blob_id
stringlengths 40
40
| language
stringclasses 1
value | repo_name
stringlengths 5
133
| path
stringlengths 2
333
| src_encoding
stringclasses 30
values | length_bytes
int64 18
5.47M
| score
float64 2.52
5.81
| int_score
int64 3
5
| detected_licenses
listlengths 0
67
| license_type
stringclasses 2
values | text
stringlengths 12
5.47M
| download_success
bool 1
class |
|---|---|---|---|---|---|---|---|---|---|---|---|
065ed8e1883063a093f7825681b78b745794d1e3
|
Python
|
Usam95/CarND-Behavioral-Cloning-P3
|
/model.py
|
UTF-8
| 5,046
| 2.875
| 3
|
[
"MIT"
] |
permissive
|
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import keras
from keras.models import Sequential
from keras.layers import Convolution2D, MaxPooling2D, Dropout, Flatten, Dense
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
from imgaug import augmenters as iaa
import cv2
import pandas as pd
import ntpath
import random
import tensorflow as tf
# This function reads in the data obtrained using simulator
def readin_data():
datadir = "/Users/usam/Desktop/Data/"
columns = ['center', 'left', 'right', 'steering', 'throttle', 'reverse', 'speed']
data = pd.read_csv(os.path.join(datadir, 'driving_log.csv'), names = columns)
def path_leaf(path):
head, tail = ntpath.split(path)
return tail
# This funtion edits the images pathes for easier working
def split_path():
data['center'] = data['center'].apply(path_leaf)
data['left'] = data['left'].apply(path_leaf)
data['right'] = data['right'].apply(path_leaf)
# This function balances the dataset and removes all samples
# that are greater that threshold 400
def balance_dataset():
num_bins = 25
samples_per_bin = 400
remove_list = []
for j in range(num_bins):
list_ = []
for i in range(len(data['steering'])):
if data['steering'][i] >= bins[j] and data['steering'][i] <= bins[j+1]:
list_.append(i)
list_ = shuffle(list_)
list_ = list_[samples_per_bin:]
remove_list.extend(list_)
print('removed:', len(remove_list))
data.drop(data.index[remove_list], inplace=True)
print('remaining:', len(data))
# This function stores each image with corresponding steering angle
def load_img_steering(datadir, df):
image_path = []
steering = []
for i in range(len(data)):
indexed_data = data.iloc[i]
center, left, right = indexed_data[0], indexed_data[1], indexed_data[2]
image_path.append(os.path.join(datadir, center.strip()))
steering.append(float(indexed_data[3]))
# left image append
image_path.append(os.path.join(datadir,left.strip()))
steering.append(float(indexed_data[3])+0.15)
# right image append
image_path.append(os.path.join(datadir,right.strip()))
steering.append(float(indexed_data[3])-0.15)
image_paths = np.asarray(image_path)
steerings = np.asarray(steering)
return image_paths, steerings
def zoom(image):
zoom = iaa.Affine(scale=(1, 1.3))
image = zoom.augment_image(image)
return image
def pan(image):
pan = iaa.Affine(translate_percent= {"x" : (-0.1, 0.1), "y": (-0.1, 0.1)})
image = pan.augment_image(image)
return image
def img_random_brightness(image):
brightness = iaa.Multiply((0.2, 1.2))
image = brightness.augment_image(image)
return image
def img_random_flip(image, steering_angle):
image = cv2.flip(image,1)
steering_angle = -steering_angle
return image, steering_angle
def random_augment(image, steering_angle):
image = mpimg.imread(image)
if np.random.rand() < 0.5:
image = pan(image)
if np.random.rand() < 0.5:
image = zoom(image)
if np.random.rand() < 0.5:
image = img_random_brightness(image)
if np.random.rand() < 0.5:
image, steering_angle = img_random_flip(image, steering_angle)
return image, steering_angle
def img_preprocess(img):
img = img[60:135,:,:]
img = cv2.cvtColor(img, cv2.COLOR_RGB2YUV)
img = cv2.GaussianBlur(img, (3, 3), 0)
img = cv2.resize(img, (200, 66))
img = img/255
return img
def batch_generator(image_paths, steering_ang, batch_size, istraining):
while True:
batch_img = []
batch_steering = []
for i in range(batch_size):
random_index = random.randint(0, len(image_paths) - 1)
if istraining:
im, steering = random_augment(image_paths[random_index], steering_ang[random_index])
else:
im = mpimg.imread(image_paths[random_index])
steering = steering_ang[random_index]
im = img_preprocess(im)
batch_img.append(im)
batch_steering.append(steering)
yield (np.asarray(batch_img), np.asarray(batch_steering))
def nvidia_model():
model = Sequential()
model.add(Convolution2D(24, 5, 5, subsample=(2, 2), input_shape=(66, 200, 3), activation='elu'))
model.add(Convolution2D(36, 5, 5, subsample=(2, 2), activation='elu'))
model.add(Convolution2D(48, 5, 5, subsample=(2, 2), activation='elu'))
model.add(Convolution2D(64, 3, 3, activation='elu'))
model.add(Convolution2D(64, 3, 3, activation='elu'))
# model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(100, activation = 'elu'))
# model.add(Dropout(0.5))
model.add(Dense(50, activation = 'elu'))
# model.add(Dropout(0.5))
model.add(Dense(10, activation = 'elu'))
# model.add(Dropout(0.5))
model.add(Dense(1))
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
model.compile(loss='mse', optimizer=optimizer)
return model
image_paths, steerings = load_img_steering(datadir + '/IMG', data)
X_train, X_valid, y_train, y_valid = train_test_split(image_paths, steerings, test_size=0.2, random_state=6)
| true
|
9aea7d955d13e6890f653f2df114b71c055c88bc
|
Python
|
wescran/advent-of-code-2019
|
/day2.py
|
UTF-8
| 1,175
| 3.25
| 3
|
[] |
no_license
|
from pathlib import Path
inputFile = Path("inputs/input-02-01.txt")
# Part 1
splitFile = inputFile.read_text().split(",")
data = [int(i) for i in splitFile]
data[1], data[2] = 12, 2
num = 0
while num < len(data):
if data[num] == 1:
data[data[num+3]] = data[data[num+1]] + data[data[num+2]]
elif data[num] == 2:
data[data[num+3]] = data[data[num+1]] * data[data[num+2]]
elif data[num] == 99:
break
num += 4
print(data[0])
# Part 2
splitFile = inputFile.read_text().split(",")
data = [int(i) for i in splitFile]
val = 19690720
for i in range(100):
for j in range(100):
new_data = list(data)
new_data[1], new_data[2] = i, j
num = 0
while num < len(data):
if new_data[num] == 1:
new_data[new_data[num+3]] = new_data[new_data[num+1]] + new_data[new_data[num+2]]
elif new_data[num] == 2:
new_data[new_data[num+3]] = new_data[new_data[num+1]] * new_data[new_data[num+2]]
elif new_data[num] == 99:
break
num += 4
res = new_data[0]
if res == val:
print(100*i+j)
break
| true
|
75b568e3f074835d8b6b3031eb230a9ce8f48e4b
|
Python
|
margitantal68/featurelearning
|
/util/mlp.py
|
UTF-8
| 1,430
| 2.609375
| 3
|
[] |
no_license
|
# MLP model
import tensorflow.keras as keras
import tensorflow as tf
import numpy as np
import time
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
def build_mlp(input_shape, nb_classes, file_path):
input_layer = keras.layers.Input(input_shape)
# flatten/reshape because when multivariate all should be on the same axis
input_layer_flattened = keras.layers.Flatten()(input_layer)
layer_1 = keras.layers.Dropout(0.1)(input_layer_flattened)
layer_1 = keras.layers.Dense(512, activation='relu')(layer_1)
layer_2 = keras.layers.Dropout(0.2)(layer_1)
layer_2 = keras.layers.Dense(512, activation='relu')(layer_2)
layer_3 = keras.layers.Dropout(0.2)(layer_2)
layer_3 = keras.layers.Dense(512, activation='relu')(layer_3)
output_layer = keras.layers.Dropout(0.3)(layer_3)
output_layer = keras.layers.Dense(nb_classes, activation='softmax')(output_layer)
model = keras.models.Model(inputs=input_layer, outputs=output_layer)
model.compile(loss='categorical_crossentropy', optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor='loss', factor=0.5, patience=200, min_lr=0.1)
model_checkpoint = keras.callbacks.ModelCheckpoint(filepath=file_path, monitor='loss', save_best_only=True, verbose = 1)
callbacks = [reduce_lr,model_checkpoint]
return callbacks, model
| true
|
16b3ef70337bee828f97962bcd8c81716a678ac7
|
Python
|
Z3Prover/z3
|
/scripts/pyg2hpp.py
|
UTF-8
| 1,100
| 2.8125
| 3
|
[
"MIT"
] |
permissive
|
# - /usr/bin/env python
"""
Reads a pyg file and emits the corresponding
C++ header file into the specified destination
directory.
"""
import mk_genfile_common
import argparse
import logging
import os
import sys
def main(args):
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("pyg_file", help="pyg file")
parser.add_argument("destination_dir", help="destination directory")
pargs = parser.parse_args(args)
if not os.path.exists(pargs.pyg_file):
logging.error('"{}" does not exist'.format(pargs.pyg_file))
return 1
if not mk_genfile_common.check_dir_exists(pargs.destination_dir):
return 1
pyg_full_path = os.path.abspath(pargs.pyg_file)
destination_dir_full_path = os.path.abspath(pargs.destination_dir)
logging.info('Using {}'.format(pyg_full_path))
output = mk_genfile_common.mk_hpp_from_pyg(pyg_full_path, destination_dir_full_path)
logging.info('Generated "{}"'.format(output))
return 0
if __name__ == '__main__':
sys.exit(main(sys.argv[1:]))
| true
|
893f11d6f7d41a77f94d9b366d1d7f55615030c9
|
Python
|
Kavita309/Severity-of-cyberbullying-across-SMPs
|
/Results/print_graphs_bar.py
|
UTF-8
| 637
| 3.515625
| 4
|
[] |
no_license
|
# -*- coding: utf-8 -*-
"""
Created on Tue Dec 3 12:11:16 2019
@author: hp
"""
import matplotlib.pyplot as plt
# x-coordinates of left sides of bars
x = [1, 2, 3, 4]
# Twitter embeddings
y = [0.481, 0.419, 0.992, 0.848]
tick_label = ['char', 'word', 'char-oversample', 'word-oversample']
# plotting a bar chart
plt.bar(x, y, tick_label = tick_label,
width = 0.2, color = ['purple'])
# naming the x-axis
plt.xlabel('Embedding Type')
# naming the y-axis
plt.ylabel('Precision for class High-Random Forest')
# plot title
plt.title('Embedding comparison!')
# function to show the plot
plt.show()
| true
|
7a83b8a0a283e1aefbf42bb67c4651cc80062dd1
|
Python
|
djaney/genetic-agent
|
/agent.py
|
UTF-8
| 2,714
| 2.78125
| 3
|
[] |
no_license
|
#!/usr/bin/python3
from evolution import Species
import argparse
import tornado.ioloop
import tornado.web
import json
parser = argparse.ArgumentParser(description='Genetic algorithm agent')
parser.add_argument('input', type=int)
parser.add_argument('output', type=int)
parser.add_argument('hidden', type=int)
parser.add_argument('depth', type=int)
parser.add_argument('--species', default=1)
parser.add_argument('--population', default=10)
parser.add_argument('--port', default=8888)
agents = []
def get_json_body(handler):
return json.loads(handler.request.body.decode('utf-8'))
class AgentHandler(tornado.web.RequestHandler):
def data_received(self, chunk):
pass
def set_default_headers(self):
self.set_header('Content-Type', 'application/json')
class ActHandler(AgentHandler):
def post(self):
data = get_json_body(self)
if type(data) is not list:
raise Exception("format must be[[agent_index, strain_index, [observations...]...]")
res = []
for d in data:
if type(d) is not list:
raise Exception("format must be [[agent_index, strain_index, [observations...]...]")
if type(d[0]) is not int:
raise Exception("format must be [[agent_index, strain_index, [observations...]...]")
if type(d[1]) is not int:
raise Exception("format must be [[agent_index, strain_index, [observations...]...]")
if type(d[2]) is not list:
raise Exception("format must be [[agent_index, strain_index, [observations...]...]")
action = agents[d[0]].act(d[2], d[1])
res.append([d[0], d[1], action.tolist()])
json_string = json.dumps(res)
self.write(json_string)
class RecHandler(AgentHandler):
def post(self):
data = get_json_body(self)
res = []
for d in data:
agent = agents[d[0]]
agent.record(float(d[2]), d[1])
is_evolved = agent.is_ready_to_evolve()
if is_evolved:
agent.evolve()
res.append([d[0], d[1], {'evolved': is_evolved}])
json_string = json.dumps(res)
self.write(json_string)
def make_app():
return tornado.web.Application([
(r"/act", ActHandler),
(r"/rec", RecHandler),
])
def main(args):
for _ in range(args.species):
agents.append(Species(args.input, args.output, args.hidden, args.depth, strain_count=args.population))
agents[0].strains[0].summary()
print('listening {}'.format(args.port))
app = make_app()
app.listen(args.port)
tornado.ioloop.IOLoop.current().start()
main(parser.parse_args())
| true
|
5683854aaab6d262c4a4e7a12ff47bdd89648c85
|
Python
|
AlexanPetrov/MovieGenres
|
/moviesPlot.py
|
UTF-8
| 227
| 2.921875
| 3
|
[] |
no_license
|
from matplotlib import pyplot as plt
totalNumberOfGenres = [1, 2, 3, 4, 5, 6, 7, 8, 9]
numberMoviesPerGenere = [66, 128, 794, 10, 49, 18, 26, 272, 76573]
plt.scatter(totalNumberOfGenres, numberMoviesPerGenere)
plt.show();
| true
|
860045a68465342f3dc5653493ec0a30d78cdfb5
|
Python
|
neilgall/pykanren
|
/pykanren/api.py
|
UTF-8
| 514
| 2.625
| 3
|
[] |
no_license
|
from typing import Callable, Iterator, List
from .goal import Goal
from .term import Term
from .microkanren import State
def unify(lhs, rhs):
def goal(state):
return state.unify(lhs, rhs)
return goal
def disunify(lhs, rhs):
def goal(state):
return state.disunify(lhs, rhs)
return goal
def fresh(f: Callable[[Term], Goal]) -> Goal:
def call(state: State) -> Iterator[State]:
return state.with_new_var(f)
return call
def runGoal(goal: Goal) -> Iterator[State]:
return goal(State())
| true
|
d616475eac3003a201518e358715bfce8946ab2c
|
Python
|
JennyAlways/Python_Practice
|
/Py20190216/encrypt_some_messages_with_a_key.py
|
UTF-8
| 1,204
| 3.109375
| 3
|
[] |
no_license
|
#!/usr/bin/python2.6
# -*- coding: utf-8 -*-key = 3
key=3
#加密
def encrypt(*messageTuple):
mList = []
for message in messageTuple:
letterList = list(message)
encryptList = []
for i in range(len(letterList)):
acsNum = ord (letterList[i])
acsNum = acsNum + key
encryptList.append(chr (acsNum))
encryptMessage = "".join (encryptList)
mList.append(encryptMessage)
return mList
#解密
def decrypt(encryptedMessage):
rList = []
for eMessage in encryptedMessage:
letterList = list(eMessage)
decryptList = []
print eMessage
for i in range(len(letterList)):
acsNum = ord (letterList[i])
acsNum = acsNum - key
decryptList.append(chr (acsNum))
decryptMessage = "".join (decryptList)
rList.append(decryptMessage)
return rList
temp1 = encrypt("abc","123","cyljn","ryycyr","sk")
print temp1
temp2 = decrypt(temp1)
print temp2
| true
|
7d42c1c653534a866da5dd4a438a12d03c9d181e
|
Python
|
FNSdev/webstore
|
/django/analytics/models.py
|
UTF-8
| 2,140
| 2.59375
| 3
|
[] |
no_license
|
from django.db import models
from django.core.validators import MaxValueValidator
import datetime
from user.models import CustomUser
from core.models import Order
class DataSample(models.Model):
advertising_costs = models.DecimalField(max_digits=9, decimal_places=2, default=0)
total_user_count = models.PositiveIntegerField(default=0)
new_user_count = models.PositiveIntegerField(default=0)
orders_count = models.PositiveIntegerField(default=0)
used_coupone_count = models.PositiveIntegerField(default=0)
average_discount = models.PositiveIntegerField(default=0, validators=[MaxValueValidator(100)])
profit = models.DecimalField(max_digits=9, decimal_places=2, default=0)
@staticmethod
def prepare_sample():
args = {}
date = datetime.datetime.now()
date = date - datetime.timedelta(30)
args['total_user_count'] = CustomUser.objects.count()
args['new_user_count'] = CustomUser.objects.filter(date_joined__date__gt=date).count()
orders = Order.objects.filter(date__date__gt=date)
args['orders_count'] = orders.count()
profit = 0
coupones = 0
discount = 0
for order in orders:
if order.discount != 0:
coupones += 1
discount += order.discount
profit += order.total_price
if coupones != 0:
discount /= coupones
args['used_coupone_count'] = coupones
args['average_discount'] = discount
args['profit'] = profit
return args
@staticmethod
def get_data():
samples = DataSample.objects.all()
x = []
y = []
for sample in samples:
x_i, y_i = sample.get_sample_data()
x.append(x_i)
y.append(y_i)
return x, y
def get_sample_data(self):
x = [
self.advertising_costs,
self.total_user_count,
self.new_user_count,
self.orders_count,
self.used_coupone_count,
self.average_discount,
]
y = self.profit
return x, y
| true
|
7abc6252ada1b99cc5fb14f9884eb32c6550786d
|
Python
|
golmschenk/sr-gan
|
/crowd/data.py
|
UTF-8
| 23,650
| 2.875
| 3
|
[] |
no_license
|
"""
Code for the crowd data dataset.
"""
import random
from enum import Enum
import scipy.misc
import torch
import numpy as np
import torchvision
from torch.utils.data import Dataset
class CrowdDataset(Enum):
"""An enum to select the crowd dataset."""
ucf_cc_50 = 'UCF CC 50'
ucf_qnrf = 'UCF QNRF'
shanghai_tech = 'ShanghaiTech'
world_expo = 'World Expo'
class CrowdExample:
"""A class to represent all manner of crowd example data."""
image: np.ndarray or torch.Tensor
label: np.ndarray or torch.Tensor or None
roi: np.ndarray or torch.Tensor or None
perspective: np.ndarray or torch.Tensor or None
patch_center_y: int or None
patch_center_x: int or None
def __init__(self, image, label=None, roi=None, perspective=None, patch_center_y=None, patch_center_x=None,
map_=None):
self.image = image
self.label = label
self.roi = roi
self.map = map_
self.perspective = perspective
self.patch_center_y = patch_center_y
self.patch_center_x = patch_center_x
class NumpyArraysToTorchTensors:
"""
Converts from NumPy arrays of an example to Torch tensors.
"""
def __call__(self, example):
"""
:param example: A crowd example in NumPy.
:type example: CrowdExample
:return: The crowd example in Tensors.
:rtype: CrowdExample
"""
example.image = example.image.transpose((2, 0, 1))
example.image = torch.tensor(example.image, dtype=torch.float32)
if example.label is not None:
example.label = torch.tensor(example.label, dtype=torch.float32)
if example.map is not None:
example.map = torch.tensor(example.map, dtype=torch.float32)
if example.roi is not None:
example.roi = torch.tensor(example.roi, dtype=torch.float32)
if example.perspective is not None:
example.perspective = torch.tensor(example.perspective, dtype=torch.float32)
return example
class Rescale:
"""
2D rescaling of an example (when in NumPy HWC form).
"""
def __init__(self, scaled_size):
self.scaled_size = scaled_size
def __call__(self, example):
"""
:param example: A crowd example in NumPy.
:type example: CrowdExample
:return: The crowd example in Numpy with each of the arrays resized.
:rtype: CrowdExample
"""
example.image = scipy.misc.imresize(example.image, self.scaled_size)
original_label_sum = np.sum(example.label)
example.label = scipy.misc.imresize(example.label, self.scaled_size, mode='F')
if original_label_sum != 0:
unnormalized_label_sum = np.sum(example.label)
example.label = (example.label / unnormalized_label_sum) * original_label_sum
example.roi = scipy.misc.imresize(example.roi, self.scaled_size, mode='F') > 0.5
example.map = scipy.misc.imresize(example.map, self.scaled_size, mode='F')
return example
class RandomHorizontalFlip:
"""
Randomly flips the example horizontally (when in NumPy HWC form).
"""
def __call__(self, example):
"""
:param example: A crowd example in NumPy.
:type example: CrowdExample
:return: The possibly flipped crowd example in Numpy.
:rtype: CrowdExample
"""
if random.choice([True, False]):
example.image = np.flip(example.image, axis=1).copy()
example.label = np.flip(example.label, axis=1).copy()
example.map = np.flip(example.map, axis=1).copy()
if example.roi is not None:
example.roi = np.flip(example.roi, axis=1).copy()
if example.perspective is not None:
example.perspective = np.flip(example.perspective, axis=1).copy()
return example
class NegativeOneToOneNormalizeImage:
"""
Normalizes a uint8 image to range -1 to 1.
"""
def __call__(self, example):
"""
:param example: A crowd example in NumPy with image from 0 to 255.
:type example: CrowdExample
:return: A crowd example in NumPy with image from -1 to 1.
:rtype: CrowdExample
"""
example.image = (example.image.astype(np.float32) / (255 / 2)) - 1
return example
class PatchAndRescale:
"""
Select a patch based on a position and rescale it based on the perspective map.
"""
def __init__(self, patch_size=128):
self.patch_size = patch_size
self.image_scaled_size = [self.patch_size, self.patch_size]
self.label_scaled_size = [int(self.patch_size / 4), int(self.patch_size / 4)]
def get_patch_for_position(self, example, y, x):
"""
Retrieves the patch for a given position.
:param y: The y center of the patch.
:type y: int
:param x: The x center of the patch.
:type x: int
:param example: The full example with perspective to extract the patch from.
:type example: CrowdExample
:return: The patch.
:rtype: CrowdExample
"""
patch_size_ = self.get_patch_size_for_position(example, y, x)
half_patch_size = int(patch_size_ // 2)
if y - half_patch_size < 0:
example = self.pad_example(example, y_padding=(half_patch_size - y, 0))
y += half_patch_size - y
if y + half_patch_size > example.label.shape[0]:
example = self.pad_example(example, y_padding=(0, y + half_patch_size - example.label.shape[0]))
if x - half_patch_size < 0:
example = self.pad_example(example, x_padding=(half_patch_size - x, 0))
x += half_patch_size - x
if x + half_patch_size > example.label.shape[1]:
example = self.pad_example(example, x_padding=(0, x + half_patch_size - example.label.shape[1]))
image_patch = example.image[y - half_patch_size:y + half_patch_size,
x - half_patch_size:x + half_patch_size,
:]
label_patch = example.label[y - half_patch_size:y + half_patch_size,
x - half_patch_size:x + half_patch_size]
roi_patch = example.roi[y - half_patch_size:y + half_patch_size,
x - half_patch_size:x + half_patch_size]
map_ = example.map[y - half_patch_size:y + half_patch_size,
x - half_patch_size:x + half_patch_size]
return CrowdExample(image=image_patch, label=label_patch, roi=roi_patch, map_=map_)
@staticmethod
def get_patch_size_for_position(example, y, x):
"""
Gets the patch size for a 3x3 meter area based of the perspective and the position.
:param example: The example with perspective information.
:type example: CrowdExample
:param x: The x position of the center of the patch.
:type x: int
:param y: The y position of the center of the patch.
:type y: int
:return: The patch size.
:rtype: float
"""
pixels_per_meter = example.perspective[y, x]
patch_size_ = 3 * pixels_per_meter
return patch_size_
@staticmethod
def pad_example(example, y_padding=(0, 0), x_padding=(0, 0)):
"""
Pads the example.
:param example: The example to pad.
:type example: CrowdExample
:param y_padding: The amount to pad the y dimension.
:type y_padding: (int, int)
:param x_padding: The amount to pad the x dimension.
:type x_padding: (int, int)
:return: The padded example.
:rtype: CrowdExample
"""
z_padding = (0, 0)
image = np.pad(example.image, (y_padding, x_padding, z_padding), 'constant')
label = np.pad(example.label, (y_padding, x_padding), 'constant')
roi = np.pad(example.roi, (y_padding, x_padding), 'constant', constant_values=False)
map_ = np.pad(example.map, (y_padding, x_padding), 'constant')
return CrowdExample(image=image, label=label, roi=roi, map_=map_)
def resize_patch(self, patch):
"""
:param patch: The patch to resize.
:type patch: CrowdExample
:return: The crowd example that is the resized patch.
:rtype: CrowdExample
"""
image = scipy.misc.imresize(patch.image, self.image_scaled_size)
original_label_sum = np.sum(patch.label)
label = scipy.misc.imresize(patch.label, self.label_scaled_size, mode='F')
unnormalized_label_sum = np.sum(label)
if unnormalized_label_sum != 0:
label = (label / unnormalized_label_sum) * original_label_sum
roi = scipy.misc.imresize(patch.roi, self.label_scaled_size, mode='F') > 0.5
map_ = scipy.misc.imresize(patch.map, self.label_scaled_size, mode='F')
return CrowdExample(image=image, label=label, roi=roi, map_=map_)
class ExtractPatchForPositionAndRescale(PatchAndRescale):
"""
Given an example and a position, extracts the appropriate patch based on the perspective.
"""
def __call__(self, example_with_perspective, y, x):
"""
:param example_with_perspective: A crowd example with perspective.
:type example_with_perspective: CrowdExample
:return: A crowd example and the original patch size.
:rtype: (CrowdExample, int)
"""
original_patch_size = self.get_patch_size_for_position(example_with_perspective, y, x)
patch = self.get_patch_for_position(example_with_perspective, y, x)
roi_image_patch = patch.image * np.expand_dims(patch.roi, axis=-1)
patch = CrowdExample(image=roi_image_patch, label=patch.label * patch.roi, roi=patch.roi, map_=patch.map)
example = self.resize_patch(patch)
return example, original_patch_size
class RandomlySelectPatchAndRescale(PatchAndRescale):
"""
Selects a patch of the example and resizes it based on the perspective map.
"""
def __call__(self, example):
"""
:param example: A crowd example with perspective.
:type example: CrowdExample
:return: A crowd example.
:rtype: CrowdExample
"""
while True:
y, x = self.select_random_position(example)
patch = self.get_patch_for_position(example, y, x)
if np.any(patch.roi):
roi_image_patch = patch.image * np.expand_dims(patch.roi, axis=-1)
patch = CrowdExample(image=roi_image_patch, label=patch.label * patch.roi, roi=patch.roi,
map_=patch.map * patch.roi)
example = self.resize_patch(patch)
return example
@staticmethod
def select_random_position(example):
"""
Picks a random position in the full example.
:param example: The full example with perspective.
:type example: CrowdExample
:return: The y and x positions chosen randomly.
:rtype: (int, int)
"""
y = np.random.randint(example.label.shape[0])
x = np.random.randint(example.label.shape[1])
return y, x
class RandomlySelectPathWithNoPerspectiveRescale(RandomlySelectPatchAndRescale):
"""A transformation to randomly select a patch."""
def get_patch_size_for_position(self, example, y, x):
"""
Always returns the patch size (overriding the super class)
:param example: The example to extract the patch from.
:type example: ExampleNew
:param y: The y position of the center of the patch.
:type y: int
:param x: The x position of the center of the patch.
:type x: int
:return: The size of the patch to be extracted.
:rtype: int
"""
return self.patch_size
def resize_patch(self, patch):
"""
Resizes the label and roi of the patch.
:param patch: The patch to resize.
:type patch: CrowdExample
:return: The crowd example that is the resized patch.
:rtype: CrowdExample
"""
original_label_sum = np.sum(patch.label)
label = scipy.misc.imresize(patch.label, self.label_scaled_size, mode='F')
unnormalized_label_sum = np.sum(label)
if unnormalized_label_sum != 0:
label = (label / unnormalized_label_sum) * original_label_sum
roi = scipy.misc.imresize(patch.roi, self.label_scaled_size, mode='F') > 0.5
map_ = scipy.misc.imresize(patch.map, self.label_scaled_size, mode='F')
return CrowdExample(image=patch.image, label=label, roi=roi, map_=map_)
class ExtractPatchForPositionNoPerspectiveRescale(PatchAndRescale):
"""Extracts the patch for a position."""
def __call__(self, example_with_perspective, y, x):
original_patch_size = self.get_patch_size_for_position(example_with_perspective, y, x)
patch = self.get_patch_for_position(example_with_perspective, y, x)
roi_image_patch = patch.image * np.expand_dims(patch.roi, axis=-1)
patch = CrowdExample(image=roi_image_patch, label=patch.label * patch.roi, roi=patch.roi,
map_=patch.map * patch.roi)
example = self.resize_patch(patch)
return example, original_patch_size
def get_patch_size_for_position(self, example, y, x):
"""
Always returns the patch size (overriding the super class)
:param example: The example to extract the patch from.
