.s_memory_main_used / rd.s_memory_main_size, 2 ) return True def print_test_status(self, rd): status = ( f"{rd.timer}s -status: {rd.status} -sub status: {rd.sub_status} " f"-progress: {rd.progress} -seconds elapsed: {rd.time_elapsed} " f"-remaining: {rd.time_remaining}" ) print(status) def print_test_stats(self, rd): stats = ( f"{rd.time_elapsed}s {rd.phase} -load: {rd.c_current_load:,}/{rd.c_desired_load:,} " f"-current/desired var: {rd.c_current_desired_load_variance} " f"-current avg/max var: {rd.rolling_tps.avg_max_load_variance} " f"-seek ready: {rd.rolling_count_since_goal_seek.stable}" f"\n-tps: {rd.c_http_successful_txns_sec:,} -tps stable: {rd.rolling_tps.stable} " f"-tps cur avg: {rd.rolling_tps.avg_val:,} -tps prev: {rd.rolling_tps.avg_val_last:,} " f"-delta tps: {rd.rolling_tps.increase_avg} -tps list:{rd.rolling_tps.list} " f"\n-cps: {rd.c_tcp_established_conn_rate:,} -cps stable: {rd.rolling_cps.stable} " f"-cps cur avg: {rd.rolling_cps.avg_val:,} -cps prev: {rd.rolling_cps.avg_val_last:,} " f"-delta cps: {rd.rolling_cps.increase_avg} -cps list:{rd.rolling_cps.list} " f"\n-conns: {rd.c_tcp_established_conns:,} -conns stable: {rd.rolling_conns.stable} " f"-conns cur avg: {rd.rolling_conns.avg_val:,} -conns prev: {rd.rolling_conns.avg_val_last:,} " f"-delta conns: {rd.rolling_cps.increase_avg} -conns list:{rd.rolling_conns.list} " f"\n-bw: {rd.c_total_bandwidth:,} -bw stable: {rd.rolling_bw.stable} " f"-bw cur avg: {rd.rolling_bw.avg_val:,} -bw prev: {rd.rolling_bw.avg_val_last:,} " f"-delta bw: {rd.rolling_bw.increase_avg} -bw list:{rd.rolling_bw.list} " f"\n-ttfb: {rd.c_tcp_avg_ttfb:,} -ttfb stable: {rd.rolling_ttfb.stable} " f"-ttfb cur avg: {rd.rolling_ttfb.avg_val:,} -ttfb prev: {rd.rolling_ttfb.avg_val_last:,} " f"-delta ttfb: {rd.rolling_ttfb.increase_avg} -ttfb list:{rd.rolling_ttfb.list} " f"\n-cpu_c: {rd.c_loadspec_avg_cpu:6.1f} -pktmemused_c: {rd.c_memory_packetmem_used:4.0f} " f" -memused_c: {rd.c_memory_main_used:5.0f} -memusedpert_c: {rd.c_memory_percent_used:3.1f}" f" -mem_c: {rd.c_memory_main_size:5.0f}" f"\n-cpu_s: {rd.s_memory_avg_cpu:6.1f} -pktmemUsed_s: {rd.s_memory_packetmem_used:4.0f} " f" -memused_s: {rd.s_memory_main_used:5.0f} -memusedperc_s: {rd.s_memory_percent_used:3.1f}" f" -mem_s: {rd.s_memory_main_size:5.0f}" f"\n-attempt txn: {rd.c_http_attempted_txns:9.0f} -success txns: {rd.c_http_successful_txns:9.0f} " f" -failed txns: {rd.c_http_unsuccessful_txns} (unsucc) + {rd.c_http_aborted_txns} (abort)" # f"\n-total bw: {rd.c_total_bandwidth:,} -rx bw: {rd.c_rx_bandwidth:,}" # f" tx bw: {rd.c_tx_bandwidth:,}" # f"\n-ttfb cur avg: {rd.rolling_ttfb.avg_val} -ttfb prev: {rd.rolling_ttfb.avg_val_last} " # f"-delta ttfb: {rd.rolling_ttfb.increase_avg} -ttfb list:{rd.rolling_ttfb.list}" ) print(stats) log.debug(stats) def wait_for_running_status(self, cf, rd): """ Wait for the current test to return a 'running' status. :return: True if no statements failed and there were no exceptions. False otherwise. """ log.debug("Inside the RunTest/wait_for_running_status method.") i = 0 while True: time.sleep(4) rd.timer = int(round(time.time() - rd.start_time)) i += 4 if not self.update_test_run(cf, rd): return False if rd.status == "running": print(f"{rd.timer}s - status: {rd.status}") break print( f"{rd.timer}s - status: {rd.status} sub status: {rd.sub_status}" ) if rd.status in {"failed", "finished"}: log.error("Test failed") return False # check to see if another test with the same ID is running # (can happen due to requests retry) if i > 120 and rd.status == "waiting": self.check_running_tests(cf, rd) # stop after 1800 seconds of waiting if i > 1800: log.error( "Waited for 1800 seconds, test did not transition to a running status." ) return False rd.time_to_run = rd.timer log.debug(f"Test {rd.name} successfully went to running status.") log.debug(json.dumps(rd.test_run_update, indent=4)) rd.run_id = rd.test_run_update.get("runId") rd.report_link = ( "https://" + cf.controller_ip + "/#results/" + rd.type_v1 + "/" + rd.run_id ) return True def check_running_tests(self, cf, rd): """Checks if tests with same ID is running and changes control to this test This function can be triggered if waiting status is too long because the requests module retry mechanism has kicked off two duplicate tests in error. It will look for matching running tests and switch control over to the already running duplicate test. :return: None """ # get list of run IDs and test IDs with status test_runs = cf.list_test_runs() # look for running status and compare ID for run in test_runs: if run["status"] == "running": log.debug( f"check_running_tests found running test: {json.dumps(run, indent=4)}" ) # if waiting and running test IDs match, change the running test if rd.test_id == run["testId"]: log.debug( f"check_running_tests found matching test_id {rd.test_id}" ) # stop current waiting test response = cf.stop_test(rd.id) log.debug( f"change_running_test, stopped duplicate waiting test: {response}" ) # change over to running test rd.id = run["id"] else: log.debug( f"check_running_tests test_id: {rd.test_id} " f"does not match running test_id: {run['testId']}" ) def wait_for_running_sub_status(self, cf, rd): """ Wait for the current test to return a 'None' sub status. :return: True if no statements failed and there were no exceptions. False otherwise. """ log.debug("Inside the RunTest/wait_for_running_sub_status method.") i = 0 while True: time.sleep(4) rd.timer = int(round(time.time() - rd.start_time)) i += 4 if not self.update_test_run(cf, rd): return False print( f"{rd.timer}s - status: {rd.status} sub status: {rd.sub_status}" ) if rd.sub_status is None: break if rd.status in {"failed", "finished"}: log.error("Test failed") return False # stop after 0 seconds of waiting if i > 360: log.error( "Waited for 360 seconds, test did not transition to traffic state." ) return False rd.time_to_start = rd.timer - rd.time_to_run log.debug(f"Test {rd.name} successfully went to traffic state.") log.debug(json.dumps(rd.test_run_update, indent=4)) return True def stop_wait_for_finished_status(self, cf, rd): """ Stop and wait for the current test to return a 'finished' status. :return: True if no statements failed and there were no exceptions. False otherwise. """ log.debug("Inside the stop_test/wait_for_finished_status method.") rd.time_to_stop_start = rd.timer if rd.status == "running": self.cf.stop_test(rd.id) i = 0 while True: if rd.c_desired_load > 0: self.update_run_stats(cf, rd) self.save_results(rd) time.sleep(4) rd.timer = int(round(time.time() - rd.start_time)) i += 4 if not self.update_test_run(cf, rd): return False if rd.status in {"stopped", "finished", "failed"}: print(f"{rd.timer} status: {rd.status}") break if rd.status == "failed": print(f"{rd.timer} status: {rd.status}") return False print( f"{rd.timer}s - status: {rd.status} sub status: {rd.sub_status}" ) if i > 1800: error_msg = ( "Waited for 1800 seconds, " "test did not transition to a finished status." ) log.error(error_msg) print(error_msg) return False rd.time_to_stop = rd.timer - rd.time_to_stop_start log.debug( f"Test {rd.name} successfully went to finished status in " f"{rd.time_to_stop} seconds." ) return True def wait_for_test_activity(self, cf, rd): """ Wait for the current test to show activity - metric(s) different than 0. :return: True if no statements failed and there were no exceptions. False otherwise. """ log.debug("Inside the RunTest/wait_for_test_activity method.") test_generates_activity = False i = 0 while not test_generates_activity: rd.timer = int(round(time.time() - rd.start_time)) self.update_test_run(cf, rd) self.update_run_stats(cf, rd) # self.print_test_status(rd) if rd.sub_status is None: self.print_test_stats(rd) self.save_results(rd) if rd.c_http_successful_txns_sec > 0: test_generates_activity = True if rd.status in {"failed", "finished"}: log.error("Test failed") return False if i > 180: error_msg = ( "Waited for 180 seconds, test did not have successful transactions" ) log.error(error_msg) print(error_msg) return False time.sleep(4) i = i + 4 print(f"") rd.time_to_activity = rd.timer - rd.time_to_start - rd.time_to_run return True @staticmethod def countdown(t): """countdown function Can be used after load increase for results to update :param t: countdown in seconds :return: None """ while t: mins, secs = divmod(t, 60) time_format = "{:02d}:{:02d}".format(mins, secs) print(time_format, end="\r") time.sleep(1) t -= 1 def goal_seek(self, rd): log.info(f"In goal_seek function") if rd.c_current_load == 0: rd.stop = True log.info(f"goal_seek stop, c_current_load == 0") return False if rd.goal_seek_count >= rd.minimum_goal_seek_count: rd.first_goal_load_increase = False else: rd.first_goal_load_increase = True if rd.first_goal_load_increase: new_load = rd.c_current_load + (rd.in_incr_low * rd.in_capacity_adjust) else: if self.ocj.is_load_type_conns(): new_load = self.ocj.get_new_load() elif self.check_if_load_type_simusers(rd): new_load = self.goal_seek_set_simuser_kpi(rd, rd.kpi_1) log.info(f"new_load = {new_load}") elif self.check_if_load_type_default(rd): new_load = self.goal_seek_set_default(rd) log.info(f"new_load = {new_load}") else: report_error = f"Unknown load type: " \ f"{rd.test_config['config']['loadSpecification']['type']}" log.error(report_error) print(report_error) return False if new_load is False: log.info( f"Config load spec type: {rd.test_config['config']['loadSpecification']['type']}" ) log.info(f"Goal_seek return, new_load is False") return False if self.test_type == "conns": self.change_update_load(rd, new_load, 4) else: self.change_update_load(rd, new_load, 16) return True def ramp_seek(self, rd, ramp_kpi, ramp_to_value): log.info(f"In ramp_seek function") if rd.c_current_load == 0: rd.stop = True log.info(f"ramp_seek stop, c_current_load == 0") return False # if rd.first_ramp_load_increase: # rd.first_ramp_load_increase = False # new_load = rd.c_current_load * 2 if rd.in_ramp_step < 1: rd.ramp_seek_complete = True return if ramp_kpi.current_value < ramp_to_value: load_increase_multiple = round(ramp_to_value / ramp_kpi.current_value, 3) load_increase = (rd.c_current_load * load_increase_multiple) - rd.c_current_load load_increase = round(load_increase / rd.in_ramp_step, 3) new_load = self.round_up_to_even(rd.c_current_load + load_increase) rd.in_ramp_step = rd.in_ramp_step - 1 log.info(f"new load: {new_load}, current_load: {rd.c_current_load}" f" * {load_increase} load_increase " f"ramp_step left: {rd.in_ramp_step} " f"\n ramp_to_value: {ramp_to_value} " f"ramp_kpi.current_value: {ramp_kpi.current_value}" ) rd.in_incr_low = self.round_up_to_even(new_load * rd.in_ramp_low/100) rd.in_incr_med = self.round_up_to_even(new_load * rd.in_ramp_med/100) rd.in_incr_high = self.round_up_to_even(new_load * rd.in_ramp_high/100) else: rd.ramp_seek_complete = True self.change_update_load(rd, new_load, 8) return True @staticmethod def round_up_to_even(v): return math.ceil(v / 2.) * 2 def check_if_load_type_simusers(self, rd): if rd.test_config["config"]["loadSpecification"]["type"].lower() in { "simusers", "simusers/second", }: return True return False def check_if_load_type_default(self, rd): if rd.test_config["config"]["loadSpecification"]["type"].lower() in { "bandwidth", "connections", "connections/second", }: return True return False def change_update_load(self, rd, new_load, count_down): new_load = self.round_up_to_even(new_load) log_msg = f"\nchanging load from: {rd.c_current_load} to: {new_load} status: {rd.status}" log.info(log_msg) print(log_msg) try: self.cf.change_load(rd.id, new_load) rd.rolling_tps.load_increase_complete() rd.rolling_ttfb.load_increase_complete() rd.rolling_current_load.load_increase_complete() rd.rolling_cps.load_increase_complete() rd.rolling_conns.load_increase_complete() rd.rolling_bw.load_increase_complete() except Exception as detailed_exception: log.error( f"Exception occurred when changing test: " f"\n<{detailed_exception}>" ) rd.goal_seek_count = rd.goal_seek_count + 1 self.countdown(count_down) return True def goal_seek_set_default(self, rd): set_load = 0 if rd.c_current_desired_load_variance >= 0.97: if rd.c_current_load <= rd.in_threshold_low: set_load = rd.c_current_load + ( rd.in_incr_low * rd.in_capacity_adjust ) elif rd.c_current_load <= rd.in_threshold_med: set_load = rd.c_current_load + ( rd.in_incr_med * rd.in_capacity_adjust ) elif rd.c_current_load <= rd.in_threshold_high: set_load = rd.c_current_load + ( rd.in_incr_high * rd.in_capacity_adjust ) elif rd.c_current_load > rd.in_threshold_high: return False else: return False if rd.in_threshold_high < set_load: if rd.c_current_desired_load_variance > 0.99: return False else: set_load = rd.in_threshold_high return set_load def goal_seek_set_simuser_kpi(self, rd, kpi): log.debug(f"in goal_seek_set_simuser_kpi function") set_load = 0 if kpi.increase_avg >= rd.in_threshold_low: set_load = rd.c_current_load + (rd.in_incr_low * rd.in_capacity_adjust) elif kpi.increase_avg >= rd.in_threshold_med: set_load = rd.c_current_load + (rd.in_incr_med * rd.in_capacity_adjust) elif kpi.increase_avg >= rd.in_threshold_high: set_load = rd.c_current_load + (rd.in_incr_high * rd.in_capacity_adjust) elif kpi.increase_avg < rd.in_threshold_high: log.info( f"rolling_tps.increase_avg {kpi.increase_avg} < " f"{rd.in_threshold_high} in_threshold_high" ) return False if kpi.avg_max_load_variance < 0.97: set_load = rd.c_current_load rd.max_load_reached = True log.info( f"set_load = {set_load} " f"kpi_avg_max_load_variance: {kpi.avg_max_load_variance}" ) return set_load def update_rolling_averages(self, rd): """Updates rolling statistics averages used to make test control decisions :return: None """ rd.rolling_tps.update(rd.c_http_successful_txns_sec) rd.rolling_tps.check_if_stable(rd.max_var_reference) rd.rolling_ttfb.update(rd.c_tcp_avg_ttfb) rd.rolling_ttfb.check_if_stable(rd.max_var_reference) rd.rolling_current_load.update(rd.c_current_load) rd.rolling_current_load.check_if_stable(rd.max_var_reference) rd.rolling_cps.update(rd.c_tcp_established_conn_rate) rd.rolling_cps.check_if_stable(rd.max_var_reference) rd.rolling_conns.update(rd.c_tcp_established_conns) rd.rolling_conns.check_if_stable(rd.max_var_reference) rd.rolling_bw.update(rd.c_total_bandwidth) rd.rolling_bw.check_if_stable(rd.max_var_reference) rd.rolling_count_since_goal_seek.update(1) rd.rolling_count_since_goal_seek.check_if_stable(0) def check_kpi(self, rd): rd.in_kpi_1 = rd.in_kpi_1.lower() if rd.in_kpi_1 == "tps": rd.kpi_1 = rd.rolling_tps elif rd.in_kpi_1 == "cps": rd.kpi_1 = rd.rolling_cps elif rd.in_kpi_1 == "conns": rd.kpi_1 = rd.rolling_conns elif rd.in_kpi_1 == "bw": rd.kpi_1 = rd.rolling_bw elif rd.in_kpi_1 == "ttfb": rd.kpi_1 = rd.rolling_ttfb else: log.debug(f"check_kpi unknown kpi_1, setting to TPS") rd.kpi_1 = rd.rolling_tps rd.in_kpi_2 = rd.in_kpi_2.lower() if rd.in_kpi_2 == "tps": rd.kpi_2 = rd.rolling_tps elif rd.in_kpi_2 == "cps": rd.kpi_2 = rd.rolling_cps elif rd.in_kpi_2 == "conns": rd.kpi_2 = rd.rolling_conns elif rd.in_kpi_2 == "bw": rd.kpi_2 = rd.rolling_bw elif rd.in_kpi_2 == "ttfb": rd.kpi_2 = rd.rolling_ttfb else: log.debug(f"check_kpi unknown kpi_2, setting to CPS") rd.kpi_2 = rd.rolling_cps def check_ramp_seek_kpi(self, rd): if rd.in_ramp_seek_kpi == "tps": rd.ramp_seek_kpi = rd.rolling_tps elif rd.in_ramp_seek_kpi == "cps": rd.ramp_seek_kpi = rd.rolling_cps elif rd.in_ramp_seek_kpi == "conns": rd.ramp_seek_kpi = rd.rolling_conns elif rd.in_ramp_seek_kpi == "bw": rd.ramp_seek_kpi = rd.rolling_bw elif rd.in_ramp_seek_kpi == "ttfb": rd.ramp_seek_kpi = rd.rolling_ttfb else: log.debug(f"check_ramp_seek_kpi unknown kpi, setting to TPS") rd.ramp_seek_kpi = rd.rolling_tps @staticmethod def return_bool_true(check_if, is_value): if isinstance(check_if, bool): return check_if if isinstance(check_if, str) and check_if.lower() == is_value: return True return False def control_test(self, cf, rd): """Main test control Runs test. Start by checking if test is in running state followed by checking for successful connections. First updates stats, checks the phase test is in based on elapsed time, then updates rolloing averages. :return: True if test completed successfully """ # exit control_test if test does not go into running state if not self.wait_for_running_status(cf, rd): log.info(f"control_test end, wait_for_running_status False") return False # exit control_test if test does not go into running state if not self.wait_for_running_sub_status(cf, rd): log.info(f"control_test end, wait_for_running_sub_status False") return False # exit control_test if test does not have successful transactions if not self.wait_for_test_activity(cf, rd): self.stop_wait_for_finished_status(cf, rd) log.info(f"control_test end, wait_for_test_activity False") return False self.check_ramp_seek_kpi(rd) self.check_kpi(rd) rd.rolling_count_since_goal_seek.reset() # self.countdown(12) # test control loop - runs until self.stop is set to True while not rd.stop: self.update_run_stats(cf, rd) self.update_phase(rd) self.check_stop_conditions(rd) self.update_rolling_averages(rd) # print stats if test is running if rd.sub_status is None: self.print_test_stats(rd) self.save_results(rd) if rd.in_ramp_seek and not rd.ramp_seek_complete: log.info(f"control_test going to ramp_seek") self.control_test_ramp_seek(rd, rd.ramp_seek_kpi, rd.in_ramp_seek_value) if rd.in_goal_seek and rd.ramp_seek_complete: log.info(f"control_test going to goal_seek") self.control_test_goal_seek_kpi(rd, rd.kpi_1, rd.kpi_2, rd.in_kpi_and_or) print(f"") time.sleep(4) # if goal_seek is yes enter sustained steady phase self.wait_openconn_cps_end(cf, rd) if rd.in_goal_seek and rd.in_sustain_period > 0: self.sustain_test(cf, rd) # stop test and wait for finished status if self.stop_wait_for_finished_status(cf, rd): rd.time_to_stop = rd.timer - rd.time_to_stop_start #self.save_results(rd) return True return False def check_stop_conditions(self, rd): log.debug(f"in check_stop_conditions method") # stop test if time_remaining returned from controller == 0 if rd.time_remaining == 0: rd.phase = "timeout" log.info(f"control_test end, time_remaining == 0") rd.stop = True # stop goal seeking test if time remaining is less than 30s if rd.time_remaining < 30 and rd.in_goal_seek: rd.phase = "timeout" log.info(f"control_test end goal_seek, time_remaining < 30") rd.stop = True elif rd.time_remaining < 30 and rd.in_ramp_seek: rd.phase = "timeout" log.info(f"control_test end ramp_seek, time_remaining < 30") rd.stop = True if rd.phase == "finished": log.info(f"control_test end, over duration time > phase: finished") rd.stop = True def control_test_ramp_seek(self, rd, ramp_kpi, ramp_to_value): """ Increases load to a configured tps, cps, conns or bandwidth level. :return: True if no statements failed and there were no exceptions. False otherwise. """ ramp_seek_count = 1 #log.debug("Inside the RunTest/ramp_to_seek method.") log.info( f"Inside the RunTest/ramp_to_seek method.\n" f"rolling_count_list stable: {rd.rolling_count_since_goal_seek.stable} " f"list: {rd.rolling_count_since_goal_seek.list} " f"\nramp_to_value: {ramp_to_value} ramp_kpi current: {ramp_kpi.current_value}" f" increase: {ramp_kpi.increase_avg}" f"\n current load: {rd.c_current_load}" f" desired_load: {rd.c_desired_load}" ) if rd.phase != "rampseek": log.info(f"phase {rd.phase} is not 'rampseek', " f"returning from contol_test_ramp_seek") return if not rd.rolling_count_since_goal_seek.stable: log.info(f"count since goal seek is not stable. " f"count list: {rd.rolling_count_since_goal_seek.list}" f"returning from control_test_ramp_seek") return if rd.max_load_reached: log.info(f"control_test_ramp_seek end, max_load_reached") rd.stop = True return # check if kpi avg is under set avg - if not, stop loop if ramp_to_value < ramp_kpi.current_value: log.info(f"ramp_to_value {ramp_to_value} < ramp_kpi.current_value {ramp_kpi.current_value}" f"completed ramp_seek") rd.ramp_seek_complete = True rd.in_capacity_adjust = 1 return if self.ramp_seek(rd, ramp_kpi, ramp_to_value): # reset rolling count > no load increase until # at least the window size interval. # allows stats to stabilize after an increase rd.rolling_count_since_goal_seek.reset() else: log.info(f"control_test_ramp_seek end, ramp_seek False") rd.ramp_seek_complete = True rd.in_capacity_adjust = 1 return if (ramp_kpi.current_value / ramp_to_value) > 0.95: log.info( f"ramp_kpi.current_value {ramp_kpi.current_value} / " f"ramp_to_value {ramp_to_value} > 0.95 " f"increasing ramp_seek_count + 1") ramp_seek_count = ramp_seek_count + 1 if ramp_seek_count == rd.in_ramp_step: log.info(f"ramp_seek_complete early") rd.ramp_seek_complete = True rd.in_capacity_adjust = 1 return return def control_test_goal_seek_kpi(self, rd, kpi_1, kpi_2, kpis_and_bool): log.info( f"rolling_count_list stable: {rd.rolling_count_since_goal_seek.stable} " f"list: {rd.rolling_count_since_goal_seek.list} " f"\nKpi1 stable: {kpi_1.stable} list: {kpi_1.list}" f"\nKpi2 stable: {kpi_2.stable} list: {kpi_2.list}" ) self.ocj.capture_goal_seek_iteration() if rd.phase != "goalseek": log.info(f"phase {rd.phase} is not 'goalseek', " f"returning from contol_test_goal_seek") return if self.test_type == "conns": if