sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def delete_sources(self, cuts=None, distance=None, skydir=None, minmax_ts=None, minmax_npred=None, exclude=None, square=False, names=None): """Delete sources in the ROI model satisfying the given selection criteria. Parameters ---------- cuts : dict Dictionary of [min,max] selections on source properties. distance : float Cut on angular distance from ``skydir``. If None then no selection will be applied. skydir : `~astropy.coordinates.SkyCoord` Reference sky coordinate for ``distance`` selection. If None then the distance selection will be applied with respect to the ROI center. minmax_ts : list Select sources that have TS in the range [min,max]. If either min or max are None then only a lower (upper) bound will be applied. If this parameter is none no selection will be applied. minmax_npred : list Select sources that have npred in the range [min,max]. If either min or max are None then only a lower (upper) bound will be applied. If this parameter is none no selection will be applied. square : bool Switch between applying a circular or square (ROI-like) selection on the maximum projected distance from the ROI center. names : list Select sources matching a name in this list. Returns ------- srcs : list A list of `~fermipy.roi_model.Model` objects. """ srcs = self.roi.get_sources(skydir=skydir, distance=distance, cuts=cuts, minmax_ts=minmax_ts, minmax_npred=minmax_npred, exclude=exclude, square=square, coordsys=self.config[ 'binning']['coordsys'], names=names) for s in srcs: self.delete_source(s.name, build_fixed_wts=False) if self.like is not None: # Build fixed model weights in one pass for c in self.components: c.like.logLike.buildFixedModelWts() self._update_roi() return srcs
Delete sources in the ROI model satisfying the given selection criteria. Parameters ---------- cuts : dict Dictionary of [min,max] selections on source properties. distance : float Cut on angular distance from ``skydir``. If None then no selection will be applied. skydir : `~astropy.coordinates.SkyCoord` Reference sky coordinate for ``distance`` selection. If None then the distance selection will be applied with respect to the ROI center. minmax_ts : list Select sources that have TS in the range [min,max]. If either min or max are None then only a lower (upper) bound will be applied. If this parameter is none no selection will be applied. minmax_npred : list Select sources that have npred in the range [min,max]. If either min or max are None then only a lower (upper) bound will be applied. If this parameter is none no selection will be applied. square : bool Switch between applying a circular or square (ROI-like) selection on the maximum projected distance from the ROI center. names : list Select sources matching a name in this list. Returns ------- srcs : list A list of `~fermipy.roi_model.Model` objects.
entailment
def free_sources_by_name(self, names, free=True, pars=None, **kwargs): """Free all sources with names matching ``names``. Parameters ---------- names : list List of source names. free : bool Choose whether to free (free=True) or fix (free=False) source parameters. pars : list Set a list of parameters to be freed/fixed for each source. If none then all source parameters will be freed/fixed. If pars='norm' then only normalization parameters will be freed. Returns ------- srcs : list A list of `~fermipy.roi_model.Model` objects. """ if names is None: return names = [names] if not isinstance(names, list) else names names = [self.roi.get_source_by_name(t).name for t in names] srcs = [s for s in self.roi.sources if s.name in names] for s in srcs: self.free_source(s.name, free=free, pars=pars, **kwargs) return srcs
Free all sources with names matching ``names``. Parameters ---------- names : list List of source names. free : bool Choose whether to free (free=True) or fix (free=False) source parameters. pars : list Set a list of parameters to be freed/fixed for each source. If none then all source parameters will be freed/fixed. If pars='norm' then only normalization parameters will be freed. Returns ------- srcs : list A list of `~fermipy.roi_model.Model` objects.
entailment
def free_sources(self, free=True, pars=None, cuts=None, distance=None, skydir=None, minmax_ts=None, minmax_npred=None, exclude=None, square=False, **kwargs): """Free or fix sources in the ROI model satisfying the given selection. When multiple selections are defined, the selected sources will be those satisfying the logical AND of all selections (e.g. distance < X && minmax_ts[0] < ts < minmax_ts[1] && ...). Parameters ---------- free : bool Choose whether to free (free=True) or fix (free=False) source parameters. pars : list Set a list of parameters to be freed/fixed for each source. If none then all source parameters will be freed/fixed. If pars='norm' then only normalization parameters will be freed. cuts : dict Dictionary of [min,max] selections on source properties. distance : float Cut on angular distance from ``skydir``. If None then no selection will be applied. skydir : `~astropy.coordinates.SkyCoord` Reference sky coordinate for ``distance`` selection. If None then the distance selection will be applied with respect to the ROI center. minmax_ts : list Free sources that have TS in the range [min,max]. If either min or max are None then only a lower (upper) bound will be applied. If this parameter is none no selection will be applied. minmax_npred : list Free sources that have npred in the range [min,max]. If either min or max are None then only a lower (upper) bound will be applied. If this parameter is none no selection will be applied. exclude : list Names of sources that will be excluded from the selection. square : bool Switch between applying a circular or square (ROI-like) selection on the maximum projected distance from the ROI center. Returns ------- srcs : list A list of `~fermipy.roi_model.Model` objects. """ srcs = self.roi.get_sources(skydir=skydir, distance=distance, cuts=cuts, minmax_ts=minmax_ts, minmax_npred=minmax_npred, exclude=exclude, square=square, coordsys=self.config['binning']['coordsys']) for s in srcs: self.free_source(s.name, free=free, pars=pars, **kwargs) return srcs
Free or fix sources in the ROI model satisfying the given selection. When multiple selections are defined, the selected sources will be those satisfying the logical AND of all selections (e.g. distance < X && minmax_ts[0] < ts < minmax_ts[1] && ...). Parameters ---------- free : bool Choose whether to free (free=True) or fix (free=False) source parameters. pars : list Set a list of parameters to be freed/fixed for each source. If none then all source parameters will be freed/fixed. If pars='norm' then only normalization parameters will be freed. cuts : dict Dictionary of [min,max] selections on source properties. distance : float Cut on angular distance from ``skydir``. If None then no selection will be applied. skydir : `~astropy.coordinates.SkyCoord` Reference sky coordinate for ``distance`` selection. If None then the distance selection will be applied with respect to the ROI center. minmax_ts : list Free sources that have TS in the range [min,max]. If either min or max are None then only a lower (upper) bound will be applied. If this parameter is none no selection will be applied. minmax_npred : list Free sources that have npred in the range [min,max]. If either min or max are None then only a lower (upper) bound will be applied. If this parameter is none no selection will be applied. exclude : list Names of sources that will be excluded from the selection. square : bool Switch between applying a circular or square (ROI-like) selection on the maximum projected distance from the ROI center. Returns ------- srcs : list A list of `~fermipy.roi_model.Model` objects.
entailment
def set_parameter(self, name, par, value, true_value=True, scale=None, bounds=None, error=None, update_source=True): """ Update the value of a parameter. Parameter bounds will automatically be adjusted to encompass the new parameter value. Parameters ---------- name : str Source name. par : str Parameter name. value : float Parameter value. By default this argument should be the unscaled (True) parameter value. scale : float Parameter scale (optional). Value argument is interpreted with respect to the scale parameter if it is provided. error : float Parameter error (optional). By default this argument should be the unscaled (True) parameter value. update_source : bool Update the source dictionary for the object. """ name = self.roi.get_source_by_name(name).name idx = self.like.par_index(name, par) current_bounds = list(self.like.model[idx].getBounds()) if scale is not None: self.like[idx].setScale(scale) else: scale = self.like.model[idx].getScale() if true_value: current_bounds[0] = min(current_bounds[0], value / scale) current_bounds[1] = max(current_bounds[1], value / scale) if error is not None: error = error / scale else: current_bounds[0] = min(current_bounds[0], value) current_bounds[1] = max(current_bounds[1], value) # update current bounds to encompass new value self.like[idx].setBounds(*current_bounds) if true_value: for p in self.like[idx].pars: p.setTrueValue(value) else: self.like[idx].setValue(value) if bounds is not None: if true_value: bounds[0] = min(bounds[0], value / scale) bounds[1] = max(bounds[1], value / scale) else: bounds[0] = min(bounds[0], value) bounds[1] = max(bounds[1], value) # For some reason the numerical accuracy is causing this to throw exceptions. try: if bounds is not None: self.like[idx].setBounds(*bounds) except RuntimeError: self.logger.warning( "Caught failure on setBounds for %s::%s." % (name, par)) pass if error is not None: self.like[idx].setError(error) self._sync_params(name) if update_source: self.update_source(name)
Update the value of a parameter. Parameter bounds will automatically be adjusted to encompass the new parameter value. Parameters ---------- name : str Source name. par : str Parameter name. value : float Parameter value. By default this argument should be the unscaled (True) parameter value. scale : float Parameter scale (optional). Value argument is interpreted with respect to the scale parameter if it is provided. error : float Parameter error (optional). By default this argument should be the unscaled (True) parameter value. update_source : bool Update the source dictionary for the object.
entailment
def set_parameter_scale(self, name, par, scale): """Update the scale of a parameter while keeping its value constant.""" name = self.roi.get_source_by_name(name).name idx = self.like.par_index(name, par) current_bounds = list(self.like.model[idx].getBounds()) current_scale = self.like.model[idx].getScale() current_value = self.like[idx].getValue() self.like[idx].setScale(scale) self.like[idx].setValue(current_value * current_scale / scale) self.like[idx].setBounds(current_bounds[0] * current_scale / scale, current_bounds[1] * current_scale / scale) self._sync_params(name)
Update the scale of a parameter while keeping its value constant.
entailment
def set_parameter_bounds(self, name, par, bounds): """Set the bounds on the scaled value of a parameter. Parameters ---------- name : str Source name. par : str Parameter name. bounds : list Upper and lower bound. """ idx = self.like.par_index(name, par) self.like[idx].setBounds(*bounds) self._sync_params(name)
Set the bounds on the scaled value of a parameter. Parameters ---------- name : str Source name. par : str Parameter name. bounds : list Upper and lower bound.
entailment
def set_parameter_error(self, name, par, error): """Set the error on the value of a parameter. Parameters ---------- name : str Source name. par : str Parameter name. error : float The value for the parameter error """ idx = self.like.par_index(name, par) self.like[idx].setError(error) self._sync_params(name)
Set the error on the value of a parameter. Parameters ---------- name : str Source name. par : str Parameter name. error : float The value for the parameter error
entailment
def lock_parameter(self, name, par, lock=True): """Set parameter to locked/unlocked state. A locked parameter will be ignored when running methods that free/fix sources or parameters. Parameters ---------- name : str Source name. par : str Parameter name. lock : bool Set parameter to locked (True) or unlocked (False) state. """ name = self.roi.get_source_by_name(name).name lck_params = self._lck_params.setdefault(name, []) if lock: self.free_parameter(name, par, False) if not par in lck_params: lck_params += [par] else: if par in lck_params: lck_params.remove(par)
Set parameter to locked/unlocked state. A locked parameter will be ignored when running methods that free/fix sources or parameters. Parameters ---------- name : str Source name. par : str Parameter name. lock : bool Set parameter to locked (True) or unlocked (False) state.
entailment
def free_parameter(self, name, par, free=True): """Free/Fix a parameter of a source by name. Parameters ---------- name : str Source name. par : str Parameter name. """ name = self.get_source_name(name) if par in self._lck_params.get(name, []): return idx = self.like.par_index(name, par) self.like[idx].setFree(free) self._sync_params(name)
Free/Fix a parameter of a source by name. Parameters ---------- name : str Source name. par : str Parameter name.
entailment
def lock_source(self, name, lock=True): """Set all parameters of a source to a locked/unlocked state. Locked parameters will be ignored when running methods that free/fix sources or parameters. Parameters ---------- name : str Source name. lock : bool Set source parameters to locked (True) or unlocked (False) state. """ name = self.get_source_name(name) if lock: par_names = self.get_source_params(name) self.free_source(name, False, pars=par_names) self._lck_params[name] = par_names else: self._lck_params[name] = []
Set all parameters of a source to a locked/unlocked state. Locked parameters will be ignored when running methods that free/fix sources or parameters. Parameters ---------- name : str Source name. lock : bool Set source parameters to locked (True) or unlocked (False) state.
entailment
def free_source(self, name, free=True, pars=None, **kwargs): """Free/Fix parameters of a source. Parameters ---------- name : str Source name. free : bool Choose whether to free (free=True) or fix (free=False) source parameters. pars : list Set a list of parameters to be freed/fixed for this source. If none then all source parameters will be freed/fixed with the exception of those defined in the skip_pars list. """ free_pars = self.get_free_param_vector() loglevel = kwargs.pop('loglevel', self.loglevel) # Find the source src = self.roi.get_source_by_name(name) name = src.name if pars is None or (isinstance(pars, list) and not pars): pars = [] pars += norm_parameters.get(src['SpectrumType'], []) pars += shape_parameters.get(src['SpectrumType'], []) elif pars == 'norm': pars = [] pars += norm_parameters.get(src['SpectrumType'], []) elif pars == 'shape': pars = [] pars += shape_parameters.get(src['SpectrumType'], []) elif isinstance(pars, list): pass else: raise Exception('Invalid parameter list.') # Remove locked parameters lck_params = self._lck_params.get(name, []) pars = [p for p in pars if p not in lck_params] # Deduce here the names of all parameters from the spectral type src_par_names = pyLike.StringVector() self.like[name].src.spectrum().getParamNames(src_par_names) par_indices = [] par_names = [] for p in src_par_names: if pars is not None and p not in pars: continue idx = self.like.par_index(name, p) if free == free_pars[idx]: continue par_indices.append(idx) par_names.append(p) if len(par_names) == 0: return if free: self.logger.log(loglevel, 'Freeing parameters for %-22s: %s', name, par_names) else: self.logger.log(loglevel, 'Fixing parameters for %-22s: %s', name, par_names) for (idx, par_name) in zip(par_indices, par_names): self.like[idx].setFree(free) self._sync_params_state(name)
Free/Fix parameters of a source. Parameters ---------- name : str Source name. free : bool Choose whether to free (free=True) or fix (free=False) source parameters. pars : list Set a list of parameters to be freed/fixed for this source. If none then all source parameters will be freed/fixed with the exception of those defined in the skip_pars list.
entailment
def free_norm(self, name, free=True, **kwargs): """Free/Fix normalization of a source. Parameters ---------- name : str Source name. free : bool Choose whether to free (free=True) or fix (free=False). """ name = self.get_source_name(name) normPar = self.like.normPar(name).getName() self.free_source(name, pars=[normPar], free=free, **kwargs)
Free/Fix normalization of a source. Parameters ---------- name : str Source name. free : bool Choose whether to free (free=True) or fix (free=False).
entailment
def free_index(self, name, free=True, **kwargs): """Free/Fix index of a source. Parameters ---------- name : str Source name. free : bool Choose whether to free (free=True) or fix (free=False). """ src = self.roi.get_source_by_name(name) self.free_source(name, free=free, pars=index_parameters.get(src['SpectrumType'], []), **kwargs)
Free/Fix index of a source. Parameters ---------- name : str Source name. free : bool Choose whether to free (free=True) or fix (free=False).
entailment
def free_shape(self, name, free=True, **kwargs): """Free/Fix shape parameters of a source. Parameters ---------- name : str Source name. free : bool Choose whether to free (free=True) or fix (free=False). """ src = self.roi.get_source_by_name(name) self.free_source(name, free=free, pars=shape_parameters[src['SpectrumType']], **kwargs)
Free/Fix shape parameters of a source. Parameters ---------- name : str Source name. free : bool Choose whether to free (free=True) or fix (free=False).
entailment
def get_source_name(self, name): """Return the name of a source as it is defined in the pyLikelihood model object.""" if name not in self.like.sourceNames(): name = self.roi.get_source_by_name(name).name return name
Return the name of a source as it is defined in the pyLikelihood model object.