:type example: ExampleWithPerspective
:param y: The y position of the center of the patch.
:type y: int
:param x: The x position of the center of the patch.
:type x: int
:return: The size of the patch to be extracted.
:rtype: int
"""
return self.patch_size
def resize_patch(self, patch):
"""
Resizes the label and roi of the patch.
:param patch: The patch to resize.
:type patch: CrowdExample
:return: The crowd example that is the resized patch.
:rtype: CrowdExample
"""
original_label_sum = np.sum(patch.label)
label = scipy.misc.imresize(patch.label, self.label_scaled_size, mode='F')
unnormalized_label_sum = np.sum(label)
if unnormalized_label_sum != 0:
label = (label / unnormalized_label_sum) * original_label_sum
roi = scipy.misc.imresize(patch.roi, self.label_scaled_size, mode='F') > 0.5
perspective = scipy.misc.imresize(patch.perspective, self.label_scaled_size, mode='F')
map_ = scipy.misc.imresize(patch.map, self.label_scaled_size, mode='F')
return CrowdExample(image=patch.image, label=label, roi=roi, perspective=perspective, map_=map_)
class ExtractPatch:
"""A transform to extract a patch from an example."""
def __init__(self, image_patch_size=128, label_patch_size=32, allow_padded=False):
self.allow_padded = allow_padded
self.image_patch_size = image_patch_size
self.label_patch_size = label_patch_size
def get_patch_for_position(self, example, y, x):
"""
Extracts a patch for a given position.
:param example: The example to extract the patch from.
:type example: CrowdExample
:param y: The y position of the center of the patch.
:type y: int
:param x: The x position of the center of the patch.
:type x: int
:return: The patch.
:rtype: CrowdExample
"""
half_patch_size = int(self.image_patch_size // 2)
if self.allow_padded:
if y - half_patch_size < 0:
example = self.pad_example(example, y_padding=(half_patch_size - y, 0))
y += half_patch_size - y
if y + half_patch_size > example.image.shape[0]:
example = self.pad_example(example, y_padding=(0, y + half_patch_size - example.image.shape[0]))
if x - half_patch_size < 0:
example = self.pad_example(example, x_padding=(half_patch_size - x, 0))
x += half_patch_size - x
if x + half_patch_size > example.image.shape[1]:
example = self.pad_example(example, x_padding=(0, x + half_patch_size - example.image.shape[1]))
else:
assert half_patch_size <= y <= example.image.shape[0] - half_patch_size
assert half_patch_size <= x <= example.image.shape[1] - half_patch_size
image_patch = example.image[y - half_patch_size:y + half_patch_size,
x - half_patch_size:x + half_patch_size,
:]
if example.label is not None:
label_patch = example.label[y - half_patch_size:y + half_patch_size,
x - half_patch_size:x + half_patch_size]
else:
label_patch = None
if example.map is not None:
map_patch = example.map[y - half_patch_size:y + half_patch_size,
x - half_patch_size:x + half_patch_size]
else:
map_patch = None
if example.perspective is not None:
perspective_patch = example.perspective[y - half_patch_size:y + half_patch_size,
x - half_patch_size:x + half_patch_size]
else:
perspective_patch = None
return CrowdExample(image=image_patch, label=label_patch, perspective=perspective_patch, map_=map_patch)
@staticmethod
def pad_example(example, y_padding=(0, 0), x_padding=(0, 0)):
"""
Pads the given example.
:param example: The example to pad.
:type example: CrowdExample
:param y_padding: The amount to pad the y axis by.
:type y_padding: (int, int)
:param x_padding: The amount to pad the x axis by.
:type x_padding: (int, int)
:return: The padded example.
:rtype: CrowdExample
"""
z_padding = (0, 0)
image = np.pad(example.image, (y_padding, x_padding, z_padding), 'constant')
if example.label is not None:
label = np.pad(example.label, (y_padding, x_padding), 'constant')
else:
label = None
if example.perspective is not None:
perspective = np.pad(example.perspective, (y_padding, x_padding), 'edge')
else:
perspective = None
if example.map is not None:
map_ = np.pad(example.map, (y_padding, x_padding), 'constant')
else:
map_ = None
return CrowdExample(image=image, label=label, perspective=perspective, map_=map_)
def resize_label(self, patch):
"""
Resizes the label of a patch.
:param patch: The patch.
:type patch: CrowdExample
:return: The patch with the resized label.
:rtype: CrowdExample
"""
if self.label_patch_size == self.image_patch_size:
return patch
label_scaled_size = [self.label_patch_size, self.label_patch_size]
if patch.label is not None:
original_label_sum = np.sum(patch.label)
label = scipy.misc.imresize(patch.label, label_scaled_size, mode='F')
unnormalized_label_sum = np.sum(label)
if unnormalized_label_sum != 0:
label = (label / unnormalized_label_sum) * original_label_sum
else:
label = None
if patch.map is not None:
map_ = scipy.misc.imresize(patch.map, label_scaled_size, mode='F')
else:
map_ = None
if patch.perspective is not None:
perspective = scipy.misc.imresize(patch.perspective, label_scaled_size, mode='F')
else:
perspective = None
return CrowdExample(image=patch.image, label=label, perspective=perspective, map_=map_)
class ExtractPatchForPosition(ExtractPatch):
"""A transform to extract a patch for a give position."""
def __call__(self, example, y, x):
patch = self.get_patch_for_position(example, y, x)
example = self.resize_label(patch)
return example
class ExtractPatchForRandomPosition(ExtractPatch):
"""A transform to extract a patch for a random position."""
def __call__(self, example):
y, x = self.select_random_position(example)
patch = self.get_patch_for_position(example, y, x)
example = self.resize_label(patch)
return example
def select_random_position(self, example):
"""
Selects a random position from the example.
:param example: The example.
:type example: CrowdExample
:return: The patch.
:rtype: CrowdExample
"""
if self.allow_padded:
y = np.random.randint(example.label.shape[0])
x = np.random.randint(example.label.shape[1])
else:
half_patch_size = int(self.image_patch_size // 2)
y = np.random.randint(half_patch_size, example.label.shape[0] - half_patch_size + 1)
x = np.random.randint(half_patch_size, example.label.shape[1] - half_patch_size + 1)
return y, x
class ImageSlidingWindowDataset(Dataset):
"""
Creates a database for a sliding window extraction of 1 full example (i.e. each of the patches of the full example).
"""
def __init__(self, full_example, image_patch_size=128, window_step_size=32):
self.full_example = CrowdExample(image=full_example.image) # We don't need the label in this case.
self.window_step_size = window_step_size
self.image_patch_size = image_patch_size
half_patch_size = int(self.image_patch_size // 2)
self.y_positions = list(range(half_patch_size, self.full_example.image.shape[0] - half_patch_size + 1,
self.window_step_size))
if self.full_example.image.shape[0] - half_patch_size > 0:
self.y_positions = list(set(self.y_positions + [self.full_example.image.shape[0] - half_patch_size]))
self.x_positions = list(range(half_patch_size, self.full_example.image.shape[1] - half_patch_size + 1,
self.window_step_size))
if self.full_example.image.shape[1] - half_patch_size > 0:
self.x_positions = list(set(self.x_positions + [self.full_example.image.shape[1] - half_patch_size]))
self.positions_shape = np.array([len(self.y_positions), len(self.x_positions)])
self.length = self.positions_shape.prod()
def __getitem__(self, index):
"""
:param index: The index within the entire dataset (the specific patch of the image).
:type index: int
:return: An example and label from the crowd dataset.
:rtype: torch.Tensor, torch.Tensor
"""
extract_patch_transform = ExtractPatchForPosition(self.image_patch_size,
allow_padded=True) # In case image is smaller than patch.
test_transform = torchvision.transforms.Compose([NegativeOneToOneNormalizeImage(),
NumpyArraysToTorchTensors()])
y_index, x_index = np.unravel_index(index, self.positions_shape)
y = self.y_positions[y_index]
x = self.x_positions[x_index]
patch = extract_patch_transform(self.full_example, y, x)
example = test_transform(patch)
return example.image, x, y
def __len__(self):
return self.length
| true
|
f522acceeab1f4d028b11264911aee2d1b3546d3
|
Python
|
arunkumar27-ank-tech/Hackerrank_PYTHON
|
/7.Collections/Solutions/piling-up.py
|
UTF-8
| 317
| 3.25
| 3
|
[] |
no_license
|
for _ in range(int(input())):
n,lst =int(input()), list(map(int,input().split()))
if (sorted(lst)[-1]==lst[0]) or (sorted(lst)[-1]==lst[-1]):
print("Yes")
else:
print("No")
#lst1 = [2,3,4,5]
##lst2=[4,5,2,3]
#if (lst1==sorted(lst2)):
# print("yes")
#else:
# print("No")
| true
|
21aeda5dfa80066fc2c64587bf67d8e840834367
|
Python
|
Time1996/python
|
/pythonPractice/44classwithobject.py
|
UTF-8
| 64
| 3.03125
| 3
|
[] |
no_license
|
s = 'How are you?'
l = s.split()
dir(s)
dir(l)
print(s)
print(l)
| true
|
3d9d3f0f221dc1103b95192b8a65a4aace2bf652
|
Python
|
cges60809/DenseNet
|
/data_providers/Mnist.py
|
UTF-8
| 7,032
| 2.703125
| 3
|
[
"MIT"
] |
permissive
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 3 16:45:13 2018
@author: islab
"""
import tempfile
import os
import pickle
import random
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets
from .base_provider import ImagesDataSet, DataProvider
import numpy as np
class selfDataSet(ImagesDataSet):
def __init__(self, images, labels, n_classes, shuffle, normalization,
augmentation):
"""
Args:
images: 4D numpy array
labels: 2D or 1D numpy array
n_classes: `int`, number of cifar classes - 10 or 100
shuffle: `str` or None
None: no any shuffling
once_prior_train: shuffle train data only once prior train
every_epoch: shuffle train data prior every epoch
normalization: `str` or None
None: no any normalization
divide_255: divide all pixels by 255
divide_256: divide all pixels by 256
by_chanels: substract mean of every chanel and divide each
chanel data by it's standart deviation
augmentation: `bool`
"""
if shuffle is None:
self.shuffle_every_epoch = False
elif shuffle == 'once_prior_train':
self.shuffle_every_epoch = False
images, labels = self.shuffle_images_and_labels(images, labels)
elif shuffle == 'every_epoch':
self.shuffle_every_epoch = True
else:
raise Exception("Unknown type of shuffling")
self.images = images
self.labels = labels
self.n_classes = n_classes
self.augmentation = augmentation
self.normalization = normalization
self.images = self.normalize_images(images, self.normalization)
self.start_new_epoch()
def start_new_epoch(self):
self._batch_counter = 0
if self.shuffle_every_epoch:
images, labels = self.shuffle_images_and_labels(
self.images, self.labels)
else:
images, labels = self.images, self.labels
self.epoch_images = images
self.epoch_labels = labels
@property
def num_examples(self):
return self.labels.shape[0]
def next_batch(self, batch_size):
start = self._batch_counter * batch_size
end = (self._batch_counter + 1) * batch_size
self._batch_counter += 1
images_slice = self.epoch_images[start: end]
labels_slice = self.epoch_labels[start: end]
if images_slice.shape[0] != batch_size:
self.start_new_epoch()
return self.next_batch(batch_size)
else:
return images_slice, labels_slice
class MNISTINDataProvider(DataProvider):
"""Abstract class for cifar readers"""
def __init__(self, save_path=None, validation_set=None,
validation_split=None, shuffle=None, normalization=None,
one_hot=True, **kwargs):
"""
Args:
save_path: `str`
validation_set: `bool`.
validation_split: `float` or None
float: chunk of `train set` will be marked as `validation set`.
None: if 'validation set' == True, `validation set` will be
copy of `test set`
shuffle: `str` or None
None: no any shuffling
once_prior_train: shuffle train data only once prior train
every_epoch: shuffle train data prior every epoch
normalization: `str` or None
None: no any normalization
divide_255: divide all pixels by 255
divide_256: divide all pixels by 256
by_chanels: substract mean of every chanel and divide each
chanel data by it's standart deviation
one_hot: `bool`, return lasels one hot encoded
"""
self._save_path = save_path
self.one_hot = one_hot
# add train and validations and test datasets
data_dir = 'temp'
mnist = read_data_sets(data_dir)
trainimage = np.array([np.reshape(x, (28,28,1)) for x in mnist.train.images])
validationimage = np.array([np.reshape(x, (28,28,1)) for x in mnist.validation.images])
testimage = np.array([np.reshape(x, (28,28,1)) for x in mnist.test.images])
train_labels = mnist.train.labels
validation_labels = mnist.validation.labels
test_labels = mnist.test.labels
#images, labels = self.read_cifar(train_fnames)
if validation_set is not None:
self.train = selfDataSet(
images=trainimage, labels=self.label_convert(train_labels),
n_classes=self.n_classes, shuffle=shuffle,
normalization=normalization,
augmentation=self.data_augmentation)
self.validation = selfDataSet(
images=validationimage, labels=self.label_convert(validation_labels),
n_classes=self.n_classes, shuffle=shuffle,
normalization=normalization,
augmentation=self.data_augmentation)
else:
self.train = selfDataSet(
images=trainimage, labels=self.label_convert(train_labels),
n_classes=self.n_classes, shuffle=shuffle,
normalization=normalization,
augmentation=self.data_augmentation)
# add test set
self.test = selfDataSet(
images=testimage, labels=self.label_convert(test_labels),
shuffle=None, n_classes=self.n_classes,
normalization=normalization,
augmentation=False)
if validation_set and not validation_split:
self.validation = self.test
@property
def save_path(self):
if self._save_path is None:
self._save_path = os.path.join(
tempfile.gettempdir(), 'Mnist%d' % self.n_classes)
return self._save_path
@property
def data_shape(self):
return (28, 28, 1)
@property
def n_classes(self):
return self._n_classes
def get_filenames(self, save_path):
"""Return two lists of train and test filenames for dataset"""
raise NotImplementedError
def label_convert(self, mnistlabel):
label = np.zeros([mnistlabel.size,10])
for i in range(mnistlabel.size):
label[i,mnistlabel[i]] = 1
return label
class MNISTDataProvider(MNISTINDataProvider):
_n_classes = 10
data_augmentation = False
def get_filenames(self, save_path):
sub_save_path = os.path.join(save_path, 'cifar-10-batches-py')
train_filenames = [
os.path.join(
sub_save_path,
'data_batch_%d' % i) for i in range(1, 6)]
test_filenames = [os.path.join(sub_save_path, 'test_batch')]
return train_filenames, test_filenames
| true
|
588c5566784db04820cd9ee8b341dda9f1b47a9f
|
Python
|
tkhamvilai/SAFRAN_demo
|
/full_demo/execute_another_script.py
|
UTF-8
| 875
| 3.109375
| 3
|
[] |
no_license
|
import RPi.GPIO as GPIO
import subprocess
import _thread
import time
GPIO.setmode(GPIO.BOARD)
switch_button = 40
GPIO.setup(switch_button, GPIO.IN, pull_up_down = GPIO.PUD_UP)
input_state = GPIO.input(switch_button)
# Define a function for the thread
def call_func(threadName, func_name):
subprocess.call(['python', func_name])
def read_switch(threadName):
while True:
global input_state
input_state = GPIO.input(switch_button)
# Create two threads as follows
try:
_thread.start_new_thread( call_func, ("Thread-1", 'RGB_GPIO.py', ) )
_thread.start_new_thread( read_switch, ("Thread-2", ) )
except:
print ("Error: unable to start thread")
while True:
if input_state == False:
print('Button not Pressed')
time.sleep(0.2)
elif input_state == True:
print('Button Pressed')
time.sleep(0.2)
| true
|
d673256a160cb1669e20887ff92b5cd288b22d04
|
Python
|
hugolu/learn-python
|
/programming-in-python/ch4.py
|
UTF-8
| 174
| 3.953125
| 4
|
[] |
no_license
|
#!/usr/bin/env python
# Chapter 4 - Control and Function
# conditional branching
num = 10
if num % 2 == 0:
"{0} is even".format(num)
else:
"{0} is odd".format(num)
| true
|
ccba07a20be0c997037223b01ae6972ec934823e
|
Python
|
linyuxuanlin/3D-print-library
|
/arduino有关/plen2机器人文件/PLEN2-master/arduino/sdk/UnitRunner/UnitRunner.py
|
UTF-8
| 1,300
| 2.515625
| 3
|
[
"MIT"
] |
permissive
|
# -*- coding: utf-8 -*-
import json, locale
from datetime import datetime
from argparse import ArgumentParser
# Set global settings.
# ==============================================================================
locale.setlocale(locale.LC_ALL, 'jpn')
# Application entry point.
# ==============================================================================
def main(args):
with open('status.json', 'w') as fout:
today = datetime.today()
today_str = '%04d/%02d/%02d' % (today.year, today.month, today.day)
status = {}
status['test'] = {
'status': args.test,
'last': today_str if args.test else None
}
status['build'] = {
'status': args.build,
'last': today_str if args.build else None
}
json.dump(status, fout, sort_keys = True, indent = 4)
# Purse command-line option(s).
# ==============================================================================
if __name__ == '__main__':
arg_parser = ArgumentParser()
arg_parser.add_argument(
'-b', '--build',
action = 'store_true',
dest = 'build',
default = False,
help = 'Set to build "True".'
)
arg_parser.add_argument(
'-t', '--test',
action = 'store_true',
dest = 'test',
default = False,
help = 'Set to test "True".'
)
args = arg_parser.parse_args()
main(args)
| true
|
0f0d48c3c9c6a973252b6be68d96c27cd4661d1a
|
Python
|
ctfer-Stao/ctf-sql
|
/sql.py
|
UTF-8
| 1,523
| 2.78125
| 3
|
[] |
no_license
|
#python3
#by stao
import requests
import threading
words=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '{', '|', '}', '~', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ' ', '!', '"', '#', '$', '%', '&', "'", '(', ')', '*', '+', ',', '-', '.', '/', ':', ';', '<', '=', '>', '?', '@', '[', '\\', ']', '^', '_', '`']
url='http://127.0.0.1/1.php?name='
result="________________________________________________________________________________________________"
#replace function
def replace_char(string,char,index):
string = list(string)
string[index] = char
return ''.join(string)
#to get result
def brute_result(n,m):
global result
for i in range(n,m):
for j in words:
payload="1' or ascii(substr((select flag from flag),"+str(i)+",1))="+str(ord(j))+"--+"
#print(payload)
url1=url+payload
r=requests.get(url=url1)
if "stao" in r.text:
print(j)
result=replace_char(result,j,i-1)
print(result)
if __name__ == "__main__":
length=60 #the length of result
number=15 #the number of threads
num=int(length/number) if(length % number ==0) else int(length/number)+1 #each threads's number
#print(num)
for i in range(0,number):
print("thread_"+str(i+1)+"start.....")
threading.Thread(target=brute_result, args=(i*num, (i+1)*num, )).start() #create and start thread
| true
|
3784f826718395d355eaf9ba708a92eac132ca10
|
Python
|
juarezpaulino/coderemite
|
/problemsets/Codeforces/Python/A88.py
|
UTF-8
| 336
| 2.90625
| 3
|
[
"Apache-2.0"
] |
permissive
|
"""
*
* Author: Juarez Paulino(coderemite)
* Email: juarez.paulino@gmail.com
*
"""
c=['C','C#','D','D#','E','F','F#','G','G#','A','B','H']
x,y,z=sorted(map(c.index,input().split()))
for _ in' '*3:
a,b=(y+12-x)%12,(z+12-y)%12
if [a,b]==[4,3]:
print('major')
exit()
if [a,b]==[3,4]:
print('minor')
exit()
x,y,z=y,z,x
print('strange')
| true
|
b8420a1ff5d5b7a3652be08be3112da53f4e8003
|
Python
|
iamanobject/Lv-568.2.PythonCore
|
/HW_4/havrylyakyulia/Home_Work4_Task_3.py
|
UTF-8
| 286
| 3.796875
| 4
|
[] |
no_license
|
num = int(input("Number:"))
num_1 = 0
num_2 = 1
if num < 2:
print("Not bad")
else:
print(num_1, end=' ')
print(num_2, end=' ')
for i in range(2, num):
new_num = num_1 + num_2
num_1 = num_2
num_2 = new_num
print(new_num, end=' ')
| true
|
a1c10b1267e73049a941eed8e3db8911b40b14ff
|
Python
|
Svdvoort/PREDICT
|
/ImageFeatures/texture_features.py
|
UTF-8
| 2,048
| 2.609375
| 3
|
[
"Apache-2.0"
] |
permissive
|
import numpy as np
from skimage.feature import local_binary_pattern
import pandas as pd
import scipy.stats
def get_LBP_features(image, mask, radius, N_points, method):
feature_names = ['LBP_mean', 'LBP_std', 'LBP_median', 'LBP_kurtosis', 'LBP_skew', 'LBP_peak']
full_features = np.zeros([len(radius) * len(feature_names), 1])
full_feature_labels = list()
mask = mask.flatten()
for i_index, (i_radius, i_N_points) in enumerate(zip(radius, N_points)):
LBP_image = np.zeros(image.shape)
for i_slice in range(0, image.shape[2]):
LBP_image[:, :, i_slice] = local_binary_pattern(image[:, :, i_slice], P=i_N_points, R=i_radius, method=method)
LBP_image = LBP_image.flatten()
LBP_tumor = LBP_image[mask]
mean_val = np.mean(LBP_tumor)
std_val = np.std(LBP_tumor)
median_val = np.median(LBP_tumor)
kurtosis_val = scipy.stats.kurtosis(LBP_tumor)
skew_val = scipy.stats.skew(LBP_tumor)
peak_val = np.bincount(LBP_tumor.astype(np.int))[1:-2].argmax()
features = [mean_val, std_val, median_val, kurtosis_val, skew_val, peak_val]
full_feature_start = i_index * len(feature_names)
full_feature_end = (i_index + 1) * len(feature_names)
full_features[full_feature_start:full_feature_end, 0] = np.asarray(features).ravel()
cur_feature_names = [feature_name + '_R' + str(i_radius) + '_P' + str(i_N_points) for feature_name in feature_names]
full_feature_labels.extend(cur_feature_names)
features = dict(zip(full_feature_labels, full_features))
return features
def get_texture_features(image, mask, texture_settings):
LBP_features = get_LBP_features(image, mask, texture_settings['LBP']['radius'],
texture_settings['LBP']['N_points'],
texture_settings['LBP']['method'])
texture_features = LBP_features
texture_features = pd.Series(texture_features)
return texture_features
| true
|
f8d6cfa3c6399184b5cf3438b60a2b2068a656e7
|
Python
|
manishmcu/Google-Assistant-with-RaspberryPi
|
/pi_iot.py
|
UTF-8
| 2,063
| 2.734375
| 3
|
[] |
no_license
|
import random
import sys
import time
from Adafruit_IO import MQTTClient
import requests
ADAFRUIT_IO_KEY = 'aio_cEQk60uNwKank8nAXtPXP1Ps5LJ0' # Set to your Adafruit IO key.
ADAFRUIT_IO_USERNAME = 'Debanik2000' # See https://accounts.adafruit.com
# to find your username.
# Set the URL of the physical dashboard to use. If running on the same Pi as
# the dashboard server then keep this the default localhost:5000 value. If
# modified make sure not to end in a slash!
#DASHBOARD_URL = 'http://localhost:5000' # URL of the physical dashboard.
# Don't end with a slash!
# Define callback functions which will be called when certain events happen.
def connected(client):
print('Connected to Adafruit IO! Listening for feed')
client.subscribe('Relay 1')
client.subscribe('Relay 2')
def disconnected(client):
print('Disconnected from Adafruit IO!')
sys.exit(1)
def message(client, feed_id, status):
print('Feed {0} received new value: {1}'.format(feed_id, status))
if feed_id == 'Relay 1':
if status == "1":
print("Bed light ON")
else:
print("Bed light OFF")
if feed_id == 'Relay 2':
if status == "1":
print("Light ON")
else:
print("Light OFF")
# requests.post('{0}/widgets/slider'.format(DASHBOARD_URL), data={'value': payload})
#elif feed_id == 'pi-dashboard-humidity':
#requests.post('{0}/widgets/humidity'.format(DASHBOARD_URL), data={'value': payload})
# elif feed_id == 'pi-dashboard-temp':
# requests.post('{0}/widgets/temp'.format(DASHBOARD_URL), data={'value': payload})
# Create an MQTT client instance.
client = MQTTClient(ADAFRUIT_IO_USERNAME, ADAFRUIT_IO_KEY)
# Setup the callback functions defined above.
client.on_connect = connected
client.on_disconnect = disconnected
client.on_message = message
client.connect()
client.loop_blocking()
| true
|
90e8887f0ecb7ae621b1c250fa99d2b98d1fdb71
|
Python
|
RickvBork/Programming-Project
|
/data_gen/gen_winners.py
|
UTF-8
| 1,324
| 3.125
| 3
|
[
"MIT",
"BSD-3-Clause"
] |
permissive
|
'''
Make GET request for data
'''
# Creates data used for the DataMaps Choropleth
# import library
import helpers as hlp
import json
from collections import Counter as count
import os
def gen_winners():
# move back one directory
os.chdir("../data")
test = []
winners = {}
i = 0
# loop over seasons
for season in range(1950, 2018):
i += 1
print(i)
season = str(season)
# get json data for winning constructors and drivers
URL = 'http://ergast.com/api/f1/' + season + '/results/1.json'
races = hlp.get_data(URL)['RaceTable']['Races']
constructors = []
constructor_wins = []
winners[season] = []
# loop over races and append all constructors to list
for race in races:
constructor = race['Results'][0]['Constructor']['name']
# check if constructor has won already
if constructor not in constructors:
constructors.append(constructor)
if constructor not in test:
test.append(constructor)
constructor_wins.append(constructor)
for constructor in constructors:
win_dict = {}
win_dict['label'] = constructor
win_dict['value'] = constructor_wins.count(constructor)
winners[season].append(win_dict)
# 44 unique winners as of 2017
with open('winners.json', 'w') as outfile:
json.dump(winners, outfile)
if __name__ == "__main__":
gen_winners()
| true
|
f1aa148e72dee24353aeaead19908d619721e60d
|
Python
|
BUCT-CS1808-SoftwareEngineering/MusemData_Collection_System
|
/museum/spiders/education60.py
|
UTF-8
| 975
| 2.515625
| 3
|
[] |
no_license
|
import scrapy
from museum.items import educationItem
import json
class Education60Spider(scrapy.Spider):
name = 'education60'
start_urls = [
"http://www.gzsmzmuseum.cn/list-19.html"
]
def parse_content(self, response):
educationName = response.xpath("//h2/text()").get()
educationDescription = "".join("".join(response.xpath(
"//div[@class='detail_text']//span/text()").getall()).split())
educationImageUrl = "http://www.gzsmzmuseum.cn/" + \
response.xpath(
"//div[@class='detail_text']//img/@src").get().replace('../../../', '')
print((educationName, educationImageUrl, educationDescription))
def parse(self, response):
item = educationItem()
item_list = response.xpath("//ul[@class='newsli']//a/@href").getall()
for index, i in enumerate(item_list):
yield scrapy.Request("http://www.gzsmzmuseum.cn/"+i, callback=self.parse_content)
| true
|
ec31cf76940e93668843d6553d65a6e2e80b1d66
|
Python
|
rocketbot-cl/MongoDB
|
/__init__.py
|
UTF-8
| 4,498
| 2.640625
| 3
|
[
"MIT"
] |
permissive
|
# coding: utf-8
"""
Base para desarrollo de modulos externos.
Para obtener el modulo/Funcion que se esta llamando:
GetParams("module")
Para obtener las variables enviadas desde formulario/comando Rocketbot:
var = GetParams(variable)
Las "variable" se define en forms del archivo package.json
Para modificar la variable de Rocketbot:
SetVar(Variable_Rocketbot, "dato")
Para obtener una variable de Rocketbot:
var = GetVar(Variable_Rocketbot)
Para obtener la Opcion seleccionada:
opcion = GetParams("option")
Para instalar librerias se debe ingresar por terminal a la carpeta "libs"
pip install <package> -t .