rd.in_load_type == "Connections" : log.info(f"tps: {rd.c_http_successful_txns_sec} -cps: {rd.c_tcp_established_conn_rate}") if rd.c_http_successful_txns_sec == 0 or rd.c_tcp_established_conn_rate == 0: log.info(f"Ready for Open Conns goal seeking") pass else: log.info(f"Not ready for Open Conns goal seeking, continue to add load") return elif rd.in_load_type == "SimUsers": message = "Heap Memory state changed from OK to Throttled Free" log.info(f"rd.c_memory_percent_used is: {rd.c_memory_percent_used}") log.info(f"rd.c_simusers_suspending is: {rd.c_simusers_suspending}") if rd.c_memory_percent_used > 97: eventlogs = self.cf.fetch_event_logs(rd.id) for line in eventlogs["logs"]: if message in line: log.debug(f"eventLog: \n{json.dumps(eventlogs, indent=4)}") message = line + f"\nSuspending Simusers: {rd.c_simusers_suspending}, stop goal seek" print(message) rd.max_load_reached = True rd.stop = True return if rd.c_simusers_suspending > 0: message = f"Suspending Simusers: {rd.c_simusers_suspending}, stop goal seek" log.debug(message) print(message) rd.max_load_reached = True rd.stop = True return if rd.c_tcp_established_conn_rate == 0: log.info(f"cps: {rd.c_tcp_established_conn_rate}, ready for goal seek") pass else: log.info(f"cps: {rd.c_tcp_established_conn_rate}, not ready for goal seek, continue to add load") return elif not rd.rolling_count_since_goal_seek.stable: log.info(f"count since goal seek is not stable. " f"count list: {rd.rolling_count_since_goal_seek.list}") return if rd.max_load_reached: log.info(f"control_test end, max_load_reached") rd.stop = True return if rd.goal_seek_count < 3: if not kpi_1.stable or not kpi_2.stable: rd.minimum_goal_seek_count = 3 if self.test_type == "conns": goal_seek = True elif rd.goal_seek_count < rd.minimum_goal_seek_count: goal_seek = True elif kpis_and_bool: if kpi_1.stable and kpi_2.stable: goal_seek = True else: goal_seek = False else: if kpi_1.stable or kpi_2.stable: goal_seek = True else: goal_seek = False if goal_seek: if self.goal_seek(rd): # reset rolling count > no load increase until # at least the window size interval. # allows stats to stabilize after an increase rd.rolling_count_since_goal_seek.reset() else: log.info(f"control_test end, goal_seek False") rd.stop = True def wait_openconn_cps_end(self, cf, rd): if self.test_type == "conns" and rd.in_load_type == "SimUsers": while rd.c_tcp_established_conn_rate > 0: log.info(f"still waiting cps down to 0") self.update_run_stats(cf, rd) if rd.sub_status is None: self.print_test_stats(rd) self.save_results(rd) time.sleep(4) return True def sustain_test(self, cf, rd): rd.phase = "steady" while rd.in_sustain_period > 0: rd.timer = int(round(time.time() - rd.start_time)) sustain_period_loop_time_start = time.time() self.update_run_stats(cf, rd) if rd.time_remaining < 30 and rd.in_goal_seek: rd.phase = "timeout" rd.in_sustain_period = 0 log.info(f"sustain_test end, time_remaining < 30") print(f"sustain period time left: {int(rd.in_sustain_period)}") # print stats if test is running if rd.sub_status is None: self.print_test_stats(rd) self.save_results(rd) time.sleep(4) rd.in_sustain_period = rd.in_sustain_period - ( time.time() - sustain_period_loop_time_start ) rd.phase = "stopping" # self.stop_wait_for_finished_status(cf, rd) return True def save_results(self, rd): csv_list = [ rd.in_name, rd.time_elapsed, rd.phase, rd.c_current_load, rd.c_desired_load, rd.rolling_count_since_goal_seek.stable, rd.c_http_successful_txns_sec, rd.rolling_tps.stable, rd.rolling_tps.increase_avg, rd.c_http_successful_txns, rd.c_http_unsuccessful_txns, rd.c_http_aborted_txns, rd.c_transaction_error_percentage, rd.c_tcp_established_conn_rate, rd.rolling_cps.stable, rd.rolling_cps.increase_avg, rd.c_tcp_established_conns, rd.rolling_conns.stable, rd.rolling_conns.increase_avg, rd.c_tcp_avg_tt_synack, rd.c_tcp_avg_ttfb, rd.rolling_ttfb.stable, rd.rolling_ttfb.increase_avg, rd.c_url_avg_response_time, rd.c_tcp_cumulative_established_conns, rd.c_tcp_cumulative_attempted_conns, rd.c_total_bandwidth, rd.rolling_bw.stable, rd.rolling_bw.increase_avg, rd.c_rx_bandwidth, rd.c_tx_bandwidth, rd.c_total_byte_rate, rd.c_rx_byte_rate, rd.c_tx_byte_rate, rd.c_total_packet_count, rd.c_rx_packet_count, rd.c_tx_packet_count, rd.c_rx_packet_rate, rd.c_tx_packet_rate, rd.s_tcp_closed, rd.s_tcp_closed_reset, rd.s_tcp_closed_error, rd.c_simusers_alive, rd.c_simusers_animating, rd.c_simusers_blocking, rd.c_simusers_sleeping, rd.c_loadspec_avg_cpu, rd.c_memory_percent_used, rd.c_memory_packetmem_used, rd.c_memory_rcv_queue_length, rd.s_memory_avg_cpu, rd.s_memory_percent_used, rd.s_memory_packetmem_used, rd.s_memory_rcv_queue_length, rd.type_v1, rd.type_v2, rd.in_load_type, rd.test_id, rd.id, rd.time_to_run, rd.time_to_start, rd.time_to_activity, rd.time_to_stop, script_version, rd.report_link, ] self.result_file.append_file(csv_list) class DetailedCsvReport: def __init__(self, report_location): log.debug("Initializing detailed csv result files.") self.time_stamp = time.strftime("%Y%m%d-%H%M") log.debug(f"Current time stamp: {self.time_stamp}") self.report_location_parent = report_location #self.report_csv_file = report_location / f"{self.time_stamp}_Detailed.csv" self.columns = [ "test_name", "seconds", "state", "current_load", "desired_load", "seek_ready", "tps", "tps_stable", "tps_delta", "successful_txn", "unsuccessful_txn", "aborted_txn", "txn_error_rate", "cps", "cps_stable", "cps_delta", "open_conns", "conns_stable", "conns_delta", "tcp_avg_tt_synack", "tcp_avg_ttfb", "ttfb_stable", "ttfb_delta", "url_response_time", "total_tcp_established", "total_tcp_attempted", "total_bandwidth", "bw_stable", "bw_delta", "rx_bandwidth", "tx_bandwidth", "total_byte_rate", "rx_byte_rate", "tx_byte_rate", "total_packet_count", "rx_packet_count", "tx_packet_count", "rx_packet_rate", "tx_packet_rate", "tcp_closed", "tcp_reset", "tcp_error", "simusers_alive", "simusers_animating", "simusers_blocking", "simusers_sleeping", "client_cpu", "client_mem", "client_pkt_mem", "client_rcv_queue", "server_cpu", "server_mem", "server_pkt_mem", "server_rcv_queue", "test_type_v1", "test_type_v2", "load_type", "test_id", "run_id", "t_run", "t_start", "t_tx", "t_stop", "version", "report", ] def append_columns(self): """ Appends the column headers to the detailed report file. :return: no specific return value. """ try: csv_header = ",".join(map(str, self.columns)) + "\n" with open(self.report_csv_file, "a") as f: f.write(csv_header) except Exception as detailed_exception: log.error( f"Exception occurred writing to the detailed report file: \n<{detailed_exception}>\n" ) log.debug( f"Successfully appended columns to the detailed report file: {self.report_csv_file}." ) def append_file(self, csv_list): """ Appends the detailed report csv file with csv_line. :param csv_list: items to be appended as line to the file. :return: no specific return value. """ try: csv_line = ",".join(map(str, csv_list)) + "\n" with open(self.report_csv_file, "a") as f: f.write(csv_line) except Exception as detailed_exception: log.error( f"Exception occurred writing to the detailed report file: \n<{detailed_exception}>\n" ) def make_report_csv_file(self, new_report_csv_name): new_report_csv_name = self.report_location / f"{new_report_csv_name}_{self.time_stamp}_Detailed.csv" print(new_report_csv_name) if new_report_csv_name.is_file(): return else: self.report_csv_file = new_report_csv_name self.append_columns() def make_report_dir(self, report_dir_name): report_dir = self.report_location_parent / report_dir_name if report_dir.is_dir(): pass else: report_dir.mkdir(parents=False, exist_ok=True) self.report_location = report_dir class Report: def __init__(self, report_csv_file, column_order): self.report_csv_file = report_csv_file self.col_order = column_order self.df_base = pd.read_csv(self.report_csv_file) self.df_steady = self.df_base[self.df_base.state == "steady"].copy() self.unique_tests = self.df_base["test_name"].unique().tolist() self.results = [] self.process_results() self.format_results() self.df_results = pd.DataFrame(self.results) self.df_results = self.df_results.reindex(columns=self.col_order) self.df_filter = pd.DataFrame(self.df_results) def process_results(self): for name in self.unique_tests: d = {} d["test_name"] = name # get mean values from steady state mean_cols = [ "cps", "tps", "total_bandwidth", "open_conns", "tcp_avg_tt_synack", "tcp_avg_ttfb", "url_response_time", "client_cpu", "client_pkt_mem", "client_rcv_queue", "server_cpu", "server_pkt_mem", "server_rcv_queue", ] for col in mean_cols: d[col] = self.df_steady.loc[ self.df_steady["test_name"] == name, col ].mean() # get maximum values for all states max_cols = [ "successful_txn", "unsuccessful_txn", "aborted_txn", "total_tcp_established", "total_tcp_attempted", "seconds", "current_load", "t_run", "t_start", "t_tx", "t_stop", ] for col in max_cols: d[col] = self.df_base.loc[self.df_base["test_name"] == name, col].max() max_steady_cols = ["seconds"] for col in max_steady_cols: d[col] = self.df_steady.loc[ self.df_steady["test_name"] == name, col ].max() # checks steady vs. all state max, add _max to column name max_compare_cols = ["cps", "tps", "total_bandwidth"] for col in max_compare_cols: col_name = col + "_max" d[col_name] = self.df_base.loc[ self.df_base["test_name"] == name, col ].max() # find current_load and seconds for max tps d["max_tps_load"] = self.df_base.loc[ self.df_base["tps"] == d["tps_max"], "current_load" ].iloc[0] d["max_tps_seconds"] = self.df_base.loc[ self.df_base["tps"] == d["tps_max"], "seconds" ].iloc[0] total_pkt_count_sum = self.df_base.loc[self.df_base["test_name"] == name, "total_packet_count"].sum() total_byte_rate_sum = self.df_base.loc[self.df_base["test_name"] == name, "total_byte_rate"].sum() if total_pkt_count_sum > 0: d["avg_pkt_size"] = int(total_byte_rate_sum / total_pkt_count_sum) else: d["avg_pkt_size"] = 0 # get script version from test d["version"] = self.df_base.loc[self.df_base["test_name"] == name, "version"].iloc[0] # get report link for current test - changed to take from last row in test # d["report"] = self.df_base.loc[self.df_base["tps"] == d["tps_max"], "report"].iloc[0] d["report"] = self.df_base.loc[self.df_base["test_name"] == name, "report"].iloc[-1] # find min and max tps from steady phase max_steady_compare = ["tps"] for col in max_steady_compare: col_name_min = col + "_stdy_min" col_name_max = col + "_stdy_max" col_name_delta = col + "_stdy_delta" d[col_name_min] = self.df_steady.loc[ self.df_steady["test_name"] == name, col ].min() d[col_name_max] = self.df_steady.loc[ self.df_steady["test_name"] == name, col ].max() if d[col_name_min] != 0: d[col_name_delta] = ( (d[col_name_max] - d[col_name_min]) / d[col_name_min] ) * 100 d[col_name_delta] = round(d[col_name_delta], 3) else: d[col_name_delta] = 0 self.results.append(d) def reset_df_filter(self): self.df_filter = pd.DataFrame(self.df_results) def filter_rows_containing(self, test_name_contains): if test_name_contains is not None: self.df_filter = self.df_filter[ self.df_filter.test_name.str.contains(test_name_contains) ].copy() def filter_columns(self, filtered_columns): if filtered_columns is not None: self.df_filter.drop( self.df_filter.columns.difference(filtered_columns), axis=1, inplace=True ) def format_results(self): for row_num, row in enumerate(self.results): for key, value in row.items(): if key in { "cps", "tps", "total_bandwidth", "open_conns", "successful_txn", "unsuccessful_txn", "aborted_txn", "avg_pkt_size", "total_tcp_established", "total_tcp_attempted", "tps_stdy_min", "tps_stdy_max", "cps_max", "tps_max", "total_bandwidth_max", "max_tps_load", "client_mem", "client_pkt_mem", "client_rcv_queue", "server_mem", "server_pkt_mem", "server_rcv_queue", "t_run", "t_start", "t_tx", "t_stop", }: self.results[row_num][key] = f"{value:,.0f}" elif key in { "tcp_avg_ttfb", "url_response_time", "tcp_avg_tt_synack", "client_cpu", "server_cpu", }: self.results[row_num][key] = f"{value:,.1f}" elif key in {"tps_stdy_delta"}: self.results[row_num][key] = f"{value:,.2f}" elif key in {"report"}: self.results[row_num][key] = f'<a href="{value}">link</a>' @staticmethod def style_a(): styles = [ # table properties dict( selector=" ", props=[ ("margin", "0"), ("width", "100%"), ("font-family", '"Helvetica", "Arial", sans-serif'), ("border-collapse", "collapse"), ("border", "none"), ("border", "2px solid #ccf"), # ("min-width", "600px"), ("overflow", "auto"), ("overflow-x", "auto"), ], ), # header color - optional dict( selector="thead", props=[ ("background-color", "SkyBlue"), ("width", "100%") # ("display", "table") # adds fixed scrollbar # ("position", "fixed") ], ), # background shading dict( selector="tbody tr:nth-child(even)", props=[("background-color", "#fff")], ), dict( selector="tbody tr:nth-child(odd)", props=[("background-color", "#eee")] ), # cell spacing dict(selector="td", props=[("padding", ".5em")]), # header cell properties dict( selector="th", props=[ ("font-size", "100%"), ("text-align", "center"), ("min-width", "25px"), ("max-width", "50px"), ("word-wrap", "break-word"), ], ), # render hover last to override background-color dict(selector="tbody tr:hover", props=[("background-color", "SkyBlue")]), ] return styles def html_table(self, selected_style): # Style props = { "test_name": {"width": "20em", "min-width": "14em", "text-align": "left"}, "cps": {"width": "6em", "min-width": "5em", "text-align": "right"}, "tps": {"width": "6em", "min-width": "5em", "text-align": "right"}, "cps_max": {"width": "6em", "min-width": "5em", "text-align": "right"}, "tps_max": {"width": "6em", "min-width": "5em", "text-align": "right"}, "total_bandwidth": { "width": "8em", "min-width": "7em", "text-align": "right", }, "total_bandwidth_max": { "width": "8em", "min-width": "7em", "text-align": "right", }, "open_conns": {"width": "8em", "min-width": "7em", "text-align": "right"}, "tcp_avg_tt_synack": { "width": "3.7em", "min-width": "3.7em", "text-align": "right", }, "tcp_avg_ttfb": { "width": "3.7em", "min-width": "3.7em", "text-align": "right", }, "avg_pkt_size": { "width": "7em", "min-width": "6em", "text-align": "right", }, "url_response_time": { "width": "3.7em", "min-width": "3.7em", "text-align": "right", }, "report": {"width": "3.7em", "min-width": "3.7em", "text-align": "right"}, "successful_txn": { "width": "8em", "min-width": "7em", "text-align": "right", }, "total_tcp_established": { "width": "5em", "min-width": "5em", "text-align": "right", }, "total_tcp_attempted": { "width": "5em", "min-width": "5em", "text-align": "right", }, "seconds": {"width": "3.7em", "min-width": "3.7em", "text-align": "right"}, "tps_stdy_min": {"width": "3.2em", "min-width": "3.2em", "text-align": "right"}, "tps_stdy_max": {"width": "3.2em", "min-width": "3.2em", "text-align": "right"}, "tps_stdy_delta": { "width": "3.2em", "min-width": "3.2em", "text-align": "right", }, "client_cpu": {"width": "3em", "min-width": "3em", "text-align": "right"}, "server_cpu": {"width": "3em", "min-width": "3em", "text-align": "right"}, "client_pkt_mem": { "width": "3.5em", "min-width": "3.5em", "text-align": "right", }, "client_rcv_queue": { "width": "3.5em", "min-width": "3.5em", "text-align": "right", }, "server_pkt_mem": { "width": "3.9em", "min-width": "3.9em", "text-align": "right", }, "server_rcv_queue": { "width": "3.9em", "min-width": "3.9em", "text-align": "right", }, "current_load": { "width": "3.7em", "min-width": "3.7em", "text-align": "right", }, "unsuccessful_txn": { "width": "3.8em", "min-width": "3.8em", "text-align": "right", }, "aborted_txn": { "width": "3.5em", "min-width": "3.5em", "text-align": "right", }, "max_tps_seconds": { "width": "3.7em", "min-width": "3.7em", "text-align": "right", }, "max_tps_load": { "width": "3.7em", "min-width": "3.7em", "text-align": "right", }, "t_run": {"width": "3em", "min-width": "3.7em", "text-align": "right"}, "t_start": {"width": "3em", "min-width": "3em", "text-align": "right"}, "t_tx": {"width": "3em", "min-width": "3em", "text-align": "right"}, "t_stop": {"width": "3em", "min-width": "3em", "text-align": "right"}, "version": {"width": "3em", "min-width": "3em", "text-align": "right"}, } # html = '' all_columns = set(self.df_filter.columns) html = self.df_filter.style.set_properties( subset="test_name", **props["test_name"] ) for k, v in props.items(): if k in all_columns: html = html.set_properties(subset=k, **v) try: html = html.set_table_styles(selected_style).hide_index().render() except AttributeError: html = html.set_table_styles(selected_style).hide(axis=0).to_html() return html
true
5ec5a4bc6491d2c8a251413bbd10bf7801777cfd
Python
barcern/python-crash-course
/chapter4/4-12_more_loops.py
UTF-8
534
4.15625
4
[]
no_license
# -*- coding: utf-8 -*- """ Created on Wed May 6 09:10:41 2020 @author: barbora """ # Choose a version of foods.py from the book and print using for loops. # Using foods.py from the book my_foods = ['pizza', 'falafel', 'carrot cake'] friend_foods = my_foods[:] my_foods.append('cannoli') friend_foods.append('ice-cream') # Print foods using for loops print("My favourite foods are:") for food in my_foods: print(food.title()) print("\nMy friend's favourite foods are:") for food in friend_foods: print(food.title())
true
6742277e91826ea4a7b2be9957a372c18730623d
Python
NathanZorndorf/cheat-sheets
/Modules/Numpy/Numpy Cheat Sheet.py
UTF-8
333
3.34375
3
[]
no_license
#----------------------- NUMPY CHEAT SHEET -------------------------# import numpy as np #--------- 2D ----------# # Create 2D array a = np.array([[1,2,3], [4,5,6]]) # index to reference entire first row a[0] # output => array([1, 2, 3]) a[1, -2:] # output => index to reference last two column values in second row
true
afed8508ee701b8b414e91d4a6428fbb9eeac579
Python
tachyon77/flat-resnet
/dataset.py
UTF-8
1,564
2.75
3
[]
no_license
"""Dataset class. Author: Mohammad Mahbubuzzaman (tachyon77@gmail.com) """ import logging import torch.nn.functional as F import torch.utils.data as data from torch.utils.data import dataset import torch import ujson as json from collections import Counter class ImageDataset(data.Dataset): """Random Dataset. The dataset is a tensor with first dimension as N and remaining as image dimension. Args: data_path (str): Path to .npz file containing dataset. """ def __init__(self, data_path): super(ImageDataset, self).__init__() self.dataset = torch.load(data_path) def __getitem__(self, idx): return self.dataset[idx] def __len__(self): return self.dataset.shape[0] # Since first dimension is the N class ResnetOutputDataset(data.Dataset): """Random Dataset. The dataset is a tensor with first dimension as N and remaining as image dimension. Args: data_path (str): Path to .npz file containing dataset. """ def __init__( self, input_data_path='/home/mahbub/research/flat-resnet/random_images.npz', output_data_path='/home/mahbub/research/flat-resnet/10000_random_chw_tensors.npz'): super(ResnetOutputDataset, self).__init__() self.input_tensors = torch.load(input_data_path) self.output_tensors = torch.load(output_data_path) def __getitem__(self, idx): return (self.input_tensors[idx], self.output_tensors[idx]) def __len__(self): return self.input_tensors.shape[0] # Since first dimension is the N
true
44ce1b0e8ce2e634d6bb04690b3d3b4f6d9a36f9
Python
artificialsoph/py_prac
/tests/test_pymat.py
UTF-8
2,101
2.78125
3
[]
no_license
from click.testing import CliRunner from pymatrix import main def assert_sub_out(command, output): runner = CliRunner() result = runner.invoke(main, command) assert result.exit_code == 0 assert result.output == output def test_import(): """ test all the input types using the sample data """ mat_out = '[[1 2 3]\n [2 3 4]\n [1 1 1]]\n' input_list = [ ['-f', 'data/sample.csv'], ['--csv-file', 'data/sample.csv'], ['-p', 'data/sample.p'], ['--pickle-file', 'data/sample.p'], ['-s', 'data/sample.coo'], ['--sparse-coo', 'data/sample.coo'], ['-j', 'data/sample.json'], ['--json-data', 'data/sample.json'], ] for in_pair in input_list: assert_sub_out(["print_mat"] + in_pair, mat_out) def test_echo_json(): assert_sub_out(["echo", '-j', 'data/sample.json', '2'], ("\nThe given input was of type: json_data\n" "And the value was: data/sample.json\n" "\nThe given input was of type: json_data\n" "And the value was: data/sample.json\n\n")) def test_closest_to(): assert_sub_out(["closest_to", '-j', "data/test.json", '8'], "1 8\n") assert_sub_out(["closest_to", '-j', "data/test.json", '8', "--distance"], "1 8 15.8113883008\n") def test_closest(): assert_sub_out(["closest", '-j', "data/test.json", '2'], "6 7\n5 6\n") assert_sub_out(["closest", '-j', "data/test.json", '2', '--distance'], "6 7 2.82842712475\n5 6 10.4403065089\n") def test_furthest(): assert_sub_out(["furthest", '-j', "data/test.json", '3'], "7 8\n6 8\n5 8\n") assert_sub_out(["furthest", '-j', "data/test.json", '3', '--distance'], "7 8 117.796434581\n6 8 114.978258814\n5 8 106.40018797\n") def test_centroids(): assert_sub_out(["centroids", '-j', "data/test.json", '3'], "88.6666666667 18.6666666667\n46.25 37.5\n" "11.3333333333 81.0\n")
true
80f9be7b604809dc0f596b085c578fcf74277755
Python
Dennysro/Python_DROP
/9.0_List_Comprehension.py
UTF-8
1,448
4.46875
4
[]
no_license