entailment
def optimize(self, **kwargs): """Iteratively optimize the ROI model. The optimization is performed in three sequential steps: * Free the normalization of the N largest components (as determined from NPred) that contain a fraction ``npred_frac`` of the total predicted counts in the model and perform a simultaneous fit of the normalization parameters of these components. * Individually fit the normalizations of all sources that were not included in the first step in order of their npred values. Skip any sources that have NPred < ``npred_threshold``. * Individually fit the shape and normalization parameters of all sources with TS > ``shape_ts_threshold`` where TS is determined from the first two steps of the ROI optimization. To ensure that the model is fully optimized this method can be run multiple times. Parameters ---------- npred_frac : float Threshold on the fractional number of counts in the N largest components in the ROI. This parameter determines the set of sources that are fit in the first optimization step. npred_threshold : float Threshold on the minimum number of counts of individual sources. This parameter determines the sources that are fit in the second optimization step. shape_ts_threshold : float Threshold on source TS used for determining the sources that will be fit in the third optimization step. max_free_sources : int Maximum number of sources that will be fit simultaneously in the first optimization step. skip : list List of str source names to skip while optimizing. optimizer : dict Dictionary that overrides the default optimizer settings. """ loglevel = kwargs.pop('loglevel', self.loglevel) timer = Timer.create(start=True) self.logger.log(loglevel, 'Starting') loglike0 = -self.like() self.logger.debug('LogLike: %f' % loglike0) # Extract options from kwargs config = copy.deepcopy(self.config['roiopt']) config['optimizer'] = copy.deepcopy(self.config['optimizer']) fermipy.config.validate_config(kwargs, config) config = merge_dict(config, kwargs) # Extract options from kwargs npred_frac_threshold = config['npred_frac'] npred_threshold = config['npred_threshold'] shape_ts_threshold = config['shape_ts_threshold'] max_free_sources = config['max_free_sources'] skip = copy.deepcopy(config['skip']) o = defaults.make_default_dict(defaults.roiopt_output) o['config'] = config o['loglike0'] = loglike0 # preserve free parameters free = self.get_free_param_vector() # Fix all parameters self.free_sources(free=False, loglevel=logging.DEBUG) # Free norms of sources for which the sum of npred is a # fraction > npred_frac of the total model counts in the ROI npred_sum = 0 skip_sources = skip if skip != None else [] joint_norm_fit = [] # EAC, we need this try block by older version of the ST don't have has_weights function try: if self.like.logLike.has_weights(): npred_str = 'npred_wt' else: npred_str = 'npred' except AttributeError: npred_str = 'npred' # FIXME, EAC, use npred_wt here for s in sorted(self.roi.sources, key=lambda t: t[npred_str], reverse=True): npred_sum += s[npred_str] npred_frac = npred_sum / self._roi_data[npred_str] if s.name in skip_sources: continue self.free_norm(s.name, loglevel=logging.DEBUG) joint_norm_fit.append(s.name) if npred_frac > npred_frac_threshold: break if s[npred_str] < npred_threshold: break if len(joint_norm_fit) >= max_free_sources: break print ("Joint fit ", joint_norm_fit) self.fit(loglevel=logging.DEBUG, **config['optimizer']) self.free_sources(free=False, loglevel=logging.DEBUG) # Step through remaining sources and re-fit normalizations # FIXME, EAC, use npred_wt here for s in sorted(self.roi.sources, key=lambda t: t[npred_str], reverse=True): if s.name in skip_sources or s.name in joint_norm_fit: continue if s[npred_str] < npred_threshold: self.logger.debug( 'Skipping %s with npred %10.3f', s.name, s[npred_str]) continue self.logger.debug('Fitting %s npred: %10.3f TS: %10.3f', s.name, s[npred_str], s['ts']) self.free_norm(s.name, loglevel=logging.DEBUG) self.fit(loglevel=logging.DEBUG, **config['optimizer']) self.logger.debug('Post-fit Results npred: %10.3f TS: %10.3f', s[npred_str], s['ts']) self.free_norm(s.name, free=False, loglevel=logging.DEBUG) # Refit spectral shape parameters for sources with TS > # shape_ts_threshold for s in sorted(self.roi.sources, key=lambda t: t['ts'] if np.isfinite(t['ts']) else 0, reverse=True): if s.name in skip_sources: continue if s['ts'] < shape_ts_threshold or not np.isfinite(s['ts']): continue print ('Fitting shape %s TS: %10.3f' % (s.name, s['ts'])) self.logger.debug('Fitting shape %s TS: %10.3f', s.name, s['ts']) self.free_source(s.name, loglevel=logging.DEBUG) self.fit(loglevel=logging.DEBUG, **config['optimizer']) self.free_source(s.name, free=False, loglevel=logging.DEBUG) self.set_free_param_vector(free) loglike1 = -self.like() o['loglike1'] = loglike1 o['dloglike'] = loglike1 - loglike0 self.logger.log(loglevel, 'Finished') self.logger.log(loglevel, 'LogLike: %f Delta-LogLike: %f', loglike1, loglike1 - loglike0) self.logger.log(loglevel, 'Execution time: %.2f s', timer.elapsed_time) return o
Iteratively optimize the ROI model. The optimization is performed in three sequential steps: * Free the normalization of the N largest components (as determined from NPred) that contain a fraction ``npred_frac`` of the total predicted counts in the model and perform a simultaneous fit of the normalization parameters of these components. * Individually fit the normalizations of all sources that were not included in the first step in order of their npred values. Skip any sources that have NPred < ``npred_threshold``. * Individually fit the shape and normalization parameters of all sources with TS > ``shape_ts_threshold`` where TS is determined from the first two steps of the ROI optimization. To ensure that the model is fully optimized this method can be run multiple times. Parameters ---------- npred_frac : float Threshold on the fractional number of counts in the N largest components in the ROI. This parameter determines the set of sources that are fit in the first optimization step. npred_threshold : float Threshold on the minimum number of counts of individual sources. This parameter determines the sources that are fit in the second optimization step. shape_ts_threshold : float Threshold on source TS used for determining the sources that will be fit in the third optimization step. max_free_sources : int Maximum number of sources that will be fit simultaneously in the first optimization step. skip : list List of str source names to skip while optimizing. optimizer : dict Dictionary that overrides the default optimizer settings.
entailment
def profile_norm(self, name, logemin=None, logemax=None, reoptimize=False, xvals=None, npts=None, fix_shape=True, savestate=True, **kwargs): """Profile the normalization of a source. Parameters ---------- name : str Source name. reoptimize : bool Re-optimize free parameters in the model at each point in the profile likelihood scan. """ self.logger.debug('Profiling %s', name) if savestate: saved_state = LikelihoodState(self.like) if fix_shape: self.free_sources(False, pars='shape', loglevel=logging.DEBUG) if npts is None: npts = self.config['gtlike']['llscan_npts'] # Find the source name = self.roi.get_source_by_name(name).name parName = self.like.normPar(name).getName() loge_bounds = self.loge_bounds if logemin is not None or logemax is not None: self.set_energy_range(logemin, logemax) # Find a sequence of values for the normalization scan if xvals is None: if reoptimize: xvals = self._find_scan_pts_reopt(name, npts=npts, **kwargs) else: xvals = self._find_scan_pts(name, npts=9) lnlp = self.profile(name, parName, reoptimize=False, xvals=xvals) lims = utils.get_parameter_limits(lnlp['xvals'], lnlp['dloglike'], cl_limit=0.99) if not np.isfinite(lims['ul']): self.logger.warning('Upper limit not found. ' 'Refitting normalization.') self.like.optimize(0) xvals = self._find_scan_pts(name, npts=npts) lnlp = self.profile(name, parName, reoptimize=False, xvals=xvals) lims = utils.get_parameter_limits(lnlp['xvals'], lnlp['dloglike'], cl_limit=0.99) if np.isfinite(lims['ll']): xhi = np.linspace(lims['x0'], lims['ul'], npts - npts // 2) xlo = np.linspace(lims['ll'], lims['x0'], npts // 2) xvals = np.concatenate((xlo[:-1], xhi)) xvals = np.insert(xvals, 0, 0.0) elif np.abs(lnlp['dloglike'][0] - lims['lnlmax']) > 0.1: lims['ll'] = 0.0 xhi = np.linspace(lims['x0'], lims['ul'], (npts + 1) - (npts + 1) // 2) xlo = np.linspace(lims['ll'], lims['x0'], (npts + 1) // 2) xvals = np.concatenate((xlo[:-1], xhi)) else: xvals = np.linspace(0, lims['ul'], npts) o = self.profile(name, parName, reoptimize=reoptimize, xvals=xvals, savestate=savestate, **kwargs) if savestate: saved_state.restore() if logemin is not None or logemax is not None: self.set_energy_range(*loge_bounds) self.logger.debug('Finished') return o
Profile the normalization of a source. Parameters ---------- name : str Source name. reoptimize : bool Re-optimize free parameters in the model at each point in the profile likelihood scan.
entailment
def profile(self, name, parName, logemin=None, logemax=None, reoptimize=False, xvals=None, npts=None, savestate=True, **kwargs): """Profile the likelihood for the given source and parameter. Parameters ---------- name : str Source name. parName : str Parameter name. reoptimize : bool Re-fit nuisance parameters at each step in the scan. Note that enabling this option will only re-fit parameters that were free when the method was executed. Returns ------- lnlprofile : dict Dictionary containing results of likelihood scan. """ # Find the source name = self.roi.get_source_by_name(name).name par = self.like.normPar(name) parName = self.like.normPar(name).getName() idx = self.like.par_index(name, parName) bounds = self.like.model[idx].getBounds() value = self.like.model[idx].getValue() loge_bounds = self.loge_bounds optimizer = kwargs.get('optimizer', self.config['optimizer']) if savestate: saved_state = self._latch_state() # If parameter is fixed temporarily free it par.setFree(True) if optimizer['optimizer'] == 'NEWTON': self._create_fitcache() if logemin is not None or logemax is not None: loge_bounds = self.set_energy_range(logemin, logemax) else: loge_bounds = self.loge_bounds loglike0 = -self.like() if xvals is None: err = par.error() val = par.getValue() if err <= 0 or val <= 3 * err: xvals = 10 ** np.linspace(-2.0, 2.0, 51) if val < xvals[0]: xvals = np.insert(xvals, val, 0) else: xvals = np.linspace(0, 1, 25) xvals = np.concatenate((-1.0 * xvals[1:][::-1], xvals)) xvals = val * 10 ** xvals if np.isnan(xvals).any(): raise RuntimeError( "Parameter scan points for %s::%s include infinite value." % (name, parName)) # Update parameter bounds to encompass scan range try: self.like[idx].setBounds(min(min(xvals), value, bounds[0]), max(max(xvals), value, bounds[1])) except RuntimeError: self.logger.warning( "Caught failure on setBounds for %s::%s." % (name, parName)) o = {'xvals': xvals, 'npred': np.zeros(len(xvals)), 'npred_wt': np.zeros(len(xvals)), 'dnde': np.zeros(len(xvals)), 'flux': np.zeros(len(xvals)), 'eflux': np.zeros(len(xvals)), 'dloglike': np.zeros(len(xvals)), 'loglike': np.zeros(len(xvals)) } if reoptimize and hasattr(self.like.components[0].logLike, 'setUpdateFixedWeights'): for c in self.components: c.like.logLike.setUpdateFixedWeights(False) for i, x in enumerate(xvals): try: self.like[idx] = x except RuntimeError: self.logger.warning( "Caught failure on set for %s::%s: %.2f" % (name, parName, x)) if self.like.nFreeParams() > 1 and reoptimize: # Only reoptimize if not all frozen self.like.freeze(idx) fit_output = self._fit(errors=False, **optimizer) loglike1 = fit_output['loglike'] self.like.thaw(idx) else: loglike1 = -self.like() flux = self.like[name].flux(10 ** loge_bounds[0], 10 ** loge_bounds[1]) eflux = self.like[name].energyFlux(10 ** loge_bounds[0], 10 ** loge_bounds[1]) prefactor = self.like[idx] o['dloglike'][i] = loglike1 - loglike0 o['loglike'][i] = loglike1 o['dnde'][i] = prefactor.getTrueValue() o['flux'][i] = flux o['eflux'][i] = eflux cs = self.model_counts_spectrum(name, loge_bounds[0], loge_bounds[1], summed=True) o['npred'][i] += np.sum(cs) cs_wt = self.model_counts_spectrum(name, loge_bounds[0], loge_bounds[1], summed=True, weighted=True) o['npred_wt'][i] += np.sum(cs_wt) self.like[idx] = value if reoptimize and hasattr(self.like.components[0].logLike, 'setUpdateFixedWeights'): for c in self.components: c.like.logLike.setUpdateFixedWeights(True) # Restore model parameters to original values if savestate: saved_state.restore() self.like[idx].setBounds(*bounds) if logemin is not None or logemax is not None: self.set_energy_range(*loge_bounds) return o
Profile the likelihood for the given source and parameter. Parameters ---------- name : str Source name. parName : str Parameter name. reoptimize : bool Re-fit nuisance parameters at each step in the scan. Note that enabling this option will only re-fit parameters that were free when the method was executed. Returns ------- lnlprofile : dict Dictionary containing results of likelihood scan.
entailment
def constrain_norms(self, srcNames, cov_scale=1.0): """Constrain the normalizations of one or more sources by adding gaussian priors with sigma equal to the parameter error times a scaling factor.""" # Get the covariance matrix for name in srcNames: par = self.like.normPar(name) err = par.error() val = par.getValue() if par.error() == 0.0 or not par.isFree(): continue self.add_gauss_prior(name, par.getName(), val, err * cov_scale)
Constrain the normalizations of one or more sources by adding gaussian priors with sigma equal to the parameter error times a scaling factor.
entailment
def remove_priors(self): """Clear all priors.""" for src in self.roi.sources: for par in self.like[src.name].funcs["Spectrum"].params.values(): par.removePrior()
Clear all priors.