"""
base_path = tmp_global_obj["basepath"]
cur_path = base_path + 'modules' + os.sep + 'MongoDB' + os.sep + 'libs' + os.sep
sys.path.append(cur_path)
from pymongo import MongoClient
import pymongo
from bson import ObjectId
"""
Obtengo el modulo que fueron invocados
"""
module = GetParams("module")
global client
if module == "connect":
url = GetParams('url')
client = MongoClient(url)
if module == "getDatabases":
result = GetParams("result")
try:
database_names = client.database_names()
SetVar(result, database_names)
except Exception as e:
print("\x1B[" + "31;40mError\u2193\x1B[" + "0m")
PrintException()
raise e
if module == "getCollections":
database = GetParams("db")
result = GetParams("result")
try:
collections = client[database].list_collection_names()
SetVar(result, collections)
except Exception as e:
print("\x1B[" + "31;40mError\u2193\x1B[" + "0m")
PrintException()
raise e
if module == "getDocuments":
database = GetParams("db")
collection = GetParams("collection")
result = GetParams("result")
try:
collection = client[database][collection]
documents = []
for document in collection.find():
doc = {key: str(value) for key, value in document.items()}
documents.append(doc)
SetVar(result, documents)
except Exception as e:
print("\x1B[" + "31;40mAn error occurred\u2193\x1B[" + "0m")
PrintException()
raise e
if module == "createCollection":
database = GetParams("db")
collection = GetParams("collection")
try:
client[database].create_collection(collection)
except Exception as e:
print("\x1B[" + "31;40mError\u2193\x1B[" + "0m")
PrintException()
raise e
if module == "createDocument":
database = GetParams("db")
collection = GetParams("collection")
doc = GetParams("doc")
result = GetParams("result")
try:
doc = eval(doc)
doc_id = client[database][collection].insert_one(doc).inserted_id
SetVar(result, doc_id)
except Exception as e:
print("\x1B[" + "31;40mError\u2193\x1B[" + "0m")
PrintException()
raise e
if module == "findById":
database = GetParams("db")
collection = GetParams("collection")
id_ = GetParams("id")
result = GetParams("result")
try:
collection = client[database][collection]
doc = collection.find_one({"_id": ObjectId(id_)})
doc = dict(doc.items())
SetVar(result, doc)
except Exception as e:
print("\x1B[" + "31;40mError\u2193\x1B[" + "0m")
PrintException()
raise e
if module == "find":
database = GetParams("db")
collection = GetParams("collection")
dic = GetParams("dict")
result = GetParams("result")
try:
dic = eval(dic)
collection = client[database][collection]
docs = collection.find(dic)
documents = [dict(doc.items()) for doc in docs]
SetVar(result, documents)
except Exception as e:
print("\x1B[" + "31;40mError\u2193\x1B[" + "0m")
PrintException()
raise e
if module == "findAndReplace":
database = GetParams("db")
collection = GetParams("collection")
id_ = GetParams("id")
new_document = GetParams("new")
result = GetParams("result")
try:
collection = client[database][collection]
new_document = eval(new_document)
doc = collection.find_one_and_update({"_id": ObjectId(id_)}, {'$set': new_document})
response = True if doc else False
SetVar(result, response)
except Exception as e:
print("\x1B[" + "31;40mError\u2193\x1B[" + "0m")
PrintException()
raise e
| true
|
f6466b2813316bf0b376657cf861d77488e13e75
|
Python
|
Raniac/NEURO-LEARN
|
/env/lib/python3.6/site-packages/nibabel/tests/test_batteryrunners.py
|
UTF-8
| 6,176
| 2.671875
| 3
|
[
"Apache-2.0"
] |
permissive
|
# emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the NiBabel package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
''' Tests for BatteryRunner and Report objects
'''
from six import StringIO
import logging
from ..batteryrunners import BatteryRunner, Report
from ..testing import (assert_true, assert_false, assert_equal,
assert_not_equal, assert_raises)
# define some trivial functions as checks
def chk1(obj, fix=False):
rep = Report(KeyError)
if 'testkey' in obj:
return obj, rep
rep.problem_level = 20
rep.problem_msg = 'no "testkey"'
if fix:
obj['testkey'] = 1
rep.fix_msg = 'added "testkey"'
return obj, rep
def chk2(obj, fix=False):
# Can return different codes for different errors in same check
rep = Report()
try:
ok = obj['testkey'] == 0
except KeyError:
rep.problem_level = 20
rep.problem_msg = 'no "testkey"'
rep.error = KeyError
if fix:
obj['testkey'] = 1
rep.fix_msg = 'added "testkey"'
return obj, rep
if ok:
return obj, rep
rep.problem_level = 10
rep.problem_msg = '"testkey" != 0'
rep.error = ValueError
if fix:
rep.fix_msg = 'set "testkey" to 0'
obj['testkey'] = 0
return obj, rep
def chk_warn(obj, fix=False):
rep = Report(KeyError)
if not 'anotherkey' in obj:
rep.problem_level = 30
rep.problem_msg = 'no "anotherkey"'
if fix:
obj['anotherkey'] = 'a string'
rep.fix_msg = 'added "anotherkey"'
return obj, rep
def chk_error(obj, fix=False):
rep = Report(KeyError)
if not 'thirdkey' in obj:
rep.problem_level = 40
rep.problem_msg = 'no "thirdkey"'
if fix:
obj['anotherkey'] = 'a string'
rep.fix_msg = 'added "anotherkey"'
return obj, rep
def test_init_basic():
# With no args, raise
assert_raises(TypeError, BatteryRunner)
# Len returns number of checks
battrun = BatteryRunner((chk1,))
assert_equal(len(battrun), 1)
battrun = BatteryRunner((chk1, chk2))
assert_equal(len(battrun), 2)
def test_init_report():
rep = Report()
assert_equal(rep, Report(Exception, 0, '', ''))
def test_report_strings():
rep = Report()
assert_not_equal(rep.__str__(), '')
assert_equal(rep.message, '')
str_io = StringIO()
rep.write_raise(str_io)
assert_equal(str_io.getvalue(), '')
rep = Report(ValueError, 20, 'msg', 'fix')
rep.write_raise(str_io)
assert_equal(str_io.getvalue(), '')
rep.problem_level = 30
rep.write_raise(str_io)
assert_equal(str_io.getvalue(), 'Level 30: msg; fix\n')
str_io.truncate(0)
str_io.seek(0)
# No fix string, no fix message
rep.fix_msg = ''
rep.write_raise(str_io)
assert_equal(str_io.getvalue(), 'Level 30: msg\n')
rep.fix_msg = 'fix'
str_io.truncate(0)
str_io.seek(0)
# If we drop the level, nothing goes to the log
rep.problem_level = 20
rep.write_raise(str_io)
assert_equal(str_io.getvalue(), '')
# Unless we set the default log level in the call
rep.write_raise(str_io, log_level=20)
assert_equal(str_io.getvalue(), 'Level 20: msg; fix\n')
str_io.truncate(0)
str_io.seek(0)
# If we set the error level down this low, we raise an error
assert_raises(ValueError, rep.write_raise, str_io, 20)
# But the log level wasn't low enough to do a log entry
assert_equal(str_io.getvalue(), '')
# Error still raised with lower log threshold, but now we do get a
# log entry
assert_raises(ValueError, rep.write_raise, str_io, 20, 20)
assert_equal(str_io.getvalue(), 'Level 20: msg; fix\n')
# If there's no error, we can't raise
str_io.truncate(0)
str_io.seek(0)
rep.error = None
rep.write_raise(str_io, 20)
assert_equal(str_io.getvalue(), '')
def test_logging():
rep = Report(ValueError, 20, 'msg', 'fix')
str_io = StringIO()
logger = logging.getLogger('test.logger')
logger.setLevel(30) # defaultish level
logger.addHandler(logging.StreamHandler(str_io))
rep.log_raise(logger)
assert_equal(str_io.getvalue(), '')
rep.problem_level = 30
rep.log_raise(logger)
assert_equal(str_io.getvalue(), 'msg; fix\n')
str_io.truncate(0)
str_io.seek(0)
def test_checks():
battrun = BatteryRunner((chk1,))
reports = battrun.check_only({})
assert_equal(reports[0],
Report(KeyError,
20,
'no "testkey"',
''))
obj, reports = battrun.check_fix({})
assert_equal(reports[0],
Report(KeyError,
20,
'no "testkey"',
'added "testkey"'))
assert_equal(obj, {'testkey': 1})
battrun = BatteryRunner((chk1, chk2))
reports = battrun.check_only({})
assert_equal(reports[0],
Report(KeyError,
20,
'no "testkey"',
''))
assert_equal(reports[1],
Report(KeyError,
20,
'no "testkey"',
''))
obj, reports = battrun.check_fix({})
# In the case of fix, the previous fix exposes a different error
# Note, because obj is mutable, first and second point to modified
# (and final) dictionary
output_obj = {'testkey': 0}
assert_equal(reports[0],
Report(KeyError,
20,
'no "testkey"',
'added "testkey"'))
assert_equal(reports[1],
Report(ValueError,
10,
'"testkey" != 0',
'set "testkey" to 0'))
assert_equal(obj, output_obj)
| true
|
f4089e53731a291ab14eecb8d17a320ba1600e33
|
Python
|
lexweg7/REU2020
|
/22Mg(alpha, proton)/dataprep.py
|
UTF-8
| 1,750
| 3.09375
| 3
|
[] |
no_license
|
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
'''
This function produces voxel-grid downsampled 128x128 xy projections for 22Mg data
'''
def downsample('my-file.h5','r'):
#Read in h5 file in which each event is an individual key
events = []
for i in hf.keys():
events.append(hf[i])
#Dimensions of AT-TPC detector
DETECTOR_LENGTH = 1000.0
DETECTOR_RADIUS = 275.0
#Number of divisions along each dimension in the detector
x_disc = 128
y_disc = 128
z_disc = 128
#z incriments
z_inc = DETECTOR_LENGTH/z_disc
#Make array for new data
new_data = []
for i in range(len(events)):
new_events = np.zeros(128*128*128)
num_pts = 0
for point in events[i]:
#Add up points in each bucket
x_bucket = math.floor(((point[0]+DETECTOR_RADIUS)/(2*DETECTOR_RADIUS))*x_disc)
y_bucket = math.floor(((point[1]+DETECTOR_RADIUS)/(2*DETECTOR_RADIUS))*y_disc)
z_bucket = math.floor((point[2]/DETECTOR_LENGTH)*z_disc)
#Determine ID of each bucket
bucket_num = z_bucket*x_disc*y_disc + x_bucket + y_bucket*x_disc
#Average z value within buckets
avg_z = ((2*z_bucket+1)*z_inc)/2.0
#Associate the average z value with each bucket
new_events[bucket_num] = avg_z
num_pts += 1
#Reshape to be 128x128x128 matrix
E = new_events.reshape((128,128,128))
#Flatten to be xy only
E_2d = np.sum(E,axis=0)
#Add to new dataset
new_data.append(E_2d)
#New dataset to numpy array
new_data=np.array(new_data)
return new_data
| true
|
606246c85062d72cccde7e048a9fc8819e02e14e
|
Python
|
Vall-1996/bh_mass
|
/integrate.py
|
UTF-8
| 1,790
| 2.84375
| 3
|
[] |
no_license
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 19 13:03:15 2020
@author: val
"""
import math
import numpy as np
def integral(k,u,o,a,b):
t1=k*(np.sqrt(2.*np.pi)/2.)*o
t2=math.erf((np.sqrt(2.)/2.)*(u-a)/o)
t3=math.erf((np.sqrt(2.)/2.)*(u-b)/o)
return t1*(t2-t3) #1E-17 erg/s/cm^2/Ang
def distance(z):
H0,WM,WV=71.0,0.27,0.75
h = H0/100.
WR = 4.165E-5/(h*h)
WK = 1-WM-WR-WV
az = 1.0/(1+1.0*z)
n=1000
DTT = 0.0
DCMR = 0.0
for i in range(n):
a = az+(1-az)*(i+0.5)/n
adot = np.sqrt(WK+(WM/a)+(WR/(a*a))+(WV*a*a))
DTT = DTT + 1./adot
DCMR = DCMR + 1./(a*adot)
DCMR = (1.-az)*DCMR/n
ratio = 1.00
x = np.sqrt(np.abs(WK))*DCMR
if x > 0.1:
if WK > 0:
ratio = 0.5*(np.exp(x)-np.exp(-x))/x
else:
ratio = np.sin(x)/x
else:
y = x*x
if WK < 0: y = -y
ratio = 1. + y/6. + y*y/120.
DCMT = ratio*DCMR
DA = az*DCMT
DL = DA/(az*az)
DL_Mpc = (299792.458/H0)*DL
return DL_Mpc*3.08568e24 #cm
def luminosity(z,k,u,o,a,b):
DL=distance(z)
I = integral(k,u,o,a,b)
return 4*np.pi*(DL**2)*I #1E-17 erg/s
def FWHM(u,o):
return 2*2.99792458e5*(o/u) #km/s
def log_mass_ratio(z,k,u,o,a,b,line):
F = FWHM(u,o)
L = luminosity(z,k,u,o,a,b)
if line == "HA":
k1=-32.33
k2=0.55
k3=2.06
elif line == "HB":
k1=-32.48
k2=0.56
k3=2.0
else:
print("Emission line not supported.")
print("Supported lines: HA, HB")
return None
return k1+k2*np.log10(L)+k3*np.log10(F) #unitless
z=0.198
k,u,o=6.2,6562.8,46.7
a,b=6425.0,6725.0
print(log_mass_ratio(z,k,u,o,a,b,"HA"))
| true
|
0a618939ce0ccf03f208adcc66572d615f58c832
|
Python
|
allenxzy/Data-and-Structures-and-Alogrithms
|
/python_data/Chapter 10/R/R-10.7.py
|
UTF-8
| 404
| 2.53125
| 3
|
[] |
no_license
|
#-*-coding: utf-8 -*-
"""
Our Position classes for lists and trees support the__eq__method so that
two distinct position instances are considered equivalent if they refer to the
same underlying node in a structure. For positions to be allowed as keys
in a hash table, there must be a definition for the__hash__method that
is consistent with this notion of equivalence. Provide such a__hash__
method.
"""
| true
|
22f7d2bb7ea0c2eb805961562a2770340c1b31e1
|
Python
|
markosolopenko/python
|
/advent_of_code_2015/day_16/aunt_sue.py
|
UTF-8
| 2,485
| 3.109375
| 3
|
[] |
no_license
|
import re
unknown_aunt = {'children': '3', 'cats': '7', 'samoyeds': '2', 'pomeranians': '3', 'akitas': '0',
'vizslas': '0', 'goldfish': '5', 'trees': '3', 'cars': '2', 'perfumes': '1'}
def parse_file():
file = open('day16.txt').read().split('\n')
aunts = {}
aunts_info = {}
num = 1
for line in file:
line = re.findall('[a-z]+: [0-9]+', line)
aunts[str(num)] = aunts_info
for i in line:
i = i.split(': ')
aunts_info[i[0]] = i[-1]
num += 1
aunts_info = {}
return aunts
def add_full_info():
global unknown_aunt
aunts_info = parse_file()
for info in aunts_info:
for key, value in unknown_aunt.items():
if key not in aunts_info[info]:
aunts_info[info][key] = value
return aunts_info
def puzzle1():
nearest = {}
count = 0
full_info = add_full_info()
for info in full_info:
for key, value in unknown_aunt.items():
if unknown_aunt[key] == full_info[info][key]:
count += 1
nearest[info] = count
count = 0
max_key = ''
max_value = max(nearest.values())
for i in nearest:
if nearest[i] == max_value:
max_key = i
break
print(f'Puzzle1: {max_key}')
def puzzle2():
nearest = {}
count = 0
not_allowed = ['cats', 'pomeranians', 'trees', 'goldfish']
full_info = parse_file()
for info in full_info:
for key, value in unknown_aunt.items():
if key == 'cats' and key in full_info[info] and int(full_info[info][key]) > int(value):
count += 1
elif key == 'trees' and key in full_info[info] and int(full_info[info][key]) > int(value):
count += 1
elif key == 'pomeranians' and key in full_info[info] and int(full_info[info][key]) < int(value):
count += 1
elif key == 'goldfish' and key in full_info[info] and int(full_info[info][key]) < int(value):
count += 1
elif key not in not_allowed and key in full_info[info] and value == full_info[info][key]:
count += 1
nearest[info] = count
count = 0
max_key = ''
max_value = max(nearest.values())
for i in nearest:
if nearest[i] == max_value:
max_key = i
break
print(f'Puzzle2: {max_key}')
if __name__ == '__main__':
puzzle1()
puzzle2()
| true
|
0aa3122d46d6638d334e379aaf4ce980a3dd617f
|
Python
|
yoganbye/Kirill-homework
|
/Part_1/Lesson_8/hw8_loto.py
|
UTF-8
| 7,271
| 3.703125
| 4
|
[] |
no_license
|
#!/usr/bin/python3
# == Лото ==
# Правила игры в лото.
# Игра ведется с помощью специальных карточек, на которых отмечены числа,
# и фишек (бочонков) с цифрами.
# Количество бочонков — 90 штук (с цифрами от 1 до 90).
# Каждая карточка содержит 3 строки по 9 клеток. В каждой строке по 5 случайных цифр,
# расположенных по возрастанию. Все цифры в карточке уникальны. Пример карточки:
# --------------------------
# 9 43 62 74 90
# 2 27 75 78 82
# 41 56 63 76 86
# --------------------------
# В игре 2 игрока: пользователь и компьютер. Каждому в начале выдается
# случайная карточка.
# Каждый ход выбирается один случайный бочонок и выводится на экран.
# Также выводятся карточка игрока и карточка компьютера.
# Пользователю предлагается зачеркнуть цифру на карточке или продолжить.
# Если игрок выбрал "зачеркнуть":
# Если цифра есть на карточке - она зачеркивается и игра продолжается.
# Если цифры на карточке нет - игрок проигрывает и игра завершается.
# Если игрок выбрал "продолжить":
# Если цифра есть на карточке - игрок проигрывает и игра завершается.
# Если цифры на карточке нет - игра продолжается.
# Побеждает тот, кто первый закроет все числа на своей карточке.
# Пример одного хода:
# Новый бочонок: 70 (осталось 76)
# ------ Ваша карточка -----
# 6 7 49 57 58
# 14 26 - 78 85
# 23 33 38 48 71
# --------------------------
# -- Карточка компьютера ---
# 7 11 - 14 87
# 16 49 55 77 88
# 15 20 - 76 -
# --------------------------
# Зачеркнуть цифру? (y/n)
# Подсказка: каждый следующий случайный бочонок из мешка удобно получать
# с помощью функции-генератора.
# Подсказка: для работы с псевдослучайными числами удобно использовать
# модуль random: http://docs.python.org/3/library/random.html
from random import randint
def generate_unique_numbers(count, minbound, maxbound):
if count > maxbound - minbound + 1:
raise ValueError('Не верный параметр')
ret = []
while len(ret) < count:
new = randint(minbound, maxbound)
if new not in ret:
ret.append(new)
return ret
class Keg:
__num = None
def __init__(self):
self.__num = randint(1, 90)
@property
def num(self):
return self.__num
def __str__(self):
return str(self.__num)
class Card:
__rows = 3
__cols = 9
__nums_in_row = 5
__data = None
__emptynum = 0
__crossednum = -1
def __init__(self):
uniques_count = self.__nums_in_row * self.__rows
uniques = generate_unique_numbers(uniques_count, 1, 90)
self.__data = []
for i in range(0, self.__rows):
tmp = sorted(uniques[self.__nums_in_row * i: self.__nums_in_row * (i + 1)])
empty_nums_count = self.__cols - self.__nums_in_row
for j in range(0, empty_nums_count):
index = randint(0, len(tmp))
tmp.insert(index, self.__emptynum)
self.__data += tmp
def __str__(self):
delimiter = '--------------------------'
ret = delimiter + '\n'
for index, num in enumerate(self.__data):
if num == self.__emptynum:
ret += ' '
elif num == self.__crossednum:
ret += ' -'
elif num < 10:
ret += f' {str(num)}'
else:
ret += str(num)
if (index + 1) % self.__cols == 0:
ret += '\n'
else:
ret += ' '
return ret + delimiter
def __contains__(self, item):
return item in self.__data
def cross_num(self, num):
for index, item in enumerate(self.__data):
if item == num:
self.__data[index] = self.__crossednum
return
raise ValueError(f'Номер карты: {num}')
def closed(self) -> bool:
return set(self.__data) == {self.__emptynum, self.__crossednum}
class Game:
__usercard = None
__compcard = None
__numkegs = 90
__kegs = []
__gameover = False
def __init__(self):
self.__usercard = Card()
self.__compcard = Card()
self.__kegs = generate_unique_numbers(self.__numkegs, 1, 90)
def play_round(self) -> int:
keg = self.__kegs.pop()
print(f'Новый бочонок: {keg} (осталось {len(self.__kegs)})')
print(f'----- Ваша карточка ------\n{self.__usercard}')
print(f'-- Карточка компьютера ---\n{self.__compcard}')
useranswer = input('Зачеркнуть цифру? (y/n)').lower().strip()
if useranswer == 'y' and not keg in self.__usercard or \
useranswer != 'y' and keg in self.__usercard:
return 2
if keg in self.__usercard:
self.__usercard.cross_num(keg)
if self.__usercard.closed():
return 1
if keg in self.__compcard:
self.__compcard.cross_num(keg)
if self.__compcard.closed():
return 2
return 0
if __name__ == '__main__':
game = Game()
while True:
score = game.play_round()
if score == 1:
print('You win')
break
elif score == 2:
print('You lose')
break
# class Cart:
# __rows = 3
# __nums_in_row = 5
# __tab = ' '
# __delim = '--------------------------'
# def __init__(self):
# self.__card = []
# for _j in range(self.__rows):
# a = []
# for _i in range(self.__nums_in_row):
# num = randint(1, 91)
# if not num in a:
# a.append('%+2s' % (num))
# a.sort()
# c = 0
# while c < 4:
# pos = randint(0, len(a) + c)
# a.insert(pos, ' ')
# c += 1
# string = ' '.join(a)
# self.__card.append(string)
# def __str__(self):
# a = f'{self.__card[0]}\n{self.__card[1]}\n{self.__card[2]}\n{self.__delim}'
# return (a)
| true
|
846e160d44d6e29d425edbe41b77d1602502003b
|
Python
|
sabihismail/cps-406-qix
|
/util/draw_util.py
|
UTF-8
| 2,803
| 3.28125
| 3
|
[] |
no_license
|
import pygame
def draw_rect(surface, colour, bounds, line_width=1):
draw_rect_specific(surface, colour, bounds.x, bounds.y, bounds.width, bounds.height, line_width=line_width)
def draw_rect_specific(surface, colour, x, y, width, height, line_width=1):
lst = [
((x, y), (x, y + height)),
((x, y), (x + width, y)),
((x, y + height), (x + width, y + height)),
((x + width, y), (x + width, y + height))
]
for elem in lst:
pygame.draw.line(surface, colour, elem[0], elem[1], line_width)
return lst
def get_lines_by_rect_specific(x, y, width, height):
lst = [
((x, y), (x, y + height)),
((x, y + height), (x + width, y + height)),
((x + width, y + height), (x + width, y)),
((x + width, y), (x, y))
]
return lst
def get_lines_by_rect(bounds):
return get_lines_by_rect_specific(bounds.x, bounds.y, bounds.width, bounds.height)
def to_vertices_list(lines):
vertices = [a[0] for a in lines]
vertices.append(lines[len(lines) - 1][1])
return vertices
def to_line_list(vertices):
lines = []
for i in range(len(vertices) - 1):
lines.append((vertices[i], vertices[i+1]))
return lines
def lines_to_dict(lines):
d = {}
for line in lines:
d[line[0]] = line[1]
d[line[1]] = line[0]
return d
def vertices_to_dict(vertices):
lines = to_line_list(vertices)
d = {}
for line in lines:
a = d.get(line[0], [])
a.append(line[1])
b = d.get(line[1], [])
b.append(line[0])
d[line[0]] = a
d[line[1]] = b
return d
def unique_vertices_to_dict(vertices):
d = vertices_to_dict(vertices)
for key, value in d.items():
lst = [x for x in value if x != key]
lst = list(set(lst))
d[key] = lst
return d
# retrieved from https://stackoverflow.com/questions/4183208/how-do-i-rotate-an-image-around-its-center-using-pygame
def rotate_surface(outer_surface, inner_surface, pos, originPos, angle):
w, h = inner_surface.get_size()
box = [pygame.math.Vector2(p) for p in [(0, 0), (w, 0), (w, -h), (0, -h)]]
box_rotate = [p.rotate(angle) for p in box]
min_box = (min(box_rotate, key=lambda p: p[0])[0], min(box_rotate, key=lambda p: p[1])[1])
max_box = (max(box_rotate, key=lambda p: p[0])[0], max(box_rotate, key=lambda p: p[1])[1])
pivot = pygame.math.Vector2(originPos[0], -originPos[1])
pivot_rotate = pivot.rotate(angle)
pivot_move = pivot_rotate - pivot
origin = (pos[0] - originPos[0] + min_box[0] - pivot_move[0], pos[1] - originPos[1] - max_box[1] + pivot_move[1])
rotated_surface = pygame.transform.rotate(inner_surface, angle)
outer_surface.blit(rotated_surface, origin)
| true
|
bd59d96cdf8d6c1ee934ec9235101777eb86849c
|
Python
|
jvasilakes/yall
|
/yall/utils.py
|
UTF-8
| 1,562
| 3.265625
| 3
|
[
"MIT"
] |
permissive
|
import numpy as np
import matplotlib.pyplot as plt
# TODO: Reference the active learning challenge
def compute_alc(aucs, normalize=True):
'''
Compute the normalized Area under the Learning Curve (ALC)
for a set of AUCs.
param aucs: np.array of AUC values.
param normalize: Whether to normalize the ALC, default: True.
'''
alc = np.trapz(aucs, dx=1.0)
if normalize is True:
random_auc = np.repeat(0.5, aucs.shape[0])
A_random = np.trapz(random_auc, dx=1.0)
max_auc = np.repeat(1.0, aucs.shape[0])
A_max = np.trapz(max_auc, dx=1.0)
# Normalize the ALC
alc = (alc - A_random) / (A_max - A_random)
return alc
def plot_learning_curve(aucs, L_init, L_end,
title="ALC", eval_metric="auc", saveto=None):
'''
Plots the learning curve for a set of AUCs.
param aucs: np.array of AUC values.
param L_init: The initial size of the labeled set.
param L_end: The final size of the labeled set.
param title: The title of this plot.
param saveto: Filename to which to save this plot instead of showing it.
'''
alc = compute_alc(aucs)
draws = np.arange(L_init, L_end)
plt.figure(figsize=(10, 5))
plt.plot(draws, aucs, linewidth=2)
plt.xlabel("|L|", fontsize=15)
plt.ylabel(eval_metric.upper(), fontsize=15)
plt.title(title)
plt.annotate(f"ALC: {alc:.4f}", xy=(0.8, 0.05), xycoords="axes fraction")
if saveto is not None:
plt.savefig(saveto)
plt.close()
else:
plt.show()
| true
|
19d71a70c9e149adbbba05ca4deb55f4d26ae189
|
Python
|
mifa031/hacking_problems
|
/web/suninatas07(34).py
|
UTF-8
| 952
| 2.609375
| 3
|
[] |
no_license
|
from http import client
import time
#level7 문제에 접속
conn = client.HTTPConnection('suninatas.com',80)
GET_headers={'Cookie': 'ASPSESSIONIDQQCQAAQS=MDOIJMNCGKDLIFAGHHECJICL'}
GET_url = '/Part_one/web07/web07.asp'
GET_body = ''
conn.request('GET',GET_url,GET_body,GET_headers)
conn.close()
#YES버튼을 누른것과 같은 효과의 POST요청을 보냄
conn = client.HTTPConnection('suninatas.com',80)
POST_headers={'Content-Type': 'application/x-www-form-urlencoded',
'Cookie': 'ASPSESSIONIDQQCQAAQS=MDOIJMNCGKDLIFAGHHECJICL'}
POST_url = '/Part_one/web07/web07_1.asp'
POST_body = 'web07=Do+U+Like+girls%3F'
conn.request('POST',POST_url,POST_body,POST_headers)
#마지막 POST요청의 결과값을 받아옴.