""" List Comprehension: - Utilizando list comprehension nós podemos gerar novas listas com dados processados a partir de outro iterável. # Sintaxe da List Comprehension [dado for dado in iterável] # Exemplos: # 1 numeros = [1, 2, 3, 4, 5] res = [numero*10 for numero in numeros] print(res) # Para entender o que o Python faz, vamos dividir a expressão em 2 partes: # 1- A primeira: for numero in numeros # 2- A segunda: numero*10 # 2 def funcao(valor): return valor * valor res = [funcao(numero) for numero in numeros] print(res) """ # List comprehensions versus Loop # Loop numeros = [1, 2, 3, 4, 5] numeros_dobrados = [] for numero in numeros: numero_dobrado = numero*2 numeros_dobrados.append(numero_dobrado) print(numeros) print(numeros_dobrados) # List Comprehension print([numero*2 for numero in numeros]) # ou print([numero*2 for numero in [1, 2, 3, 4, 5]]) # Outros Exemplos: # 1 nome = 'Drop The Beat' print([letra.upper() for letra in nome]) # 2 def caixa_alta(nome): nome = nome.replace(nome[0], nome[0].upper()) return nome amigos = ['maria', 'julia', 'pedro', 'guilherme', 'vanessa'] print([caixa_alta(amigo) for amigo in amigos]) # 3 print([numero*3 for numero in range(1, 10)]) # 4 print([bool(valor) for valor in [0, [], '', True, 1, 3.14]]) # 5 print([str(numero) for numero in [1, 2, 3, 4, 5]])
true
abb619392a2595a6398247604ba9aec573884e2c
Python
Erich6917/python_littlespider
/demo/beautiful/youku/YoukuDemo.py
UTF-8
2,087
2.625
3
[]
no_license
# -*- coding: utf-8 -*- # @Time : 2018/3/26 # @Author : LIYUAN134 # @File : YoukuDemo.py # @Commment: # import urllib, urllib2, sys, os from bs4 import BeautifulSoup import itertools, re url_i = 1 pic_num = 1 # 自己定义的引号格式转换函数 def _en_to_cn(str): obj = itertools.cycle(['“', '”']) _obj = lambda x: obj.next() return re.sub(r"['\"]", _obj, str) def start(): # 下载连续3个网页的视频 url = 'http://v.youku.com/v_show/id_XMTI5NjE4MTk2OA==.html?spm=a2h0k.8191407.0.0' webContent = urllib2.urlopen(url) data = webContent.read() # 利用BeautifulSoup读取视频列表网页数据 soup = BeautifulSoup(data) print "-------------------------Page " + str(url_i) + "-------------------------" # 获得相应页面的视频thumbnail和title的list tag_list_thumb = soup.findAll('li', 'v_thumb') tag_list = soup.findAll('li', "v_title") for item in tag_list: # 通过每个thumbnail中的herf导向视频播放页面 web_video_play = urllib2.urlopen(item.a['href']) data_vp = web_video_play.read() # 利用BeautifulSoup读取视频播放网页数据 soup_vp = BeautifulSoup(data_vp) # 找到“下载”对应的链接 tag_vp_list = soup_vp.findAll('a', id='fn_download') for item_vp in tag_vp_list: # 将下载链接保存到url_dw中 url_dw = '"' + item_vp['_href'] + '"' print item.a['title'] + ": " + url_dw # 调用命令行运行iku下载视频,需将iku加入环境变量 os.system("iku " + url_dw) # 保存每个视频的thumbnail for item_thumb in tag_list_thumb: urllib.urlretrieve(item_thumb.img['src'], "c:\\ZDownload\\thumbnails\\" + str(pic_num) + "." + _en_to_cn(item_thumb.img['title']) + ".jpg") print "--------------------------------------------------------------" print "--------Page " + str(url_i) + "'s video thumbnails have been saved!" if __name__ == '__main__': start()
true
0a8d01f90e6011b865ae553be8b3c79c0d8abe51
Python
sourcepirate/tailow
/tailow/fields/reference.py
UTF-8
941
2.640625
3
[ "MIT" ]
permissive
""" reference field """ from bson.objectid import ObjectId from .base import BaseField class ReferenceField(BaseField): """ Reference field property """ def __init__(self, kls, *args, **kwargs): self.kls = kls self._is_reference = True self._partialy_loaded = kwargs.pop("_is_partialy_loaded", False) super(ReferenceField, self).__init__(*args, **kwargs) def validate(self, value): """ validate if it is a valid field """ from tailow.document import Document if isinstance(value, (self.kls, Document)): return True return False def to_son(self, value): if value is None: return None if isinstance(value, ObjectId): return value return value._id if hasattr(value, "_id") else value.id def from_son(self, value): val = self.kls(id=value, _is_partialy_loaded=True) return val
true
8dfdebe0945f30602b50053435da8871f5e0fc89
Python
SoufianLabed/serverUDP-TCP
/tcpclient.py
UTF-8
1,266
3.09375
3
[]
no_license
import socket import sys class tcpclient: def __init__(self): self.PORT=int(sys.argv[1]) # initialise le port et l'IP (broadcast) self.IP = sys.argv[2] self.sock = socket.socket(socket.AF_INET, # création du socket qui communique entre le server et le client socket.SOCK_STREAM) def sendMessage(self): self.sock.connect((self.IP,self.PORT)) #Demande au server de se connecter self.sock.sendto(bytes(sys.argv[3], "utf-8"), (self.IP, self.PORT)) #envoie le message(récuperer par sys.argv[3]) à l'IP et par le port informé def receiveMessage(self): rep = True while rep == True: try: self.sock.settimeout(5) data, addr = self.sock.recvfrom(1024) # Récupération du retour du serveur print("\"ok : "+ str(data.decode("utf-8"+'')) + "\"") # Affichage dans le terminal self.sock.close() except Exception as e: rep = False clienttest=tcpclient() clienttest.sendMessage() clienttest.receiveMessage()
true
dfe7602410da308d1ad8da255c62fd9932d1a00d
Python
wangfin/QAsystem
/QAManagement/question_generalization/similarity_test.py
UTF-8
672
2.75
3
[]
no_license
# -*- coding: utf-8 -*- # @Time : 2018/8/15 15:25 # @Author : wb # @File : similarity_test.py # 相似度计算的测试 from QAManagement.question_generalization.similarity import Similarity import time similarity = Similarity() question = '入党 积极分子 的 培养 联系人 什么时候 确定 ?' model_list = ['入党 积极分子 的 培养 联系人 什么时候 确定 ?','护卫队 到底 什么时候 在 中国 上映 ?','鹅 为什么 看见 人 会 攻击 ?','鬼谷子 和 诸葛亮 到底 谁 厉害 ?','确定 为 入党 积极分子 的 时间 是 什么时候 ?'] result = similarity.main(question,model_list) print(result)
true
fddb339d9106262b651186884a85cfe73ddd71ae
Python
Gi1ia/TechNoteBook
/Algorithm/051_N_Queens.py
UTF-8
1,754
3.5
4
[]
no_license
class Solution: def solveNQueens(self, n): """ :type n: int :rtype: List[List[str]] """ if not n or n < 1: return [[]] arrangements = [] self.dfs([], arrangements, n) summary = [] # draw summary of boards for arrangement in arrangements: board = [] for x, y in enumerate(arrangement): # len(arrangement) == n temp = "." * n location = temp[:y] + 'Q' + temp[y + 1:] board.append(location) summary.append(board) return summary def dfs(self, current_rows, res, n): """ :type current_rows: List[int] index == row of Q key == col of Q e.g. [4, 2] means we put two queues already, they are in [0, 4], [1, 2] :type res: Result of arrangement :return: List[List[int]] """ if len(current_rows) == n: # queue has been put to the last row res.append(current_rows[:]) return # Trying to put Q in new row for col in range(n): # row, col, currentResult if self.valid(len(current_rows), col, current_rows): current_rows.append(col) self.dfs(current_rows, res, n) current_rows.pop() return res def valid(self, x, y, arrangement): for row, col in enumerate(arrangement): # Valid vertical if y == col: return False # Valid diagonal if row + col == x + y or row - col == x - y: return False return True
true
625d2a1e13ae6c7ddadcdb587d55968babdd6a29
Python
LeoTheMighty/beginner_python_exercises
/ReverseWordOrder.py
UTF-8
169
3.890625
4
[]
no_license
sentence = input("Give me a cool sentence and I'll reverse it...\n") sent_list = sentence.split(" ") reverse_sent = reversed(sent_list) print(" ".join(reverse_sent))
true
15295d523b8ecde68a6293610bc196a03d445e0c
Python
sajidamohammad/hackerearths
/sherlocknnum.py
UTF-8
289
2.515625
3
[]
no_license
test=int(raw_input()) for i in range(test): nkp=map(int,raw_input().split(" ")) remove=map(int, raw_input().split(" ")) final=range(1,6)-remove print sorted(final)[] ''' out.append(int(raw_input())) for j in range(len(out)): if out[j] in arr: print "YES" else: print "NO"'''
true
056b5583ef5619d9ef8cca646374281f08ee14a3
Python
gschen/sctu-ds-2020
/1906101074-王泓苏/Day0303/test07.py
UTF-8
315
3.28125
3
[]
no_license
class Test01(): def __init__(self): self.t1='我是父类' def f(self): return '爸爸' class Test02(): def __init__(self): self.t2='我是子类' def f(self,object): print(object.f()) a=Test01() def main(object): print(object.f()) return '123' print(main(a))
true
234f9d0be069bd885e1b1e25db82bd2eb4e0e97e
Python
EliasFarhan/CompNet
/rdt/rdt21.py
UTF-8
2,839
2.765625
3
[]
no_license
from rdt.base import * from rdt.rdt20 import ChannelRdt20 class SenderRdt21(Sender): last_packet = "" sequence_nmb = 1 msg_lock = threading.Lock() def send_data(self, data, resend=False): if not resend: self.msg_lock.acquire() self.last_packet = data text_data = data.encode() packet = bytearray(len(text_data) + 2) packet[1] = self.sequence_nmb.to_bytes(8, byteorder='little')[0] check_sum = 0 for byte in text_data: check_sum += byte check_sum += packet[1] packet[0] = check_sum.to_bytes(8, byteorder="little")[0] packet[2:len(text_data) + 2] = text_data self.channel.send_msg(packet) def receive_response(self, response): check_sum = 0 for byte in response[0:2]: check_sum += byte if check_sum.to_bytes(8, byteorder='little')[0] != response[3]: print("[Error] Bad response checksum : need to send the last packet again: "+self.last_packet) self.send_data(self.last_packet, resend=True) return if b"ACK" in response: print("[ACK] Packet went well") self.sequence_nmb += 1 self.msg_lock.release() elif b"NAK" in response: print("[NAK] Need to send packet again") self.send_data(self.last_packet, resend=True) else: print("[Error] Bad response : need to send the last packet again") self.send_data(self.last_packet, resend=True) class ReceiverRdt21(Receiver): sequence_number = 0 def receive_data(self, data): check_sum = data[0] sequence_nmb = data[1] text_data = data[2:] byte_sum = 0 response = bytearray(4) for byte in text_data: byte_sum += byte byte_sum += sequence_nmb if byte_sum.to_bytes(8, byteorder="little")[0] == check_sum: if self.sequence_number != sequence_nmb: super().receive_data(text_data) self.sequence_number = sequence_nmb response[0:2] = b"ACK" byte_sum = 0 for byte in response[0:2]: byte_sum += byte response[3] = byte_sum.to_bytes(8, byteorder='little')[0] self.send_response(response) else: response[0:2] = b"NAK" byte_sum = 0 for byte in response[0:2]: byte_sum += byte response[3] = byte_sum.to_bytes(8, byteorder='little')[0] self.send_response(response) def send_response(self, response): super().send_response(response) def main(): sim = Simulation(sender=SenderRdt21(), channel=ChannelRdt20(), receiver=ReceiverRdt21()) sim.simulate() if __name__ == "__main__": main()
true
9ecc4638f0729aa433de14f071ad253d523109e3
Python
aydan08/Python-Kursu-15.02.21
/HAFTA-3/DERS-7/FOR_DÖNGÜSÜ/for_2.py
UTF-8
359
3.921875
4
[ "MIT" ]
permissive