entailment
def _create_optObject(self, **kwargs): """ Make MINUIT or NewMinuit type optimizer object """ optimizer = kwargs.get('optimizer', self.config['optimizer']['optimizer']) if optimizer.upper() == 'MINUIT': optObject = pyLike.Minuit(self.like.logLike) elif optimizer.upper() == 'NEWMINUIT': optObject = pyLike.NewMinuit(self.like.logLike) else: optFactory = pyLike.OptimizerFactory_instance() optObject = optFactory.create(str(optimizer), self.like.logLike) return optObject
Make MINUIT or NewMinuit type optimizer object
entailment
def fit(self, update=True, **kwargs): """Run the likelihood optimization. This will execute a fit of all parameters that are currently free in the model and update the charateristics of the corresponding model components (TS, npred, etc.). The fit will be repeated N times (set with the `retries` parameter) until a fit quality greater than or equal to `min_fit_quality` and a fit status code of 0 is obtained. If the fit does not succeed after N retries then all parameter values will be reverted to their state prior to the execution of the fit. Parameters ---------- update : bool Update the model dictionary for all sources with free parameters. tol : float Set the optimizer tolerance. verbosity : int Set the optimizer output level. optimizer : str Set the likelihood optimizer (e.g. MINUIT or NEWMINUIT). retries : int Set the number of times to rerun the fit when the fit quality is < 3. min_fit_quality : int Set the minimum fit quality. If the fit quality is smaller than this value then all model parameters will be restored to their values prior to the fit. reoptimize : bool Refit background sources when updating source properties (TS and likelihood profiles). Returns ------- fit : dict Dictionary containing diagnostic information from the fit (fit quality, parameter covariances, etc.). """ loglevel = kwargs.pop('loglevel', self.loglevel) self.logger.log(loglevel, "Starting fit.") # Extract options from kwargs config = copy.deepcopy(self.config['optimizer']) config.setdefault('covar', True) config.setdefault('reoptimize', False) config = utils.merge_dict(config, kwargs) num_free = self.like.nFreeParams() loglike0 = -self.like() # Initialize output dict o = {'fit_quality': 3, 'fit_status': 0, 'fit_success': True, 'dloglike': 0.0, 'edm': 0.0, 'loglike': loglike0, 'covariance': None, 'correlation': None, 'values': np.ones(num_free) * np.nan, 'errors': np.ones(num_free) * np.nan, 'indices': np.zeros(num_free, dtype=int), 'is_norm': np.empty(num_free, dtype=bool), 'src_names': num_free * [None], 'par_names': num_free * [None], 'config': config } if not num_free: self.logger.log(loglevel, "Skipping fit. No free parameters.") return o saved_state = LikelihoodState(self.like) fit_output = self._fit(**config) o.update(fit_output) self.logger.debug("Fit complete.") o['dloglike'] = o['loglike'] - loglike0 if not o['fit_success']: self.logger.error('%s failed with status code %i fit quality %i', config['optimizer'], o['fit_status'], o['fit_quality']) saved_state.restore() return o if update: free_params = self.get_params(True) self._extract_correlation(o, free_params) for name in self.like.sourceNames(): freePars = self.get_free_source_params(name) if len(freePars) == 0: continue self.update_source(name, reoptimize=config['reoptimize']) # Update roi model counts self._update_roi() self.logger.log(loglevel, "Fit returned successfully. " + "Quality: %3i Status: %3i", o['fit_quality'], o['fit_status']) self.logger.log(loglevel, "LogLike: %12.3f DeltaLogLike: %12.3f ", o['loglike'], o['dloglike']) return o
Run the likelihood optimization. This will execute a fit of all parameters that are currently free in the model and update the charateristics of the corresponding model components (TS, npred, etc.). The fit will be repeated N times (set with the `retries` parameter) until a fit quality greater than or equal to `min_fit_quality` and a fit status code of 0 is obtained. If the fit does not succeed after N retries then all parameter values will be reverted to their state prior to the execution of the fit. Parameters ---------- update : bool Update the model dictionary for all sources with free parameters. tol : float Set the optimizer tolerance. verbosity : int Set the optimizer output level. optimizer : str Set the likelihood optimizer (e.g. MINUIT or NEWMINUIT). retries : int Set the number of times to rerun the fit when the fit quality is < 3. min_fit_quality : int Set the minimum fit quality. If the fit quality is smaller than this value then all model parameters will be restored to their values prior to the fit. reoptimize : bool Refit background sources when updating source properties (TS and likelihood profiles). Returns ------- fit : dict Dictionary containing diagnostic information from the fit (fit quality, parameter covariances, etc.).
entailment
def _fit_newton(self, fitcache=None, ebin=None, **kwargs): """Fast fitting method using newton fitter.""" tol = kwargs.get('tol', self.config['optimizer']['tol']) max_iter = kwargs.get('max_iter', self.config['optimizer']['max_iter']) init_lambda = kwargs.get('init_lambda', self.config['optimizer']['init_lambda']) use_reduced = kwargs.get('use_reduced', True) free_params = self.get_params(True) free_norm_params = [p for p in free_params if p['is_norm'] is True] if len(free_params) != len(free_norm_params): msg = 'Executing Newton fitter with one ' + \ 'or more free shape parameters.' self.logger.error(msg) raise Exception(msg) verbosity = kwargs.get('verbosity', 0) if fitcache is None: fitcache = self._create_fitcache(**kwargs) fitcache.update(self.get_params(), tol, max_iter, init_lambda, use_reduced) logemin = self.loge_bounds[0] logemax = self.loge_bounds[1] imin = int(utils.val_to_edge(self.log_energies, logemin)[0]) imax = int(utils.val_to_edge(self.log_energies, logemax)[0]) if ebin is not None: fitcache.fitcache.setEnergyBin(ebin) elif imin == 0 and imax == self.enumbins: fitcache.fitcache.setEnergyBin(-1) else: fitcache.fitcache.setEnergyBins(imin, imax) num_free = len(free_norm_params) o = {'fit_status': 0, 'fit_quality': 3, 'fit_success': True, 'edm': 0, 'loglike': None, 'values': np.ones(num_free) * np.nan, 'errors': np.ones(num_free) * np.nan, 'indices': np.zeros(num_free, dtype=int), 'is_norm': np.empty(num_free, dtype=bool), 'src_names': num_free * [None], 'par_names': num_free * [None], } if num_free == 0: return o ref_vals = np.array(fitcache.fitcache.refValues()) free = np.array(fitcache.fitcache.currentFree()) norm_vals = ref_vals[free] norm_idxs = [] for i, p in enumerate(free_norm_params): norm_idxs += [p['idx']] o['indices'][i] = p['idx'] o['src_names'][i] = p['src_name'] o['par_names'][i] = p['par_name'] o['is_norm'][i] = p['is_norm'] o['fit_status'] = fitcache.fit(verbose=verbosity) o['edm'] = fitcache.fitcache.currentEDM() pars, errs, cov = fitcache.get_pars() pars *= norm_vals errs *= norm_vals cov = cov * np.outer(norm_vals, norm_vals) o['values'] = pars o['errors'] = errs o['covariance'] = cov errinv = np.zeros_like(o['errors']) m = o['errors'] > 0 errinv[m] = 1. / o['errors'][m] o['correlation'] = o['covariance'] * np.outer(errinv, errinv) if o['fit_status'] in [-2, 0]: for idx, val, err in zip(norm_idxs, pars, errs): self._set_value_bounded(idx, val) self.like[idx].setError(err) self.like.syncSrcParams() o['fit_success'] = True else: o['fit_success'] = False if o['fit_status']: self.logger.error('Error in NEWTON fit. Fit Status: %i', o['fit_status']) # FIXME: Figure out why currentLogLike gets out of sync #loglike = fitcache.fitcache.currentLogLike() #prior_vals, prior_errs, has_prior = gtutils.get_priors(self.like) #loglike -= np.sum(has_prior) * np.log(np.sqrt(2 * np.pi)) loglike = -self.like() o['loglike'] = loglike return o
Fast fitting method using newton fitter.
entailment
def load_xml(self, xmlfile): """Load model definition from XML. Parameters ---------- xmlfile : str Name of the input XML file. """ self.logger.info('Loading XML') for c in self.components: c.load_xml(xmlfile) for name in self.like.sourceNames(): self.update_source(name) self._fitcache = None self.logger.info('Finished Loading XML')
Load model definition from XML. Parameters ---------- xmlfile : str Name of the input XML file.
entailment
def load_parameters_from_yaml(self, yamlfile, update_sources=False): """Load model parameters from yaml Parameters ---------- yamlfile : str Name of the input yaml file. """ d = utils.load_yaml(yamlfile) for src, src_pars in d.items(): for par_name, par_dict in src_pars.items(): if par_name in ['SpectrumType']: continue par_value = par_dict.get('value', None) par_error = par_dict.get('error', None) par_scale = par_dict.get('scale', None) par_min = par_dict.get('min', None) par_max = par_dict.get('max', None) par_free = par_dict.get('free', None) if par_min is not None and par_max is not None: par_bounds = [par_min, par_max] else: par_bounds = None try: self.set_parameter(src, par_name, par_value, true_value=False, scale=par_scale, bounds=par_bounds, error=par_error, update_source=update_sources) except RuntimeError as msg: self.logger.warn(msg) self.logger.warn("Did not set parameter %s:%s"%(src,par_name)) continue except Exception as msg: self.logger.warn(msg) continue if par_free is not None: self.free_parameter(src, par_name, par_free) self._sync_params_state()
Load model parameters from yaml Parameters ---------- yamlfile : str Name of the input yaml file.
entailment
def _restore_counts_maps(self): """ Revert counts maps to their state prior to injecting any simulated components. """ for c in self.components: c.restore_counts_maps() if hasattr(self.like.components[0].logLike, 'setCountsMap'): self._init_roi_model() else: self.write_xml('tmp') self._like = SummedLikelihood() for i, c in enumerate(self._components): c._create_binned_analysis() self._like.addComponent(c.like) self._init_roi_model() self.load_xml('tmp')
Revert counts maps to their state prior to injecting any simulated components.
entailment
def simulate_source(self, src_dict=None): """ Inject simulated source counts into the data. Parameters ---------- src_dict : dict Dictionary defining the spatial and spectral properties of the source that will be injected. """ self._fitcache = None if src_dict is None: src_dict = {} else: src_dict = copy.deepcopy(src_dict) skydir = wcs_utils.get_target_skydir(src_dict, self.roi.skydir) src_dict.setdefault('ra', skydir.ra.deg) src_dict.setdefault('dec', skydir.dec.deg) src_dict.setdefault('SpatialModel', 'PointSource') src_dict.setdefault('SpatialWidth', 0.3) src_dict.setdefault('Index', 2.0) src_dict.setdefault('Prefactor', 1E-13) self.add_source('mcsource', src_dict, free=True, init_source=False) for c in self.components: c.simulate_roi('mcsource', clear=False) self.delete_source('mcsource') if hasattr(self.like.components[0].logLike, 'setCountsMap'): self._init_roi_model() else: self.write_xml('tmp') self._like = SummedLikelihood() for i, c in enumerate(self._components): c._create_binned_analysis('tmp.xml') self._like.addComponent(c.like) self._init_roi_model() self.load_xml('tmp')
Inject simulated source counts into the data. Parameters ---------- src_dict : dict Dictionary defining the spatial and spectral properties of the source that will be injected.
entailment
def simulate_roi(self, name=None, randomize=True, restore=False): """Generate a simulation of the ROI using the current best-fit model and replace the data counts cube with this simulation. The simulation is created by generating an array of Poisson random numbers with expectation values drawn from the model cube of the binned analysis instance. This function will update the counts cube both in memory and in the source map file. The counts cube can be restored to its original state by calling this method with ``restore`` = True. Parameters ---------- name : str Name of the model component to be simulated. If None then the whole ROI will be simulated. restore : bool Restore the data counts cube to its original state. """ self.logger.info('Simulating ROI') self._fitcache = None if restore: self.logger.info('Restoring') self._restore_counts_maps() self.logger.info('Finished') return for c in self.components: c.simulate_roi(name=name, clear=True, randomize=randomize) if hasattr(self.like.components[0].logLike, 'setCountsMap'): self._init_roi_model() else: self.write_xml('tmp') self._like = SummedLikelihood() for i, c in enumerate(self._components): c._create_binned_analysis('tmp.xml') self._like.addComponent(c.like) self._init_roi_model() self.load_xml('tmp') self.logger.info('Finished')
Generate a simulation of the ROI using the current best-fit model and replace the data counts cube with this simulation. The simulation is created by generating an array of Poisson random numbers with expectation values drawn from the model cube of the binned analysis instance. This function will update the counts cube both in memory and in the source map file. The counts cube can be restored to its original state by calling this method with ``restore`` = True. Parameters ---------- name : str Name of the model component to be simulated. If None then the whole ROI will be simulated. restore : bool Restore the data counts cube to its original state.
entailment
def write_model_map(self, model_name, name=None): """Save the counts model map to a FITS file. Parameters ---------- model_name : str String that will be append to the name of the output file. name : str Name of the component. Returns ------- """ maps = [c.write_model_map(model_name, name) for c in self.components] outfile = os.path.join(self.workdir, 'mcube_%s.fits' % (model_name)) mmap = Map.from_geom(self.geom) for m in maps: mmap.coadd(m) mmap.write(outfile, overwrite=True, conv='fgst-ccube') return [mmap] + maps
Save the counts model map to a FITS file. Parameters ---------- model_name : str String that will be append to the name of the output file. name : str Name of the component. Returns -------
entailment
def write_weight_map(self, model_name): """Save the counts model map to a FITS file. Parameters ---------- model_name : str String that will be append to the name of the output file. Returns ------- """ maps = [c.write_weight_map(model_name) for c in self.components] outfile = os.path.join(self.workdir, 'wcube_%s.fits' % (model_name)) wmap = Map.from_geom(self.geom) # FIXME: Should we average weights maps rather than coadding? for m in maps: wmap.coadd(m) wmap.write(outfile, overwrite=True, conv='fgst-ccube') return [wmap] + maps
Save the counts model map to a FITS file. Parameters ---------- model_name : str String that will be append to the name of the output file. Returns -------
entailment
def print_roi(self, loglevel=logging.INFO): """Print information about the spectral and spatial properties of the ROI (sources, diffuse components).""" self.logger.log(loglevel, '\n' + str(self.roi))
Print information about the spectral and spatial properties of the ROI (sources, diffuse components).
entailment
def print_params(self, allpars=False, loglevel=logging.INFO): """Print information about the model parameters (values, errors, bounds, scale).""" pars = self.get_params() o = '\n' o += '%4s %-20s%10s%10s%10s%10s%10s%5s\n' % ( 'idx', 'parname', 'value', 'error', 'min', 'max', 'scale', 'free') o += '-' * 80 + '\n' src_pars = collections.OrderedDict() for p in pars: src_pars.setdefault(p['src_name'], []) src_pars[p['src_name']] += [p] free_sources = [] for k, v in src_pars.items(): for p in v: if not p['free']: continue free_sources += [k] for k, v in src_pars.items(): if not allpars and k not in free_sources: continue o += '%s\n' % k for p in v: o += '%4i %-20.19s' % (p['idx'], p['par_name']) o += '%10.3g%10.3g' % (p['value'], p['error']) o += '%10.3g%10.3g%10.3g' % (p['min'], p['max'], p['scale']) if p['free']: o += ' *' else: o += ' ' o += '\n' self.logger.log(loglevel, o)
Print information about the model parameters (values, errors, bounds, scale).