#문제에 접속하자마자 POST요청을 보냈으므로 인증키를 얻을 수 있다.
res=conn.getresponse()
resData=res.read()
strRes = str(resData)
print(strRes)
conn.close()
| true
|
03062222ac7541a125cd94f8460935fd767b4332
|
Python
|
guiraldelli/MSc
|
/haplotype_network/guiraldelli/master/mutation/algorithms.py
|
UTF-8
| 2,274
| 3.3125
| 3
|
[
"BSD-2-Clause"
] |
permissive
|
from data import Mutation
import pygraph.classes.graph
def find_mutations(haplotypes):
'''Given (a dictionary of) haplotypes, return a list (of Mutation)
with mutational information about the haplotypes.'''
mutations = list()
tested_pairs = list()
for haplotype in haplotypes.keys():
for other_haplotype in haplotypes.keys():
count = 0
if other_haplotype != haplotype:
pair = set()
pair.add(haplotype)
pair.add(other_haplotype)
if (pair not in tested_pairs):
tested_pairs.append(pair)
pair_info = Mutation()
pair_info.haplotypes = pair
for i in range(0,len(haplotypes[haplotype])):
if haplotypes[haplotype][i] != haplotypes[other_haplotype][i]:
count = count + 1
pair_info.differences.append(i)
#print "(%s,%s): difference found on %dth index!" % (haplotype, other_haplotype, i)
#print "(%s,%s): %d" % (haplotype, other_haplotype, count)
pair_info.count = count
mutations.append(pair_info)
# HACK: do I need to delete the other data structures?
del pair_info
return mutations
def mutational_network(mutations):
'''Given (a list of) mutations, returns a haplotype network (graph)
with mutational distances as edges' weight.'''
network = pygraph.classes.graph.graph()
for mutational_pair in mutations:
# adding the haplotypes of the pair in the network as nodes
for haplotype in mutational_pair.haplotypes:
try:
network.add_node(haplotype)
except pygraph.classes.exceptions.AdditionError:
pass
# adding the edges with mutational distance as edge weight
try:
network.add_edge(tuple(mutational_pair.haplotypes), wt=mutational_pair.count)
except pygraph.classes.exceptions.AdditionError:
# TODO: must think what to do. May be I should update the edge weight if it is smaller than the existing one
pass
return network
| true
|
2209e5d07bc968c63bf7633b8f23b4e03608e61e
|
Python
|
alexjaw/rnm
|
/rnm/service.py
|
UTF-8
| 2,112
| 2.59375
| 3
|
[
"MIT"
] |
permissive
|
#!/usr/bin/python
#
# Classes for accesspoint and dhcp services
import logging
from subprocess import check_output, Popen, PIPE
class Service:
def __init__(self, service):
self.service = service
def _service_cmd(self, cmd):
assert cmd in ['start', 'stop', 'status'], 'Not a valid service cmd'
p = Popen(['sudo', 'service', self.service, cmd], stdout=PIPE, stderr=PIPE)
# todo: should do with info from p.communicate()
resp = p.communicate()[0].split('\n')
rv = {'LSB': None, 'Loaded': None, 'Active': None}
for line in resp:
if '\xe2\x97\x8f' in line:
rv['LSB'] = line.split(':')[1].strip()
elif 'Loaded' in line:
rv['Loaded'] = line.split(':')[1].strip()
elif 'Active' in line:
rv['Active'] = line.split(':')[1].strip()
return rv
def start(self):
return self._service_cmd('start')
def stop(self):
return self._service_cmd('stop')
def status(self):
return self._service_cmd('status')
class AccessPoint(Service):
# todo: better handling of application paths
setup_script = '/home/pi/rnm/scripts/setup_access_point.sh'
def __init__(self):
Service.__init__(self, 'hostapd')
def setup(self):
p = Popen(['sh', self.setup_script], stdout=PIPE, stderr=PIPE)
return p.communicate()[0]
class DHCP(Service):
setup_script = '/home/pi/rnm/scripts/setup_dhcp.sh'
def __init__(self):
Service.__init__(self, 'udhcpd')
def setup(self):
p = Popen(['sh', self.setup_script], stdout=PIPE, stderr=PIPE)
return p.communicate()[0]
def test_me():
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logger.info('------------- Starting test... -------------')
ap = AccessPoint()
dhcp = DHCP()
resp = ap.status()
logger.info(repr(resp))
resp = dhcp.status()
logger.info(repr(resp))
logger.info('------------- Finished -------------')
if __name__ == '__main__':
test_me()
| true
|
7ec4239b53edb3eebde0ce3a66ddc186160384e3
|
Python
|
huangkg8/Super-Hijacker
|
/src_v3/screen_factors/enemy.py
|
UTF-8
| 890
| 3.09375
| 3
|
[] |
no_license
|
"""俊义完成"""
import pygame as pg
from pygame.sprite import Sprite
class Enemy(Sprite):
def __init__(self,sett,life,speed,time_limit):
super().__init__()
self.sett=sett
self.life=life #生命值
self.speed=speed
self.shoot_dir=180
self.time_limit=time_limit #hero可以驾驶的时限
self.jackedTime=None #被劫机的时间
self.moving_right=False
self.moving_left=False
self.moving_up=False
self.moving_down=False
def update(self):
"""移动或发射子弹"""
pass
def drawme(self):
pass
class Ordin_plane(Enemy):
"""使用bullet0"""
def __init__(self,sett):
super().__init__(sett, sett.ordinPlaneLife, sett.ordinPlaneSpeed, sett.ordinPlaneTimeLimit)
class Multi_plane(Enemy):
"""使用bullet1"""
pass
class Missile_plane(Enemy):
"""使用bullet2"""
pass
class Tank(Enemy):
pass
| true
|
a4f7ccd51cf2496cc3535476e9269c9ae7c06ee4
|
Python
|
erantanen/my_blog
|
/code_snips/file_open.py
|
UTF-8
| 290
| 3.515625
| 4
|
[] |
no_license
|
#! /usr/bin/env python
"""
example showing how to open a file and what to do with non strings
"""
with open("blah.txt", "w") as FH:
FH.write("Space… the final frontier.")
for elm in range(10):
#elm has been cast to a string
FH.write(str(elm) + "\n")
| true
|
1146078f6a9c6a8d83d172b4e37e2dcdef392c1a
|
Python
|
juhtornr/LocalEGA
|
/src/lega/utils/checksum.py
|
UTF-8
| 1,795
| 3
| 3
|
[
"Apache-2.0"
] |
permissive
|
# -*- coding: utf-8 -*-
import logging
import hashlib
from .exceptions import UnsupportedHashAlgorithm, CompanionNotFound
LOG = logging.getLogger('utils')
# Main map
_DIGEST = {
'md5': hashlib.md5,
'sha256': hashlib.sha256,
}
def instanciate(algo):
try:
return (_DIGEST[algo])()
except KeyError:
raise UnsupportedHashAlgorithm(algo)
def compute(f, m, bsize=8192):
'''Computes the checksum of the bytes-like `f` using the message digest `m`.'''
while True:
data = f.read(bsize)
if not data:
break
m.update(data)
return m.hexdigest()
def is_valid(filepath, digest, hashAlgo = 'md5'):
'''Verify the integrity of a file against a hash value'''
assert( isinstance(digest,str) )
m = instanciate(hashAlgo)
with open(filepath, 'rb') as f: # Open the file in binary mode. No encoding dance.
res = compute(f, m)
LOG.debug('Calculated digest: '+res)
LOG.debug(' Original digest: '+digest)
return res == digest
def get_from_companion(filepath):
'''Attempts to read a companion file.
For each supported algorithms, we check if a companion file exists.
If so, we read its content and return it, along with the selected current algorithm.
We exit at the first one found and raise a CompanionNotFound exception in case none worked.
'''
for h in _DIGEST:
companion = str(filepath) + '.' + h
try:
with open(companion, 'rt', encoding='utf-8') as f:
return f.read(), h
except OSError as e: # Not found, not readable, ...
LOG.debug(f'Companion {companion}: {e!r}')
# Check the next
else: # no break statement was encountered
raise CompanionNotFound(filepath)
| true
|
797428412a1d2ae78a9dc5f787272c836c271d3d
|
Python
|
Deven-14/Python_Level_1
|
/decorator.py
|
UTF-8
| 486
| 3.390625
| 3
|
[] |
no_license
|
from functools import wraps
def decorator(func):
@wraps(func)
def print_args_value(*args, **kwargs):
for ele in args:
print(ele)
for ele in kwargs.values():
print(ele)
x = func(*args, **kwargs)
return x
return print_args_value
@decorator
def decorate(*args, **kwargs):
print("Do some work")
return "Completed"
def main():
print(decorate(1, 2, c=3, d=4))
if __name__ == "__main__":
main()
| true
|
36e8c2c8e13fe292534da179e670aee044a6fb7a
|
Python
|
Vishruth-S/Hack-CP-DSA
|
/Hackerrank/No Idea!/Solution.py
|
UTF-8
| 1,246
| 4.0625
| 4
|
[
"MIT"
] |
permissive
|
"""According to the question we need to maintain count of likes and dislikes such that from a set of numbers(Second line of input) if a particluar number exist in set A(Third line of input) then the happiness count will be 1, if it exist in (Forth line of input)B the happiness count will be -1 and if neither of the sets then the happiness count will remain unchanged.
Here the First line of input dictates the number of entries in the COMPARING set(from which we will compare) and A and B (they both wil have same length).To keep the count of happiness we have created a variable count intialised to 0.
"""
x, y = map(int, input().split()) # x is length of storage and y is length of A, B
storage = list()
count = 0
storage = list(map(int, input().strip().split())) # map function converts all string input values into int
A = set(map(int, input().strip().split()))
B = set(map(int, input().strip().split()))
for i in storage:
if i in A: # if A then increment in count value
count = count+1
if i in B: # if B then decrement in count value
count = count-1
print(count)
| true
|
28d991579468a891b9c15e79b3a205dcb2344613
|
Python
|
umunusb1/PythonMaterial
|
/python3/03_Language_Components/07_Conditional_Operations/e_celsius_to_fahrenheit_conversion.py
|
UTF-8
| 337
| 3.984375
| 4
|
[] |
no_license
|
#!/usr/bin/python3
"""
Purpose: Temperature Conversions
- celsius to fahrenheit
"""
celsius = float(input('Enter temperature in celsius:'))
# print(f'{celsius =}')
farhenheit = (1.8 * celsius) + 32
# print(f'{farhenheit =}')
print(f'''
celsius : {round(celsius, 2)}
farhenheit : {round(farhenheit, 2)}
''')
| true
|
1129ca00f776ff04e16e114b1d917f0527fc32cd
|
Python
|
collopa/mcm
|
/model/radio.py
|
UTF-8
| 8,215
| 3.046875
| 3
|
[] |
no_license
|
#!/usr/bin/python
# Author: cbecker@g.hmc.edu
#-----------------------------------------------------------------------#
'''
TODO:
import iono and ocean indices correctly, change MAIN!
'''
#-----------------------------------------------------------------------#
'''
Inputs: discrete signal vector as a function of time
indices of refraction of ionosphere
Angle of incidience (+ or - from parallel to Earth's surface)
Distance to receiver
Severity of Weather on a scale of 0-1, with 1 being the most intense
Outputs: discrete signal vector as function of time
SNR at each N value
Where f(t) = \sum_{n=0}^{N} f_{n}(t), this file:
-- decomposes the input signal into its Fourier components, f_{0_{n}}(t) --> f_{0_{n}}(w)
-- for each component, f0n(w), it computes fn(w) according to Fresnel's equations and dispersive equations
-- uses the inverse Fourier transform to recompose the output signal, f_{n}(w) --> f_{n}(t)
Notes:
-- Fresnel's equations require angle of incidence and indices of refraction of the two media.
-- The dispersive equations require the conductivity of air.
-- If angle of incidence is less than zero Earth's surface), odd N reflections are off of the ocean/land
-- If angle of incidence is greater than zero, even N reflections are off of the ionosphere
-- This model assumes Gaussian noise which accumulates over time,
so a random, normal noise vector is added to the signal vector every so often.
-- The frequency of white noise addition is dependent on weather conditions. (Weather conditions on a 0-1 scale)
'''
import os
import sys
import numpy as numpy
import math as math
import constants as constants
from ocean import *
from operator import add
factor = 1.0e4
c = 3e8 # speed of light
def get_z(t, f0_t):
z = numpy.empty(len(t))
for i in range(len(t)):
zi = t[i] - math.arcsin(f0_t[i])
numpy.append(z, zi)
return z
def decompose(t, f0_t):
max_time = max(t)
ns = float(len(t)) # number of samples
Fs = max_time/ns # sampling frequency
min_freq = -ns/2
max_freq = ns/2
step_size = 1
k0 = range(int(min_freq*factor), int(max_freq*factor), int(step_size*factor))
k = map((lambda x: x/factor), k0)
f0_k = numpy.fft.fft(f0_t)
return [k, f0_k]
def get_num_refl(angle_of_incidence, distance):
d = distance
z = constants.TxRx_height
h = constants.iono_height
a = angle_of_incidence
N = math.floor(d * math.tan(a) / (h - z))
return N
def calc_noise(weather_severity, N, array_length, f_t_real):
sum_f_t = 0.0
for num in f_t_real: sum_f_t += num
avg = sum_f_t/array_length
base_stdev = array_length/100.0
wc = weather_severity + 0.1 # weather contribution
Nc = math.sqrt(N) # Reflection number contribution
stdev = base_stdev * wc * Nc
noise = numpy.random.normal(avg, stdev, array_length)
return noise
def add_fresnel(iono_index_of_refr, ocean_index_of_refr, angle_of_incidence, k, f0_k, N):
# Constants
theta_I = angle_of_incidence
theta_R = theta_I # By the law of reflection
n1 = (constants.air_dielec_const)**2
n2_iono = iono_index_of_refr
n2_ocean = ocean_index_of_refr
# Determine multipliers, which determine the amplification of Fresnel effects
if N % 2 == 0:
iono_multiplier = N/2
ocean_multiplier = N/2
else:
if theta_I > 0:
iono_multiplier = (N - 1) / 2 + 1
ocean_multiplier = (N - 1) / 2
else:
iono_multiplier = (N - 1) / 2
ocean_multiplier = (N - 1) / 2 + 1
refl_tup = ((n2_iono, iono_multiplier), (n2_ocean, ocean_multiplier))
# Compute Fresnel-modified signal
f0_k_post_Fresnel = numpy.ones(len(k))
for n in range(len(k)):
fn_k = f0_k[n]
for tup in refl_tup:
n2 = tup[0]
m = tup[1]
theta_T = numpy.arcsin(n1 * numpy.sin(theta_I) / n2) # By Snell's law
# By Fresnel's equations:
beta = n2/n1
alpha = numpy.cos(theta_T) / numpy.cos(theta_I)
fn_k = (alpha - beta) / (alpha + beta) * fn_k # *m
f0_k_post_Fresnel[n] = fn_k
# Return the Fresnel-modified signal
return f0_k_post_Fresnel
def add_dispersion(z, t, k, f0_t, f0_k_post_Fresnel):
sigma = constants.air_elec_cond
f0_k_post_dispersion = numpy.ones(len(z))
omega = numpy.ones(len(k))
kappa = numpy.ones(len(k))
for i in range(len(k)):
omega[i] = 2 * math.pi * k[i] # convert to angular frequency
for n in range(len(k)):
zn = z[n]
wn = omega[n]
if wn != 0:
kappa_n = wn * math.sqrt(constants.epsilon_perm * constants.mu_perm / 2) \
* math.sqrt(1 \
+ math.sqrt(1 \
+ (constants.air_elec_cond/ constants.epsilon_perm / wn)**2))
fn_k = math.exp(-kappa_n * zn) * f0_k_post_Fresnel[n]
else:
kappa_n = 0
fn_k = f0_k_post_Fresnel[n]
f0_k_post_dispersion[n] = fn_k
kappa[n] = kappa_n
return [kappa, f0_k_post_dispersion]
def calc_SNR(kappa, z):
SNR = []
for n in range(len(kappa)):
arg = math.exp(2 * kappa[n] * z[n])
SNR.append(10 * math.log10(arg))
print SNR
return SNR
def calc_hops(SNR, N, kappa, z, f0_t):
remainder = len(SNR) % N
multiplier = (len(SNR) - remainder) / N
Ns = []
max_hops = N
for n in range(N+1):
for i in range(multiplier):
Ns.append(n)
print Ns
for s in range(len(SNR)):
if SNR[len(SNR) - 1 - s] < 10:
max_hops = Ns[s]
break
for n in range(len(Ns)):
if Ns[n]>1:
kappa_1 = kappa[n]
z_1 = z[n]
break
og_strength = 10 * math.log10(max(f0_t)**2)
strength = 10 * math.log10(math.exp(2 * kappa_1 * z_1))
return [max_hops, og_strength, strength]
#-----------------------------------------------------------------------#
if __name__ == '__main__':
# Read in file arguments
args = sys.argv[1:]
iono_index_of_refr = float(args[0])
ocean_index_of_refr = float(args[1])
angle_of_incidence = math.radians(float(args[2])) # in degrees, we convert to radians
distance = float(args[3])*1000 # distance on Earth's surface to be traveled in kilometers, we convert to meters
weather_severity = float(args[4])
input_file = args[5] # input signal
# Get input data from .csv
# Decompose the input signal, f0_t, to it's Fourier components f0_k
[z, t, f0_t] = numpy.genfromtxt(input_file, delimiter = ',')
[k, f0_k] = decompose(t, f0_t)
k_real = map((lambda x: numpy.real(x)), k)
f0_k_real = map((lambda x: numpy.real(x)), f0_k)
numpy.savetxt('FT_input_signal.csv', [k_real, f0_k_real], delimiter = ',', fmt='%1.3f')
# Number of reflections
N = get_num_refl(angle_of_incidence, distance)
# For each f0_k, compute the output after Fresnel and dispersion
f0_k_post_Fresnel = add_fresnel(iono_index_of_refr, ocean_index_of_refr, angle_of_incidence, k, f0_k, N)
[kappa, f0_k_post_dispersion] = add_dispersion(z, t, k, f0_t, f0_k_post_Fresnel)
f_k = f0_k_post_dispersion
numpy.savetxt('FT_output_signal.csv', [k_real, f_k, kappa], delimiter = ',', fmt='%1.4e')
# Compose output signal and add in accumulated noise
# Export output data to .csv
f_t_real = numpy.real(numpy.fft.ifft(f_k))
# Calculate noise vector to be added to output signal
noise = calc_noise(weather_severity, N, len(t), f_t_real)
f_t = map(add, f_t_real, noise)
numpy.savetxt('radio_output.csv', (z, t, f_t), delimiter = ',', fmt='%1.3f')
# Calculate SNR vector
SNR = calc_SNR(kappa, z)
# Calculate how many hops (a number leq N) for SNR leg 10dB
# and calculate strength after 1 reflection
[max_hops, og_strength, strength] = calc_hops(SNR, int(N), kappa, z, f0_t)
print 'Number of Hops until SNR \leq 10dB: ', max_hops
print 'Strength of original signal: ', og_strength, ' dB'
print 'Strength of signal after 1st reflection: ', strength, ' dB'
| true
|
99feef75c289f4c837b85acd35da46696e2b82d8
|
Python
|
Schroedingberg/EiP
|
/Sheet06/Test2.py
|
UTF-8
| 72
| 2.609375
| 3
|
[] |
no_license
|
import numpy as np
A = [2, -6, 2, -1]
res = np.polyval(A,3)
print(res)
| true
|
40893d8240c5f82ae69cd0bfc2bd1fe03e17dca8
|
Python
|
mrzResearchArena/Intelligent-Elevator-System
|
/MainElevator.py
|
UTF-8
| 13,986
| 2.953125
| 3
|
[] |
no_license
|
from random import uniform # uniform distribution
import itertools # Combination
import math # floor 0r celling
import time # time counter
global totalServed
totalServed = 0
global up
up = []
global down
down = []
global upStop
upStop = []
global downStop
downStop = []
global currentLocation
currentLocation = 1
global currentWeight
currentWeight = 0.0
global elevatorDirection
elevatorDirection = "up"
global serverStatus
serverStatus = "idle" # "busy"
global N
N = 6
def generateWeight():
p = uniform(0.0, 1.0)
if 0.0 <= p < 0.10:
instanceWeight = uniform(25, 30)
elif 0.10 <= p < 0.20:
instanceWeight = uniform(30, 50)
elif 0.20 <= p < 0.60:
instanceWeight = uniform(50, 70)
elif 0.60 <= p < 0.85:
instanceWeight = uniform(70, 90)
elif 0.90 <= p < 0.95:
instanceWeight = uniform(90, 100)
else:
instanceWeight = uniform(100, 120)
return math.ceil(instanceWeight)
def allPossibleCombination(elements):
# 35% times no call
# 65% times any calls
p = uniform(0.0, 1.0)
if p < 0.35:
return []
else:
value = list(itertools.product([0, 1], repeat=elements.__len__()))
randomValue = math.floor(uniform(0.0, value.__len__()))
select = value[randomValue]
C = []
i = 0
while i < len(elements):
if select[i] == 1:
C.append(elements[i])
i = i + 1
return C
def personCount(i, direction):
value = uniform(0.0, 1.0)
if direction == "up":
if i == 1:
if 0.00<= value < 0.20:
return 0
elif 0.20 <= value < 0.40:
return 1
elif 0.40 <= value < 0.60:
return 2
elif 0.60 <= value < 0.80:
return 3
elif 0.80 <= value < 0.90:
return 4
elif 0.90 <= value < 0.95:
return 5
else:
return 6
elif i == 2:
if 0.00 <= value < 0.30:
return 1
elif 0.30 <= value < 0.40:
return 2
elif 0.40 <= value < 0.60:
return 3
elif 0.60 <= value < 0.80:
return 4
elif 0.80 <= value < 0.90:
return 5
elif 0.90 <= value < 0.95:
return 6
else:
return 0
elif i == 3:
if 0.00 <= value < 0.40:
return 1
elif 0.40 <= value < 0.60:
return 2
elif 0.60 <= value < 0.80:
return 3
elif 0.80 <= value < 0.85:
return 4
elif 0.85 <= value < 0.90:
return 5
elif 0.90 <= value < 0.95:
return 6
else:
return 0
elif i == 4:
if 0.00 <= value < 0.60:
return 1
elif 0.60 <= value < 0.75:
return 2
elif 0.75 <= value < 0.80:
return 3
elif 0.80 <= value < 0.85:
return 4
elif 0.85 <= value < 0.90:
return 5
elif 0.90 <= value < 0.95:
return 6
else:
return 0
elif i == 5:
if 0.00 <= value < 0.60:
return 0
elif 0.60 <= value < 0.75:
return 1
elif 0.75 <= value < 0.80:
return 2
elif 0.80 <= value < 0.85:
return 3
elif 0.85 <= value < 0.90:
return 4
elif 0.90 <= value < 0.95:
return 5
else:
return 6
else:
if i == 6:
if 0.0 <= value < 0.30:
return 6
elif 0.30 <= value < .50:
return 5
elif 0.50 <= value < .70:
return 4
elif 0.70 <= value < .80:
return 3
elif 0.80 <= value < .90:
return 2
elif 0.90 <= value < 0.95:
return 1
else:
return 0
if i == 5:
if 0.0 <= value < 0.30:
return 6
elif 0.30 <= value < .50:
return 5
elif 0.50 <= value < .70:
return 4
elif 0.70 <= value < .80:
return 3
elif 0.80 <= value < .90:
return 2
elif 0.90 <= value < 0.95:
return 1
else:
return 0
if i == 4:
if 0.0 <= value < 0.30:
return 6
elif 0.30 <= value < .50:
return 5
elif 0.50 <= value < .70:
return 4
elif 0.70 <= value < .80:
return 3
elif 0.80 <= value < .90:
return 2
elif 0.90 <= value < 0.95:
return 1
else:
return 0
if i == 3:
if 0.0 <= value < 0.10:
return 6
elif 0.10 <= value < 0.20:
return 5
elif 0.30 <= value < 0.40:
return 4
elif 0.40 <= value < 0.75:
return 3
elif 0.75 <= value < 0.85:
return 2
elif 0.85 <= value < 0.90:
return 1
else:
return 0
if i == 2:
if 0.0 <= value < 0.03:
return 6
elif 0.03 <= value < 0.06:
return 5
elif 0.06 <= value < 0.09:
return 4
elif 0.09 <= value < 0.12:
return 3
elif 0.12 <= value < 0.15:
return 2
elif 0.15 <= value < 0.30:
return 1
else:
return 0
def settingUp(i):
value = []
while i < 7:
value.append(i)
i = i + 1
return value
def settingDown(i):
value = []
while i > 0:
value.append(i)
i = i - 1
return value
def process():
global up
global down
up.append([])
down.append([])
i = 1
while i < 6:
value = settingUp(i + 1)
up.append(value)
i = i + 1
i = 6
while i > 0:
value = settingDown(i - 1)
down.append(value)
i = i - 1
def ensureStop():
upStop.append(0)
downStop.append(0)
i = 1
while i < 7:
upStop.append(0)
downStop.append(0)
i = i + 1
# class Node:
# def __init__(self, weight, liftPosition):
# self.weight = weight
# self.liftPosition = liftPosition
#
#
# def tuplePrac():
# runningCar = []
# # abc = Node(45, 6)
# #
# # runningCar.append( abc = Node(64, 11) )
# # runningCar.append( Node(56, 6) )
# # runningCar.append( Node(79,2) )
# i=0
# while i<3:
# abc = Node(generateWeight(), 96)
# runningCar.append(abc)
# i = i+1
def intelligenceDistribution(currentLocation, elevatorDirection):
p = uniform(0.0, 1.0)
if elevatorDirection == "up":
if currentLocation == 1:
if 0.0 <= p <= 0.03:
return 2
elif 0.04 <= p <= 0.34:
return 3
elif 0.35 <= p <= 0.75:
return 4
elif 0.76 <= p <= 0.95:
return 5
else:
return 6
elif currentLocation == 2:
if 0.0 <= p <= 0.03:
return 3
elif 0.04 <= p <= 0.54:
return 4
elif 0.55 <= p <= 0.95:
return 5
else:
return 6
elif currentLocation == 3:
if 0.0 <= p <= 0.05:
return 4
elif 0.05 <= p <= 0.90:
return 5
else:
return 6
elif currentLocation == 4:
if 0.0 <= p <= 0.05:
return 5
else:
return 6
else:
return 6
# When elevatorDirection is down.
else:
if currentLocation == 6:
if 0.0 <= p <= .67:
return 1
elif 0.68 <= p <= 0.78:
return 2
elif 0.79 <= p <= .88:
return 3
elif 0.89 <= p <= .97:
return 4
else:
return 5
elif currentLocation == 5:
if 0.0 <= p <= .67:
return 1
elif 0.68 <= p <= 0.78:
return 2
elif 0.79 <= p <= .95:
return 3
else:
return 4
elif currentLocation == 4:
if 0.0 <= p <= .75:
return 1
elif 0.76 <= p <= 0.95:
return 2
else:
return 3
elif currentLocation == 3:
if 0.0 <= p <= .95:
return 1
else:
return 2
elif currentLocation == 2:
return 1
def main():
process()
ensureStop()
min = int(input())
end = time.time() + 60.0 * min
global N
global currentLocation
global elevatorDirection
global currentWeight
global serverStatus
global totalServed
serverStatus = "busy"
while time.time() < end:
runningCar = [] # This a carrying car.
if elevatorDirection == "up":
# person need to modify
person = personCount(currentLocation, elevatorDirection) # Total person takes
print("person = {}".format(person))
if person > 0:
time.sleep(5.0)
i = 0
while i < person:
if currentWeight <= 550.0: # Maximum can carry upto 750.0, when up.
liftPosition = intelligenceDistribution(currentLocation, elevatorDirection)
print("liftPosition = {}".format(liftPosition))
upStop[liftPosition] = 1
weight = generateWeight()
print("weight = {}".format(weight))
currentWeight = currentWeight + weight # Weight in increasing
print("currentWeight = {}".format(currentWeight))
runningCar.append((weight, liftPosition)) # This is a tupple [ like class ]
# Need to edit
else:
if currentWeight == 0:
serverStatus = "idle"
else:
break
i = i + 1
currentLocation += 1
time.sleep(1.5) # Takes 1.5 seconds for going next steps
print("currentLocation = {}".format(currentLocation))
if upStop[currentLocation] == 1:
time.sleep(5.0)
for I in runningCar:
if I[1] == currentLocation:
weight -= I[0]
runningCar.remove(I)
totalServed += 1
print("totalServed = {}".format(totalServed))
# Special Checking ... elevatorDirection will change up to down.
# N = 6
if currentLocation == N:
elevatorDirection = "down"
i=1
while i<=N:
upStop[i] = 0
i += 1
# weight will be -> 0.0
# People can change decetion
else:
# person need to modify
person = personCount(currentLocation, elevatorDirection) # Total person takes
print("person = {}".format(person))
if person > 0:
time.sleep(5.0)
i = 0
while i < person:
if currentWeight <= 550.0: # Maximum can carry upto 850.0, when down.