#1 den 100 e kadar olan tek sayıların toplamı toplam = 0 for tek_sayi in range(1,100,2): #(1 DAHİLDİR,100 DAHİL DEĞİLDİR,+2 ARTIŞ MİKTARIDIR) toplam = toplam + tek_sayi else: print("...Döngü Bitti...") print("Tek Sayıların Toplamı: ", toplam) #yerine alttaki de kullanılıyorr print(f"Tek Sayıların Toplamı: {toplam}")
true
110efd1c0795ca3ac85e696270fb8a487df37694
Python
skvrd/leetcode.py
/problems/1267/solution.py
UTF-8
534
2.59375
3
[ "MIT" ]
permissive
from typing import List class Solution: def countServers(self, grid: List[List[int]]) -> int: connected = 0 n = [0] * len(grid) m = [0] * len(grid[0]) for i in range(len(n)): for j in range(len(m)): if grid[i][j] == 1: n[i] += 1 m[j] += 1 for i in range(len(n)): for j in range(len(m)): if grid[i][j] == 1 and (n[i] > 1 or m[j] > 1): connected += 1 return connected
true
c5c5fdde707822de21042076b397011c51543709
Python
bioless/Xenocrates
/xenocrates-update-2018.py
UTF-8
9,057
2.984375
3
[]
no_license
#!/usr/bin/python import sqlite3 as sql import sys import operator import re import cgi import time import csv from collections import OrderedDict #Global Variables tablename = "SANS575_index" index = [] #Reads the CVS file into Index List filename = sys.argv[1] with open(filename, 'rU') as f: reader = csv.DictReader(f) for row in reader: try: t = row['Title'] index.append([cgi.escape(row['Title'].upper()), row['Book'], row['Page'], row['Description']]) except: pass #Sorts Index index = sorted(index, key=operator.itemgetter(0)) #Prints Index pos = 0 for item in index: key = item[0].strip('"').rstrip('"') #Create Section Header if key.startswith("A") or key.startswith("a"): if pos != 1: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Aa</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 1 elif key.startswith("B") or key.startswith("b"): if pos != 2: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Bb</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 2 elif key.startswith("C") or key.startswith("c"): if pos != 3: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Cc</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 3 elif key.startswith("D") or key.startswith("d"): if pos != 4: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Dd</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 4 elif key.startswith("E") or key.startswith("e"): if pos != 5: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Ee</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 5 elif key.startswith("F") or key.startswith("f"): if pos != 6: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Ff</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 6 elif key.startswith("G") or key.startswith("g"): if pos != 7: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Gg</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 7 elif key.startswith("H") or key.startswith("h"): if pos != 8: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Hh</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 8 elif key.startswith("I") or key.startswith("i"): if pos != 9: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Ii</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 9 elif key.startswith("J") or key.startswith("j"): if pos != 10: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Jj</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 10 elif key.startswith("K") or key.startswith("k"): if pos != 11: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Kk</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 11 elif key.startswith("L") or key.startswith("l"): if pos != 12: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Ll</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 12 elif key.startswith("M") or key.startswith("m"): if pos != 13: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Mm</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 13 elif key.startswith("N") or key.startswith("n"): if pos != 14: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Nn</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 14 elif key.startswith("O") or key.startswith("o"): if pos != 15: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Oo</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 15 elif key.startswith("P") or key.startswith("p"): if pos != 16: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Pp</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 16 elif key.startswith("Q") or key.startswith("q"): if pos != 17: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Qq</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 17 elif key.startswith("R") or key.startswith("r"): if pos != 18: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Rr</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 18 elif key.startswith("S") or key.startswith("s"): if pos != 19: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Ss</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 19 elif key.startswith("T") or key.startswith("t"): if pos != 20: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Tt</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 20 elif key.startswith("U") or key.startswith("u"): if pos != 21: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Uu</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 21 elif key.startswith("V") or key.startswith("v"): if pos != 22: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Vv</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 22 elif key.startswith("W") or key.startswith("w"): if pos != 23: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Ww</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 23 elif key.startswith("X") or key.startswith("x"): if pos != 24: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Xx</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 24 elif key.startswith("Y") or key.startswith("y"): if pos != 25: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Yy</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 25 elif key.startswith("Z") or key.startswith("z"): if pos != 26: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Zz</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 26 else: if pos != 27: print "<span class=Title1><b><span style='font-size:45.0pt;line-height:107%;color:black'>Numbers & Special Characters</span></b></span><span style='font-size:13.5pt;line-height:107%;color:black'><br><br></span>" pos = 27 #Print Details if item[0] != "": print "<span class=topic><b><span style='color:blue'>" print " %s " % (item[0]) print "</span></b></span><span style='color:black'>&nbsp;" print "<br><i>{b-%s / p-%s}</i><br>%s<br></span>" % (item[1], item[2], item[3])
true
5afaa636bb63cf51d4ccb115808547b30adb6ab2
Python
wdan/territories
/territories/models/dblp_io.py
UTF-8
9,183
2.59375
3
[]
no_license
__author__ = 'wenbin' import igraph as ig import scipy.io as sio class DBLP(object): def __init__(self, venue_id_list, fileName, type='paper', path='territories/data/dblp/'): venue_id_list.sort() self.venue_id_list = venue_id_list self.path = path self.file_name = fileName+'_'+type self.venue_id_string = '' if type == 'paper': for i in self.venue_id_list: self.venue_id_string += str(i) + '_' [isFound, graph_str] = self.check_dick() if isFound: self.g = self.read_graph_paper(graph_str) else: self.g = self.generate_graph_paper() else: for i in self.venue_id_list: self.venue_id_string += str(i) + '*' [isFound, graph_str] = self.check_dick() if isFound: self.g = self.read_graph_author(graph_str) else: self.g = self.generate_graph_author() # self.venue_name = self.read_venue_file() # print self.venue_name def read_graph_author(self, graph_str): try: graph_file = open(self.path+graph_str+'.txt') except IOError: print 'The file '+self.path+graph_str+'.txt'+' does not exist!' return None g = ig.read(self.path+graph_str+'.net') for i, r in enumerate(graph_file): if i%2 == 0: lines = r.split('\t') id = int(lines[0]) label = str(lines[1]).rstrip('\n') g.vs[id]['label'] = label else: g.vs[id]['class'] = {} lines = r.split('\t') n = len(lines) for j in xrange(n/2): g.vs[id]['class'][str(lines[j*2])] = int(lines[j*2+1]) graph_file.close() return g # def read_venue_file(self): # try: # venue_file = open(self.path+self.file_name+'_venue.txt') # except IOError: # print 'The file '+self.path+self.file_name+'_venue.txt'+' does not exist!' # return None # # r = {} # for line in venue_file: # words = line.split('\t') # id = int(words[0]) # name = str(words[1]).rstrip('\n') # r[id] = name # # venue_file.close() # return r # def write_venue_file(self, data): # venue_file = open(self.path+self.file_name+'_venue.txt', 'w') # for id in self.venue_id_list: # venue_file.write(str(id)+'\t'+str(data[id-1][0][0])+'\n') # venue_file.close() def generate_graph_author(self): # load dblp.mat data = sio.loadmat(self.path+'dblp.mat') paper_venue = data['paper_venue'] paper_author_csr = data['paper_author'].tocsr() author_name = data['author_name'] venue_name = data['venue_name'] # self.write_venue_file(venue_name) # venueID ---> paper list(paper ID) paper_list = {} for venue in self.venue_id_list: paper_list[venue] = [] n = paper_venue.size for i in xrange(n): v = paper_venue[i][0] if v in paper_list: paper_list[v].append(i) # venueID ---> author list(author ID) author_list = {} # dicts for author ID <--> graph index author_id_dict = {} id_author_dict = {} count = 0 edge_dict = {} class_dict = {} for venue, papers in paper_list.items(): for paper_id in papers: cols = paper_author_csr.getrow(paper_id).nonzero()[1] for author_id in cols: author_id = int(author_id) if author_id not in author_id_dict: class_dict[author_id] = {} author_id_dict[author_id] = count id_author_dict[count] = author_id count += 1 if venue not in class_dict[author_id]: class_dict[author_id][venue] = 1 else: class_dict[author_id][venue] += 1 edge_list = [(i, j) for i in cols for j in cols if i > j] for e in edge_list: if e in edge_dict: edge_dict[e] += 1 else: edge_dict[e] = 1 g = ig.Graph() g.add_vertices(count) graph_file = open(self.path+self.file_name+'.txt', 'w') for v in g.vs: label = str(author_name[id_author_dict[v.index]][0][0]) v['label'] = label v['class'] = {} graph_file.write(str(v.index)+'\t'+label+'\n') for venue, count in class_dict[id_author_dict[v.index]].items(): v['class'][str(venue_name[venue-1][0][0])] = count graph_file.write(str(venue_name[venue-1][0][0]) + '\t' + str(count) + '\t') graph_file.write('\n') graph_file.close() edge_list = map(lambda e: (author_id_dict[e[0]], author_id_dict[e[1]]), edge_dict.keys()) g.add_edges(edge_list) self.write_dick() g.simplify(loops=False) g.write_pajek(self.path + self.file_name + '.net') return g def generate_graph_paper(self): # load dblp.mat data = sio.loadmat(self.path+'dblp.mat') paper_venue = data['paper_venue'] paper_author = data['paper_author'] paper_name = data['paper_name'] paper_author_csr = paper_author.tocsr() author_paper_csc = paper_author.tocsc() venue_name = data['venue_name'] # self.write_venue_file(venue_name) # parse node paper_list = {} for venue in self.venue_id_list: paper_list[venue] = [] n = paper_venue.size paper_id_dict = {} id_paper_dict = {} paper_venue_dict = {} count = 0 for i in xrange(n): v = paper_venue[i][0] if v in paper_list: paper_id_dict[i] = count id_paper_dict[count] = i paper_venue_dict[count] = int(v) count += 1 paper_list[int(v)].append(i) g = ig.Graph() g.add_vertices(len(paper_id_dict)) graph_file = open(self.path+self.file_name+'.txt', 'w') for v in g.vs: cluster = str(venue_name[paper_venue_dict[v.index]-1][0][0]) label = str(paper_name[id_paper_dict[v.index]][0][0]) v['class'] = cluster v['label'] = label graph_file.write(str(v.index)+'\t'+str(cluster)+'\t'+label+'\n') graph_file.close() self.write_dick() author_list = set() for paper_id in paper_id_dict.keys(): cols = paper_author_csr.getrow(paper_id).nonzero()[1] for i in cols: author_list.add(i) author_list = list(author_list) for author_id in author_list: rows = author_paper_csc.getcol(author_id).nonzero()[0] l = [(paper_id_dict[i], paper_id_dict[j]) for i in rows for j in rows if i>j and i in paper_id_dict and j in paper_id_dict] if len(l) > 0: g.add_edges(l) g.simplify(loops=False) g.write_pajek(self.path + self.file_name + '.net') return g def write_dick(self): with open(self.path+'dict.txt', 'a') as dict_file: dict_file.write(self.venue_id_string+'\t'+self.file_name+'\n') def read_graph_paper(self, graph_str): try: graph_file = open(self.path+graph_str+'.txt') except IOError: print 'The file '+self.path+graph_str+'.txt'+' does not exist!' return None g = ig.read(self.path+graph_str+'.net') for r in graph_file: lines = r.split('\t') id = int(lines[0]) cluster = str(lines[1]) label = str(lines[2]).rstrip('\n') g.vs[id]['class'] = cluster g.vs[id]['label'] = label graph_file.close() return g def check_dick(self): try: dict_file = open(self.path + 'dict.txt', 'r') except IOError: dict_file = open(self.path + 'dict.txt', 'w') dict_file.close() return [False,''] isFound = False graph_str = '' for r in dict_file: line = r.split('\t') str_list = line[0] graph_str = line[1].rstrip('\n') if self.venue_id_string == str_list or graph_str == self.file_name: isFound = True break dict_file.close() return [isFound, graph_str] if __name__ == '__main__': vis5 = DBLP([2308, 1984, 1512, 3078, 2960], 'vis_5', 'paper') print vis5.g.ecount() print vis5.g.vcount() print vis5.g.vs[0] os5 =DBLP([2308, 1984, 1512, 3078, 2960], 'os_5', 'author') print os5.g.ecount() print os5.g.vcount() print os5.g.vs[0]
true
27df8c7d87eea29d1cfc381b72c896df1217a0cf
Python
olgashemagina/Milk_Data
/crossval.py
UTF-8
1,322
2.53125
3
[]
no_license
import os import random import sys import shutil path = sys.argv[1] enroll_part = 0.3 #sys.argv[2] classes_part = 0.5 os.chdir(path) if os.path.exists(os.path.join(path, 'database')): shutil.rmtree(os.path.join(path, 'database')) os.mkdir(os.path.join(path, 'database')) os.mkdir(os.path.join(path, 'database','enroll')) os.mkdir(os.path.join(path, 'database','classes')) os.mkdir(os.path.join(path, 'database','4recognition')) # r=root, d=directories, f = files for r, d, f in os.walk(path): if 'database' not in r: if len(f) != 0: os.mkdir(os.path.join(path, 'database','classes', os.path.basename(r))) files = [] for file in f: if '.csv' in file: files.append(os.path.join(r, file)) c = len(files) random.shuffle(files) enroll_len = int(enroll_part*c) classes_len = int(classes_part*c) for index in range(enroll_len): shutil.copy(files[index], os.path.join(path, 'database','enroll')) for index in range(enroll_len,enroll_len+classes_len): shutil.copy(files[index], os.path.join(path, 'database','classes', os.path.basename(r))) for index in range(enroll_len+classes_len, c): shutil.copy(files[index], os.path.join(path, 'database','4recognition'))
true
17acc2ff8cc6b0a7298b9b5af834415597b2e550
Python
dumbman/epicf
/SpatialMesh.py
UTF-8
14,128
2.625
3
[ "MIT" ]
permissive
import sys from math import ceil import numpy as np from Vec3d import Vec3d class SpatialMesh(): def __init__(self): self.x_volume_size = None self.y_volume_size = None self.z_volume_size = None self.x_cell_size = None self.y_cell_size = None self.z_cell_size = None self.x_n_nodes = None self.y_n_nodes = None self.z_n_nodes = None self.node_coordinates = None self.charge_density = None self.potential = None self.electric_field = None @classmethod def init_from_config(cls, conf): new_obj = cls() new_obj.check_correctness_of_related_config_fields(conf) new_obj.init_x_grid(conf) new_obj.init_y_grid(conf) new_obj.init_z_grid(conf) new_obj.allocate_ongrid_values() new_obj.fill_node_coordinates() new_obj.set_boundary_conditions(conf) SpatialMesh.mark_spatmesh_sec_as_used(conf) return new_obj @staticmethod def mark_spatmesh_sec_as_used(conf): # For now simply mark sections as 'used' instead of removing them. conf["SpatialMesh"]["used"] = "True" conf["BoundaryConditions"]["used"] = "True" @classmethod def init_from_h5(cls, h5group): new_obj = cls() new_obj.x_volume_size = h5group.attrs["x_volume_size"] new_obj.y_volume_size = h5group.attrs["y_volume_size"] new_obj.z_volume_size = h5group.attrs["z_volume_size"] new_obj.x_cell_size = h5group.attrs["x_cell_size"] new_obj.y_cell_size = h5group.attrs["y_cell_size"] new_obj.z_cell_size = h5group.attrs["z_cell_size"] new_obj.x_n_nodes = h5group.attrs["x_n_nodes"] new_obj.y_n_nodes = h5group.attrs["y_n_nodes"] new_obj.z_n_nodes = h5group.attrs["z_n_nodes"] # # todo: don't allocate. read into flat arrays. then reshape new_obj.allocate_ongrid_values() # dim = new_obj.node_coordinates.size tmp_x = np.empty(dim, dtype='f8') tmp_y = np.empty_like(tmp_x) tmp_z = np.empty_like(tmp_x) # tmp_x = h5group["./node_coordinates_x"] tmp_y = h5group["./node_coordinates_y"] tmp_z = h5group["./node_coordinates_z"] for global_idx, (vx, vy, vz) in enumerate(zip(tmp_x, tmp_y, tmp_z)): # todo: highly nonoptimal; make view or reshape? i, j, k = new_obj.global_idx_to_node_ijk(global_idx) new_obj.node_coordinates[i][j][k] = Vec3d(vx, vy, vz) # tmp_rho = h5group["./charge_density"] tmp_phi = h5group["./potential"] for global_idx, (rho, phi) in enumerate(zip(tmp_rho, tmp_phi)): i, j, k = new_obj.global_idx_to_node_ijk(global_idx) new_obj.charge_density[i][j][k] = rho new_obj.potential[i][j][k] = phi # tmp_x = h5group["./electric_field_x"] tmp_y = h5group["./electric_field_y"] tmp_z = h5group["./electric_field_z"] for global_idx, (vx, vy, vz) in enumerate(zip(tmp_x, tmp_y, tmp_z)): i, j, k = new_obj.global_idx_to_node_ijk(global_idx) new_obj.electric_field[i][j][k] = Vec3d(vx, vy, vz) # return new_obj def allocate_ongrid_values(self): nx = self.x_n_nodes ny = self.y_n_nodes nz = self.z_n_nodes self.node_coordinates = np.empty((nx, ny, nz), dtype=object) self.charge_density = np.zeros((nx, ny, nz), dtype='f8') self.potential = np.zeros((nx, ny, nz), dtype='f8') self.electric_field = np.full((nx, ny, nz), Vec3d.zero(), dtype=object) def check_correctness_of_related_config_fields(self, conf): self.grid_x_size_gt_zero(conf) self.grid_x_step_gt_zero_le_grid_x_size(conf) self.grid_y_size_gt_zero(conf) self.grid_y_step_gt_zero_le_grid_y_size(conf) self.grid_z_size_gt_zero(conf) self.grid_z_step_gt_zero_le_grid_z_size(conf) def init_x_grid(self, conf): spat_mesh_conf = conf["SpatialMesh"] self.x_volume_size = spat_mesh_conf.getfloat("grid_x_size") self.x_n_nodes = ceil(spat_mesh_conf.getfloat("grid_x_size") / spat_mesh_conf.getfloat("grid_x_step")) + 1 self.x_cell_size = self.x_volume_size / (self.x_n_nodes - 1) if self.x_cell_size != spat_mesh_conf.getfloat("grid_x_step"): print("X_step was shrinked to {:.3f} from {:.3f} " "to fit round number of cells".format( self.x_cell_size, spat_mesh_conf.getfloat("grid_x_step"))) def init_y_grid(self, conf): spat_mesh_conf = conf["SpatialMesh"] self.y_volume_size = spat_mesh_conf.getfloat("grid_y_size") self.y_n_nodes = ceil(spat_mesh_conf.getfloat("grid_y_size") / spat_mesh_conf.getfloat("grid_y_step")) + 1 self.y_cell_size = self.y_volume_size / (self.y_n_nodes - 1) if self.y_cell_size != spat_mesh_conf.getfloat("grid_y_step"): print("Y_step was shrinked to {:.3f} from {:.3f} " "to fit round number of cells".format( self.y_cell_size, spat_mesh_conf.getfloat("grid_y_step"))) def init_z_grid(self, conf): spat_mesh_conf = conf["SpatialMesh"] self.z_volume_size = spat_mesh_conf.getfloat("grid_z_size") self.z_n_nodes = ceil(spat_mesh_conf.getfloat("grid_z_size") / spat_mesh_conf.getfloat("grid_z_step")) + 1 self.z_cell_size = self.z_volume_size / (self.z_n_nodes - 1) if self.z_cell_size != spat_mesh_conf.getfloat("grid_z_step"): print("Z_step was shrinked to {:.3f} from {:.3f} " "to fit round number of cells".format( self.z_cell_size, spat_mesh_conf.getfloat("grid_z_step"))) def fill_node_coordinates(self): for i in range(self.x_n_nodes): for j in range(self.y_n_nodes): for k in range(self.z_n_nodes): self.node_coordinates[i][j][k] = Vec3d( i * self.x_cell_size, j * self.y_cell_size, k * self.z_cell_size) def clear_old_density_values(self): self.charge_density.fill(0) def set_boundary_conditions(self, conf): phi_left = conf["BoundaryConditions"].getfloat("boundary_phi_left") phi_right = conf["BoundaryConditions"].getfloat("boundary_phi_right") phi_top = conf["BoundaryConditions"].getfloat("boundary_phi_top") phi_bottom = conf["BoundaryConditions"].getfloat("boundary_phi_bottom") phi_near = conf["BoundaryConditions"].getfloat("boundary_phi_near") phi_far = conf["BoundaryConditions"].getfloat("boundary_phi_far") # nx = self.x_n_nodes ny = self.y_n_nodes nz = self.z_n_nodes for i in range(nx): for k in range(nz): self.potential[i][0][k] = phi_bottom self.potential[i][ny-1][k] = phi_top for j in range(ny): for k in range(nz): self.potential[0][j][k] = phi_right self.potential[nx-1][j][k] = phi_left for i in range(nx): for j in range(ny): self.potential[i][j][0] = phi_near self.potential[i][j][nz-1] = phi_far def is_potential_equal_on_boundaries(self): nx = self.x_n_nodes ny = self.y_n_nodes nz = self.z_n_nodes return \ (self.potential[0][2][2] == self.potential[nx-1][2][2] == \ self.potential[2][0][2] == self.potential[2][ny-1][2] == \ self.potential[2][2][0] == self.potential[2][2][nz-1]) def print(self): self.print_grid() self.print_ongrid_values() def print_grid(self): print("Grid:") print("Length: x = {:.3f}, y = {:.3f}, z = {:.3f}".format( self.x_volume_size, self.y_volume_size, self.z_volume_size)) print("Cell size: x = {:.3f}, y = {:.3f}, z = {:.3f}".format( self.x_cell_size, self.y_cell_size, self.z_cell_size)) print("Total nodes: x = {:d}, y = {:d}, z = {:d}".format( self.x_n_nodes, self.y_n_nodes, self.z_n_nodes)) def print_ongrid_values(self): nx = self.x_n_nodes ny = self.y_n_nodes nz = self.z_n_nodes print("x_node y_node z_node | " "charge_density | potential | electric_field(x,y,z)") for i in range(nx): for j in range(ny): for k in range(nz): "{:8d} {:8d} {:8d} | " "{:14.3f} | {:14.3f} | " "{:14.3f} {:14.3f} {:14.3f}".format( i, j, k, self.charge_density[i][j][k], self.potential[i][j][k], self.electric_field[i][j][k].x, self.electric_field[i][j][k].y, self.electric_field[i][j][k].z) def write_to_file(self, h5file): groupname = "/SpatialMesh" h5group = h5file.create_group(groupname) self.write_hdf5_attributes(h5group) self.write_hdf5_ongrid_values(h5group) def write_hdf5_attributes(self, h5group): h5group.attrs.create("x_volume_size", self.x_volume_size) h5group.attrs.create("y_volume_size", self.y_volume_size) h5group.attrs.create("z_volume_size", self.z_volume_size) h5group.attrs.create("x_cell_size", self.x_cell_size) h5group.attrs.create("y_cell_size", self.y_cell_size) h5group.attrs.create("z_cell_size", self.z_cell_size) h5group.attrs.create("x_n_nodes", self.x_n_nodes) h5group.attrs.create("y_n_nodes", self.y_n_nodes) h5group.attrs.create("z_n_nodes", self.z_n_nodes) def write_hdf5_ongrid_values(self, h5group): # todo: without compound datasets # there is this copying problem. dim = self.node_coordinates.size tmp_x = np.empty(dim, dtype='f8') tmp_y = np.empty_like(tmp_x) tmp_z = np.empty_like(tmp_x) # todo: make view instead of copy flat_node_coords = self.node_coordinates.ravel(order='C') for i, v in enumerate(flat_node_coords): tmp_x[i] = v.x tmp_y[i] = v.y tmp_z[i] = v.z h5group.create_dataset("./node_coordinates_x", data=tmp_x) h5group.create_dataset("./node_coordinates_y", data=tmp_y) h5group.create_dataset("./node_coordinates_z", data=tmp_z) # C (C-order): index along the first axis varies slowest # in self.node_coordinates.flat above default order is C flat_phi = self.potential.ravel(order='C') h5group.create_dataset("./potential", data=flat_phi) flat_rho = self.charge_density.ravel(order='C') h5group.create_dataset("./charge_density", data=flat_rho) # flat_field = self.electric_field.ravel(order='C') for i, v in enumerate(flat_field): tmp_x[i] = v.x tmp_y[i] = v.y tmp_z[i] = v.z h5group.create_dataset("./electric_field_x", data=tmp_x) h5group.create_dataset("./electric_field_y", data=tmp_y) h5group.create_dataset("./electric_field_z", data=tmp_z) def grid_x_size_gt_zero(self, conf): if conf["SpatialMesh"].getfloat("grid_x_size") <= 0: raise ValueError("expect grid_x_size > 0") def grid_x_step_gt_zero_le_grid_x_size(self, conf): if (conf["SpatialMesh"].getfloat("grid_x_step") <= 0) or \ (conf["SpatialMesh"].getfloat("grid_x_step") > \ conf["SpatialMesh"].getfloat("grid_x_size")): raise ValueError("Expect grid_x_step > 0 and grid_x_step <= grid_x_size") def grid_y_size_gt_zero(self, conf): if conf["SpatialMesh"].getfloat("grid_y_size") <= 0: raise ValueError("Expect grid_y_size > 0") def grid_y_step_gt_zero_le_grid_y_size(self, conf): if (conf["SpatialMesh"].getfloat("grid_y_step") <= 0) or \ (conf["SpatialMesh"].getfloat("grid_y_step") > \ conf["SpatialMesh"].getfloat("grid_y_size")): raise ValueError("Expect grid_y_step > 0 and grid_y_step <= grid_y_size") def grid_z_size_gt_zero(self, conf): if conf["SpatialMesh"].getfloat("grid_z_size") <= 0: raise ValueError("Expect grid_z_size > 0") def grid_z_step_gt_zero_le_grid_z_size(self, conf): if (conf["SpatialMesh"].getfloat("grid_z_step") <= 0) or \ (conf["SpatialMesh"].getfloat("grid_z_step") > \ conf["SpatialMesh"].getfloat("grid_z_size")): raise ValueError("Expect grid_z_step > 0 and grid_z_step <= grid_z_size") def node_number_to_coordinate_x(self, i): if i >= 0 and i < self.x_n_nodes: return i * self.x_cell_size else: print("invalid node number i={:d} " "at node_number_to_coordinate_x".format(i)) sys.exit(-1) def node_number_to_coordinate_y(self, j): if j >= 0 and j < self.y_n_nodes: return j * self.y_cell_size else: print("invalid node number j={:d} " "at node_number_to_coordinate_y".format(j)) sys.exit(-1) def node_number_to_coordinate_z(self, k): if k >= 0 and k < self.z_n_nodes: return k * self.z_cell_size else: print("invalid node number k={:d} " "at node_number_to_coordinate_z".format(k)) sys.exit(-1) def global_idx_to_node_ijk(self, global_idx): # In row-major order: (used to save on disk) # global_index = i * nz * ny + # j * nz + # k # ny = self.y_n_nodes nz = self.z_n_nodes i = global_idx // (nz * ny) j_and_k_part = global_idx % (nz * ny) j = j_and_k_part // nz k = j_and_k_part % nz return (i, j, k)
true
e2c51958600316315a9c2fa4990a545931bafe11
Python
AdrianJohnston/ShapeNetRender
/Emitter.py
UTF-8
1,967
2.890625
3
[]
no_license
from __future__ import print_function from mitsuba.core import * class EmitterType: SUN_SKY = 'sunsky' SKY = 'sky' SUN = 'sun' DIRECTIONAL = 'directional' CONSTANT = 'constant' class Emitter: def __init__(self, emitter_type, sample_weight=1.0, to_world=Transform()): self.type = emitter_type self.sample_weight = sample_weight self.to_world = to_world self.config = self.create_config() def create_config(self): config = { 'type' : self.type, 'toWorld': self.to_world, 'sampleWeight': self.sample_weight } return config class ComplexEmitter(Emitter): def __init__(self, emitter_type, to_world=Transform(), sample_weight=1.0, hour=15.0, min=0.0, sec=0.0, albedo=Spectrum(), direction=Vector(0)): self.hour = hour self.min = min self.sec = sec self.albedo = albedo self.direction = direction Emitter.__init__(self, emitter_type, sample_weight=sample_weight, to_world=to_world) #self.configure() def create_config(self): config = Emitter.create_config(self) config['hour'] = self.hour config['min'] = self.min config['sec'] = self.sec if self.type == EmitterType.SUN_SKY or self.type == EmitterType.SKY or self.type == EmitterType.SUN: config['sunDirection'] = self.direction else: config['direction'] = self.direction if self.type == EmitterType.SUN_SKY or self.type == EmitterType.SKY: config['albedo'] = self.albedo return config def configure(self): self.config = self.create_config() if __name__ == "__main__": # e = Emitter(EmitterType.DIRECTIONAL) # print (e.config) sunsky = ComplexEmitter(EmitterType.SUN_SKY, to_world=Transform.translate(Vector(10,0,0)),albedo=Spectrum(1.0), hour=12.0) print (sunsky.config)
true
e1ac1670fc2847f09106f53b025921bdfc9f96a9
Python
e185725/atcoder_practice
/180/c.py
UTF-8
292
3.0625
3
[]
no_license
import math N = int(input()) d = int(math.sqrt(N)) + 1 ans = [] ans_2 = [] #print(d) for i in range(1,d): if (N % i == 0): ans.append(i) if(i != int(N/i)): ans_2.append(int(N/i)) for ans in ans: print(ans) for ans_2 in reversed(ans_2): print(ans_2)
true
8ac8b294fc55b931978a8e0a1f901a0f89f03940
Python
heldersepu/hs-scripts
/Python/pyGTK.py
UTF-8
795
2.703125
3
[]
no_license
#!/usr/bin/env python ## pyGTK template import pygtk pygtk.require('2.0') import gtk class MyProgram: def __init__(self): # create a new window app_window = gtk.Window(gtk.WINDOW_TOPLEVEL) app_window.set_size_request(500, 350) app_window.set_border_width(10) app_window.set_title("MyProgram title") app_window.connect("delete_event", lambda w,e: gtk.main_quit()) bbox = gtk.HButtonBox() button_go = gtk.Button(stock='gtk-ok') #button_go.connect('clicked', self.button_clicked) bbox.add(button_go) app_window.add(bbox) app_window.show_all() return def main(): gtk.main() return 0 if __name__ == "__main__": MyProgram() main()
true
5105a26484b10537574bb5734e1e91580683ab47
Python
Shubhamsm/youtube-auto-comments
/youtube.py
UTF-8
1,662
2.90625
3
[]
no_license
import pyautogui import time from bs4 import BeautifulSoup import requests Keywords=["Neural Networks","data Science"] # keywords it search to get list of urls msg="hello" # message to comment Can def Links_list(keywords): ''' give a list of urls which bot will comment on ''' urls_list=[] #urls list page = requests.get("https://www.youtube.com/results?search_query=data+science+simplilearn") soup = BeautifulSoup(page.content,'lxml', from_encoding="latin-1") # find all Video urls in YT search page vids = soup.findAll('a',attrs={'class':'yt-uix-tile-link'}) for x in vids: y=x['href'] if y[0]=="/": urls_list.append(y.encode('latin-1').decode('utf-8')) return urls_list def linkTo(*args): ''' Iterating the urls provided by args and comment down ''' count=0 time.sleep(5) pyautogui.hotkey('ctrl', 'l') for i in args: link="https://www.youtube.com"+i time.sleep(5) pyautogui.write(link) ; time.sleep(3) pyautogui.press('enter') time.sleep(8) pyautogui.scroll(-100) time.sleep(10) pyautogui.hotkey('ctrl','f') time.sleep(5) pyautogui.write("comments") time.sleep(10) pyautogui.click(x=324, y=478) # find yourself comment box pyautogui.write(msg) ; time.sleep(3) pyautogui.hotkey('ctrl','enter') count+=1 if count==3: break time.sleep(5) linkTo(Links_list("hello"))
true
cf4b4566357aa3d036ceec834ee4438b45825c81
Python
Brain-0ut/Vielit_Python_HW
/Abto_CV_AI_2022_Camp_var_B/test2.py
UTF-8
1,324
3.375
3
[]
no_license
from typing import List import random as r def task1(x: List[int]) -> bool: ### """Write your code here""" ### lenght = len(x) if lenght < 2: return False elif lenght == 2: if x[0] == x[1]: return True else: return False x.sort() print(x) average = sum(x) / lenght start = 0 end = lenght - 1 mid = 0 while start <= end: mid = (start + end) // 2 if x[mid] <= average < x[mid + 1]: print(mid) break elif average < x[mid]: end = mid - 1 else: start = mid + 1 mid += 1 first = x[:mid] second = x[mid:] print(first, '|', second) sum1 = first[0] + first[-1] + second[0] + second[-1] mas1 = [first.pop(0), first.pop(-1), second.pop(0), second.pop(-1)] sum2 = (sum(x) - sum1) mas2 = first + second aver1 = sum1 / 4 aver2 = sum2 / (lenght - 4) print(mas1, " ", mas2) print(sum1, " ", sum2) print(aver1, " ", aver2) print(average) if aver1 == aver2: return True return False x = [r.randrange(0, 10000) for x in range(r.randrange(1, 30))] #x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] print(x) expected_result = True result = task1(x) print(result) #assert result == expected_result
true
bbfde0d9d4b496aaa72d20ff643f6e8fd82fb218
Python
Debdeep1998/Backtracking_rush
/gray_code.py
UTF-8
303
2.890625
3
[]
no_license
n=int(input()) a=list() for i in range(n): a.append('0') print (a) def gray(i): if(i==n-1): print("".join(a)) a[i]='1' if(a[i]=='0')else('0') print("".join(a)) return c=1 while (c<=2): gray(i+1) if(c!=2): a[i]='1' if(a[i]=='0')else('0') c+=1 gray(0)
true