entailment
def load_roi(self, infile, reload_sources=False, params=None, mask=None): """This function reloads the analysis state from a previously saved instance generated with `~fermipy.gtanalysis.GTAnalysis.write_roi`. Parameters ---------- infile : str reload_sources : bool Regenerate source maps for non-diffuse sources. params : str Path to a yaml file with updated parameter values mask : str Path to a fits file with an updated mask """ infile = utils.resolve_path(infile, workdir=self.workdir) roi_file, roi_data = utils.load_data(infile, workdir=self.workdir) self.logger.info('Loading ROI file: %s', roi_file) key_map = {'dfde': 'dnde', 'dfde100': 'dnde100', 'dfde1000': 'dnde1000', 'dfde10000': 'dnde10000', 'dfde_index': 'dnde_index', 'dfde100_index': 'dnde100_index', 'dfde1000_index': 'dnde1000_index', 'dfde10000_index': 'dnde10000_index', 'e2dfde': 'e2dnde', 'e2dfde100': 'e2dnde100', 'e2dfde1000': 'e2dnde1000', 'e2dfde10000': 'e2dnde10000', 'Npred': 'npred', 'Npred_wt': 'npred_wt', 'logLike': 'loglike', 'dlogLike': 'dloglike', 'emin': 'e_min', 'ectr': 'e_ctr', 'emax': 'e_max', 'logemin': 'loge_min', 'logectr': 'loge_ctr', 'logemax': 'loge_max', 'ref_dfde': 'ref_dnde', 'ref_e2dfde': 'ref_e2dnde', 'ref_dfde_emin': 'ref_dnde_e_min', 'ref_dfde_emax': 'ref_dnde_e_max', } self._roi_data = utils.update_keys(roi_data['roi'], key_map) if 'erange' in self._roi_data: self._roi_data['loge_bounds'] = self._roi_data.pop('erange') self._loge_bounds = self._roi_data.setdefault('loge_bounds', self.loge_bounds) sources = roi_data.pop('sources') sources = utils.update_keys(sources, key_map) for k0, v0 in sources.items(): for k, v in defaults.source_flux_output.items(): if k not in v0: continue if v[2] == float and isinstance(v0[k], np.ndarray): sources[k0][k], sources[k0][k + '_err'] \ = v0[k][0], v0[k][1] self.roi.load_sources(sources.values()) for i, c in enumerate(self.components): if 'src_expscale' in self._roi_data['components'][i]: c._src_expscale = copy.deepcopy(self._roi_data['components'] [i]['src_expscale']) self._create_likelihood(infile) self.set_energy_range(self.loge_bounds[0], self.loge_bounds[1]) if params is not None: self.load_parameters_from_yaml(params) if mask is not None: self.set_weights_map(mask, update_roi=False) if reload_sources: names = [s.name for s in self.roi.sources if not s.diffuse] self.reload_sources(names, False) self.logger.info('Finished Loading ROI')
This function reloads the analysis state from a previously saved instance generated with `~fermipy.gtanalysis.GTAnalysis.write_roi`. Parameters ---------- infile : str reload_sources : bool Regenerate source maps for non-diffuse sources. params : str Path to a yaml file with updated parameter values mask : str Path to a fits file with an updated mask
entailment
def write_roi(self, outfile=None, save_model_map=False, **kwargs): """Write current state of the analysis to a file. This method writes an XML model definition, a ROI dictionary, and a FITS source catalog file. A previously saved analysis state can be reloaded from the ROI dictionary file with the `~fermipy.gtanalysis.GTAnalysis.load_roi` method. Parameters ---------- outfile : str String prefix of the output files. The extension of this string will be stripped when generating the XML, YAML and npy filenames. make_plots : bool Generate diagnostic plots. save_model_map : bool Save the current counts model to a FITS file. """ # extract the results in a convenient format make_plots = kwargs.get('make_plots', False) save_weight_map = kwargs.get('save_weight_map', False) if outfile is None: pathprefix = os.path.join(self.config['fileio']['workdir'], 'results') elif not os.path.isabs(outfile): pathprefix = os.path.join(self.config['fileio']['workdir'], outfile) else: pathprefix = outfile pathprefix = utils.strip_suffix(pathprefix, ['fits', 'yaml', 'npy']) # pathprefix, ext = os.path.splitext(pathprefix) prefix = os.path.basename(pathprefix) xmlfile = pathprefix + '.xml' fitsfile = pathprefix + '.fits' npyfile = pathprefix + '.npy' self.write_xml(xmlfile) self.write_fits(fitsfile) if not self.config['gtlike']['use_external_srcmap']: for c in self.components: c.like.logLike.saveSourceMaps(str(c.files['srcmap'])) if save_model_map: self.write_model_map(prefix) if save_weight_map: self.write_weight_map(prefix) o = {} o['roi'] = copy.deepcopy(self._roi_data) o['config'] = copy.deepcopy(self.config) o['version'] = fermipy.__version__ o['stversion'] = fermipy.get_st_version() o['sources'] = {} for s in self.roi.sources: o['sources'][s.name] = copy.deepcopy(s.data) for i, c in enumerate(self.components): o['roi']['components'][i][ 'src_expscale'] = copy.deepcopy(c.src_expscale) self.logger.info('Writing %s...', npyfile) np.save(npyfile, o) if make_plots: self.make_plots(prefix, None, **kwargs.get('plotting', {}))
Write current state of the analysis to a file. This method writes an XML model definition, a ROI dictionary, and a FITS source catalog file. A previously saved analysis state can be reloaded from the ROI dictionary file with the `~fermipy.gtanalysis.GTAnalysis.load_roi` method. Parameters ---------- outfile : str String prefix of the output files. The extension of this string will be stripped when generating the XML, YAML and npy filenames. make_plots : bool Generate diagnostic plots. save_model_map : bool Save the current counts model to a FITS file.
entailment
def make_plots(self, prefix, mcube_map=None, **kwargs): """Make diagnostic plots using the current ROI model.""" #mcube_maps = kwargs.pop('mcube_maps', None) if mcube_map is None: mcube_map = self.model_counts_map() plotter = plotting.AnalysisPlotter(self.config['plotting'], fileio=self.config['fileio'], logging=self.config['logging']) plotter.run(self, mcube_map, prefix=prefix, **kwargs)
Make diagnostic plots using the current ROI model.
entailment
def curvature(self, name, **kwargs): """Test whether a source shows spectral curvature by comparing the likelihood ratio of PowerLaw and LogParabola spectral models. Parameters ---------- name : str Source name. """ name = self.roi.get_source_by_name(name).name saved_state = LikelihoodState(self.like) source = self.components[0].like.logLike.getSource(str(name)) old_spectrum = source.spectrum() old_pars = copy.deepcopy(self.roi[name].spectral_pars) old_type = self.roi[name]['SpectrumType'] if old_type != 'PowerLaw': dnde = self.like[name].spectrum()(pyLike.dArg(1000.)) value, scale = utils.scale_parameter(dnde) pars0 = { 'Prefactor': {'value': value, 'scale': scale, 'min': 1E-5, 'max': 1000., 'free': True}, 'Index': {'value': 2.0, 'scale': -1.0, 'min': 0.0, 'max': 5.0, 'free': False}, 'Scale': {'value': 1E3, 'scale': 1.0, 'min': 1., 'max': 1E6, 'free': False}, } self.set_source_spectrum(str(name), 'PowerLaw', spectrum_pars=pars0, update_source=False) self.free_source(name, loglevel=logging.DEBUG) fit_pl = self._fit(loglevel=logging.DEBUG) prefactor = self._get_param(name, 'Prefactor') index = self._get_param(name, 'Index') scale = self._get_param(name, 'Scale') pars1 = { 'norm': copy.deepcopy(prefactor), 'alpha': copy.deepcopy(index), 'Eb': copy.deepcopy(scale), } pars1['alpha']['scale'] *= -1 pars1['alpha']['min'] = -5.0 pars1['alpha']['max'] = 5.0 self.set_source_spectrum(str(name), 'LogParabola', spectrum_pars=pars1, update_source=False) self.free_source(name, loglevel=logging.DEBUG) fit_lp = self._fit(loglevel=logging.DEBUG) self.set_source_spectrum(str(name), old_type, spectrum_pars=old_pars, update_source=False) pars2 = { 'Prefactor': copy.deepcopy(prefactor), 'Index1': copy.deepcopy(index), 'Cutoff': {'value': 1000.0, 'scale': 1E3, 'min': 10.0, 'max': 1E4, 'free': True}, 'Index2': {'value': 1.0, 'scale': 1.0, 'min': 1.0, 'max': 1.0, 'free': False}, 'Scale': copy.deepcopy(scale) } self.set_source_spectrum(str(name), 'PLSuperExpCutoff', spectrum_pars=pars2, update_source=False) self.free_source(name, loglevel=logging.DEBUG) fit_ple = self._fit(loglevel=logging.DEBUG) # Revert to initial spectral model self.set_source_spectrum(str(name), old_type, spectrum_pars=old_pars, update_source=False) saved_state.restore() lp_ts_curv = 2.0 * (fit_lp['loglike'] - fit_pl['loglike']) ple_ts_curv = 2.0 * (fit_ple['loglike'] - fit_pl['loglike']) o = MutableNamedTuple(ts_curv=lp_ts_curv, lp_ts_curv=lp_ts_curv, ple_ts_curv=ple_ts_curv, loglike_pl=fit_pl['loglike'], loglike_lp=fit_lp['loglike'], loglike_ple=fit_ple['loglike']) self.logger.info('LogLike_PL: %12.3f LogLike_LP: %12.3f LogLike_PLE: %12.3f', o.loglike_pl, o.loglike_lp, o.loglike_ple) self.logger.info('TS_curv: %.3f (LP)', o.lp_ts_curv) self.logger.info('TS_curv: %.3f (PLE)', o.ple_ts_curv) return o
Test whether a source shows spectral curvature by comparing the likelihood ratio of PowerLaw and LogParabola spectral models. Parameters ---------- name : str Source name.
entailment
def bowtie(self, name, fd=None, loge=None): """Generate a spectral uncertainty band (bowtie) for the given source. This will create an uncertainty band on the differential flux as a function of energy by propagating the errors on the global fit parameters. Note that this band only reflects the uncertainty for parameters that are currently free in the model. Parameters ---------- name : str Source name. fd : FluxDensity Flux density object. If this parameter is None then one will be created. loge : array-like Sequence of energies in log10(E/MeV) at which the flux band will be evaluated. """ if loge is None: logemin = self.log_energies[0] logemax = self.log_energies[-1] loge = np.linspace(logemin, logemax, 50) o = {'energies': 10**loge, 'log_energies': loge, 'dnde': np.zeros(len(loge)) * np.nan, 'dnde_lo': np.zeros(len(loge)) * np.nan, 'dnde_hi': np.zeros(len(loge)) * np.nan, 'dnde_err': np.zeros(len(loge)) * np.nan, 'dnde_ferr': np.zeros(len(loge)) * np.nan, 'pivot_energy': np.nan} try: if fd is None: fd = FluxDensity.FluxDensity(self.like, name) except RuntimeError: self.logger.error('Failed to create FluxDensity', exc_info=True) return o dnde = [fd.value(10 ** x) for x in loge] dnde_err = [fd.error(10 ** x) for x in loge] dnde = np.array(dnde) dnde_err = np.array(dnde_err) m = dnde > 0 fhi = np.zeros_like(dnde) flo = np.zeros_like(dnde) ferr = np.zeros_like(dnde) fhi[m] = dnde[m] * (1.0 + dnde_err[m] / dnde[m]) flo[m] = dnde[m] / (1.0 + dnde_err[m] / dnde[m]) ferr[m] = 0.5 * (fhi[m] - flo[m]) / dnde[m] fhi[~m] = dnde_err[~m] o['dnde'] = dnde o['dnde_lo'] = flo o['dnde_hi'] = fhi o['dnde_err'] = dnde_err o['dnde_ferr'] = ferr try: o['pivot_energy'] = 10 ** utils.interpolate_function_min(loge, o[ 'dnde_ferr']) except Exception: self.logger.error('Failed to compute pivot energy', exc_info=True) return o
Generate a spectral uncertainty band (bowtie) for the given source. This will create an uncertainty band on the differential flux as a function of energy by propagating the errors on the global fit parameters. Note that this band only reflects the uncertainty for parameters that are currently free in the model. Parameters ---------- name : str Source name. fd : FluxDensity Flux density object. If this parameter is None then one will be created. loge : array-like Sequence of energies in log10(E/MeV) at which the flux band will be evaluated.
entailment
def update_source(self, name, paramsonly=False, reoptimize=False, **kwargs): """Update the dictionary for this source. Parameters ---------- name : str paramsonly : bool reoptimize : bool Re-fit background parameters in likelihood scan. """ npts = self.config['gtlike']['llscan_npts'] optimizer = kwargs.get('optimizer', self.config['optimizer']) sd = self.get_src_model(name, paramsonly, reoptimize, npts, optimizer=optimizer) src = self.roi.get_source_by_name(name) src.update_data(sd)
Update the dictionary for this source. Parameters ---------- name : str paramsonly : bool reoptimize : bool Re-fit background parameters in likelihood scan.