liftPosition = intelligenceDistribution(currentLocation, elevatorDirection)
print("liftPosition = {}".format(liftPosition))
downStop[liftPosition] = 1
weight = generateWeight()
print("weight = {}".format(weight))
currentWeight = currentWeight + weight # Weight in increasing
print("currentWeight = {}".format(currentWeight))
runningCar.append((weight, liftPosition)) # This is a tupple [ like class ]
# Need to edit
else:
if currentWeight == 0:
serverStatus = "idle"
else:
break
i = i + 1
currentLocation -= 1
time.sleep(1.5) # Takes 1.5 seconds for going next steps
print("currentLocation = {}".format(currentLocation))
if downStop[currentLocation] == 1:
time.sleep(5.0)
for I in runningCar:
if I[1] == currentLocation:
weight -= I[0]
runningCar.remove(I)
totalServed += 1
print("totalServed = {}".format(totalServed))
# Special Checking ... elevatorDirection will change up to down.
# N = 6
if currentLocation == 1:
elevatorDirection = "up"
i = 1
while i <= N:
downStop[i] = 0
i += 1
# weight will be -> 0.0
# People can change decetion
print("Total people served {} within {} minute.".format(totalServed, min))
if __name__ == "__main__":
main()
| true
|
760b957bdf1830b75332d5f605990d515f91ca9c
|
Python
|
adibsxion19/CS1114
|
/Labs/lab12Pr5.py
|
UTF-8
| 1,283
| 3.46875
| 3
|
[] |
no_license
|
#Aadiba Haque
#4/24/2020
#Lab 12 Q5
def add_entry(contacts, name, number):
if name not in contacts:
if len(number) == 10:
valid = True
for num in number:
if not num.isdigit():
valid = False
if valid:
contacts[name] = number
def lookup(contacts, name):
if name in contacts:
return contact[name]
else:
print("Name not found")
def print_all(contacts):
for key in contacts:
print(key, contacts[key],sep = '\t')
def add_from_file(filename, contacts):
try:
file = open(filename, "r")
except:
print("File Not Found")
for line in file:
line = line.strip()
lst_data = line.split(",")
name = lst_data[0]
name_lst = name.split(", ")
temp = name_lst[0]
name_lst[0] = name_lst[1]
name_lst[1] = temp
name = " ".join(name_lst)
add_entry(contacts, name, lst_data[1])
file.close()
def main():
contacts = {}
filename = "us-senate.csv"
name = "Mickey Mouse"
number = "1234567890"
add_from_file(filename, contacts)
add_entry(contacts, name, number)
lookup(contacts, name)
print_all(contacts)
| true
|
b57e5429edfc6a457a00d05dd8b282905b01fff8
|
Python
|
totalborons/LPTHW
|
/ex15.py
|
UTF-8
| 338
| 3.109375
| 3
|
[] |
no_license
|
from sys import argv
script, fileName = argv
txt = open(fileName)
print(f"Opening file {fileName}")
print(txt.read())
# .read reads the whole file here and not the individual lines and no control over where and how to read..
# done now
# have to pass txt extension in name else it wont work
# read() reads all the lines in the file
| true
|
261159262f4822fc3f8db5e0cf574d7d76186f3a
|
Python
|
SebBlin/p4
|
/some-tests/print-table.py
|
UTF-8
| 1,067
| 3.484375
| 3
|
[
"MIT"
] |
permissive
|
# affichage d'une grille
# voir https://en.wikipedia.org/wiki/Box-drawing_character#Unicode
nbcol = 7
nbligne = 6
grille = [
[0,0,0,0,0,0,0],
[0,0,0,0,0,0,0],
[0,0,1,0,0,0,0],
[0,0,1,0,0,0,0],
[0,0,1,0,0,0,0],
[0,0,1,2,2,2,0]
]
pion = [' ', 'X', 'O']
def print_top_line():
print(u'\u250c', end = '')
for _ in range(nbcol-1):
print(u'\u2500\u252c', sep = '', end = '')
print(u'\u2500\u2510')
def print_mid_line_empty(tab_line):
for i in range(nbcol):
print(u'\u2502',pion[tab_line[i]], sep = '', end = '')
print(u'\u2502')
def print_mid_line_full():
print(u'\u251c', end = '')
for _ in range(nbcol-1):
print(u'\u2500\u253c', end = '')
print(u'\u2500\u2524')
def print_bottom_line():
print(u'\u2514', end = '')
for _ in range(nbcol-1):
print(u'\u2500\u2534', end = '')
print(u'\u2500\u2518')
print_top_line()
for i in range(nbligne-1):
print_mid_line_empty(grille[i])
print_mid_line_full()
print_mid_line_empty(grille[nbligne-1])
print_bottom_line()
| true
|
3361686119ad81a1c35919529dba737a79467f89
|
Python
|
ePlusPS/emr-workflow
|
/airflow_pipeline/readmission_tf_prob_to_likert.py
|
UTF-8
| 975
| 2.671875
| 3
|
[] |
no_license
|
import pandas as pd
from workflow_read_and_write import standard_read_from_db, standard_write_to_db
def make_likert_column(df):
likert_vals = []
for i, row in df.iterrows():
if row['keras_pred'] < 0.25:
likert_vals.append('Very Unlikely Readmission')
elif 0.25 <= row['keras_pred'] and row['keras_pred'] < 0.5:
likert_vals.append('Unlikely Readmission')
elif 0.5 <= row['keras_pred'] and row['keras_pred'] < 0.75:
likert_vals.append('Likely Readmission')
else:
likert_vals.append('Very Likely Readmission')
return likert_vals
def convert_to_likert():
df_json_encoded = standard_read_from_db('readmission_tensorflow_predictions')
df = pd.read_json(df_json_encoded.decode())
likert_values = make_likert_column(df)
df['readmission_likert'] = likert_values
df_json_encoded = df.to_json().encode()
standard_write_to_db('readmission_likert', df_json_encoded)
| true
|
24b96448014e8c1e6495439df7a422598a3354e8
|
Python
|
paullickman/aoc2020
|
/09/encoding.py
|
UTF-8
| 1,125
| 3.4375
| 3
|
[] |
no_license
|
def sums(nums):
for i in range(len(nums)):
for j in range(len(nums)):
if i != j:
yield nums[i] + nums[j]
class Encoding():
def __init__(self, filename, preamble):
with open('09/' + filename) as f:
self.nums = list(map(int, f.readlines()))
self.len = len(self.nums)
self.preamble = preamble
def firstInvalid(self):
i = self.preamble
while i < self.len:
if not(self.nums[i] in sums(self.nums[i-self.preamble:i])):
return self.nums[i]
i += 1
def search(self, target):
for i in range(self.len - 2):
sum = self.nums[i]
j = i + 1
while j < self.len and sum < target:
sum += self.nums[j]
if sum == target:
return min(self.nums[i:j+1]) + max(self.nums[i:j+1])
j += 1
e = Encoding('test.txt', 5)
assert e.firstInvalid() == 127
assert e.search(127) == 62
e = Encoding('input.txt', 25)
firstInvalid = e.firstInvalid()
print(firstInvalid)
print(e.search(firstInvalid))
| true
|
92e42c766ac3c595bce51941e2d9d2349cc9c4ae
|
Python
|
jortis10/TimberPy
|
/timberman.py
|
UTF-8
| 1,186
| 2.765625
| 3
|
[] |
no_license
|
import pygame
class Timberman:
def __init__(self):
self.texture = pygame.image.load("Assets/timberman.png").convert_alpha()
self.live = 1
self.x = 20
self.y = 512
self.action = 0
self.collide_y = 650
self.state = 0 #0 is left 1 is right
def setTimberman(self):
if self.action == 0:
if self.state == 0:
self.texture = pygame.image.load("Assets/timberman.png").convert_alpha()
self.x = 110
elif self.state == 1:
self.texture = self.texture = pygame.image.load("Assets/timberman.png").convert_alpha()
self.texture = pygame.transform.flip(self.texture,True,False)
self.x = 320
else:
if self.state == 0:
self.texture = pygame.image.load("Assets/timbermanaction.png").convert_alpha()
self.x = 110
elif self.state == 1:
self.texture = self.texture = pygame.image.load("Assets/timbermanaction.png").convert_alpha()
self.texture = pygame.transform.flip(self.texture,True,False)
self.x = 320
| true
|
22d3e08ff0e9d350ec177d502fe5defa430146ec
|
Python
|
QuickTiger/PsMiss
|
/GetDataOfLake.py
|
UTF-8
| 570
| 2.640625
| 3
|
[] |
no_license
|
#A simple scripts of Download data from TaiHu Lake
import re
import urllib.request
f=open('data.txt','w')
for i in range(60617-54291):
n=i+54291
print(n)
data_url="http://www.lakesci.csdb.cn/page/showItem.vpage?id=lakesci.csdb.cn.rgjc.zdhpszzdjc/"+str(n)
s=urllib.request.urlopen(data_url)
data=s.read().decode('utf-8')
pattern=re.compile(r'(?<=6px;\" >)[\d.]+')
#print(data)
#print(pattern.search(data).group())
mm=pattern.findall(data)
for item in mm:
f.write(item+'\t')
f.write('\n')
f.close()
| true
|
32fa67c5143475569df2038099b4bfe1d9ccde37
|
Python
|
cicihou/LearningProject
|
/leetcode-py/leetcode91.py
|
UTF-8
| 1,421
| 3.828125
| 4
|
[] |
no_license
|
class Solution:
def numDecodings(self, s: str) -> int:
'''
method 1 memoize + recursion
如果都合法的时候,答案就是 fibbo(len(s)+1)
递归:
有多少个需要计算的值,我们可以假设取第一位或者取第二位数
base case:
当 length = 0 时,res = 1
当 s[k:] 的第一位是 0 是,表示这是一个无效的子串,所以也返回 0
res = func(length - 1) + func(length - 2)
注意 length - 2 需要判断有效性
time: O(n)
space: O(n)
视频:https://www.youtube.com/watch?v=qli-JCrSwuk
:param s:
:return:
'''
memo = {}
n = len(s)
def func(length):
'''
k is start, length 是剩下的位数
:param string:
:param length:
:return:
'''
if length in memo:
return memo[length]
if length == 0:
return 1
k = n - length
if s[k] == '0':
return 0
res = func(length-1)
if length >= 2 and int(s[k:k+2]) <= 26: # 判断有效性
res += func(length-2)
memo[length] = res
return res
return func(n)
'''
method 2 DP
'''
# TODO
| true
|
26c6f8211fec591940f5d043aa4cf9fd53ee0d21
|
Python
|
kkhaveabigdream/iot-device
|
/apps/tests/labs/Module02Test.py
|
UTF-8
| 2,832
| 2.734375
| 3
|
[] |
no_license
|
"""
Test class for all requisite Module02 functionality.
Instructions:
1) Rename 'testSomething()' method such that 'Something' is specific to your needs; add others as needed, beginning each method with 'test...()'.
2) Add the '@Test' annotation to each new 'test...()' method you add.
3) Import the relevant modules and classes to support your tests.
4) Run this class as unit test app.
5) Include a screen shot of the report when you submit your assignment.
Please note: While some example test cases may be provided, you must write your own for the class.
"""
import unittest
from labs.common.ConfigUtil import ConfigUtil
from labs.module02.TempSensorEmulatorTask import TempSensorEmulatorTask
from labs.common.SensorData import SensorData
class Module02Test(unittest.TestCase):
"""
Use this to setup your tests. This is where you may want to load configuration
information (if needed), initialize class-scoped variables, create class-scoped
instances of complex objects, initialize any requisite connections, etc.
"""
def setUp(self):
self.config = ConfigUtil()
self.config.loadConfig('../../../config/ConnectedDevicesConfig.props')
self.tempsensor = TempSensorEmulatorTask()
self.sensordata = SensorData()
self.sensordata.addValue(10)
self.sensordata.addValue(15)
self.sensordata.addValue(20)
self.sensordata.setName('Temperature')
"""
Use this to tear down any allocated resources after your tests are complete. This
is where you may want to release connections, zero out any long-term data, etc.
"""
def tearDown(self):
pass
"""
Place your comments describing the test here.
"""
def testloadConfig(self):
self.assertTrue(self.config.loadConfig('../../../config/ConnectedDevicesConfig.props') )
def testhasConfigData(self):
self.assertTrue(self.config.hasConfigData())
def testgetValue(self):
self.assertEqual(self.config.getValue("smtp.cloud","port"), '465')
def testgetSensorData(self):
assert self.tempsensor.getSensorData()>0 and self.tempsensor.getSensorData()<30
def testgetAverageValue(self):
assert self.sensordata.getAverageValue()>0 and self.sensordata.getAverageValue()<30
def testgetCount(self):
self.assertEqual(self.sensordata.getCount(),3)
def testgetCurrentValue(self):
assert self.sensordata.getCurrentValue()>0 and self.sensordata.getCurrentValue()<30
def testMinValue(self):
assert self.sensordata.getMinValue()>=0 and self.sensordata.getMinValue()<30
def testMaxValue(self):
assert self.sensordata.getMaxValue()>0 and self.sensordata.getMaxValue()<30
def testName(self):
self.assertEqual(self.sensordata.getName(), 'Temperature')
if __name__ == "__main__":
#import sys;sys.argv = ['', 'Test.testName']
unittest.main()
| true
|
fd5761d363100f436c43d3c71115288eafad1c71
|
Python
|
AmrGNegm/Code-Wars
|
/Python/3- Jaden Casing Strings2.py
|
UTF-8
| 88
| 3.03125
| 3
|
[] |
no_license
|
def toJadenCase(string):
return ' '.join(i.capitalize() for i in string.split(" "))
| true
|
9fd7585aa38c288df9178a6c0c3df6adb762d297
|
Python
|
weizhixiaoyi/text-similarity
|
/similarity.py
|
UTF-8
| 2,079
| 3.265625
| 3
|
[] |
no_license
|
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from scipy.linalg import norm
def tf_cosine_similarity(str1, str2):
"""tf cosine similarity
Parameters
----------
str1: string1
str2: string2
Returns
-------
similarity
"""
s1, s2 = ' '.join(list(str1)), ' '.join(list(str2))
cv = CountVectorizer(tokenizer=lambda s: s.split())
corpus = [s1, s2]
vectors = cv.fit_transform(corpus).toarray()
tf_cos = np.dot(vectors[0], vectors[1]) / (norm(vectors[0]) * norm(vectors[1]))
return tf_cos
def tfidf_consine_similarity(str1, str2):
"""tfidf cosine similarity
Parameters
----------
str1: string1
str2: string2
Returns
-------
similarity
"""
s1, s2 = ' '.join(list(str1)), ' '.join(list(str2))
corpus = [s1, s2]
cv = CountVectorizer(tokenizer=lambda s: s.split())
vector = cv.fit_transform(corpus).toarray()
transform = TfidfTransformer()
tfidf = transform.fit_transform(vector).toarray()
vector1, vector2 = tfidf[0][::-1], tfidf[1][::-1]
tfidf_cos = np.dot(vector1, vector2) / (norm(vector1) * norm(vector2))
return tfidf_cos
def word_in_str_similarity(str1, str2):
"""tfidf cosine similarity
Parameters
----------
str1: string1
str2: string2
Returns
-------
similarity
"""
str1 = ''.join(set(str1.replace(' ', '')))
str2 = ''.join(set(str2.replace(' ', '')))
if len(str1) > len(str2):
str1, str2 = str2, str1
common_word = 0
for i in range(0, len(str1)):
if str1[i] in str2:
common_word += 1
similarity = common_word / len(str2)
return similarity
if __name__ == '__main__':
str1 = '车子进水了 怎么办'
str2 = '车子进水了 怎么办 啊啊啊啊啊啊'
ans1 = tf_cosine_similarity(str1, str2)
ans2 = tfidf_consine_similarity(str1, str2)
ans3 = word_in_str_similarity(str1, str2)
print(ans1)
print(ans2)
print(ans3)
| true
|
1dd819a78be2b0daf08be92d116632271094d9b0
|
Python
|
demetriushenry/opencv-python-samples
|
/obj_measurement.py
|
UTF-8
| 4,079
| 2.953125
| 3
|
[] |
no_license
|
import sys
import cv2
import numpy as np
def reorder(points):
new_points = np.zeros_like(points)
points = points.reshape((4, 2))
add_point = points.sum(1)
new_points[0] = points[np.argmin(add_point)]
new_points[3] = points[np.argmax(add_point)]
diff = np.diff(points, axis=1)
new_points[1] = points[np.argmin(diff)]
new_points[2] = points[np.argmax(diff)]
return new_points
def warp_img(img, points, w, h, pad=20):
points = reorder(points)
pts1 = np.float32(points)
pts2 = np.float32([0, 0], [w, 0], [0, h], [w, h])
matrix = cv2.getPerspectiveTransform(pts1, pts2)
img_warp = cv2.warpPerspective(img, matrix, (w, h))
img_warp = img_warp[
pad:img_warp.shape[0] - pad,
pad:img_warp.shape[1] - pad
]
return img_warp
def find_distance(pts1, pts2):
# using Pythagorean theorem
return ((pts2[0] - pts1[0]) ** 2 + (pts2[1] - pts1[1]) ** 2) ** 0.5
def get_contours(img, thr1=100, thr2=100, show_cany=False, min_area=1000, filter=0, show_cnts=False):
kernel = (5, 5)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, kernel, 1)
canny = cv2.Canny(blur, thr1, thr2)
kernel = np.ones((5, 5))
dilate = cv2.dilate(canny, kernel, iterations=3)
erode = cv2.erode(dilate, kernel, iterations=2)
if show_cany:
cv2.imshow('Canny Image', erode)
cnts, _ = cv2.findContours(erode, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
final_cnts = []
for i in cnts:
area = cv2.contourArea(i)
if area > min_area:
perimeter = cv2.arcLength(i, True)
approx = cv2.approxPolyDP(i, 0.02 * perimeter, True)
bbox = cv2.boundingRect(approx)
cnt = [len(approx), area, approx, bbox, i]
if filter > 0:
if len(approx) == filter:
final_cnts.append(cnt)
else:
final_cnts.append(cnt)
final_cnts = sorted(final_cnts, key=lambda x: x[1], reverse=True)
if show_cnts:
for cnt in final_cnts:
color = (0, 0, 255)
cv2.drawContours(img, cnt[4], -1, color, 3)
return img, final_cnts
def main():
scale = 3
A4_w = 210 * scale # mm
A4_h = 297 * scale # mm
path = 'images/A4-paper.jpeg'
img = cv2.imread(path)
img_cnts, cnts = get_contours(img, min_area=50000, filter=4)
if len(cnts) != 0:
print('entrou')
biggest = cnts[0][2]
img_warp = warp_img(img, biggest, A4_w, A4_h)
img_cnts2, cnts2 = get_contours(
img_warp,
min_area=2000,
filter=4,
thr1=50,
thr2=50,
show_cnts=False
)
if len(cnts) != 0:
for obj in cnts2:
cv2.polylines(img_cnts2, [obj[2]], True, (0, 255, 0), 2)
nPoints = reorder(obj[2])
pts1 = nPoints[0][0] // scale
pts2 = nPoints[1][0] // scale
pts3 = nPoints[2][0] // scale
nW = round((find_distance(pts1, pts2) / 10), 1)
nH = round((find_distance(pts1, pts3) / 10), 1)
cv2.arrowedLine(img_cnts2, (nPoints[0][0][0], nPoints[0][0][1]), (nPoints[1][0][0], nPoints[1][0][1]),
(255, 0, 255), 3, 8, 0, 0.05)
cv2.arrowedLine(img_cnts2, (nPoints[0][0][0], nPoints[0][0][1]), (nPoints[2][0][0], nPoints[2][0][1]),
(255, 0, 255), 3, 8, 0, 0.05)
x, y, w, h = obj[3]
cv2.putText(img_cnts2, '{}cm'.format(nW), (x + 30, y - 10), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.5,
(255, 0, 255), 2)
cv2.putText(img_cnts2, '{}cm'.format(nH), (x - 70, y + h // 2), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.5,
(255, 0, 255), 2)
cv2.imshow('A4', img_cnts2)
img = cv2.resize(img, (0, 0), None, 0.5, 0.5)
cv2.imshow('Original', img)
cv2.waitKey(0)
if __name__ == "__main__":
sys.exit(main())
| true
|
097b5f46bf9a6494f70d900e6aba59259a490d8e
|
Python
|
OneOverCosine/data_collections
|
/lists_and_tuples.py
|
UTF-8
| 1,076
| 4.40625
| 4
|
[] |
no_license
|
# What is a list?
# # Lists are commonly used to store related data
shopping_list = ["bread", "chocolate", "avocados", "milk"]
# print(shopping_list)
# print(shopping_list[0])
# shopping_list[0] = "orange"
# shopping_list.append("apple juice")
# shopping_list.pop(0)
# print(shopping_list)
mixed_list = [1, 2, 3, "one", "two", "three"]
# print(mixed_list)
# weekdays_de = ("Montag", "Dienstag", "Mittwoch", "Donnerstag", "Freitag")
# # weekdays_de[0] = "Monday" # causes an error
# print(weekdays_de)
# # This works, but probably isn't very useful as is
# odd_items = [shopping_list, mixed_list, weekdays_de]
# print(odd_items)
# prompted by a question
# tuple_of_lists = (shopping_list, mixed_list)
# print(tuple_of_lists)
# tuple_of_lists[0][1] = "M 'n Ms"
# print(tuple_of_lists)
# Using sets and frozen sets
s_shopping_list = set(shopping_list)
fs_shopping_list = frozenset(shopping_list)
print(s_shopping_list)
print(fs_shopping_list)
s_shopping_list.add("pain au chocolat")
#fs_shopping_list.add("pain au chocolat)") # throws an error
print(s_shopping_list)
| true
|
76c456e9e71dde3f83b2cb8d0be4fe5b09af9073
|
Python
|
melnikova12/Repository
|
/hw4/hw4.py
|
UTF-8
| 427
| 3.65625
| 4
|
[] |
no_license
|
#вариант 1 - найти среднее число слов в строке
with open("/Users/melnikovaarina/Desktop/stranger_things.txt",
encoding="utf-8") as f:
text = f.read()
text = text.replace("\ufeff","")
lines = text.splitlines()
al = 0
st = 0
for x in lines:
st += 1
length = len(x.split())
al += length
print("Среднее число слов в строке: ", int(al/st))
| true
|
79a7f8667fd6e05c3fc81161fc1be091fd202d79
|
Python
|
DanielFL0/Learning-Python
|
/exercise3-3.py
|
UTF-8
| 586
| 4.5625
| 5
|
[] |
no_license
|
#3-3 Your own list; Think of your favorite mode of transportation, such as a motorcycle or a car, and make a list that stores several examples. Use your list to print a series of statements about these items, such as "I would like to own a Honda motorcycle."
items = ['Porsche 911', 'Corvette Z06', 'Norton Commando 961', 'Jetski', 'Water Jetpack']
print("I would like to own a " + items[0])
print("My favorite car is the " + items[1])
print("My favorite motorcycle is the " + items[2])
print("I think it would be fun to ride a " + items[3])
print("I would like to own a " + items[4])
| true
|
397745585418608cb2ed5ebe581b294e957aac15
|
Python
|
jelee0621/eon_hw
|
/train.py
|
UTF-8
| 5,881
| 3.015625
| 3
|
[] |
no_license
|
import copy
f = open("C:/Users/ADmin/Desktop/eonhw/TrainList.txt", 'r')
TrainList=[]
indlist = []
while True:
tl = f.readline().split()
TrainList.append(tl)
if not tl: break
f.close()
del TrainList[0]
del TrainList[len(TrainList)-1]
modyTrainList = copy.deepcopy(TrainList)
reservation_list = []
ind = None
for i in range(20): #범위 20까지
del modyTrainList[i][2]
modyTrainList[i][0] = modyTrainList[i][0].replace(":","")
modyTrainList[i][0] = int(modyTrainList[i][0])
def close_time(mytime, time_list): #가까운 시간 찾기
a = mytime
b = time_list.copy()
real_time_list = [605,635,715,842]
abs_list = []
for i in range(len(b)):
abs_list.append(abs(a-b[i]))
ind = abs_list.index(min(abs_list))
return real_time_list[ind]
class TRAIN:
def menu1(self): #기차 검색 , 예매
des_train = list(input("\n====== 원하는 시간(YY:MM), 출발역, 도착역, 열차종류 입력 ('빈칸'으로 구분) ======\n※ 뒤로가기 : 아무키 입력 ※\n※ 입력이 잘못되면 뒤로갑니다 ※\n입력 : ").split())
tmp_TrainList = copy.deepcopy(modyTrainList)
for i in range(20):
tmp_TrainList[i].pop()
time_list = [365,395,435,522]
tmp_mytime = int(des_train[0].replace(":",""))
a, b = divmod(tmp_mytime, 100) #a,b 몫, 나머지
mytime = a*60+b
des_train[0] = close_time(mytime, time_list)
closed_T = []
for i in range(20):
if tmp_TrainList[i] == des_train:
closed_T = tmp_TrainList[i].copy()
closed_T.append(TrainList[i][5])
ind = i
print('\n===== 가장 가까운 시간의 기차 정보 =====\n| 시간 | 출발 | 도착 | 열차종류 | 잔여석 수 |')
a, b = divmod(closed_T[0], 100)
a = str(a)
b = str(b)
if int(b)//10 == 0:
closed_T[0] = ''.join(['0', a, ':','0', b])
else:
closed_T[0] = ''.join(['0', a, ':', b])
print('|', end=' ')
for a in closed_T:
print(a,end = ' | ')
while True:
reservation = input('\n해당 기차표를 예매하시겠습니까? [Y/N]\n입력 : ')
if reservation == 'Y':
if TrainList[ind][5] != '매진':
reservation_list.append(TrainList[ind])
TrainList[ind][5] = int(TrainList[ind][5])-1 #예매를 완료하면 표를 하나 줄여나간다
print('\n예매가 완료되었습니다.')
indlist.append(ind)
if TrainList[ind][5] == 0: #남아있는 표의 수가 0이 되면
TrainList[ind][5] = '매진' #매진
break
else:
print('\n해당 표는 매진되었습니다. 초기메뉴로 돌아갑니다.')
break
elif reservation == 'N': #예매하지 않음
print('\n처음 화면으로 돌아갑니다.')
break
else:
print('Y 또는 N을 입력해주세요.')
return ind
def menu2(self): #전체 기차리스트를 출력
print('\n= 기차 시간표 =','시간_출발_도착_열차종류_잔여좌석수','--',sep='\n')
i = 0
while i < len(TrainList):
a,b,c,d,e,f = TrainList[i]
print(a,b,c,d,e,f)
i += 1
def menu3(self):
if ind == None: #예매내역 없음
print('\n예매된 기차가 없습니다.')
elif reservation_list == []:
print('\n예매된 기차가 없습니다.')
else:
print('\n[ 예매 완료 ]\n','======== 기차 정보 ========',sep='\n')
i = 0
while i < len(reservation_list):
a,b,c,d,e,f = reservation_list[i]
print(a,b,c,d,e) #예약된 순번까지 하나씩 프린트
i += 1
cancle = input('\n예매를 취소하시겠습니까? [Y/N]\n※ 뒤로가기 : 아무키나 입력 ※\n입력 : ')
if cancle == 'Y':
if TrainList[indlist[len(indlist)-1]][5] == '매진':
TrainList[indlist[len(indlist)-1]][5] = 1
reservation_list.pop()
else:
TrainList[indlist[len(indlist)-1]][5] = TrainList[indlist[len(indlist)-1]][5] + 1 #취소되어 표 증가
reservation_list.pop()
indlist.pop()
print('\n취소가 완료되었습니다.')
else:
print('\n처음 화면으로 돌아갑니다.')
while True:
print('\n======메뉴======')
print('1. 빠른시간 기차 검색 및 예매')
print('2. 전체 기차 리스트 출력')
print('3. 나의 예매 현황 출력 및 예매 취소')
print('4. 프로그램 종료')
number = input("수를 입려해 주세요 ")
train = TRAIN()
try:
if number == '1':
ind = train.menu1()
elif number == '2':
train.menu2()
elif number == '3':
train.menu3()
elif number == '4':
print('프로그램을 종료합니다.')
break
elif number == '5':
number = 5
print('최상위 메뉴입니다.')
else:
print('없는 메뉴 번호입니다.')
except:
print('처음 화면으로 돌아갑니다.')
| true
|
2caf5525418d0e68462da3eb77c4d0a7dda0f8f0
|
Python
|
kxmdxhxx/Biometrics
|
/TrafficLight.py
|
UTF-8
| 411
| 2.5625
| 3
|
[] |
no_license
|
import time
import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BOARD)
GPIO.setup(3, GPIO.OUT) # Blue LED
GPIO.output(3, GPIO.HIGH)
time.sleep(2)
GPIO.output(3, GPIO.LOW)
GPIO.setup(5, GPIO.OUT) # Yellow LED
GPIO.output(5, GPIO.HIGH)
time.sleep(2)
GPIO.output(5, GPIO.LOW)
GPIO.setup(7, GPIO.OUT) # White LED
GPIO.output(7, GPIO.HIGH)
time.sleep(2)
GPIO.output(7, GPIO.LOW)
time.sleep(2)
GPIO.cleanup()
| true
|
4dbd7e8ee2e86524c6a148b807715f2fabe35d33
|
Python
|
brantseibert/diabetesMonitor
|
/human_body.py
|
UTF-8
| 850
| 3.234375
| 3
|
[] |
no_license
|
import datetime
import threading
import time
from food import Food
from timezone import MST
class HumanBody:
def __init__(self):
## insulin usage variables
self.carbs_on_board = []
self.clear = threading.Thread( target=self.clearOldCarbs )
self.clear.setDaemon(True)
self.clear.start()
## Methods dealing with boluses
def eat(self, start_time, carbs):
self.carbs_on_board.append( Food(start_time,carbs) )
def getTotalCarbsOnBoard(self):
total = 0
for meals in self.carbs_on_board:
total += meals.getCarbs()
return total
def clearOldCarbs(self):
while(True):
current_time = datetime.datetime.now(MST())
old_meals = []
for meals in self.carbs_on_board:
if( current_time > meals.getEndTime() ):
old_meals.append(meals)
for old in old_meals:
self.carbs_on_board.remove(old)
time.sleep(10)
| true
|
0470a40bc835066890f68f867ecc6a453333ea84
|
Python
|
xaedes/OttoCar-PC
|
/src/ottocar_utils/scripts/ottocar_utils/window.py
|
UTF-8
| 1,562
| 2.765625
| 3
|
[] |
no_license
|
#!/usr/bin/env python
import rospy
from ottocar_utils.measure_sample_rate import MeasureSampleRate
import numpy as np
class Window(object):
"""docstring for Window"""
def __init__(self, window_size = 10, n_signals = 1):
super(Window, self).__init__()
self.window_size = window_size
self.n_signals = n_signals # TODO rename signals to channels
self._buffer = np.zeros(shape=(self.window_size, self.n_signals)) # internal buffer where data is stored
self.pointer = 0
self.sample_rate = MeasureSampleRate(10,gain=0.5)
def add_sample(self,signals):
self.sample_rate.add_sample()
if not self.is_full():
self._buffer[self.pointer] = signals
self.pointer += 1
else:
self._buffer = np.roll(self._buffer,-1,axis=0)
self._buffer[-1] = signals
def is_full(self):
return self.pointer == self._buffer.shape[0]
# the last window_size items
def window(self):
return self._buffer[-self.window_size:,:]
def set_window_size(self,new_window_size):
if new_window_size > self._buffer.shape[0]:
# increase buffer
# print self._buffer.shape
# print np.zeros(shape=(new_window_size - self._buffer.shape[0],self.n_signals)).shape
self._buffer = np.vstack([self._buffer, np.zeros(shape=(new_window_size - self._buffer.shape[0],self.n_signals))])
self.pointer = self._buffer.shape[0] - 1
self.window_size = new_window_size
| true
|
e50e203efe195220c2117ef1849c048a24f59ebf
|
Python
|
17390089054/Python
|
/Python3WorkSpace/Unit6/iftest.py
|
UTF-8
| 2,405
| 3.25
| 3
|
[] |
no_license
|
color='red'
if color=='green':
print("You have got 5 points\n")
elif color=='yellow':
print("You have got 10 points\n")
else:
print("You have got 15 points\n")
#5-7
favorite_fruits=['banana','apple','orange']
if 'banana' in favorite_fruits:
print("You really like bananas!\n")
#5-7-1
request_toppings=[]
if request_toppings:
for request_topping in request_toppings:
if request_topping == 'green paper':
print("Sorry,We are out of green papers right now.")
else:
print("Adding "+request_topping +".")
print("\n Finished making your pizza!")
#test
avaliable_toppings=['mushroom','olives','green papers','pepperoni','pineapple','extra cheese']
request_toppings=['mushroom','french fries','extra cheese']
for request_topping in request_toppings:
if request_topping in avaliable_toppings:
print("Adding "+request_topping+".")
else:
print("Sorry,We don't have "+request_topping+".")
print("\nFinished making your pizza!\n")
#5-8
users=['admin','root','mike','loser','lily']
for user in users:
if user=='admin':
print("Hello "+user+" would you like to see a status report?\n")
else:
print("Hello "+user+" thank you for your logging in again!\n")
#5-9
users=[]
if users:
for user in users:
if user=='admin':
users.pop()
print("Hello "+user+" would you like to see a status report?\n")
else:
users.pop()
print("Hello "+user+" thank you for your logging in again!\n")
else:
print("We need to find some users\n")
#5-10
current_users=['Mike','John','Lucy','Lily','Jenny']
new_users=['Mike','Lucy','kite','lucy','phton']
for user in new_users:
if user in current_users or user.upper() in current_users or user.lower() in current_users or user.title() in current_users:
print("The user "+user+" has existed!You have to input another user")
else:
print("The user "+user+" has not used!")
#5-11
print("\n")
numbers=[val for val in range(1,10)]
for number in numbers:
if number == 1:
print("1st")
elif number == 2:
print("2nd")
elif number == 3:
print("3rd")
else:
print(str(number)+"th")
print("\n")
| true
|
ce29b5510bd003b165ea966aaaab7078e1439115
|
Python
|
arthur37231/bilibili-followers-checker
|
/database/base_handler.py
|
UTF-8
| 1,345
| 2.59375
| 3
|
[
"MIT"
] |
permissive
|
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from .schema import Base
class BaseHandler(object):
_Session = None
@staticmethod
def _make_connection_url(**kwargs):
host = kwargs.get('host')
port = kwargs.get('port')
user = kwargs.get('user')
dbname = kwargs.get('db_name')
password = kwargs.get('db_password')
return f'postgresql://{user}:{password}@{host}:{port}/{dbname}'
@staticmethod
def create_connection(conf):
_engine = create_engine(BaseHandler._make_connection_url(**conf))
BaseHandler._Session = sessionmaker(bind=_engine)
# Define table
Base.metadata.create_all(bind=_engine)
def __init__(self, *args, **kwargs):
self._session = None
def update_obj(self, obj):
self._session.add(obj)
def __enter__(self):
self.connect()
def __exit__(self, exception_type, exception_value, traceback):
self.disconnect()
def connect(self):
self._session = BaseHandler._Session()
def disconnect(self, is_error=False):
if self._session is not None:
if not is_error:
self._session.commit()
self._session.close()
self._session = None
def commit(self):
self._session.commit()
| true
|
9f0ede206b2ab8c63b90e39aa37b6b99c6fbadb6
|
Python
|
CIgnacio-dev/Ejercicios-b-sicos-py
|
/if.py
|
UTF-8
| 471
| 3.609375
| 4
|
[] |
no_license
|
import random
aleatorios = [random.randint(1,6) for _ in range(2)]
print(aleatorios)
s=sum(aleatorios)
print ('La suma de los números es', s)
ask=int(input('¿Desea lanzar el dado otra vez? Ingresa 1 para Sí o cualquier otro número para No '))
if ask==1:
aleatorios = [random.randint(1,6) for _ in range(2)]
print(aleatorios)
s=sum(aleatorios)
print ('La suma de los números es', s)
else:
print('adiós')
| true
|
1fc5abb3271d4f43bc63251c92b1561a35fa9834
|
Python
|
HenriTammo/OMIS
|
/tund8/htmlKirjutamine.py
|
UTF-8
| 231
| 2.578125
| 3
|
[] |
no_license
|
file = open("tund8/näide.html", "w")
ülemine = """<html>
<head></head>
<body><p>"""
sisestus = input("ütle midagi")
alumine = """</p></body>
</html>"""
file.write(ülemine)
file.write(sisestus)
file.write(alumine)
file.close()
| true
|
3a3c710e20ab634bfd7166018e4baed626d662d5
|
Python
|
jerrybelmonte/DataStructures-Python
|
/job_queue.py
|
UTF-8
| 1,092
| 3.515625
| 4
|
[
"MIT"
] |
permissive
|
# Parallel Processing
# Author: jerrybelmonte
from collections import namedtuple
from heapq import heapify, heappop, heappush
AssignedJob = namedtuple('AssignedJob', ['worker', 'started_at'])
def assign_jobs(n_workers: int, jobs: list):
"""
Uses n independent threads to process a given list of jobs.
:param n_workers: number of threads
:param jobs: list of job query times
:return: list of ith thread and time started
>>> assign_jobs(2, [1, 2, 3, 4, 5])
[(0, 0), (1, 0), (0, 1), (1, 2), (0, 4)]
"""
pq = [(0, w) for w in range(n_workers)]
heapify(pq)
result = []
for job in jobs:
worker = heappop(pq)
result.append(AssignedJob(worker[1], worker[0]))
heappush(pq, (worker[0] + job, worker[1]))
return result
def main():
n_workers, n_jobs = map(int, input().split())
jobs = list(map(int, input().split()))
assert len(jobs) == n_jobs
assigned_jobs = assign_jobs(n_workers, jobs)
for job in assigned_jobs:
print(job.worker, job.started_at)
if __name__ == "__main__":
main()
| true
|
820bee9427427240e2887854fd21b21bd0e9dbae
|
Python
|
farooq-teqniqly/py-workout
|
/kidslanguages.py
|
UTF-8
| 817
| 3.484375
| 3
|
[
"MIT"
] |
permissive
|
from typing import Generator
_vowels = ["a", "e", "i", "o", "u"]
def _ensure_not_null(s: str):
if s is None or len(s.strip()) == 0:
raise ValueError("Input string cannot be None or empty.")
def english_to_pig_latin(s: str) -> Generator[str, None, None]:
_ensure_not_null(s)
words = s.split(" ")
for word in words:
if word[0] in _vowels:
yield word + "way"
else:
yield word[1:] + word[0] + "ay"
def english_to_ubbi_dubbi(s: str) -> Generator[str, None, None]:
_ensure_not_null(s)
words = s.split(" ")
for word in words:
ubbi_dubbi = ""
for letter in word:
if letter in _vowels:
ubbi_dubbi += "ub" + letter
else:
ubbi_dubbi += letter
yield ubbi_dubbi
| true
|
1d307241cfcd4a991166debf15d79c6923141759
|
Python
|
Annapoorneswarid/ANNAPOORNESWARI_D_RMCA_S1A
|
/Programming_Lab/27-01-2021/7a..py
|
UTF-8
| 461
| 3.203125
| 3
|
[] |
no_license
|
Python 3.9.1 (tags/v3.9.1:1e5d33e, Dec 7 2020, 17:08:21) [MSC v.1927 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>>
>>> list1=[8,10,15,13,16,20,25,10,13,5,4,16]
>>> list2=[16,4,5,13,10,25,20,16,13,15,10,8]
>>> len1=len(list1)
>>> len2=len(list2)
>>> if len1==len2 :
print('Both list have equal length')
else:
print('Both list doesnt have equal length')
Both list have equal length
>>>
| true
|
bd8b0209ac769b080333c7138ac0e783a0b60472
|
Python
|
GabrielPenaU3F/confiabilidad-software
|
/src/data/data_formater.py
|
UTF-8
| 4,387
| 2.765625
| 3
|
[] |
no_license
|
from abc import abstractmethod, ABC
import numpy as np
from src.data.formated_data import TTFFormatedData, FPDFormatedData
from src.exceptions.exceptions import InvalidArgumentException
class DataFormater(ABC):
singleton = None
@abstractmethod
def give_format(self, data, optional_arguments):
pass
def determine_end_sample(self, data, end_sample_arg):
default_end_sample = len(data.get_data())
if end_sample_arg + 1 > default_end_sample:
raise InvalidArgumentException('The end sample must not exceed the length of the dataset')
if 0 < end_sample_arg < default_end_sample:
return end_sample_arg + 1
else:
return default_end_sample
def determine_initial_sample(self, data, initial_sample_arg):
default_initial_sample = 0
n = len(data.get_data())
if 0 < initial_sample_arg < n - 1:
return initial_sample_arg
elif initial_sample_arg >= n:
raise InvalidArgumentException('The initial sample must not exceed the length of the dataset')
else:
return default_initial_sample
def determine_t0(self, times, t0_arg, start):
t0 = 0
if t0_arg > t0:
t0 = t0_arg
elif start > 0:
t0 = times[start - 1]
return t0
def determine_format_parameters(self, data, optional_arguments):
start = self.determine_initial_sample(data, optional_arguments.get_initial_sample())
end = self.determine_end_sample(data, optional_arguments.get_end_sample())
t0 = self.determine_t0(data.get_times(), optional_arguments.get_t0(), start)
return start, end, t0
def format_times(self, times, t0):
formated_times = list(np.copy(times))
formated_times.insert(0, t0)
return formated_times
def determine_stage_end_sample(self, data, end_t):
times = data.get_times()
for i in range(len(times)):
if times[i] > end_t:
return i - 1
return len(times) - 1
def determine_stage_initial_sample(self, data, initial_t):
times = data.get_times()
for i in range(len(times)):
if times[i] >= initial_t:
return i
def determine_stage_t0(self, data, initial_t):
times = list(np.copy(data.get_times()))
times.insert(0, 0)
for i in range(1, len(times)):
if times[i] >= initial_t:
return times[i - 1]
@classmethod
def slice_data(cls, start, end, *data_arrays):
sliced = []
for data in data_arrays:
if end == 0:
sliced.append(list(np.copy(data))[start:])
else:
sliced.append(list(np.copy(data))[start:end])
return sliced
class TTFDataFormater(DataFormater):
@classmethod
def get_instance(cls):
if cls.singleton is None:
cls.singleton = TTFDataFormater()
return cls.singleton
def give_format(self, data, optional_arguments):
start, end, t0 = self.determine_format_parameters(data, optional_arguments)
sliced_ttf_original_data, sliced_cumulative_failures = DataFormater.\
slice_data(start, end, data.get_data(), data.get_cumulative_failures())
formated_ttf = self.format_times(sliced_ttf_original_data, t0)
return TTFFormatedData(sliced_ttf_original_data, formated_ttf, sliced_cumulative_failures)
def determine_stage_end_sample(self, data, end_t):
ttfs = data.get_data()
for i in range(len(ttfs)):
if ttfs[i] > end_t:
return i - 1
return len(ttfs) - 1
class FPDDataFormater(DataFormater):
@classmethod
def get_instance(cls):
if cls.singleton is None:
cls.singleton = FPDDataFormater()
return cls.singleton
def give_format(self, data, optional_arguments):
start, end, t0 = self.determine_format_parameters(data, optional_arguments)
sliced_original_times, sliced_cumulative_failures, sliced_fpd = DataFormater.\
slice_data(start, end, data.get_times(), data.get_cumulative_failures(), data.get_data())
formated_times = self.format_times(sliced_original_times, t0)
return FPDFormatedData(sliced_original_times, formated_times, sliced_fpd, sliced_cumulative_failures)
| true
|
643e34f549b4a59043c93c246f486d49f1fa5b86
|
Python
|
WTrygar/pp1
|
/02-ControlStructures/02-45.py
|
UTF-8
| 641
| 3.890625
| 4
|
[] |
no_license
|
ilość = int(input("Podaj ilość liczb: "))
x = 2
spr = 0
if(ilość == 1):
print("Liczby pierwsze: 2")
elif(ilość == 2):
print("Liczby pierwsze: 2 3")
elif(ilość < 3):
print("Liczby pierwsze: 2 3 5")
else:
x = 3
print("Liczby pierwsze: 2", end = " ")
while ilość - 1 > 0:
y = 2
while (y <= x ** (1/2)):
if( x % y == 0):
spr = 1
y = x
else:
y += 1
if spr == 0:
print(x,end = " ")
spr = 0
x += 2
ilość -= 1
else:
x += 2
spr = 0
| true
|
ad7460dfd8d8fd37fd8fb96b7f392063a00c2ed8
|
Python
|
PawelKowalskiGitHub/Clinical_Programming
|
/Validation of the eligibility process/Generate_files_in_Python/create_files.py
|
UTF-8
| 4,673
| 3.09375
| 3
|
[] |
no_license
|
import random
import pandas as pd
import numpy as np
country = []
site = []
subject = []
pi_assessment = []
pi_crit = []
pi_crit_num = []
cm_assessment = []
cm_desciption = []
rand_date = []
def database_generator():
global database
country_id = input("Enter the country ID of the subject: ")
country_text = str("country" + country_id)
country.append(country_text)
site_id = input("Enter the site ID of the subject: ")
site_text = str("site" + site_id)
site.append(site_text)
subject_id = random.randint(0, 99)
if subject_id < 10:
subject_id = str("0" + str(subject_id))
subject_text = str("E" + country_id + site_id + str(subject_id))
while subject_text in subject:
subject_id = random.randint(0, 99)
if subject_id < 10:
subject_id = str("0" + str(subject_id))
subject_text = str("E" + country_id + site_id + str(subject_id))
else:
subject.append(subject_text)
pi_assessment_text = "."
while pi_assessment_text != "Eligible" and pi_assessment_text != "Ineligible" and pi_assessment_text != "":
pi_assessment_text = input("Enter the PI assessment of subject eligibility (Eligible/Ineligible/nothing): ")
if pi_assessment_text != "Eligible" and pi_assessment_text != "Inclusion" and pi_assessment_text != "":
print("ATTENTION: You must type Eligible or Ineligible or press enter if nothing!")
pi_assessment.append(pi_assessment_text)
pi_crit_text = "."
while pi_crit_text != "Exclusion" and pi_crit_text != "Inclusion" and pi_crit_text != "":
pi_crit_text = input("Enter the assessment criterion according to the PI (Exclusion/Inclusion/nothing): ")
if pi_crit_text != "Exclusion" and pi_crit_text != "Inclusion" and pi_crit_text != "":
print("ATTENTION: You must type Exclusion or Inclusion or press enter if nothing!")
pi_crit.append(pi_crit_text)
pi_crit_num_text = input("Enter the number of criterion from PI about eligibility: ")
pi_crit_num.append(pi_crit_num_text)
cm_assessment_text = "."
while cm_assessment_text != "Exclusion" and cm_assessment_text != "Inclusion" and cm_assessment_text != "":
cm_assessment_text = input("Enter the CM assessment of subject eligibility (Exclusion/Inclusion/nothing): ")
if cm_assessment_text != "Exclusion" and cm_assessment_text != "Inclusion" and cm_assessment_text != "":
print("ATTENTION: You must type Exclusion or Inclusion or press enter if nothing!")
cm_assessment.append(cm_assessment_text)
cm_desciption_text = input("Enter the description from CM about eligibility criterion: ")
cm_desciption.append(cm_desciption_text)
rand_date_text = input("Enter the randomization date: ")
rand_date.append(rand_date_text)
#Create a Database
database = pd.DataFrame({"subject": subject,
"country": country,
"site": site,
"pi_assessment": pi_assessment,
"pi_crit": pi_crit,
"pi_crit_num": pi_crit_num,
"cm_assessment": cm_assessment,
"cm_desciption": cm_desciption,
"rand_date": rand_date})
database.to_csv(r'/home/pawel/Pulpit/Programowanie/Python/Clinical Data Project/main_database.csv')
return subject, country, site, pi_assessment, pi_crit, pi_crit_num, cm_assessment, cm_desciption, rand_date, database
database_generator()
# If you want to use a randomly generated database
database = pd.read_csv (r'/home/pawel/Pulpit/Programowanie/Python/Clinical Data Project/data.csv')
def creating_files(filename, columns=[], col_names = []):
data = []
for i in columns:
data.append(database[i])
df = pd.concat(data, axis=1, keys=col_names)
df[i].replace('', np.nan, inplace=True)
df.dropna(subset=[i], inplace=True)
path = str(r'/home/pawel/Pulpit/Programowanie/Python/Clinical Data Project/' + filename + '.csv')
return df.to_csv(path)
creating_files('randomized', ['subject', 'rand_date'], ['subject', 'rand_date'])
creating_files('country', ['country', 'site'], ['country', 'site'])
creating_files('site', ['subject', 'site'], ['subject', 'site'])
creating_files('assessment_of_pi', ['subject', 'pi_assessment'], ['subject', 'pi_assessment'])
creating_files('criteria_of_pi', ['subject', 'pi_crit', 'pi_crit_num'], ['subject', 'pi_crit', 'pi_crit_num'])
creating_files('assessment_of_cm', ['subject', 'cm_assessment', 'cm_desciption'], ['subject', 'cm_assessment', 'cm_desciption'])
| true
|
96c8908d8e41094905f7233915f7c7244dc55a47
|
Python
|
benquick123/code-profiling
|
/code/batch-1/dn7/M-149.py
|
UTF-8
| 13,330
| 2.890625
| 3
|
[] |
no_license
|
########################
# Za oceno 6
def lel(x, y, mine):
k = 0
for w, q in mine:
if w == x or w == (x - 1) or w == (x + 1):
if q == y or q == (y - 1) or q == (y + 1):
k = k + 1
return k
def sosedov(x, y, mine):
k = 0
for w, q in mine:
if w == x or w == (x-1) or w == (x+1):
if q == y or q == (y-1) or q == (y+1):
if (w, q) != (x, y):
k = k + 1
return k
def najvec_sosedov(mine, s, v):
g = (0, 0)
m = 0
koord = []
for x in range(0, (s+1)):
for y in range(0, (v+1)):
koord.append((x, y))
for t ,z in koord:
tsosedov = lel(t, z, mine)
if tsosedov > m:
g = (t, z)
m = tsosedov
return g
def brez_sosedov(mine, s, v):
m = set()
koord = []
for x in range(0, (s)):
for y in range(0, (v)):
koord.append((x, y))
for t, z in koord:
tsosedov = sosedov(t, z, mine)
if tsosedov == 0:
m.add((t, z))
return m
def po_sosedih(mine, s, v):
g = set()
m = {}
koord = []
for x in range(0, (s)):
for y in range(0, (v)):
koord.append((x, y))
for p in range((9)):
g = set()
for t, z in koord:
if sosedov(t, z, mine) == p:
g.add((t, z))
m.update({p: g})
return m
########################
# Za oceno 7
from math import*
def razdalja_koordinat(x1, y1, x2, y2):
x = sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
return x
pot = [(0, 0), (0, 3), (4, 3), (4, 2), (7, 2), (7, 3)]
def dolzina_poti(pot):
if pot == []:
dolzinapoti = 0
else:
dolzinapoti = 0
x1, y1 = pot[0]
for x , y in pot:
x2 = x
y2 = y
dolzinapoti = dolzinapoti + razdalja_koordinat(x1, y1, x2, y2)
x1 = x2
y1 = y2
return dolzinapoti
def varen_premik(x0, y0, x1, y1, mine):
pot = []
if y0 == y1 and x0 == x1:
pot.append((x0,x1))
if x0<x1:
for x in range(x0,x1+1):
pot.append((x,y0))
if x0 > x1:
for x in range(x1,x0+1):
pot.append((x,y0))
if y0 < y1:
for y in range(y0,y1+1):
pot.append((x0,y))
if y0 > y1:
for y in range(y1,y0+1):
pot.append((x0,y))
return not any([True for (x,y) in pot if (x,y) in mine])
def varna_pot(pot, mine):
if len(pot) > 1:
for (x,y),(x1,y1) in zip(pot,pot[1:]):
if not varen_premik(x,y,x1,y1,mine):
return False
else:
for premik in pot:
if premik in mine:
return False
return True
########################
# Za oceno 8
def polje_v_mine(polje):
"""
Vrni koordinate min v podanem polju.
Niz polje opisuje polje tako, da so vodoravne "vrstice" polja ločene s
presledki. Prosta polja so označena z znako `.`, mine z `X`.
Args:
polje (str): polje
Returns:
mine (set of tuple of int): koordinate min
s (int): širina polja
v (int): višina polja.
"""
########################
# Za oceno 9
#
# Vse funkcije za oceno 6 in 7 morajo biti napisane v eni vrstici.
########################
# Za oceno 10
def preberi_pot(ukazi):
"""
Za podani seznam ukazov (glej navodila naloge) vrni pot.
Args:
ukazi (str): ukazi, napisani po vrsticah
Returns:
list of tuple of int: pot
"""
def zapisi_pot(pot):
"""
Za podano pot vrni seznam ukazov (glej navodila naloge).
Args:
pot (list of tuple of int): pot
Returns:
str: ukazi, napisani po vrsticah
"""
import unittest
"""
...X....
.X....X.
.XX.....
......X.
"""
mine1 = {(3, 0), (1, 1), (6, 1), (1, 2), (2, 2), (6, 3)}
s1, v1 = 8, 4
"""
........
........
........
"""
mine2 = set()
s2, v2 = 8, 3
"""
...X...X.X....X.
"""
mine3 = {(3, 0), (7, 0), (9, 0), (14, 0)}
s3, v3 = 16, 1
"""
X
"""
mine4 = {(0, 0)}
s4, v4 = 1, 1
"""
X
.
.
X
.
X
.
"""
mine5 = {(0, 0), (0, 3), (0, 5)}
s5, v5 = 1, 7
class Test06(unittest.TestCase):
def test_01_sosedov(self):
self.assertEqual(sosedov(2, 1, mine1), 4)
self.assertEqual(sosedov(0, 3, mine1), 1)
self.assertEqual(sosedov(4, 3, mine1), 0)
self.assertEqual(sosedov(4, 2, mine1), 0)
self.assertEqual(sosedov(0, 0, mine1), 1)
self.assertEqual(sosedov(7, 0, mine1), 1)
self.assertEqual(sosedov(3, 0, mine1), 0)
self.assertEqual(sosedov(2, 2, mine2), 0)
self.assertEqual(sosedov(0, 0, mine2), 0)
self.assertEqual(sosedov(0, 0, mine2), 0)
self.assertEqual(sosedov(0, 0, mine3), 0)
self.assertEqual(sosedov(2, 0, mine3), 1)
self.assertEqual(sosedov(3, 0, mine3), 0)
self.assertEqual(sosedov(8, 0, mine3), 2)
self.assertEqual(sosedov(0, 0, mine4), 0)
self.assertEqual(sosedov(0, 0, mine5), 0)
self.assertEqual(sosedov(0, 1, mine5), 1)
self.assertEqual(sosedov(0, 2, mine5), 1)
self.assertEqual(sosedov(0, 3, mine5), 0)
self.assertEqual(sosedov(0, 4, mine5), 2)
self.assertEqual(sosedov(0, 5, mine5), 0)
self.assertEqual(sosedov(0, 6, mine5), 1)
def test_02_najvec_sosedov(self):
self.assertEqual(najvec_sosedov(mine1, s1, v1), (2, 1))
x, y = najvec_sosedov(mine2, s2, v2)
self.assertTrue(0 <= x < s2)
self.assertTrue(0 <= y < v2)
self.assertEqual(najvec_sosedov(mine3, s3, v3), (8, 0))
self.assertEqual(najvec_sosedov(mine4, s4, v4), (0, 0))
self.assertEqual(najvec_sosedov(mine5, s5, v5), (0, 4))
def test_03_brez_sosedov(self):
self.assertEqual(brez_sosedov(mine1, s1, v1),
{(3, 0), (4, 2), (6, 1), (6, 3), (4, 3)})
self.assertEqual(brez_sosedov(mine2, s2, v2),
{(x, y) for x in range(s2) for y in range(v2)})
self.assertEqual(brez_sosedov(mine3, s3, v3),
{(x, 0) for x in (0, 1, 3, 5, 7, 9, 11, 12, 14)})
self.assertEqual(brez_sosedov(mine4, s4, v4), {(0, 0)})
self.assertEqual(brez_sosedov(mine5, s5, v5),
{(0, 0), (0, 3), (0, 5)})
def test_04_po_sosedih(self):
self.assertEqual(po_sosedih(mine1, s1, v1),
{0: {(3, 0), (4, 2), (6, 1), (6, 3), (4, 3)},
1: {(7, 3), (3, 2), (0, 0), (7, 0), (3, 3), (7, 1),
(4, 0), (6, 0), (5, 0), (5, 3), (5, 1), (1, 0),
(4, 1), (0, 3)},
2: {(0, 1), (1, 2), (1, 3), (0, 2), (3, 1), (2, 0),
(6, 2), (2, 3), (2, 2), (5, 2), (1, 1), (7, 2)},
3: set(),
4: {(2, 1)},
5: set(),
6: set(),
7: set(),
8: set()}
)
prazen = dict.fromkeys(range(9), set())
prazen[0] = {(x, y) for x in range(s2) for y in range(v2)}
self.assertEqual(po_sosedih(mine2, s2, v2), prazen)
s = dict.fromkeys(range(9), set())
s.update({0: {(9, 0), (0, 0), (7, 0), (12, 0), (3, 0), (11, 0),
(14, 0), (5, 0), (1, 0)},
1: {(15, 0), (6, 0), (2, 0), (10, 0), (13, 0), (4, 0)},
2: {(8, 0)}})
self.assertEqual(po_sosedih(mine3, s3, v3), s)
s = dict.fromkeys(range(9), set())
s.update({0: {(9, 0), (0, 0), (7, 0), (12, 0), (3, 0), (11, 0),
(14, 0), (5, 0), (1, 0)},
1: {(15, 0), (6, 0), (2, 0), (10, 0), (13, 0), (4, 0)},
2: {(8, 0)}})
self.assertEqual(po_sosedih(mine3, s3, v3), s)
s = dict.fromkeys(range(9), set())
s[0] = {(0, 0)}
self.assertEqual(po_sosedih(mine4, s4, v4), s)
s = dict.fromkeys(range(9), set())
s.update({0: {(0, 3), (0, 0), (0, 5)},
1: {(0, 1), (0, 6), (0, 2)},
2: {(0, 4)}})
self.assertEqual(po_sosedih(mine5, s5, v5), s)
class Test07(unittest.TestCase):
def test_01_dolzina_poti(self):
self.assertEqual(dolzina_poti([(7, 2), (7, 5)]), 3)
self.assertEqual(dolzina_poti([(7, 5), (7, 2)]), 3)
self.assertEqual(dolzina_poti([(7, 5), (4, 5)]), 3)
self.assertEqual(dolzina_poti([(1, 5), (4, 5)]), 3)
self.assertEqual(
dolzina_poti([(0, 0), (0, 3), (4, 3), (4, 2), (7, 2), (7, 3)]),
3 + 4 + 1 + 3 + 1)
self.assertEqual(
dolzina_poti([(0, 3), (4, 3), (4, 2), (7, 2), (7, 3)]),
4 + 1 + 3 + 1)
self.assertEqual(
dolzina_poti([(0, 0), (0, 1), (3, 1)]),
1 + 3)
self.assertEqual(dolzina_poti([(5, 3)]), 0)
self.assertEqual(dolzina_poti([]), 0)
"""
...X....
.X....X.
.XX.....
......X.