entailment
def get_src_model(self, name, paramsonly=False, reoptimize=False, npts=None, **kwargs): """Compose a dictionary for a source with the current best-fit parameters. Parameters ---------- name : str paramsonly : bool Skip computing TS and likelihood profile. reoptimize : bool Re-fit background parameters in likelihood scan. npts : int Number of points for likelihood scan. Returns ------- src_dict : dict """ self.logger.debug('Generating source dict for ' + name) optimizer = kwargs.get('optimizer', self.config['optimizer']) if npts is None: npts = self.config['gtlike']['llscan_npts'] name = self.get_source_name(name) source = self.like[name].src spectrum = source.spectrum() normPar = self.like.normPar(name) src_dict = defaults.make_default_dict(defaults.source_flux_output) src_dict.update({'name': name, 'pivot_energy': 1000., 'ts': np.nan, 'loglike': np.nan, 'npred': 0.0, 'npred_wt': 0.0, 'loglike_scan': np.nan * np.ones(npts), 'dloglike_scan': np.nan * np.ones(npts), 'eflux_scan': np.nan * np.ones(npts), 'flux_scan': np.nan * np.ones(npts), 'norm_scan': np.nan * np.ones(npts), }) src_dict.update(gtutils.gtlike_spectrum_to_vectors(spectrum)) src_dict['spectral_pars'] = gtutils.get_function_pars_dict(spectrum) # Get Counts Spectrum src_dict['model_counts'] = self.model_counts_spectrum( name, summed=True) src_dict['model_counts_wt'] = self.model_counts_spectrum( name, summed=True, weighted=True) # Get NPred src_dict['npred'] = self.like.NpredValue(str(name)) # EAC, we need this b/c older version of the ST don't have the right signature try: src_dict['npred_wt'] = self.like.NpredValue(str(name), True) except (TypeError, NotImplementedError): src_dict['npred_wt'] = src_dict['npred'] # Get the Model Fluxes try: thesrc = self.like[name] src_dict['flux'] = self.like.flux(name, self.energies[0], self.energies[-1]) src_dict['flux100'] = self.like.flux(name, 100., 10 ** 5.5) src_dict['flux1000'] = self.like.flux(name, 1000., 10 ** 5.5) src_dict['flux10000'] = self.like.flux(name, 10000., 10 ** 5.5) src_dict['eflux'] = self.like.energyFlux(name, self.energies[0], self.energies[-1]) src_dict['eflux100'] = self.like.energyFlux(name, 100., 10 ** 5.5) src_dict['eflux1000'] = self.like.energyFlux(name, 1000., 10 ** 5.5) src_dict['eflux10000'] = self.like.energyFlux(name, 10000., 10 ** 5.5) src_dict['dnde'] = self.like[name].spectrum()( pyLike.dArg(src_dict['pivot_energy'])) src_dict['dnde100'] = self.like[name].spectrum()( pyLike.dArg(100.)) src_dict['dnde1000'] = self.like[name].spectrum()( pyLike.dArg(1000.)) src_dict['dnde10000'] = self.like[name].spectrum()( pyLike.dArg(10000.)) if normPar.getValue() == 0: normPar.setValue(1.0) dnde_index = -get_spectral_index(self.like[name], src_dict['pivot_energy']) dnde100_index = -get_spectral_index(self.like[name], 100.) dnde1000_index = -get_spectral_index(self.like[name], 1000.) dnde10000_index = -get_spectral_index(self.like[name], 10000.) normPar.setValue(0.0) else: dnde_index = -get_spectral_index(self.like[name], src_dict['pivot_energy']) dnde100_index = -get_spectral_index(self.like[name], 100.) dnde1000_index = -get_spectral_index(self.like[name], 1000.) dnde10000_index = -get_spectral_index(self.like[name], 10000.) src_dict['dnde_index'] = dnde_index src_dict['dnde100_index'] = dnde100_index src_dict['dnde1000_index'] = dnde1000_index src_dict['dnde10000_index'] = dnde10000_index except Exception: self.logger.error('Failed to update source parameters.', exc_info=True) # Only compute TS, errors, and ULs if the source was free in # the fit if not self.get_free_source_params(name) or paramsonly: return src_dict emax = 10 ** 5.5 try: src_dict['flux_err'] = self.like.fluxError(name, self.energies[0], self.energies[-1]) src_dict['flux100_err'] = self.like.fluxError(name, 100., emax) src_dict['flux1000_err'] = self.like.fluxError(name, 1000., emax) src_dict['flux10000_err'] = self.like.fluxError(name, 10000., emax) src_dict['eflux_err'] = \ self.like.energyFluxError(name, self.energies[0], self.energies[-1]) src_dict['eflux100_err'] = self.like.energyFluxError(name, 100., emax) src_dict['eflux1000_err'] = self.like.energyFluxError(name, 1000., emax) src_dict['eflux10000_err'] = self.like.energyFluxError(name, 10000., emax) except Exception: pass # self.logger.error('Failed to update source parameters.', # exc_info=True) lnlp = self.profile_norm(name, savestate=True, reoptimize=reoptimize, npts=npts, optimizer=optimizer) src_dict['loglike_scan'] = lnlp['loglike'] src_dict['dloglike_scan'] = lnlp['dloglike'] src_dict['eflux_scan'] = lnlp['eflux'] src_dict['flux_scan'] = lnlp['flux'] src_dict['norm_scan'] = lnlp['xvals'] src_dict['loglike'] = np.max(lnlp['loglike']) flux_ul_data = utils.get_parameter_limits( lnlp['flux'], lnlp['dloglike']) eflux_ul_data = utils.get_parameter_limits( lnlp['eflux'], lnlp['dloglike']) if normPar.getValue() == 0: normPar.setValue(1.0) flux = self.like.flux(name, self.energies[0], self.energies[-1]) flux100 = self.like.flux(name, 100., emax) flux1000 = self.like.flux(name, 1000., emax) flux10000 = self.like.flux(name, 10000., emax) eflux = self.like.energyFlux(name, self.energies[0], self.energies[-1]) eflux100 = self.like.energyFlux(name, 100., emax) eflux1000 = self.like.energyFlux(name, 1000., emax) eflux10000 = self.like.energyFlux(name, 10000., emax) flux100_ratio = flux100 / flux flux1000_ratio = flux1000 / flux flux10000_ratio = flux10000 / flux eflux100_ratio = eflux100 / eflux eflux1000_ratio = eflux1000 / eflux eflux10000_ratio = eflux10000 / eflux normPar.setValue(0.0) else: flux100_ratio = src_dict['flux100'] / src_dict['flux'] flux1000_ratio = src_dict['flux1000'] / src_dict['flux'] flux10000_ratio = src_dict['flux10000'] / src_dict['flux'] eflux100_ratio = src_dict['eflux100'] / src_dict['eflux'] eflux1000_ratio = src_dict['eflux1000'] / src_dict['eflux'] eflux10000_ratio = src_dict['eflux10000'] / src_dict['eflux'] src_dict['flux_ul95'] = flux_ul_data['ul'] src_dict['flux100_ul95'] = flux_ul_data['ul'] * flux100_ratio src_dict['flux1000_ul95'] = flux_ul_data['ul'] * flux1000_ratio src_dict['flux10000_ul95'] = flux_ul_data['ul'] * flux10000_ratio src_dict['eflux_ul95'] = eflux_ul_data['ul'] src_dict['eflux100_ul95'] = eflux_ul_data['ul'] * eflux100_ratio src_dict['eflux1000_ul95'] = eflux_ul_data['ul'] * eflux1000_ratio src_dict['eflux10000_ul95'] = eflux_ul_data['ul'] * eflux10000_ratio # Extract covariance matrix fd = None try: fd = FluxDensity.FluxDensity(self.like, name) src_dict['covar'] = fd.covar except RuntimeError: pass # if ex.message == 'Covariance matrix has not been # computed.': # Extract bowtie if fd and len(src_dict['covar']) and src_dict['covar'].ndim >= 1: loge = np.linspace(self.log_energies[0], self.log_energies[-1], 50) src_dict['model_flux'] = self.bowtie(name, fd=fd, loge=loge) src_dict['dnde100_err'] = fd.error(100.) src_dict['dnde1000_err'] = fd.error(1000.) src_dict['dnde10000_err'] = fd.error(10000.) src_dict['pivot_energy'] = src_dict['model_flux']['pivot_energy'] e0 = src_dict['pivot_energy'] src_dict['dnde'] = self.like[name].spectrum()(pyLike.dArg(e0)) src_dict['dnde_err'] = fd.error(e0) if not reoptimize: src_dict['ts'] = self.like.Ts2(name, reoptimize=reoptimize) else: src_dict['ts'] = -2.0 * lnlp['dloglike'][0] return src_dict
Compose a dictionary for a source with the current best-fit parameters. Parameters ---------- name : str paramsonly : bool Skip computing TS and likelihood profile. reoptimize : bool Re-fit background parameters in likelihood scan. npts : int Number of points for likelihood scan. Returns ------- src_dict : dict
entailment
def compute_srcprob(self,xmlfile=None, overwrite=False): """Run the gtsrcprob app with the current model or a user provided xmlfile""" for i,c in enumerate(self.components): # compute diffuse response, necessary for srcprob c._diffrsp_app(xmlfile=xmlfile) # compute srcprob c._srcprob_app(xmlfile = xmlfile, overwrite = overwrite)
Run the gtsrcprob app with the current model or a user provided xmlfile
entailment
def reload_source(self, name): """Recompute the source map for a single source in the model. """ src = self.roi.get_source_by_name(name) if hasattr(self.like.logLike, 'loadSourceMap'): self.like.logLike.loadSourceMap(str(name), True, False) srcmap_utils.delete_source_map(self.files['srcmap'], name) self.like.logLike.saveSourceMaps(str(self.files['srcmap'])) self._scale_srcmap(self._src_expscale, check_header=False, names=[name]) self.like.logLike.buildFixedModelWts() else: self.write_xml('tmp') src = self.delete_source(name) self.add_source(name, src, free=True) self.load_xml('tmp')
Recompute the source map for a single source in the model.
entailment
def reload_sources(self, names): """Recompute the source map for a list of sources in the model. """ try: self.like.logLike.loadSourceMaps(names, True, True) # loadSourceMaps doesn't overwrite the header so we need # to ignore EXPSCALE by setting check_header=False self._scale_srcmap(self._src_expscale, check_header=False, names=names) except: for name in names: self.reload_source(name)
Recompute the source map for a list of sources in the model.
entailment
def add_source(self, name, src_dict, free=None, save_source_maps=True, use_pylike=True, use_single_psf=False): """Add a new source to the model. Source properties (spectrum, spatial model) are set with the src_dict argument. Parameters ---------- name : str Source name. src_dict : dict or `~fermipy.roi_model.Source` object Dictionary or Source object defining the properties of the source. free : bool Initialize the source with the normalization parameter free. save_source_maps : bool Write the source map for this source to the source maps file. use_pylike : bool use_single_psf : bool """ # if self.roi.has_source(name): # msg = 'Source %s already exists.' % name # self.logger.error(msg) # raise Exception(msg) srcmap_utils.delete_source_map(self.files['srcmap'], name) src = self.roi[name] if self.config['gtlike']['expscale'] is not None and \ name not in self._src_expscale: self._src_expscale[name] = self.config['gtlike']['expscale'] if self._like is None: return if not use_pylike: self._update_srcmap_file([src], True) pylike_src = self._create_source(src) # Initialize source as free/fixed if free is not None: pylike_src.spectrum().normPar().setFree(free) if hasattr(pyLike, 'PsfIntegConfig') and \ hasattr(pyLike.PsfIntegConfig, 'set_use_single_psf'): config = pyLike.BinnedLikeConfig(self.like.logLike.config()) config.psf_integ_config().set_use_single_psf(use_single_psf) self.like.addSource(pylike_src, config) else: self.like.addSource(pylike_src) self.like.syncSrcParams(str(name)) self.like.logLike.buildFixedModelWts() if save_source_maps and \ not self.config['gtlike']['use_external_srcmap']: self.like.logLike.saveSourceMaps(str(self.files['srcmap'])) self.set_exposure_scale(name)
Add a new source to the model. Source properties (spectrum, spatial model) are set with the src_dict argument. Parameters ---------- name : str Source name. src_dict : dict or `~fermipy.roi_model.Source` object Dictionary or Source object defining the properties of the source. free : bool Initialize the source with the normalization parameter free. save_source_maps : bool Write the source map for this source to the source maps file. use_pylike : bool use_single_psf : bool
entailment
def _create_source(self, src): """Create a pyLikelihood Source object from a `~fermipy.roi_model.Model` object.""" if src['SpatialType'] == 'SkyDirFunction': pylike_src = pyLike.PointSource(self.like.logLike.observation()) pylike_src.setDir(src.skydir.ra.deg, src.skydir.dec.deg, False, False) elif src['SpatialType'] == 'SpatialMap': filepath = str(utils.path_to_xmlpath(src['Spatial_Filename'])) sm = pyLike.SpatialMap(filepath) pylike_src = pyLike.DiffuseSource(sm, self.like.logLike.observation(), False) elif src['SpatialType'] == 'RadialProfile': filepath = str(utils.path_to_xmlpath(src['Spatial_Filename'])) sm = pyLike.RadialProfile(filepath) sm.setCenter(src['ra'], src['dec']) pylike_src = pyLike.DiffuseSource(sm, self.like.logLike.observation(), False) elif src['SpatialType'] == 'RadialGaussian': sm = pyLike.RadialGaussian(src.skydir.ra.deg, src.skydir.dec.deg, src.spatial_pars['Sigma']['value']) pylike_src = pyLike.DiffuseSource(sm, self.like.logLike.observation(), False) elif src['SpatialType'] == 'RadialDisk': sm = pyLike.RadialDisk(src.skydir.ra.deg, src.skydir.dec.deg, src.spatial_pars['Radius']['value']) pylike_src = pyLike.DiffuseSource(sm, self.like.logLike.observation(), False) elif src['SpatialType'] == 'MapCubeFunction': filepath = str(utils.path_to_xmlpath(src['Spatial_Filename'])) mcf = pyLike.MapCubeFunction2(filepath) pylike_src = pyLike.DiffuseSource(mcf, self.like.logLike.observation(), False) else: raise Exception('Unrecognized spatial type: %s', src['SpatialType']) if src['SpectrumType'] == 'FileFunction': fn = gtutils.create_spectrum_from_dict(src['SpectrumType'], src.spectral_pars) file_function = pyLike.FileFunction_cast(fn) filename = str(os.path.expandvars(src['Spectrum_Filename'])) file_function.readFunction(filename) elif src['SpectrumType'] == 'DMFitFunction': fn = pyLike.DMFitFunction() fn = gtutils.create_spectrum_from_dict(src['SpectrumType'], src.spectral_pars, fn) filename = str(os.path.expandvars(src['Spectrum_Filename'])) fn.readFunction(filename) else: fn = gtutils.create_spectrum_from_dict(src['SpectrumType'], src.spectral_pars) pylike_src.setSpectrum(fn) pylike_src.setName(str(src.name)) return pylike_src
Create a pyLikelihood Source object from a `~fermipy.roi_model.Model` object.
entailment
def set_exposure_scale(self, name, scale=None): """Set the exposure correction of a source. Parameters ---------- name : str Source name. scale : factor Exposure scale factor (1.0 = nominal exposure). """ name = self.roi.get_source_by_name(name).name if scale is None and name not in self._src_expscale: return elif scale is None: scale = self._src_expscale.get(name, 1.0) else: self._src_expscale[name] = scale self._scale_srcmap({name: scale})
Set the exposure correction of a source. Parameters ---------- name : str Source name. scale : factor Exposure scale factor (1.0 = nominal exposure).
entailment
def set_edisp_flag(self, name, flag=True): """Enable/Disable the energy dispersion correction for a source.""" src = self.roi.get_source_by_name(name) name = src.name self.like[name].src.set_edisp_flag(flag)
Enable/Disable the energy dispersion correction for a source.
entailment
def set_energy_range(self, logemin, logemax): """Set the energy range of the analysis. Parameters ---------- logemin: float Lower end of energy range in log10(E/MeV). logemax : float Upper end of energy range in log10(E/MeV). """ if logemin is None: logemin = self.log_energies[0] if logemax is None: logemax = self.log_energies[-1] imin = int(utils.val_to_edge(self.log_energies, logemin)[0]) imax = int(utils.val_to_edge(self.log_energies, logemax)[0]) if imin - imax == 0: imin = int(len(self.log_energies) - 1) imax = int(len(self.log_energies) - 1) klims = self.like.logLike.klims() if imin != klims[0] or imax != klims[1]: self.like.selectEbounds(imin, imax) return np.array([self.log_energies[imin], self.log_energies[imax]])
Set the energy range of the analysis. Parameters ---------- logemin: float Lower end of energy range in log10(E/MeV). logemax : float Upper end of energy range in log10(E/MeV).
entailment
def counts_map(self): """Return 3-D counts map for this component as a Map object. Returns ------- map : `~fermipy.skymap.MapBase` """ try: if isinstance(self.like, gtutils.SummedLikelihood): cmap = self.like.components[0].logLike.countsMap() p_method = cmap.projection().method() else: cmap = self.like.logLike.countsMap() p_method = cmap.projection().method() except Exception: p_method = 0 if p_method == 0: # WCS z = cmap.data() z = np.array(z).reshape(self.enumbins, self.npix, self.npix) return WcsNDMap(copy.deepcopy(self.geom), z) elif p_method == 1: # HPX z = cmap.data() z = np.array(z).reshape(self.enumbins, np.max(self.geom.npix)) return HpxNDMap(copy.deepcopy(self.geom), z) else: self.logger.error('Did not recognize CountsMap type %i' % p_method, exc_info=True) return None
Return 3-D counts map for this component as a Map object. Returns ------- map : `~fermipy.skymap.MapBase`
entailment
def weight_map(self): """Return 3-D weights map for this component as a Map object. Returns ------- map : `~fermipy.skymap.MapBase` """ # EAC we need the try blocks b/c older versions of the ST don't have some of these functions if isinstance(self.like, gtutils.SummedLikelihood): cmap = self.like.components[0].logLike.countsMap() try: p_method = cmap.projection().method() except AttributeError: p_method = 0 try: if self.like.components[0].logLike.has_weights(): wmap = self.like.components[0].logLike.weightMap() else: wmap = None except Exception: wmap = None else: cmap = self.like.logLike.countsMap() try: p_method = cmap.projection().method() except AttributeError: p_method = 0 try: if self.like.logLike.has_weights(): wmap = self.like.logLike.weightMap() else: wmap = None except Exception: wmap = None if p_method == 0: # WCS if wmap is None: z = np.ones((self.enumbins, self.npix, self.npix)) else: z = wmap.model() z = np.array(z).reshape(self.enumbins, self.npix, self.npix) return WcsNDMap(copy.deepcopy(self._geom), z) elif p_method == 1: # HPX nhpix = np.max(self.geom.npix) if wmap is None: z = np.ones((self.enumbins, nhpix)) else: z = wmap.model() z = np.array(z).reshape(self.enumbins, nhpix) return HpxNDMap(self.geom, z) else: self.logger.error('Did not recognize CountsMap type %i' % p_method, exc_info=True) return None
Return 3-D weights map for this component as a Map object. Returns ------- map : `~fermipy.skymap.MapBase`
entailment
def model_counts_map(self, name=None, exclude=None, use_mask=False): """Return the model expectation map for a single source, a set of sources, or all sources in the ROI. The map will be computed using the current model parameters. Parameters ---------- name : str Parameter that defines the sources for which the model map will be calculated. If name=None a model map will be generated for all sources in the model. If name='diffuse' a map for all diffuse sources will be generated. exclude : list Source name or list of source names that will be excluded from the model map. use_mask : bool Parameter that specifies in the model counts map should include mask pixels (i.e., ones whose weights are <= 0) Returns ------- map : `~fermipy.skymap.Map` A map object containing the counts and WCS projection. """ if self.projtype == "WCS": v = pyLike.FloatVector(self.npix ** 2 * self.enumbins) elif self.projtype == "HPX": v = pyLike.FloatVector(np.max(self.geom.npix) * self.enumbins) else: raise Exception("Unknown projection type %s", self.projtype) exclude = utils.arg_to_list(exclude) names = utils.arg_to_list(name) excluded_names = [] for i, t in enumerate(exclude): srcs = self.roi.get_sources_by_name(t) excluded_names += [s.name for s in srcs] if not hasattr(self.like.logLike, 'loadSourceMaps'): # Update fixed model self.like.logLike.buildFixedModelWts() # Populate source map hash self.like.logLike.buildFixedModelWts(True) elif (name is None or name == 'all') and not exclude: self.like.logLike.loadSourceMaps() src_names = [] if (name is None) or (name == 'all'): src_names = [src.name for src in self.roi.sources] elif name == 'diffuse': src_names = [src.name for src in self.roi.sources if src.diffuse] else: srcs = [self.roi.get_source_by_name(t) for t in names] src_names = [src.name for src in srcs] # Remove sources in exclude list src_names = [str(t) for t in src_names if t not in excluded_names] # EAC we need the try blocks b/c older versions of the ST don't have some of these functions if len(src_names) == len(self.roi.sources): try: self.like.logLike.computeModelMap(v, use_mask) except (TypeError, NotImplementedError): self.like.logLike.computeModelMap(v) elif not hasattr(self.like.logLike, 'setSourceMapImage'): for s in src_names: model = self.like.logLike.sourceMap(str(s)) try: self.like.logLike.updateModelMap(v, model, use_mask) except (TypeError, NotImplementedError): self.like.logLike.updateModelMap(v, model) else: try: if hasattr(self.like.logLike, 'has_weights'): self.like.logLike.computeModelMap(src_names, v, use_mask) else: self.like.logLike.computeModelMap(src_names, v) except: vsum = np.zeros(v.size()) for s in src_names: vtmp = pyLike.FloatVector(v.size()) if hasattr(self.like.logLike, 'has_weights'): self.like.logLike.computeModelMap( str(s), vtmp, use_mask) else: self.like.logLike.computeModelMap(str(s), vtmp) vsum += vtmp v = pyLike.FloatVector(vsum) if self.projtype == "WCS": z = np.array(v).reshape(self.enumbins, self.npix, self.npix) return WcsNDMap(copy.deepcopy(self._geom), z) elif self.projtype == "HPX": z = np.array(v).reshape(self.enumbins, np.max(self._geom.npix)) return HpxNDMap(copy.deepcopy(self._geom), z) else: raise Exception( "Did not recognize projection type %s", self.projtype)
Return the model expectation map for a single source, a set of sources, or all sources in the ROI. The map will be computed using the current model parameters. Parameters ---------- name : str Parameter that defines the sources for which the model map will be calculated. If name=None a model map will be generated for all sources in the model. If name='diffuse' a map for all diffuse sources will be generated. exclude : list Source name or list of source names that will be excluded from the model map. use_mask : bool Parameter that specifies in the model counts map should include mask pixels (i.e., ones whose weights are <= 0) Returns ------- map : `~fermipy.skymap.Map` A map object containing the counts and WCS projection.