"""
def test_02_varen_premik(self):
self.assertTrue(varen_premik(3, 1, 3, 3, mine1))
self.assertTrue(varen_premik(3, 3, 3, 1, mine1))
self.assertTrue(varen_premik(4, 0, 7, 0, mine1))
self.assertTrue(varen_premik(7, 0, 4, 0, mine1))
self.assertTrue(varen_premik(2, 1, 5, 1, mine1))
self.assertTrue(varen_premik(5, 1, 2, 1, mine1))
self.assertFalse(varen_premik(2, 1, 6, 1, mine1))
self.assertFalse(varen_premik(6, 1, 2, 1, mine1))
self.assertFalse(varen_premik(1, 1, 5, 1, mine1))
self.assertFalse(varen_premik(5, 1, 1, 1, mine1))
self.assertFalse(varen_premik(0, 1, 4, 1, mine1))
self.assertFalse(varen_premik(4, 1, 0, 1, mine1))
self.assertFalse(varen_premik(2, 1, 2, 3, mine1))
self.assertFalse(varen_premik(2, 3, 2, 1, mine1))
self.assertFalse(varen_premik(2, 1, 2, 2, mine1))
self.assertFalse(varen_premik(2, 2, 2, 1, mine1))
self.assertFalse(varen_premik(2, 2, 2, 0, mine1))
self.assertFalse(varen_premik(2, 0, 2, 2, mine1))
self.assertFalse(varen_premik(1, 1, 1, 1, mine1))
"""
...X....
.X....X.
.XX.....
......X.
"""
def test_03_varna_pot(self):
self.assertTrue(varna_pot([(0, 0), (0, 3), (4, 3), (4, 2), (7, 2), (7, 3)], mine1))
self.assertTrue(varna_pot([(0, 3), (4, 3), (4, 2), (7, 2), (7, 3)], mine1))
self.assertTrue(varna_pot([(2, 1)], mine1))
self.assertTrue(varna_pot([], mine1))
self.assertFalse(varna_pot([(0, 0), (0, 1), (3, 1)], mine1))
self.assertFalse(varna_pot([(0, 0), (1, 0), (1, 3)], mine1))
self.assertFalse(varna_pot([(0, 0), (1, 0), (0, 0), (1, 0), (1, 3), (3, 3)], mine1))
self.assertFalse(varna_pot([(1, 1)], mine1))
class Test08(unittest.TestCase):
def test_01_polje_v_mine(self):
# Če si sledi več nizov, med katerimi ni ničesar, jih Python zlepi
# ".X. " "..X" je isto kot ".X. ...".
self.assertEqual(polje_v_mine("...X.... "
".X....X. "
".XX..... "
"......X."), (mine1, s1, v1))
self.assertEqual(polje_v_mine("........ "
"........ "
"........"), (mine2, s2, v2))
self.assertEqual(polje_v_mine("...X...X.X....X."), (mine3, s3, v3))
self.assertEqual(polje_v_mine("X"), (mine4, s4, v4))
self.assertEqual(polje_v_mine("X "
". "
". "
"X "
". "
"X "
"."), (mine5, s5, v5))
class Test10(unittest.TestCase):
def test_01_preberi_pot(self):
self.assertEqual(
preberi_pot(
"""DESNO
DESNO
3
LEVO
4
LEVO
1
DESNO
3
DESNO
1"""), [(0, 0), (0, 3), (4, 3), (4, 2), (7, 2), (7, 3)])
self.assertEqual(
preberi_pot(
"""DESNO
LEVO
DESNO
DESNO
DESNO
DESNO
DESNO
3"""), [(0, 0), (3, 0)])
self.assertEqual(
preberi_pot(
"""LEVO
DESNO
LEVO
LEVO
LEVO
LEVO
DESNO
3"""), [(0, 0), (3, 0)])
self.assertEqual(
preberi_pot(
"""LEVO
DESNO
LEVO
LEVO
LEVO
LEVO
DESNO
3"""), [(0, 0), (3, 0)])
self.assertEqual(
preberi_pot(
"""DESNO
3
DESNO
3
DESNO
3
DESNO
3"""), [(0, 0), (3, 0), (3, 3), (0, 3), (0, 0)])
self.assertEqual(
preberi_pot(
"""DESNO
1
DESNO
DESNO
1
LEVO
LEVO
1
DESNO
3
LEVO
2
DESNO
DESNO"""), [(0, 0), (1, 0), (0, 0), (1, 0), (1, 3), (3, 3)])
def test_02_zapisi_pot(self):
pot = [(0, 0), (3, 0)]
self.assertEqual(preberi_pot(zapisi_pot(pot)), pot)
pot = [(0, 0), (3, 0), (3, 3)]
self.assertEqual(preberi_pot(zapisi_pot(pot)), pot)
pot = [(0, 0), (3, 0), (3, 3), (3, 5), (5, 5), (5, 1), (4, 1), (6, 1), (6, 8), (6, 3)]
self.assertEqual(preberi_pot(zapisi_pot(pot)), pot)
pot = [(0, 0), (0, 3), (4, 3), (4, 2), (7, 2), (7, 3)]
self.assertEqual(preberi_pot(zapisi_pot(pot)), pot)
if __name__ == "__main__":
unittest.main()
| true
|
c727e054d5b7db8dd945123b246db97602866c81
|
Python
|
nwgdegitHub/python3_learning
|
/14-字符串的常用方法之修改.py
|
UTF-8
| 1,422
| 4.5
| 4
|
[] |
no_license
|
# str.replace(oldStr,newStr,count)
mystr = " my name is Liu Wei,My age is 30, My name is LW "
print(mystr.replace("name","name2",3))
print("split()分割 返回一个列表")
print(mystr.split("is",2)) #前2个生效
print("join()合并列表里面的元素为一个大字符串")
mylist = ["aa","bb","cc","dd"]
print("...".join(mylist))
print("title()将字符串每个单词的首字母转成大写")
print(mystr.title())
print("capitalize()将字符串首个单词的首字母转成大写")
print(mystr.capitalize())
print("lower()将字符串中大写转小写")
print(mystr.lower())
print("upper()将字符串中小写转大写")
print(mystr.upper())
print("lstrip()删除左侧空白字符")
print(mystr.lstrip())
print("rstrip()删除右侧空白字符")
print(mystr.rstrip())
print("strip()删除开头结尾空白字符")
print(mystr.strip())
print("str.ljust(length,char) 使左对齐 不够补齐")
print(mystr.ljust(60,"."))
print("str.rjust(length,char) 使右对齐 不够补齐")
print(mystr.rjust(60,"*"))
print("str.rjust(length,char) 使右对齐 不够补齐")
print(mystr.rjust(60,"*"))
print("str.center(length,char) 居中对齐 不够补齐 默认补齐空格")
print(mystr.center(60,"*"))
print(mystr.startswith(" my",0,100)) #在0~100范围内 是否以 my开头
print(mystr.endswith("my",0,100))
str2 = "123"
print(str2.isalpha())
print(str2.isdigit())
print(str2.isalnum())
| true
|
cb1ffd53ba14cf4a853b7b71224bba0e4e026474
|
Python
|
MikayelB/Learning_Python
|
/CS EX/sum_of_digits_with_function.py
|
UTF-8
| 207
| 3.8125
| 4
|
[] |
no_license
|
def SumOfDigits(N):
thesum = 0
while N != 0:
thesum += N % 10
N = N // 10
return thesum
def main():
N = int(input("Please input a number: "))
print(SumOfDigits(N))
main()
| true
|
9bcf814f1e593d4e58838c0931c6bc90d08971c8
|
Python
|
BootcampersCollective/Coders-Workshop
|
/Contributors/BryanYunis/solutions/graphTransitiveClosure.py
|
UTF-8
| 387
| 3.125
| 3
|
[
"MIT"
] |
permissive
|
def closure(graph):
n = len(graph)
reachable = [[0 for _ in range(n)] for _ in range(n)]
for i, v in enumerate(graph):
for neighbor in v:
reachable[i][neighbor] = 1
for k in range(n):
for i in range(n):
for j in range(n):
reachable[i][j] |= (reachable[i][k] and reachable[k][j])
return reachable
| true
|
86528946014eb7f031010fe56e2c31afcad9dfdb
|
Python
|
luckyaddress/Python
|
/12_most_use_module.py
|
UTF-8
| 2,845
| 3.734375
| 4
|
[] |
no_license
|
#-*- coding: utf-8 -*-
# 使用中文註解,要加上上面那一行的編碼
# os模組 可以 刪除檔案 建立目錄 更名和刪除目錄
import os
path = os.getcwd() # 取得現在工作目錄
print(path)
print(os.listdir(path)) # 取得路徑下的檔案 和 目錄清單
# os.mkdir("os_module_test") # 建立新目錄 如果目錄已存在,會出現目錄同名無法建立的錯誤
# os.rename("os_module_test", "omt") # 更名現有目錄
# os.rmdir("omt") # 刪除目錄
# 建立檔案 刪除檔案 因為建立後刪除 同時只能完成一個動作,否則刪除會通知找不到檔案
#file = open("aa.txt", "w")
#file.close()
#print("建立檔案:", os.listdir(path))
# 先建立,方能測試刪除
# os.remove("aa.txt")
# print("測試檔案", os.listdir(path))
# os.path模組:檢查檔案或目錄是否存在
files = (os.getcwd(), "loop_2.py")
for f in files:
print("該項目為 = " + str(f))
if os.path.exists(f):
print("檔案或目錄存在")
if os.path.isdir(f):
print("該檔案是目錄")
if os.path.isfile(f):
print("該檔案是檔案")
# 數學函數與亂數 import math 或者 random
import random
r1 = random.randint(1,20)
print(str(r1))
list1 = ["apple", "orange", "strawberry", "juice", "roasted-beef"]
r2 = random.choice(list1) # choice 在清單的資料型態中任意抽選一個
print(r2)
# Python時間模組 time模組顯示時間與日期 calendar模組顯示月曆資料
import time
time_1 = time.time()
print(time_1)
localtime = time.localtime(time_1)
print("Year", localtime[0], "Month", localtime[1])
# 年月日時分秒 分別為: localtime[0]-[5]
# calendar模組 顯示指定年份和月份資料(以月曆形式顯示)
import calendar
cal = calendar.month(2017,4)
print(cal)
# 精確表示浮點數 decimal模組
import decimal
decimal.getcontext().prec = 7 # 指定小數點精確度
print(decimal.Decimal(7.6) + decimal.Decimal(8.7))
# 正規運算式 re模組
import re
source_data = "my name is kao and email is ykk@gmail.com"
match_string = re.search(r"([\w.-]+)@([A-Za-z0-9_.-]+)", source_data)
# + 表示前面的字元可以被比較1次或多次
# + 要包在r後的""字串範圍內,否則連群組抓取都會無法正常使用
print(match_string.group())
# 群組抓取,上述的字串已經分割成群組
print(match_string.group(1))
print(match_string.group(2))
# re正規表達式的 findall()方法 --seacrh()只能找到一次,要找出所有符合的,要用findall()
source_data2 = "my name is kao and email is ykk@gmail.com, your name is wakaki and email is wakaki@gmail.com"
match_string2 = re.findall(r"([\w.-]+)@([A-Za-z0-9_.-]+)", source_data2)
print(match_string2) # 會變成一個二維的list
print(match_string2[0][0])
print(match_string2[0][1])
print(match_string2[1][0])
print(match_string2[1][1])
| true
|
4f94d8afa3d64b2129fa0ebcdbfbe01a01224f47
|
Python
|
Aasthaengg/IBMdataset
|
/Python_codes/p03288/s807151610.py
|
UTF-8
| 417
| 2.828125
| 3
|
[] |
no_license
|
def main():
from sys import stdin, setrecursionlimit
setrecursionlimit(10**6)
r = stdin.readline()[:-1]
#n = int(stdin.readline()[:-1])
#r = [stdin.readline() for i in range(n)]
#t = [int(stdin.readline()) for i in range(n)]
r = int(r)
if r < 1200:
print('ABC')
elif r < 2800:
print('ARC')
else:
print('AGC')
if __name__ == '__main__':
main()
| true
|
1c94dfe35fcf138fa1f98c42d96771b7d6a262ee
|
Python
|
savfod/d16
|
/mfesyuk/treug_serp.py
|
UTF-8
| 639
| 3.171875
| 3
|
[] |
no_license
|
import turtle
turtle.speed("fastest")
def draw_levi(d, length):
if d == 0:
turtle.left(60)
turtle.forward(length)
turtle.right(120)
turtle.forward(length)
turtle.right(120)
turtle.forward(length)
else:
turtle.left(60)
turtle.forward(length / 2)
turtle.right(120)
turtle.forward(length / 2)
turtle.left(120)
turtle.forward(length / 2)
turtle.left(120)
turtle.forward(length / 2)
turtle.right(120)
turtle.forward(length / 2)
turtle.right(120)
turtle.forward(length / 2)
turtle.forward(length / 2)
turtle.right(120)
turtle.forward(length / 2)
turtle.forward(length / 2)
draw_levi(4, 200)
input()
| true
|
97891293e640c04a7995decf972974350d38bfa3
|
Python
|
Data-Analytic-Research-Insight/kerastuner-tensorboard-logger
|
/kerastuner_tensorboard_logger/logger.py
|
UTF-8
| 3,195
| 2.6875
| 3
|
[
"MIT"
] |
permissive
|
import os
from typing import Any, Dict, Generator, List, Tuple, Union
from datetime import timedelta, datetime
import tensorflow as tf
from kerastuner.engine.logger import Logger
from tensorboard.plugins.hparams import api as hp_board
def timedelta_to_hms(timedelta: timedelta) -> str:
"""(Deprecated) convert datetime.timedelta to string like '01h:15m:30s'"""
tot_seconds = int(timedelta.total_seconds())
hours = tot_seconds // 3600
minutes = (tot_seconds % 3600) // 60
seconds = tot_seconds % 60
return f"{hours}h{minutes}m{seconds}s"
class TensorBoardLogger(Logger):
"""tensorboard.plugins.hparams logger class.
Create logger instance for tuner instance that inherit kerastuner.engine.base_tuner.BaseTuner.
# Arguments:
metrics: String or list of String, reports values for Tensorboard.
logdir: String. Path to the log directory (relative) to be accessed by Tensorboard.
overwrite: Bool, default `False`. If `False`, reloads an existing log directory
of the same name if one is found. Otherwise, overwrites the log.
"""
def __init__(
self,
metrics: Union[str, List[str]] = ["acc"],
logdir: str = "logs/",
overwrite: bool = False,
):
self.metrics = [metrics] if isinstance(metrics, str) else metrics
self.logdir = logdir
self.times: Dict[str, datetime] = dict()
if overwrite and tf.io.gfile.exists(self.logdir):
tf.io.gfile.rmtree(self.logdir)
def register_tuner(self, tuner_state):
"""Informs the logger that a new search is starting."""
pass
def register_trial(self, trial_id: str, trial_state: Dict[str, Any]):
"""Informs the logger that a new Trial is starting."""
pass
def report_trial_state(self, trial_id: str, trial_state: Dict[str, Any]):
"""Gives the logger information about trial status."""
logdir = os.path.join(self.logdir, trial_id, "hparams")
with tf.summary.create_file_writer(logdir).as_default():
hparams = self.parse_hparams(trial_state)
hp_board.hparams(
hparams, trial_id=trial_id
) # record the values used in this trial
for target_metric, metric in self.parse_metrics(trial_state):
tf.summary.scalar(target_metric, metric, step=1)
def exit(self):
pass
def parse_hparams(self, trial_state: Dict[str, Any]) -> Dict[str, Any]:
"""use in tf.summary writer context"""
hparams = trial_state.get("hyperparameters", {}).get("values", {})
return hparams
def parse_metrics(
self, trial_state: Dict[str, Any]
) -> Generator[Tuple[str, Union[int, float]], None, None]:
"""use in tf.summary writer context"""
metrics = trial_state.get("metrics", {}).get("metrics", {})
for target_metric in self.metrics:
metric = metrics.get(target_metric)
if metric is None:
continue
metric = metric.get("observations", [{}])[0].get("value")
if metric is None:
continue
yield target_metric, metric[0]
| true
|
5dbb07fe8192e057d6540082c52c0501cf1826a5
|
Python
|
ZHAW-SPDR/SPDR
|
/experiments/sequencer/experiment2_plot.py
|
UTF-8
| 4,975
| 2.53125
| 3
|
[] |
no_license
|
import pickle
import os
import sys
import random
import numpy as np
from scipy.spatial.distance import pdist
from scipy.interpolate import *
import matplotlib.pyplot as plt
import math
np.random.seed(1337)
random.seed(1337)
SCALE_NOTSAME = False
SCALE_SAME = True
PICKLEFOLDER = 'data/pickles/'
#PICKLE_NAME_STEM = 'TIMIT_R1_'
#PICKLE_NAME_STEM = 'RT09_EDI_17_PHRASES_4_SPEAKERS_TIMIT_LSTM_01_'
PICKLE_NAME_STEM = 'RT09_EDI_17_PHRASES_4_SPEAKERS_VOXCELEB_LSTM_01_'
DSPICKLE = PICKLE_NAME_STEM+'dataset.pkl'
PAIRPICKLE = PICKLE_NAME_STEM+'prodpairs.pkl'
DIST_MET = 'cosine'
dataset_pickle = os.path.join(PICKLEFOLDER, DSPICKLE)
with open(dataset_pickle, 'rb') as pFile:
dataset = pickle.load(pFile)
#tmp_data = list([x for x in dataset[::12]])
tmp_data = list([x for x in dataset[::]])
random.shuffle(tmp_data)
dataset = tmp_data
pair_pickle = os.path.join(PICKLEFOLDER, PAIRPICKLE)
if not os.path.isfile(pair_pickle):
data = [(x, y) for x in dataset[:int(len(dataset)/2)] for y in dataset[int(len(dataset)/2):]] # join every item with every item
with open(pair_pickle, 'wb') as pFile:
pickle.dump(data, pFile)
else:
with open(pair_pickle, 'rb') as pFile:
data = pickle.load(pFile)
X = []
Y = []
for (ds0, ds1) in data:
same_speaker = 1 if ds0[1] == ds1[1] else 0
if np.random.randint(low=0, high=8) == 1 or same_speaker == 1:
X.append(pdist([ds0[0], ds1[0]], metric=DIST_MET))
Y.append(same_speaker)
print('0:', Y.count(0), Y.count(0)/len(Y))
print('1:', Y.count(1), Y.count(1)/len(Y))
print('Max:', max(X))
print('Min:', min(X))
zeros = [i for i, x in enumerate(Y) if x == 0]
if SCALE_NOTSAME:
zeros = list([x for x in zeros[::15]])
else:
zeros = list([x for x in zeros[::]])
ones = [i for i, x in enumerate(Y) if x == 1]
if SCALE_SAME:
ones = list([x for x in ones[::5]])
else:
ones = list([x for x in ones[::]])
print('0:', len(zeros))
print('1:', len(ones))
dzeros = np.array(X)[zeros]
dones = np.array(X)[ones]
data = [dzeros, dones]
print('Max 0:', max(dzeros))
print('Min 0:', min(dzeros))
print('Max 1:', max(dones))
print('Min 1:', min(dones))
plt.figure(figsize=(9,6))
plt.scatter(len(dzeros) * [0], dzeros, marker='.', label='Not same')
plt.scatter(len(dones) * [1], dones, marker='.', label='Same')
plt.xlim(-0.5,1.5)
plt.ylim(0,1.5)
plt.title('Distances')
plt.ylabel('Distance')
plt.legend()
plt.savefig("./data/plots/experiment2_cutoff/%s%s_cutoff_distance.png" % (PICKLE_NAME_STEM, DIST_MET))
plt.close()
plt.figure(figsize=(9,6))
plt.boxplot(data, labels=['Not same', 'Same'])
plt.ylabel('Distance')
plt.title('Distances Box Plot')
plt.ylim(0,1.5)
plt.savefig("./data/plots/experiment2_cutoff/%s%s_cutoff_distance_boxplot.png" % (PICKLE_NAME_STEM, DIST_MET))
plt.close()
plt.figure(figsize=(9,6))
plt.title('Distribution')
unique_zeros, counts_zeros = np.unique([round(x[0],2) for x in data[0]], return_counts=True)
unique_ones, counts_ones = np.unique([round(x[0],2) for x in data[1]], return_counts=True)
plt.fill_between(unique_zeros, counts_zeros, color='b', alpha=.5, interpolate=False)
plt.fill_between(unique_ones, counts_ones, color='g', alpha=.5, interpolate=False)
plt.legend(['Not same', 'Same'])
plt.xlabel('Distance')
plt.ylabel('Count')
plt.xticks(np.linspace(0,1,21))
plt.xlim(0,1)
plt.ylim(0,max(max(counts_zeros), max(counts_ones)))
plt.savefig("./data/plots/experiment2_cutoff/%s%s_cutoff_distribution.png" % (PICKLE_NAME_STEM, DIST_MET))
plt.close()
plt.figure(figsize=(9,6))
xs = np.linspace(0,1,300)
poly_deg = 10
coefs_zeros = np.polyfit(unique_zeros, counts_zeros, poly_deg)
coefs_ones = np.polyfit(unique_ones, counts_ones, poly_deg)
ys_zeros = np.polyval(coefs_zeros, xs)
ys_ones = np.polyval(coefs_ones, xs)
# fix poly problems
neg_zeros = 0 if [i for i,x in enumerate(ys_zeros) if x<0] == [] else [i for i,x in enumerate(ys_zeros) if x<0][0]
neg_ones = 0 if [i for i,x in enumerate(ys_ones) if x<0] == [] else [i for i,x in enumerate(ys_ones) if x<0][0]
ys_zeros = [0 if i <= neg_zeros else x for i, x in enumerate(ys_zeros)]
ys_ones = [0 if i <= neg_ones else x for i, x in enumerate(ys_ones)]
plt.fill_between(xs, ys_zeros, color='r', alpha=.5, interpolate=False)
plt.fill_between(xs, ys_ones, color='y', alpha=.5, interpolate=False)
plt.legend(['Not same', 'Same'])
plt.xlabel('Distance')
plt.title('Distribution Smoothed')
plt.xticks(np.linspace(0,1,21))
plt.ylabel('Count')
plt.xlim(0,1)
plt.ylim(0,max(max(counts_zeros), max(counts_ones)))
plt.savefig("./data/plots/experiment2_cutoff/%s%s_cutoff_distribution_smoothed.png" % (PICKLE_NAME_STEM, DIST_MET))
plt.close()
| true
|
3e98c37d0acaee7bb5d08373e15e249d36573710
|
Python
|
hsydw/python
|
/초보자를 위한 파이썬 200제/084.py
|
UTF-8
| 250
| 3.5
| 4
|
[] |
no_license
|
str1 = 'hello'
str2 = '12345'
str3 = 'hi123'
str4 = '안녕'
str5 = '안녕!'
res1 = str1.isalpha()
res2 = str2.isalpha()
res3 = str3.isalpha()
res4 = str4.isalpha()
res5 = str5.isalpha()
print(res1)
print(res2)
print(res3)
print(res4)
print(res5)
| true
|
c3c4e24128a8239a8d679d52c8753dbcfb476c6f
|
Python
|
ckane/CS6065-Cloud-BigTableDemo
|
/tbl_demo.py
|
UTF-8
| 1,500
| 3.453125
| 3
|
[] |
no_license
|
#!/usr/bin/python3
import sys
big_table = {} # The data store
col_names = ['row-id'] # An index of all column names
# Start with a fixed column named row-id:
print("Enter row-id, or just hit ENTER to stop adding data: ")
while True:
input_data = sys.stdin.readline().strip()
if len(input_data) == 0:
print("Nothing entered, ending data entry loop")
break
# Create a new row object, that's a dictionary, with one entry for
# mandatory row-id
row = {'row-id': input_data}
print("Enter column name (just press ENTER to end row data entry): ")
while True:
# Get another input record
colname = sys.stdin.readline().strip()
if len(colname) == 0:
print("Completed row '{0}'".format(row['row-id']))
big_table[row['row-id']] = row
break
print("Enter column value (just press ENTER for no value): ")
input_data = sys.stdin.readline().strip()
if len(input_data) > 0:
row[colname] = input_data
if colname not in col_names:
col_names.append(colname)
print("Enter column name (just press ENTER to end row data entry): ")
print("Enter row-id, or just hit ENTER to stop adding data: ")
print(big_table)
print("\n" + '\t'.join(col_names))
for r in big_table:
s = ''
for c in col_names:
if c in big_table[r]:
s = s + big_table[r][c] + '\t'
else:
s = s + '\t'
print(s)
| true
|
d5ae08821aea0454b352c3f5a13ed1bb729c1caa
|
Python
|
nithyaradha/Python_Project
|
/Assignment_4.py
|
UTF-8
| 10,291
| 3.828125
| 4
|
[] |
no_license
|
import math as m1
import time as t1
# Q(1): A Robot moves in a Plane starting from the origin point (0,0). The robot can move toward UP, DOWN, LEFT, RIGHT
# Q(2): program for searching specific data from that list.
def selection_sort(a_list):
for i in range(len(a_list)):
least = i
for k in range(i + 1, len(a_list)):
if a_list[k] < a_list[least]:
least = k
swap(a_list, least, i)
def swap(a, x, y):
temp = a[x]
a[x] = a[y]
a[y] = temp
my_list = [5.76, 4.7, 25.3, 4.6, 32.4, 55.3, 52.3, 7.6, 7.3, 86.7, 43.5]
print("\n\nQ(2):\nGiven List : ", my_list)
selection_sort(my_list)
print("Sorted List : ", my_list)
# Q(3): program for such organization to find whether is it dark outside or not.
def weather_update(localtime):
if 6 < localtime < 20:
print("It's Day OutSide")
return
else:
print("It's Dark Outside")
return
local_time = t1.localtime().tm_hour
print("\n\nQ(3): \nCurrent Time : %d:%d" % (t1.localtime().tm_hour, t1.localtime().tm_min))
weather_update(local_time)
# Q(4): program to find distance between two locations when their latitude and longitudes are given.
def distance_calculator(lat1, lon1, lat2, lon2):
p = 0.017453292519943295
cal = 0.5 - m1.cos((lat2 - lat1) * p) / 2 + m1.cos(lat1 * p) * m1.cos(lat2 * p) * (
1 - m1.cos((lon2 - lon1) * p)) / 2
earth_radius = 6371
radius = earth_radius * 2
distance = round(radius * m1.asin(m1.sqrt(cal)), 2)
return distance
lat_1 = 13.6
lon_1 = 15.6
lat_2 = 14.5
lon_2 = 17.3
print("\n\nQ(4):\nGiven Values For Distance\nLatitude 1 : %d\nLongitude 1 : %d\nLatitude 2 : %d\nLongitude 2 : %d" % (
lat_1, lon_1, lat_2, lon_2))
print("\nDistance Between Locations : %d km" % distance_calculator(lat_1, lon_1, lat_2, lon_2))
# Q(5): Bank system. with Options: cash withdraw, cash deposit, change password. with user Input
print("\n\nQ(5):\n")
account_name = ""
deposit_amount = 0
created_password = ""
def banking():
print("------------Apna Bank------------")
print("Enter 0 For Create Account")
print("Enter 1 For Cash Withdrawal")
print("Enter 2 For Cash Deposit")
print("Enter 3 For Change Password")
print("Enter 4 For Account Information")
print("Enter 5-9 For Banking Logout")
print("---------------------------------")
inp = int(input("\nEnter Your Option -: "))
print("\n")
if inp == 0:
create_account()
return
elif inp == 1:
cash_withdraw()
return
elif inp == 2:
cash_credit()
return
elif inp == 3:
change_password()
return
elif inp == 4:
account_information()
return
else:
print("Logout From Banking")
return
def create_account():
print("---------Create Account---------")
acc_name = input("Enter Your Name : ")
dep_amt = int(input("Enter Deposit Amount : "))
pass_word = input("Enter Your Password : ")
global account_name, deposit_amount, created_password
account_name = acc_name
deposit_amount = dep_amt
created_password = pass_word
print("\nAccount Created Successfully\n")
print("---------------------------------")
return banking()
def cash_withdraw():
print("---------Cash Withdrawal---------")
with_amt = int(input("Enter Withdrawal Amount : "))
global deposit_amount
if with_amt < deposit_amount:
deposit_amount = deposit_amount - with_amt
print("\nCash Withdrawal Successfully\n")
print("Current Balance is : %d\n" % deposit_amount)
else:
print("\nInsufficient Account Balance\n")
print("---------------------------------")
return banking()
def cash_credit():
print("---------Cash Deposit---------")
dep_amt = int(input("Enter Deposit Amount : "))
global deposit_amount
deposit_amount = deposit_amount + dep_amt
print("\nCash Deposit Successfully\n")
print("Current Balance is : %d\n" % deposit_amount)
print("-------------------------------")
return banking()
def change_password():
print("---------Change Password---------")
global created_password
chge_pass = input("Enter Old Password : ")
if created_password == chge_pass:
new_pass = input("Enter New Password : ")
created_password = new_pass
print("\nPassword Changed Successfully\n")
else:
print("\nWrong Password Try Again\n")
print("----------------------------------")
return banking()
def account_information():
print("---------Account Information---------")
global created_password, deposit_amount, account_name
print("\nAccount Name : %s\nAccount Balance : %d\nAccount Password: %s\n" % (
account_name, deposit_amount, created_password))
print("-------------------------------------")
return banking()
banking()
# Q(6): Divisible by 7 but are not a multiple of 5, between 2000 and 3200 in a comma-separated on a single line.
print("\n\nQ(6):\n")
inline = []
for x in range(2000, 3201):
if (x % 7) == 0:
y = x / 5.0
if (y % 5) != 0:
inline.append(str(x))
print(",".join(inline))
# Q(7): compute the factorial of a given numbers. Use recursion to find it.
print("\n\nQ(7):\n")
def recursion_factorial(number):
if number == 1:
return number
else:
return number * recursion_factorial(number - 1)
number_input = int(input("Enter a Number For Factorial : "))
print("The Factorial of %d is : %d" % (number_input, recursion_factorial(number_input)))
# Q(8): calculates and prints the value according to the given formula: Q = Square root of [(2 * C * D)/H]
print("\n\nQ(8):\n")
def square_root(i1, i2, i3):
c = 50
h = 30
arg = [i1, i2, i3]
out = []
for x1 in range(3):
formula = (2 * c * arg[x1]) / h
sqr_root = m1.sqrt(formula)
output = int(sqr_root)
out.append(output)
print("Given Values for Square Roots : %d,%d,%d" % (arg[0], arg[1], arg[2]))
print("Square Roots of Given Values : %d,%d,%d" % (out[0], out[1], out[2]))
return
na = []
number_input = input("Enter 3 Numbers with Comma For Square Root : ")
spl_val = number_input.split(",")
for xv in spl_val:
gv = int(xv)
na.append(gv)
square_root(na[0], na[1], na[2])
# Q(9): calculates and prints the value according to the given formula: Q = Square root of [(2 * C * D)/H]
print("\n\nQ(9):\n")
def array_dimensional(r, c):
array_1 = [[i * j for j in range(c)] for i in range(r)]
return array_1
row = int(input("Enter Rows Numbers : "))
col = int(input("Enter Column Numbers : "))
print(array_dimensional(row, col))
# Q(10): comma separated sequence of words, comma-separated sequence after sorting them alphabetically
print("\n\nQ(10):\n")
words_list = input("Enter Words, Comma Separated : ")
words_list = words_list.split(",")
words_list = sorted(words_list)
print(",".join(words_list))
# Q(11): sequence of lines as input and prints the lines after all characters in the sentence capitalized.
print("\n\nQ(11):\n")
input_lines = []
print("Enter Words Sequence : ")
while True:
words_input = input("-: ")
if not words_input:
break
input_lines.append(words_input.upper())
for x in input_lines:
print(x)
# Q(12): Remove all duplicate words and sort them alphanumerically.
print("\n\nQ(12):\n")
words_seq = input("Words Separated By WhiteSpace : ")
seq_split = words_seq.split(' ')
words_set = set(seq_split)
seq_wd = ' '.join(sorted(words_set))
print("Removed Duplicate Words,Sorted : ", seq_wd)
print("Given Paragraph : ", words_seq)
# Q(13): sequence of comma separated 4 digit binary no. and check they are divisible by 5 or not
print("\n\nQ(13):\n")
def binary_conversion(binary_val):
out_binary = []
bin_val = binary_val.split(",")
num_val = [x1 for x1 in bin_val]
for p in num_val:
x1 = int(p, 2)
if not x1 % 5:
out_binary.append(p)
out_put = ','.join(out_binary)
return out_put
inp_val = input("Enter 4 Digit Binary Values Comma Separated : ")
print("Divisible By 5 or Not, Printing in Binary Number : ", binary_conversion(inp_val))
# Q(14): program that accepts a sentence and calculate the number of upper case letters and lower case letters
print("\n\nQ(14):\n")
def string_test(string_val):
d = {"UPPER_CASE": 0, "LOWER_CASE": 0}
for val in string_val:
if val.isupper():
d["UPPER_CASE"] += 1
elif val.islower():
d["LOWER_CASE"] += 1
else:
pass
print("Given String : ", string_val)
print("Uppercase Alphabets : ", d["UPPER_CASE"])
print("Lowercase Alphabets : ", d["LOWER_CASE"])
string_test(input("String Lower & Upper Case Count : "))
# Q(15): Examples of Fsum and Sum
print("\n\nQ(15):\n")
set_list = {1, 2, 3, 1.2} # set
dict_list = {1: 1.2, 2: 2.1, 3: .1} # dictionary
tuple_list = (1, 2, 3.0) # tuple
list_list = [1, 0.2, 3] # list
frozenset_list = frozenset([2, 1.3, 4]) # frozenset
print("------------Fsum Examples For Python Data types-------------")
print(" Fsum of Sets...... || ", m1.fsum(set_list), " || Data Type ||", type(set_list))
print(" Fsum of Dictionary || ", m1.fsum(dict_list.values()), " || Data Type ||", type(dict_list))
print(" Fsum of Tuples.... || ", m1.fsum(tuple_list), " || Data Type ||", type(tuple_list))
print(" Fsum of List...... || ", m1.fsum(list_list), " || Data Type ||", type(list_list))
print(" Fsum of FrozenSets || ", m1.fsum(frozenset_list), " || Data Type ||", type(frozenset_list))
print("------------------------------------------------------------")
print("------------Sum Examples For Python Data types-------------")
print(" Sum of Sets...... || ", sum(set_list), " || Data Type ||", type(set_list))
print(" Sum of Dictionary || ", sum(dict_list.values()), " || Data Type ||", type(dict_list))
print(" Sum of Tuples.... || ", sum(tuple_list), " || Data Type ||", type(tuple_list))
print(" Sum of List...... || ", sum(list_list), " || Data Type ||", type(list_list))
print(" Sum of FrozenSets || ", sum(frozenset_list), " || Data Type ||", type(frozenset_list))
print("-----------------------------------------------------------")
| true
|
4d94ceaafeb15f6fba52a155dd90518ca63f377d
|
Python
|
tashakim/puzzles_python
|
/prodExceptSelf.py
|
UTF-8
| 1,050
| 3.25
| 3
|
[] |
no_license
|
class Solution:
def productExceptSelf(self, nums: List[int]) -> List[int]:
# two-pass
# one-pass using division (division by zero)
# left_product * right_product
left, right = [1], []
left_prod = 1
for i in range(1, len(nums)):
left_prod *= nums[i-1]
left.append(left_prod)
right_prod = 1
for i in reversed(range(len(nums)-1)):
right_prod *= nums[i+1]
right.append(right_prod)
right.reverse()
right.append(1)
res = [0] * len(left)
for i in range(len(left)):
res[i] = left[i] * right[i]
return res
def productExceptSelf(self, nums: List[int]) -> List[int]:
n = len(nums)
res = [0] * n
res[0] = 1
for i in range(1, n):
res[i] = nums[i-1] * res[i-1]
R = 1
for i in reversed(range(n)):
res[i] *= R
R *= nums[i]
return res
| true
|
346dd2fe2cf03233e8a1b4508e0e42e12901c0f3
|
Python
|
radomirbrkovic/algorithms
|
/matrices/shift-matrix-elements-k.py
|
UTF-8
| 624
| 4.5
| 4
|
[] |
no_license
|
# Shift matrix elements row-wise by k https://www.geeksforgeeks.org/shift-matrix-elements-k/
def shiftMatrixByK(matrix, k):
n = len(matrix)
if k > n:
print("Shifting is not possible")
return
j = 0
while j < n:
for i in range(k,n):
print("{}". format(matrix[j][i]), end=" ")
for i in range(0, k):
print ("{} " .
format(matrix[j][i]), end=" ")
print ("")
j = j + 1
mat = [[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16]]
k = 2
# Function call
shiftMatrixByK(mat, k)
| true
|
71682a991f8347986a375e53572f52238bc10358
|
Python
|
asyrul21/recode-beginner-python
|
/materials/week-2/src/solveTogether.py
|
UTF-8
| 480
| 4.40625
| 4
|
[] |
no_license
|
print("I am in the correct directory!")
# 1. Calculate area of triangle
# area of triangle = (width * height) / 2
width = 5
height = 25
areaOfTriangle = (width * height) / 2
print("The area of the triangle is: " + str(areaOfTriangle))
# 2. Calculate the volume of cone
# formula: pi * radius * radius * (height/3)
# pi : 3.14159
pi = 3.14159
radius = 5
height = 12
volumeOfCone = pi * radius * radius * (height / 3)
print("The volume of the cone is: " + str(volumeOfCone))
| true
|
66195d6ee608ef9ace220246951911405d86a2f5
|
Python
|
morozzArt/news_classificator
|
/test.py
|
UTF-8
| 1,709
| 2.9375
| 3
|
[] |
no_license
|
import math
from common_line import convert
themes = ('science', 'style', 'culture', 'life', 'economics', 'business', 'travel', 'forces', 'media', 'sport')
def key_of_max(d):
v = list(d.values())
k = list(d.keys())
return k[v.index(max(v))]
def sum_theme(themes):
sum = 0
for key, value in themes.items():
sum = sum + value
return sum
def classification(artical, dict_word, dict_theme_count, dict_theme_word):
servive_word = ['без', 'в', 'до', 'для', 'за', 'из', 'к', 'над', 'о', 'об', 'под', 'пред', 'с', 'у', 'пред', 'про',
'от', 'на', 'и', 'или', 'но', 'без', 'во', 'по', 'со']
line = convert(artical)
d = sum_theme(dict_theme_count)
dc = 0
v = len(dict_word)
probability = {}
word_list = line.split()
for i in themes:
dc = dict_theme_count[i]
res = 0
for word in word_list:
if word in servive_word:
continue
if word in dict_word.keys():
wic = dict_word[word][i]
else:
wic = 0
res = res + math.log((wic + 1) / (v + dict_theme_word[i]))
result = res + math.log(dc/d)
probability.update({i: result})
return key_of_max(probability)
def testing(tuple_from_train):
dict_words = tuple_from_train[0]
dict_theme_count = tuple_from_train[1]
dict_theme_word = tuple_from_train[2]
out = open('out.txt', 'w')
with open('news_test.txt') as file_for_text:
for line in file_for_text:
them = classification(line, dict_words, dict_theme_count, dict_theme_word)
out.write(them + '\n')
| true
|
dffa024c19ead68de2a85fdf38b0145c1de304f4
|
Python
|
monorio/stweet
|
/stweet/mapper/user_dict_mapper.py
|
UTF-8
| 1,722
| 2.75
| 3
|
[
"MIT"
] |
permissive
|
"""User - dict mapper."""
from copy import copy
from typing import Dict
from arrow import get as arrow_get
from .util import simple_string_list_to_string, string_to_simple_string_list
from ..model import User
def user_to_flat_dict(self):
"""Method to prepare flat dict of tweet. Used in CSV serialization."""
dictionary = dict(self.__dict__)
dictionary['pinned_tweet_ids_str'] = simple_string_list_to_string(dictionary['pinned_tweet_ids_str'])
return dictionary
def create_user_from_dict(dictionary: Dict[str, any]):
"""Method to create Tweet from dictionary."""
return User(
arrow_get(dictionary['created_at']),
str(dictionary['id_str']),
str(dictionary['rest_id_str']),
dictionary['default_profile'],
dictionary['default_profile_image'],
dictionary['description'],
dictionary['favourites_count'],
dictionary['followers_count'],
dictionary['friends_count'],
dictionary['has_custom_timelines'],
dictionary['listed_count'],
dictionary['location'],
dictionary['media_count'],
dictionary['name'],
dictionary['pinned_tweet_ids_str'],
dictionary['profile_banner_url'],
dictionary['profile_image_url_https'],
dictionary['protected'],
dictionary['screen_name'],
dictionary['statuses_count'],
dictionary['verified']
)
def create_user_from_flat_dict(dictionary: Dict[str, any]) -> User:
"""Method to create Tweet from flat dictionary."""
dictionary = copy(dictionary)
dictionary['pinned_tweet_ids_str'] = string_to_simple_string_list(dictionary['pinned_tweet_ids_str'])
return create_user_from_dict(dictionary)
| true
|
12d7388b4d744b805ddadb1297a7909a79794b6c
|
Python
|
Cooper-Grumman/mathematical_curves
|
/epi_circle.py
|
UTF-8
| 1,285
| 3.09375
| 3
|
[] |
no_license
|
"""
epi-cycle
"""
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation
theta_array = np.linspace(0, 2 * np.pi, 1000)
def circle(x0, y0, r):
return (r * np.cos(theta_array) + x0,
r * np.sin(theta_array) + y0)
fig = plt.figure()
fig.set_size_inches(12, 12, True)
ax = plt.axes(xlim=(-3, 6), ylim=(-3, 3))
ax.set_aspect('equal', 'datalim')
Lines = [ax.plot([], [])[0] for _ in range(10)]
Lines.append(ax.plot([], [], color='black')[0]) # trace line
TraceLineData = [[], []]
def update(frame_count=0):
x_0 = 0
y_0 = 0
radius = 1
radius_factor = 0.75
for i in range(0, 10):
circle_xy = circle(x_0, y_0, radius)
Lines[i].set_data(*circle_xy)
#plt.plot(*np.copy(circle_xy))
next_frame = int(frame_count * 2 * i % 1000)
x_0, y_0 = circle_xy[0][next_frame], circle_xy[1][next_frame]
if i == 9:
TraceLineData[0].append(x_0)
TraceLineData[1].append(y_0)
Lines[i + 1].set_data(*TraceLineData)
radius *= radius_factor
return Lines
anim = animation.FuncAnimation(fig, update, init_func=update,
frames=999, interval=20, blit=True)
#anim.save('basic_animation.mp4', fps=60, dpi=100)
plt.show()
| true
|
9300599e33dd187ecf74146243fe43734d05e373
|
Python
|
qian99/acm
|
/test.py
|
UTF-8
| 538
| 2.515625
| 3
|
[] |
no_license
|
import os
import sys
def Run(Path, oldtype, newtype):
allFile = os.listdir(Path)
for file_name in allFile:
currentdir = os.path.join(Path, file_name)
if os.path.isdir(currentdir):
Run(currentdir, oldtype, newtype)
fname = os.path.splitext(file_name)[0]
ftype = os.path.splitext(file_name)[1]
if oldtype in ftype[1:]:
#typecount[0] += 1
ftype = ftype.replace(oldtype, newtype)
newname = os.path.join(Path, fname + ftype)
os.rename(currentdir, newname)
#print newname
Run(".","txt", "cpp")
| true
|
46bd4d6ea8af8706dd2edee0a6f1080ab7a737cc
|
Python
|
Jorza/python-useful-codes
|
/number_suffix.py
|
UTF-8
| 401
| 3.640625
| 4
|
[] |
no_license
|
def number_suffix(number):
number = str(round(number))
ones_digit = str(number)[-1]
tens_digit = str(number)[-2]
if tens_digit == '1':
suffix = 'th'
elif ones_digit == '1':
suffix = 'st'
elif ones_digit == '2':
suffix = 'nd'
elif ones_digit == '3':
suffix = 'rd'
else:
suffix = 'th'
return number + suffix
| true
|
bfe8c346de3e5dc7967c4efae38314c7b3ccf263
|
Python
|
oscarcheng105/PAS_Python
|
/Calculator_Oscar.py
|
UTF-8
| 5,445
| 2.96875
| 3
|
[] |
no_license
|
from tkinter import *
import math
cal = Tk()
cal.title("Calculator")
operator = ""
text_Input = StringVar()
def btnClick(numbers):
global operator
operator = operator + str(numbers)
text_Input.set(operator)
def btnClearDisplay():
global operator
operator=""
text_Input.set("")
def allclear():
global operator
global store
operator = ""
store = ""
text_Input.set(operator)
def delete():
global operator
operator = operator[:len(operator)-1]
text_Input.set(operator)
def btnEqualsInput():
global operator
sumup = str(eval(operator))
operator = sumup
text_Input.set(operator)
def btnSquareroot():
global operator
operator = str(math.sqrt(eval(operator)))
text_Input.set(operator)
def percentage():
global operator
operator = str(eval(operator+"/100"))
text_Input.set(operator)
def recall():
global operator
global store
operator = operator + store
text_Input.set(operator)
def storeup():
global operator
global store
store = operator
def unstore():
global store
store = ""
def PositiveNegative():
global operator
operator = str(eval("-"+str(eval(operator))))
text_Input.set(operator)
txtDisplay = Entry(cal,font=('arial',20,'bold'), textvariable = text_Input,
bd=1, insertwidth=5, bg="white",
justify="right").grid(columnspan=5)
#Numbers
btn1=Button(cal,padx=25,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='1',bg="white",command=lambda:btnClick(1)).grid(row=4,column=1)
btn2=Button(cal,padx=25,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='2', bg="white",command=lambda:btnClick(2)).grid(row=4,column=2)
btn3=Button(cal,padx=25,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='3', bg="white",command=lambda:btnClick(3)).grid(row=4,column=3)
btn4=Button(cal,padx=25,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='4', bg="white",command=lambda:btnClick(4)).grid(row=3,column=1)
btn5=Button(cal,padx=25,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='5', bg="white",command=lambda:btnClick(5)).grid(row=3,column=2)
btn6=Button(cal,padx=25,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='6', bg="white",command=lambda:btnClick(6)).grid(row=3,column=3)
btn7=Button(cal,padx=25,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='7', bg="white",command=lambda:btnClick(7)).grid(row=2,column=1)
btn8=Button(cal,padx=25,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='8', bg="white",command=lambda:btnClick(8)).grid(row=2,column=2)
btn9=Button(cal,padx=25,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='9', bg="white",command=lambda:btnClick(9)).grid(row=2,column=3)
btn0=Button(cal,padx=25,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='0', bg="white",command=lambda:btnClick(0)).grid(row=5,column=1)
#Symbols
period=Button(cal,padx=28,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='.', bg="white",command=lambda:btnClick(".")).grid(row=5,column=2)
add=Button(cal,padx=25,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='+', bg="white",command=lambda:btnClick("+")).grid(row=2,column=4)
subtct=Button(cal,padx=25,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='–', bg="white",command=lambda:btnClick("-")).grid(row=3,column=4)
mtply=Button(cal,padx=25,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='x', bg="white",command=lambda:btnClick("*")).grid(row=4,column=4)
division=Button(cal,padx=25,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='÷', bg="white",command=lambda:btnClick("/")).grid(row=5,column=4)
p=Button(cal,padx=22,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='%', bg="white",command=lambda:percentage()).grid(row=1,column=2)
equal=Button(cal,padx=25,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='=', bg="white",command=lambda:btnEqualsInput()).grid(row=5,column=3)
sqrt=Button(cal,padx=25,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='√', bg="white",command=lambda:btnSquareroot()).grid(row=1,column=1)
clear=Button(cal,padx=31,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='C', bg="white",command=lambda:btnClearDisplay()).grid(row=4,column=0)
r=Button(cal,padx=16,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='MRC', bg="white",command=lambda:recall()).grid(row=1,column=0)
s=Button(cal,padx=24,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='M+', bg="white",command=lambda:storeup()).grid(row=2,column=0)
u=Button(cal,padx=26,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='M-', bg="white",command=lambda:unstore()).grid(row=3,column=0)
ac=Button(cal,padx=26,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='AC', bg="white",command=lambda:allclear()).grid(row=5,column=0)
d=Button(cal,padx=16,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='Del', bg="white",command=lambda:delete()).grid(row=1,column=4)
pn=Button(cal,padx=19,pady=20,bd=8,fg="black", font=('arial',20,'bold'),
text='+/-', bg="white",command=lambda:PositiveNegative()).grid(row=1,column=3)
cal.mainloop()
| true
|
3ca45f19adf67638a9ebc427bf66e38aeaf348ba
|
Python
|
nitschmann/chuckjokes
|
/chuckjokes/joke.py
|
UTF-8
| 2,096
| 2.734375
| 3
|
[] |
no_license
|
import chuckjokes.api.jokes as jokes_api
from . import category
from chuckjokes.db import Entity
class Joke(Entity):
__table__ = "jokes"
__columns__ = ["api_id", "value"]
__extra_attributes__ = ["categories"]
__unique_columns__ = ["api_id"]
__timestampes__ = True
def save(self, check_uniqueness_conditions = True):
super(Joke, self).save()
self.__save_categories()
return True
@classmethod
def random_from_api(cls, category = None):
"""Fetches a new joke from the API and return an instance"""
joke = jokes_api.random(category)
return cls(api_id=joke["id"], value=joke["value"], categories=joke["category"])
@classmethod
def random_from_api_unique(cls, category = None, max_tries = 10):
"""
Same as cls.random_from_api with the difference that this method
ensurces that the Joke was never read before. It is so long executed
until the limit of max_tries is reached.
"""
joke = None
i = 0
while i < max_tries:
joke = cls.random_from_api(category=category)
if cls.find_by("api_id", joke.api_id) is None:
break
else:
i += 1
return joke
def __save_categories(self):
if type(self.categories) == list:
for category_name in self.categories:
c = category.Category.find_or_create_by_name(category_name)
self.__save_categories_relation(category_id = c.id)
def __save_categories_relation(self, category_id):
cursor = self.db_client.connection.cursor()
try:
sql_query = """
INSERT INTO joke_categories(jokes_id,categories_id)
SELECT ?, ?
WHERE NOT EXISTS(SELECT 1 FROM joke_categories WHERE jokes_id =
? AND categories_id = ?);
"""
cursor.execute(sql_query, (self.id,category_id,self.id,category_id))
self.db_client.connection.commit()
finally:
cursor.close()
| true
|
d4cb6095206862e22096dfba569dee7839dffb49
|
Python
|
ThomasOnline/Activite1
|
/quizpython.py
|
UTF-8
| 388
| 3.28125
| 3
|
[] |
no_license
|
answer = input("Quel usage a principalement le language python? ")
print("Tu as répondu", answer)
if answer == "BDD":
print("Tu as bien répondu a la question, Bravo.")
elif answer == "robot":
print("Tu as bien répondu a la question, Bravo")
elif answer == "Web":
print("Tu as bien répondu a la question, Bravo")
else:
print("Tu t'es trompé, recommence!")
| true
|
2fa1a7bd8f51dc8f73d7e45cfbb673e539991e43
|
Python
|
rehmanali1337/music_bot
|
/models/plex.py
|
UTF-8
| 1,230
| 2.65625
| 3
|
[] |
no_license
|
from plexapi.myplex import MyPlexAccount
import plexapi
import json
class Plex:
def __init__(self):
f = open('config.json', 'r')
self.config = json.load(f)
try:
self.account = MyPlexAccount(self.config.get(
"PS_USERNAME"), self.config.get("PS_PASSWORD"))
except plexapi.exceptions.Unauthorized:
print('Email/Username/Password for Plex Account is incorrect!')
exit()
self.server = self.account.resource(
self.config.get("SERVER_NAME")).connect()
def sections(self):
section = self.server.library.section('My Music')
artist = section.get('Various Artists')
tracks = artist.tracks()
for track in tracks:
url = track.getStreamURL()
print(url)
async def searchServer(self, query):
results = self.server.search(query, mediatype='track')
tracks = [track for track in results if isinstance(
track, plexapi.audio.Track)]
return tracks
async def searchLibrary(self, section, title):
res = self.server.library.search(title=title)
return res
if __name__ == "__main__":
plex = Plex()
plex.sections()
| true
|
e6f24061fd11803c56009d140939a10ddd344f0b
|
Python
|
jorjich/HackBulgaria-Programming101
|
/count_substrings/solution.py
|
UTF-8
| 447
| 3.96875
| 4
|
[] |
no_license
|
def count_substrings(haystack, needle):
x = haystack.count(needle)
return x
def main():
print( count_substrings("This is a test string", "is") )
print( count_substrings("babababa", "baba") )
print( count_substrings("Python is an awesome language to program in!", "o") )
print( count_substrings("We have nothing in common!", "really?") )
print( count_substrings("This is this and that is this", "this") )
if __name__ == '__main__':
main()
| true
|
630f521d28e37ef3ec938938306c812e869eccd4
|
Python
|
Chrisebell24/Copulas
|
/tests/copulas/univariate/test_kde.py
|
UTF-8
| 6,096
| 2.859375
| 3
|
[
"MIT"
] |
permissive
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Tests for `univariate` package."""
from unittest import TestCase
import numpy as np
import scipy
from copulas.univariate.kde import KDEUnivariate
from tests import compare_nested_dicts
class TestKDEUnivariate(TestCase):
def setup_norm(self):
"""set up the model to fit standard norm data."""
self.kde = KDEUnivariate()
# use 42 as a fixed random seed
np.random.seed(42)
column = np.random.normal(0, 1, 1000)
self.kde.fit(column)
def test___init__(self):
"""On init, model are set to None."""
self.kde = KDEUnivariate()
assert self.kde.model is None
def test_fit(self):
"""On fit, kde model is instantiated with intance of gaussian_kde."""
self.kde = KDEUnivariate()
data = [1, 2, 3, 4, 5]
self.kde.fit(data)
self.assertIsInstance(self.kde.model, scipy.stats.gaussian_kde)
def test_fit_uniform(self):
"""On fit, kde model is instantiated with passed data."""
self.kde = KDEUnivariate()
data = [1, 2, 3, 4, 5]
self.kde.fit(data)
assert self.kde.model
def test_fit_empty_data(self):
"""If fitting kde model with empty data it will raise ValueError."""
self.kde = KDEUnivariate()
with self.assertRaises(ValueError):
self.kde.fit([])
def test_probability_density(self):
"""probability_density evaluates with the model."""
self.setup_norm()
x = self.kde.probability_density(0.5)
expected = 0.35206532676429952
self.assertAlmostEquals(x, expected, places=1)
def test_cumulative_distribution(self):
"""cumulative_distribution evaluates with the model."""
self.setup_norm()
x = self.kde.cumulative_distribution(0.5)
expected = 0.69146246127401312
self.assertAlmostEquals(x, expected, places=1)
def test_percent_point(self):
"""percent_point evaluates with the model."""
self.setup_norm()
x = self.kde.percent_point(0.5)
expected = 0.0
self.assertAlmostEquals(x, expected, places=1)
def test_percent_point_invalid_value(self):
"""Evaluating an invalid value will raise ValueError."""
self.setup_norm()
with self.assertRaises(ValueError):
self.kde.percent_point(2)
def test_from_dict(self):
"""From_dict sets the values of a dictionary as attributes of the instance."""
# Setup
parameters = {
'fitted': True,
'd': 1,
'n': 10,
'dataset': [[
0.4967141530112327,
-0.13826430117118466,
0.6476885381006925,
1.5230298564080254,
-0.23415337472333597,
-0.23413695694918055,
1.5792128155073915,
0.7674347291529088,
-0.4694743859349521,
0.5425600435859647
]],
'covariance': [[0.2081069604419522]],
'factor': 0.6309573444801932,
'inv_cov': [[4.805221304834407]]
}
# Run
distribution = KDEUnivariate.from_dict(parameters)
# Check
assert distribution.model.d == 1
assert distribution.model.n == 10
assert distribution.model.covariance == np.array([[0.2081069604419522]])
assert distribution.model.factor == 0.6309573444801932
assert distribution.model.inv_cov == np.array([[4.805221304834407]])
assert (distribution.model.dataset == np.array([[
0.4967141530112327,
-0.13826430117118466,
0.6476885381006925,
1.5230298564080254,
-0.23415337472333597,
-0.23413695694918055,
1.5792128155073915,
0.7674347291529088,
-0.4694743859349521,
0.5425600435859647
]])).all()
def test_to_dict(self):
"""To_dict returns the defining parameters of a distribution in a dict."""
# Setup
distribution = KDEUnivariate()
column = np.array([[
0.4967141530112327,
-0.13826430117118466,
0.6476885381006925,
1.5230298564080254,
-0.23415337472333597,
-0.23413695694918055,
1.5792128155073915,
0.7674347291529088,
-0.4694743859349521,
0.5425600435859647
]])
distribution.fit(column)
expected_result = {
'type': 'copulas.univariate.kde.KDEUnivariate',
'fitted': True,
'd': 1,
'n': 10,
'dataset': [[
0.4967141530112327,
-0.13826430117118466,
0.6476885381006925,
1.5230298564080254,
-0.23415337472333597,
-0.23413695694918055,
1.5792128155073915,
0.7674347291529088,
-0.4694743859349521,
0.5425600435859647
]],
'covariance': [[0.20810696044195218]],
'factor': 0.6309573444801932,
'inv_cov': [[4.805221304834407]]
}
# Run
result = distribution.to_dict()
# Check
compare_nested_dicts(result, expected_result)
def test_valid_serialization_unfit_model(self):
"""For a unfitted model to_dict and from_dict are opposites."""
# Setup
instance = KDEUnivariate()
# Run
result = KDEUnivariate.from_dict(instance.to_dict())
# Check
assert instance.to_dict() == result.to_dict()
def test_valid_serialization_fit_model(self):
"""For a fitted model to_dict and from_dict are opposites."""
# Setup
instance = KDEUnivariate()
X = np.array([1, 2, 3, 4])
instance.fit(X)
# Run
result = KDEUnivariate.from_dict(instance.to_dict())
# Check
assert instance.to_dict() == result.to_dict()
| true
|