entailment
def model_counts_spectrum(self, name, logemin, logemax, weighted=False): """Return the model counts spectrum of a source. Parameters ---------- name : str Source name. """ # EAC, we need this b/c older version of the ST don't have the right signature try: cs = np.array(self.like.logLike.modelCountsSpectrum( str(name), weighted)) except (TypeError, NotImplementedError): cs = np.array(self.like.logLike.modelCountsSpectrum(str(name))) imin = utils.val_to_edge(self.log_energies, logemin)[0] imax = utils.val_to_edge(self.log_energies, logemax)[0] if imax <= imin: raise Exception('Invalid energy range.') return cs[imin:imax]
Return the model counts spectrum of a source. Parameters ---------- name : str Source name.
entailment
def setup(self, overwrite=False, **kwargs): """Run pre-processing step for this component. This will generate all of the auxiliary files needed to instantiate a likelihood object. By default this function will skip any steps for which the output file already exists. Parameters ---------- overwrite : bool Run all pre-processing steps even if the output file of that step is present in the working directory. """ loglevel = kwargs.get('loglevel', self.loglevel) self.logger.log(loglevel, 'Running setup for component %s', self.name) use_external_srcmap = self.config['gtlike']['use_external_srcmap'] # Run data selection if not use_external_srcmap: self._select_data(overwrite=overwrite, **kwargs) # Create LT Cube if self._ext_ltcube is not None: self.logger.log(loglevel, 'Using external LT cube.') else: self._create_ltcube(overwrite=overwrite, **kwargs) self.logger.debug('Loading LT Cube %s', self.files['ltcube']) self._ltc = LTCube.create(self.files['ltcube']) # Extract tmin, tmax from LT cube self._tmin = self._ltc.tstart self._tmax = self._ltc.tstop self.logger.debug('Creating PSF model') self._psf = irfs.PSFModel.create(self.roi.skydir, self._ltc, self.config['gtlike']['irfs'], self.config['selection']['evtype'], self.energies) # Bin data and create exposure cube if not use_external_srcmap: self._bin_data(overwrite=overwrite, **kwargs) self._create_expcube(overwrite=overwrite, **kwargs) # This is needed in case the exposure map is in HEALPix hpxhduname = "HPXEXPOSURES" try: self._bexp = Map.read(self.files['bexpmap'], hdu=hpxhduname) except KeyError: self._bexp = Map.read(self.files['bexpmap']) # Write ROI XML self.roi.write_xml(self.files['srcmdl'], self.config['model']) # Create source maps file if not use_external_srcmap: self._create_srcmaps(overwrite=overwrite) if not self.config['data']['cacheft1'] and os.path.isfile(self.files['ft1']): self.logger.debug('Deleting FT1 file.') os.remove(self.files['ft1']) self.logger.log(loglevel, 'Finished setup for component %s', self.name)
Run pre-processing step for this component. This will generate all of the auxiliary files needed to instantiate a likelihood object. By default this function will skip any steps for which the output file already exists. Parameters ---------- overwrite : bool Run all pre-processing steps even if the output file of that step is present in the working directory.
entailment
def _scale_srcmap(self, scale_map, check_header=True, names=None): """Apply exposure corrections to the source map file. Parameters ---------- scale_map : dict Dictionary of exposure corrections. check_header : bool Check EXPSCALE header keyword to see if an exposure correction has already been applied to this source. names : list, optional Names of sources to which the exposure correction will be applied. If None then all sources will be corrected. """ srcmap = fits.open(self.files['srcmap']) for hdu in srcmap[1:]: if hdu.name not in scale_map: continue if names is not None and hdu.name not in names: continue scale = scale_map[hdu.name] if scale < 1e-20: self.logger.warning( "The expscale parameter was zero, setting it to 1e-8") scale = 1e-8 if 'EXPSCALE' in hdu.header and check_header: old_scale = hdu.header['EXPSCALE'] else: old_scale = 1.0 hdu.data *= scale / old_scale hdu.header['EXPSCALE'] = (scale, 'Exposure correction applied to this map') srcmap.writeto(self.files['srcmap'], overwrite=True) srcmap.close() # Force reloading the map from disk for name in scale_map.keys(): self.like.logLike.eraseSourceMap(str(name)) self.like.logLike.buildFixedModelWts()
Apply exposure corrections to the source map file. Parameters ---------- scale_map : dict Dictionary of exposure corrections. check_header : bool Check EXPSCALE header keyword to see if an exposure correction has already been applied to this source. names : list, optional Names of sources to which the exposure correction will be applied. If None then all sources will be corrected.
entailment
def _make_scaled_srcmap(self): """Make an exposure cube with the same binning as the counts map.""" self.logger.info('Computing scaled source map.') bexp0 = fits.open(self.files['bexpmap_roi']) bexp1 = fits.open(self.config['gtlike']['bexpmap']) srcmap = fits.open(self.config['gtlike']['srcmap']) if bexp0[0].data.shape != bexp1[0].data.shape: raise Exception('Wrong shape for input exposure map file.') bexp_ratio = bexp0[0].data / bexp1[0].data self.logger.info( 'Min/Med/Max exposure correction: %f %f %f' % (np.min(bexp_ratio), np.median( bexp_ratio), np.max(bexp_ratio))) for hdu in srcmap[1:]: if hdu.name == 'GTI': continue if hdu.name == 'EBOUNDS': continue hdu.data *= bexp_ratio srcmap.writeto(self.files['srcmap'], overwrite=True)
Make an exposure cube with the same binning as the counts map.
entailment
def simulate_roi(self, name=None, clear=True, randomize=True): """Simulate the whole ROI or inject a simulation of one or more model components into the data. Parameters ---------- name : str Name of the model component to be simulated. If None then the whole ROI will be simulated. clear : bool Zero the current counts map before injecting the simulation. randomize : bool Fill with each pixel with random values drawn from a poisson distribution. If false then fill each pixel with the counts expectation value. """ cm = self.counts_map() data = cm.data m = self.model_counts_map(name) if clear: data.fill(0.0) if randomize: if m.data.min()<0.: self.logger.warning('At least on negative value found in model map.' ' Changing it/them to 0') indexcond = np.where( m.data <0. ) m.data[indexcond]=np.zeros(len(m.data[indexcond])) data += np.random.poisson(m.data).astype(float) else: data += m.data if hasattr(self.like.logLike, 'setCountsMap'): self.like.logLike.setCountsMap(np.ravel(data)) srcmap_utils.update_source_maps(self.files['srcmap'], {'PRIMARY': data}, logger=self.logger) cm.write(self.files['ccubemc'], overwrite=True, conv='fgst-ccube')
Simulate the whole ROI or inject a simulation of one or more model components into the data. Parameters ---------- name : str Name of the model component to be simulated. If None then the whole ROI will be simulated. clear : bool Zero the current counts map before injecting the simulation. randomize : bool Fill with each pixel with random values drawn from a poisson distribution. If false then fill each pixel with the counts expectation value.
entailment
def write_model_map(self, model_name=None, name=None): """Save counts model map to a FITS file. """ if model_name is None: suffix = self.config['file_suffix'] else: suffix = '_%s%s' % (model_name, self.config['file_suffix']) self.logger.info('Generating model map for component %s.', self.name) outfile = os.path.join(self.config['fileio']['workdir'], 'mcube%s.fits' % (suffix)) cmap = self.model_counts_map(name, use_mask=False) cmap.write(outfile, overwrite=True, conv='fgst-ccube') return cmap
Save counts model map to a FITS file.
entailment
def write_weight_map(self, model_name=None): """Save counts model map to a FITS file. """ if model_name is None: suffix = self.config['file_suffix'] else: suffix = '_%s%s' % (model_name, self.config['file_suffix']) self.logger.info('Generating model map for component %s.', self.name) outfile = os.path.join(self.config['fileio']['workdir'], 'wcube%s.fits' % (suffix)) wmap = self.weight_map() wmap.write(outfile, overwrite=True, conv='fgst-ccube') return wmap
Save counts model map to a FITS file.
entailment
def _update_srcmap_file(self, sources, overwrite=True): """Check the contents of the source map file and generate source maps for any components that are not present.""" if not os.path.isfile(self.files['srcmap']): return hdulist = fits.open(self.files['srcmap']) hdunames = [hdu.name.upper() for hdu in hdulist] srcmaps = {} for src in sources: if src.name.upper() in hdunames and not overwrite: continue self.logger.debug('Creating source map for %s', src.name) srcmaps[src.name] = self._create_srcmap(src.name, src) if srcmaps: self.logger.debug( 'Updating source map file for component %s.', self.name) srcmap_utils.update_source_maps(self.files['srcmap'], srcmaps, logger=self.logger) hdulist.close()
Check the contents of the source map file and generate source maps for any components that are not present.
entailment
def _create_srcmap(self, name, src, **kwargs): """Generate the source map for a source.""" psf_scale_fn = kwargs.get('psf_scale_fn', None) skydir = src.skydir spatial_model = src['SpatialModel'] spatial_width = src['SpatialWidth'] xpix, ypix = self.geom.to_image().coord_to_pix(skydir) exp = self._bexp.interp_by_coord( (skydir, self._bexp.geom.axes[0].center)) cache = self._srcmap_cache.get(name, None) if cache is not None: k = cache.create_map([ypix, xpix]) else: k = srcmap_utils.make_srcmap(self._psf, exp, spatial_model, spatial_width, npix=self.npix, xpix=xpix, ypix=ypix, cdelt=self.config['binning']['binsz'], psf_scale_fn=psf_scale_fn, sparse=True) return k
Generate the source map for a source.
entailment
def _update_srcmap(self, name, src, **kwargs): """Update the source map for an existing source in memory.""" k = self._create_srcmap(name, src, **kwargs) scale = self._src_expscale.get(name, 1.0) k *= scale # Force the source map to be cached # FIXME: No longer necessary to force cacheing in ST after 11-05-02 self.like.logLike.sourceMap(str(name)).model() self.like.logLike.setSourceMapImage(str(name), np.ravel(k)) self.like.logLike.sourceMap(str(name)).model() normPar = self.like.normPar(name) if not normPar.isFree(): self.like.logLike.buildFixedModelWts()
Update the source map for an existing source in memory.
entailment
def generate_model(self, model_name=None, outfile=None): """Generate a counts model map from an XML model file using gtmodel. Parameters ---------- model_name : str Name of the model. If no name is given it will use the baseline model. outfile : str Override the name of the output model file. """ if model_name is not None: model_name = os.path.splitext(model_name)[0] if model_name is None or model_name == '': srcmdl = self.files['srcmdl'] else: srcmdl = self.get_model_path(model_name) if not os.path.isfile(srcmdl): raise Exception("Model file does not exist: %s", srcmdl) if model_name is None: suffix = self.config['file_suffix'] else: suffix = '_%s%s' % (model_name, self.config['file_suffix']) outfile = os.path.join(self.config['fileio']['workdir'], 'mcube%s.fits' % (suffix)) # May consider generating a custom source model file if not os.path.isfile(outfile): kw = dict(srcmaps=self.files['srcmap'], srcmdl=srcmdl, bexpmap=self.files['bexpmap'], outfile=outfile, expcube=self.files['ltcube'], irfs=self.config['gtlike']['irfs'], evtype=self.config['selection']['evtype'], edisp=bool(self.config['gtlike']['edisp']), outtype='ccube', chatter=self.config['logging']['chatter']) run_gtapp('gtmodel', self.logger, kw) else: self.logger.info('Skipping gtmodel')
Generate a counts model map from an XML model file using gtmodel. Parameters ---------- model_name : str Name of the model. If no name is given it will use the baseline model. outfile : str Override the name of the output model file.
entailment
def write_xml(self, xmlfile): """Write the XML model for this analysis component.""" xmlfile = self.get_model_path(xmlfile) self.logger.info('Writing %s...', xmlfile) self.like.writeXml(str(xmlfile))
Write the XML model for this analysis component.
entailment
def get_model_path(self, name): """Infer the path to the XML model name.""" name, ext = os.path.splitext(name) ext = '.xml' xmlfile = name + self.config['file_suffix'] + ext xmlfile = utils.resolve_path(xmlfile, workdir=self.config['fileio']['workdir']) return xmlfile
Infer the path to the XML model name.
entailment
def _tscube_app(self, xmlfile): """Run gttscube as an application.""" xmlfile = self.get_model_path(xmlfile) outfile = os.path.join(self.config['fileio']['workdir'], 'tscube%s.fits' % (self.config['file_suffix'])) kw = dict(cmap=self.files['ccube'], expcube=self.files['ltcube'], bexpmap=self.files['bexpmap'], irfs=self.config['gtlike']['irfs'], evtype=self.config['selection']['evtype'], srcmdl=xmlfile, nxpix=self.npix, nypix=self.npix, binsz=self.config['binning']['binsz'], xref=float(self.roi.skydir.ra.deg), yref=float(self.roi.skydir.dec.deg), proj=self.config['binning']['proj'], stlevel=0, coordsys=self.config['binning']['coordsys'], outfile=outfile) run_gtapp('gttscube', self.logger, kw)
Run gttscube as an application.
entailment
def _diffrsp_app(self,xmlfile=None, **kwargs): """ Compute the diffuse response """ loglevel = kwargs.get('loglevel', self.loglevel) self.logger.log(loglevel, 'Computing diffuse repsonce for component %s.', self.name) # set the srcmdl srcmdl_file = self.files['srcmdl'] if xmlfile is not None: srcmdl_file = self.get_model_path(xmlfile) kw = dict(evfile=self.files['ft1'], scfile=self.data_files['scfile'], irfs = self.config['gtlike']['irfs'], evtype = self.config['selection']['evtype'], srcmdl = srcmdl_file) run_gtapp('gtdiffrsp', self.logger, kw, loglevel=loglevel) return
Compute the diffuse response
entailment
def _srcprob_app(self,xmlfile=None, overwrite=False, **kwargs): """ Run srcprob for an analysis component as an application """ loglevel = kwargs.get('loglevel', self.loglevel) self.logger.log(loglevel, 'Computing src probability for component %s.', self.name) # set the srcmdl srcmdl_file = self.files['srcmdl'] if xmlfile is not None: srcmdl_file = self.get_model_path(xmlfile) # set the outfile # it's defined here and not in self.files dict # so that it is copied with the stage_output module # even if savefits is False outfile = os.path.join(self.workdir, 'ft1_srcprob{0[file_suffix]:s}.fits'.format(self.config)) kw = dict(evfile=self.files['ft1'], scfile=self.data_files['scfile'], outfile= outfile, irfs = self.config['gtlike']['irfs'], srcmdl = srcmdl_file) self.logger.debug(kw) # run gtapp for the srcprob if os.path.isfile(outfile) and not overwrite: self.logger.info('Skipping gtsrcprob') else: run_gtapp('gtsrcprob', self.logger, kw, loglevel=loglevel)
Run srcprob for an analysis component as an application
entailment
def purge_dict(idict): """Remove null items from a dictionary """ odict = {} for key, val in idict.items(): if is_null(val): continue odict[key] = val return odict
Remove null items from a dictionary
entailment
def main(cls): """Hook to run this `Chain` from the command line """ chain = cls.create() args = chain._run_argparser(sys.argv[1:]) chain._run_chain(sys.stdout, args.dry_run) chain._finalize(args.dry_run)
Hook to run this `Chain` from the command line
entailment
def _latch_file_info(self): """Internal function to update the dictionaries keeping track of input and output files """ self._map_arguments(self.args) self.files.latch_file_info(self.args) self.sub_files.file_dict.clear() self.sub_files.update(self.files.file_dict) for link in self._links.values(): self.sub_files.update(link.files.file_dict) self.sub_files.update(link.sub_files.file_dict)
Internal function to update the dictionaries keeping track of input and output files
entailment
def _set_link(self, linkname, cls, **kwargs): """Transfer options kwargs to a `Link` object, optionally building the `Link if needed. Parameters ---------- linkname : str Unique name of this particular link cls : type Type of `Link` being created or managed """ val_copy = purge_dict(kwargs.copy()) sub_link_prefix = val_copy.pop('link_prefix', '') link_prefix = self.link_prefix + sub_link_prefix create_args = dict(linkname=linkname, link_prefix=link_prefix, job_archive=val_copy.pop('job_archive', None), file_stage=val_copy.pop('file_stage', None)) job_args = val_copy if linkname in self._links: link = self._links[linkname] link.update_args(job_args) else: link = cls.create(**create_args) self._links[link.linkname] = link logfile_default = os.path.join('logs', '%s.log' % link.full_linkname) logfile = kwargs.setdefault('logfile', logfile_default) link._register_job(JobDetails.topkey, job_args, logfile, status=JobStatus.unknown) return link
Transfer options kwargs to a `Link` object, optionally building the `Link if needed. Parameters ---------- linkname : str Unique name of this particular link cls : type Type of `Link` being created or managed
entailment
def _set_links_job_archive(self): """Pass self._job_archive along to links""" for link in self._links.values(): link._job_archive = self._job_archive
Pass self._job_archive along to links
entailment
def _run_chain(self, stream=sys.stdout, dry_run=False, stage_files=True, force_run=False, resubmit_failed=False): """Run all the links in the chain Parameters ----------- stream : `file` Stream to print to, Must have 'write' function dry_run : bool Print commands but do not run them stage_files : bool Stage files to and from the scratch area force_run : bool Run jobs, even if they are marked as done resubmit_failed : bool Resubmit failed jobs """ self._set_links_job_archive() failed = False if self._file_stage is not None: input_file_mapping, output_file_mapping = self._map_scratch_files( self.sub_files) if stage_files: self._file_stage.make_scratch_dirs(input_file_mapping, dry_run) self._file_stage.make_scratch_dirs( output_file_mapping, dry_run) self._stage_input_files(input_file_mapping, dry_run) for link in self._links.values(): logfile = os.path.join('logs', "%s.log" % link.full_linkname) link._archive_self(logfile, status=JobStatus.unknown) key = JobDetails.make_fullkey(link.full_linkname) if hasattr(link, 'check_status'): link.check_status(stream, no_wait=True, check_once=True, do_print=False) else: pass link_status = link.check_job_status(key) if link_status in [JobStatus.done]: if not force_run: print ("Skipping done link", link.full_linkname) continue elif link_status in [JobStatus.running]: if not force_run and not resubmit_failed: print ("Skipping running link", link.full_linkname) continue elif link_status in [JobStatus.failed, JobStatus.partial_failed]: if not resubmit_failed: print ("Skipping failed link", link.full_linkname) continue print ("Running link ", link.full_linkname) link.run_with_log(dry_run=dry_run, stage_files=False, resubmit_failed=resubmit_failed) link_status = link.check_jobs_status() link._set_status_self(status=link_status) if link_status in [JobStatus.failed, JobStatus.partial_failed]: print ("Stoping chain execution at failed link %s" % link.full_linkname) failed = True break # elif link_status in [JobStatus.partial_failed]: # print ("Resubmitting partially failed link %s" % # link.full_linkname) # link.run_with_log(dry_run=dry_run, stage_files=False, # resubmit_failed=resubmit_failed) # link_status = link.check_jobs_status() # link._set_status_self(status=link_status) # if link_status in [JobStatus.partial_failed]: # print ("Stoping chain execution: resubmission failed %s" % # link.full_linkname) # failed = True # break if self._file_stage is not None and stage_files and not failed: self._stage_output_files(output_file_mapping, dry_run) chain_status = self.check_links_status() print ("Chain status: %s" % (JOB_STATUS_STRINGS[chain_status])) if chain_status == 5: job_status = 0 else: job_status = -1 self._write_status_to_log(job_status, stream) self._set_status_self(status=chain_status) if self._job_archive: self._job_archive.file_archive.update_file_status() self._job_archive.write_table_file()
Run all the links in the chain Parameters ----------- stream : `file` Stream to print to, Must have 'write' function dry_run : bool Print commands but do not run them stage_files : bool Stage files to and from the scratch area force_run : bool Run jobs, even if they are marked as done resubmit_failed : bool Resubmit failed jobs
entailment
def clear_jobs(self, recursive=True): """Clear a dictionary with all the jobs If recursive is True this will include jobs from all internal `Link` """ if recursive: for link in self._links.values(): link.clear_jobs(recursive) self.jobs.clear()
Clear a dictionary with all the jobs If recursive is True this will include jobs from all internal `Link`
entailment
def get_jobs(self, recursive=True): """Return a dictionary with all the jobs If recursive is True this will include jobs from all internal `Link` """ if recursive: ret_dict = self.jobs.copy() for link in self._links.values(): ret_dict.update(link.get_jobs(recursive)) return ret_dict return self.jobs
Return a dictionary with all the jobs If recursive is True this will include jobs from all internal `Link`
entailment
def missing_input_files(self): """Make and return a dictionary of the missing input files. This returns a dictionary mapping filepath to list of `Link` that use the file as input. """ ret_dict = OrderedDict() for link in self._links.values(): link_dict = link.missing_input_files() for key, value in link_dict.items(): try: ret_dict[key] += value except KeyError: ret_dict[key] = value return ret_dict
Make and return a dictionary of the missing input files. This returns a dictionary mapping filepath to list of `Link` that use the file as input.
entailment
def check_links_status(self, fail_running=False, fail_pending=False): """"Check the status of all the jobs run from the `Link` objects in this `Chain` and return a status flag that summarizes that. Parameters ---------- fail_running : `bool` If True, consider running jobs as failed fail_pending : `bool` If True, consider pending jobs as failed Returns ------- status : `JobStatus` Job status flag that summarizes the status of all the jobs, """ status_vector = JobStatusVector() for link in self._links.values(): key = JobDetails.make_fullkey(link.full_linkname) link_status = link.check_job_status(key, fail_running=fail_running, fail_pending=fail_pending) status_vector[link_status] += 1 return status_vector.get_status()
Check the status of all the jobs run from the `Link` objects in this `Chain` and return a status flag that summarizes that. Parameters ---------- fail_running : `bool` If True, consider running jobs as failed fail_pending : `bool` If True, consider pending jobs as failed Returns ------- status : `JobStatus` Job status flag that summarizes the status of all the jobs,
entailment
def run(self, stream=sys.stdout, dry_run=False, stage_files=True, resubmit_failed=False): """Runs this `Chain`. Parameters ----------- stream : `file` Stream that this `Link` will print to, Must have 'write' function dry_run : bool Print command but do not run it. stage_files : bool Copy files to and from scratch staging area. resubmit_failed : bool Flag for sub-classes to resubmit failed jobs. """ self._run_chain(stream, dry_run, stage_files, resubmit_failed=resubmit_failed)
Runs this `Chain`. Parameters ----------- stream : `file` Stream that this `Link` will print to, Must have 'write' function dry_run : bool Print command but do not run it. stage_files : bool Copy files to and from scratch staging area. resubmit_failed : bool Flag for sub-classes to resubmit failed jobs.
entailment
def update_args(self, override_args): """Update the argument used to invoke the application Note that this will also update the dictionary of input and output files. Parameters ----------- override_args : dict dictionary passed to the links """ self.args = extract_arguments(override_args, self.args) self._map_arguments(self.args) scratch_dir = self.args.get('scratch', None) if is_not_null(scratch_dir): self._file_stage = FileStageManager(scratch_dir, '.') for link in self._links.values(): link._set_file_stage(self._file_stage) self._latch_file_info()
Update the argument used to invoke the application Note that this will also update the dictionary of input and output files. Parameters ----------- override_args : dict dictionary passed to the links
entailment
def print_status(self, indent="", recurse=False): """Print a summary of the job status for each `Link` in this `Chain`""" print ("%s%30s : %15s : %20s" % (indent, "Linkname", "Link Status", "Jobs Status")) for link in self._links.values(): if hasattr(link, 'check_status'): status_vect = link.check_status( stream=sys.stdout, no_wait=True, do_print=False) else: status_vect = None key = JobDetails.make_fullkey(link.full_linkname) link_status = JOB_STATUS_STRINGS[link.check_job_status(key)] if status_vect is None: jobs_status = JOB_STATUS_STRINGS[link.check_jobs_status()] else: jobs_status = status_vect print ("%s%30s : %15s : %20s" % (indent, link.linkname, link_status, jobs_status)) if hasattr(link, 'print_status') and recurse: print ("---------- %30s -----------" % link.linkname) link.print_status(indent + " ", recurse=True) print ("------------------------------------------------")
Print a summary of the job status for each `Link` in this `Chain`
entailment
def print_summary(self, stream=sys.stdout, indent="", recurse_level=2): """Print a summary of the activity done by this `Chain`. Parameters ----------- stream : `file` Stream to print to, must have 'write' method. indent : str Indentation at start of line recurse_level : int Number of recursion levels to print """ Link.print_summary(self, stream, indent, recurse_level) if recurse_level > 0: recurse_level -= 1 indent += " " for link in self._links.values(): stream.write("\n") link.print_summary(stream, indent, recurse_level)
Print a summary of the activity done by this `Chain`. Parameters ----------- stream : `file` Stream to print to, must have 'write' method. indent : str Indentation at start of line recurse_level : int Number of recursion levels to print
entailment
def register_classes(): """Register these classes with the `LinkFactory` """ Gtlink_exphpsun.register_class() Gtlink_suntemp.register_class() Gtexphpsun_SG.register_class() Gtsuntemp_SG.register_class() SunMoonChain.register_class()
Register these classes with the `LinkFactory`
entailment
def build_job_configs(self, args): """Hook to build job configurations """ job_configs = {} components = Component.build_from_yamlfile(args['comp']) NAME_FACTORY.update_base_dict(args['data']) mktime = args['mktimefilter'] base_config = dict(nxpix=args['nxpix'], nypix=args['nypix'], binsz=args['binsz']) for comp in components: zcut = "zmax%i" % comp.zmax key = comp.make_key('{ebin_name}_{evtype_name}') name_keys = dict(zcut=zcut, ebin=comp.ebin_name, psftype=comp.evtype_name, irf_ver=NAME_FACTORY.irf_ver(), coordsys=comp.coordsys, mktime=mktime, fullpath=True) outfile = NAME_FACTORY.bexpcube(**name_keys) ltcube = NAME_FACTORY.ltcube(**name_keys) full_config = base_config.copy() full_config.update(dict(infile=ltcube, outfile=outfile, irfs=NAME_FACTORY.irfs(**name_keys), evtype=comp.evtype, emin=comp.emin, emax=comp.emax, enumbins=comp.enumbins, logfile=make_nfs_path(outfile.replace('.fits', '.log')))) job_configs[key] = full_config return job_configs
Hook to build job configurations
entailment
def build_job_configs(self, args): """Hook to build job configurations """ job_configs = {} components = Component.build_from_yamlfile(args['comp']) NAME_FACTORY.update_base_dict(args['data']) mktime = args['mktimefilter'] for comp in components: zcut = "zmax%i" % comp.zmax key = comp.make_key('{ebin_name}_{evtype_name}') name_keys = dict(zcut=zcut, ebin=comp.ebin_name, psftype=comp.evtype_name, irf_ver=NAME_FACTORY.irf_ver(), mktime=mktime, fullpath=True) outfile = NAME_FACTORY.bexpcube_sun(**name_keys) ltcube_sun = NAME_FACTORY.ltcube_sun(**name_keys) job_configs[key] = dict(infile=NAME_FACTORY.ltcube_sun(**name_keys), outfile=outfile, irfs=NAME_FACTORY.irfs(**name_keys), evtype=comp.evtype, emin=comp.emin, emax=comp.emax, enumbins=comp.enumbins, logfile=make_nfs_path(outfile.replace('.fits', '.log'))) return job_configs
Hook to build job configurations
entailment
def build_job_configs(self, args): """Hook to build job configurations """ job_configs = {} components = Component.build_from_yamlfile(args['comp']) NAME_FACTORY.update_base_dict(args['data']) # FIXME mktime = args['mktimefilter'] for comp in components: for sourcekey in args['sourcekeys']: zcut = "zmax%i" % comp.zmax key = comp.make_key('{ebin_name}_{evtype_name}') + "_%s" % sourcekey name_keys = dict(zcut=zcut, ebin=comp.ebin_name, psftype=comp.evtype_name, irf_ver=NAME_FACTORY.irf_ver(), sourcekey=sourcekey, mktime=mktime, coordsys=comp.coordsys, fullpath=True) outfile = NAME_FACTORY.template_sunmoon(**name_keys) job_configs[key] = dict(expsun=NAME_FACTORY.bexpcube_sun(**name_keys), avgexp=NAME_FACTORY.bexpcube(**name_keys), sunprof=NAME_FACTORY.angprofile(**name_keys), cmap='none', outfile=outfile, irfs=NAME_FACTORY.irfs(**name_keys), evtype=comp.evtype, emin=comp.emin, emax=comp.emax, enumbins=comp.enumbins, logfile=outfile.replace('.fits', '.log')) return job_configs
Hook to build job configurations
entailment
def _map_arguments(self, input_dict): """Map from the top-level arguments to the arguments provided to the indiviudal links """ config_yaml = input_dict['config'] config_dict = load_yaml(config_yaml) data = config_dict.get('data') comp = config_dict.get('comp') sourcekeys = config_dict.get('sourcekeys') mktimefilter = config_dict.get('mktimefilter') self._set_link('expcube2', Gtexpcube2wcs_SG, comp=comp, data=data, mktimefilter=mktimefilter) self._set_link('exphpsun', Gtexphpsun_SG, comp=comp, data=data, mktimefilter=mktimefilter) self._set_link('suntemp', Gtsuntemp_SG, comp=comp, data=data, mktimefilter=mktimefilter, sourcekeys=sourcekeys)
Map from the top-level arguments to the arguments provided to the indiviudal links
entailment
def get_component_info(self, comp): """Return the information about sub-component specific to a particular data selection Parameters ---------- comp : `binning.Component` object Specifies the sub-component Returns `ModelComponentInfo` object """ if self.components is None: raise ValueError( 'Model component %s does not have sub-components' % self.sourcekey) if self.moving: comp_key = "zmax%i" % (comp.zmax) elif self.selection_dependent: comp_key = comp.make_key('{ebin_name}_{evtype_name}') else: raise ValueError( 'Model component %s is not moving or selection dependent' % self.sourcekey) return self.components[comp_key]
Return the information about sub-component specific to a particular data selection Parameters ---------- comp : `binning.Component` object Specifies the sub-component Returns `ModelComponentInfo` object
entailment
def add_component_info(self, compinfo): """Add sub-component specific information to a particular data selection Parameters ---------- compinfo : `ModelComponentInfo` object Sub-component being added """ if self.components is None: self.components = {} self.components[compinfo.comp_key] = compinfo
Add sub-component specific information to a particular data selection Parameters ---------- compinfo : `ModelComponentInfo` object Sub-component being added
entailment
def clone_and_merge_sub(self, key): """Clones self and merges clone with sub-component specific information Parameters ---------- key : str Key specifying which sub-component Returns `ModelComponentInfo` object """ new_comp = copy.deepcopy(self) #sub_com = self.components[key] new_comp.components = None new_comp.comp_key = key return new_comp
Clones self and merges clone with sub-component specific information Parameters ---------- key : str Key specifying which sub-component Returns `ModelComponentInfo` object
entailment
def add_columns(t0, t1): """Add columns of table t1 to table t0.""" for colname in t1.colnames: col = t1.columns[colname] if colname in t0.columns: continue new_col = Column(name=col.name, length=len(t0), dtype=col.dtype) # , # shape=col.shape) t0.add_column(new_col)
Add columns of table t1 to table t0.
entailment
def join_tables(left, right, key_left, key_right, cols_right=None): """Perform a join of two tables. Parameters ---------- left : `~astropy.Table` Left table for join. right : `~astropy.Table` Right table for join. key_left : str Key used to match elements from ``left`` table. key_right : str Key used to match elements from ``right`` table. cols_right : list Subset of columns from ``right`` table that will be appended to joined table. """ right = right.copy() if cols_right is None: cols_right = right.colnames else: cols_right = [c for c in cols_right if c in right.colnames] if key_left != key_right: right[key_right].name = key_left if key_left not in cols_right: cols_right += [key_left] out = join(left, right[cols_right], keys=key_left, join_type='left') for col in out.colnames: if out[col].dtype.kind in ['S', 'U']: out[col].fill_value = '' elif out[col].dtype.kind in ['i']: out[col].fill_value = 0 else: out[col].fill_value = np.nan return out.filled()
Perform a join of two tables. Parameters ---------- left : `~astropy.Table` Left table for join. right : `~astropy.Table` Right table for join. key_left : str Key used to match elements from ``left`` table. key_right : str Key used to match elements from ``right`` table. cols_right : list Subset of columns from ``right`` table that will be appended to joined table.
entailment
def strip_columns(tab): """Strip whitespace from string columns.""" for colname in tab.colnames: if tab[colname].dtype.kind in ['S', 'U']: tab[colname] = np.core.defchararray.strip(tab[colname])
Strip whitespace from string columns.
entailment
def row_to_dict(row): """Convert a table row to a dictionary.""" o = {} for colname in row.colnames: if isinstance(row[colname], np.string_) and row[colname].dtype.kind in ['S', 'U']: o[colname] = str(row[colname]) else: o[colname] = row[colname] return o
Convert a table row to a dictionary.
entailment
def run_analysis(self, argv): """Run this analysis""" args = self._parser.parse_args(argv) obs = BinnedAnalysis.BinnedObs(irfs=args.irfs, expCube=args.expcube, srcMaps=args.srcmaps, binnedExpMap=args.bexpmap) like = BinnedAnalysis.BinnedAnalysis(obs, optimizer='MINUIT', srcModel=GtMergeSrcmaps.NULL_MODEL, wmap=None) like.logLike.set_use_single_fixed_map(False) print("Reading xml model from %s" % args.srcmdl) source_factory = pyLike.SourceFactory(obs.observation) source_factory.readXml(args.srcmdl, BinnedAnalysis._funcFactory, False, True, True) strv = pyLike.StringVector() source_factory.fetchSrcNames(strv) source_names = [strv[i] for i in range(strv.size())] missing_sources = [] srcs_to_merge = [] for source_name in source_names: try: source = source_factory.releaseSource(source_name) # EAC, add the source directly to the model like.logLike.addSource(source) srcs_to_merge.append(source_name) except KeyError: missing_sources.append(source_name) comp = like.mergeSources(args.merged, source_names, 'ConstantValue') like.logLike.getSourceMap(comp.getName()) print("Merged %i sources into %s" % (len(srcs_to_merge), comp.getName())) if missing_sources: print("Missed sources: ", missing_sources) print("Writing output source map file %s" % args.outfile) like.logLike.saveSourceMaps(args.outfile, False, False) if args.gzip: os.system("gzip -9 %s" % args.outfile) print("Writing output xml file %s" % args.outxml) like.writeXml(args.outxml)
Run this analysis
entailment
def build_job_configs(self, args): """Hook to build job configurations """ job_configs = {} components = Component.build_from_yamlfile(args['comp']) NAME_FACTORY.update_base_dict(args['data']) ret_dict = make_catalog_comp_dict(sources=args['library'], basedir='.') comp_info_dict = ret_dict['comp_info_dict'] for split_ver, split_dict in comp_info_dict.items(): for source_key, source_dict in split_dict.items(): full_key = "%s_%s" % (split_ver, source_key) merged_name = "%s_%s" % (source_dict.catalog_info.catalog_name, source_key) if source_dict.model_type != 'CompositeSource': continue for comp in components: zcut = "zmax%i" % comp.zmax key = "%s_%s" % (full_key, comp.make_key('{ebin_name}_{evtype_name}')) name_keys = dict(zcut=zcut, sourcekey=full_key, ebin=comp.ebin_name, psftype=comp.evtype_name, coordsys=comp.coordsys, mktime='none', irf_ver=NAME_FACTORY.irf_ver()) nested_name_keys = dict(zcut=zcut, sourcekey=source_dict.catalog_info.catalog_name, ebin=comp.ebin_name, psftype=comp.evtype_name, coordsys=comp.coordsys, mktime='none', irf_ver=NAME_FACTORY.irf_ver()) outfile = NAME_FACTORY.srcmaps(**name_keys) logfile = make_nfs_path(outfile.replace('.fits', '.log')) job_configs[key] = dict(srcmaps=NAME_FACTORY.srcmaps(**nested_name_keys), expcube=NAME_FACTORY.ltcube(**name_keys), irfs=NAME_FACTORY.irfs(**name_keys), bexpmap=NAME_FACTORY.bexpcube(**name_keys), srcmdl=NAME_FACTORY.srcmdl_xml(**name_keys), merged=merged_name, outfile=outfile, outxml=NAME_FACTORY.nested_srcmdl_xml(**name_keys), logfile=logfile) return job_configs
Hook to build job configurations
entailment
def check_log(logfile, exited='Exited with exit code', successful='Successfully completed', exists=True): """ Often logfile doesn't exist because the job hasn't begun to run. It is unclear what you want to do in that case... Parameters ---------- logfile : str String with path to logfile exists : bool Is the logfile required to exist exited : str String in logfile used to determine if a job exited. successful : str String in logfile used to determine if a job succeeded. """ if not os.path.exists(logfile): return not exists if exited in open(logfile).read(): return 'Exited' elif successful in open(logfile).read(): return 'Successful' else: return 'None'
Often logfile doesn't exist because the job hasn't begun to run. It is unclear what you want to do in that case... Parameters ---------- logfile : str String with path to logfile exists : bool Is the logfile required to exist exited : str String in logfile used to determine if a job exited. successful : str String in logfile used to determine if a job succeeded.
entailment
def dispatch_job(jobname, exe, args, opts, batch_opts, dry_run=True): """Dispatch an LSF job. Parameters ---------- exe : str Execution string. args : list Positional arguments. opts : dict Dictionary of command-line options. """ batch_opts.setdefault('W', 300) batch_opts.setdefault('R', 'rhel60 && scratch > 10') cmd_opts = '' for k, v in opts.items(): if isinstance(v, list): cmd_opts += ' '.join(['--%s=%s' % (k, t) for t in v]) elif isinstance(v, bool) and v: cmd_opts += ' --%s ' % (k) elif isinstance(v, bool): continue elif v is not None: cmd_opts += ' --%s=\"%s\" ' % (k, v) bash_script = "{exe} {args} {opts}" scriptexe = jobname + '.sh' with open(os.path.join(scriptexe), 'wt') as f: f.write(bash_script.format(exe=exe, args=' '.join(args), opts=cmd_opts)) batch_optstr = parse_lsf_opts(**batch_opts) batch_cmd = 'bsub %s ' % (batch_optstr) batch_cmd += ' bash %s' % scriptexe print(batch_cmd) if not dry_run: os.system(batch_cmd)
Dispatch an LSF job. Parameters ---------- exe : str Execution string. args : list Positional arguments. opts : dict Dictionary of command-line options.
entailment
def _make_input_file_list(binnedfile, num_files): """Make the list of input files for a particular energy bin X psf type """ outdir_base = os.path.abspath(os.path.dirname(binnedfile)) outbasename = os.path.basename(binnedfile) filelist = "" for i in range(num_files): split_key = "%06i" % i output_dir = os.path.join(outdir_base, split_key) filepath = os.path.join(output_dir, outbasename.replace('.fits', '_%s.fits' % split_key)) filelist += ' %s' % filepath return filelist
Make the list of input files for a particular energy bin X psf type
entailment
def _map_arguments(self, args): """Map from the top-level arguments to the arguments provided to the indiviudal links """ comp_file = args.get('comp', None) datafile = args.get('data', None) do_ltsum = args.get('do_ltsum', False) NAME_FACTORY.update_base_dict(datafile) outdir_base = os.path.join(NAME_FACTORY.base_dict['basedir'], 'counts_cubes') num_files = args.get('nfiles', 96) self.comp_dict = yaml.safe_load(open(comp_file)) coordsys = self.comp_dict.pop('coordsys') for key_e, comp_e in sorted(self.comp_dict.items()): if 'mktimefilters' in comp_e: mktimelist = comp_e['mktimefilters'] else: mktimelist = ['none'] if 'evtclasses' in comp_e: evtclasslist_vals = comp_e['evtclasses'] else: evtclasslist_vals = [NAME_FACTORY.base_dict['evclass']] for mktimekey in mktimelist: zcut = "zmax%i" % comp_e['zmax'] kwargs_mktime = dict(zcut=zcut, ebin=key_e, psftype='ALL', coordsys=coordsys, mktime=mktimekey) if do_ltsum: ltsum_listfile = 'ltsumlist_%s_%s' % (key_e, mktimekey) ltsum_outfile = 'ltsum_%s_%s' % (key_e, mktimekey) linkname = 'ltsum_%s_%s' % (key_e, mktimekey) self._set_link(likname, Gtlink_ltsum, infile1=ltsum_listfile, infile2=None, outfile=ltsum_outfile, logfile=os.path.join(outdir_base, "%s.log" % linkname)) for evtclassval in evtclasslist_vals: for psf_type in sorted(comp_e['psf_types'].keys()): fullkey = "%s_%s_%s_%s"%(key_e, mktimekey, evtclassval, psf_type) linkname = 'coadd_%s' % (fullkey) kwargs_bin = kwargs_mktime.copy() kwargs_bin['psftype'] = psf_type kwargs_bin['evclass'] = evtclassval ccube_name =\ os.path.basename(NAME_FACTORY.ccube(**kwargs_bin)) outputfile = os.path.join(outdir_base, ccube_name) args = _make_input_file_list(outputfile, num_files) self._set_link(linkname, Link_FermipyCoadd, args=args, output=outputfile, logfile=os.path.join(outdir_base, "%s.log" % linkname))
Map from the top-level arguments to the arguments provided to the indiviudal links
entailment
def build_job_configs(self, args): """Hook to build job configurations """ job_configs = {} components = Component.build_from_yamlfile(args['comp']) datafile = args['data'] if datafile is None or datafile == 'None': return job_configs NAME_FACTORY.update_base_dict(args['data']) outdir_base = os.path.join(NAME_FACTORY.base_dict['basedir'], 'counts_cubes') inputfiles = create_inputlist(args['ft1file']) num_files = len(inputfiles) for comp in components: zcut = "zmax%i" % comp.zmax mktimelist = copy.copy(comp.mktimefilters) if not mktimelist: mktimelist.append('none') evtclasslist_keys = copy.copy(comp.evtclasses) if not evtclasslist_keys: evtclasslist_vals = [NAME_FACTORY.base_dict['evclass']] else: evtclasslist_vals = copy.copy(evtclasslist_keys) for mktimekey in mktimelist: for evtclassval in evtclasslist_vals: fullkey = comp.make_key( '%s_%s_{ebin_name}_%s_{evtype_name}' % (evtclassval, zcut, mktimekey)) name_keys = dict(zcut=zcut, ebin=comp.ebin_name, psftype=comp.evtype_name, coordsys=comp.coordsys, irf_ver=NAME_FACTORY.irf_ver(), mktime=mktimekey, evclass=evtclassval, fullpath=True) ccube_name = os.path.basename(NAME_FACTORY.ccube(**name_keys)) outfile = os.path.join(outdir_base, ccube_name) infiles = _make_input_file_list(outfile, num_files) logfile = make_nfs_path(outfile.replace('.fits', '.log')) job_configs[fullkey] = dict(args=infiles, output=outfile, logfile=logfile) return job_configs
Hook to build job configurations
entailment
def create_from_flux(cls, params, emin, emax, flux, scale=1.0): """Create a spectral function instance given its flux.""" params = params.copy() params[0] = 1.0 params[0] = flux / cls.eval_flux(emin, emax, params, scale=scale) return cls(params, scale)
Create a spectral function instance given its flux.
entailment